1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm_host.h>
11 #include <linux/preempt.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/sizes.h>
18 #include <linux/cma.h>
19 #include <linux/bitops.h>
20 
21 #include <asm/cputable.h>
22 #include <asm/kvm_ppc.h>
23 #include <asm/kvm_book3s.h>
24 #include <asm/archrandom.h>
25 #include <asm/xics.h>
26 #include <asm/dbell.h>
27 #include <asm/cputhreads.h>
28 
29 #define KVM_CMA_CHUNK_ORDER	18
30 
31 /*
32  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
33  * should be power of 2.
34  */
35 #define HPT_ALIGN_PAGES		((1 << 18) >> PAGE_SHIFT) /* 256k */
36 /*
37  * By default we reserve 5% of memory for hash pagetable allocation.
38  */
39 static unsigned long kvm_cma_resv_ratio = 5;
40 
41 static struct cma *kvm_cma;
42 
43 static int __init early_parse_kvm_cma_resv(char *p)
44 {
45 	pr_debug("%s(%s)\n", __func__, p);
46 	if (!p)
47 		return -EINVAL;
48 	return kstrtoul(p, 0, &kvm_cma_resv_ratio);
49 }
50 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
51 
52 struct page *kvm_alloc_hpt(unsigned long nr_pages)
53 {
54 	VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
55 
56 	return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES));
57 }
58 EXPORT_SYMBOL_GPL(kvm_alloc_hpt);
59 
60 void kvm_release_hpt(struct page *page, unsigned long nr_pages)
61 {
62 	cma_release(kvm_cma, page, nr_pages);
63 }
64 EXPORT_SYMBOL_GPL(kvm_release_hpt);
65 
66 /**
67  * kvm_cma_reserve() - reserve area for kvm hash pagetable
68  *
69  * This function reserves memory from early allocator. It should be
70  * called by arch specific code once the memblock allocator
71  * has been activated and all other subsystems have already allocated/reserved
72  * memory.
73  */
74 void __init kvm_cma_reserve(void)
75 {
76 	unsigned long align_size;
77 	struct memblock_region *reg;
78 	phys_addr_t selected_size = 0;
79 
80 	/*
81 	 * We need CMA reservation only when we are in HV mode
82 	 */
83 	if (!cpu_has_feature(CPU_FTR_HVMODE))
84 		return;
85 	/*
86 	 * We cannot use memblock_phys_mem_size() here, because
87 	 * memblock_analyze() has not been called yet.
88 	 */
89 	for_each_memblock(memory, reg)
90 		selected_size += memblock_region_memory_end_pfn(reg) -
91 				 memblock_region_memory_base_pfn(reg);
92 
93 	selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
94 	if (selected_size) {
95 		pr_debug("%s: reserving %ld MiB for global area\n", __func__,
96 			 (unsigned long)selected_size / SZ_1M);
97 		align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
98 		cma_declare_contiguous(0, selected_size, 0, align_size,
99 			KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, &kvm_cma);
100 	}
101 }
102 
103 /*
104  * Real-mode H_CONFER implementation.
105  * We check if we are the only vcpu out of this virtual core
106  * still running in the guest and not ceded.  If so, we pop up
107  * to the virtual-mode implementation; if not, just return to
108  * the guest.
109  */
110 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
111 			    unsigned int yield_count)
112 {
113 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
114 	int ptid = local_paca->kvm_hstate.ptid;
115 	int threads_running;
116 	int threads_ceded;
117 	int threads_conferring;
118 	u64 stop = get_tb() + 10 * tb_ticks_per_usec;
119 	int rv = H_SUCCESS; /* => don't yield */
120 
121 	set_bit(ptid, &vc->conferring_threads);
122 	while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
123 		threads_running = VCORE_ENTRY_MAP(vc);
124 		threads_ceded = vc->napping_threads;
125 		threads_conferring = vc->conferring_threads;
126 		if ((threads_ceded | threads_conferring) == threads_running) {
127 			rv = H_TOO_HARD; /* => do yield */
128 			break;
129 		}
130 	}
131 	clear_bit(ptid, &vc->conferring_threads);
132 	return rv;
133 }
134 
135 /*
136  * When running HV mode KVM we need to block certain operations while KVM VMs
137  * exist in the system. We use a counter of VMs to track this.
138  *
139  * One of the operations we need to block is onlining of secondaries, so we
140  * protect hv_vm_count with get/put_online_cpus().
141  */
142 static atomic_t hv_vm_count;
143 
144 void kvm_hv_vm_activated(void)
145 {
146 	get_online_cpus();
147 	atomic_inc(&hv_vm_count);
148 	put_online_cpus();
149 }
150 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
151 
152 void kvm_hv_vm_deactivated(void)
153 {
154 	get_online_cpus();
155 	atomic_dec(&hv_vm_count);
156 	put_online_cpus();
157 }
158 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
159 
160 bool kvm_hv_mode_active(void)
161 {
162 	return atomic_read(&hv_vm_count) != 0;
163 }
164 
165 extern int hcall_real_table[], hcall_real_table_end[];
166 
167 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
168 {
169 	cmd /= 4;
170 	if (cmd < hcall_real_table_end - hcall_real_table &&
171 	    hcall_real_table[cmd])
172 		return 1;
173 
174 	return 0;
175 }
176 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
177 
178 int kvmppc_hwrng_present(void)
179 {
180 	return powernv_hwrng_present();
181 }
182 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
183 
184 long kvmppc_h_random(struct kvm_vcpu *vcpu)
185 {
186 	if (powernv_get_random_real_mode(&vcpu->arch.gpr[4]))
187 		return H_SUCCESS;
188 
189 	return H_HARDWARE;
190 }
191 
192 static inline void rm_writeb(unsigned long paddr, u8 val)
193 {
194 	__asm__ __volatile__("stbcix %0,0,%1"
195 		: : "r" (val), "r" (paddr) : "memory");
196 }
197 
198 /*
199  * Send an interrupt or message to another CPU.
200  * This can only be called in real mode.
201  * The caller needs to include any barrier needed to order writes
202  * to memory vs. the IPI/message.
203  */
204 void kvmhv_rm_send_ipi(int cpu)
205 {
206 	unsigned long xics_phys;
207 
208 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
209 	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
210 	    cpu_first_thread_sibling(cpu) ==
211 	    cpu_first_thread_sibling(raw_smp_processor_id())) {
212 		unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
213 		msg |= cpu_thread_in_core(cpu);
214 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
215 		return;
216 	}
217 
218 	/* Else poke the target with an IPI */
219 	xics_phys = paca[cpu].kvm_hstate.xics_phys;
220 	rm_writeb(xics_phys + XICS_MFRR, IPI_PRIORITY);
221 }
222 
223 /*
224  * The following functions are called from the assembly code
225  * in book3s_hv_rmhandlers.S.
226  */
227 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
228 {
229 	int cpu = vc->pcpu;
230 
231 	/* Order setting of exit map vs. msgsnd/IPI */
232 	smp_mb();
233 	for (; active; active >>= 1, ++cpu)
234 		if (active & 1)
235 			kvmhv_rm_send_ipi(cpu);
236 }
237 
238 void kvmhv_commence_exit(int trap)
239 {
240 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
241 	int ptid = local_paca->kvm_hstate.ptid;
242 	int me, ee;
243 
244 	/* Set our bit in the threads-exiting-guest map in the 0xff00
245 	   bits of vcore->entry_exit_map */
246 	me = 0x100 << ptid;
247 	do {
248 		ee = vc->entry_exit_map;
249 	} while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
250 
251 	/* Are we the first here? */
252 	if ((ee >> 8) != 0)
253 		return;
254 
255 	/*
256 	 * Trigger the other threads in this vcore to exit the guest.
257 	 * If this is a hypervisor decrementer interrupt then they
258 	 * will be already on their way out of the guest.
259 	 */
260 	if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
261 		kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
262 }
263