1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm_host.h>
11 #include <linux/preempt.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/sizes.h>
18 #include <linux/cma.h>
19 #include <linux/bitops.h>
20 
21 #include <asm/cputable.h>
22 #include <asm/kvm_ppc.h>
23 #include <asm/kvm_book3s.h>
24 #include <asm/archrandom.h>
25 
26 #define KVM_CMA_CHUNK_ORDER	18
27 
28 /*
29  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
30  * should be power of 2.
31  */
32 #define HPT_ALIGN_PAGES		((1 << 18) >> PAGE_SHIFT) /* 256k */
33 /*
34  * By default we reserve 5% of memory for hash pagetable allocation.
35  */
36 static unsigned long kvm_cma_resv_ratio = 5;
37 
38 static struct cma *kvm_cma;
39 
40 static int __init early_parse_kvm_cma_resv(char *p)
41 {
42 	pr_debug("%s(%s)\n", __func__, p);
43 	if (!p)
44 		return -EINVAL;
45 	return kstrtoul(p, 0, &kvm_cma_resv_ratio);
46 }
47 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
48 
49 struct page *kvm_alloc_hpt(unsigned long nr_pages)
50 {
51 	VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
52 
53 	return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES));
54 }
55 EXPORT_SYMBOL_GPL(kvm_alloc_hpt);
56 
57 void kvm_release_hpt(struct page *page, unsigned long nr_pages)
58 {
59 	cma_release(kvm_cma, page, nr_pages);
60 }
61 EXPORT_SYMBOL_GPL(kvm_release_hpt);
62 
63 /**
64  * kvm_cma_reserve() - reserve area for kvm hash pagetable
65  *
66  * This function reserves memory from early allocator. It should be
67  * called by arch specific code once the memblock allocator
68  * has been activated and all other subsystems have already allocated/reserved
69  * memory.
70  */
71 void __init kvm_cma_reserve(void)
72 {
73 	unsigned long align_size;
74 	struct memblock_region *reg;
75 	phys_addr_t selected_size = 0;
76 
77 	/*
78 	 * We need CMA reservation only when we are in HV mode
79 	 */
80 	if (!cpu_has_feature(CPU_FTR_HVMODE))
81 		return;
82 	/*
83 	 * We cannot use memblock_phys_mem_size() here, because
84 	 * memblock_analyze() has not been called yet.
85 	 */
86 	for_each_memblock(memory, reg)
87 		selected_size += memblock_region_memory_end_pfn(reg) -
88 				 memblock_region_memory_base_pfn(reg);
89 
90 	selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
91 	if (selected_size) {
92 		pr_debug("%s: reserving %ld MiB for global area\n", __func__,
93 			 (unsigned long)selected_size / SZ_1M);
94 		align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
95 		cma_declare_contiguous(0, selected_size, 0, align_size,
96 			KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, &kvm_cma);
97 	}
98 }
99 
100 /*
101  * Real-mode H_CONFER implementation.
102  * We check if we are the only vcpu out of this virtual core
103  * still running in the guest and not ceded.  If so, we pop up
104  * to the virtual-mode implementation; if not, just return to
105  * the guest.
106  */
107 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
108 			    unsigned int yield_count)
109 {
110 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
111 	int threads_running;
112 	int threads_ceded;
113 	int threads_conferring;
114 	u64 stop = get_tb() + 10 * tb_ticks_per_usec;
115 	int rv = H_SUCCESS; /* => don't yield */
116 
117 	set_bit(vcpu->arch.ptid, &vc->conferring_threads);
118 	while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
119 		threads_running = VCORE_ENTRY_MAP(vc);
120 		threads_ceded = vc->napping_threads;
121 		threads_conferring = vc->conferring_threads;
122 		if ((threads_ceded | threads_conferring) == threads_running) {
123 			rv = H_TOO_HARD; /* => do yield */
124 			break;
125 		}
126 	}
127 	clear_bit(vcpu->arch.ptid, &vc->conferring_threads);
128 	return rv;
129 }
130 
131 /*
132  * When running HV mode KVM we need to block certain operations while KVM VMs
133  * exist in the system. We use a counter of VMs to track this.
134  *
135  * One of the operations we need to block is onlining of secondaries, so we
136  * protect hv_vm_count with get/put_online_cpus().
137  */
138 static atomic_t hv_vm_count;
139 
140 void kvm_hv_vm_activated(void)
141 {
142 	get_online_cpus();
143 	atomic_inc(&hv_vm_count);
144 	put_online_cpus();
145 }
146 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
147 
148 void kvm_hv_vm_deactivated(void)
149 {
150 	get_online_cpus();
151 	atomic_dec(&hv_vm_count);
152 	put_online_cpus();
153 }
154 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
155 
156 bool kvm_hv_mode_active(void)
157 {
158 	return atomic_read(&hv_vm_count) != 0;
159 }
160 
161 extern int hcall_real_table[], hcall_real_table_end[];
162 
163 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
164 {
165 	cmd /= 4;
166 	if (cmd < hcall_real_table_end - hcall_real_table &&
167 	    hcall_real_table[cmd])
168 		return 1;
169 
170 	return 0;
171 }
172 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
173 
174 int kvmppc_hwrng_present(void)
175 {
176 	return powernv_hwrng_present();
177 }
178 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
179 
180 long kvmppc_h_random(struct kvm_vcpu *vcpu)
181 {
182 	if (powernv_get_random_real_mode(&vcpu->arch.gpr[4]))
183 		return H_SUCCESS;
184 
185 	return H_HARDWARE;
186 }
187