1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 */ 5 6 #include <linux/cpu.h> 7 #include <linux/kvm_host.h> 8 #include <linux/preempt.h> 9 #include <linux/export.h> 10 #include <linux/sched.h> 11 #include <linux/spinlock.h> 12 #include <linux/init.h> 13 #include <linux/memblock.h> 14 #include <linux/sizes.h> 15 #include <linux/cma.h> 16 #include <linux/bitops.h> 17 18 #include <asm/cputable.h> 19 #include <asm/interrupt.h> 20 #include <asm/kvm_ppc.h> 21 #include <asm/kvm_book3s.h> 22 #include <asm/machdep.h> 23 #include <asm/xics.h> 24 #include <asm/xive.h> 25 #include <asm/dbell.h> 26 #include <asm/cputhreads.h> 27 #include <asm/io.h> 28 #include <asm/opal.h> 29 #include <asm/smp.h> 30 31 #define KVM_CMA_CHUNK_ORDER 18 32 33 #include "book3s_xics.h" 34 #include "book3s_xive.h" 35 #include "book3s_hv.h" 36 37 /* 38 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206) 39 * should be power of 2. 40 */ 41 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */ 42 /* 43 * By default we reserve 5% of memory for hash pagetable allocation. 44 */ 45 static unsigned long kvm_cma_resv_ratio = 5; 46 47 static struct cma *kvm_cma; 48 49 static int __init early_parse_kvm_cma_resv(char *p) 50 { 51 pr_debug("%s(%s)\n", __func__, p); 52 if (!p) 53 return -EINVAL; 54 return kstrtoul(p, 0, &kvm_cma_resv_ratio); 55 } 56 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv); 57 58 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages) 59 { 60 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT); 61 62 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES), 63 false); 64 } 65 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma); 66 67 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages) 68 { 69 cma_release(kvm_cma, page, nr_pages); 70 } 71 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma); 72 73 /** 74 * kvm_cma_reserve() - reserve area for kvm hash pagetable 75 * 76 * This function reserves memory from early allocator. It should be 77 * called by arch specific code once the memblock allocator 78 * has been activated and all other subsystems have already allocated/reserved 79 * memory. 80 */ 81 void __init kvm_cma_reserve(void) 82 { 83 unsigned long align_size; 84 phys_addr_t selected_size; 85 86 /* 87 * We need CMA reservation only when we are in HV mode 88 */ 89 if (!cpu_has_feature(CPU_FTR_HVMODE)) 90 return; 91 92 selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100); 93 if (selected_size) { 94 pr_info("%s: reserving %ld MiB for global area\n", __func__, 95 (unsigned long)selected_size / SZ_1M); 96 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT; 97 cma_declare_contiguous(0, selected_size, 0, align_size, 98 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma", 99 &kvm_cma); 100 } 101 } 102 103 /* 104 * Real-mode H_CONFER implementation. 105 * We check if we are the only vcpu out of this virtual core 106 * still running in the guest and not ceded. If so, we pop up 107 * to the virtual-mode implementation; if not, just return to 108 * the guest. 109 */ 110 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target, 111 unsigned int yield_count) 112 { 113 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; 114 int ptid = local_paca->kvm_hstate.ptid; 115 int threads_running; 116 int threads_ceded; 117 int threads_conferring; 118 u64 stop = get_tb() + 10 * tb_ticks_per_usec; 119 int rv = H_SUCCESS; /* => don't yield */ 120 121 set_bit(ptid, &vc->conferring_threads); 122 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) { 123 threads_running = VCORE_ENTRY_MAP(vc); 124 threads_ceded = vc->napping_threads; 125 threads_conferring = vc->conferring_threads; 126 if ((threads_ceded | threads_conferring) == threads_running) { 127 rv = H_TOO_HARD; /* => do yield */ 128 break; 129 } 130 } 131 clear_bit(ptid, &vc->conferring_threads); 132 return rv; 133 } 134 135 /* 136 * When running HV mode KVM we need to block certain operations while KVM VMs 137 * exist in the system. We use a counter of VMs to track this. 138 * 139 * One of the operations we need to block is onlining of secondaries, so we 140 * protect hv_vm_count with cpus_read_lock/unlock(). 141 */ 142 static atomic_t hv_vm_count; 143 144 void kvm_hv_vm_activated(void) 145 { 146 cpus_read_lock(); 147 atomic_inc(&hv_vm_count); 148 cpus_read_unlock(); 149 } 150 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated); 151 152 void kvm_hv_vm_deactivated(void) 153 { 154 cpus_read_lock(); 155 atomic_dec(&hv_vm_count); 156 cpus_read_unlock(); 157 } 158 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated); 159 160 bool kvm_hv_mode_active(void) 161 { 162 return atomic_read(&hv_vm_count) != 0; 163 } 164 165 extern int hcall_real_table[], hcall_real_table_end[]; 166 167 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd) 168 { 169 cmd /= 4; 170 if (cmd < hcall_real_table_end - hcall_real_table && 171 hcall_real_table[cmd]) 172 return 1; 173 174 return 0; 175 } 176 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode); 177 178 int kvmppc_hwrng_present(void) 179 { 180 return ppc_md.get_random_seed != NULL; 181 } 182 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present); 183 184 long kvmppc_rm_h_random(struct kvm_vcpu *vcpu) 185 { 186 if (ppc_md.get_random_seed && 187 ppc_md.get_random_seed(&vcpu->arch.regs.gpr[4])) 188 return H_SUCCESS; 189 190 return H_HARDWARE; 191 } 192 193 /* 194 * Send an interrupt or message to another CPU. 195 * The caller needs to include any barrier needed to order writes 196 * to memory vs. the IPI/message. 197 */ 198 void kvmhv_rm_send_ipi(int cpu) 199 { 200 void __iomem *xics_phys; 201 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 202 203 /* On POWER9 we can use msgsnd for any destination cpu. */ 204 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 205 msg |= get_hard_smp_processor_id(cpu); 206 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 207 return; 208 } 209 210 /* On POWER8 for IPIs to threads in the same core, use msgsnd. */ 211 if (cpu_has_feature(CPU_FTR_ARCH_207S) && 212 cpu_first_thread_sibling(cpu) == 213 cpu_first_thread_sibling(raw_smp_processor_id())) { 214 msg |= cpu_thread_in_core(cpu); 215 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 216 return; 217 } 218 219 /* We should never reach this */ 220 if (WARN_ON_ONCE(xics_on_xive())) 221 return; 222 223 /* Else poke the target with an IPI */ 224 xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys; 225 if (xics_phys) 226 __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR); 227 else 228 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 229 } 230 231 /* 232 * The following functions are called from the assembly code 233 * in book3s_hv_rmhandlers.S. 234 */ 235 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active) 236 { 237 int cpu = vc->pcpu; 238 239 /* Order setting of exit map vs. msgsnd/IPI */ 240 smp_mb(); 241 for (; active; active >>= 1, ++cpu) 242 if (active & 1) 243 kvmhv_rm_send_ipi(cpu); 244 } 245 246 void kvmhv_commence_exit(int trap) 247 { 248 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; 249 int ptid = local_paca->kvm_hstate.ptid; 250 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode; 251 int me, ee, i; 252 253 /* Set our bit in the threads-exiting-guest map in the 0xff00 254 bits of vcore->entry_exit_map */ 255 me = 0x100 << ptid; 256 do { 257 ee = vc->entry_exit_map; 258 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee); 259 260 /* Are we the first here? */ 261 if ((ee >> 8) != 0) 262 return; 263 264 /* 265 * Trigger the other threads in this vcore to exit the guest. 266 * If this is a hypervisor decrementer interrupt then they 267 * will be already on their way out of the guest. 268 */ 269 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER) 270 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid)); 271 272 /* 273 * If we are doing dynamic micro-threading, interrupt the other 274 * subcores to pull them out of their guests too. 275 */ 276 if (!sip) 277 return; 278 279 for (i = 0; i < MAX_SUBCORES; ++i) { 280 vc = sip->vc[i]; 281 if (!vc) 282 break; 283 do { 284 ee = vc->entry_exit_map; 285 /* Already asked to exit? */ 286 if ((ee >> 8) != 0) 287 break; 288 } while (cmpxchg(&vc->entry_exit_map, ee, 289 ee | VCORE_EXIT_REQ) != ee); 290 if ((ee >> 8) == 0) 291 kvmhv_interrupt_vcore(vc, ee); 292 } 293 } 294 295 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv; 296 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv); 297 298 #ifdef CONFIG_KVM_XICS 299 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap, 300 u32 xisr) 301 { 302 int i; 303 304 /* 305 * We access the mapped array here without a lock. That 306 * is safe because we never reduce the number of entries 307 * in the array and we never change the v_hwirq field of 308 * an entry once it is set. 309 * 310 * We have also carefully ordered the stores in the writer 311 * and the loads here in the reader, so that if we find a matching 312 * hwirq here, the associated GSI and irq_desc fields are valid. 313 */ 314 for (i = 0; i < pimap->n_mapped; i++) { 315 if (xisr == pimap->mapped[i].r_hwirq) { 316 /* 317 * Order subsequent reads in the caller to serialize 318 * with the writer. 319 */ 320 smp_rmb(); 321 return &pimap->mapped[i]; 322 } 323 } 324 return NULL; 325 } 326 327 /* 328 * If we have an interrupt that's not an IPI, check if we have a 329 * passthrough adapter and if so, check if this external interrupt 330 * is for the adapter. 331 * We will attempt to deliver the IRQ directly to the target VCPU's 332 * ICP, the virtual ICP (based on affinity - the xive value in ICS). 333 * 334 * If the delivery fails or if this is not for a passthrough adapter, 335 * return to the host to handle this interrupt. We earlier 336 * saved a copy of the XIRR in the PACA, it will be picked up by 337 * the host ICP driver. 338 */ 339 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) 340 { 341 struct kvmppc_passthru_irqmap *pimap; 342 struct kvmppc_irq_map *irq_map; 343 struct kvm_vcpu *vcpu; 344 345 vcpu = local_paca->kvm_hstate.kvm_vcpu; 346 if (!vcpu) 347 return 1; 348 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm); 349 if (!pimap) 350 return 1; 351 irq_map = get_irqmap(pimap, xisr); 352 if (!irq_map) 353 return 1; 354 355 /* We're handling this interrupt, generic code doesn't need to */ 356 local_paca->kvm_hstate.saved_xirr = 0; 357 358 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again); 359 } 360 361 #else 362 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) 363 { 364 return 1; 365 } 366 #endif 367 368 /* 369 * Determine what sort of external interrupt is pending (if any). 370 * Returns: 371 * 0 if no interrupt is pending 372 * 1 if an interrupt is pending that needs to be handled by the host 373 * 2 Passthrough that needs completion in the host 374 * -1 if there was a guest wakeup IPI (which has now been cleared) 375 * -2 if there is PCI passthrough external interrupt that was handled 376 */ 377 static long kvmppc_read_one_intr(bool *again); 378 379 long kvmppc_read_intr(void) 380 { 381 long ret = 0; 382 long rc; 383 bool again; 384 385 if (xive_enabled()) 386 return 1; 387 388 do { 389 again = false; 390 rc = kvmppc_read_one_intr(&again); 391 if (rc && (ret == 0 || rc > ret)) 392 ret = rc; 393 } while (again); 394 return ret; 395 } 396 397 static long kvmppc_read_one_intr(bool *again) 398 { 399 void __iomem *xics_phys; 400 u32 h_xirr; 401 __be32 xirr; 402 u32 xisr; 403 u8 host_ipi; 404 int64_t rc; 405 406 if (xive_enabled()) 407 return 1; 408 409 /* see if a host IPI is pending */ 410 host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi); 411 if (host_ipi) 412 return 1; 413 414 /* Now read the interrupt from the ICP */ 415 xics_phys = local_paca->kvm_hstate.xics_phys; 416 rc = 0; 417 if (!xics_phys) 418 rc = opal_int_get_xirr(&xirr, false); 419 else 420 xirr = __raw_rm_readl(xics_phys + XICS_XIRR); 421 if (rc < 0) 422 return 1; 423 424 /* 425 * Save XIRR for later. Since we get control in reverse endian 426 * on LE systems, save it byte reversed and fetch it back in 427 * host endian. Note that xirr is the value read from the 428 * XIRR register, while h_xirr is the host endian version. 429 */ 430 h_xirr = be32_to_cpu(xirr); 431 local_paca->kvm_hstate.saved_xirr = h_xirr; 432 xisr = h_xirr & 0xffffff; 433 /* 434 * Ensure that the store/load complete to guarantee all side 435 * effects of loading from XIRR has completed 436 */ 437 smp_mb(); 438 439 /* if nothing pending in the ICP */ 440 if (!xisr) 441 return 0; 442 443 /* We found something in the ICP... 444 * 445 * If it is an IPI, clear the MFRR and EOI it. 446 */ 447 if (xisr == XICS_IPI) { 448 rc = 0; 449 if (xics_phys) { 450 __raw_rm_writeb(0xff, xics_phys + XICS_MFRR); 451 __raw_rm_writel(xirr, xics_phys + XICS_XIRR); 452 } else { 453 opal_int_set_mfrr(hard_smp_processor_id(), 0xff); 454 rc = opal_int_eoi(h_xirr); 455 } 456 /* If rc > 0, there is another interrupt pending */ 457 *again = rc > 0; 458 459 /* 460 * Need to ensure side effects of above stores 461 * complete before proceeding. 462 */ 463 smp_mb(); 464 465 /* 466 * We need to re-check host IPI now in case it got set in the 467 * meantime. If it's clear, we bounce the interrupt to the 468 * guest 469 */ 470 host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi); 471 if (unlikely(host_ipi != 0)) { 472 /* We raced with the host, 473 * we need to resend that IPI, bummer 474 */ 475 if (xics_phys) 476 __raw_rm_writeb(IPI_PRIORITY, 477 xics_phys + XICS_MFRR); 478 else 479 opal_int_set_mfrr(hard_smp_processor_id(), 480 IPI_PRIORITY); 481 /* Let side effects complete */ 482 smp_mb(); 483 return 1; 484 } 485 486 /* OK, it's an IPI for us */ 487 local_paca->kvm_hstate.saved_xirr = 0; 488 return -1; 489 } 490 491 return kvmppc_check_passthru(xisr, xirr, again); 492 } 493 494 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 495 { 496 vcpu->arch.ceded = 0; 497 if (vcpu->arch.timer_running) { 498 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 499 vcpu->arch.timer_running = 0; 500 } 501 } 502 503 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 504 { 505 /* Guest must always run with ME enabled, HV disabled. */ 506 msr = (msr | MSR_ME) & ~MSR_HV; 507 508 /* 509 * Check for illegal transactional state bit combination 510 * and if we find it, force the TS field to a safe state. 511 */ 512 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 513 msr &= ~MSR_TS_MASK; 514 __kvmppc_set_msr_hv(vcpu, msr); 515 kvmppc_end_cede(vcpu); 516 } 517 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv); 518 519 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 520 { 521 unsigned long msr, pc, new_msr, new_pc; 522 523 msr = kvmppc_get_msr(vcpu); 524 pc = kvmppc_get_pc(vcpu); 525 new_msr = vcpu->arch.intr_msr; 526 new_pc = vec; 527 528 /* If transactional, change to suspend mode on IRQ delivery */ 529 if (MSR_TM_TRANSACTIONAL(msr)) 530 new_msr |= MSR_TS_S; 531 else 532 new_msr |= msr & MSR_TS_MASK; 533 534 /* 535 * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and 536 * applicable. AIL=2 is not supported. 537 * 538 * AIL does not apply to SRESET, MCE, or HMI (which is never 539 * delivered to the guest), and does not apply if IR=0 or DR=0. 540 */ 541 if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET && 542 vec != BOOK3S_INTERRUPT_MACHINE_CHECK && 543 (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 && 544 (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) { 545 new_msr |= MSR_IR | MSR_DR; 546 new_pc += 0xC000000000004000ULL; 547 } 548 549 kvmppc_set_srr0(vcpu, pc); 550 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags); 551 kvmppc_set_pc(vcpu, new_pc); 552 __kvmppc_set_msr_hv(vcpu, new_msr); 553 } 554 555 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 556 { 557 inject_interrupt(vcpu, vec, srr1_flags); 558 kvmppc_end_cede(vcpu); 559 } 560 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv); 561 562 /* 563 * Is there a PRIV_DOORBELL pending for the guest (on POWER9)? 564 * Can we inject a Decrementer or a External interrupt? 565 */ 566 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu) 567 { 568 int ext; 569 unsigned long lpcr; 570 571 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 572 573 /* Insert EXTERNAL bit into LPCR at the MER bit position */ 574 ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1; 575 lpcr = mfspr(SPRN_LPCR); 576 lpcr |= ext << LPCR_MER_SH; 577 mtspr(SPRN_LPCR, lpcr); 578 isync(); 579 580 if (vcpu->arch.shregs.msr & MSR_EE) { 581 if (ext) { 582 inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0); 583 } else { 584 long int dec = mfspr(SPRN_DEC); 585 if (!(lpcr & LPCR_LD)) 586 dec = (int) dec; 587 if (dec < 0) 588 inject_interrupt(vcpu, 589 BOOK3S_INTERRUPT_DECREMENTER, 0); 590 } 591 } 592 593 if (vcpu->arch.doorbell_request) { 594 mtspr(SPRN_DPDES, 1); 595 vcpu->arch.vcore->dpdes = 1; 596 smp_wmb(); 597 vcpu->arch.doorbell_request = 0; 598 } 599 } 600 601 static void flush_guest_tlb(struct kvm *kvm) 602 { 603 unsigned long rb, set; 604 605 rb = PPC_BIT(52); /* IS = 2 */ 606 for (set = 0; set < kvm->arch.tlb_sets; ++set) { 607 /* R=0 PRS=0 RIC=0 */ 608 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) 609 : : "r" (rb), "i" (0), "i" (0), "i" (0), 610 "r" (0) : "memory"); 611 rb += PPC_BIT(51); /* increment set number */ 612 } 613 asm volatile("ptesync": : :"memory"); 614 } 615 616 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu) 617 { 618 if (cpumask_test_cpu(pcpu, &kvm->arch.need_tlb_flush)) { 619 flush_guest_tlb(kvm); 620 621 /* Clear the bit after the TLB flush */ 622 cpumask_clear_cpu(pcpu, &kvm->arch.need_tlb_flush); 623 } 624 } 625 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush); 626