1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 */ 5 6 #include <linux/cpu.h> 7 #include <linux/kvm_host.h> 8 #include <linux/preempt.h> 9 #include <linux/export.h> 10 #include <linux/sched.h> 11 #include <linux/spinlock.h> 12 #include <linux/init.h> 13 #include <linux/memblock.h> 14 #include <linux/sizes.h> 15 #include <linux/cma.h> 16 #include <linux/bitops.h> 17 18 #include <asm/asm-prototypes.h> 19 #include <asm/cputable.h> 20 #include <asm/kvm_ppc.h> 21 #include <asm/kvm_book3s.h> 22 #include <asm/archrandom.h> 23 #include <asm/xics.h> 24 #include <asm/xive.h> 25 #include <asm/dbell.h> 26 #include <asm/cputhreads.h> 27 #include <asm/io.h> 28 #include <asm/opal.h> 29 #include <asm/smp.h> 30 31 #define KVM_CMA_CHUNK_ORDER 18 32 33 #include "book3s_xics.h" 34 #include "book3s_xive.h" 35 36 /* 37 * The XIVE module will populate these when it loads 38 */ 39 unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu); 40 unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server); 41 int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server, 42 unsigned long mfrr); 43 int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr); 44 int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr); 45 EXPORT_SYMBOL_GPL(__xive_vm_h_xirr); 46 EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll); 47 EXPORT_SYMBOL_GPL(__xive_vm_h_ipi); 48 EXPORT_SYMBOL_GPL(__xive_vm_h_cppr); 49 EXPORT_SYMBOL_GPL(__xive_vm_h_eoi); 50 51 /* 52 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206) 53 * should be power of 2. 54 */ 55 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */ 56 /* 57 * By default we reserve 5% of memory for hash pagetable allocation. 58 */ 59 static unsigned long kvm_cma_resv_ratio = 5; 60 61 static struct cma *kvm_cma; 62 63 static int __init early_parse_kvm_cma_resv(char *p) 64 { 65 pr_debug("%s(%s)\n", __func__, p); 66 if (!p) 67 return -EINVAL; 68 return kstrtoul(p, 0, &kvm_cma_resv_ratio); 69 } 70 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv); 71 72 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages) 73 { 74 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT); 75 76 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES), 77 false); 78 } 79 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma); 80 81 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages) 82 { 83 cma_release(kvm_cma, page, nr_pages); 84 } 85 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma); 86 87 /** 88 * kvm_cma_reserve() - reserve area for kvm hash pagetable 89 * 90 * This function reserves memory from early allocator. It should be 91 * called by arch specific code once the memblock allocator 92 * has been activated and all other subsystems have already allocated/reserved 93 * memory. 94 */ 95 void __init kvm_cma_reserve(void) 96 { 97 unsigned long align_size; 98 phys_addr_t selected_size; 99 100 /* 101 * We need CMA reservation only when we are in HV mode 102 */ 103 if (!cpu_has_feature(CPU_FTR_HVMODE)) 104 return; 105 106 selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100); 107 if (selected_size) { 108 pr_info("%s: reserving %ld MiB for global area\n", __func__, 109 (unsigned long)selected_size / SZ_1M); 110 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT; 111 cma_declare_contiguous(0, selected_size, 0, align_size, 112 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma", 113 &kvm_cma); 114 } 115 } 116 117 /* 118 * Real-mode H_CONFER implementation. 119 * We check if we are the only vcpu out of this virtual core 120 * still running in the guest and not ceded. If so, we pop up 121 * to the virtual-mode implementation; if not, just return to 122 * the guest. 123 */ 124 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target, 125 unsigned int yield_count) 126 { 127 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; 128 int ptid = local_paca->kvm_hstate.ptid; 129 int threads_running; 130 int threads_ceded; 131 int threads_conferring; 132 u64 stop = get_tb() + 10 * tb_ticks_per_usec; 133 int rv = H_SUCCESS; /* => don't yield */ 134 135 set_bit(ptid, &vc->conferring_threads); 136 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) { 137 threads_running = VCORE_ENTRY_MAP(vc); 138 threads_ceded = vc->napping_threads; 139 threads_conferring = vc->conferring_threads; 140 if ((threads_ceded | threads_conferring) == threads_running) { 141 rv = H_TOO_HARD; /* => do yield */ 142 break; 143 } 144 } 145 clear_bit(ptid, &vc->conferring_threads); 146 return rv; 147 } 148 149 /* 150 * When running HV mode KVM we need to block certain operations while KVM VMs 151 * exist in the system. We use a counter of VMs to track this. 152 * 153 * One of the operations we need to block is onlining of secondaries, so we 154 * protect hv_vm_count with get/put_online_cpus(). 155 */ 156 static atomic_t hv_vm_count; 157 158 void kvm_hv_vm_activated(void) 159 { 160 get_online_cpus(); 161 atomic_inc(&hv_vm_count); 162 put_online_cpus(); 163 } 164 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated); 165 166 void kvm_hv_vm_deactivated(void) 167 { 168 get_online_cpus(); 169 atomic_dec(&hv_vm_count); 170 put_online_cpus(); 171 } 172 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated); 173 174 bool kvm_hv_mode_active(void) 175 { 176 return atomic_read(&hv_vm_count) != 0; 177 } 178 179 extern int hcall_real_table[], hcall_real_table_end[]; 180 181 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd) 182 { 183 cmd /= 4; 184 if (cmd < hcall_real_table_end - hcall_real_table && 185 hcall_real_table[cmd]) 186 return 1; 187 188 return 0; 189 } 190 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode); 191 192 int kvmppc_hwrng_present(void) 193 { 194 return powernv_hwrng_present(); 195 } 196 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present); 197 198 long kvmppc_h_random(struct kvm_vcpu *vcpu) 199 { 200 int r; 201 202 /* Only need to do the expensive mfmsr() on radix */ 203 if (kvm_is_radix(vcpu->kvm) && (mfmsr() & MSR_IR)) 204 r = powernv_get_random_long(&vcpu->arch.regs.gpr[4]); 205 else 206 r = powernv_get_random_real_mode(&vcpu->arch.regs.gpr[4]); 207 if (r) 208 return H_SUCCESS; 209 210 return H_HARDWARE; 211 } 212 213 /* 214 * Send an interrupt or message to another CPU. 215 * The caller needs to include any barrier needed to order writes 216 * to memory vs. the IPI/message. 217 */ 218 void kvmhv_rm_send_ipi(int cpu) 219 { 220 void __iomem *xics_phys; 221 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 222 223 /* For a nested hypervisor, use the XICS via hcall */ 224 if (kvmhv_on_pseries()) { 225 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 226 227 plpar_hcall_raw(H_IPI, retbuf, get_hard_smp_processor_id(cpu), 228 IPI_PRIORITY); 229 return; 230 } 231 232 /* On POWER9 we can use msgsnd for any destination cpu. */ 233 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 234 msg |= get_hard_smp_processor_id(cpu); 235 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 236 return; 237 } 238 239 /* On POWER8 for IPIs to threads in the same core, use msgsnd. */ 240 if (cpu_has_feature(CPU_FTR_ARCH_207S) && 241 cpu_first_thread_sibling(cpu) == 242 cpu_first_thread_sibling(raw_smp_processor_id())) { 243 msg |= cpu_thread_in_core(cpu); 244 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 245 return; 246 } 247 248 /* We should never reach this */ 249 if (WARN_ON_ONCE(xics_on_xive())) 250 return; 251 252 /* Else poke the target with an IPI */ 253 xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys; 254 if (xics_phys) 255 __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR); 256 else 257 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 258 } 259 260 /* 261 * The following functions are called from the assembly code 262 * in book3s_hv_rmhandlers.S. 263 */ 264 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active) 265 { 266 int cpu = vc->pcpu; 267 268 /* Order setting of exit map vs. msgsnd/IPI */ 269 smp_mb(); 270 for (; active; active >>= 1, ++cpu) 271 if (active & 1) 272 kvmhv_rm_send_ipi(cpu); 273 } 274 275 void kvmhv_commence_exit(int trap) 276 { 277 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; 278 int ptid = local_paca->kvm_hstate.ptid; 279 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode; 280 int me, ee, i, t; 281 int cpu0; 282 283 /* Set our bit in the threads-exiting-guest map in the 0xff00 284 bits of vcore->entry_exit_map */ 285 me = 0x100 << ptid; 286 do { 287 ee = vc->entry_exit_map; 288 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee); 289 290 /* Are we the first here? */ 291 if ((ee >> 8) != 0) 292 return; 293 294 /* 295 * Trigger the other threads in this vcore to exit the guest. 296 * If this is a hypervisor decrementer interrupt then they 297 * will be already on their way out of the guest. 298 */ 299 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER) 300 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid)); 301 302 /* 303 * If we are doing dynamic micro-threading, interrupt the other 304 * subcores to pull them out of their guests too. 305 */ 306 if (!sip) 307 return; 308 309 for (i = 0; i < MAX_SUBCORES; ++i) { 310 vc = sip->vc[i]; 311 if (!vc) 312 break; 313 do { 314 ee = vc->entry_exit_map; 315 /* Already asked to exit? */ 316 if ((ee >> 8) != 0) 317 break; 318 } while (cmpxchg(&vc->entry_exit_map, ee, 319 ee | VCORE_EXIT_REQ) != ee); 320 if ((ee >> 8) == 0) 321 kvmhv_interrupt_vcore(vc, ee); 322 } 323 324 /* 325 * On POWER9 when running a HPT guest on a radix host (sip != NULL), 326 * we have to interrupt inactive CPU threads to get them to 327 * restore the host LPCR value. 328 */ 329 if (sip->lpcr_req) { 330 if (cmpxchg(&sip->do_restore, 0, 1) == 0) { 331 vc = local_paca->kvm_hstate.kvm_vcore; 332 cpu0 = vc->pcpu + ptid - local_paca->kvm_hstate.tid; 333 for (t = 1; t < threads_per_core; ++t) { 334 if (sip->napped[t]) 335 kvmhv_rm_send_ipi(cpu0 + t); 336 } 337 } 338 } 339 } 340 341 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv; 342 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv); 343 344 #ifdef CONFIG_KVM_XICS 345 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap, 346 u32 xisr) 347 { 348 int i; 349 350 /* 351 * We access the mapped array here without a lock. That 352 * is safe because we never reduce the number of entries 353 * in the array and we never change the v_hwirq field of 354 * an entry once it is set. 355 * 356 * We have also carefully ordered the stores in the writer 357 * and the loads here in the reader, so that if we find a matching 358 * hwirq here, the associated GSI and irq_desc fields are valid. 359 */ 360 for (i = 0; i < pimap->n_mapped; i++) { 361 if (xisr == pimap->mapped[i].r_hwirq) { 362 /* 363 * Order subsequent reads in the caller to serialize 364 * with the writer. 365 */ 366 smp_rmb(); 367 return &pimap->mapped[i]; 368 } 369 } 370 return NULL; 371 } 372 373 /* 374 * If we have an interrupt that's not an IPI, check if we have a 375 * passthrough adapter and if so, check if this external interrupt 376 * is for the adapter. 377 * We will attempt to deliver the IRQ directly to the target VCPU's 378 * ICP, the virtual ICP (based on affinity - the xive value in ICS). 379 * 380 * If the delivery fails or if this is not for a passthrough adapter, 381 * return to the host to handle this interrupt. We earlier 382 * saved a copy of the XIRR in the PACA, it will be picked up by 383 * the host ICP driver. 384 */ 385 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) 386 { 387 struct kvmppc_passthru_irqmap *pimap; 388 struct kvmppc_irq_map *irq_map; 389 struct kvm_vcpu *vcpu; 390 391 vcpu = local_paca->kvm_hstate.kvm_vcpu; 392 if (!vcpu) 393 return 1; 394 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm); 395 if (!pimap) 396 return 1; 397 irq_map = get_irqmap(pimap, xisr); 398 if (!irq_map) 399 return 1; 400 401 /* We're handling this interrupt, generic code doesn't need to */ 402 local_paca->kvm_hstate.saved_xirr = 0; 403 404 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again); 405 } 406 407 #else 408 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) 409 { 410 return 1; 411 } 412 #endif 413 414 /* 415 * Determine what sort of external interrupt is pending (if any). 416 * Returns: 417 * 0 if no interrupt is pending 418 * 1 if an interrupt is pending that needs to be handled by the host 419 * 2 Passthrough that needs completion in the host 420 * -1 if there was a guest wakeup IPI (which has now been cleared) 421 * -2 if there is PCI passthrough external interrupt that was handled 422 */ 423 static long kvmppc_read_one_intr(bool *again); 424 425 long kvmppc_read_intr(void) 426 { 427 long ret = 0; 428 long rc; 429 bool again; 430 431 if (xive_enabled()) 432 return 1; 433 434 do { 435 again = false; 436 rc = kvmppc_read_one_intr(&again); 437 if (rc && (ret == 0 || rc > ret)) 438 ret = rc; 439 } while (again); 440 return ret; 441 } 442 443 static long kvmppc_read_one_intr(bool *again) 444 { 445 void __iomem *xics_phys; 446 u32 h_xirr; 447 __be32 xirr; 448 u32 xisr; 449 u8 host_ipi; 450 int64_t rc; 451 452 if (xive_enabled()) 453 return 1; 454 455 /* see if a host IPI is pending */ 456 host_ipi = local_paca->kvm_hstate.host_ipi; 457 if (host_ipi) 458 return 1; 459 460 /* Now read the interrupt from the ICP */ 461 if (kvmhv_on_pseries()) { 462 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 463 464 rc = plpar_hcall_raw(H_XIRR, retbuf, 0xFF); 465 xirr = cpu_to_be32(retbuf[0]); 466 } else { 467 xics_phys = local_paca->kvm_hstate.xics_phys; 468 rc = 0; 469 if (!xics_phys) 470 rc = opal_int_get_xirr(&xirr, false); 471 else 472 xirr = __raw_rm_readl(xics_phys + XICS_XIRR); 473 } 474 if (rc < 0) 475 return 1; 476 477 /* 478 * Save XIRR for later. Since we get control in reverse endian 479 * on LE systems, save it byte reversed and fetch it back in 480 * host endian. Note that xirr is the value read from the 481 * XIRR register, while h_xirr is the host endian version. 482 */ 483 h_xirr = be32_to_cpu(xirr); 484 local_paca->kvm_hstate.saved_xirr = h_xirr; 485 xisr = h_xirr & 0xffffff; 486 /* 487 * Ensure that the store/load complete to guarantee all side 488 * effects of loading from XIRR has completed 489 */ 490 smp_mb(); 491 492 /* if nothing pending in the ICP */ 493 if (!xisr) 494 return 0; 495 496 /* We found something in the ICP... 497 * 498 * If it is an IPI, clear the MFRR and EOI it. 499 */ 500 if (xisr == XICS_IPI) { 501 rc = 0; 502 if (kvmhv_on_pseries()) { 503 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 504 505 plpar_hcall_raw(H_IPI, retbuf, 506 hard_smp_processor_id(), 0xff); 507 plpar_hcall_raw(H_EOI, retbuf, h_xirr); 508 } else if (xics_phys) { 509 __raw_rm_writeb(0xff, xics_phys + XICS_MFRR); 510 __raw_rm_writel(xirr, xics_phys + XICS_XIRR); 511 } else { 512 opal_int_set_mfrr(hard_smp_processor_id(), 0xff); 513 rc = opal_int_eoi(h_xirr); 514 } 515 /* If rc > 0, there is another interrupt pending */ 516 *again = rc > 0; 517 518 /* 519 * Need to ensure side effects of above stores 520 * complete before proceeding. 521 */ 522 smp_mb(); 523 524 /* 525 * We need to re-check host IPI now in case it got set in the 526 * meantime. If it's clear, we bounce the interrupt to the 527 * guest 528 */ 529 host_ipi = local_paca->kvm_hstate.host_ipi; 530 if (unlikely(host_ipi != 0)) { 531 /* We raced with the host, 532 * we need to resend that IPI, bummer 533 */ 534 if (kvmhv_on_pseries()) { 535 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 536 537 plpar_hcall_raw(H_IPI, retbuf, 538 hard_smp_processor_id(), 539 IPI_PRIORITY); 540 } else if (xics_phys) 541 __raw_rm_writeb(IPI_PRIORITY, 542 xics_phys + XICS_MFRR); 543 else 544 opal_int_set_mfrr(hard_smp_processor_id(), 545 IPI_PRIORITY); 546 /* Let side effects complete */ 547 smp_mb(); 548 return 1; 549 } 550 551 /* OK, it's an IPI for us */ 552 local_paca->kvm_hstate.saved_xirr = 0; 553 return -1; 554 } 555 556 return kvmppc_check_passthru(xisr, xirr, again); 557 } 558 559 #ifdef CONFIG_KVM_XICS 560 static inline bool is_rm(void) 561 { 562 return !(mfmsr() & MSR_DR); 563 } 564 565 unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu) 566 { 567 if (!kvmppc_xics_enabled(vcpu)) 568 return H_TOO_HARD; 569 if (xics_on_xive()) { 570 if (is_rm()) 571 return xive_rm_h_xirr(vcpu); 572 if (unlikely(!__xive_vm_h_xirr)) 573 return H_NOT_AVAILABLE; 574 return __xive_vm_h_xirr(vcpu); 575 } else 576 return xics_rm_h_xirr(vcpu); 577 } 578 579 unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu) 580 { 581 if (!kvmppc_xics_enabled(vcpu)) 582 return H_TOO_HARD; 583 vcpu->arch.regs.gpr[5] = get_tb(); 584 if (xics_on_xive()) { 585 if (is_rm()) 586 return xive_rm_h_xirr(vcpu); 587 if (unlikely(!__xive_vm_h_xirr)) 588 return H_NOT_AVAILABLE; 589 return __xive_vm_h_xirr(vcpu); 590 } else 591 return xics_rm_h_xirr(vcpu); 592 } 593 594 unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server) 595 { 596 if (!kvmppc_xics_enabled(vcpu)) 597 return H_TOO_HARD; 598 if (xics_on_xive()) { 599 if (is_rm()) 600 return xive_rm_h_ipoll(vcpu, server); 601 if (unlikely(!__xive_vm_h_ipoll)) 602 return H_NOT_AVAILABLE; 603 return __xive_vm_h_ipoll(vcpu, server); 604 } else 605 return H_TOO_HARD; 606 } 607 608 int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server, 609 unsigned long mfrr) 610 { 611 if (!kvmppc_xics_enabled(vcpu)) 612 return H_TOO_HARD; 613 if (xics_on_xive()) { 614 if (is_rm()) 615 return xive_rm_h_ipi(vcpu, server, mfrr); 616 if (unlikely(!__xive_vm_h_ipi)) 617 return H_NOT_AVAILABLE; 618 return __xive_vm_h_ipi(vcpu, server, mfrr); 619 } else 620 return xics_rm_h_ipi(vcpu, server, mfrr); 621 } 622 623 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr) 624 { 625 if (!kvmppc_xics_enabled(vcpu)) 626 return H_TOO_HARD; 627 if (xics_on_xive()) { 628 if (is_rm()) 629 return xive_rm_h_cppr(vcpu, cppr); 630 if (unlikely(!__xive_vm_h_cppr)) 631 return H_NOT_AVAILABLE; 632 return __xive_vm_h_cppr(vcpu, cppr); 633 } else 634 return xics_rm_h_cppr(vcpu, cppr); 635 } 636 637 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr) 638 { 639 if (!kvmppc_xics_enabled(vcpu)) 640 return H_TOO_HARD; 641 if (xics_on_xive()) { 642 if (is_rm()) 643 return xive_rm_h_eoi(vcpu, xirr); 644 if (unlikely(!__xive_vm_h_eoi)) 645 return H_NOT_AVAILABLE; 646 return __xive_vm_h_eoi(vcpu, xirr); 647 } else 648 return xics_rm_h_eoi(vcpu, xirr); 649 } 650 #endif /* CONFIG_KVM_XICS */ 651 652 void kvmppc_bad_interrupt(struct pt_regs *regs) 653 { 654 /* 655 * 100 could happen at any time, 200 can happen due to invalid real 656 * address access for example (or any time due to a hardware problem). 657 */ 658 if (TRAP(regs) == 0x100) { 659 get_paca()->in_nmi++; 660 system_reset_exception(regs); 661 get_paca()->in_nmi--; 662 } else if (TRAP(regs) == 0x200) { 663 machine_check_exception(regs); 664 } else { 665 die("Bad interrupt in KVM entry/exit code", regs, SIGABRT); 666 } 667 panic("Bad KVM trap"); 668 } 669 670 /* 671 * Functions used to switch LPCR HR and UPRT bits on all threads 672 * when entering and exiting HPT guests on a radix host. 673 */ 674 675 #define PHASE_REALMODE 1 /* in real mode */ 676 #define PHASE_SET_LPCR 2 /* have set LPCR */ 677 #define PHASE_OUT_OF_GUEST 4 /* have finished executing in guest */ 678 #define PHASE_RESET_LPCR 8 /* have reset LPCR to host value */ 679 680 #define ALL(p) (((p) << 24) | ((p) << 16) | ((p) << 8) | (p)) 681 682 static void wait_for_sync(struct kvm_split_mode *sip, int phase) 683 { 684 int thr = local_paca->kvm_hstate.tid; 685 686 sip->lpcr_sync.phase[thr] |= phase; 687 phase = ALL(phase); 688 while ((sip->lpcr_sync.allphases & phase) != phase) { 689 HMT_low(); 690 barrier(); 691 } 692 HMT_medium(); 693 } 694 695 void kvmhv_p9_set_lpcr(struct kvm_split_mode *sip) 696 { 697 int num_sets; 698 unsigned long rb, set; 699 700 /* wait for every other thread to get to real mode */ 701 wait_for_sync(sip, PHASE_REALMODE); 702 703 /* Set LPCR and LPIDR */ 704 mtspr(SPRN_LPCR, sip->lpcr_req); 705 mtspr(SPRN_LPID, sip->lpidr_req); 706 isync(); 707 708 /* 709 * P10 will flush all the congruence class with a single tlbiel 710 */ 711 if (cpu_has_feature(CPU_FTR_ARCH_31)) 712 num_sets = 1; 713 else 714 num_sets = POWER9_TLB_SETS_RADIX; 715 716 /* Invalidate the TLB on thread 0 */ 717 if (local_paca->kvm_hstate.tid == 0) { 718 sip->do_set = 0; 719 asm volatile("ptesync" : : : "memory"); 720 for (set = 0; set < num_sets; ++set) { 721 rb = TLBIEL_INVAL_SET_LPID + 722 (set << TLBIEL_INVAL_SET_SHIFT); 723 asm volatile(PPC_TLBIEL(%0, %1, 0, 0, 0) : : 724 "r" (rb), "r" (0)); 725 } 726 asm volatile("ptesync" : : : "memory"); 727 } 728 729 /* indicate that we have done so and wait for others */ 730 wait_for_sync(sip, PHASE_SET_LPCR); 731 /* order read of sip->lpcr_sync.allphases vs. sip->do_set */ 732 smp_rmb(); 733 } 734 735 /* 736 * Called when a thread that has been in the guest needs 737 * to reload the host LPCR value - but only on POWER9 when 738 * running a HPT guest on a radix host. 739 */ 740 void kvmhv_p9_restore_lpcr(struct kvm_split_mode *sip) 741 { 742 /* we're out of the guest... */ 743 wait_for_sync(sip, PHASE_OUT_OF_GUEST); 744 745 mtspr(SPRN_LPID, 0); 746 mtspr(SPRN_LPCR, sip->host_lpcr); 747 isync(); 748 749 if (local_paca->kvm_hstate.tid == 0) { 750 sip->do_restore = 0; 751 smp_wmb(); /* order store of do_restore vs. phase */ 752 } 753 754 wait_for_sync(sip, PHASE_RESET_LPCR); 755 smp_mb(); 756 local_paca->kvm_hstate.kvm_split_mode = NULL; 757 } 758 759 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 760 { 761 vcpu->arch.ceded = 0; 762 if (vcpu->arch.timer_running) { 763 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 764 vcpu->arch.timer_running = 0; 765 } 766 } 767 768 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 769 { 770 /* 771 * Check for illegal transactional state bit combination 772 * and if we find it, force the TS field to a safe state. 773 */ 774 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 775 msr &= ~MSR_TS_MASK; 776 vcpu->arch.shregs.msr = msr; 777 kvmppc_end_cede(vcpu); 778 } 779 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv); 780 781 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 782 { 783 unsigned long msr, pc, new_msr, new_pc; 784 785 msr = kvmppc_get_msr(vcpu); 786 pc = kvmppc_get_pc(vcpu); 787 new_msr = vcpu->arch.intr_msr; 788 new_pc = vec; 789 790 /* If transactional, change to suspend mode on IRQ delivery */ 791 if (MSR_TM_TRANSACTIONAL(msr)) 792 new_msr |= MSR_TS_S; 793 else 794 new_msr |= msr & MSR_TS_MASK; 795 796 /* 797 * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and 798 * applicable. AIL=2 is not supported. 799 * 800 * AIL does not apply to SRESET, MCE, or HMI (which is never 801 * delivered to the guest), and does not apply if IR=0 or DR=0. 802 */ 803 if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET && 804 vec != BOOK3S_INTERRUPT_MACHINE_CHECK && 805 (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 && 806 (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) { 807 new_msr |= MSR_IR | MSR_DR; 808 new_pc += 0xC000000000004000ULL; 809 } 810 811 kvmppc_set_srr0(vcpu, pc); 812 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags); 813 kvmppc_set_pc(vcpu, new_pc); 814 vcpu->arch.shregs.msr = new_msr; 815 } 816 817 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 818 { 819 inject_interrupt(vcpu, vec, srr1_flags); 820 kvmppc_end_cede(vcpu); 821 } 822 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv); 823 824 /* 825 * Is there a PRIV_DOORBELL pending for the guest (on POWER9)? 826 * Can we inject a Decrementer or a External interrupt? 827 */ 828 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu) 829 { 830 int ext; 831 unsigned long lpcr; 832 833 /* Insert EXTERNAL bit into LPCR at the MER bit position */ 834 ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1; 835 lpcr = mfspr(SPRN_LPCR); 836 lpcr |= ext << LPCR_MER_SH; 837 mtspr(SPRN_LPCR, lpcr); 838 isync(); 839 840 if (vcpu->arch.shregs.msr & MSR_EE) { 841 if (ext) { 842 inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0); 843 } else { 844 long int dec = mfspr(SPRN_DEC); 845 if (!(lpcr & LPCR_LD)) 846 dec = (int) dec; 847 if (dec < 0) 848 inject_interrupt(vcpu, 849 BOOK3S_INTERRUPT_DECREMENTER, 0); 850 } 851 } 852 853 if (vcpu->arch.doorbell_request) { 854 mtspr(SPRN_DPDES, 1); 855 vcpu->arch.vcore->dpdes = 1; 856 smp_wmb(); 857 vcpu->arch.doorbell_request = 0; 858 } 859 } 860 861 static void flush_guest_tlb(struct kvm *kvm) 862 { 863 unsigned long rb, set; 864 865 rb = PPC_BIT(52); /* IS = 2 */ 866 if (kvm_is_radix(kvm)) { 867 /* R=1 PRS=1 RIC=2 */ 868 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) 869 : : "r" (rb), "i" (1), "i" (1), "i" (2), 870 "r" (0) : "memory"); 871 for (set = 1; set < kvm->arch.tlb_sets; ++set) { 872 rb += PPC_BIT(51); /* increment set number */ 873 /* R=1 PRS=1 RIC=0 */ 874 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) 875 : : "r" (rb), "i" (1), "i" (1), "i" (0), 876 "r" (0) : "memory"); 877 } 878 asm volatile("ptesync": : :"memory"); 879 asm volatile(PPC_RADIX_INVALIDATE_ERAT_GUEST : : :"memory"); 880 } else { 881 for (set = 0; set < kvm->arch.tlb_sets; ++set) { 882 /* R=0 PRS=0 RIC=0 */ 883 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) 884 : : "r" (rb), "i" (0), "i" (0), "i" (0), 885 "r" (0) : "memory"); 886 rb += PPC_BIT(51); /* increment set number */ 887 } 888 asm volatile("ptesync": : :"memory"); 889 asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT : : :"memory"); 890 } 891 } 892 893 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu, 894 struct kvm_nested_guest *nested) 895 { 896 cpumask_t *need_tlb_flush; 897 898 /* 899 * On POWER9, individual threads can come in here, but the 900 * TLB is shared between the 4 threads in a core, hence 901 * invalidating on one thread invalidates for all. 902 * Thus we make all 4 threads use the same bit. 903 */ 904 if (cpu_has_feature(CPU_FTR_ARCH_300)) 905 pcpu = cpu_first_thread_sibling(pcpu); 906 907 if (nested) 908 need_tlb_flush = &nested->need_tlb_flush; 909 else 910 need_tlb_flush = &kvm->arch.need_tlb_flush; 911 912 if (cpumask_test_cpu(pcpu, need_tlb_flush)) { 913 flush_guest_tlb(kvm); 914 915 /* Clear the bit after the TLB flush */ 916 cpumask_clear_cpu(pcpu, need_tlb_flush); 917 } 918 } 919 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush); 920