1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm_host.h>
11 #include <linux/preempt.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/sizes.h>
18 #include <linux/cma.h>
19 #include <linux/bitops.h>
20 
21 #include <asm/cputable.h>
22 #include <asm/kvm_ppc.h>
23 #include <asm/kvm_book3s.h>
24 
25 #define KVM_CMA_CHUNK_ORDER	18
26 
27 /*
28  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
29  * should be power of 2.
30  */
31 #define HPT_ALIGN_PAGES		((1 << 18) >> PAGE_SHIFT) /* 256k */
32 /*
33  * By default we reserve 5% of memory for hash pagetable allocation.
34  */
35 static unsigned long kvm_cma_resv_ratio = 5;
36 
37 static struct cma *kvm_cma;
38 
39 static int __init early_parse_kvm_cma_resv(char *p)
40 {
41 	pr_debug("%s(%s)\n", __func__, p);
42 	if (!p)
43 		return -EINVAL;
44 	return kstrtoul(p, 0, &kvm_cma_resv_ratio);
45 }
46 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
47 
48 struct page *kvm_alloc_hpt(unsigned long nr_pages)
49 {
50 	VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
51 
52 	return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES));
53 }
54 EXPORT_SYMBOL_GPL(kvm_alloc_hpt);
55 
56 void kvm_release_hpt(struct page *page, unsigned long nr_pages)
57 {
58 	cma_release(kvm_cma, page, nr_pages);
59 }
60 EXPORT_SYMBOL_GPL(kvm_release_hpt);
61 
62 /**
63  * kvm_cma_reserve() - reserve area for kvm hash pagetable
64  *
65  * This function reserves memory from early allocator. It should be
66  * called by arch specific code once the memblock allocator
67  * has been activated and all other subsystems have already allocated/reserved
68  * memory.
69  */
70 void __init kvm_cma_reserve(void)
71 {
72 	unsigned long align_size;
73 	struct memblock_region *reg;
74 	phys_addr_t selected_size = 0;
75 
76 	/*
77 	 * We need CMA reservation only when we are in HV mode
78 	 */
79 	if (!cpu_has_feature(CPU_FTR_HVMODE))
80 		return;
81 	/*
82 	 * We cannot use memblock_phys_mem_size() here, because
83 	 * memblock_analyze() has not been called yet.
84 	 */
85 	for_each_memblock(memory, reg)
86 		selected_size += memblock_region_memory_end_pfn(reg) -
87 				 memblock_region_memory_base_pfn(reg);
88 
89 	selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
90 	if (selected_size) {
91 		pr_debug("%s: reserving %ld MiB for global area\n", __func__,
92 			 (unsigned long)selected_size / SZ_1M);
93 		align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
94 		cma_declare_contiguous(0, selected_size, 0, align_size,
95 			KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, &kvm_cma);
96 	}
97 }
98 
99 /*
100  * Real-mode H_CONFER implementation.
101  * We check if we are the only vcpu out of this virtual core
102  * still running in the guest and not ceded.  If so, we pop up
103  * to the virtual-mode implementation; if not, just return to
104  * the guest.
105  */
106 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
107 			    unsigned int yield_count)
108 {
109 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
110 	int threads_running;
111 	int threads_ceded;
112 	int threads_conferring;
113 	u64 stop = get_tb() + 10 * tb_ticks_per_usec;
114 	int rv = H_SUCCESS; /* => don't yield */
115 
116 	set_bit(vcpu->arch.ptid, &vc->conferring_threads);
117 	while ((get_tb() < stop) && (VCORE_EXIT_COUNT(vc) == 0)) {
118 		threads_running = VCORE_ENTRY_COUNT(vc);
119 		threads_ceded = hweight32(vc->napping_threads);
120 		threads_conferring = hweight32(vc->conferring_threads);
121 		if (threads_ceded + threads_conferring >= threads_running) {
122 			rv = H_TOO_HARD; /* => do yield */
123 			break;
124 		}
125 	}
126 	clear_bit(vcpu->arch.ptid, &vc->conferring_threads);
127 	return rv;
128 }
129 
130 /*
131  * When running HV mode KVM we need to block certain operations while KVM VMs
132  * exist in the system. We use a counter of VMs to track this.
133  *
134  * One of the operations we need to block is onlining of secondaries, so we
135  * protect hv_vm_count with get/put_online_cpus().
136  */
137 static atomic_t hv_vm_count;
138 
139 void kvm_hv_vm_activated(void)
140 {
141 	get_online_cpus();
142 	atomic_inc(&hv_vm_count);
143 	put_online_cpus();
144 }
145 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
146 
147 void kvm_hv_vm_deactivated(void)
148 {
149 	get_online_cpus();
150 	atomic_dec(&hv_vm_count);
151 	put_online_cpus();
152 }
153 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
154 
155 bool kvm_hv_mode_active(void)
156 {
157 	return atomic_read(&hv_vm_count) != 0;
158 }
159 
160 extern int hcall_real_table[], hcall_real_table_end[];
161 
162 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
163 {
164 	cmd /= 4;
165 	if (cmd < hcall_real_table_end - hcall_real_table &&
166 	    hcall_real_table[cmd])
167 		return 1;
168 
169 	return 0;
170 }
171 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
172