1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 */ 5 6 #include <linux/cpu.h> 7 #include <linux/kvm_host.h> 8 #include <linux/preempt.h> 9 #include <linux/export.h> 10 #include <linux/sched.h> 11 #include <linux/spinlock.h> 12 #include <linux/init.h> 13 #include <linux/memblock.h> 14 #include <linux/sizes.h> 15 #include <linux/cma.h> 16 #include <linux/bitops.h> 17 18 #include <asm/cputable.h> 19 #include <asm/interrupt.h> 20 #include <asm/kvm_ppc.h> 21 #include <asm/kvm_book3s.h> 22 #include <asm/archrandom.h> 23 #include <asm/xics.h> 24 #include <asm/xive.h> 25 #include <asm/dbell.h> 26 #include <asm/cputhreads.h> 27 #include <asm/io.h> 28 #include <asm/opal.h> 29 #include <asm/smp.h> 30 31 #define KVM_CMA_CHUNK_ORDER 18 32 33 #include "book3s_xics.h" 34 #include "book3s_xive.h" 35 36 /* 37 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206) 38 * should be power of 2. 39 */ 40 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */ 41 /* 42 * By default we reserve 5% of memory for hash pagetable allocation. 43 */ 44 static unsigned long kvm_cma_resv_ratio = 5; 45 46 static struct cma *kvm_cma; 47 48 static int __init early_parse_kvm_cma_resv(char *p) 49 { 50 pr_debug("%s(%s)\n", __func__, p); 51 if (!p) 52 return -EINVAL; 53 return kstrtoul(p, 0, &kvm_cma_resv_ratio); 54 } 55 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv); 56 57 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages) 58 { 59 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT); 60 61 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES), 62 false); 63 } 64 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma); 65 66 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages) 67 { 68 cma_release(kvm_cma, page, nr_pages); 69 } 70 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma); 71 72 /** 73 * kvm_cma_reserve() - reserve area for kvm hash pagetable 74 * 75 * This function reserves memory from early allocator. It should be 76 * called by arch specific code once the memblock allocator 77 * has been activated and all other subsystems have already allocated/reserved 78 * memory. 79 */ 80 void __init kvm_cma_reserve(void) 81 { 82 unsigned long align_size; 83 phys_addr_t selected_size; 84 85 /* 86 * We need CMA reservation only when we are in HV mode 87 */ 88 if (!cpu_has_feature(CPU_FTR_HVMODE)) 89 return; 90 91 selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100); 92 if (selected_size) { 93 pr_info("%s: reserving %ld MiB for global area\n", __func__, 94 (unsigned long)selected_size / SZ_1M); 95 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT; 96 cma_declare_contiguous(0, selected_size, 0, align_size, 97 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma", 98 &kvm_cma); 99 } 100 } 101 102 /* 103 * Real-mode H_CONFER implementation. 104 * We check if we are the only vcpu out of this virtual core 105 * still running in the guest and not ceded. If so, we pop up 106 * to the virtual-mode implementation; if not, just return to 107 * the guest. 108 */ 109 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target, 110 unsigned int yield_count) 111 { 112 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; 113 int ptid = local_paca->kvm_hstate.ptid; 114 int threads_running; 115 int threads_ceded; 116 int threads_conferring; 117 u64 stop = get_tb() + 10 * tb_ticks_per_usec; 118 int rv = H_SUCCESS; /* => don't yield */ 119 120 set_bit(ptid, &vc->conferring_threads); 121 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) { 122 threads_running = VCORE_ENTRY_MAP(vc); 123 threads_ceded = vc->napping_threads; 124 threads_conferring = vc->conferring_threads; 125 if ((threads_ceded | threads_conferring) == threads_running) { 126 rv = H_TOO_HARD; /* => do yield */ 127 break; 128 } 129 } 130 clear_bit(ptid, &vc->conferring_threads); 131 return rv; 132 } 133 134 /* 135 * When running HV mode KVM we need to block certain operations while KVM VMs 136 * exist in the system. We use a counter of VMs to track this. 137 * 138 * One of the operations we need to block is onlining of secondaries, so we 139 * protect hv_vm_count with cpus_read_lock/unlock(). 140 */ 141 static atomic_t hv_vm_count; 142 143 void kvm_hv_vm_activated(void) 144 { 145 cpus_read_lock(); 146 atomic_inc(&hv_vm_count); 147 cpus_read_unlock(); 148 } 149 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated); 150 151 void kvm_hv_vm_deactivated(void) 152 { 153 cpus_read_lock(); 154 atomic_dec(&hv_vm_count); 155 cpus_read_unlock(); 156 } 157 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated); 158 159 bool kvm_hv_mode_active(void) 160 { 161 return atomic_read(&hv_vm_count) != 0; 162 } 163 164 extern int hcall_real_table[], hcall_real_table_end[]; 165 166 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd) 167 { 168 cmd /= 4; 169 if (cmd < hcall_real_table_end - hcall_real_table && 170 hcall_real_table[cmd]) 171 return 1; 172 173 return 0; 174 } 175 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode); 176 177 int kvmppc_hwrng_present(void) 178 { 179 return powernv_hwrng_present(); 180 } 181 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present); 182 183 long kvmppc_rm_h_random(struct kvm_vcpu *vcpu) 184 { 185 if (powernv_get_random_real_mode(&vcpu->arch.regs.gpr[4])) 186 return H_SUCCESS; 187 188 return H_HARDWARE; 189 } 190 191 /* 192 * Send an interrupt or message to another CPU. 193 * The caller needs to include any barrier needed to order writes 194 * to memory vs. the IPI/message. 195 */ 196 void kvmhv_rm_send_ipi(int cpu) 197 { 198 void __iomem *xics_phys; 199 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 200 201 /* On POWER9 we can use msgsnd for any destination cpu. */ 202 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 203 msg |= get_hard_smp_processor_id(cpu); 204 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 205 return; 206 } 207 208 /* On POWER8 for IPIs to threads in the same core, use msgsnd. */ 209 if (cpu_has_feature(CPU_FTR_ARCH_207S) && 210 cpu_first_thread_sibling(cpu) == 211 cpu_first_thread_sibling(raw_smp_processor_id())) { 212 msg |= cpu_thread_in_core(cpu); 213 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 214 return; 215 } 216 217 /* We should never reach this */ 218 if (WARN_ON_ONCE(xics_on_xive())) 219 return; 220 221 /* Else poke the target with an IPI */ 222 xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys; 223 if (xics_phys) 224 __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR); 225 else 226 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 227 } 228 229 /* 230 * The following functions are called from the assembly code 231 * in book3s_hv_rmhandlers.S. 232 */ 233 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active) 234 { 235 int cpu = vc->pcpu; 236 237 /* Order setting of exit map vs. msgsnd/IPI */ 238 smp_mb(); 239 for (; active; active >>= 1, ++cpu) 240 if (active & 1) 241 kvmhv_rm_send_ipi(cpu); 242 } 243 244 void kvmhv_commence_exit(int trap) 245 { 246 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; 247 int ptid = local_paca->kvm_hstate.ptid; 248 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode; 249 int me, ee, i; 250 251 /* Set our bit in the threads-exiting-guest map in the 0xff00 252 bits of vcore->entry_exit_map */ 253 me = 0x100 << ptid; 254 do { 255 ee = vc->entry_exit_map; 256 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee); 257 258 /* Are we the first here? */ 259 if ((ee >> 8) != 0) 260 return; 261 262 /* 263 * Trigger the other threads in this vcore to exit the guest. 264 * If this is a hypervisor decrementer interrupt then they 265 * will be already on their way out of the guest. 266 */ 267 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER) 268 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid)); 269 270 /* 271 * If we are doing dynamic micro-threading, interrupt the other 272 * subcores to pull them out of their guests too. 273 */ 274 if (!sip) 275 return; 276 277 for (i = 0; i < MAX_SUBCORES; ++i) { 278 vc = sip->vc[i]; 279 if (!vc) 280 break; 281 do { 282 ee = vc->entry_exit_map; 283 /* Already asked to exit? */ 284 if ((ee >> 8) != 0) 285 break; 286 } while (cmpxchg(&vc->entry_exit_map, ee, 287 ee | VCORE_EXIT_REQ) != ee); 288 if ((ee >> 8) == 0) 289 kvmhv_interrupt_vcore(vc, ee); 290 } 291 } 292 293 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv; 294 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv); 295 296 #ifdef CONFIG_KVM_XICS 297 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap, 298 u32 xisr) 299 { 300 int i; 301 302 /* 303 * We access the mapped array here without a lock. That 304 * is safe because we never reduce the number of entries 305 * in the array and we never change the v_hwirq field of 306 * an entry once it is set. 307 * 308 * We have also carefully ordered the stores in the writer 309 * and the loads here in the reader, so that if we find a matching 310 * hwirq here, the associated GSI and irq_desc fields are valid. 311 */ 312 for (i = 0; i < pimap->n_mapped; i++) { 313 if (xisr == pimap->mapped[i].r_hwirq) { 314 /* 315 * Order subsequent reads in the caller to serialize 316 * with the writer. 317 */ 318 smp_rmb(); 319 return &pimap->mapped[i]; 320 } 321 } 322 return NULL; 323 } 324 325 /* 326 * If we have an interrupt that's not an IPI, check if we have a 327 * passthrough adapter and if so, check if this external interrupt 328 * is for the adapter. 329 * We will attempt to deliver the IRQ directly to the target VCPU's 330 * ICP, the virtual ICP (based on affinity - the xive value in ICS). 331 * 332 * If the delivery fails or if this is not for a passthrough adapter, 333 * return to the host to handle this interrupt. We earlier 334 * saved a copy of the XIRR in the PACA, it will be picked up by 335 * the host ICP driver. 336 */ 337 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) 338 { 339 struct kvmppc_passthru_irqmap *pimap; 340 struct kvmppc_irq_map *irq_map; 341 struct kvm_vcpu *vcpu; 342 343 vcpu = local_paca->kvm_hstate.kvm_vcpu; 344 if (!vcpu) 345 return 1; 346 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm); 347 if (!pimap) 348 return 1; 349 irq_map = get_irqmap(pimap, xisr); 350 if (!irq_map) 351 return 1; 352 353 /* We're handling this interrupt, generic code doesn't need to */ 354 local_paca->kvm_hstate.saved_xirr = 0; 355 356 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again); 357 } 358 359 #else 360 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) 361 { 362 return 1; 363 } 364 #endif 365 366 /* 367 * Determine what sort of external interrupt is pending (if any). 368 * Returns: 369 * 0 if no interrupt is pending 370 * 1 if an interrupt is pending that needs to be handled by the host 371 * 2 Passthrough that needs completion in the host 372 * -1 if there was a guest wakeup IPI (which has now been cleared) 373 * -2 if there is PCI passthrough external interrupt that was handled 374 */ 375 static long kvmppc_read_one_intr(bool *again); 376 377 long kvmppc_read_intr(void) 378 { 379 long ret = 0; 380 long rc; 381 bool again; 382 383 if (xive_enabled()) 384 return 1; 385 386 do { 387 again = false; 388 rc = kvmppc_read_one_intr(&again); 389 if (rc && (ret == 0 || rc > ret)) 390 ret = rc; 391 } while (again); 392 return ret; 393 } 394 395 static long kvmppc_read_one_intr(bool *again) 396 { 397 void __iomem *xics_phys; 398 u32 h_xirr; 399 __be32 xirr; 400 u32 xisr; 401 u8 host_ipi; 402 int64_t rc; 403 404 if (xive_enabled()) 405 return 1; 406 407 /* see if a host IPI is pending */ 408 host_ipi = local_paca->kvm_hstate.host_ipi; 409 if (host_ipi) 410 return 1; 411 412 /* Now read the interrupt from the ICP */ 413 xics_phys = local_paca->kvm_hstate.xics_phys; 414 rc = 0; 415 if (!xics_phys) 416 rc = opal_int_get_xirr(&xirr, false); 417 else 418 xirr = __raw_rm_readl(xics_phys + XICS_XIRR); 419 if (rc < 0) 420 return 1; 421 422 /* 423 * Save XIRR for later. Since we get control in reverse endian 424 * on LE systems, save it byte reversed and fetch it back in 425 * host endian. Note that xirr is the value read from the 426 * XIRR register, while h_xirr is the host endian version. 427 */ 428 h_xirr = be32_to_cpu(xirr); 429 local_paca->kvm_hstate.saved_xirr = h_xirr; 430 xisr = h_xirr & 0xffffff; 431 /* 432 * Ensure that the store/load complete to guarantee all side 433 * effects of loading from XIRR has completed 434 */ 435 smp_mb(); 436 437 /* if nothing pending in the ICP */ 438 if (!xisr) 439 return 0; 440 441 /* We found something in the ICP... 442 * 443 * If it is an IPI, clear the MFRR and EOI it. 444 */ 445 if (xisr == XICS_IPI) { 446 rc = 0; 447 if (xics_phys) { 448 __raw_rm_writeb(0xff, xics_phys + XICS_MFRR); 449 __raw_rm_writel(xirr, xics_phys + XICS_XIRR); 450 } else { 451 opal_int_set_mfrr(hard_smp_processor_id(), 0xff); 452 rc = opal_int_eoi(h_xirr); 453 } 454 /* If rc > 0, there is another interrupt pending */ 455 *again = rc > 0; 456 457 /* 458 * Need to ensure side effects of above stores 459 * complete before proceeding. 460 */ 461 smp_mb(); 462 463 /* 464 * We need to re-check host IPI now in case it got set in the 465 * meantime. If it's clear, we bounce the interrupt to the 466 * guest 467 */ 468 host_ipi = local_paca->kvm_hstate.host_ipi; 469 if (unlikely(host_ipi != 0)) { 470 /* We raced with the host, 471 * we need to resend that IPI, bummer 472 */ 473 if (xics_phys) 474 __raw_rm_writeb(IPI_PRIORITY, 475 xics_phys + XICS_MFRR); 476 else 477 opal_int_set_mfrr(hard_smp_processor_id(), 478 IPI_PRIORITY); 479 /* Let side effects complete */ 480 smp_mb(); 481 return 1; 482 } 483 484 /* OK, it's an IPI for us */ 485 local_paca->kvm_hstate.saved_xirr = 0; 486 return -1; 487 } 488 489 return kvmppc_check_passthru(xisr, xirr, again); 490 } 491 492 void kvmppc_bad_interrupt(struct pt_regs *regs) 493 { 494 /* 495 * 100 could happen at any time, 200 can happen due to invalid real 496 * address access for example (or any time due to a hardware problem). 497 */ 498 if (TRAP(regs) == 0x100) { 499 get_paca()->in_nmi++; 500 system_reset_exception(regs); 501 get_paca()->in_nmi--; 502 } else if (TRAP(regs) == 0x200) { 503 machine_check_exception(regs); 504 } else { 505 die("Bad interrupt in KVM entry/exit code", regs, SIGABRT); 506 } 507 panic("Bad KVM trap"); 508 } 509 510 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 511 { 512 vcpu->arch.ceded = 0; 513 if (vcpu->arch.timer_running) { 514 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 515 vcpu->arch.timer_running = 0; 516 } 517 } 518 519 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 520 { 521 /* Guest must always run with ME enabled, HV disabled. */ 522 msr = (msr | MSR_ME) & ~MSR_HV; 523 524 /* 525 * Check for illegal transactional state bit combination 526 * and if we find it, force the TS field to a safe state. 527 */ 528 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 529 msr &= ~MSR_TS_MASK; 530 vcpu->arch.shregs.msr = msr; 531 kvmppc_end_cede(vcpu); 532 } 533 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv); 534 535 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 536 { 537 unsigned long msr, pc, new_msr, new_pc; 538 539 msr = kvmppc_get_msr(vcpu); 540 pc = kvmppc_get_pc(vcpu); 541 new_msr = vcpu->arch.intr_msr; 542 new_pc = vec; 543 544 /* If transactional, change to suspend mode on IRQ delivery */ 545 if (MSR_TM_TRANSACTIONAL(msr)) 546 new_msr |= MSR_TS_S; 547 else 548 new_msr |= msr & MSR_TS_MASK; 549 550 /* 551 * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and 552 * applicable. AIL=2 is not supported. 553 * 554 * AIL does not apply to SRESET, MCE, or HMI (which is never 555 * delivered to the guest), and does not apply if IR=0 or DR=0. 556 */ 557 if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET && 558 vec != BOOK3S_INTERRUPT_MACHINE_CHECK && 559 (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 && 560 (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) { 561 new_msr |= MSR_IR | MSR_DR; 562 new_pc += 0xC000000000004000ULL; 563 } 564 565 kvmppc_set_srr0(vcpu, pc); 566 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags); 567 kvmppc_set_pc(vcpu, new_pc); 568 vcpu->arch.shregs.msr = new_msr; 569 } 570 571 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 572 { 573 inject_interrupt(vcpu, vec, srr1_flags); 574 kvmppc_end_cede(vcpu); 575 } 576 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv); 577 578 /* 579 * Is there a PRIV_DOORBELL pending for the guest (on POWER9)? 580 * Can we inject a Decrementer or a External interrupt? 581 */ 582 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu) 583 { 584 int ext; 585 unsigned long lpcr; 586 587 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 588 589 /* Insert EXTERNAL bit into LPCR at the MER bit position */ 590 ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1; 591 lpcr = mfspr(SPRN_LPCR); 592 lpcr |= ext << LPCR_MER_SH; 593 mtspr(SPRN_LPCR, lpcr); 594 isync(); 595 596 if (vcpu->arch.shregs.msr & MSR_EE) { 597 if (ext) { 598 inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0); 599 } else { 600 long int dec = mfspr(SPRN_DEC); 601 if (!(lpcr & LPCR_LD)) 602 dec = (int) dec; 603 if (dec < 0) 604 inject_interrupt(vcpu, 605 BOOK3S_INTERRUPT_DECREMENTER, 0); 606 } 607 } 608 609 if (vcpu->arch.doorbell_request) { 610 mtspr(SPRN_DPDES, 1); 611 vcpu->arch.vcore->dpdes = 1; 612 smp_wmb(); 613 vcpu->arch.doorbell_request = 0; 614 } 615 } 616 617 static void flush_guest_tlb(struct kvm *kvm) 618 { 619 unsigned long rb, set; 620 621 rb = PPC_BIT(52); /* IS = 2 */ 622 for (set = 0; set < kvm->arch.tlb_sets; ++set) { 623 /* R=0 PRS=0 RIC=0 */ 624 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) 625 : : "r" (rb), "i" (0), "i" (0), "i" (0), 626 "r" (0) : "memory"); 627 rb += PPC_BIT(51); /* increment set number */ 628 } 629 asm volatile("ptesync": : :"memory"); 630 } 631 632 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu) 633 { 634 if (cpumask_test_cpu(pcpu, &kvm->arch.need_tlb_flush)) { 635 flush_guest_tlb(kvm); 636 637 /* Clear the bit after the TLB flush */ 638 cpumask_clear_cpu(pcpu, &kvm->arch.need_tlb_flush); 639 } 640 } 641 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush); 642