1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License, version 2, as 6 * published by the Free Software Foundation. 7 */ 8 9 #include <linux/cpu.h> 10 #include <linux/kvm_host.h> 11 #include <linux/preempt.h> 12 #include <linux/export.h> 13 #include <linux/sched.h> 14 #include <linux/spinlock.h> 15 #include <linux/init.h> 16 #include <linux/memblock.h> 17 #include <linux/sizes.h> 18 #include <linux/cma.h> 19 #include <linux/bitops.h> 20 21 #include <asm/asm-prototypes.h> 22 #include <asm/cputable.h> 23 #include <asm/kvm_ppc.h> 24 #include <asm/kvm_book3s.h> 25 #include <asm/archrandom.h> 26 #include <asm/xics.h> 27 #include <asm/xive.h> 28 #include <asm/dbell.h> 29 #include <asm/cputhreads.h> 30 #include <asm/io.h> 31 #include <asm/opal.h> 32 #include <asm/smp.h> 33 34 #define KVM_CMA_CHUNK_ORDER 18 35 36 #include "book3s_xics.h" 37 #include "book3s_xive.h" 38 39 /* 40 * The XIVE module will populate these when it loads 41 */ 42 unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu); 43 unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server); 44 int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server, 45 unsigned long mfrr); 46 int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr); 47 int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr); 48 EXPORT_SYMBOL_GPL(__xive_vm_h_xirr); 49 EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll); 50 EXPORT_SYMBOL_GPL(__xive_vm_h_ipi); 51 EXPORT_SYMBOL_GPL(__xive_vm_h_cppr); 52 EXPORT_SYMBOL_GPL(__xive_vm_h_eoi); 53 54 /* 55 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206) 56 * should be power of 2. 57 */ 58 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */ 59 /* 60 * By default we reserve 5% of memory for hash pagetable allocation. 61 */ 62 static unsigned long kvm_cma_resv_ratio = 5; 63 64 static struct cma *kvm_cma; 65 66 static int __init early_parse_kvm_cma_resv(char *p) 67 { 68 pr_debug("%s(%s)\n", __func__, p); 69 if (!p) 70 return -EINVAL; 71 return kstrtoul(p, 0, &kvm_cma_resv_ratio); 72 } 73 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv); 74 75 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages) 76 { 77 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT); 78 79 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES), 80 false); 81 } 82 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma); 83 84 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages) 85 { 86 cma_release(kvm_cma, page, nr_pages); 87 } 88 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma); 89 90 /** 91 * kvm_cma_reserve() - reserve area for kvm hash pagetable 92 * 93 * This function reserves memory from early allocator. It should be 94 * called by arch specific code once the memblock allocator 95 * has been activated and all other subsystems have already allocated/reserved 96 * memory. 97 */ 98 void __init kvm_cma_reserve(void) 99 { 100 unsigned long align_size; 101 struct memblock_region *reg; 102 phys_addr_t selected_size = 0; 103 104 /* 105 * We need CMA reservation only when we are in HV mode 106 */ 107 if (!cpu_has_feature(CPU_FTR_HVMODE)) 108 return; 109 /* 110 * We cannot use memblock_phys_mem_size() here, because 111 * memblock_analyze() has not been called yet. 112 */ 113 for_each_memblock(memory, reg) 114 selected_size += memblock_region_memory_end_pfn(reg) - 115 memblock_region_memory_base_pfn(reg); 116 117 selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT; 118 if (selected_size) { 119 pr_debug("%s: reserving %ld MiB for global area\n", __func__, 120 (unsigned long)selected_size / SZ_1M); 121 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT; 122 cma_declare_contiguous(0, selected_size, 0, align_size, 123 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma", 124 &kvm_cma); 125 } 126 } 127 128 /* 129 * Real-mode H_CONFER implementation. 130 * We check if we are the only vcpu out of this virtual core 131 * still running in the guest and not ceded. If so, we pop up 132 * to the virtual-mode implementation; if not, just return to 133 * the guest. 134 */ 135 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target, 136 unsigned int yield_count) 137 { 138 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; 139 int ptid = local_paca->kvm_hstate.ptid; 140 int threads_running; 141 int threads_ceded; 142 int threads_conferring; 143 u64 stop = get_tb() + 10 * tb_ticks_per_usec; 144 int rv = H_SUCCESS; /* => don't yield */ 145 146 set_bit(ptid, &vc->conferring_threads); 147 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) { 148 threads_running = VCORE_ENTRY_MAP(vc); 149 threads_ceded = vc->napping_threads; 150 threads_conferring = vc->conferring_threads; 151 if ((threads_ceded | threads_conferring) == threads_running) { 152 rv = H_TOO_HARD; /* => do yield */ 153 break; 154 } 155 } 156 clear_bit(ptid, &vc->conferring_threads); 157 return rv; 158 } 159 160 /* 161 * When running HV mode KVM we need to block certain operations while KVM VMs 162 * exist in the system. We use a counter of VMs to track this. 163 * 164 * One of the operations we need to block is onlining of secondaries, so we 165 * protect hv_vm_count with get/put_online_cpus(). 166 */ 167 static atomic_t hv_vm_count; 168 169 void kvm_hv_vm_activated(void) 170 { 171 get_online_cpus(); 172 atomic_inc(&hv_vm_count); 173 put_online_cpus(); 174 } 175 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated); 176 177 void kvm_hv_vm_deactivated(void) 178 { 179 get_online_cpus(); 180 atomic_dec(&hv_vm_count); 181 put_online_cpus(); 182 } 183 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated); 184 185 bool kvm_hv_mode_active(void) 186 { 187 return atomic_read(&hv_vm_count) != 0; 188 } 189 190 extern int hcall_real_table[], hcall_real_table_end[]; 191 192 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd) 193 { 194 cmd /= 4; 195 if (cmd < hcall_real_table_end - hcall_real_table && 196 hcall_real_table[cmd]) 197 return 1; 198 199 return 0; 200 } 201 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode); 202 203 int kvmppc_hwrng_present(void) 204 { 205 return powernv_hwrng_present(); 206 } 207 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present); 208 209 long kvmppc_h_random(struct kvm_vcpu *vcpu) 210 { 211 int r; 212 213 /* Only need to do the expensive mfmsr() on radix */ 214 if (kvm_is_radix(vcpu->kvm) && (mfmsr() & MSR_IR)) 215 r = powernv_get_random_long(&vcpu->arch.regs.gpr[4]); 216 else 217 r = powernv_get_random_real_mode(&vcpu->arch.regs.gpr[4]); 218 if (r) 219 return H_SUCCESS; 220 221 return H_HARDWARE; 222 } 223 224 /* 225 * Send an interrupt or message to another CPU. 226 * The caller needs to include any barrier needed to order writes 227 * to memory vs. the IPI/message. 228 */ 229 void kvmhv_rm_send_ipi(int cpu) 230 { 231 void __iomem *xics_phys; 232 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 233 234 /* On POWER9 we can use msgsnd for any destination cpu. */ 235 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 236 msg |= get_hard_smp_processor_id(cpu); 237 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 238 return; 239 } 240 241 /* On POWER8 for IPIs to threads in the same core, use msgsnd. */ 242 if (cpu_has_feature(CPU_FTR_ARCH_207S) && 243 cpu_first_thread_sibling(cpu) == 244 cpu_first_thread_sibling(raw_smp_processor_id())) { 245 msg |= cpu_thread_in_core(cpu); 246 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 247 return; 248 } 249 250 /* We should never reach this */ 251 if (WARN_ON_ONCE(xive_enabled())) 252 return; 253 254 /* Else poke the target with an IPI */ 255 xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys; 256 if (xics_phys) 257 __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR); 258 else 259 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 260 } 261 262 /* 263 * The following functions are called from the assembly code 264 * in book3s_hv_rmhandlers.S. 265 */ 266 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active) 267 { 268 int cpu = vc->pcpu; 269 270 /* Order setting of exit map vs. msgsnd/IPI */ 271 smp_mb(); 272 for (; active; active >>= 1, ++cpu) 273 if (active & 1) 274 kvmhv_rm_send_ipi(cpu); 275 } 276 277 void kvmhv_commence_exit(int trap) 278 { 279 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; 280 int ptid = local_paca->kvm_hstate.ptid; 281 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode; 282 int me, ee, i, t; 283 int cpu0; 284 285 /* Set our bit in the threads-exiting-guest map in the 0xff00 286 bits of vcore->entry_exit_map */ 287 me = 0x100 << ptid; 288 do { 289 ee = vc->entry_exit_map; 290 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee); 291 292 /* Are we the first here? */ 293 if ((ee >> 8) != 0) 294 return; 295 296 /* 297 * Trigger the other threads in this vcore to exit the guest. 298 * If this is a hypervisor decrementer interrupt then they 299 * will be already on their way out of the guest. 300 */ 301 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER) 302 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid)); 303 304 /* 305 * If we are doing dynamic micro-threading, interrupt the other 306 * subcores to pull them out of their guests too. 307 */ 308 if (!sip) 309 return; 310 311 for (i = 0; i < MAX_SUBCORES; ++i) { 312 vc = sip->vc[i]; 313 if (!vc) 314 break; 315 do { 316 ee = vc->entry_exit_map; 317 /* Already asked to exit? */ 318 if ((ee >> 8) != 0) 319 break; 320 } while (cmpxchg(&vc->entry_exit_map, ee, 321 ee | VCORE_EXIT_REQ) != ee); 322 if ((ee >> 8) == 0) 323 kvmhv_interrupt_vcore(vc, ee); 324 } 325 326 /* 327 * On POWER9 when running a HPT guest on a radix host (sip != NULL), 328 * we have to interrupt inactive CPU threads to get them to 329 * restore the host LPCR value. 330 */ 331 if (sip->lpcr_req) { 332 if (cmpxchg(&sip->do_restore, 0, 1) == 0) { 333 vc = local_paca->kvm_hstate.kvm_vcore; 334 cpu0 = vc->pcpu + ptid - local_paca->kvm_hstate.tid; 335 for (t = 1; t < threads_per_core; ++t) { 336 if (sip->napped[t]) 337 kvmhv_rm_send_ipi(cpu0 + t); 338 } 339 } 340 } 341 } 342 343 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv; 344 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv); 345 346 #ifdef CONFIG_KVM_XICS 347 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap, 348 u32 xisr) 349 { 350 int i; 351 352 /* 353 * We access the mapped array here without a lock. That 354 * is safe because we never reduce the number of entries 355 * in the array and we never change the v_hwirq field of 356 * an entry once it is set. 357 * 358 * We have also carefully ordered the stores in the writer 359 * and the loads here in the reader, so that if we find a matching 360 * hwirq here, the associated GSI and irq_desc fields are valid. 361 */ 362 for (i = 0; i < pimap->n_mapped; i++) { 363 if (xisr == pimap->mapped[i].r_hwirq) { 364 /* 365 * Order subsequent reads in the caller to serialize 366 * with the writer. 367 */ 368 smp_rmb(); 369 return &pimap->mapped[i]; 370 } 371 } 372 return NULL; 373 } 374 375 /* 376 * If we have an interrupt that's not an IPI, check if we have a 377 * passthrough adapter and if so, check if this external interrupt 378 * is for the adapter. 379 * We will attempt to deliver the IRQ directly to the target VCPU's 380 * ICP, the virtual ICP (based on affinity - the xive value in ICS). 381 * 382 * If the delivery fails or if this is not for a passthrough adapter, 383 * return to the host to handle this interrupt. We earlier 384 * saved a copy of the XIRR in the PACA, it will be picked up by 385 * the host ICP driver. 386 */ 387 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) 388 { 389 struct kvmppc_passthru_irqmap *pimap; 390 struct kvmppc_irq_map *irq_map; 391 struct kvm_vcpu *vcpu; 392 393 vcpu = local_paca->kvm_hstate.kvm_vcpu; 394 if (!vcpu) 395 return 1; 396 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm); 397 if (!pimap) 398 return 1; 399 irq_map = get_irqmap(pimap, xisr); 400 if (!irq_map) 401 return 1; 402 403 /* We're handling this interrupt, generic code doesn't need to */ 404 local_paca->kvm_hstate.saved_xirr = 0; 405 406 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again); 407 } 408 409 #else 410 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) 411 { 412 return 1; 413 } 414 #endif 415 416 /* 417 * Determine what sort of external interrupt is pending (if any). 418 * Returns: 419 * 0 if no interrupt is pending 420 * 1 if an interrupt is pending that needs to be handled by the host 421 * 2 Passthrough that needs completion in the host 422 * -1 if there was a guest wakeup IPI (which has now been cleared) 423 * -2 if there is PCI passthrough external interrupt that was handled 424 */ 425 static long kvmppc_read_one_intr(bool *again); 426 427 long kvmppc_read_intr(void) 428 { 429 long ret = 0; 430 long rc; 431 bool again; 432 433 if (xive_enabled()) 434 return 1; 435 436 do { 437 again = false; 438 rc = kvmppc_read_one_intr(&again); 439 if (rc && (ret == 0 || rc > ret)) 440 ret = rc; 441 } while (again); 442 return ret; 443 } 444 445 static long kvmppc_read_one_intr(bool *again) 446 { 447 void __iomem *xics_phys; 448 u32 h_xirr; 449 __be32 xirr; 450 u32 xisr; 451 u8 host_ipi; 452 int64_t rc; 453 454 if (xive_enabled()) 455 return 1; 456 457 /* see if a host IPI is pending */ 458 host_ipi = local_paca->kvm_hstate.host_ipi; 459 if (host_ipi) 460 return 1; 461 462 /* Now read the interrupt from the ICP */ 463 xics_phys = local_paca->kvm_hstate.xics_phys; 464 rc = 0; 465 if (!xics_phys) 466 rc = opal_int_get_xirr(&xirr, false); 467 else 468 xirr = __raw_rm_readl(xics_phys + XICS_XIRR); 469 if (rc < 0) 470 return 1; 471 472 /* 473 * Save XIRR for later. Since we get control in reverse endian 474 * on LE systems, save it byte reversed and fetch it back in 475 * host endian. Note that xirr is the value read from the 476 * XIRR register, while h_xirr is the host endian version. 477 */ 478 h_xirr = be32_to_cpu(xirr); 479 local_paca->kvm_hstate.saved_xirr = h_xirr; 480 xisr = h_xirr & 0xffffff; 481 /* 482 * Ensure that the store/load complete to guarantee all side 483 * effects of loading from XIRR has completed 484 */ 485 smp_mb(); 486 487 /* if nothing pending in the ICP */ 488 if (!xisr) 489 return 0; 490 491 /* We found something in the ICP... 492 * 493 * If it is an IPI, clear the MFRR and EOI it. 494 */ 495 if (xisr == XICS_IPI) { 496 rc = 0; 497 if (xics_phys) { 498 __raw_rm_writeb(0xff, xics_phys + XICS_MFRR); 499 __raw_rm_writel(xirr, xics_phys + XICS_XIRR); 500 } else { 501 opal_int_set_mfrr(hard_smp_processor_id(), 0xff); 502 rc = opal_int_eoi(h_xirr); 503 } 504 /* If rc > 0, there is another interrupt pending */ 505 *again = rc > 0; 506 507 /* 508 * Need to ensure side effects of above stores 509 * complete before proceeding. 510 */ 511 smp_mb(); 512 513 /* 514 * We need to re-check host IPI now in case it got set in the 515 * meantime. If it's clear, we bounce the interrupt to the 516 * guest 517 */ 518 host_ipi = local_paca->kvm_hstate.host_ipi; 519 if (unlikely(host_ipi != 0)) { 520 /* We raced with the host, 521 * we need to resend that IPI, bummer 522 */ 523 if (xics_phys) 524 __raw_rm_writeb(IPI_PRIORITY, 525 xics_phys + XICS_MFRR); 526 else 527 opal_int_set_mfrr(hard_smp_processor_id(), 528 IPI_PRIORITY); 529 /* Let side effects complete */ 530 smp_mb(); 531 return 1; 532 } 533 534 /* OK, it's an IPI for us */ 535 local_paca->kvm_hstate.saved_xirr = 0; 536 return -1; 537 } 538 539 return kvmppc_check_passthru(xisr, xirr, again); 540 } 541 542 #ifdef CONFIG_KVM_XICS 543 static inline bool is_rm(void) 544 { 545 return !(mfmsr() & MSR_DR); 546 } 547 548 unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu) 549 { 550 if (!kvmppc_xics_enabled(vcpu)) 551 return H_TOO_HARD; 552 if (xive_enabled()) { 553 if (is_rm()) 554 return xive_rm_h_xirr(vcpu); 555 if (unlikely(!__xive_vm_h_xirr)) 556 return H_NOT_AVAILABLE; 557 return __xive_vm_h_xirr(vcpu); 558 } else 559 return xics_rm_h_xirr(vcpu); 560 } 561 562 unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu) 563 { 564 if (!kvmppc_xics_enabled(vcpu)) 565 return H_TOO_HARD; 566 vcpu->arch.regs.gpr[5] = get_tb(); 567 if (xive_enabled()) { 568 if (is_rm()) 569 return xive_rm_h_xirr(vcpu); 570 if (unlikely(!__xive_vm_h_xirr)) 571 return H_NOT_AVAILABLE; 572 return __xive_vm_h_xirr(vcpu); 573 } else 574 return xics_rm_h_xirr(vcpu); 575 } 576 577 unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server) 578 { 579 if (!kvmppc_xics_enabled(vcpu)) 580 return H_TOO_HARD; 581 if (xive_enabled()) { 582 if (is_rm()) 583 return xive_rm_h_ipoll(vcpu, server); 584 if (unlikely(!__xive_vm_h_ipoll)) 585 return H_NOT_AVAILABLE; 586 return __xive_vm_h_ipoll(vcpu, server); 587 } else 588 return H_TOO_HARD; 589 } 590 591 int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server, 592 unsigned long mfrr) 593 { 594 if (!kvmppc_xics_enabled(vcpu)) 595 return H_TOO_HARD; 596 if (xive_enabled()) { 597 if (is_rm()) 598 return xive_rm_h_ipi(vcpu, server, mfrr); 599 if (unlikely(!__xive_vm_h_ipi)) 600 return H_NOT_AVAILABLE; 601 return __xive_vm_h_ipi(vcpu, server, mfrr); 602 } else 603 return xics_rm_h_ipi(vcpu, server, mfrr); 604 } 605 606 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr) 607 { 608 if (!kvmppc_xics_enabled(vcpu)) 609 return H_TOO_HARD; 610 if (xive_enabled()) { 611 if (is_rm()) 612 return xive_rm_h_cppr(vcpu, cppr); 613 if (unlikely(!__xive_vm_h_cppr)) 614 return H_NOT_AVAILABLE; 615 return __xive_vm_h_cppr(vcpu, cppr); 616 } else 617 return xics_rm_h_cppr(vcpu, cppr); 618 } 619 620 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr) 621 { 622 if (!kvmppc_xics_enabled(vcpu)) 623 return H_TOO_HARD; 624 if (xive_enabled()) { 625 if (is_rm()) 626 return xive_rm_h_eoi(vcpu, xirr); 627 if (unlikely(!__xive_vm_h_eoi)) 628 return H_NOT_AVAILABLE; 629 return __xive_vm_h_eoi(vcpu, xirr); 630 } else 631 return xics_rm_h_eoi(vcpu, xirr); 632 } 633 #endif /* CONFIG_KVM_XICS */ 634 635 void kvmppc_bad_interrupt(struct pt_regs *regs) 636 { 637 /* 638 * 100 could happen at any time, 200 can happen due to invalid real 639 * address access for example (or any time due to a hardware problem). 640 */ 641 if (TRAP(regs) == 0x100) { 642 get_paca()->in_nmi++; 643 system_reset_exception(regs); 644 get_paca()->in_nmi--; 645 } else if (TRAP(regs) == 0x200) { 646 machine_check_exception(regs); 647 } else { 648 die("Bad interrupt in KVM entry/exit code", regs, SIGABRT); 649 } 650 panic("Bad KVM trap"); 651 } 652 653 /* 654 * Functions used to switch LPCR HR and UPRT bits on all threads 655 * when entering and exiting HPT guests on a radix host. 656 */ 657 658 #define PHASE_REALMODE 1 /* in real mode */ 659 #define PHASE_SET_LPCR 2 /* have set LPCR */ 660 #define PHASE_OUT_OF_GUEST 4 /* have finished executing in guest */ 661 #define PHASE_RESET_LPCR 8 /* have reset LPCR to host value */ 662 663 #define ALL(p) (((p) << 24) | ((p) << 16) | ((p) << 8) | (p)) 664 665 static void wait_for_sync(struct kvm_split_mode *sip, int phase) 666 { 667 int thr = local_paca->kvm_hstate.tid; 668 669 sip->lpcr_sync.phase[thr] |= phase; 670 phase = ALL(phase); 671 while ((sip->lpcr_sync.allphases & phase) != phase) { 672 HMT_low(); 673 barrier(); 674 } 675 HMT_medium(); 676 } 677 678 void kvmhv_p9_set_lpcr(struct kvm_split_mode *sip) 679 { 680 unsigned long rb, set; 681 682 /* wait for every other thread to get to real mode */ 683 wait_for_sync(sip, PHASE_REALMODE); 684 685 /* Set LPCR and LPIDR */ 686 mtspr(SPRN_LPCR, sip->lpcr_req); 687 mtspr(SPRN_LPID, sip->lpidr_req); 688 isync(); 689 690 /* Invalidate the TLB on thread 0 */ 691 if (local_paca->kvm_hstate.tid == 0) { 692 sip->do_set = 0; 693 asm volatile("ptesync" : : : "memory"); 694 for (set = 0; set < POWER9_TLB_SETS_RADIX; ++set) { 695 rb = TLBIEL_INVAL_SET_LPID + 696 (set << TLBIEL_INVAL_SET_SHIFT); 697 asm volatile(PPC_TLBIEL(%0, %1, 0, 0, 0) : : 698 "r" (rb), "r" (0)); 699 } 700 asm volatile("ptesync" : : : "memory"); 701 } 702 703 /* indicate that we have done so and wait for others */ 704 wait_for_sync(sip, PHASE_SET_LPCR); 705 /* order read of sip->lpcr_sync.allphases vs. sip->do_set */ 706 smp_rmb(); 707 } 708 709 /* 710 * Called when a thread that has been in the guest needs 711 * to reload the host LPCR value - but only on POWER9 when 712 * running a HPT guest on a radix host. 713 */ 714 void kvmhv_p9_restore_lpcr(struct kvm_split_mode *sip) 715 { 716 /* we're out of the guest... */ 717 wait_for_sync(sip, PHASE_OUT_OF_GUEST); 718 719 mtspr(SPRN_LPID, 0); 720 mtspr(SPRN_LPCR, sip->host_lpcr); 721 isync(); 722 723 if (local_paca->kvm_hstate.tid == 0) { 724 sip->do_restore = 0; 725 smp_wmb(); /* order store of do_restore vs. phase */ 726 } 727 728 wait_for_sync(sip, PHASE_RESET_LPCR); 729 smp_mb(); 730 local_paca->kvm_hstate.kvm_split_mode = NULL; 731 } 732