xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv_builtin.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm_host.h>
11 #include <linux/preempt.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/sizes.h>
18 #include <linux/cma.h>
19 #include <linux/bitops.h>
20 
21 #include <asm/cputable.h>
22 #include <asm/kvm_ppc.h>
23 #include <asm/kvm_book3s.h>
24 #include <asm/archrandom.h>
25 #include <asm/xics.h>
26 #include <asm/dbell.h>
27 #include <asm/cputhreads.h>
28 #include <asm/io.h>
29 #include <asm/opal.h>
30 #include <asm/smp.h>
31 
32 #define KVM_CMA_CHUNK_ORDER	18
33 
34 /*
35  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
36  * should be power of 2.
37  */
38 #define HPT_ALIGN_PAGES		((1 << 18) >> PAGE_SHIFT) /* 256k */
39 /*
40  * By default we reserve 5% of memory for hash pagetable allocation.
41  */
42 static unsigned long kvm_cma_resv_ratio = 5;
43 
44 static struct cma *kvm_cma;
45 
46 static int __init early_parse_kvm_cma_resv(char *p)
47 {
48 	pr_debug("%s(%s)\n", __func__, p);
49 	if (!p)
50 		return -EINVAL;
51 	return kstrtoul(p, 0, &kvm_cma_resv_ratio);
52 }
53 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
54 
55 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
56 {
57 	VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
58 
59 	return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
60 			 GFP_KERNEL);
61 }
62 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
63 
64 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
65 {
66 	cma_release(kvm_cma, page, nr_pages);
67 }
68 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
69 
70 /**
71  * kvm_cma_reserve() - reserve area for kvm hash pagetable
72  *
73  * This function reserves memory from early allocator. It should be
74  * called by arch specific code once the memblock allocator
75  * has been activated and all other subsystems have already allocated/reserved
76  * memory.
77  */
78 void __init kvm_cma_reserve(void)
79 {
80 	unsigned long align_size;
81 	struct memblock_region *reg;
82 	phys_addr_t selected_size = 0;
83 
84 	/*
85 	 * We need CMA reservation only when we are in HV mode
86 	 */
87 	if (!cpu_has_feature(CPU_FTR_HVMODE))
88 		return;
89 	/*
90 	 * We cannot use memblock_phys_mem_size() here, because
91 	 * memblock_analyze() has not been called yet.
92 	 */
93 	for_each_memblock(memory, reg)
94 		selected_size += memblock_region_memory_end_pfn(reg) -
95 				 memblock_region_memory_base_pfn(reg);
96 
97 	selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
98 	if (selected_size) {
99 		pr_debug("%s: reserving %ld MiB for global area\n", __func__,
100 			 (unsigned long)selected_size / SZ_1M);
101 		align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
102 		cma_declare_contiguous(0, selected_size, 0, align_size,
103 			KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, &kvm_cma);
104 	}
105 }
106 
107 /*
108  * Real-mode H_CONFER implementation.
109  * We check if we are the only vcpu out of this virtual core
110  * still running in the guest and not ceded.  If so, we pop up
111  * to the virtual-mode implementation; if not, just return to
112  * the guest.
113  */
114 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
115 			    unsigned int yield_count)
116 {
117 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
118 	int ptid = local_paca->kvm_hstate.ptid;
119 	int threads_running;
120 	int threads_ceded;
121 	int threads_conferring;
122 	u64 stop = get_tb() + 10 * tb_ticks_per_usec;
123 	int rv = H_SUCCESS; /* => don't yield */
124 
125 	set_bit(ptid, &vc->conferring_threads);
126 	while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
127 		threads_running = VCORE_ENTRY_MAP(vc);
128 		threads_ceded = vc->napping_threads;
129 		threads_conferring = vc->conferring_threads;
130 		if ((threads_ceded | threads_conferring) == threads_running) {
131 			rv = H_TOO_HARD; /* => do yield */
132 			break;
133 		}
134 	}
135 	clear_bit(ptid, &vc->conferring_threads);
136 	return rv;
137 }
138 
139 /*
140  * When running HV mode KVM we need to block certain operations while KVM VMs
141  * exist in the system. We use a counter of VMs to track this.
142  *
143  * One of the operations we need to block is onlining of secondaries, so we
144  * protect hv_vm_count with get/put_online_cpus().
145  */
146 static atomic_t hv_vm_count;
147 
148 void kvm_hv_vm_activated(void)
149 {
150 	get_online_cpus();
151 	atomic_inc(&hv_vm_count);
152 	put_online_cpus();
153 }
154 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
155 
156 void kvm_hv_vm_deactivated(void)
157 {
158 	get_online_cpus();
159 	atomic_dec(&hv_vm_count);
160 	put_online_cpus();
161 }
162 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
163 
164 bool kvm_hv_mode_active(void)
165 {
166 	return atomic_read(&hv_vm_count) != 0;
167 }
168 
169 extern int hcall_real_table[], hcall_real_table_end[];
170 
171 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
172 {
173 	cmd /= 4;
174 	if (cmd < hcall_real_table_end - hcall_real_table &&
175 	    hcall_real_table[cmd])
176 		return 1;
177 
178 	return 0;
179 }
180 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
181 
182 int kvmppc_hwrng_present(void)
183 {
184 	return powernv_hwrng_present();
185 }
186 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
187 
188 long kvmppc_h_random(struct kvm_vcpu *vcpu)
189 {
190 	if (powernv_get_random_real_mode(&vcpu->arch.gpr[4]))
191 		return H_SUCCESS;
192 
193 	return H_HARDWARE;
194 }
195 
196 static inline void rm_writeb(unsigned long paddr, u8 val)
197 {
198 	__asm__ __volatile__("stbcix %0,0,%1"
199 		: : "r" (val), "r" (paddr) : "memory");
200 }
201 
202 /*
203  * Send an interrupt or message to another CPU.
204  * The caller needs to include any barrier needed to order writes
205  * to memory vs. the IPI/message.
206  */
207 void kvmhv_rm_send_ipi(int cpu)
208 {
209 	unsigned long xics_phys;
210 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
211 
212 	/* On POWER9 we can use msgsnd for any destination cpu. */
213 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
214 		msg |= get_hard_smp_processor_id(cpu);
215 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
216 		return;
217 	}
218 	/* On POWER8 for IPIs to threads in the same core, use msgsnd. */
219 	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
220 	    cpu_first_thread_sibling(cpu) ==
221 	    cpu_first_thread_sibling(raw_smp_processor_id())) {
222 		msg |= cpu_thread_in_core(cpu);
223 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
224 		return;
225 	}
226 
227 	/* Else poke the target with an IPI */
228 	xics_phys = paca[cpu].kvm_hstate.xics_phys;
229 	if (xics_phys)
230 		rm_writeb(xics_phys + XICS_MFRR, IPI_PRIORITY);
231 	else
232 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
233 }
234 
235 /*
236  * The following functions are called from the assembly code
237  * in book3s_hv_rmhandlers.S.
238  */
239 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
240 {
241 	int cpu = vc->pcpu;
242 
243 	/* Order setting of exit map vs. msgsnd/IPI */
244 	smp_mb();
245 	for (; active; active >>= 1, ++cpu)
246 		if (active & 1)
247 			kvmhv_rm_send_ipi(cpu);
248 }
249 
250 void kvmhv_commence_exit(int trap)
251 {
252 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
253 	int ptid = local_paca->kvm_hstate.ptid;
254 	struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
255 	int me, ee, i;
256 
257 	/* Set our bit in the threads-exiting-guest map in the 0xff00
258 	   bits of vcore->entry_exit_map */
259 	me = 0x100 << ptid;
260 	do {
261 		ee = vc->entry_exit_map;
262 	} while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
263 
264 	/* Are we the first here? */
265 	if ((ee >> 8) != 0)
266 		return;
267 
268 	/*
269 	 * Trigger the other threads in this vcore to exit the guest.
270 	 * If this is a hypervisor decrementer interrupt then they
271 	 * will be already on their way out of the guest.
272 	 */
273 	if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
274 		kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
275 
276 	/*
277 	 * If we are doing dynamic micro-threading, interrupt the other
278 	 * subcores to pull them out of their guests too.
279 	 */
280 	if (!sip)
281 		return;
282 
283 	for (i = 0; i < MAX_SUBCORES; ++i) {
284 		vc = sip->master_vcs[i];
285 		if (!vc)
286 			break;
287 		do {
288 			ee = vc->entry_exit_map;
289 			/* Already asked to exit? */
290 			if ((ee >> 8) != 0)
291 				break;
292 		} while (cmpxchg(&vc->entry_exit_map, ee,
293 				 ee | VCORE_EXIT_REQ) != ee);
294 		if ((ee >> 8) == 0)
295 			kvmhv_interrupt_vcore(vc, ee);
296 	}
297 }
298 
299 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
300 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
301 
302 #ifdef CONFIG_KVM_XICS
303 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
304 					 u32 xisr)
305 {
306 	int i;
307 
308 	/*
309 	 * We access the mapped array here without a lock.  That
310 	 * is safe because we never reduce the number of entries
311 	 * in the array and we never change the v_hwirq field of
312 	 * an entry once it is set.
313 	 *
314 	 * We have also carefully ordered the stores in the writer
315 	 * and the loads here in the reader, so that if we find a matching
316 	 * hwirq here, the associated GSI and irq_desc fields are valid.
317 	 */
318 	for (i = 0; i < pimap->n_mapped; i++)  {
319 		if (xisr == pimap->mapped[i].r_hwirq) {
320 			/*
321 			 * Order subsequent reads in the caller to serialize
322 			 * with the writer.
323 			 */
324 			smp_rmb();
325 			return &pimap->mapped[i];
326 		}
327 	}
328 	return NULL;
329 }
330 
331 /*
332  * If we have an interrupt that's not an IPI, check if we have a
333  * passthrough adapter and if so, check if this external interrupt
334  * is for the adapter.
335  * We will attempt to deliver the IRQ directly to the target VCPU's
336  * ICP, the virtual ICP (based on affinity - the xive value in ICS).
337  *
338  * If the delivery fails or if this is not for a passthrough adapter,
339  * return to the host to handle this interrupt. We earlier
340  * saved a copy of the XIRR in the PACA, it will be picked up by
341  * the host ICP driver.
342  */
343 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
344 {
345 	struct kvmppc_passthru_irqmap *pimap;
346 	struct kvmppc_irq_map *irq_map;
347 	struct kvm_vcpu *vcpu;
348 
349 	vcpu = local_paca->kvm_hstate.kvm_vcpu;
350 	if (!vcpu)
351 		return 1;
352 	pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
353 	if (!pimap)
354 		return 1;
355 	irq_map = get_irqmap(pimap, xisr);
356 	if (!irq_map)
357 		return 1;
358 
359 	/* We're handling this interrupt, generic code doesn't need to */
360 	local_paca->kvm_hstate.saved_xirr = 0;
361 
362 	return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
363 }
364 
365 #else
366 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
367 {
368 	return 1;
369 }
370 #endif
371 
372 /*
373  * Determine what sort of external interrupt is pending (if any).
374  * Returns:
375  *	0 if no interrupt is pending
376  *	1 if an interrupt is pending that needs to be handled by the host
377  *	2 Passthrough that needs completion in the host
378  *	-1 if there was a guest wakeup IPI (which has now been cleared)
379  *	-2 if there is PCI passthrough external interrupt that was handled
380  */
381 static long kvmppc_read_one_intr(bool *again);
382 
383 long kvmppc_read_intr(void)
384 {
385 	long ret = 0;
386 	long rc;
387 	bool again;
388 
389 	do {
390 		again = false;
391 		rc = kvmppc_read_one_intr(&again);
392 		if (rc && (ret == 0 || rc > ret))
393 			ret = rc;
394 	} while (again);
395 	return ret;
396 }
397 
398 static long kvmppc_read_one_intr(bool *again)
399 {
400 	unsigned long xics_phys;
401 	u32 h_xirr;
402 	__be32 xirr;
403 	u32 xisr;
404 	u8 host_ipi;
405 	int64_t rc;
406 
407 	/* see if a host IPI is pending */
408 	host_ipi = local_paca->kvm_hstate.host_ipi;
409 	if (host_ipi)
410 		return 1;
411 
412 	/* Now read the interrupt from the ICP */
413 	xics_phys = local_paca->kvm_hstate.xics_phys;
414 	rc = 0;
415 	if (!xics_phys)
416 		rc = opal_int_get_xirr(&xirr, false);
417 	else
418 		xirr = _lwzcix(xics_phys + XICS_XIRR);
419 	if (rc < 0)
420 		return 1;
421 
422 	/*
423 	 * Save XIRR for later. Since we get control in reverse endian
424 	 * on LE systems, save it byte reversed and fetch it back in
425 	 * host endian. Note that xirr is the value read from the
426 	 * XIRR register, while h_xirr is the host endian version.
427 	 */
428 	h_xirr = be32_to_cpu(xirr);
429 	local_paca->kvm_hstate.saved_xirr = h_xirr;
430 	xisr = h_xirr & 0xffffff;
431 	/*
432 	 * Ensure that the store/load complete to guarantee all side
433 	 * effects of loading from XIRR has completed
434 	 */
435 	smp_mb();
436 
437 	/* if nothing pending in the ICP */
438 	if (!xisr)
439 		return 0;
440 
441 	/* We found something in the ICP...
442 	 *
443 	 * If it is an IPI, clear the MFRR and EOI it.
444 	 */
445 	if (xisr == XICS_IPI) {
446 		rc = 0;
447 		if (xics_phys) {
448 			_stbcix(xics_phys + XICS_MFRR, 0xff);
449 			_stwcix(xics_phys + XICS_XIRR, xirr);
450 		} else {
451 			opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
452 			rc = opal_int_eoi(h_xirr);
453 		}
454 		/* If rc > 0, there is another interrupt pending */
455 		*again = rc > 0;
456 
457 		/*
458 		 * Need to ensure side effects of above stores
459 		 * complete before proceeding.
460 		 */
461 		smp_mb();
462 
463 		/*
464 		 * We need to re-check host IPI now in case it got set in the
465 		 * meantime. If it's clear, we bounce the interrupt to the
466 		 * guest
467 		 */
468 		host_ipi = local_paca->kvm_hstate.host_ipi;
469 		if (unlikely(host_ipi != 0)) {
470 			/* We raced with the host,
471 			 * we need to resend that IPI, bummer
472 			 */
473 			if (xics_phys)
474 				_stbcix(xics_phys + XICS_MFRR, IPI_PRIORITY);
475 			else
476 				opal_int_set_mfrr(hard_smp_processor_id(),
477 						  IPI_PRIORITY);
478 			/* Let side effects complete */
479 			smp_mb();
480 			return 1;
481 		}
482 
483 		/* OK, it's an IPI for us */
484 		local_paca->kvm_hstate.saved_xirr = 0;
485 		return -1;
486 	}
487 
488 	return kvmppc_check_passthru(xisr, xirr, again);
489 }
490