xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv_builtin.c (revision fe17b91a7777df140d0f1433991da67ba658796c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  */
5 
6 #include <linux/cpu.h>
7 #include <linux/kvm_host.h>
8 #include <linux/preempt.h>
9 #include <linux/export.h>
10 #include <linux/sched.h>
11 #include <linux/spinlock.h>
12 #include <linux/init.h>
13 #include <linux/memblock.h>
14 #include <linux/sizes.h>
15 #include <linux/cma.h>
16 #include <linux/bitops.h>
17 
18 #include <asm/cputable.h>
19 #include <asm/interrupt.h>
20 #include <asm/kvm_ppc.h>
21 #include <asm/kvm_book3s.h>
22 #include <asm/archrandom.h>
23 #include <asm/xics.h>
24 #include <asm/xive.h>
25 #include <asm/dbell.h>
26 #include <asm/cputhreads.h>
27 #include <asm/io.h>
28 #include <asm/opal.h>
29 #include <asm/smp.h>
30 
31 #define KVM_CMA_CHUNK_ORDER	18
32 
33 #include "book3s_xics.h"
34 #include "book3s_xive.h"
35 
36 /*
37  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
38  * should be power of 2.
39  */
40 #define HPT_ALIGN_PAGES		((1 << 18) >> PAGE_SHIFT) /* 256k */
41 /*
42  * By default we reserve 5% of memory for hash pagetable allocation.
43  */
44 static unsigned long kvm_cma_resv_ratio = 5;
45 
46 static struct cma *kvm_cma;
47 
48 static int __init early_parse_kvm_cma_resv(char *p)
49 {
50 	pr_debug("%s(%s)\n", __func__, p);
51 	if (!p)
52 		return -EINVAL;
53 	return kstrtoul(p, 0, &kvm_cma_resv_ratio);
54 }
55 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
56 
57 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
58 {
59 	VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
60 
61 	return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
62 			 false);
63 }
64 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
65 
66 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
67 {
68 	cma_release(kvm_cma, page, nr_pages);
69 }
70 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
71 
72 /**
73  * kvm_cma_reserve() - reserve area for kvm hash pagetable
74  *
75  * This function reserves memory from early allocator. It should be
76  * called by arch specific code once the memblock allocator
77  * has been activated and all other subsystems have already allocated/reserved
78  * memory.
79  */
80 void __init kvm_cma_reserve(void)
81 {
82 	unsigned long align_size;
83 	phys_addr_t selected_size;
84 
85 	/*
86 	 * We need CMA reservation only when we are in HV mode
87 	 */
88 	if (!cpu_has_feature(CPU_FTR_HVMODE))
89 		return;
90 
91 	selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100);
92 	if (selected_size) {
93 		pr_info("%s: reserving %ld MiB for global area\n", __func__,
94 			 (unsigned long)selected_size / SZ_1M);
95 		align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
96 		cma_declare_contiguous(0, selected_size, 0, align_size,
97 			KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
98 			&kvm_cma);
99 	}
100 }
101 
102 /*
103  * Real-mode H_CONFER implementation.
104  * We check if we are the only vcpu out of this virtual core
105  * still running in the guest and not ceded.  If so, we pop up
106  * to the virtual-mode implementation; if not, just return to
107  * the guest.
108  */
109 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
110 			    unsigned int yield_count)
111 {
112 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
113 	int ptid = local_paca->kvm_hstate.ptid;
114 	int threads_running;
115 	int threads_ceded;
116 	int threads_conferring;
117 	u64 stop = get_tb() + 10 * tb_ticks_per_usec;
118 	int rv = H_SUCCESS; /* => don't yield */
119 
120 	set_bit(ptid, &vc->conferring_threads);
121 	while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
122 		threads_running = VCORE_ENTRY_MAP(vc);
123 		threads_ceded = vc->napping_threads;
124 		threads_conferring = vc->conferring_threads;
125 		if ((threads_ceded | threads_conferring) == threads_running) {
126 			rv = H_TOO_HARD; /* => do yield */
127 			break;
128 		}
129 	}
130 	clear_bit(ptid, &vc->conferring_threads);
131 	return rv;
132 }
133 
134 /*
135  * When running HV mode KVM we need to block certain operations while KVM VMs
136  * exist in the system. We use a counter of VMs to track this.
137  *
138  * One of the operations we need to block is onlining of secondaries, so we
139  * protect hv_vm_count with cpus_read_lock/unlock().
140  */
141 static atomic_t hv_vm_count;
142 
143 void kvm_hv_vm_activated(void)
144 {
145 	cpus_read_lock();
146 	atomic_inc(&hv_vm_count);
147 	cpus_read_unlock();
148 }
149 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
150 
151 void kvm_hv_vm_deactivated(void)
152 {
153 	cpus_read_lock();
154 	atomic_dec(&hv_vm_count);
155 	cpus_read_unlock();
156 }
157 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
158 
159 bool kvm_hv_mode_active(void)
160 {
161 	return atomic_read(&hv_vm_count) != 0;
162 }
163 
164 extern int hcall_real_table[], hcall_real_table_end[];
165 
166 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
167 {
168 	cmd /= 4;
169 	if (cmd < hcall_real_table_end - hcall_real_table &&
170 	    hcall_real_table[cmd])
171 		return 1;
172 
173 	return 0;
174 }
175 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
176 
177 int kvmppc_hwrng_present(void)
178 {
179 	return powernv_hwrng_present();
180 }
181 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
182 
183 long kvmppc_rm_h_random(struct kvm_vcpu *vcpu)
184 {
185 	if (powernv_get_random_real_mode(&vcpu->arch.regs.gpr[4]))
186 		return H_SUCCESS;
187 
188 	return H_HARDWARE;
189 }
190 
191 /*
192  * Send an interrupt or message to another CPU.
193  * The caller needs to include any barrier needed to order writes
194  * to memory vs. the IPI/message.
195  */
196 void kvmhv_rm_send_ipi(int cpu)
197 {
198 	void __iomem *xics_phys;
199 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
200 
201 	/* On POWER9 we can use msgsnd for any destination cpu. */
202 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
203 		msg |= get_hard_smp_processor_id(cpu);
204 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
205 		return;
206 	}
207 
208 	/* On POWER8 for IPIs to threads in the same core, use msgsnd. */
209 	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
210 	    cpu_first_thread_sibling(cpu) ==
211 	    cpu_first_thread_sibling(raw_smp_processor_id())) {
212 		msg |= cpu_thread_in_core(cpu);
213 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
214 		return;
215 	}
216 
217 	/* We should never reach this */
218 	if (WARN_ON_ONCE(xics_on_xive()))
219 	    return;
220 
221 	/* Else poke the target with an IPI */
222 	xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
223 	if (xics_phys)
224 		__raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
225 	else
226 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
227 }
228 
229 /*
230  * The following functions are called from the assembly code
231  * in book3s_hv_rmhandlers.S.
232  */
233 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
234 {
235 	int cpu = vc->pcpu;
236 
237 	/* Order setting of exit map vs. msgsnd/IPI */
238 	smp_mb();
239 	for (; active; active >>= 1, ++cpu)
240 		if (active & 1)
241 			kvmhv_rm_send_ipi(cpu);
242 }
243 
244 void kvmhv_commence_exit(int trap)
245 {
246 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
247 	int ptid = local_paca->kvm_hstate.ptid;
248 	struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
249 	int me, ee, i;
250 
251 	/* Set our bit in the threads-exiting-guest map in the 0xff00
252 	   bits of vcore->entry_exit_map */
253 	me = 0x100 << ptid;
254 	do {
255 		ee = vc->entry_exit_map;
256 	} while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
257 
258 	/* Are we the first here? */
259 	if ((ee >> 8) != 0)
260 		return;
261 
262 	/*
263 	 * Trigger the other threads in this vcore to exit the guest.
264 	 * If this is a hypervisor decrementer interrupt then they
265 	 * will be already on their way out of the guest.
266 	 */
267 	if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
268 		kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
269 
270 	/*
271 	 * If we are doing dynamic micro-threading, interrupt the other
272 	 * subcores to pull them out of their guests too.
273 	 */
274 	if (!sip)
275 		return;
276 
277 	for (i = 0; i < MAX_SUBCORES; ++i) {
278 		vc = sip->vc[i];
279 		if (!vc)
280 			break;
281 		do {
282 			ee = vc->entry_exit_map;
283 			/* Already asked to exit? */
284 			if ((ee >> 8) != 0)
285 				break;
286 		} while (cmpxchg(&vc->entry_exit_map, ee,
287 				 ee | VCORE_EXIT_REQ) != ee);
288 		if ((ee >> 8) == 0)
289 			kvmhv_interrupt_vcore(vc, ee);
290 	}
291 }
292 
293 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
294 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
295 
296 #ifdef CONFIG_KVM_XICS
297 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
298 					 u32 xisr)
299 {
300 	int i;
301 
302 	/*
303 	 * We access the mapped array here without a lock.  That
304 	 * is safe because we never reduce the number of entries
305 	 * in the array and we never change the v_hwirq field of
306 	 * an entry once it is set.
307 	 *
308 	 * We have also carefully ordered the stores in the writer
309 	 * and the loads here in the reader, so that if we find a matching
310 	 * hwirq here, the associated GSI and irq_desc fields are valid.
311 	 */
312 	for (i = 0; i < pimap->n_mapped; i++)  {
313 		if (xisr == pimap->mapped[i].r_hwirq) {
314 			/*
315 			 * Order subsequent reads in the caller to serialize
316 			 * with the writer.
317 			 */
318 			smp_rmb();
319 			return &pimap->mapped[i];
320 		}
321 	}
322 	return NULL;
323 }
324 
325 /*
326  * If we have an interrupt that's not an IPI, check if we have a
327  * passthrough adapter and if so, check if this external interrupt
328  * is for the adapter.
329  * We will attempt to deliver the IRQ directly to the target VCPU's
330  * ICP, the virtual ICP (based on affinity - the xive value in ICS).
331  *
332  * If the delivery fails or if this is not for a passthrough adapter,
333  * return to the host to handle this interrupt. We earlier
334  * saved a copy of the XIRR in the PACA, it will be picked up by
335  * the host ICP driver.
336  */
337 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
338 {
339 	struct kvmppc_passthru_irqmap *pimap;
340 	struct kvmppc_irq_map *irq_map;
341 	struct kvm_vcpu *vcpu;
342 
343 	vcpu = local_paca->kvm_hstate.kvm_vcpu;
344 	if (!vcpu)
345 		return 1;
346 	pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
347 	if (!pimap)
348 		return 1;
349 	irq_map = get_irqmap(pimap, xisr);
350 	if (!irq_map)
351 		return 1;
352 
353 	/* We're handling this interrupt, generic code doesn't need to */
354 	local_paca->kvm_hstate.saved_xirr = 0;
355 
356 	return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
357 }
358 
359 #else
360 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
361 {
362 	return 1;
363 }
364 #endif
365 
366 /*
367  * Determine what sort of external interrupt is pending (if any).
368  * Returns:
369  *	0 if no interrupt is pending
370  *	1 if an interrupt is pending that needs to be handled by the host
371  *	2 Passthrough that needs completion in the host
372  *	-1 if there was a guest wakeup IPI (which has now been cleared)
373  *	-2 if there is PCI passthrough external interrupt that was handled
374  */
375 static long kvmppc_read_one_intr(bool *again);
376 
377 long kvmppc_read_intr(void)
378 {
379 	long ret = 0;
380 	long rc;
381 	bool again;
382 
383 	if (xive_enabled())
384 		return 1;
385 
386 	do {
387 		again = false;
388 		rc = kvmppc_read_one_intr(&again);
389 		if (rc && (ret == 0 || rc > ret))
390 			ret = rc;
391 	} while (again);
392 	return ret;
393 }
394 
395 static long kvmppc_read_one_intr(bool *again)
396 {
397 	void __iomem *xics_phys;
398 	u32 h_xirr;
399 	__be32 xirr;
400 	u32 xisr;
401 	u8 host_ipi;
402 	int64_t rc;
403 
404 	if (xive_enabled())
405 		return 1;
406 
407 	/* see if a host IPI is pending */
408 	host_ipi = local_paca->kvm_hstate.host_ipi;
409 	if (host_ipi)
410 		return 1;
411 
412 	/* Now read the interrupt from the ICP */
413 	xics_phys = local_paca->kvm_hstate.xics_phys;
414 	rc = 0;
415 	if (!xics_phys)
416 		rc = opal_int_get_xirr(&xirr, false);
417 	else
418 		xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
419 	if (rc < 0)
420 		return 1;
421 
422 	/*
423 	 * Save XIRR for later. Since we get control in reverse endian
424 	 * on LE systems, save it byte reversed and fetch it back in
425 	 * host endian. Note that xirr is the value read from the
426 	 * XIRR register, while h_xirr is the host endian version.
427 	 */
428 	h_xirr = be32_to_cpu(xirr);
429 	local_paca->kvm_hstate.saved_xirr = h_xirr;
430 	xisr = h_xirr & 0xffffff;
431 	/*
432 	 * Ensure that the store/load complete to guarantee all side
433 	 * effects of loading from XIRR has completed
434 	 */
435 	smp_mb();
436 
437 	/* if nothing pending in the ICP */
438 	if (!xisr)
439 		return 0;
440 
441 	/* We found something in the ICP...
442 	 *
443 	 * If it is an IPI, clear the MFRR and EOI it.
444 	 */
445 	if (xisr == XICS_IPI) {
446 		rc = 0;
447 		if (xics_phys) {
448 			__raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
449 			__raw_rm_writel(xirr, xics_phys + XICS_XIRR);
450 		} else {
451 			opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
452 			rc = opal_int_eoi(h_xirr);
453 		}
454 		/* If rc > 0, there is another interrupt pending */
455 		*again = rc > 0;
456 
457 		/*
458 		 * Need to ensure side effects of above stores
459 		 * complete before proceeding.
460 		 */
461 		smp_mb();
462 
463 		/*
464 		 * We need to re-check host IPI now in case it got set in the
465 		 * meantime. If it's clear, we bounce the interrupt to the
466 		 * guest
467 		 */
468 		host_ipi = local_paca->kvm_hstate.host_ipi;
469 		if (unlikely(host_ipi != 0)) {
470 			/* We raced with the host,
471 			 * we need to resend that IPI, bummer
472 			 */
473 			if (xics_phys)
474 				__raw_rm_writeb(IPI_PRIORITY,
475 						xics_phys + XICS_MFRR);
476 			else
477 				opal_int_set_mfrr(hard_smp_processor_id(),
478 						  IPI_PRIORITY);
479 			/* Let side effects complete */
480 			smp_mb();
481 			return 1;
482 		}
483 
484 		/* OK, it's an IPI for us */
485 		local_paca->kvm_hstate.saved_xirr = 0;
486 		return -1;
487 	}
488 
489 	return kvmppc_check_passthru(xisr, xirr, again);
490 }
491 
492 void kvmppc_bad_interrupt(struct pt_regs *regs)
493 {
494 	/*
495 	 * 100 could happen at any time, 200 can happen due to invalid real
496 	 * address access for example (or any time due to a hardware problem).
497 	 */
498 	if (TRAP(regs) == 0x100) {
499 		get_paca()->in_nmi++;
500 		system_reset_exception(regs);
501 		get_paca()->in_nmi--;
502 	} else if (TRAP(regs) == 0x200) {
503 		machine_check_exception(regs);
504 	} else {
505 		die("Bad interrupt in KVM entry/exit code", regs, SIGABRT);
506 	}
507 	panic("Bad KVM trap");
508 }
509 
510 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
511 {
512 	vcpu->arch.ceded = 0;
513 	if (vcpu->arch.timer_running) {
514 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
515 		vcpu->arch.timer_running = 0;
516 	}
517 }
518 
519 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
520 {
521 	/* Guest must always run with ME enabled, HV disabled. */
522 	msr = (msr | MSR_ME) & ~MSR_HV;
523 
524 	/*
525 	 * Check for illegal transactional state bit combination
526 	 * and if we find it, force the TS field to a safe state.
527 	 */
528 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
529 		msr &= ~MSR_TS_MASK;
530 	vcpu->arch.shregs.msr = msr;
531 	kvmppc_end_cede(vcpu);
532 }
533 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv);
534 
535 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
536 {
537 	unsigned long msr, pc, new_msr, new_pc;
538 
539 	msr = kvmppc_get_msr(vcpu);
540 	pc = kvmppc_get_pc(vcpu);
541 	new_msr = vcpu->arch.intr_msr;
542 	new_pc = vec;
543 
544 	/* If transactional, change to suspend mode on IRQ delivery */
545 	if (MSR_TM_TRANSACTIONAL(msr))
546 		new_msr |= MSR_TS_S;
547 	else
548 		new_msr |= msr & MSR_TS_MASK;
549 
550 	/*
551 	 * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and
552 	 * applicable. AIL=2 is not supported.
553 	 *
554 	 * AIL does not apply to SRESET, MCE, or HMI (which is never
555 	 * delivered to the guest), and does not apply if IR=0 or DR=0.
556 	 */
557 	if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET &&
558 	    vec != BOOK3S_INTERRUPT_MACHINE_CHECK &&
559 	    (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 &&
560 	    (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) {
561 		new_msr |= MSR_IR | MSR_DR;
562 		new_pc += 0xC000000000004000ULL;
563 	}
564 
565 	kvmppc_set_srr0(vcpu, pc);
566 	kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
567 	kvmppc_set_pc(vcpu, new_pc);
568 	vcpu->arch.shregs.msr = new_msr;
569 }
570 
571 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
572 {
573 	inject_interrupt(vcpu, vec, srr1_flags);
574 	kvmppc_end_cede(vcpu);
575 }
576 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv);
577 
578 /*
579  * Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
580  * Can we inject a Decrementer or a External interrupt?
581  */
582 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
583 {
584 	int ext;
585 	unsigned long lpcr;
586 
587 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
588 
589 	/* Insert EXTERNAL bit into LPCR at the MER bit position */
590 	ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
591 	lpcr = mfspr(SPRN_LPCR);
592 	lpcr |= ext << LPCR_MER_SH;
593 	mtspr(SPRN_LPCR, lpcr);
594 	isync();
595 
596 	if (vcpu->arch.shregs.msr & MSR_EE) {
597 		if (ext) {
598 			inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0);
599 		} else {
600 			long int dec = mfspr(SPRN_DEC);
601 			if (!(lpcr & LPCR_LD))
602 				dec = (int) dec;
603 			if (dec < 0)
604 				inject_interrupt(vcpu,
605 					BOOK3S_INTERRUPT_DECREMENTER, 0);
606 		}
607 	}
608 
609 	if (vcpu->arch.doorbell_request) {
610 		mtspr(SPRN_DPDES, 1);
611 		vcpu->arch.vcore->dpdes = 1;
612 		smp_wmb();
613 		vcpu->arch.doorbell_request = 0;
614 	}
615 }
616 
617 static void flush_guest_tlb(struct kvm *kvm)
618 {
619 	unsigned long rb, set;
620 
621 	rb = PPC_BIT(52);	/* IS = 2 */
622 	for (set = 0; set < kvm->arch.tlb_sets; ++set) {
623 		/* R=0 PRS=0 RIC=0 */
624 		asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
625 			     : : "r" (rb), "i" (0), "i" (0), "i" (0),
626 			       "r" (0) : "memory");
627 		rb += PPC_BIT(51);	/* increment set number */
628 	}
629 	asm volatile("ptesync": : :"memory");
630 }
631 
632 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu)
633 {
634 	if (cpumask_test_cpu(pcpu, &kvm->arch.need_tlb_flush)) {
635 		flush_guest_tlb(kvm);
636 
637 		/* Clear the bit after the TLB flush */
638 		cpumask_clear_cpu(pcpu, &kvm->arch.need_tlb_flush);
639 	}
640 }
641 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);
642