1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright IBM Corporation, 2018 4 * Authors Suraj Jitindar Singh <sjitindarsingh@gmail.com> 5 * Paul Mackerras <paulus@ozlabs.org> 6 * 7 * Description: KVM functions specific to running nested KVM-HV guests 8 * on Book3S processors (specifically POWER9 and later). 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/kvm_host.h> 13 #include <linux/llist.h> 14 #include <linux/pgtable.h> 15 16 #include <asm/kvm_ppc.h> 17 #include <asm/kvm_book3s.h> 18 #include <asm/mmu.h> 19 #include <asm/pgalloc.h> 20 #include <asm/pte-walk.h> 21 #include <asm/reg.h> 22 #include <asm/plpar_wrappers.h> 23 24 static struct patb_entry *pseries_partition_tb; 25 26 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp); 27 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free); 28 29 void kvmhv_save_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr) 30 { 31 struct kvmppc_vcore *vc = vcpu->arch.vcore; 32 33 hr->pcr = vc->pcr | PCR_MASK; 34 hr->dpdes = vc->dpdes; 35 hr->hfscr = vcpu->arch.hfscr; 36 hr->tb_offset = vc->tb_offset; 37 hr->dawr0 = vcpu->arch.dawr0; 38 hr->dawrx0 = vcpu->arch.dawrx0; 39 hr->ciabr = vcpu->arch.ciabr; 40 hr->purr = vcpu->arch.purr; 41 hr->spurr = vcpu->arch.spurr; 42 hr->ic = vcpu->arch.ic; 43 hr->vtb = vc->vtb; 44 hr->srr0 = vcpu->arch.shregs.srr0; 45 hr->srr1 = vcpu->arch.shregs.srr1; 46 hr->sprg[0] = vcpu->arch.shregs.sprg0; 47 hr->sprg[1] = vcpu->arch.shregs.sprg1; 48 hr->sprg[2] = vcpu->arch.shregs.sprg2; 49 hr->sprg[3] = vcpu->arch.shregs.sprg3; 50 hr->pidr = vcpu->arch.pid; 51 hr->cfar = vcpu->arch.cfar; 52 hr->ppr = vcpu->arch.ppr; 53 hr->dawr1 = vcpu->arch.dawr1; 54 hr->dawrx1 = vcpu->arch.dawrx1; 55 } 56 57 /* Use noinline_for_stack due to https://bugs.llvm.org/show_bug.cgi?id=49610 */ 58 static noinline_for_stack void byteswap_pt_regs(struct pt_regs *regs) 59 { 60 unsigned long *addr = (unsigned long *) regs; 61 62 for (; addr < ((unsigned long *) (regs + 1)); addr++) 63 *addr = swab64(*addr); 64 } 65 66 static void byteswap_hv_regs(struct hv_guest_state *hr) 67 { 68 hr->version = swab64(hr->version); 69 hr->lpid = swab32(hr->lpid); 70 hr->vcpu_token = swab32(hr->vcpu_token); 71 hr->lpcr = swab64(hr->lpcr); 72 hr->pcr = swab64(hr->pcr) | PCR_MASK; 73 hr->amor = swab64(hr->amor); 74 hr->dpdes = swab64(hr->dpdes); 75 hr->hfscr = swab64(hr->hfscr); 76 hr->tb_offset = swab64(hr->tb_offset); 77 hr->dawr0 = swab64(hr->dawr0); 78 hr->dawrx0 = swab64(hr->dawrx0); 79 hr->ciabr = swab64(hr->ciabr); 80 hr->hdec_expiry = swab64(hr->hdec_expiry); 81 hr->purr = swab64(hr->purr); 82 hr->spurr = swab64(hr->spurr); 83 hr->ic = swab64(hr->ic); 84 hr->vtb = swab64(hr->vtb); 85 hr->hdar = swab64(hr->hdar); 86 hr->hdsisr = swab64(hr->hdsisr); 87 hr->heir = swab64(hr->heir); 88 hr->asdr = swab64(hr->asdr); 89 hr->srr0 = swab64(hr->srr0); 90 hr->srr1 = swab64(hr->srr1); 91 hr->sprg[0] = swab64(hr->sprg[0]); 92 hr->sprg[1] = swab64(hr->sprg[1]); 93 hr->sprg[2] = swab64(hr->sprg[2]); 94 hr->sprg[3] = swab64(hr->sprg[3]); 95 hr->pidr = swab64(hr->pidr); 96 hr->cfar = swab64(hr->cfar); 97 hr->ppr = swab64(hr->ppr); 98 hr->dawr1 = swab64(hr->dawr1); 99 hr->dawrx1 = swab64(hr->dawrx1); 100 } 101 102 static void save_hv_return_state(struct kvm_vcpu *vcpu, int trap, 103 struct hv_guest_state *hr) 104 { 105 struct kvmppc_vcore *vc = vcpu->arch.vcore; 106 107 hr->dpdes = vc->dpdes; 108 hr->hfscr = vcpu->arch.hfscr; 109 hr->purr = vcpu->arch.purr; 110 hr->spurr = vcpu->arch.spurr; 111 hr->ic = vcpu->arch.ic; 112 hr->vtb = vc->vtb; 113 hr->srr0 = vcpu->arch.shregs.srr0; 114 hr->srr1 = vcpu->arch.shregs.srr1; 115 hr->sprg[0] = vcpu->arch.shregs.sprg0; 116 hr->sprg[1] = vcpu->arch.shregs.sprg1; 117 hr->sprg[2] = vcpu->arch.shregs.sprg2; 118 hr->sprg[3] = vcpu->arch.shregs.sprg3; 119 hr->pidr = vcpu->arch.pid; 120 hr->cfar = vcpu->arch.cfar; 121 hr->ppr = vcpu->arch.ppr; 122 switch (trap) { 123 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 124 hr->hdar = vcpu->arch.fault_dar; 125 hr->hdsisr = vcpu->arch.fault_dsisr; 126 hr->asdr = vcpu->arch.fault_gpa; 127 break; 128 case BOOK3S_INTERRUPT_H_INST_STORAGE: 129 hr->asdr = vcpu->arch.fault_gpa; 130 break; 131 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 132 hr->heir = vcpu->arch.emul_inst; 133 break; 134 } 135 } 136 137 /* 138 * This can result in some L0 HV register state being leaked to an L1 139 * hypervisor when the hv_guest_state is copied back to the guest after 140 * being modified here. 141 * 142 * There is no known problem with such a leak, and in many cases these 143 * register settings could be derived by the guest by observing behaviour 144 * and timing, interrupts, etc., but it is an issue to consider. 145 */ 146 static void sanitise_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr) 147 { 148 struct kvmppc_vcore *vc = vcpu->arch.vcore; 149 u64 mask; 150 151 /* 152 * Don't let L1 change LPCR bits for the L2 except these: 153 */ 154 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD | 155 LPCR_LPES | LPCR_MER; 156 157 /* 158 * Additional filtering is required depending on hardware 159 * and configuration. 160 */ 161 hr->lpcr = kvmppc_filter_lpcr_hv(vcpu->kvm, 162 (vc->lpcr & ~mask) | (hr->lpcr & mask)); 163 164 /* 165 * Don't let L1 enable features for L2 which we've disabled for L1, 166 * but preserve the interrupt cause field. 167 */ 168 hr->hfscr &= (HFSCR_INTR_CAUSE | vcpu->arch.hfscr); 169 170 /* Don't let data address watchpoint match in hypervisor state */ 171 hr->dawrx0 &= ~DAWRX_HYP; 172 hr->dawrx1 &= ~DAWRX_HYP; 173 174 /* Don't let completed instruction address breakpt match in HV state */ 175 if ((hr->ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 176 hr->ciabr &= ~CIABR_PRIV; 177 } 178 179 static void restore_hv_regs(struct kvm_vcpu *vcpu, struct hv_guest_state *hr) 180 { 181 struct kvmppc_vcore *vc = vcpu->arch.vcore; 182 183 vc->pcr = hr->pcr | PCR_MASK; 184 vc->dpdes = hr->dpdes; 185 vcpu->arch.hfscr = hr->hfscr; 186 vcpu->arch.dawr0 = hr->dawr0; 187 vcpu->arch.dawrx0 = hr->dawrx0; 188 vcpu->arch.ciabr = hr->ciabr; 189 vcpu->arch.purr = hr->purr; 190 vcpu->arch.spurr = hr->spurr; 191 vcpu->arch.ic = hr->ic; 192 vc->vtb = hr->vtb; 193 vcpu->arch.shregs.srr0 = hr->srr0; 194 vcpu->arch.shregs.srr1 = hr->srr1; 195 vcpu->arch.shregs.sprg0 = hr->sprg[0]; 196 vcpu->arch.shregs.sprg1 = hr->sprg[1]; 197 vcpu->arch.shregs.sprg2 = hr->sprg[2]; 198 vcpu->arch.shregs.sprg3 = hr->sprg[3]; 199 vcpu->arch.pid = hr->pidr; 200 vcpu->arch.cfar = hr->cfar; 201 vcpu->arch.ppr = hr->ppr; 202 vcpu->arch.dawr1 = hr->dawr1; 203 vcpu->arch.dawrx1 = hr->dawrx1; 204 } 205 206 void kvmhv_restore_hv_return_state(struct kvm_vcpu *vcpu, 207 struct hv_guest_state *hr) 208 { 209 struct kvmppc_vcore *vc = vcpu->arch.vcore; 210 211 vc->dpdes = hr->dpdes; 212 vcpu->arch.hfscr = hr->hfscr; 213 vcpu->arch.purr = hr->purr; 214 vcpu->arch.spurr = hr->spurr; 215 vcpu->arch.ic = hr->ic; 216 vc->vtb = hr->vtb; 217 vcpu->arch.fault_dar = hr->hdar; 218 vcpu->arch.fault_dsisr = hr->hdsisr; 219 vcpu->arch.fault_gpa = hr->asdr; 220 vcpu->arch.emul_inst = hr->heir; 221 vcpu->arch.shregs.srr0 = hr->srr0; 222 vcpu->arch.shregs.srr1 = hr->srr1; 223 vcpu->arch.shregs.sprg0 = hr->sprg[0]; 224 vcpu->arch.shregs.sprg1 = hr->sprg[1]; 225 vcpu->arch.shregs.sprg2 = hr->sprg[2]; 226 vcpu->arch.shregs.sprg3 = hr->sprg[3]; 227 vcpu->arch.pid = hr->pidr; 228 vcpu->arch.cfar = hr->cfar; 229 vcpu->arch.ppr = hr->ppr; 230 } 231 232 static void kvmhv_nested_mmio_needed(struct kvm_vcpu *vcpu, u64 regs_ptr) 233 { 234 /* No need to reflect the page fault to L1, we've handled it */ 235 vcpu->arch.trap = 0; 236 237 /* 238 * Since the L2 gprs have already been written back into L1 memory when 239 * we complete the mmio, store the L1 memory location of the L2 gpr 240 * being loaded into by the mmio so that the loaded value can be 241 * written there in kvmppc_complete_mmio_load() 242 */ 243 if (((vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) == KVM_MMIO_REG_GPR) 244 && (vcpu->mmio_is_write == 0)) { 245 vcpu->arch.nested_io_gpr = (gpa_t) regs_ptr + 246 offsetof(struct pt_regs, 247 gpr[vcpu->arch.io_gpr]); 248 vcpu->arch.io_gpr = KVM_MMIO_REG_NESTED_GPR; 249 } 250 } 251 252 static int kvmhv_read_guest_state_and_regs(struct kvm_vcpu *vcpu, 253 struct hv_guest_state *l2_hv, 254 struct pt_regs *l2_regs, 255 u64 hv_ptr, u64 regs_ptr) 256 { 257 int size; 258 259 if (kvm_vcpu_read_guest(vcpu, hv_ptr, &l2_hv->version, 260 sizeof(l2_hv->version))) 261 return -1; 262 263 if (kvmppc_need_byteswap(vcpu)) 264 l2_hv->version = swab64(l2_hv->version); 265 266 size = hv_guest_state_size(l2_hv->version); 267 if (size < 0) 268 return -1; 269 270 return kvm_vcpu_read_guest(vcpu, hv_ptr, l2_hv, size) || 271 kvm_vcpu_read_guest(vcpu, regs_ptr, l2_regs, 272 sizeof(struct pt_regs)); 273 } 274 275 static int kvmhv_write_guest_state_and_regs(struct kvm_vcpu *vcpu, 276 struct hv_guest_state *l2_hv, 277 struct pt_regs *l2_regs, 278 u64 hv_ptr, u64 regs_ptr) 279 { 280 int size; 281 282 size = hv_guest_state_size(l2_hv->version); 283 if (size < 0) 284 return -1; 285 286 return kvm_vcpu_write_guest(vcpu, hv_ptr, l2_hv, size) || 287 kvm_vcpu_write_guest(vcpu, regs_ptr, l2_regs, 288 sizeof(struct pt_regs)); 289 } 290 291 long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu) 292 { 293 long int err, r; 294 struct kvm_nested_guest *l2; 295 struct pt_regs l2_regs, saved_l1_regs; 296 struct hv_guest_state l2_hv = {0}, saved_l1_hv; 297 struct kvmppc_vcore *vc = vcpu->arch.vcore; 298 u64 hv_ptr, regs_ptr; 299 u64 hdec_exp; 300 s64 delta_purr, delta_spurr, delta_ic, delta_vtb; 301 302 if (vcpu->kvm->arch.l1_ptcr == 0) 303 return H_NOT_AVAILABLE; 304 305 if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr)) 306 return H_BAD_MODE; 307 308 /* copy parameters in */ 309 hv_ptr = kvmppc_get_gpr(vcpu, 4); 310 regs_ptr = kvmppc_get_gpr(vcpu, 5); 311 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 312 err = kvmhv_read_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, 313 hv_ptr, regs_ptr); 314 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 315 if (err) 316 return H_PARAMETER; 317 318 if (kvmppc_need_byteswap(vcpu)) 319 byteswap_hv_regs(&l2_hv); 320 if (l2_hv.version > HV_GUEST_STATE_VERSION) 321 return H_P2; 322 323 if (kvmppc_need_byteswap(vcpu)) 324 byteswap_pt_regs(&l2_regs); 325 if (l2_hv.vcpu_token >= NR_CPUS) 326 return H_PARAMETER; 327 328 /* 329 * L1 must have set up a suspended state to enter the L2 in a 330 * transactional state, and only in that case. These have to be 331 * filtered out here to prevent causing a TM Bad Thing in the 332 * host HRFID. We could synthesize a TM Bad Thing back to the L1 333 * here but there doesn't seem like much point. 334 */ 335 if (MSR_TM_SUSPENDED(vcpu->arch.shregs.msr)) { 336 if (!MSR_TM_ACTIVE(l2_regs.msr)) 337 return H_BAD_MODE; 338 } else { 339 if (l2_regs.msr & MSR_TS_MASK) 340 return H_BAD_MODE; 341 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_TS_MASK)) 342 return H_BAD_MODE; 343 } 344 345 /* translate lpid */ 346 l2 = kvmhv_get_nested(vcpu->kvm, l2_hv.lpid, true); 347 if (!l2) 348 return H_PARAMETER; 349 if (!l2->l1_gr_to_hr) { 350 mutex_lock(&l2->tlb_lock); 351 kvmhv_update_ptbl_cache(l2); 352 mutex_unlock(&l2->tlb_lock); 353 } 354 355 /* save l1 values of things */ 356 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 357 saved_l1_regs = vcpu->arch.regs; 358 kvmhv_save_hv_regs(vcpu, &saved_l1_hv); 359 360 /* convert TB values/offsets to host (L0) values */ 361 hdec_exp = l2_hv.hdec_expiry - vc->tb_offset; 362 vc->tb_offset += l2_hv.tb_offset; 363 364 /* set L1 state to L2 state */ 365 vcpu->arch.nested = l2; 366 vcpu->arch.nested_vcpu_id = l2_hv.vcpu_token; 367 vcpu->arch.regs = l2_regs; 368 369 /* Guest must always run with ME enabled, HV disabled. */ 370 vcpu->arch.shregs.msr = (vcpu->arch.regs.msr | MSR_ME) & ~MSR_HV; 371 372 sanitise_hv_regs(vcpu, &l2_hv); 373 restore_hv_regs(vcpu, &l2_hv); 374 375 vcpu->arch.ret = RESUME_GUEST; 376 vcpu->arch.trap = 0; 377 do { 378 if (mftb() >= hdec_exp) { 379 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 380 r = RESUME_HOST; 381 break; 382 } 383 r = kvmhv_run_single_vcpu(vcpu, hdec_exp, l2_hv.lpcr); 384 } while (is_kvmppc_resume_guest(r)); 385 386 /* save L2 state for return */ 387 l2_regs = vcpu->arch.regs; 388 l2_regs.msr = vcpu->arch.shregs.msr; 389 delta_purr = vcpu->arch.purr - l2_hv.purr; 390 delta_spurr = vcpu->arch.spurr - l2_hv.spurr; 391 delta_ic = vcpu->arch.ic - l2_hv.ic; 392 delta_vtb = vc->vtb - l2_hv.vtb; 393 save_hv_return_state(vcpu, vcpu->arch.trap, &l2_hv); 394 395 /* restore L1 state */ 396 vcpu->arch.nested = NULL; 397 vcpu->arch.regs = saved_l1_regs; 398 vcpu->arch.shregs.msr = saved_l1_regs.msr & ~MSR_TS_MASK; 399 /* set L1 MSR TS field according to L2 transaction state */ 400 if (l2_regs.msr & MSR_TS_MASK) 401 vcpu->arch.shregs.msr |= MSR_TS_S; 402 vc->tb_offset = saved_l1_hv.tb_offset; 403 restore_hv_regs(vcpu, &saved_l1_hv); 404 vcpu->arch.purr += delta_purr; 405 vcpu->arch.spurr += delta_spurr; 406 vcpu->arch.ic += delta_ic; 407 vc->vtb += delta_vtb; 408 409 kvmhv_put_nested(l2); 410 411 /* copy l2_hv_state and regs back to guest */ 412 if (kvmppc_need_byteswap(vcpu)) { 413 byteswap_hv_regs(&l2_hv); 414 byteswap_pt_regs(&l2_regs); 415 } 416 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 417 err = kvmhv_write_guest_state_and_regs(vcpu, &l2_hv, &l2_regs, 418 hv_ptr, regs_ptr); 419 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 420 if (err) 421 return H_AUTHORITY; 422 423 if (r == -EINTR) 424 return H_INTERRUPT; 425 426 if (vcpu->mmio_needed) { 427 kvmhv_nested_mmio_needed(vcpu, regs_ptr); 428 return H_TOO_HARD; 429 } 430 431 return vcpu->arch.trap; 432 } 433 434 long kvmhv_nested_init(void) 435 { 436 long int ptb_order; 437 unsigned long ptcr; 438 long rc; 439 440 if (!kvmhv_on_pseries()) 441 return 0; 442 if (!radix_enabled()) 443 return -ENODEV; 444 445 /* find log base 2 of KVMPPC_NR_LPIDS, rounding up */ 446 ptb_order = __ilog2(KVMPPC_NR_LPIDS - 1) + 1; 447 if (ptb_order < 8) 448 ptb_order = 8; 449 pseries_partition_tb = kmalloc(sizeof(struct patb_entry) << ptb_order, 450 GFP_KERNEL); 451 if (!pseries_partition_tb) { 452 pr_err("kvm-hv: failed to allocated nested partition table\n"); 453 return -ENOMEM; 454 } 455 456 ptcr = __pa(pseries_partition_tb) | (ptb_order - 8); 457 rc = plpar_hcall_norets(H_SET_PARTITION_TABLE, ptcr); 458 if (rc != H_SUCCESS) { 459 pr_err("kvm-hv: Parent hypervisor does not support nesting (rc=%ld)\n", 460 rc); 461 kfree(pseries_partition_tb); 462 pseries_partition_tb = NULL; 463 return -ENODEV; 464 } 465 466 return 0; 467 } 468 469 void kvmhv_nested_exit(void) 470 { 471 /* 472 * N.B. the kvmhv_on_pseries() test is there because it enables 473 * the compiler to remove the call to plpar_hcall_norets() 474 * when CONFIG_PPC_PSERIES=n. 475 */ 476 if (kvmhv_on_pseries() && pseries_partition_tb) { 477 plpar_hcall_norets(H_SET_PARTITION_TABLE, 0); 478 kfree(pseries_partition_tb); 479 pseries_partition_tb = NULL; 480 } 481 } 482 483 static void kvmhv_flush_lpid(unsigned int lpid) 484 { 485 long rc; 486 487 if (!kvmhv_on_pseries()) { 488 radix__flush_all_lpid(lpid); 489 return; 490 } 491 492 if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE)) 493 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(2, 0, 1), 494 lpid, TLBIEL_INVAL_SET_LPID); 495 else 496 rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU, 497 H_RPTI_TYPE_NESTED | 498 H_RPTI_TYPE_TLB | H_RPTI_TYPE_PWC | 499 H_RPTI_TYPE_PAT, 500 H_RPTI_PAGE_ALL, 0, -1UL); 501 if (rc) 502 pr_err("KVM: TLB LPID invalidation hcall failed, rc=%ld\n", rc); 503 } 504 505 void kvmhv_set_ptbl_entry(unsigned int lpid, u64 dw0, u64 dw1) 506 { 507 if (!kvmhv_on_pseries()) { 508 mmu_partition_table_set_entry(lpid, dw0, dw1, true); 509 return; 510 } 511 512 pseries_partition_tb[lpid].patb0 = cpu_to_be64(dw0); 513 pseries_partition_tb[lpid].patb1 = cpu_to_be64(dw1); 514 /* L0 will do the necessary barriers */ 515 kvmhv_flush_lpid(lpid); 516 } 517 518 static void kvmhv_set_nested_ptbl(struct kvm_nested_guest *gp) 519 { 520 unsigned long dw0; 521 522 dw0 = PATB_HR | radix__get_tree_size() | 523 __pa(gp->shadow_pgtable) | RADIX_PGD_INDEX_SIZE; 524 kvmhv_set_ptbl_entry(gp->shadow_lpid, dw0, gp->process_table); 525 } 526 527 void kvmhv_vm_nested_init(struct kvm *kvm) 528 { 529 kvm->arch.max_nested_lpid = -1; 530 } 531 532 /* 533 * Handle the H_SET_PARTITION_TABLE hcall. 534 * r4 = guest real address of partition table + log_2(size) - 12 535 * (formatted as for the PTCR). 536 */ 537 long kvmhv_set_partition_table(struct kvm_vcpu *vcpu) 538 { 539 struct kvm *kvm = vcpu->kvm; 540 unsigned long ptcr = kvmppc_get_gpr(vcpu, 4); 541 int srcu_idx; 542 long ret = H_SUCCESS; 543 544 srcu_idx = srcu_read_lock(&kvm->srcu); 545 /* 546 * Limit the partition table to 4096 entries (because that's what 547 * hardware supports), and check the base address. 548 */ 549 if ((ptcr & PRTS_MASK) > 12 - 8 || 550 !kvm_is_visible_gfn(vcpu->kvm, (ptcr & PRTB_MASK) >> PAGE_SHIFT)) 551 ret = H_PARAMETER; 552 srcu_read_unlock(&kvm->srcu, srcu_idx); 553 if (ret == H_SUCCESS) 554 kvm->arch.l1_ptcr = ptcr; 555 return ret; 556 } 557 558 /* 559 * Handle the H_COPY_TOFROM_GUEST hcall. 560 * r4 = L1 lpid of nested guest 561 * r5 = pid 562 * r6 = eaddr to access 563 * r7 = to buffer (L1 gpa) 564 * r8 = from buffer (L1 gpa) 565 * r9 = n bytes to copy 566 */ 567 long kvmhv_copy_tofrom_guest_nested(struct kvm_vcpu *vcpu) 568 { 569 struct kvm_nested_guest *gp; 570 int l1_lpid = kvmppc_get_gpr(vcpu, 4); 571 int pid = kvmppc_get_gpr(vcpu, 5); 572 gva_t eaddr = kvmppc_get_gpr(vcpu, 6); 573 gpa_t gp_to = (gpa_t) kvmppc_get_gpr(vcpu, 7); 574 gpa_t gp_from = (gpa_t) kvmppc_get_gpr(vcpu, 8); 575 void *buf; 576 unsigned long n = kvmppc_get_gpr(vcpu, 9); 577 bool is_load = !!gp_to; 578 long rc; 579 580 if (gp_to && gp_from) /* One must be NULL to determine the direction */ 581 return H_PARAMETER; 582 583 if (eaddr & (0xFFFUL << 52)) 584 return H_PARAMETER; 585 586 buf = kzalloc(n, GFP_KERNEL); 587 if (!buf) 588 return H_NO_MEM; 589 590 gp = kvmhv_get_nested(vcpu->kvm, l1_lpid, false); 591 if (!gp) { 592 rc = H_PARAMETER; 593 goto out_free; 594 } 595 596 mutex_lock(&gp->tlb_lock); 597 598 if (is_load) { 599 /* Load from the nested guest into our buffer */ 600 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, 601 eaddr, buf, NULL, n); 602 if (rc) 603 goto not_found; 604 605 /* Write what was loaded into our buffer back to the L1 guest */ 606 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 607 rc = kvm_vcpu_write_guest(vcpu, gp_to, buf, n); 608 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 609 if (rc) 610 goto not_found; 611 } else { 612 /* Load the data to be stored from the L1 guest into our buf */ 613 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 614 rc = kvm_vcpu_read_guest(vcpu, gp_from, buf, n); 615 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 616 if (rc) 617 goto not_found; 618 619 /* Store from our buffer into the nested guest */ 620 rc = __kvmhv_copy_tofrom_guest_radix(gp->shadow_lpid, pid, 621 eaddr, NULL, buf, n); 622 if (rc) 623 goto not_found; 624 } 625 626 out_unlock: 627 mutex_unlock(&gp->tlb_lock); 628 kvmhv_put_nested(gp); 629 out_free: 630 kfree(buf); 631 return rc; 632 not_found: 633 rc = H_NOT_FOUND; 634 goto out_unlock; 635 } 636 637 /* 638 * Reload the partition table entry for a guest. 639 * Caller must hold gp->tlb_lock. 640 */ 641 static void kvmhv_update_ptbl_cache(struct kvm_nested_guest *gp) 642 { 643 int ret; 644 struct patb_entry ptbl_entry; 645 unsigned long ptbl_addr; 646 struct kvm *kvm = gp->l1_host; 647 648 ret = -EFAULT; 649 ptbl_addr = (kvm->arch.l1_ptcr & PRTB_MASK) + (gp->l1_lpid << 4); 650 if (gp->l1_lpid < (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 8))) { 651 int srcu_idx = srcu_read_lock(&kvm->srcu); 652 ret = kvm_read_guest(kvm, ptbl_addr, 653 &ptbl_entry, sizeof(ptbl_entry)); 654 srcu_read_unlock(&kvm->srcu, srcu_idx); 655 } 656 if (ret) { 657 gp->l1_gr_to_hr = 0; 658 gp->process_table = 0; 659 } else { 660 gp->l1_gr_to_hr = be64_to_cpu(ptbl_entry.patb0); 661 gp->process_table = be64_to_cpu(ptbl_entry.patb1); 662 } 663 kvmhv_set_nested_ptbl(gp); 664 } 665 666 static struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid) 667 { 668 struct kvm_nested_guest *gp; 669 long shadow_lpid; 670 671 gp = kzalloc(sizeof(*gp), GFP_KERNEL); 672 if (!gp) 673 return NULL; 674 gp->l1_host = kvm; 675 gp->l1_lpid = lpid; 676 mutex_init(&gp->tlb_lock); 677 gp->shadow_pgtable = pgd_alloc(kvm->mm); 678 if (!gp->shadow_pgtable) 679 goto out_free; 680 shadow_lpid = kvmppc_alloc_lpid(); 681 if (shadow_lpid < 0) 682 goto out_free2; 683 gp->shadow_lpid = shadow_lpid; 684 gp->radix = 1; 685 686 memset(gp->prev_cpu, -1, sizeof(gp->prev_cpu)); 687 688 return gp; 689 690 out_free2: 691 pgd_free(kvm->mm, gp->shadow_pgtable); 692 out_free: 693 kfree(gp); 694 return NULL; 695 } 696 697 /* 698 * Free up any resources allocated for a nested guest. 699 */ 700 static void kvmhv_release_nested(struct kvm_nested_guest *gp) 701 { 702 struct kvm *kvm = gp->l1_host; 703 704 if (gp->shadow_pgtable) { 705 /* 706 * No vcpu is using this struct and no call to 707 * kvmhv_get_nested can find this struct, 708 * so we don't need to hold kvm->mmu_lock. 709 */ 710 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, 711 gp->shadow_lpid); 712 pgd_free(kvm->mm, gp->shadow_pgtable); 713 } 714 kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0); 715 kvmppc_free_lpid(gp->shadow_lpid); 716 kfree(gp); 717 } 718 719 static void kvmhv_remove_nested(struct kvm_nested_guest *gp) 720 { 721 struct kvm *kvm = gp->l1_host; 722 int lpid = gp->l1_lpid; 723 long ref; 724 725 spin_lock(&kvm->mmu_lock); 726 if (gp == kvm->arch.nested_guests[lpid]) { 727 kvm->arch.nested_guests[lpid] = NULL; 728 if (lpid == kvm->arch.max_nested_lpid) { 729 while (--lpid >= 0 && !kvm->arch.nested_guests[lpid]) 730 ; 731 kvm->arch.max_nested_lpid = lpid; 732 } 733 --gp->refcnt; 734 } 735 ref = gp->refcnt; 736 spin_unlock(&kvm->mmu_lock); 737 if (ref == 0) 738 kvmhv_release_nested(gp); 739 } 740 741 /* 742 * Free up all nested resources allocated for this guest. 743 * This is called with no vcpus of the guest running, when 744 * switching the guest to HPT mode or when destroying the 745 * guest. 746 */ 747 void kvmhv_release_all_nested(struct kvm *kvm) 748 { 749 int i; 750 struct kvm_nested_guest *gp; 751 struct kvm_nested_guest *freelist = NULL; 752 struct kvm_memory_slot *memslot; 753 int srcu_idx; 754 755 spin_lock(&kvm->mmu_lock); 756 for (i = 0; i <= kvm->arch.max_nested_lpid; i++) { 757 gp = kvm->arch.nested_guests[i]; 758 if (!gp) 759 continue; 760 kvm->arch.nested_guests[i] = NULL; 761 if (--gp->refcnt == 0) { 762 gp->next = freelist; 763 freelist = gp; 764 } 765 } 766 kvm->arch.max_nested_lpid = -1; 767 spin_unlock(&kvm->mmu_lock); 768 while ((gp = freelist) != NULL) { 769 freelist = gp->next; 770 kvmhv_release_nested(gp); 771 } 772 773 srcu_idx = srcu_read_lock(&kvm->srcu); 774 kvm_for_each_memslot(memslot, kvm_memslots(kvm)) 775 kvmhv_free_memslot_nest_rmap(memslot); 776 srcu_read_unlock(&kvm->srcu, srcu_idx); 777 } 778 779 /* caller must hold gp->tlb_lock */ 780 static void kvmhv_flush_nested(struct kvm_nested_guest *gp) 781 { 782 struct kvm *kvm = gp->l1_host; 783 784 spin_lock(&kvm->mmu_lock); 785 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid); 786 spin_unlock(&kvm->mmu_lock); 787 kvmhv_flush_lpid(gp->shadow_lpid); 788 kvmhv_update_ptbl_cache(gp); 789 if (gp->l1_gr_to_hr == 0) 790 kvmhv_remove_nested(gp); 791 } 792 793 struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid, 794 bool create) 795 { 796 struct kvm_nested_guest *gp, *newgp; 797 798 if (l1_lpid >= KVM_MAX_NESTED_GUESTS || 799 l1_lpid >= (1ul << ((kvm->arch.l1_ptcr & PRTS_MASK) + 12 - 4))) 800 return NULL; 801 802 spin_lock(&kvm->mmu_lock); 803 gp = kvm->arch.nested_guests[l1_lpid]; 804 if (gp) 805 ++gp->refcnt; 806 spin_unlock(&kvm->mmu_lock); 807 808 if (gp || !create) 809 return gp; 810 811 newgp = kvmhv_alloc_nested(kvm, l1_lpid); 812 if (!newgp) 813 return NULL; 814 spin_lock(&kvm->mmu_lock); 815 if (kvm->arch.nested_guests[l1_lpid]) { 816 /* someone else beat us to it */ 817 gp = kvm->arch.nested_guests[l1_lpid]; 818 } else { 819 kvm->arch.nested_guests[l1_lpid] = newgp; 820 ++newgp->refcnt; 821 gp = newgp; 822 newgp = NULL; 823 if (l1_lpid > kvm->arch.max_nested_lpid) 824 kvm->arch.max_nested_lpid = l1_lpid; 825 } 826 ++gp->refcnt; 827 spin_unlock(&kvm->mmu_lock); 828 829 if (newgp) 830 kvmhv_release_nested(newgp); 831 832 return gp; 833 } 834 835 void kvmhv_put_nested(struct kvm_nested_guest *gp) 836 { 837 struct kvm *kvm = gp->l1_host; 838 long ref; 839 840 spin_lock(&kvm->mmu_lock); 841 ref = --gp->refcnt; 842 spin_unlock(&kvm->mmu_lock); 843 if (ref == 0) 844 kvmhv_release_nested(gp); 845 } 846 847 static struct kvm_nested_guest *kvmhv_find_nested(struct kvm *kvm, int lpid) 848 { 849 if (lpid > kvm->arch.max_nested_lpid) 850 return NULL; 851 return kvm->arch.nested_guests[lpid]; 852 } 853 854 pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid, 855 unsigned long ea, unsigned *hshift) 856 { 857 struct kvm_nested_guest *gp; 858 pte_t *pte; 859 860 gp = kvmhv_find_nested(kvm, lpid); 861 if (!gp) 862 return NULL; 863 864 VM_WARN(!spin_is_locked(&kvm->mmu_lock), 865 "%s called with kvm mmu_lock not held \n", __func__); 866 pte = __find_linux_pte(gp->shadow_pgtable, ea, NULL, hshift); 867 868 return pte; 869 } 870 871 static inline bool kvmhv_n_rmap_is_equal(u64 rmap_1, u64 rmap_2) 872 { 873 return !((rmap_1 ^ rmap_2) & (RMAP_NESTED_LPID_MASK | 874 RMAP_NESTED_GPA_MASK)); 875 } 876 877 void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp, 878 struct rmap_nested **n_rmap) 879 { 880 struct llist_node *entry = ((struct llist_head *) rmapp)->first; 881 struct rmap_nested *cursor; 882 u64 rmap, new_rmap = (*n_rmap)->rmap; 883 884 /* Are there any existing entries? */ 885 if (!(*rmapp)) { 886 /* No -> use the rmap as a single entry */ 887 *rmapp = new_rmap | RMAP_NESTED_IS_SINGLE_ENTRY; 888 return; 889 } 890 891 /* Do any entries match what we're trying to insert? */ 892 for_each_nest_rmap_safe(cursor, entry, &rmap) { 893 if (kvmhv_n_rmap_is_equal(rmap, new_rmap)) 894 return; 895 } 896 897 /* Do we need to create a list or just add the new entry? */ 898 rmap = *rmapp; 899 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ 900 *rmapp = 0UL; 901 llist_add(&((*n_rmap)->list), (struct llist_head *) rmapp); 902 if (rmap & RMAP_NESTED_IS_SINGLE_ENTRY) /* Not previously a list */ 903 (*n_rmap)->list.next = (struct llist_node *) rmap; 904 905 /* Set NULL so not freed by caller */ 906 *n_rmap = NULL; 907 } 908 909 static void kvmhv_update_nest_rmap_rc(struct kvm *kvm, u64 n_rmap, 910 unsigned long clr, unsigned long set, 911 unsigned long hpa, unsigned long mask) 912 { 913 unsigned long gpa; 914 unsigned int shift, lpid; 915 pte_t *ptep; 916 917 gpa = n_rmap & RMAP_NESTED_GPA_MASK; 918 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; 919 920 /* Find the pte */ 921 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); 922 /* 923 * If the pte is present and the pfn is still the same, update the pte. 924 * If the pfn has changed then this is a stale rmap entry, the nested 925 * gpa actually points somewhere else now, and there is nothing to do. 926 * XXX A future optimisation would be to remove the rmap entry here. 927 */ 928 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) { 929 __radix_pte_update(ptep, clr, set); 930 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); 931 } 932 } 933 934 /* 935 * For a given list of rmap entries, update the rc bits in all ptes in shadow 936 * page tables for nested guests which are referenced by the rmap list. 937 */ 938 void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp, 939 unsigned long clr, unsigned long set, 940 unsigned long hpa, unsigned long nbytes) 941 { 942 struct llist_node *entry = ((struct llist_head *) rmapp)->first; 943 struct rmap_nested *cursor; 944 unsigned long rmap, mask; 945 946 if ((clr | set) & ~(_PAGE_DIRTY | _PAGE_ACCESSED)) 947 return; 948 949 mask = PTE_RPN_MASK & ~(nbytes - 1); 950 hpa &= mask; 951 952 for_each_nest_rmap_safe(cursor, entry, &rmap) 953 kvmhv_update_nest_rmap_rc(kvm, rmap, clr, set, hpa, mask); 954 } 955 956 static void kvmhv_remove_nest_rmap(struct kvm *kvm, u64 n_rmap, 957 unsigned long hpa, unsigned long mask) 958 { 959 struct kvm_nested_guest *gp; 960 unsigned long gpa; 961 unsigned int shift, lpid; 962 pte_t *ptep; 963 964 gpa = n_rmap & RMAP_NESTED_GPA_MASK; 965 lpid = (n_rmap & RMAP_NESTED_LPID_MASK) >> RMAP_NESTED_LPID_SHIFT; 966 gp = kvmhv_find_nested(kvm, lpid); 967 if (!gp) 968 return; 969 970 /* Find and invalidate the pte */ 971 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); 972 /* Don't spuriously invalidate ptes if the pfn has changed */ 973 if (ptep && pte_present(*ptep) && ((pte_val(*ptep) & mask) == hpa)) 974 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); 975 } 976 977 static void kvmhv_remove_nest_rmap_list(struct kvm *kvm, unsigned long *rmapp, 978 unsigned long hpa, unsigned long mask) 979 { 980 struct llist_node *entry = llist_del_all((struct llist_head *) rmapp); 981 struct rmap_nested *cursor; 982 unsigned long rmap; 983 984 for_each_nest_rmap_safe(cursor, entry, &rmap) { 985 kvmhv_remove_nest_rmap(kvm, rmap, hpa, mask); 986 kfree(cursor); 987 } 988 } 989 990 /* called with kvm->mmu_lock held */ 991 void kvmhv_remove_nest_rmap_range(struct kvm *kvm, 992 const struct kvm_memory_slot *memslot, 993 unsigned long gpa, unsigned long hpa, 994 unsigned long nbytes) 995 { 996 unsigned long gfn, end_gfn; 997 unsigned long addr_mask; 998 999 if (!memslot) 1000 return; 1001 gfn = (gpa >> PAGE_SHIFT) - memslot->base_gfn; 1002 end_gfn = gfn + (nbytes >> PAGE_SHIFT); 1003 1004 addr_mask = PTE_RPN_MASK & ~(nbytes - 1); 1005 hpa &= addr_mask; 1006 1007 for (; gfn < end_gfn; gfn++) { 1008 unsigned long *rmap = &memslot->arch.rmap[gfn]; 1009 kvmhv_remove_nest_rmap_list(kvm, rmap, hpa, addr_mask); 1010 } 1011 } 1012 1013 static void kvmhv_free_memslot_nest_rmap(struct kvm_memory_slot *free) 1014 { 1015 unsigned long page; 1016 1017 for (page = 0; page < free->npages; page++) { 1018 unsigned long rmap, *rmapp = &free->arch.rmap[page]; 1019 struct rmap_nested *cursor; 1020 struct llist_node *entry; 1021 1022 entry = llist_del_all((struct llist_head *) rmapp); 1023 for_each_nest_rmap_safe(cursor, entry, &rmap) 1024 kfree(cursor); 1025 } 1026 } 1027 1028 static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu, 1029 struct kvm_nested_guest *gp, 1030 long gpa, int *shift_ret) 1031 { 1032 struct kvm *kvm = vcpu->kvm; 1033 bool ret = false; 1034 pte_t *ptep; 1035 int shift; 1036 1037 spin_lock(&kvm->mmu_lock); 1038 ptep = find_kvm_nested_guest_pte(kvm, gp->l1_lpid, gpa, &shift); 1039 if (!shift) 1040 shift = PAGE_SHIFT; 1041 if (ptep && pte_present(*ptep)) { 1042 kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid); 1043 ret = true; 1044 } 1045 spin_unlock(&kvm->mmu_lock); 1046 1047 if (shift_ret) 1048 *shift_ret = shift; 1049 return ret; 1050 } 1051 1052 static inline int get_ric(unsigned int instr) 1053 { 1054 return (instr >> 18) & 0x3; 1055 } 1056 1057 static inline int get_prs(unsigned int instr) 1058 { 1059 return (instr >> 17) & 0x1; 1060 } 1061 1062 static inline int get_r(unsigned int instr) 1063 { 1064 return (instr >> 16) & 0x1; 1065 } 1066 1067 static inline int get_lpid(unsigned long r_val) 1068 { 1069 return r_val & 0xffffffff; 1070 } 1071 1072 static inline int get_is(unsigned long r_val) 1073 { 1074 return (r_val >> 10) & 0x3; 1075 } 1076 1077 static inline int get_ap(unsigned long r_val) 1078 { 1079 return (r_val >> 5) & 0x7; 1080 } 1081 1082 static inline long get_epn(unsigned long r_val) 1083 { 1084 return r_val >> 12; 1085 } 1086 1087 static int kvmhv_emulate_tlbie_tlb_addr(struct kvm_vcpu *vcpu, int lpid, 1088 int ap, long epn) 1089 { 1090 struct kvm *kvm = vcpu->kvm; 1091 struct kvm_nested_guest *gp; 1092 long npages; 1093 int shift, shadow_shift; 1094 unsigned long addr; 1095 1096 shift = ap_to_shift(ap); 1097 addr = epn << 12; 1098 if (shift < 0) 1099 /* Invalid ap encoding */ 1100 return -EINVAL; 1101 1102 addr &= ~((1UL << shift) - 1); 1103 npages = 1UL << (shift - PAGE_SHIFT); 1104 1105 gp = kvmhv_get_nested(kvm, lpid, false); 1106 if (!gp) /* No such guest -> nothing to do */ 1107 return 0; 1108 mutex_lock(&gp->tlb_lock); 1109 1110 /* There may be more than one host page backing this single guest pte */ 1111 do { 1112 kvmhv_invalidate_shadow_pte(vcpu, gp, addr, &shadow_shift); 1113 1114 npages -= 1UL << (shadow_shift - PAGE_SHIFT); 1115 addr += 1UL << shadow_shift; 1116 } while (npages > 0); 1117 1118 mutex_unlock(&gp->tlb_lock); 1119 kvmhv_put_nested(gp); 1120 return 0; 1121 } 1122 1123 static void kvmhv_emulate_tlbie_lpid(struct kvm_vcpu *vcpu, 1124 struct kvm_nested_guest *gp, int ric) 1125 { 1126 struct kvm *kvm = vcpu->kvm; 1127 1128 mutex_lock(&gp->tlb_lock); 1129 switch (ric) { 1130 case 0: 1131 /* Invalidate TLB */ 1132 spin_lock(&kvm->mmu_lock); 1133 kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, 1134 gp->shadow_lpid); 1135 kvmhv_flush_lpid(gp->shadow_lpid); 1136 spin_unlock(&kvm->mmu_lock); 1137 break; 1138 case 1: 1139 /* 1140 * Invalidate PWC 1141 * We don't cache this -> nothing to do 1142 */ 1143 break; 1144 case 2: 1145 /* Invalidate TLB, PWC and caching of partition table entries */ 1146 kvmhv_flush_nested(gp); 1147 break; 1148 default: 1149 break; 1150 } 1151 mutex_unlock(&gp->tlb_lock); 1152 } 1153 1154 static void kvmhv_emulate_tlbie_all_lpid(struct kvm_vcpu *vcpu, int ric) 1155 { 1156 struct kvm *kvm = vcpu->kvm; 1157 struct kvm_nested_guest *gp; 1158 int i; 1159 1160 spin_lock(&kvm->mmu_lock); 1161 for (i = 0; i <= kvm->arch.max_nested_lpid; i++) { 1162 gp = kvm->arch.nested_guests[i]; 1163 if (gp) { 1164 spin_unlock(&kvm->mmu_lock); 1165 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1166 spin_lock(&kvm->mmu_lock); 1167 } 1168 } 1169 spin_unlock(&kvm->mmu_lock); 1170 } 1171 1172 static int kvmhv_emulate_priv_tlbie(struct kvm_vcpu *vcpu, unsigned int instr, 1173 unsigned long rsval, unsigned long rbval) 1174 { 1175 struct kvm *kvm = vcpu->kvm; 1176 struct kvm_nested_guest *gp; 1177 int r, ric, prs, is, ap; 1178 int lpid; 1179 long epn; 1180 int ret = 0; 1181 1182 ric = get_ric(instr); 1183 prs = get_prs(instr); 1184 r = get_r(instr); 1185 lpid = get_lpid(rsval); 1186 is = get_is(rbval); 1187 1188 /* 1189 * These cases are invalid and are not handled: 1190 * r != 1 -> Only radix supported 1191 * prs == 1 -> Not HV privileged 1192 * ric == 3 -> No cluster bombs for radix 1193 * is == 1 -> Partition scoped translations not associated with pid 1194 * (!is) && (ric == 1 || ric == 2) -> Not supported by ISA 1195 */ 1196 if ((!r) || (prs) || (ric == 3) || (is == 1) || 1197 ((!is) && (ric == 1 || ric == 2))) 1198 return -EINVAL; 1199 1200 switch (is) { 1201 case 0: 1202 /* 1203 * We know ric == 0 1204 * Invalidate TLB for a given target address 1205 */ 1206 epn = get_epn(rbval); 1207 ap = get_ap(rbval); 1208 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, epn); 1209 break; 1210 case 2: 1211 /* Invalidate matching LPID */ 1212 gp = kvmhv_get_nested(kvm, lpid, false); 1213 if (gp) { 1214 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1215 kvmhv_put_nested(gp); 1216 } 1217 break; 1218 case 3: 1219 /* Invalidate ALL LPIDs */ 1220 kvmhv_emulate_tlbie_all_lpid(vcpu, ric); 1221 break; 1222 default: 1223 ret = -EINVAL; 1224 break; 1225 } 1226 1227 return ret; 1228 } 1229 1230 /* 1231 * This handles the H_TLB_INVALIDATE hcall. 1232 * Parameters are (r4) tlbie instruction code, (r5) rS contents, 1233 * (r6) rB contents. 1234 */ 1235 long kvmhv_do_nested_tlbie(struct kvm_vcpu *vcpu) 1236 { 1237 int ret; 1238 1239 ret = kvmhv_emulate_priv_tlbie(vcpu, kvmppc_get_gpr(vcpu, 4), 1240 kvmppc_get_gpr(vcpu, 5), kvmppc_get_gpr(vcpu, 6)); 1241 if (ret) 1242 return H_PARAMETER; 1243 return H_SUCCESS; 1244 } 1245 1246 static long do_tlb_invalidate_nested_all(struct kvm_vcpu *vcpu, 1247 unsigned long lpid, unsigned long ric) 1248 { 1249 struct kvm *kvm = vcpu->kvm; 1250 struct kvm_nested_guest *gp; 1251 1252 gp = kvmhv_get_nested(kvm, lpid, false); 1253 if (gp) { 1254 kvmhv_emulate_tlbie_lpid(vcpu, gp, ric); 1255 kvmhv_put_nested(gp); 1256 } 1257 return H_SUCCESS; 1258 } 1259 1260 /* 1261 * Number of pages above which we invalidate the entire LPID rather than 1262 * flush individual pages. 1263 */ 1264 static unsigned long tlb_range_flush_page_ceiling __read_mostly = 33; 1265 1266 static long do_tlb_invalidate_nested_tlb(struct kvm_vcpu *vcpu, 1267 unsigned long lpid, 1268 unsigned long pg_sizes, 1269 unsigned long start, 1270 unsigned long end) 1271 { 1272 int ret = H_P4; 1273 unsigned long addr, nr_pages; 1274 struct mmu_psize_def *def; 1275 unsigned long psize, ap, page_size; 1276 bool flush_lpid; 1277 1278 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) { 1279 def = &mmu_psize_defs[psize]; 1280 if (!(pg_sizes & def->h_rpt_pgsize)) 1281 continue; 1282 1283 nr_pages = (end - start) >> def->shift; 1284 flush_lpid = nr_pages > tlb_range_flush_page_ceiling; 1285 if (flush_lpid) 1286 return do_tlb_invalidate_nested_all(vcpu, lpid, 1287 RIC_FLUSH_TLB); 1288 addr = start; 1289 ap = mmu_get_ap(psize); 1290 page_size = 1UL << def->shift; 1291 do { 1292 ret = kvmhv_emulate_tlbie_tlb_addr(vcpu, lpid, ap, 1293 get_epn(addr)); 1294 if (ret) 1295 return H_P4; 1296 addr += page_size; 1297 } while (addr < end); 1298 } 1299 return ret; 1300 } 1301 1302 /* 1303 * Performs partition-scoped invalidations for nested guests 1304 * as part of H_RPT_INVALIDATE hcall. 1305 */ 1306 long do_h_rpt_invalidate_pat(struct kvm_vcpu *vcpu, unsigned long lpid, 1307 unsigned long type, unsigned long pg_sizes, 1308 unsigned long start, unsigned long end) 1309 { 1310 /* 1311 * If L2 lpid isn't valid, we need to return H_PARAMETER. 1312 * 1313 * However, nested KVM issues a L2 lpid flush call when creating 1314 * partition table entries for L2. This happens even before the 1315 * corresponding shadow lpid is created in HV which happens in 1316 * H_ENTER_NESTED call. Since we can't differentiate this case from 1317 * the invalid case, we ignore such flush requests and return success. 1318 */ 1319 if (!kvmhv_find_nested(vcpu->kvm, lpid)) 1320 return H_SUCCESS; 1321 1322 /* 1323 * A flush all request can be handled by a full lpid flush only. 1324 */ 1325 if ((type & H_RPTI_TYPE_NESTED_ALL) == H_RPTI_TYPE_NESTED_ALL) 1326 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_ALL); 1327 1328 /* 1329 * We don't need to handle a PWC flush like process table here, 1330 * because intermediate partition scoped table in nested guest doesn't 1331 * really have PWC. Only level we have PWC is in L0 and for nested 1332 * invalidate at L0 we always do kvm_flush_lpid() which does 1333 * radix__flush_all_lpid(). For range invalidate at any level, we 1334 * are not removing the higher level page tables and hence there is 1335 * no PWC invalidate needed. 1336 * 1337 * if (type & H_RPTI_TYPE_PWC) { 1338 * ret = do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_PWC); 1339 * if (ret) 1340 * return H_P4; 1341 * } 1342 */ 1343 1344 if (start == 0 && end == -1) 1345 return do_tlb_invalidate_nested_all(vcpu, lpid, RIC_FLUSH_TLB); 1346 1347 if (type & H_RPTI_TYPE_TLB) 1348 return do_tlb_invalidate_nested_tlb(vcpu, lpid, pg_sizes, 1349 start, end); 1350 return H_SUCCESS; 1351 } 1352 1353 /* Used to convert a nested guest real address to a L1 guest real address */ 1354 static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu, 1355 struct kvm_nested_guest *gp, 1356 unsigned long n_gpa, unsigned long dsisr, 1357 struct kvmppc_pte *gpte_p) 1358 { 1359 u64 fault_addr, flags = dsisr & DSISR_ISSTORE; 1360 int ret; 1361 1362 ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr, 1363 &fault_addr); 1364 1365 if (ret) { 1366 /* We didn't find a pte */ 1367 if (ret == -EINVAL) { 1368 /* Unsupported mmu config */ 1369 flags |= DSISR_UNSUPP_MMU; 1370 } else if (ret == -ENOENT) { 1371 /* No translation found */ 1372 flags |= DSISR_NOHPTE; 1373 } else if (ret == -EFAULT) { 1374 /* Couldn't access L1 real address */ 1375 flags |= DSISR_PRTABLE_FAULT; 1376 vcpu->arch.fault_gpa = fault_addr; 1377 } else { 1378 /* Unknown error */ 1379 return ret; 1380 } 1381 goto forward_to_l1; 1382 } else { 1383 /* We found a pte -> check permissions */ 1384 if (dsisr & DSISR_ISSTORE) { 1385 /* Can we write? */ 1386 if (!gpte_p->may_write) { 1387 flags |= DSISR_PROTFAULT; 1388 goto forward_to_l1; 1389 } 1390 } else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { 1391 /* Can we execute? */ 1392 if (!gpte_p->may_execute) { 1393 flags |= SRR1_ISI_N_G_OR_CIP; 1394 goto forward_to_l1; 1395 } 1396 } else { 1397 /* Can we read? */ 1398 if (!gpte_p->may_read && !gpte_p->may_write) { 1399 flags |= DSISR_PROTFAULT; 1400 goto forward_to_l1; 1401 } 1402 } 1403 } 1404 1405 return 0; 1406 1407 forward_to_l1: 1408 vcpu->arch.fault_dsisr = flags; 1409 if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) { 1410 vcpu->arch.shregs.msr &= SRR1_MSR_BITS; 1411 vcpu->arch.shregs.msr |= flags; 1412 } 1413 return RESUME_HOST; 1414 } 1415 1416 static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu, 1417 struct kvm_nested_guest *gp, 1418 unsigned long n_gpa, 1419 struct kvmppc_pte gpte, 1420 unsigned long dsisr) 1421 { 1422 struct kvm *kvm = vcpu->kvm; 1423 bool writing = !!(dsisr & DSISR_ISSTORE); 1424 u64 pgflags; 1425 long ret; 1426 1427 /* Are the rc bits set in the L1 partition scoped pte? */ 1428 pgflags = _PAGE_ACCESSED; 1429 if (writing) 1430 pgflags |= _PAGE_DIRTY; 1431 if (pgflags & ~gpte.rc) 1432 return RESUME_HOST; 1433 1434 spin_lock(&kvm->mmu_lock); 1435 /* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */ 1436 ret = kvmppc_hv_handle_set_rc(kvm, false, writing, 1437 gpte.raddr, kvm->arch.lpid); 1438 if (!ret) { 1439 ret = -EINVAL; 1440 goto out_unlock; 1441 } 1442 1443 /* Set the rc bit in the pte of the shadow_pgtable for the nest guest */ 1444 ret = kvmppc_hv_handle_set_rc(kvm, true, writing, 1445 n_gpa, gp->l1_lpid); 1446 if (!ret) 1447 ret = -EINVAL; 1448 else 1449 ret = 0; 1450 1451 out_unlock: 1452 spin_unlock(&kvm->mmu_lock); 1453 return ret; 1454 } 1455 1456 static inline int kvmppc_radix_level_to_shift(int level) 1457 { 1458 switch (level) { 1459 case 2: 1460 return PUD_SHIFT; 1461 case 1: 1462 return PMD_SHIFT; 1463 default: 1464 return PAGE_SHIFT; 1465 } 1466 } 1467 1468 static inline int kvmppc_radix_shift_to_level(int shift) 1469 { 1470 if (shift == PUD_SHIFT) 1471 return 2; 1472 if (shift == PMD_SHIFT) 1473 return 1; 1474 if (shift == PAGE_SHIFT) 1475 return 0; 1476 WARN_ON_ONCE(1); 1477 return 0; 1478 } 1479 1480 /* called with gp->tlb_lock held */ 1481 static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu, 1482 struct kvm_nested_guest *gp) 1483 { 1484 struct kvm *kvm = vcpu->kvm; 1485 struct kvm_memory_slot *memslot; 1486 struct rmap_nested *n_rmap; 1487 struct kvmppc_pte gpte; 1488 pte_t pte, *pte_p; 1489 unsigned long mmu_seq; 1490 unsigned long dsisr = vcpu->arch.fault_dsisr; 1491 unsigned long ea = vcpu->arch.fault_dar; 1492 unsigned long *rmapp; 1493 unsigned long n_gpa, gpa, gfn, perm = 0UL; 1494 unsigned int shift, l1_shift, level; 1495 bool writing = !!(dsisr & DSISR_ISSTORE); 1496 bool kvm_ro = false; 1497 long int ret; 1498 1499 if (!gp->l1_gr_to_hr) { 1500 kvmhv_update_ptbl_cache(gp); 1501 if (!gp->l1_gr_to_hr) 1502 return RESUME_HOST; 1503 } 1504 1505 /* Convert the nested guest real address into a L1 guest real address */ 1506 1507 n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL; 1508 if (!(dsisr & DSISR_PRTABLE_FAULT)) 1509 n_gpa |= ea & 0xFFF; 1510 ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte); 1511 1512 /* 1513 * If the hardware found a translation but we don't now have a usable 1514 * translation in the l1 partition-scoped tree, remove the shadow pte 1515 * and let the guest retry. 1516 */ 1517 if (ret == RESUME_HOST && 1518 (dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G | 1519 DSISR_BAD_COPYPASTE))) 1520 goto inval; 1521 if (ret) 1522 return ret; 1523 1524 /* Failed to set the reference/change bits */ 1525 if (dsisr & DSISR_SET_RC) { 1526 ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr); 1527 if (ret == RESUME_HOST) 1528 return ret; 1529 if (ret) 1530 goto inval; 1531 dsisr &= ~DSISR_SET_RC; 1532 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | 1533 DSISR_PROTFAULT))) 1534 return RESUME_GUEST; 1535 } 1536 1537 /* 1538 * We took an HISI or HDSI while we were running a nested guest which 1539 * means we have no partition scoped translation for that. This means 1540 * we need to insert a pte for the mapping into our shadow_pgtable. 1541 */ 1542 1543 l1_shift = gpte.page_shift; 1544 if (l1_shift < PAGE_SHIFT) { 1545 /* We don't support l1 using a page size smaller than our own */ 1546 pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n", 1547 l1_shift, PAGE_SHIFT); 1548 return -EINVAL; 1549 } 1550 gpa = gpte.raddr; 1551 gfn = gpa >> PAGE_SHIFT; 1552 1553 /* 1. Get the corresponding host memslot */ 1554 1555 memslot = gfn_to_memslot(kvm, gfn); 1556 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { 1557 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) { 1558 /* unusual error -> reflect to the guest as a DSI */ 1559 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 1560 return RESUME_GUEST; 1561 } 1562 1563 /* passthrough of emulated MMIO case */ 1564 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing); 1565 } 1566 if (memslot->flags & KVM_MEM_READONLY) { 1567 if (writing) { 1568 /* Give the guest a DSI */ 1569 kvmppc_core_queue_data_storage(vcpu, ea, 1570 DSISR_ISSTORE | DSISR_PROTFAULT); 1571 return RESUME_GUEST; 1572 } 1573 kvm_ro = true; 1574 } 1575 1576 /* 2. Find the host pte for this L1 guest real address */ 1577 1578 /* Used to check for invalidations in progress */ 1579 mmu_seq = kvm->mmu_notifier_seq; 1580 smp_rmb(); 1581 1582 /* See if can find translation in our partition scoped tables for L1 */ 1583 pte = __pte(0); 1584 spin_lock(&kvm->mmu_lock); 1585 pte_p = find_kvm_secondary_pte(kvm, gpa, &shift); 1586 if (!shift) 1587 shift = PAGE_SHIFT; 1588 if (pte_p) 1589 pte = *pte_p; 1590 spin_unlock(&kvm->mmu_lock); 1591 1592 if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) { 1593 /* No suitable pte found -> try to insert a mapping */ 1594 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, 1595 writing, kvm_ro, &pte, &level); 1596 if (ret == -EAGAIN) 1597 return RESUME_GUEST; 1598 else if (ret) 1599 return ret; 1600 shift = kvmppc_radix_level_to_shift(level); 1601 } 1602 /* Align gfn to the start of the page */ 1603 gfn = (gpa & ~((1UL << shift) - 1)) >> PAGE_SHIFT; 1604 1605 /* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */ 1606 1607 /* The permissions is the combination of the host and l1 guest ptes */ 1608 perm |= gpte.may_read ? 0UL : _PAGE_READ; 1609 perm |= gpte.may_write ? 0UL : _PAGE_WRITE; 1610 perm |= gpte.may_execute ? 0UL : _PAGE_EXEC; 1611 /* Only set accessed/dirty (rc) bits if set in host and l1 guest ptes */ 1612 perm |= (gpte.rc & _PAGE_ACCESSED) ? 0UL : _PAGE_ACCESSED; 1613 perm |= ((gpte.rc & _PAGE_DIRTY) && writing) ? 0UL : _PAGE_DIRTY; 1614 pte = __pte(pte_val(pte) & ~perm); 1615 1616 /* What size pte can we insert? */ 1617 if (shift > l1_shift) { 1618 u64 mask; 1619 unsigned int actual_shift = PAGE_SHIFT; 1620 if (PMD_SHIFT < l1_shift) 1621 actual_shift = PMD_SHIFT; 1622 mask = (1UL << shift) - (1UL << actual_shift); 1623 pte = __pte(pte_val(pte) | (gpa & mask)); 1624 shift = actual_shift; 1625 } 1626 level = kvmppc_radix_shift_to_level(shift); 1627 n_gpa &= ~((1UL << shift) - 1); 1628 1629 /* 4. Insert the pte into our shadow_pgtable */ 1630 1631 n_rmap = kzalloc(sizeof(*n_rmap), GFP_KERNEL); 1632 if (!n_rmap) 1633 return RESUME_GUEST; /* Let the guest try again */ 1634 n_rmap->rmap = (n_gpa & RMAP_NESTED_GPA_MASK) | 1635 (((unsigned long) gp->l1_lpid) << RMAP_NESTED_LPID_SHIFT); 1636 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1637 ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level, 1638 mmu_seq, gp->shadow_lpid, rmapp, &n_rmap); 1639 kfree(n_rmap); 1640 if (ret == -EAGAIN) 1641 ret = RESUME_GUEST; /* Let the guest try again */ 1642 1643 return ret; 1644 1645 inval: 1646 kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL); 1647 return RESUME_GUEST; 1648 } 1649 1650 long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu) 1651 { 1652 struct kvm_nested_guest *gp = vcpu->arch.nested; 1653 long int ret; 1654 1655 mutex_lock(&gp->tlb_lock); 1656 ret = __kvmhv_nested_page_fault(vcpu, gp); 1657 mutex_unlock(&gp->tlb_lock); 1658 return ret; 1659 } 1660 1661 int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid) 1662 { 1663 int ret = -1; 1664 1665 spin_lock(&kvm->mmu_lock); 1666 while (++lpid <= kvm->arch.max_nested_lpid) { 1667 if (kvm->arch.nested_guests[lpid]) { 1668 ret = lpid; 1669 break; 1670 } 1671 } 1672 spin_unlock(&kvm->mmu_lock); 1673 return ret; 1674 } 1675