1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corporation, 2018 4 * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com> 5 * Paul Mackerras <paulus@ozlabs.org> 6 * 7 * Description: KVM functions specific to running nested KVM-HV guests 8 * on Book3S processors (specifically POWER9 and later). 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/kvm_host.h> 13 #include <linux/llist.h> 14 #include <linux/pgtable.h> 15 16 #include <asm/kvm_ppc.h> 17 #include <asm/kvm_book3s.h> 18 #include <asm/mmu.h> 19 #include <asm/pgalloc.h> 20 #include <asm/pte-walk.h> 21 #include <asm/reg.h> 22 #include <asm/plpar_wrappers.h> 23 24 static struct patb_entry *pseries_partition_tb; 25 26 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp); 27 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free); 28 29 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr) 30 { 31 struct kvmppc_vcore *vc = vcpu->arch.vcore; 32 33 hr->pcr = vc->pcr | PCR_MASK; 34 hr->dpdes = vc->dpdes; 35 hr->hfscr = vcpu->arch.hfscr; 36 hr->tb_offset = vc->tb_offset; 37 hr->dawr0 = vcpu->arch.dawr0; 38 hr->dawrx0 = vcpu->arch.dawrx0; 39 hr->ciabr = vcpu->arch.ciabr; 40 hr->purr = vcpu->arch.purr; 41 hr->spurr = vcpu->arch.spurr; 42 hr->ic = vcpu->arch.ic; 43 hr->vtb = vc->vtb; 44 hr->srr0 = vcpu->arch.shregs.srr0; 45 hr->srr1 = vcpu->arch.shregs.srr1; 46 hr->sprg[0] = vcpu->arch.shregs.sprg0; 47 hr->sprg[1] = vcpu->arch.shregs.sprg1; 48 hr->sprg[2] = vcpu->arch.shregs.sprg2; 49 hr->sprg[3] = vcpu->arch.shregs.sprg3; 50 hr->pidr = vcpu->arch.pid; 51 hr->cfar = vcpu->arch.cfar; 52 hr->ppr = vcpu->arch.ppr; 53 hr->dawr1 = vcpu->arch.dawr1; 54 hr->dawrx1 = vcpu->arch.dawrx1; 55 } 56 57 /* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */ 58 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs) 59 { 60 unsigned long *addr = (unsigned long *) regs; 61 62 for (; addr < ((unsigned long *) (regs + 1)); addr++) 63 *addr = swab64(*addr); 64 } 65 66 static void byteswap_hv_regs(struct hv_guest_state *hr) 67 { 68 hr->version = swab64(hr->version); 69 hr->lpid = swab32(hr->lpid); 70 hr->vcpu_token = swab32(hr->vcpu_token); 71 hr->lpcr = swab64(hr->lpcr); 72 hr->pcr = swab64(hr->pcr) | PCR_MASK; 73 hr->amor = swab64(hr->amor); 74 hr->dpdes = swab64(hr->dpdes); 75 hr->hfscr = swab64(hr->hfscr); 76 hr->tb_offset = swab64(hr->tb_offset); 77 hr->dawr0 = swab64(hr->dawr0); 78 hr->dawrx0 = swab64(hr->dawrx0); 79 hr->ciabr = swab64(hr->ciabr); 80 hr->hdec_expiry = swab64(hr->hdec_expiry); 81 hr->purr = swab64(hr->purr); 82 hr->spurr = swab64(hr->spurr); 83 hr->ic = swab64(hr->ic); 84 hr->vtb = swab64(hr->vtb); 85 hr->hdar = swab64(hr->hdar); 86 hr->hdsisr = swab64(hr->hdsisr); 87 hr->heir = swab64(hr->heir); 88 hr->asdr = swab64(hr->asdr); 89 hr->srr0 = swab64(hr->srr0); 90 hr->srr1 = swab64(hr->srr1); 91 hr->sprg[0] = swab64(hr->sprg[0]); 92 hr->sprg[1] = swab64(hr->sprg[1]); 93 hr->sprg[2] = swab64(hr->sprg[2]); 94 hr->sprg[3] = swab64(hr->sprg[3]); 95 hr->pidr = swab64(hr->pidr); 96 hr->cfar = swab64(hr->cfar); 97 hr->ppr = swab64(hr->ppr); 98 hr->dawr1 = swab64(hr->dawr1); 99 hr->dawrx1 = swab64(hr->dawrx1); 100 } 101 102 static void save_hv_return_state(struct kvm_vcpu *vcpu, int trap, 103 struct hv_guest_state *hr) 104 { 105 struct kvmppc_vcore *vc = vcpu->arch.vcore; 106 107 hr->dpdes = vc->dpdes; 108 hr->hfscr = vcpu->arch.hfscr; 109 hr->purr = vcpu->arch.purr; 110 hr->spurr = vcpu->arch.spurr; 111 hr->ic = vcpu->arch.ic; 112 hr->vtb = vc->vtb; 113 hr->srr0 = vcpu->arch.shregs.srr0; 114 hr->srr1 = vcpu->arch.shregs.srr1; 115 hr->sprg[0] = vcpu->arch.shregs.sprg0; 116 hr->sprg[1] = vcpu->arch.shregs.sprg1; 117 hr->sprg[2] = vcpu->arch.shregs.sprg2; 118 hr->sprg[3] = vcpu->arch.shregs.sprg3; 119 hr->pidr = vcpu->arch.pid; 120 hr->cfar = vcpu->arch.cfar; 121 hr->ppr = vcpu->arch.ppr; 122 switch (trap) { 123 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 124 hr->hdar = vcpu->arch.fault_dar; 125 hr->hdsisr = vcpu->arch.fault_dsisr; 126 hr->asdr = vcpu->arch.fault_gpa; 127 break; 128 case BOOK3S_INTERRUPT_H_INST_STORAGE: 129 hr->asdr = vcpu->arch.fault_gpa; 130 break; 131 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 132 hr->heir = vcpu->arch.emul_inst; 133 break; 134 } 135 } 136 137 /* 138 * This can result in some L0 HV register state being leaked to an L1 139 * hypervisor when the hv_guest_state is copied back to the guest after 140 * being modified here. 141 * 142 * There is no known problem with such a leak, and in many cases these 143 * register settings could be derived by the guest by observing behaviour 144 * and timing, interrupts, etc., but it is an issue to consider. 145 */ 146 static void sanitise_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr) 147 { 148 struct kvmppc_vcore *vc = vcpu->arch.vcore; 149 u64 mask; 150 151 /* 152 * Don't let L1 change LPCR bits for the L2 except these: 153 */ 154 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | 155 LPCR_LPES | LPCR_MER; 156 157 /* 158 * Additional filtering is required depending on hardware 159 * and configuration. 160 */ 161 hr->lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm, 162 (vc->lpcr & ~mask) | (hr->lpcr & mask)); 163 164 /* 165 * Don't let L1 enable features for L2 which we've disabled for L1, 166 * but preserve the interrupt cause field. 167 */ 168 hr->hfscr &= (HFSCR_INTR_CAUSE | vcpu->arch.hfscr); 169 170 /* Don't let data address watchpoint match in hypervisor state */ 171 hr->dawrx0 &= ~DAWRX_HYP; 172 hr->dawrx1 &= ~DAWRX_HYP; 173 174 /* Don't let completed instruction address breakpt match in HV state */ 175 if ((hr->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 176 hr->ciabr &= ~CIABR_PRIV; 177 } 178 179 static void restore_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr) 180 { 181 struct kvmppc_vcore *vc = vcpu->arch.vcore; 182 183 vc->pcr = hr->pcr | PCR_MASK; 184 vc->dpdes = hr->dpdes; 185 vcpu->arch.hfscr = hr->hfscr; 186 vcpu->arch.dawr0 = hr->dawr0; 187 vcpu->arch.dawrx0 = hr->dawrx0; 188 vcpu->arch.ciabr = hr->ciabr; 189 vcpu->arch.purr = hr->purr; 190 vcpu->arch.spurr = hr->spurr; 191 vcpu->arch.ic = hr->ic; 192 vc->vtb = hr->vtb; 193 vcpu->arch.shregs.srr0 = hr->srr0; 194 vcpu->arch.shregs.srr1 = hr->srr1; 195 vcpu->arch.shregs.sprg0 = hr->sprg[0]; 196 vcpu->arch.shregs.sprg1 = hr->sprg[1]; 197 vcpu->arch.shregs.sprg2 = hr->sprg[2]; 198 vcpu->arch.shregs.sprg3 = hr->sprg[3]; 199 vcpu->arch.pid = hr->pidr; 200 vcpu->arch.cfar = hr->cfar; 201 vcpu->arch.ppr = hr->ppr; 202 vcpu->arch.dawr1 = hr->dawr1; 203 vcpu->arch.dawrx1 = hr->dawrx1; 204 } 205 206 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu, 207 struct hv_guest_state *hr) 208 { 209 struct kvmppc_vcore *vc = vcpu->arch.vcore; 210 211 vc->dpdes = hr->dpdes; 212 vcpu->arch.hfscr = hr->hfscr; 213 vcpu->arch.purr = hr->purr; 214 vcpu->arch.spurr = hr->spurr; 215 vcpu->arch.ic = hr->ic; 216 vc->vtb = hr->vtb; 217 vcpu->arch.fault_dar = hr->hdar; 218 vcpu->arch.fault_dsisr = hr->hdsisr; 219 vcpu->arch.fault_gpa = hr->asdr; 220 vcpu->arch.emul_inst = hr->heir; 221 vcpu->arch.shregs.srr0 = hr->srr0; 222 vcpu->arch.shregs.srr1 = hr->srr1; 223 vcpu->arch.shregs.sprg0 = hr->sprg[0]; 224 vcpu->arch.shregs.sprg1 = hr->sprg[1]; 225 vcpu->arch.shregs.sprg2 = hr->sprg[2]; 226 vcpu->arch.shregs.sprg3 = hr->sprg[3]; 227 vcpu->arch.pid = hr->pidr; 228 vcpu->arch.cfar = hr->cfar; 229 vcpu->arch.ppr = hr->ppr; 230 } 231 232 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr) 233 { 234 /* No need to reflect the page fault to L1, we've handled it */ 235 vcpu->arch.trap = 0; 236 237 /* 238 * Since the L2 gprs have already been written back into L1 memory when 239 * we complete the mmio, store the L1 memory location of the L2 gpr 240 * being loaded into by the mmio so that the loaded value can be 241 * written there in kvmppc_complete_mmio_load() 242 */ 243 if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR) 244 && (vcpu->mmio_is_write == 0)) { 245 vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr + 246 offsetof(struct pt_regs, 247 gpr[vcpu->arch.io_gpr]); 248 vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR; 249 } 250 } 251 252 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu, 253 struct hv_guest_state *l2_hv, 254 struct pt_regs *l2_regs, 255 u64 hv_ptr, u64 regs_ptr) 256 { 257 int size; 258 259 if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version, 260 sizeof(l2_hv->version))) 261 return -1; 262 263 if (kvmppc_need_byteswap(vcpu)) 264 l2_hv->version = swab64(l2_hv->version); 265 266 size = hv_guest_state_size(l2_hv->version); 267 if (size < 0) 268 return -1; 269 270 return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) || 271 kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs, 272 sizeof(struct pt_regs)); 273 } 274 275 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu, 276 struct hv_guest_state *l2_hv, 277 struct pt_regs *l2_regs, 278 u64 hv_ptr, u64 regs_ptr) 279 { 280 int size; 281 282 size = hv_guest_state_size(l2_hv->version); 283 if (size < 0) 284 return -1; 285 286 return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) || 287 kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs, 288 sizeof(struct pt_regs)); 289 } 290 291 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu) 292 { 293 long int err, r; 294 struct kvm_nested_guest *l2; 295 struct pt_regs l2_regs, saved_l1_regs; 296 struct hv_guest_state l2_hv = {0}, saved_l1_hv; 297 struct kvmppc_vcore *vc = vcpu->arch.vcore; 298 u64 hv_ptr, regs_ptr; 299 u64 hdec_exp; 300 s64 delta_purr, delta_spurr, delta_ic, delta_vtb; 301 302 if (vcpu->kvm->arch.l1_ptcr == 0) 303 return H_NOT_AVAILABLE; 304 305 /* copy parameters in */ 306 hv_ptr = kvmppc_get_gpr(vcpu, 4); 307 regs_ptr = kvmppc_get_gpr(vcpu, 5); 308 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 309 err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, 310 hv_ptr, regs_ptr); 311 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 312 if (err) 313 return H_PARAMETER; 314 315 if (kvmppc_need_byteswap(vcpu)) 316 byteswap_hv_regs(&l2_hv); 317 if (l2_hv.version > HV_GUEST_STATE_VERSION) 318 return H_P2; 319 320 if (kvmppc_need_byteswap(vcpu)) 321 byteswap_pt_regs(&l2_regs); 322 if (l2_hv.vcpu_token >= NR_CPUS) 323 return H_PARAMETER; 324 325 /* translate lpid */ 326 l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true); 327 if (!l2) 328 return H_PARAMETER; 329 if (!l2->l1_gr_to_hr) { 330 mutex_lock(&l2->tlb_lock); 331 kvmhv_update_ptbl_cache(l2); 332 mutex_unlock(&l2->tlb_lock); 333 } 334 335 /* save l1 values of things */ 336 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 337 saved_l1_regs = vcpu->arch.regs; 338 kvmhv_save_hv_regs(vcpu, &saved_l1_hv); 339 340 /* convert TB values/offsets to host (L0) values */ 341 hdec_exp = l2_hv.hdec_expiry - vc->tb_offset; 342 vc->tb_offset += l2_hv.tb_offset; 343 344 /* set L1 state to L2 state */ 345 vcpu->arch.nested = l2; 346 vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token; 347 vcpu->arch.regs = l2_regs; 348 349 /* Guest must always run with ME enabled, HV disabled. */ 350 vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV; 351 352 sanitise_hv_regs(vcpu, &l2_hv); 353 restore_hv_regs(vcpu, &l2_hv); 354 355 vcpu->arch.ret = RESUME_GUEST; 356 vcpu->arch.trap = 0; 357 do { 358 if (mftb() >= hdec_exp) { 359 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 360 r = RESUME_HOST; 361 break; 362 } 363 r = kvmhv_run_single_vcpu(vcpu, hdec_exp, l2_hv.lpcr); 364 } while (is_kvmppc_resume_guest(r)); 365 366 /* save L2 state for return */ 367 l2_regs = vcpu->arch.regs; 368 l2_regs.msr = vcpu->arch.shregs.msr; 369 delta_purr = vcpu->arch.purr - l2_hv.purr; 370 delta_spurr = vcpu->arch.spurr - l2_hv.spurr; 371 delta_ic = vcpu->arch.ic - l2_hv.ic; 372 delta_vtb = vc->vtb - l2_hv.vtb; 373 save_hv_return_state(vcpu, vcpu->arch.trap, &l2_hv); 374 375 /* restore L1 state */ 376 vcpu->arch.nested = NULL; 377 vcpu->arch.regs = saved_l1_regs; 378 vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK; 379 /* set L1 MSR TS field according to L2 transaction state */ 380 if (l2_regs.msr & MSR_TS_MASK) 381 vcpu->arch.shregs.msr |= MSR_TS_S; 382 vc->tb_offset = saved_l1_hv.tb_offset; 383 restore_hv_regs(vcpu, &saved_l1_hv); 384 vcpu->arch.purr += delta_purr; 385 vcpu->arch.spurr += delta_spurr; 386 vcpu->arch.ic += delta_ic; 387 vc->vtb += delta_vtb; 388 389 kvmhv_put_nested(l2); 390 391 /* copy l2_hv_state and regs back to guest */ 392 if (kvmppc_need_byteswap(vcpu)) { 393 byteswap_hv_regs(&l2_hv); 394 byteswap_pt_regs(&l2_regs); 395 } 396 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 397 err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, 398 hv_ptr, regs_ptr); 399 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 400 if (err) 401 return H_AUTHORITY; 402 403 if (r == -EINTR) 404 return H_INTERRUPT; 405 406 if (vcpu->mmio_needed) { 407 kvmhv_nested_mmio_needed(vcpu, regs_ptr); 408 return H_TOO_HARD; 409 } 410 411 return vcpu->arch.trap; 412 } 413 414 long kvmhv_nested_init(void) 415 { 416 long int ptb_order; 417 unsigned long ptcr; 418 long rc; 419 420 if (!kvmhv_on_pseries()) 421 return 0; 422 if (!radix_enabled()) 423 return -ENODEV; 424 425 /* find log base 2 of KVMPPC_NR_LPIDS, rounding up */ 426 ptb_order = __ilog2(KVMPPC_NR_LPIDS - 1) + 1; 427 if (ptb_order < 8) 428 ptb_order = 8; 429 pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order, 430 GFP_KERNEL); 431 if (!pseries_partition_tb) { 432 pr_err("kvm-hv: failed to allocated nested partition table\n"); 433 return -ENOMEM; 434 } 435 436 ptcr = __pa(pseries_partition_tb) | (ptb_order - 8); 437 rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr); 438 if (rc != H_SUCCESS) { 439 pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n", 440 rc); 441 kfree(pseries_partition_tb); 442 pseries_partition_tb = NULL; 443 return -ENODEV; 444 } 445 446 return 0; 447 } 448 449 void kvmhv_nested_exit(void) 450 { 451 /* 452 * N.B. the kvmhv_on_pseries() test is there because it enables 453 * the compiler to remove the call to plpar_hcall_norets() 454 * when CONFIG_PPC_PSERIES=n. 455 */ 456 if (kvmhv_on_pseries() && pseries_partition_tb) { 457 plpar_hcall_norets(H_SET_PARTITION_TABLE, 0); 458 kfree(pseries_partition_tb); 459 pseries_partition_tb = NULL; 460 } 461 } 462 463 static void kvmhv_flush_lpid(unsigned int lpid) 464 { 465 long rc; 466 467 if (!kvmhv_on_pseries()) { 468 radix__flush_all_lpid(lpid); 469 return; 470 } 471 472 if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE)) 473 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1), 474 lpid, TLBIEL_INVAL_SET_LPID); 475 else 476 rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU, 477 H_RPTI_TYPE_NESTED | 478 H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC | 479 H_RPTI_TYPE_PAT, 480 H_RPTI_PAGE_ALL, 0, -1UL); 481 if (rc) 482 pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc); 483 } 484 485 void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1) 486 { 487 if (!kvmhv_on_pseries()) { 488 mmu_partition_table_set_entry(lpid, dw0, dw1, true); 489 return; 490 } 491 492 pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0); 493 pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1); 494 /* L0 will do the necessary barriers */ 495 kvmhv_flush_lpid(lpid); 496 } 497 498 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp) 499 { 500 unsigned long dw0; 501 502 dw0 = PATB_HR | radix__get_tree_size() | 503 __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE; 504 kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table); 505 } 506 507 void kvmhv_vm_nested_init(struct kvm *kvm) 508 { 509 kvm->arch.max_nested_lpid = -1; 510 } 511 512 /* 513 * Handle the H_SET_PARTITION_TABLE hcall. 514 * r4 = guest real address of partition table + log_2(size) - 12 515 * (formatted as for the PTCR). 516 */ 517 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu) 518 { 519 struct kvm *kvm = vcpu->kvm; 520 unsigned long ptcr = kvmppc_get_gpr(vcpu, 4); 521 int srcu_idx; 522 long ret = H_SUCCESS; 523 524 srcu_idx = srcu_read_lock(&kvm->srcu); 525 /* 526 * Limit the partition table to 4096 entries (because that's what 527 * hardware supports), and check the base address. 528 */ 529 if ((ptcr & PRTS_MASK) > 12 - 8 || 530 !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT)) 531 ret = H_PARAMETER; 532 srcu_read_unlock(&kvm->srcu, srcu_idx); 533 if (ret == H_SUCCESS) 534 kvm->arch.l1_ptcr = ptcr; 535 return ret; 536 } 537 538 /* 539 * Handle the H_COPY_TOFROM_GUEST hcall. 540 * r4 = L1 lpid of nested guest 541 * r5 = pid 542 * r6 = eaddr to access 543 * r7 = to buffer (L1 gpa) 544 * r8 = from buffer (L1 gpa) 545 * r9 = n bytes to copy 546 */ 547 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu) 548 { 549 struct kvm_nested_guest *gp; 550 int l1_lpid = kvmppc_get_gpr(vcpu, 4); 551 int pid = kvmppc_get_gpr(vcpu, 5); 552 gva_t eaddr = kvmppc_get_gpr(vcpu, 6); 553 gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7); 554 gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8); 555 void *buf; 556 unsigned long n = kvmppc_get_gpr(vcpu, 9); 557 bool is_load = !!gp_to; 558 long rc; 559 560 if (gp_to && gp_from) /* One must be NULL to determine the direction */ 561 return H_PARAMETER; 562 563 if (eaddr & (0xFFFUL << 52)) 564 return H_PARAMETER; 565 566 buf = kzalloc(n, GFP_KERNEL); 567 if (!buf) 568 return H_NO_MEM; 569 570 gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false); 571 if (!gp) { 572 rc = H_PARAMETER; 573 goto out_free; 574 } 575 576 mutex_lock(&gp->tlb_lock); 577 578 if (is_load) { 579 /* Load from the nested guest into our buffer */ 580 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, 581 eaddr, buf, NULL, n); 582 if (rc) 583 goto not_found; 584 585 /* Write what was loaded into our buffer back to the L1 guest */ 586 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 587 rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n); 588 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 589 if (rc) 590 goto not_found; 591 } else { 592 /* Load the data to be stored from the L1 guest into our buf */ 593 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 594 rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n); 595 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 596 if (rc) 597 goto not_found; 598 599 /* Store from our buffer into the nested guest */ 600 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, 601 eaddr, NULL, buf, n); 602 if (rc) 603 goto not_found; 604 } 605 606 out_unlock: 607 mutex_unlock(&gp->tlb_lock); 608 kvmhv_put_nested(gp); 609 out_free: 610 kfree(buf); 611 return rc; 612 not_found: 613 rc = H_NOT_FOUND; 614 goto out_unlock; 615 } 616 617 /* 618 * Reload the partition table entry for a guest. 619 * Caller must hold gp->tlb_lock. 620 */ 621 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp) 622 { 623 int ret; 624 struct patb_entry ptbl_entry; 625 unsigned long ptbl_addr; 626 struct kvm *kvm = gp->l1_host; 627 628 ret = -EFAULT; 629 ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4); 630 if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 8))) { 631 int srcu_idx = srcu_read_lock(&kvm->srcu); 632 ret = kvm_read_guest(kvm, ptbl_addr, 633 &ptbl_entry, sizeof(ptbl_entry)); 634 srcu_read_unlock(&kvm->srcu, srcu_idx); 635 } 636 if (ret) { 637 gp->l1_gr_to_hr = 0; 638 gp->process_table = 0; 639 } else { 640 gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0); 641 gp->process_table = be64_to_cpu(ptbl_entry.patb1); 642 } 643 kvmhv_set_nested_ptbl(gp); 644 } 645 646 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid) 647 { 648 struct kvm_nested_guest *gp; 649 long shadow_lpid; 650 651 gp = kzalloc(sizeof(*gp), GFP_KERNEL); 652 if (!gp) 653 return NULL; 654 gp->l1_host = kvm; 655 gp->l1_lpid = lpid; 656 mutex_init(&gp->tlb_lock); 657 gp->shadow_pgtable = pgd_alloc(kvm->mm); 658 if (!gp->shadow_pgtable) 659 goto out_free; 660 shadow_lpid = kvmppc_alloc_lpid(); 661 if (shadow_lpid < 0) 662 goto out_free2; 663 gp->shadow_lpid = shadow_lpid; 664 gp->radix = 1; 665 666 memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu)); 667 668 return gp; 669 670 out_free2: 671 pgd_free(kvm->mm, gp->shadow_pgtable); 672 out_free: 673 kfree(gp); 674 return NULL; 675 } 676 677 /* 678 * Free up any resources allocated for a nested guest. 679 */ 680 static void kvmhv_release_nested(struct kvm_nested_guest *gp) 681 { 682 struct kvm *kvm = gp->l1_host; 683 684 if (gp->shadow_pgtable) { 685 /* 686 * No vcpu is using this struct and no call to 687 * kvmhv_get_nested can find this struct, 688 * so we don't need to hold kvm->mmu_lock. 689 */ 690 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, 691 gp->shadow_lpid); 692 pgd_free(kvm->mm, gp->shadow_pgtable); 693 } 694 kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0); 695 kvmppc_free_lpid(gp->shadow_lpid); 696 kfree(gp); 697 } 698 699 static void kvmhv_remove_nested(struct kvm_nested_guest *gp) 700 { 701 struct kvm *kvm = gp->l1_host; 702 int lpid = gp->l1_lpid; 703 long ref; 704 705 spin_lock(&kvm->mmu_lock); 706 if (gp == kvm->arch.nested_guests[lpid]) { 707 kvm->arch.nested_guests[lpid] = NULL; 708 if (lpid == kvm->arch.max_nested_lpid) { 709 while (--lpid >= 0 && !kvm->arch.nested_guests[lpid]) 710 ; 711 kvm->arch.max_nested_lpid = lpid; 712 } 713 --gp->refcnt; 714 } 715 ref = gp->refcnt; 716 spin_unlock(&kvm->mmu_lock); 717 if (ref == 0) 718 kvmhv_release_nested(gp); 719 } 720 721 /* 722 * Free up all nested resources allocated for this guest. 723 * This is called with no vcpus of the guest running, when 724 * switching the guest to HPT mode or when destroying the 725 * guest. 726 */ 727 void kvmhv_release_all_nested(struct kvm *kvm) 728 { 729 int i; 730 struct kvm_nested_guest *gp; 731 struct kvm_nested_guest *freelist = NULL; 732 struct kvm_memory_slot *memslot; 733 int srcu_idx; 734 735 spin_lock(&kvm->mmu_lock); 736 for (i = 0; i <= kvm->arch.max_nested_lpid; i++) { 737 gp = kvm->arch.nested_guests[i]; 738 if (!gp) 739 continue; 740 kvm->arch.nested_guests[i] = NULL; 741 if (--gp->refcnt == 0) { 742 gp->next = freelist; 743 freelist = gp; 744 } 745 } 746 kvm->arch.max_nested_lpid = -1; 747 spin_unlock(&kvm->mmu_lock); 748 while ((gp = freelist) != NULL) { 749 freelist = gp->next; 750 kvmhv_release_nested(gp); 751 } 752 753 srcu_idx = srcu_read_lock(&kvm->srcu); 754 kvm_for_each_memslot(memslot, kvm_memslots(kvm)) 755 kvmhv_free_memslot_nest_rmap(memslot); 756 srcu_read_unlock(&kvm->srcu, srcu_idx); 757 } 758 759 /* caller must hold gp->tlb_lock */ 760 static void kvmhv_flush_nested(struct kvm_nested_guest *gp) 761 { 762 struct kvm *kvm = gp->l1_host; 763 764 spin_lock(&kvm->mmu_lock); 765 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid); 766 spin_unlock(&kvm->mmu_lock); 767 kvmhv_flush_lpid(gp->shadow_lpid); 768 kvmhv_update_ptbl_cache(gp); 769 if (gp->l1_gr_to_hr == 0) 770 kvmhv_remove_nested(gp); 771 } 772 773 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid, 774 bool create) 775 { 776 struct kvm_nested_guest *gp, *newgp; 777 778 if (l1_lpid >= KVM_MAX_NESTED_GUESTS || 779 l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) 780 return NULL; 781 782 spin_lock(&kvm->mmu_lock); 783 gp = kvm->arch.nested_guests[l1_lpid]; 784 if (gp) 785 ++gp->refcnt; 786 spin_unlock(&kvm->mmu_lock); 787 788 if (gp || !create) 789 return gp; 790 791 newgp = kvmhv_alloc_nested(kvm, l1_lpid); 792 if (!newgp) 793 return NULL; 794 spin_lock(&kvm->mmu_lock); 795 if (kvm->arch.nested_guests[l1_lpid]) { 796 /* someone else beat us to it */ 797 gp = kvm->arch.nested_guests[l1_lpid]; 798 } else { 799 kvm->arch.nested_guests[l1_lpid] = newgp; 800 ++newgp->refcnt; 801 gp = newgp; 802 newgp = NULL; 803 if (l1_lpid > kvm->arch.max_nested_lpid) 804 kvm->arch.max_nested_lpid = l1_lpid; 805 } 806 ++gp->refcnt; 807 spin_unlock(&kvm->mmu_lock); 808 809 if (newgp) 810 kvmhv_release_nested(newgp); 811 812 return gp; 813 } 814 815 void kvmhv_put_nested(struct kvm_nested_guest *gp) 816 { 817 struct kvm *kvm = gp->l1_host; 818 long ref; 819 820 spin_lock(&kvm->mmu_lock); 821 ref = --gp->refcnt; 822 spin_unlock(&kvm->mmu_lock); 823 if (ref == 0) 824 kvmhv_release_nested(gp); 825 } 826 827 static struct kvm_nested_guest *kvmhv_find_nested(struct kvm *kvm, int lpid) 828 { 829 if (lpid > kvm->arch.max_nested_lpid) 830 return NULL; 831 return kvm->arch.nested_guests[lpid]; 832 } 833 834 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid, 835 unsigned long ea, unsigned *hshift) 836 { 837 struct kvm_nested_guest *gp; 838 pte_t *pte; 839 840 gp = kvmhv_find_nested(kvm, lpid); 841 if (!gp) 842 return NULL; 843 844 VM_WARN(!spin_is_locked(&kvm->mmu_lock), 845 "%s called with kvm mmu_lock not held \n", __func__); 846 pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift); 847 848 return pte; 849 } 850 851 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2) 852 { 853 return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK | 854 RMAP_NESTED_GPA_MASK)); 855 } 856 857 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp, 858 struct rmap_nested **n_rmap) 859 { 860 struct llist_node *entry = ((struct llist_head *) rmapp)->first; 861 struct rmap_nested *cursor; 862 u64 rmap, new_rmap = (*n_rmap)->rmap; 863 864 /* Are there any existing entries? */ 865 if (!(*rmapp)) { 866 /* No -> use the rmap as a single entry */ 867 *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY; 868 return; 869 } 870 871 /* Do any entries match what we're trying to insert? */ 872 for_each_nest_rmap_safe(cursor, entry, &rmap) { 873 if (kvmhv_n_rmap_is_equal(rmap, new_rmap)) 874 return; 875 } 876 877 /* Do we need to create a list or just add the new entry? */ 878 rmap = *rmapp; 879 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ 880 *rmapp = 0UL; 881 llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp); 882 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ 883 (*n_rmap)->list.next = (struct llist_node *) rmap; 884 885 /* Set NULL so not freed by caller */ 886 *n_rmap = NULL; 887 } 888 889 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap, 890 unsigned long clr, unsigned long set, 891 unsigned long hpa, unsigned long mask) 892 { 893 unsigned long gpa; 894 unsigned int shift, lpid; 895 pte_t *ptep; 896 897 gpa = n_rmap & RMAP_NESTED_GPA_MASK; 898 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; 899 900 /* Find the pte */ 901 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); 902 /* 903 * If the pte is present and the pfn is still the same, update the pte. 904 * If the pfn has changed then this is a stale rmap entry, the nested 905 * gpa actually points somewhere else now, and there is nothing to do. 906 * XXX A future optimisation would be to remove the rmap entry here. 907 */ 908 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) { 909 __radix_pte_update(ptep, clr, set); 910 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); 911 } 912 } 913 914 /* 915 * For a given list of rmap entries, update the rc bits in all ptes in shadow 916 * page tables for nested guests which are referenced by the rmap list. 917 */ 918 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp, 919 unsigned long clr, unsigned long set, 920 unsigned long hpa, unsigned long nbytes) 921 { 922 struct llist_node *entry = ((struct llist_head *) rmapp)->first; 923 struct rmap_nested *cursor; 924 unsigned long rmap, mask; 925 926 if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED)) 927 return; 928 929 mask = PTE_RPN_MASK & ~(nbytes - 1); 930 hpa &= mask; 931 932 for_each_nest_rmap_safe(cursor, entry, &rmap) 933 kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask); 934 } 935 936 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap, 937 unsigned long hpa, unsigned long mask) 938 { 939 struct kvm_nested_guest *gp; 940 unsigned long gpa; 941 unsigned int shift, lpid; 942 pte_t *ptep; 943 944 gpa = n_rmap & RMAP_NESTED_GPA_MASK; 945 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; 946 gp = kvmhv_find_nested(kvm, lpid); 947 if (!gp) 948 return; 949 950 /* Find and invalidate the pte */ 951 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); 952 /* Don't spuriously invalidate ptes if the pfn has changed */ 953 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) 954 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); 955 } 956 957 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp, 958 unsigned long hpa, unsigned long mask) 959 { 960 struct llist_node *entry = llist_del_all((struct llist_head *) rmapp); 961 struct rmap_nested *cursor; 962 unsigned long rmap; 963 964 for_each_nest_rmap_safe(cursor, entry, &rmap) { 965 kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask); 966 kfree(cursor); 967 } 968 } 969 970 /* called with kvm->mmu_lock held */ 971 void kvmhv_remove_nest_rmap_range(struct kvm *kvm, 972 const struct kvm_memory_slot *memslot, 973 unsigned long gpa, unsigned long hpa, 974 unsigned long nbytes) 975 { 976 unsigned long gfn, end_gfn; 977 unsigned long addr_mask; 978 979 if (!memslot) 980 return; 981 gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn; 982 end_gfn = gfn + (nbytes >> PAGE_SHIFT); 983 984 addr_mask = PTE_RPN_MASK & ~(nbytes - 1); 985 hpa &= addr_mask; 986 987 for (; gfn < end_gfn; gfn++) { 988 unsigned long *rmap = &memslot->arch.rmap[gfn]; 989 kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask); 990 } 991 } 992 993 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free) 994 { 995 unsigned long page; 996 997 for (page = 0; page < free->npages; page++) { 998 unsigned long rmap, *rmapp = &free->arch.rmap[page]; 999 struct rmap_nested *cursor; 1000 struct llist_node *entry; 1001 1002 entry = llist_del_all((struct llist_head *) rmapp); 1003 for_each_nest_rmap_safe(cursor, entry, &rmap) 1004 kfree(cursor); 1005 } 1006 } 1007 1008 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu, 1009 struct kvm_nested_guest *gp, 1010 long gpa, int *shift_ret) 1011 { 1012 struct kvm *kvm = vcpu->kvm; 1013 bool ret = false; 1014 pte_t *ptep; 1015 int shift; 1016 1017 spin_lock(&kvm->mmu_lock); 1018 ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift); 1019 if (!shift) 1020 shift = PAGE_SHIFT; 1021 if (ptep && pte_present(*ptep)) { 1022 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); 1023 ret = true; 1024 } 1025 spin_unlock(&kvm->mmu_lock); 1026 1027 if (shift_ret) 1028 *shift_ret = shift; 1029 return ret; 1030 } 1031 1032 static inline int get_ric(unsigned int instr) 1033 { 1034 return (instr >> 18) & 0x3; 1035 } 1036 1037 static inline int get_prs(unsigned int instr) 1038 { 1039 return (instr >> 17) & 0x1; 1040 } 1041 1042 static inline int get_r(unsigned int instr) 1043 { 1044 return (instr >> 16) & 0x1; 1045 } 1046 1047 static inline int get_lpid(unsigned long r_val) 1048 { 1049 return r_val & 0xffffffff; 1050 } 1051 1052 static inline int get_is(unsigned long r_val) 1053 { 1054 return (r_val >> 10) & 0x3; 1055 } 1056 1057 static inline int get_ap(unsigned long r_val) 1058 { 1059 return (r_val >> 5) & 0x7; 1060 } 1061 1062 static inline long get_epn(unsigned long r_val) 1063 { 1064 return r_val >> 12; 1065 } 1066 1067 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid, 1068 int ap, long epn) 1069 { 1070 struct kvm *kvm = vcpu->kvm; 1071 struct kvm_nested_guest *gp; 1072 long npages; 1073 int shift, shadow_shift; 1074 unsigned long addr; 1075 1076 shift = ap_to_shift(ap); 1077 addr = epn << 12; 1078 if (shift < 0) 1079 /* Invalid ap encoding */ 1080 return -EINVAL; 1081 1082 addr &= ~((1UL << shift) - 1); 1083 npages = 1UL << (shift - PAGE_SHIFT); 1084 1085 gp = kvmhv_get_nested(kvm, lpid, false); 1086 if (!gp) /* No such guest -> nothing to do */ 1087 return 0; 1088 mutex_lock(&gp->tlb_lock); 1089 1090 /* There may be more than one host page backing this single guest pte */ 1091 do { 1092 kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift); 1093 1094 npages -= 1UL << (shadow_shift - PAGE_SHIFT); 1095 addr += 1UL << shadow_shift; 1096 } while (npages > 0); 1097 1098 mutex_unlock(&gp->tlb_lock); 1099 kvmhv_put_nested(gp); 1100 return 0; 1101 } 1102 1103 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu, 1104 struct kvm_nested_guest *gp, int ric) 1105 { 1106 struct kvm *kvm = vcpu->kvm; 1107 1108 mutex_lock(&gp->tlb_lock); 1109 switch (ric) { 1110 case 0: 1111 /* Invalidate TLB */ 1112 spin_lock(&kvm->mmu_lock); 1113 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, 1114 gp->shadow_lpid); 1115 kvmhv_flush_lpid(gp->shadow_lpid); 1116 spin_unlock(&kvm->mmu_lock); 1117 break; 1118 case 1: 1119 /* 1120 * Invalidate PWC 1121 * We don't cache this -> nothing to do 1122 */ 1123 break; 1124 case 2: 1125 /* Invalidate TLB, PWC and caching of partition table entries */ 1126 kvmhv_flush_nested(gp); 1127 break; 1128 default: 1129 break; 1130 } 1131 mutex_unlock(&gp->tlb_lock); 1132 } 1133 1134 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric) 1135 { 1136 struct kvm *kvm = vcpu->kvm; 1137 struct kvm_nested_guest *gp; 1138 int i; 1139 1140 spin_lock(&kvm->mmu_lock); 1141 for (i = 0; i <= kvm->arch.max_nested_lpid; i++) { 1142 gp = kvm->arch.nested_guests[i]; 1143 if (gp) { 1144 spin_unlock(&kvm->mmu_lock); 1145 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1146 spin_lock(&kvm->mmu_lock); 1147 } 1148 } 1149 spin_unlock(&kvm->mmu_lock); 1150 } 1151 1152 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr, 1153 unsigned long rsval, unsigned long rbval) 1154 { 1155 struct kvm *kvm = vcpu->kvm; 1156 struct kvm_nested_guest *gp; 1157 int r, ric, prs, is, ap; 1158 int lpid; 1159 long epn; 1160 int ret = 0; 1161 1162 ric = get_ric(instr); 1163 prs = get_prs(instr); 1164 r = get_r(instr); 1165 lpid = get_lpid(rsval); 1166 is = get_is(rbval); 1167 1168 /* 1169 * These cases are invalid and are not handled: 1170 * r != 1 -> Only radix supported 1171 * prs == 1 -> Not HV privileged 1172 * ric == 3 -> No cluster bombs for radix 1173 * is == 1 -> Partition scoped translations not associated with pid 1174 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA 1175 */ 1176 if ((!r) || (prs) || (ric == 3) || (is == 1) || 1177 ((!is) && (ric == 1 || ric == 2))) 1178 return -EINVAL; 1179 1180 switch (is) { 1181 case 0: 1182 /* 1183 * We know ric == 0 1184 * Invalidate TLB for a given target address 1185 */ 1186 epn = get_epn(rbval); 1187 ap = get_ap(rbval); 1188 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn); 1189 break; 1190 case 2: 1191 /* Invalidate matching LPID */ 1192 gp = kvmhv_get_nested(kvm, lpid, false); 1193 if (gp) { 1194 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1195 kvmhv_put_nested(gp); 1196 } 1197 break; 1198 case 3: 1199 /* Invalidate ALL LPIDs */ 1200 kvmhv_emulate_tlbie_all_lpid(vcpu, ric); 1201 break; 1202 default: 1203 ret = -EINVAL; 1204 break; 1205 } 1206 1207 return ret; 1208 } 1209 1210 /* 1211 * This handles the H_TLB_INVALIDATE hcall. 1212 * Parameters are (r4) tlbie instruction code, (r5) rS contents, 1213 * (r6) rB contents. 1214 */ 1215 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu) 1216 { 1217 int ret; 1218 1219 ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4), 1220 kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); 1221 if (ret) 1222 return H_PARAMETER; 1223 return H_SUCCESS; 1224 } 1225 1226 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu, 1227 unsigned long lpid, unsigned long ric) 1228 { 1229 struct kvm *kvm = vcpu->kvm; 1230 struct kvm_nested_guest *gp; 1231 1232 gp = kvmhv_get_nested(kvm, lpid, false); 1233 if (gp) { 1234 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1235 kvmhv_put_nested(gp); 1236 } 1237 return H_SUCCESS; 1238 } 1239 1240 /* 1241 * Number of pages above which we invalidate the entire LPID rather than 1242 * flush individual pages. 1243 */ 1244 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33; 1245 1246 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu, 1247 unsigned long lpid, 1248 unsigned long pg_sizes, 1249 unsigned long start, 1250 unsigned long end) 1251 { 1252 int ret = H_P4; 1253 unsigned long addr, nr_pages; 1254 struct mmu_psize_def *def; 1255 unsigned long psize, ap, page_size; 1256 bool flush_lpid; 1257 1258 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1259 def = &mmu_psize_defs[psize]; 1260 if (!(pg_sizes & def->h_rpt_pgsize)) 1261 continue; 1262 1263 nr_pages = (end - start) >> def->shift; 1264 flush_lpid = nr_pages > tlb_range_flush_page_ceiling; 1265 if (flush_lpid) 1266 return do_tlb_invalidate_nested_all(vcpu, lpid, 1267 RIC_FLUSH_TLB); 1268 addr = start; 1269 ap = mmu_get_ap(psize); 1270 page_size = 1UL << def->shift; 1271 do { 1272 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, 1273 get_epn(addr)); 1274 if (ret) 1275 return H_P4; 1276 addr += page_size; 1277 } while (addr < end); 1278 } 1279 return ret; 1280 } 1281 1282 /* 1283 * Performs partition-scoped invalidations for nested guests 1284 * as part of H_RPT_INVALIDATE hcall. 1285 */ 1286 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid, 1287 unsigned long type, unsigned long pg_sizes, 1288 unsigned long start, unsigned long end) 1289 { 1290 /* 1291 * If L2 lpid isn't valid, we need to return H_PARAMETER. 1292 * 1293 * However, nested KVM issues a L2 lpid flush call when creating 1294 * partition table entries for L2. This happens even before the 1295 * corresponding shadow lpid is created in HV which happens in 1296 * H_ENTER_NESTED call. Since we can't differentiate this case from 1297 * the invalid case, we ignore such flush requests and return success. 1298 */ 1299 if (!kvmhv_find_nested(vcpu->kvm, lpid)) 1300 return H_SUCCESS; 1301 1302 /* 1303 * A flush all request can be handled by a full lpid flush only. 1304 */ 1305 if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL) 1306 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL); 1307 1308 /* 1309 * We don't need to handle a PWC flush like process table here, 1310 * because intermediate partition scoped table in nested guest doesn't 1311 * really have PWC. Only level we have PWC is in L0 and for nested 1312 * invalidate at L0 we always do kvm_flush_lpid() which does 1313 * radix__flush_all_lpid(). For range invalidate at any level, we 1314 * are not removing the higher level page tables and hence there is 1315 * no PWC invalidate needed. 1316 * 1317 * if (type & H_RPTI_TYPE_PWC) { 1318 * ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC); 1319 * if (ret) 1320 * return H_P4; 1321 * } 1322 */ 1323 1324 if (start == 0 && end == -1) 1325 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB); 1326 1327 if (type & H_RPTI_TYPE_TLB) 1328 return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes, 1329 start, end); 1330 return H_SUCCESS; 1331 } 1332 1333 /* Used to convert a nested guest real address to a L1 guest real address */ 1334 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu, 1335 struct kvm_nested_guest *gp, 1336 unsigned long n_gpa, unsigned long dsisr, 1337 struct kvmppc_pte *gpte_p) 1338 { 1339 u64 fault_addr, flags = dsisr & DSISR_ISSTORE; 1340 int ret; 1341 1342 ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr, 1343 &fault_addr); 1344 1345 if (ret) { 1346 /* We didn't find a pte */ 1347 if (ret == -EINVAL) { 1348 /* Unsupported mmu config */ 1349 flags |= DSISR_UNSUPP_MMU; 1350 } else if (ret == -ENOENT) { 1351 /* No translation found */ 1352 flags |= DSISR_NOHPTE; 1353 } else if (ret == -EFAULT) { 1354 /* Couldn't access L1 real address */ 1355 flags |= DSISR_PRTABLE_FAULT; 1356 vcpu->arch.fault_gpa = fault_addr; 1357 } else { 1358 /* Unknown error */ 1359 return ret; 1360 } 1361 goto forward_to_l1; 1362 } else { 1363 /* We found a pte -> check permissions */ 1364 if (dsisr & DSISR_ISSTORE) { 1365 /* Can we write? */ 1366 if (!gpte_p->may_write) { 1367 flags |= DSISR_PROTFAULT; 1368 goto forward_to_l1; 1369 } 1370 } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { 1371 /* Can we execute? */ 1372 if (!gpte_p->may_execute) { 1373 flags |= SRR1_ISI_N_G_OR_CIP; 1374 goto forward_to_l1; 1375 } 1376 } else { 1377 /* Can we read? */ 1378 if (!gpte_p->may_read && !gpte_p->may_write) { 1379 flags |= DSISR_PROTFAULT; 1380 goto forward_to_l1; 1381 } 1382 } 1383 } 1384 1385 return 0; 1386 1387 forward_to_l1: 1388 vcpu->arch.fault_dsisr = flags; 1389 if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { 1390 vcpu->arch.shregs.msr &= SRR1_MSR_BITS; 1391 vcpu->arch.shregs.msr |= flags; 1392 } 1393 return RESUME_HOST; 1394 } 1395 1396 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu, 1397 struct kvm_nested_guest *gp, 1398 unsigned long n_gpa, 1399 struct kvmppc_pte gpte, 1400 unsigned long dsisr) 1401 { 1402 struct kvm *kvm = vcpu->kvm; 1403 bool writing = !!(dsisr & DSISR_ISSTORE); 1404 u64 pgflags; 1405 long ret; 1406 1407 /* Are the rc bits set in the L1 partition scoped pte? */ 1408 pgflags = _PAGE_ACCESSED; 1409 if (writing) 1410 pgflags |= _PAGE_DIRTY; 1411 if (pgflags & ~gpte.rc) 1412 return RESUME_HOST; 1413 1414 spin_lock(&kvm->mmu_lock); 1415 /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */ 1416 ret = kvmppc_hv_handle_set_rc(kvm, false, writing, 1417 gpte.raddr, kvm->arch.lpid); 1418 if (!ret) { 1419 ret = -EINVAL; 1420 goto out_unlock; 1421 } 1422 1423 /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */ 1424 ret = kvmppc_hv_handle_set_rc(kvm, true, writing, 1425 n_gpa, gp->l1_lpid); 1426 if (!ret) 1427 ret = -EINVAL; 1428 else 1429 ret = 0; 1430 1431 out_unlock: 1432 spin_unlock(&kvm->mmu_lock); 1433 return ret; 1434 } 1435 1436 static inline int kvmppc_radix_level_to_shift(int level) 1437 { 1438 switch (level) { 1439 case 2: 1440 return PUD_SHIFT; 1441 case 1: 1442 return PMD_SHIFT; 1443 default: 1444 return PAGE_SHIFT; 1445 } 1446 } 1447 1448 static inline int kvmppc_radix_shift_to_level(int shift) 1449 { 1450 if (shift == PUD_SHIFT) 1451 return 2; 1452 if (shift == PMD_SHIFT) 1453 return 1; 1454 if (shift == PAGE_SHIFT) 1455 return 0; 1456 WARN_ON_ONCE(1); 1457 return 0; 1458 } 1459 1460 /* called with gp->tlb_lock held */ 1461 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu, 1462 struct kvm_nested_guest *gp) 1463 { 1464 struct kvm *kvm = vcpu->kvm; 1465 struct kvm_memory_slot *memslot; 1466 struct rmap_nested *n_rmap; 1467 struct kvmppc_pte gpte; 1468 pte_t pte, *pte_p; 1469 unsigned long mmu_seq; 1470 unsigned long dsisr = vcpu->arch.fault_dsisr; 1471 unsigned long ea = vcpu->arch.fault_dar; 1472 unsigned long *rmapp; 1473 unsigned long n_gpa, gpa, gfn, perm = 0UL; 1474 unsigned int shift, l1_shift, level; 1475 bool writing = !!(dsisr & DSISR_ISSTORE); 1476 bool kvm_ro = false; 1477 long int ret; 1478 1479 if (!gp->l1_gr_to_hr) { 1480 kvmhv_update_ptbl_cache(gp); 1481 if (!gp->l1_gr_to_hr) 1482 return RESUME_HOST; 1483 } 1484 1485 /* Convert the nested guest real address into a L1 guest real address */ 1486 1487 n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL; 1488 if (!(dsisr & DSISR_PRTABLE_FAULT)) 1489 n_gpa |= ea & 0xFFF; 1490 ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte); 1491 1492 /* 1493 * If the hardware found a translation but we don't now have a usable 1494 * translation in the l1 partition-scoped tree, remove the shadow pte 1495 * and let the guest retry. 1496 */ 1497 if (ret == RESUME_HOST && 1498 (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G | 1499 DSISR_BAD_COPYPASTE))) 1500 goto inval; 1501 if (ret) 1502 return ret; 1503 1504 /* Failed to set the reference/change bits */ 1505 if (dsisr & DSISR_SET_RC) { 1506 ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr); 1507 if (ret == RESUME_HOST) 1508 return ret; 1509 if (ret) 1510 goto inval; 1511 dsisr &= ~DSISR_SET_RC; 1512 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | 1513 DSISR_PROTFAULT))) 1514 return RESUME_GUEST; 1515 } 1516 1517 /* 1518 * We took an HISI or HDSI while we were running a nested guest which 1519 * means we have no partition scoped translation for that. This means 1520 * we need to insert a pte for the mapping into our shadow_pgtable. 1521 */ 1522 1523 l1_shift = gpte.page_shift; 1524 if (l1_shift < PAGE_SHIFT) { 1525 /* We don't support l1 using a page size smaller than our own */ 1526 pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n", 1527 l1_shift, PAGE_SHIFT); 1528 return -EINVAL; 1529 } 1530 gpa = gpte.raddr; 1531 gfn = gpa >> PAGE_SHIFT; 1532 1533 /* 1. Get the corresponding host memslot */ 1534 1535 memslot = gfn_to_memslot(kvm, gfn); 1536 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { 1537 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) { 1538 /* unusual error -> reflect to the guest as a DSI */ 1539 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 1540 return RESUME_GUEST; 1541 } 1542 1543 /* passthrough of emulated MMIO case */ 1544 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing); 1545 } 1546 if (memslot->flags & KVM_MEM_READONLY) { 1547 if (writing) { 1548 /* Give the guest a DSI */ 1549 kvmppc_core_queue_data_storage(vcpu, ea, 1550 DSISR_ISSTORE | DSISR_PROTFAULT); 1551 return RESUME_GUEST; 1552 } 1553 kvm_ro = true; 1554 } 1555 1556 /* 2. Find the host pte for this L1 guest real address */ 1557 1558 /* Used to check for invalidations in progress */ 1559 mmu_seq = kvm->mmu_notifier_seq; 1560 smp_rmb(); 1561 1562 /* See if can find translation in our partition scoped tables for L1 */ 1563 pte = __pte(0); 1564 spin_lock(&kvm->mmu_lock); 1565 pte_p = find_kvm_secondary_pte(kvm, gpa, &shift); 1566 if (!shift) 1567 shift = PAGE_SHIFT; 1568 if (pte_p) 1569 pte = *pte_p; 1570 spin_unlock(&kvm->mmu_lock); 1571 1572 if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) { 1573 /* No suitable pte found -> try to insert a mapping */ 1574 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, 1575 writing, kvm_ro, &pte, &level); 1576 if (ret == -EAGAIN) 1577 return RESUME_GUEST; 1578 else if (ret) 1579 return ret; 1580 shift = kvmppc_radix_level_to_shift(level); 1581 } 1582 /* Align gfn to the start of the page */ 1583 gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT; 1584 1585 /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */ 1586 1587 /* The permissions is the combination of the host and l1 guest ptes */ 1588 perm |= gpte.may_read ? 0UL : _PAGE_READ; 1589 perm |= gpte.may_write ? 0UL : _PAGE_WRITE; 1590 perm |= gpte.may_execute ? 0UL : _PAGE_EXEC; 1591 /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */ 1592 perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED; 1593 perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY; 1594 pte = __pte(pte_val(pte) & ~perm); 1595 1596 /* What size pte can we insert? */ 1597 if (shift > l1_shift) { 1598 u64 mask; 1599 unsigned int actual_shift = PAGE_SHIFT; 1600 if (PMD_SHIFT < l1_shift) 1601 actual_shift = PMD_SHIFT; 1602 mask = (1UL << shift) - (1UL << actual_shift); 1603 pte = __pte(pte_val(pte) | (gpa & mask)); 1604 shift = actual_shift; 1605 } 1606 level = kvmppc_radix_shift_to_level(shift); 1607 n_gpa &= ~((1UL << shift) - 1); 1608 1609 /* 4. Insert the pte into our shadow_pgtable */ 1610 1611 n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL); 1612 if (!n_rmap) 1613 return RESUME_GUEST; /* Let the guest try again */ 1614 n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) | 1615 (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT); 1616 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1617 ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level, 1618 mmu_seq, gp->shadow_lpid, rmapp, &n_rmap); 1619 kfree(n_rmap); 1620 if (ret == -EAGAIN) 1621 ret = RESUME_GUEST; /* Let the guest try again */ 1622 1623 return ret; 1624 1625 inval: 1626 kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL); 1627 return RESUME_GUEST; 1628 } 1629 1630 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu) 1631 { 1632 struct kvm_nested_guest *gp = vcpu->arch.nested; 1633 long int ret; 1634 1635 mutex_lock(&gp->tlb_lock); 1636 ret = __kvmhv_nested_page_fault(vcpu, gp); 1637 mutex_unlock(&gp->tlb_lock); 1638 return ret; 1639 } 1640 1641 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid) 1642 { 1643 int ret = -1; 1644 1645 spin_lock(&kvm->mmu_lock); 1646 while (++lpid <= kvm->arch.max_nested_lpid) { 1647 if (kvm->arch.nested_guests[lpid]) { 1648 ret = lpid; 1649 break; 1650 } 1651 } 1652 spin_unlock(&kvm->mmu_lock); 1653 return ret; 1654 } 1655