1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm_host.h>
11 #include <linux/preempt.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/sizes.h>
18 #include <linux/cma.h>
19 #include <linux/bitops.h>
20 
21 #include <asm/asm-prototypes.h>
22 #include <asm/cputable.h>
23 #include <asm/kvm_ppc.h>
24 #include <asm/kvm_book3s.h>
25 #include <asm/archrandom.h>
26 #include <asm/xics.h>
27 #include <asm/xive.h>
28 #include <asm/dbell.h>
29 #include <asm/cputhreads.h>
30 #include <asm/io.h>
31 #include <asm/opal.h>
32 #include <asm/smp.h>
33 
34 #define KVM_CMA_CHUNK_ORDER	18
35 
36 #include "book3s_xics.h"
37 #include "book3s_xive.h"
38 
39 /*
40  * The XIVE module will populate these when it loads
41  */
42 unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu);
43 unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server);
44 int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server,
45 		       unsigned long mfrr);
46 int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr);
47 int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr);
48 EXPORT_SYMBOL_GPL(__xive_vm_h_xirr);
49 EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll);
50 EXPORT_SYMBOL_GPL(__xive_vm_h_ipi);
51 EXPORT_SYMBOL_GPL(__xive_vm_h_cppr);
52 EXPORT_SYMBOL_GPL(__xive_vm_h_eoi);
53 
54 /*
55  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
56  * should be power of 2.
57  */
58 #define HPT_ALIGN_PAGES		((1 << 18) >> PAGE_SHIFT) /* 256k */
59 /*
60  * By default we reserve 5% of memory for hash pagetable allocation.
61  */
62 static unsigned long kvm_cma_resv_ratio = 5;
63 
64 static struct cma *kvm_cma;
65 
66 static int __init early_parse_kvm_cma_resv(char *p)
67 {
68 	pr_debug("%s(%s)\n", __func__, p);
69 	if (!p)
70 		return -EINVAL;
71 	return kstrtoul(p, 0, &kvm_cma_resv_ratio);
72 }
73 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
74 
75 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
76 {
77 	VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
78 
79 	return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
80 			 false);
81 }
82 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
83 
84 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
85 {
86 	cma_release(kvm_cma, page, nr_pages);
87 }
88 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
89 
90 /**
91  * kvm_cma_reserve() - reserve area for kvm hash pagetable
92  *
93  * This function reserves memory from early allocator. It should be
94  * called by arch specific code once the memblock allocator
95  * has been activated and all other subsystems have already allocated/reserved
96  * memory.
97  */
98 void __init kvm_cma_reserve(void)
99 {
100 	unsigned long align_size;
101 	struct memblock_region *reg;
102 	phys_addr_t selected_size = 0;
103 
104 	/*
105 	 * We need CMA reservation only when we are in HV mode
106 	 */
107 	if (!cpu_has_feature(CPU_FTR_HVMODE))
108 		return;
109 	/*
110 	 * We cannot use memblock_phys_mem_size() here, because
111 	 * memblock_analyze() has not been called yet.
112 	 */
113 	for_each_memblock(memory, reg)
114 		selected_size += memblock_region_memory_end_pfn(reg) -
115 				 memblock_region_memory_base_pfn(reg);
116 
117 	selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
118 	if (selected_size) {
119 		pr_debug("%s: reserving %ld MiB for global area\n", __func__,
120 			 (unsigned long)selected_size / SZ_1M);
121 		align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
122 		cma_declare_contiguous(0, selected_size, 0, align_size,
123 			KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
124 			&kvm_cma);
125 	}
126 }
127 
128 /*
129  * Real-mode H_CONFER implementation.
130  * We check if we are the only vcpu out of this virtual core
131  * still running in the guest and not ceded.  If so, we pop up
132  * to the virtual-mode implementation; if not, just return to
133  * the guest.
134  */
135 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
136 			    unsigned int yield_count)
137 {
138 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
139 	int ptid = local_paca->kvm_hstate.ptid;
140 	int threads_running;
141 	int threads_ceded;
142 	int threads_conferring;
143 	u64 stop = get_tb() + 10 * tb_ticks_per_usec;
144 	int rv = H_SUCCESS; /* => don't yield */
145 
146 	set_bit(ptid, &vc->conferring_threads);
147 	while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
148 		threads_running = VCORE_ENTRY_MAP(vc);
149 		threads_ceded = vc->napping_threads;
150 		threads_conferring = vc->conferring_threads;
151 		if ((threads_ceded | threads_conferring) == threads_running) {
152 			rv = H_TOO_HARD; /* => do yield */
153 			break;
154 		}
155 	}
156 	clear_bit(ptid, &vc->conferring_threads);
157 	return rv;
158 }
159 
160 /*
161  * When running HV mode KVM we need to block certain operations while KVM VMs
162  * exist in the system. We use a counter of VMs to track this.
163  *
164  * One of the operations we need to block is onlining of secondaries, so we
165  * protect hv_vm_count with get/put_online_cpus().
166  */
167 static atomic_t hv_vm_count;
168 
169 void kvm_hv_vm_activated(void)
170 {
171 	get_online_cpus();
172 	atomic_inc(&hv_vm_count);
173 	put_online_cpus();
174 }
175 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
176 
177 void kvm_hv_vm_deactivated(void)
178 {
179 	get_online_cpus();
180 	atomic_dec(&hv_vm_count);
181 	put_online_cpus();
182 }
183 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
184 
185 bool kvm_hv_mode_active(void)
186 {
187 	return atomic_read(&hv_vm_count) != 0;
188 }
189 
190 extern int hcall_real_table[], hcall_real_table_end[];
191 
192 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
193 {
194 	cmd /= 4;
195 	if (cmd < hcall_real_table_end - hcall_real_table &&
196 	    hcall_real_table[cmd])
197 		return 1;
198 
199 	return 0;
200 }
201 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
202 
203 int kvmppc_hwrng_present(void)
204 {
205 	return powernv_hwrng_present();
206 }
207 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
208 
209 long kvmppc_h_random(struct kvm_vcpu *vcpu)
210 {
211 	int r;
212 
213 	/* Only need to do the expensive mfmsr() on radix */
214 	if (kvm_is_radix(vcpu->kvm) && (mfmsr() & MSR_IR))
215 		r = powernv_get_random_long(&vcpu->arch.regs.gpr[4]);
216 	else
217 		r = powernv_get_random_real_mode(&vcpu->arch.regs.gpr[4]);
218 	if (r)
219 		return H_SUCCESS;
220 
221 	return H_HARDWARE;
222 }
223 
224 /*
225  * Send an interrupt or message to another CPU.
226  * The caller needs to include any barrier needed to order writes
227  * to memory vs. the IPI/message.
228  */
229 void kvmhv_rm_send_ipi(int cpu)
230 {
231 	void __iomem *xics_phys;
232 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
233 
234 	/* For a nested hypervisor, use the XICS via hcall */
235 	if (kvmhv_on_pseries()) {
236 		unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
237 
238 		plpar_hcall_raw(H_IPI, retbuf, get_hard_smp_processor_id(cpu),
239 				IPI_PRIORITY);
240 		return;
241 	}
242 
243 	/* On POWER9 we can use msgsnd for any destination cpu. */
244 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
245 		msg |= get_hard_smp_processor_id(cpu);
246 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
247 		return;
248 	}
249 
250 	/* On POWER8 for IPIs to threads in the same core, use msgsnd. */
251 	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
252 	    cpu_first_thread_sibling(cpu) ==
253 	    cpu_first_thread_sibling(raw_smp_processor_id())) {
254 		msg |= cpu_thread_in_core(cpu);
255 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
256 		return;
257 	}
258 
259 	/* We should never reach this */
260 	if (WARN_ON_ONCE(xics_on_xive()))
261 	    return;
262 
263 	/* Else poke the target with an IPI */
264 	xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
265 	if (xics_phys)
266 		__raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
267 	else
268 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
269 }
270 
271 /*
272  * The following functions are called from the assembly code
273  * in book3s_hv_rmhandlers.S.
274  */
275 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
276 {
277 	int cpu = vc->pcpu;
278 
279 	/* Order setting of exit map vs. msgsnd/IPI */
280 	smp_mb();
281 	for (; active; active >>= 1, ++cpu)
282 		if (active & 1)
283 			kvmhv_rm_send_ipi(cpu);
284 }
285 
286 void kvmhv_commence_exit(int trap)
287 {
288 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
289 	int ptid = local_paca->kvm_hstate.ptid;
290 	struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
291 	int me, ee, i, t;
292 	int cpu0;
293 
294 	/* Set our bit in the threads-exiting-guest map in the 0xff00
295 	   bits of vcore->entry_exit_map */
296 	me = 0x100 << ptid;
297 	do {
298 		ee = vc->entry_exit_map;
299 	} while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
300 
301 	/* Are we the first here? */
302 	if ((ee >> 8) != 0)
303 		return;
304 
305 	/*
306 	 * Trigger the other threads in this vcore to exit the guest.
307 	 * If this is a hypervisor decrementer interrupt then they
308 	 * will be already on their way out of the guest.
309 	 */
310 	if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
311 		kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
312 
313 	/*
314 	 * If we are doing dynamic micro-threading, interrupt the other
315 	 * subcores to pull them out of their guests too.
316 	 */
317 	if (!sip)
318 		return;
319 
320 	for (i = 0; i < MAX_SUBCORES; ++i) {
321 		vc = sip->vc[i];
322 		if (!vc)
323 			break;
324 		do {
325 			ee = vc->entry_exit_map;
326 			/* Already asked to exit? */
327 			if ((ee >> 8) != 0)
328 				break;
329 		} while (cmpxchg(&vc->entry_exit_map, ee,
330 				 ee | VCORE_EXIT_REQ) != ee);
331 		if ((ee >> 8) == 0)
332 			kvmhv_interrupt_vcore(vc, ee);
333 	}
334 
335 	/*
336 	 * On POWER9 when running a HPT guest on a radix host (sip != NULL),
337 	 * we have to interrupt inactive CPU threads to get them to
338 	 * restore the host LPCR value.
339 	 */
340 	if (sip->lpcr_req) {
341 		if (cmpxchg(&sip->do_restore, 0, 1) == 0) {
342 			vc = local_paca->kvm_hstate.kvm_vcore;
343 			cpu0 = vc->pcpu + ptid - local_paca->kvm_hstate.tid;
344 			for (t = 1; t < threads_per_core; ++t) {
345 				if (sip->napped[t])
346 					kvmhv_rm_send_ipi(cpu0 + t);
347 			}
348 		}
349 	}
350 }
351 
352 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
353 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
354 
355 #ifdef CONFIG_KVM_XICS
356 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
357 					 u32 xisr)
358 {
359 	int i;
360 
361 	/*
362 	 * We access the mapped array here without a lock.  That
363 	 * is safe because we never reduce the number of entries
364 	 * in the array and we never change the v_hwirq field of
365 	 * an entry once it is set.
366 	 *
367 	 * We have also carefully ordered the stores in the writer
368 	 * and the loads here in the reader, so that if we find a matching
369 	 * hwirq here, the associated GSI and irq_desc fields are valid.
370 	 */
371 	for (i = 0; i < pimap->n_mapped; i++)  {
372 		if (xisr == pimap->mapped[i].r_hwirq) {
373 			/*
374 			 * Order subsequent reads in the caller to serialize
375 			 * with the writer.
376 			 */
377 			smp_rmb();
378 			return &pimap->mapped[i];
379 		}
380 	}
381 	return NULL;
382 }
383 
384 /*
385  * If we have an interrupt that's not an IPI, check if we have a
386  * passthrough adapter and if so, check if this external interrupt
387  * is for the adapter.
388  * We will attempt to deliver the IRQ directly to the target VCPU's
389  * ICP, the virtual ICP (based on affinity - the xive value in ICS).
390  *
391  * If the delivery fails or if this is not for a passthrough adapter,
392  * return to the host to handle this interrupt. We earlier
393  * saved a copy of the XIRR in the PACA, it will be picked up by
394  * the host ICP driver.
395  */
396 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
397 {
398 	struct kvmppc_passthru_irqmap *pimap;
399 	struct kvmppc_irq_map *irq_map;
400 	struct kvm_vcpu *vcpu;
401 
402 	vcpu = local_paca->kvm_hstate.kvm_vcpu;
403 	if (!vcpu)
404 		return 1;
405 	pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
406 	if (!pimap)
407 		return 1;
408 	irq_map = get_irqmap(pimap, xisr);
409 	if (!irq_map)
410 		return 1;
411 
412 	/* We're handling this interrupt, generic code doesn't need to */
413 	local_paca->kvm_hstate.saved_xirr = 0;
414 
415 	return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
416 }
417 
418 #else
419 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
420 {
421 	return 1;
422 }
423 #endif
424 
425 /*
426  * Determine what sort of external interrupt is pending (if any).
427  * Returns:
428  *	0 if no interrupt is pending
429  *	1 if an interrupt is pending that needs to be handled by the host
430  *	2 Passthrough that needs completion in the host
431  *	-1 if there was a guest wakeup IPI (which has now been cleared)
432  *	-2 if there is PCI passthrough external interrupt that was handled
433  */
434 static long kvmppc_read_one_intr(bool *again);
435 
436 long kvmppc_read_intr(void)
437 {
438 	long ret = 0;
439 	long rc;
440 	bool again;
441 
442 	if (xive_enabled())
443 		return 1;
444 
445 	do {
446 		again = false;
447 		rc = kvmppc_read_one_intr(&again);
448 		if (rc && (ret == 0 || rc > ret))
449 			ret = rc;
450 	} while (again);
451 	return ret;
452 }
453 
454 static long kvmppc_read_one_intr(bool *again)
455 {
456 	void __iomem *xics_phys;
457 	u32 h_xirr;
458 	__be32 xirr;
459 	u32 xisr;
460 	u8 host_ipi;
461 	int64_t rc;
462 
463 	if (xive_enabled())
464 		return 1;
465 
466 	/* see if a host IPI is pending */
467 	host_ipi = local_paca->kvm_hstate.host_ipi;
468 	if (host_ipi)
469 		return 1;
470 
471 	/* Now read the interrupt from the ICP */
472 	if (kvmhv_on_pseries()) {
473 		unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
474 
475 		rc = plpar_hcall_raw(H_XIRR, retbuf, 0xFF);
476 		xirr = cpu_to_be32(retbuf[0]);
477 	} else {
478 		xics_phys = local_paca->kvm_hstate.xics_phys;
479 		rc = 0;
480 		if (!xics_phys)
481 			rc = opal_int_get_xirr(&xirr, false);
482 		else
483 			xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
484 	}
485 	if (rc < 0)
486 		return 1;
487 
488 	/*
489 	 * Save XIRR for later. Since we get control in reverse endian
490 	 * on LE systems, save it byte reversed and fetch it back in
491 	 * host endian. Note that xirr is the value read from the
492 	 * XIRR register, while h_xirr is the host endian version.
493 	 */
494 	h_xirr = be32_to_cpu(xirr);
495 	local_paca->kvm_hstate.saved_xirr = h_xirr;
496 	xisr = h_xirr & 0xffffff;
497 	/*
498 	 * Ensure that the store/load complete to guarantee all side
499 	 * effects of loading from XIRR has completed
500 	 */
501 	smp_mb();
502 
503 	/* if nothing pending in the ICP */
504 	if (!xisr)
505 		return 0;
506 
507 	/* We found something in the ICP...
508 	 *
509 	 * If it is an IPI, clear the MFRR and EOI it.
510 	 */
511 	if (xisr == XICS_IPI) {
512 		rc = 0;
513 		if (kvmhv_on_pseries()) {
514 			unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
515 
516 			plpar_hcall_raw(H_IPI, retbuf,
517 					hard_smp_processor_id(), 0xff);
518 			plpar_hcall_raw(H_EOI, retbuf, h_xirr);
519 		} else if (xics_phys) {
520 			__raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
521 			__raw_rm_writel(xirr, xics_phys + XICS_XIRR);
522 		} else {
523 			opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
524 			rc = opal_int_eoi(h_xirr);
525 		}
526 		/* If rc > 0, there is another interrupt pending */
527 		*again = rc > 0;
528 
529 		/*
530 		 * Need to ensure side effects of above stores
531 		 * complete before proceeding.
532 		 */
533 		smp_mb();
534 
535 		/*
536 		 * We need to re-check host IPI now in case it got set in the
537 		 * meantime. If it's clear, we bounce the interrupt to the
538 		 * guest
539 		 */
540 		host_ipi = local_paca->kvm_hstate.host_ipi;
541 		if (unlikely(host_ipi != 0)) {
542 			/* We raced with the host,
543 			 * we need to resend that IPI, bummer
544 			 */
545 			if (kvmhv_on_pseries()) {
546 				unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
547 
548 				plpar_hcall_raw(H_IPI, retbuf,
549 						hard_smp_processor_id(),
550 						IPI_PRIORITY);
551 			} else if (xics_phys)
552 				__raw_rm_writeb(IPI_PRIORITY,
553 						xics_phys + XICS_MFRR);
554 			else
555 				opal_int_set_mfrr(hard_smp_processor_id(),
556 						  IPI_PRIORITY);
557 			/* Let side effects complete */
558 			smp_mb();
559 			return 1;
560 		}
561 
562 		/* OK, it's an IPI for us */
563 		local_paca->kvm_hstate.saved_xirr = 0;
564 		return -1;
565 	}
566 
567 	return kvmppc_check_passthru(xisr, xirr, again);
568 }
569 
570 #ifdef CONFIG_KVM_XICS
571 static inline bool is_rm(void)
572 {
573 	return !(mfmsr() & MSR_DR);
574 }
575 
576 unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu)
577 {
578 	if (!kvmppc_xics_enabled(vcpu))
579 		return H_TOO_HARD;
580 	if (xics_on_xive()) {
581 		if (is_rm())
582 			return xive_rm_h_xirr(vcpu);
583 		if (unlikely(!__xive_vm_h_xirr))
584 			return H_NOT_AVAILABLE;
585 		return __xive_vm_h_xirr(vcpu);
586 	} else
587 		return xics_rm_h_xirr(vcpu);
588 }
589 
590 unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu)
591 {
592 	if (!kvmppc_xics_enabled(vcpu))
593 		return H_TOO_HARD;
594 	vcpu->arch.regs.gpr[5] = get_tb();
595 	if (xics_on_xive()) {
596 		if (is_rm())
597 			return xive_rm_h_xirr(vcpu);
598 		if (unlikely(!__xive_vm_h_xirr))
599 			return H_NOT_AVAILABLE;
600 		return __xive_vm_h_xirr(vcpu);
601 	} else
602 		return xics_rm_h_xirr(vcpu);
603 }
604 
605 unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
606 {
607 	if (!kvmppc_xics_enabled(vcpu))
608 		return H_TOO_HARD;
609 	if (xics_on_xive()) {
610 		if (is_rm())
611 			return xive_rm_h_ipoll(vcpu, server);
612 		if (unlikely(!__xive_vm_h_ipoll))
613 			return H_NOT_AVAILABLE;
614 		return __xive_vm_h_ipoll(vcpu, server);
615 	} else
616 		return H_TOO_HARD;
617 }
618 
619 int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
620 		    unsigned long mfrr)
621 {
622 	if (!kvmppc_xics_enabled(vcpu))
623 		return H_TOO_HARD;
624 	if (xics_on_xive()) {
625 		if (is_rm())
626 			return xive_rm_h_ipi(vcpu, server, mfrr);
627 		if (unlikely(!__xive_vm_h_ipi))
628 			return H_NOT_AVAILABLE;
629 		return __xive_vm_h_ipi(vcpu, server, mfrr);
630 	} else
631 		return xics_rm_h_ipi(vcpu, server, mfrr);
632 }
633 
634 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
635 {
636 	if (!kvmppc_xics_enabled(vcpu))
637 		return H_TOO_HARD;
638 	if (xics_on_xive()) {
639 		if (is_rm())
640 			return xive_rm_h_cppr(vcpu, cppr);
641 		if (unlikely(!__xive_vm_h_cppr))
642 			return H_NOT_AVAILABLE;
643 		return __xive_vm_h_cppr(vcpu, cppr);
644 	} else
645 		return xics_rm_h_cppr(vcpu, cppr);
646 }
647 
648 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
649 {
650 	if (!kvmppc_xics_enabled(vcpu))
651 		return H_TOO_HARD;
652 	if (xics_on_xive()) {
653 		if (is_rm())
654 			return xive_rm_h_eoi(vcpu, xirr);
655 		if (unlikely(!__xive_vm_h_eoi))
656 			return H_NOT_AVAILABLE;
657 		return __xive_vm_h_eoi(vcpu, xirr);
658 	} else
659 		return xics_rm_h_eoi(vcpu, xirr);
660 }
661 #endif /* CONFIG_KVM_XICS */
662 
663 void kvmppc_bad_interrupt(struct pt_regs *regs)
664 {
665 	/*
666 	 * 100 could happen at any time, 200 can happen due to invalid real
667 	 * address access for example (or any time due to a hardware problem).
668 	 */
669 	if (TRAP(regs) == 0x100) {
670 		get_paca()->in_nmi++;
671 		system_reset_exception(regs);
672 		get_paca()->in_nmi--;
673 	} else if (TRAP(regs) == 0x200) {
674 		machine_check_exception(regs);
675 	} else {
676 		die("Bad interrupt in KVM entry/exit code", regs, SIGABRT);
677 	}
678 	panic("Bad KVM trap");
679 }
680 
681 /*
682  * Functions used to switch LPCR HR and UPRT bits on all threads
683  * when entering and exiting HPT guests on a radix host.
684  */
685 
686 #define PHASE_REALMODE		1	/* in real mode */
687 #define PHASE_SET_LPCR		2	/* have set LPCR */
688 #define PHASE_OUT_OF_GUEST	4	/* have finished executing in guest */
689 #define PHASE_RESET_LPCR	8	/* have reset LPCR to host value */
690 
691 #define ALL(p)		(((p) << 24) | ((p) << 16) | ((p) << 8) | (p))
692 
693 static void wait_for_sync(struct kvm_split_mode *sip, int phase)
694 {
695 	int thr = local_paca->kvm_hstate.tid;
696 
697 	sip->lpcr_sync.phase[thr] |= phase;
698 	phase = ALL(phase);
699 	while ((sip->lpcr_sync.allphases & phase) != phase) {
700 		HMT_low();
701 		barrier();
702 	}
703 	HMT_medium();
704 }
705 
706 void kvmhv_p9_set_lpcr(struct kvm_split_mode *sip)
707 {
708 	unsigned long rb, set;
709 
710 	/* wait for every other thread to get to real mode */
711 	wait_for_sync(sip, PHASE_REALMODE);
712 
713 	/* Set LPCR and LPIDR */
714 	mtspr(SPRN_LPCR, sip->lpcr_req);
715 	mtspr(SPRN_LPID, sip->lpidr_req);
716 	isync();
717 
718 	/* Invalidate the TLB on thread 0 */
719 	if (local_paca->kvm_hstate.tid == 0) {
720 		sip->do_set = 0;
721 		asm volatile("ptesync" : : : "memory");
722 		for (set = 0; set < POWER9_TLB_SETS_RADIX; ++set) {
723 			rb = TLBIEL_INVAL_SET_LPID +
724 				(set << TLBIEL_INVAL_SET_SHIFT);
725 			asm volatile(PPC_TLBIEL(%0, %1, 0, 0, 0) : :
726 				     "r" (rb), "r" (0));
727 		}
728 		asm volatile("ptesync" : : : "memory");
729 	}
730 
731 	/* indicate that we have done so and wait for others */
732 	wait_for_sync(sip, PHASE_SET_LPCR);
733 	/* order read of sip->lpcr_sync.allphases vs. sip->do_set */
734 	smp_rmb();
735 }
736 
737 /*
738  * Called when a thread that has been in the guest needs
739  * to reload the host LPCR value - but only on POWER9 when
740  * running a HPT guest on a radix host.
741  */
742 void kvmhv_p9_restore_lpcr(struct kvm_split_mode *sip)
743 {
744 	/* we're out of the guest... */
745 	wait_for_sync(sip, PHASE_OUT_OF_GUEST);
746 
747 	mtspr(SPRN_LPID, 0);
748 	mtspr(SPRN_LPCR, sip->host_lpcr);
749 	isync();
750 
751 	if (local_paca->kvm_hstate.tid == 0) {
752 		sip->do_restore = 0;
753 		smp_wmb();	/* order store of do_restore vs. phase */
754 	}
755 
756 	wait_for_sync(sip, PHASE_RESET_LPCR);
757 	smp_mb();
758 	local_paca->kvm_hstate.kvm_split_mode = NULL;
759 }
760 
761 /*
762  * Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
763  * Can we inject a Decrementer or a External interrupt?
764  */
765 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
766 {
767 	int ext;
768 	unsigned long vec = 0;
769 	unsigned long lpcr;
770 
771 	/* Insert EXTERNAL bit into LPCR at the MER bit position */
772 	ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
773 	lpcr = mfspr(SPRN_LPCR);
774 	lpcr |= ext << LPCR_MER_SH;
775 	mtspr(SPRN_LPCR, lpcr);
776 	isync();
777 
778 	if (vcpu->arch.shregs.msr & MSR_EE) {
779 		if (ext) {
780 			vec = BOOK3S_INTERRUPT_EXTERNAL;
781 		} else {
782 			long int dec = mfspr(SPRN_DEC);
783 			if (!(lpcr & LPCR_LD))
784 				dec = (int) dec;
785 			if (dec < 0)
786 				vec = BOOK3S_INTERRUPT_DECREMENTER;
787 		}
788 	}
789 	if (vec) {
790 		unsigned long msr, old_msr = vcpu->arch.shregs.msr;
791 
792 		kvmppc_set_srr0(vcpu, kvmppc_get_pc(vcpu));
793 		kvmppc_set_srr1(vcpu, old_msr);
794 		kvmppc_set_pc(vcpu, vec);
795 		msr = vcpu->arch.intr_msr;
796 		if (MSR_TM_ACTIVE(old_msr))
797 			msr |= MSR_TS_S;
798 		vcpu->arch.shregs.msr = msr;
799 	}
800 
801 	if (vcpu->arch.doorbell_request) {
802 		mtspr(SPRN_DPDES, 1);
803 		vcpu->arch.vcore->dpdes = 1;
804 		smp_wmb();
805 		vcpu->arch.doorbell_request = 0;
806 	}
807 }
808 
809 static void flush_guest_tlb(struct kvm *kvm)
810 {
811 	unsigned long rb, set;
812 
813 	rb = PPC_BIT(52);	/* IS = 2 */
814 	if (kvm_is_radix(kvm)) {
815 		/* R=1 PRS=1 RIC=2 */
816 		asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
817 			     : : "r" (rb), "i" (1), "i" (1), "i" (2),
818 			       "r" (0) : "memory");
819 		for (set = 1; set < kvm->arch.tlb_sets; ++set) {
820 			rb += PPC_BIT(51);	/* increment set number */
821 			/* R=1 PRS=1 RIC=0 */
822 			asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
823 				     : : "r" (rb), "i" (1), "i" (1), "i" (0),
824 				       "r" (0) : "memory");
825 		}
826 	} else {
827 		for (set = 0; set < kvm->arch.tlb_sets; ++set) {
828 			/* R=0 PRS=0 RIC=0 */
829 			asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
830 				     : : "r" (rb), "i" (0), "i" (0), "i" (0),
831 				       "r" (0) : "memory");
832 			rb += PPC_BIT(51);	/* increment set number */
833 		}
834 	}
835 	asm volatile("ptesync": : :"memory");
836 }
837 
838 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu,
839 				 struct kvm_nested_guest *nested)
840 {
841 	cpumask_t *need_tlb_flush;
842 
843 	/*
844 	 * On POWER9, individual threads can come in here, but the
845 	 * TLB is shared between the 4 threads in a core, hence
846 	 * invalidating on one thread invalidates for all.
847 	 * Thus we make all 4 threads use the same bit.
848 	 */
849 	if (cpu_has_feature(CPU_FTR_ARCH_300))
850 		pcpu = cpu_first_thread_sibling(pcpu);
851 
852 	if (nested)
853 		need_tlb_flush = &nested->need_tlb_flush;
854 	else
855 		need_tlb_flush = &kvm->arch.need_tlb_flush;
856 
857 	if (cpumask_test_cpu(pcpu, need_tlb_flush)) {
858 		flush_guest_tlb(kvm);
859 
860 		/* Clear the bit after the TLB flush */
861 		cpumask_clear_cpu(pcpu, need_tlb_flush);
862 	}
863 }
864 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);
865