1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 */ 5 6 #include <linux/cpu.h> 7 #include <linux/kvm_host.h> 8 #include <linux/preempt.h> 9 #include <linux/export.h> 10 #include <linux/sched.h> 11 #include <linux/spinlock.h> 12 #include <linux/init.h> 13 #include <linux/memblock.h> 14 #include <linux/sizes.h> 15 #include <linux/cma.h> 16 #include <linux/bitops.h> 17 18 #include <asm/cputable.h> 19 #include <asm/interrupt.h> 20 #include <asm/kvm_ppc.h> 21 #include <asm/kvm_book3s.h> 22 #include <asm/machdep.h> 23 #include <asm/xics.h> 24 #include <asm/xive.h> 25 #include <asm/dbell.h> 26 #include <asm/cputhreads.h> 27 #include <asm/io.h> 28 #include <asm/opal.h> 29 #include <asm/smp.h> 30 31 #define KVM_CMA_CHUNK_ORDER 18 32 33 #include "book3s_xics.h" 34 #include "book3s_xive.h" 35 36 /* 37 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206) 38 * should be power of 2. 39 */ 40 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */ 41 /* 42 * By default we reserve 5% of memory for hash pagetable allocation. 43 */ 44 static unsigned long kvm_cma_resv_ratio = 5; 45 46 static struct cma *kvm_cma; 47 48 static int __init early_parse_kvm_cma_resv(char *p) 49 { 50 pr_debug("%s(%s)\n", __func__, p); 51 if (!p) 52 return -EINVAL; 53 return kstrtoul(p, 0, &kvm_cma_resv_ratio); 54 } 55 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv); 56 57 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages) 58 { 59 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT); 60 61 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES), 62 false); 63 } 64 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma); 65 66 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages) 67 { 68 cma_release(kvm_cma, page, nr_pages); 69 } 70 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma); 71 72 /** 73 * kvm_cma_reserve() - reserve area for kvm hash pagetable 74 * 75 * This function reserves memory from early allocator. It should be 76 * called by arch specific code once the memblock allocator 77 * has been activated and all other subsystems have already allocated/reserved 78 * memory. 79 */ 80 void __init kvm_cma_reserve(void) 81 { 82 unsigned long align_size; 83 phys_addr_t selected_size; 84 85 /* 86 * We need CMA reservation only when we are in HV mode 87 */ 88 if (!cpu_has_feature(CPU_FTR_HVMODE)) 89 return; 90 91 selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100); 92 if (selected_size) { 93 pr_info("%s: reserving %ld MiB for global area\n", __func__, 94 (unsigned long)selected_size / SZ_1M); 95 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT; 96 cma_declare_contiguous(0, selected_size, 0, align_size, 97 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma", 98 &kvm_cma); 99 } 100 } 101 102 /* 103 * Real-mode H_CONFER implementation. 104 * We check if we are the only vcpu out of this virtual core 105 * still running in the guest and not ceded. If so, we pop up 106 * to the virtual-mode implementation; if not, just return to 107 * the guest. 108 */ 109 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target, 110 unsigned int yield_count) 111 { 112 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; 113 int ptid = local_paca->kvm_hstate.ptid; 114 int threads_running; 115 int threads_ceded; 116 int threads_conferring; 117 u64 stop = get_tb() + 10 * tb_ticks_per_usec; 118 int rv = H_SUCCESS; /* => don't yield */ 119 120 set_bit(ptid, &vc->conferring_threads); 121 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) { 122 threads_running = VCORE_ENTRY_MAP(vc); 123 threads_ceded = vc->napping_threads; 124 threads_conferring = vc->conferring_threads; 125 if ((threads_ceded | threads_conferring) == threads_running) { 126 rv = H_TOO_HARD; /* => do yield */ 127 break; 128 } 129 } 130 clear_bit(ptid, &vc->conferring_threads); 131 return rv; 132 } 133 134 /* 135 * When running HV mode KVM we need to block certain operations while KVM VMs 136 * exist in the system. We use a counter of VMs to track this. 137 * 138 * One of the operations we need to block is onlining of secondaries, so we 139 * protect hv_vm_count with cpus_read_lock/unlock(). 140 */ 141 static atomic_t hv_vm_count; 142 143 void kvm_hv_vm_activated(void) 144 { 145 cpus_read_lock(); 146 atomic_inc(&hv_vm_count); 147 cpus_read_unlock(); 148 } 149 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated); 150 151 void kvm_hv_vm_deactivated(void) 152 { 153 cpus_read_lock(); 154 atomic_dec(&hv_vm_count); 155 cpus_read_unlock(); 156 } 157 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated); 158 159 bool kvm_hv_mode_active(void) 160 { 161 return atomic_read(&hv_vm_count) != 0; 162 } 163 164 extern int hcall_real_table[], hcall_real_table_end[]; 165 166 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd) 167 { 168 cmd /= 4; 169 if (cmd < hcall_real_table_end - hcall_real_table && 170 hcall_real_table[cmd]) 171 return 1; 172 173 return 0; 174 } 175 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode); 176 177 int kvmppc_hwrng_present(void) 178 { 179 return ppc_md.get_random_seed != NULL; 180 } 181 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present); 182 183 long kvmppc_rm_h_random(struct kvm_vcpu *vcpu) 184 { 185 if (ppc_md.get_random_seed && 186 ppc_md.get_random_seed(&vcpu->arch.regs.gpr[4])) 187 return H_SUCCESS; 188 189 return H_HARDWARE; 190 } 191 192 /* 193 * Send an interrupt or message to another CPU. 194 * The caller needs to include any barrier needed to order writes 195 * to memory vs. the IPI/message. 196 */ 197 void kvmhv_rm_send_ipi(int cpu) 198 { 199 void __iomem *xics_phys; 200 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 201 202 /* On POWER9 we can use msgsnd for any destination cpu. */ 203 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 204 msg |= get_hard_smp_processor_id(cpu); 205 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 206 return; 207 } 208 209 /* On POWER8 for IPIs to threads in the same core, use msgsnd. */ 210 if (cpu_has_feature(CPU_FTR_ARCH_207S) && 211 cpu_first_thread_sibling(cpu) == 212 cpu_first_thread_sibling(raw_smp_processor_id())) { 213 msg |= cpu_thread_in_core(cpu); 214 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 215 return; 216 } 217 218 /* We should never reach this */ 219 if (WARN_ON_ONCE(xics_on_xive())) 220 return; 221 222 /* Else poke the target with an IPI */ 223 xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys; 224 if (xics_phys) 225 __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR); 226 else 227 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 228 } 229 230 /* 231 * The following functions are called from the assembly code 232 * in book3s_hv_rmhandlers.S. 233 */ 234 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active) 235 { 236 int cpu = vc->pcpu; 237 238 /* Order setting of exit map vs. msgsnd/IPI */ 239 smp_mb(); 240 for (; active; active >>= 1, ++cpu) 241 if (active & 1) 242 kvmhv_rm_send_ipi(cpu); 243 } 244 245 void kvmhv_commence_exit(int trap) 246 { 247 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; 248 int ptid = local_paca->kvm_hstate.ptid; 249 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode; 250 int me, ee, i; 251 252 /* Set our bit in the threads-exiting-guest map in the 0xff00 253 bits of vcore->entry_exit_map */ 254 me = 0x100 << ptid; 255 do { 256 ee = vc->entry_exit_map; 257 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee); 258 259 /* Are we the first here? */ 260 if ((ee >> 8) != 0) 261 return; 262 263 /* 264 * Trigger the other threads in this vcore to exit the guest. 265 * If this is a hypervisor decrementer interrupt then they 266 * will be already on their way out of the guest. 267 */ 268 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER) 269 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid)); 270 271 /* 272 * If we are doing dynamic micro-threading, interrupt the other 273 * subcores to pull them out of their guests too. 274 */ 275 if (!sip) 276 return; 277 278 for (i = 0; i < MAX_SUBCORES; ++i) { 279 vc = sip->vc[i]; 280 if (!vc) 281 break; 282 do { 283 ee = vc->entry_exit_map; 284 /* Already asked to exit? */ 285 if ((ee >> 8) != 0) 286 break; 287 } while (cmpxchg(&vc->entry_exit_map, ee, 288 ee | VCORE_EXIT_REQ) != ee); 289 if ((ee >> 8) == 0) 290 kvmhv_interrupt_vcore(vc, ee); 291 } 292 } 293 294 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv; 295 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv); 296 297 #ifdef CONFIG_KVM_XICS 298 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap, 299 u32 xisr) 300 { 301 int i; 302 303 /* 304 * We access the mapped array here without a lock. That 305 * is safe because we never reduce the number of entries 306 * in the array and we never change the v_hwirq field of 307 * an entry once it is set. 308 * 309 * We have also carefully ordered the stores in the writer 310 * and the loads here in the reader, so that if we find a matching 311 * hwirq here, the associated GSI and irq_desc fields are valid. 312 */ 313 for (i = 0; i < pimap->n_mapped; i++) { 314 if (xisr == pimap->mapped[i].r_hwirq) { 315 /* 316 * Order subsequent reads in the caller to serialize 317 * with the writer. 318 */ 319 smp_rmb(); 320 return &pimap->mapped[i]; 321 } 322 } 323 return NULL; 324 } 325 326 /* 327 * If we have an interrupt that's not an IPI, check if we have a 328 * passthrough adapter and if so, check if this external interrupt 329 * is for the adapter. 330 * We will attempt to deliver the IRQ directly to the target VCPU's 331 * ICP, the virtual ICP (based on affinity - the xive value in ICS). 332 * 333 * If the delivery fails or if this is not for a passthrough adapter, 334 * return to the host to handle this interrupt. We earlier 335 * saved a copy of the XIRR in the PACA, it will be picked up by 336 * the host ICP driver. 337 */ 338 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) 339 { 340 struct kvmppc_passthru_irqmap *pimap; 341 struct kvmppc_irq_map *irq_map; 342 struct kvm_vcpu *vcpu; 343 344 vcpu = local_paca->kvm_hstate.kvm_vcpu; 345 if (!vcpu) 346 return 1; 347 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm); 348 if (!pimap) 349 return 1; 350 irq_map = get_irqmap(pimap, xisr); 351 if (!irq_map) 352 return 1; 353 354 /* We're handling this interrupt, generic code doesn't need to */ 355 local_paca->kvm_hstate.saved_xirr = 0; 356 357 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again); 358 } 359 360 #else 361 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) 362 { 363 return 1; 364 } 365 #endif 366 367 /* 368 * Determine what sort of external interrupt is pending (if any). 369 * Returns: 370 * 0 if no interrupt is pending 371 * 1 if an interrupt is pending that needs to be handled by the host 372 * 2 Passthrough that needs completion in the host 373 * -1 if there was a guest wakeup IPI (which has now been cleared) 374 * -2 if there is PCI passthrough external interrupt that was handled 375 */ 376 static long kvmppc_read_one_intr(bool *again); 377 378 long kvmppc_read_intr(void) 379 { 380 long ret = 0; 381 long rc; 382 bool again; 383 384 if (xive_enabled()) 385 return 1; 386 387 do { 388 again = false; 389 rc = kvmppc_read_one_intr(&again); 390 if (rc && (ret == 0 || rc > ret)) 391 ret = rc; 392 } while (again); 393 return ret; 394 } 395 396 static long kvmppc_read_one_intr(bool *again) 397 { 398 void __iomem *xics_phys; 399 u32 h_xirr; 400 __be32 xirr; 401 u32 xisr; 402 u8 host_ipi; 403 int64_t rc; 404 405 if (xive_enabled()) 406 return 1; 407 408 /* see if a host IPI is pending */ 409 host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi); 410 if (host_ipi) 411 return 1; 412 413 /* Now read the interrupt from the ICP */ 414 xics_phys = local_paca->kvm_hstate.xics_phys; 415 rc = 0; 416 if (!xics_phys) 417 rc = opal_int_get_xirr(&xirr, false); 418 else 419 xirr = __raw_rm_readl(xics_phys + XICS_XIRR); 420 if (rc < 0) 421 return 1; 422 423 /* 424 * Save XIRR for later. Since we get control in reverse endian 425 * on LE systems, save it byte reversed and fetch it back in 426 * host endian. Note that xirr is the value read from the 427 * XIRR register, while h_xirr is the host endian version. 428 */ 429 h_xirr = be32_to_cpu(xirr); 430 local_paca->kvm_hstate.saved_xirr = h_xirr; 431 xisr = h_xirr & 0xffffff; 432 /* 433 * Ensure that the store/load complete to guarantee all side 434 * effects of loading from XIRR has completed 435 */ 436 smp_mb(); 437 438 /* if nothing pending in the ICP */ 439 if (!xisr) 440 return 0; 441 442 /* We found something in the ICP... 443 * 444 * If it is an IPI, clear the MFRR and EOI it. 445 */ 446 if (xisr == XICS_IPI) { 447 rc = 0; 448 if (xics_phys) { 449 __raw_rm_writeb(0xff, xics_phys + XICS_MFRR); 450 __raw_rm_writel(xirr, xics_phys + XICS_XIRR); 451 } else { 452 opal_int_set_mfrr(hard_smp_processor_id(), 0xff); 453 rc = opal_int_eoi(h_xirr); 454 } 455 /* If rc > 0, there is another interrupt pending */ 456 *again = rc > 0; 457 458 /* 459 * Need to ensure side effects of above stores 460 * complete before proceeding. 461 */ 462 smp_mb(); 463 464 /* 465 * We need to re-check host IPI now in case it got set in the 466 * meantime. If it's clear, we bounce the interrupt to the 467 * guest 468 */ 469 host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi); 470 if (unlikely(host_ipi != 0)) { 471 /* We raced with the host, 472 * we need to resend that IPI, bummer 473 */ 474 if (xics_phys) 475 __raw_rm_writeb(IPI_PRIORITY, 476 xics_phys + XICS_MFRR); 477 else 478 opal_int_set_mfrr(hard_smp_processor_id(), 479 IPI_PRIORITY); 480 /* Let side effects complete */ 481 smp_mb(); 482 return 1; 483 } 484 485 /* OK, it's an IPI for us */ 486 local_paca->kvm_hstate.saved_xirr = 0; 487 return -1; 488 } 489 490 return kvmppc_check_passthru(xisr, xirr, again); 491 } 492 493 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 494 { 495 vcpu->arch.ceded = 0; 496 if (vcpu->arch.timer_running) { 497 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 498 vcpu->arch.timer_running = 0; 499 } 500 } 501 502 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 503 { 504 /* Guest must always run with ME enabled, HV disabled. */ 505 msr = (msr | MSR_ME) & ~MSR_HV; 506 507 /* 508 * Check for illegal transactional state bit combination 509 * and if we find it, force the TS field to a safe state. 510 */ 511 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 512 msr &= ~MSR_TS_MASK; 513 vcpu->arch.shregs.msr = msr; 514 kvmppc_end_cede(vcpu); 515 } 516 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv); 517 518 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 519 { 520 unsigned long msr, pc, new_msr, new_pc; 521 522 msr = kvmppc_get_msr(vcpu); 523 pc = kvmppc_get_pc(vcpu); 524 new_msr = vcpu->arch.intr_msr; 525 new_pc = vec; 526 527 /* If transactional, change to suspend mode on IRQ delivery */ 528 if (MSR_TM_TRANSACTIONAL(msr)) 529 new_msr |= MSR_TS_S; 530 else 531 new_msr |= msr & MSR_TS_MASK; 532 533 /* 534 * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and 535 * applicable. AIL=2 is not supported. 536 * 537 * AIL does not apply to SRESET, MCE, or HMI (which is never 538 * delivered to the guest), and does not apply if IR=0 or DR=0. 539 */ 540 if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET && 541 vec != BOOK3S_INTERRUPT_MACHINE_CHECK && 542 (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 && 543 (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) { 544 new_msr |= MSR_IR | MSR_DR; 545 new_pc += 0xC000000000004000ULL; 546 } 547 548 kvmppc_set_srr0(vcpu, pc); 549 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags); 550 kvmppc_set_pc(vcpu, new_pc); 551 vcpu->arch.shregs.msr = new_msr; 552 } 553 554 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 555 { 556 inject_interrupt(vcpu, vec, srr1_flags); 557 kvmppc_end_cede(vcpu); 558 } 559 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv); 560 561 /* 562 * Is there a PRIV_DOORBELL pending for the guest (on POWER9)? 563 * Can we inject a Decrementer or a External interrupt? 564 */ 565 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu) 566 { 567 int ext; 568 unsigned long lpcr; 569 570 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 571 572 /* Insert EXTERNAL bit into LPCR at the MER bit position */ 573 ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1; 574 lpcr = mfspr(SPRN_LPCR); 575 lpcr |= ext << LPCR_MER_SH; 576 mtspr(SPRN_LPCR, lpcr); 577 isync(); 578 579 if (vcpu->arch.shregs.msr & MSR_EE) { 580 if (ext) { 581 inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0); 582 } else { 583 long int dec = mfspr(SPRN_DEC); 584 if (!(lpcr & LPCR_LD)) 585 dec = (int) dec; 586 if (dec < 0) 587 inject_interrupt(vcpu, 588 BOOK3S_INTERRUPT_DECREMENTER, 0); 589 } 590 } 591 592 if (vcpu->arch.doorbell_request) { 593 mtspr(SPRN_DPDES, 1); 594 vcpu->arch.vcore->dpdes = 1; 595 smp_wmb(); 596 vcpu->arch.doorbell_request = 0; 597 } 598 } 599 600 static void flush_guest_tlb(struct kvm *kvm) 601 { 602 unsigned long rb, set; 603 604 rb = PPC_BIT(52); /* IS = 2 */ 605 for (set = 0; set < kvm->arch.tlb_sets; ++set) { 606 /* R=0 PRS=0 RIC=0 */ 607 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) 608 : : "r" (rb), "i" (0), "i" (0), "i" (0), 609 "r" (0) : "memory"); 610 rb += PPC_BIT(51); /* increment set number */ 611 } 612 asm volatile("ptesync": : :"memory"); 613 } 614 615 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu) 616 { 617 if (cpumask_test_cpu(pcpu, &kvm->arch.need_tlb_flush)) { 618 flush_guest_tlb(kvm); 619 620 /* Clear the bit after the TLB flush */ 621 cpumask_clear_cpu(pcpu, &kvm->arch.need_tlb_flush); 622 } 623 } 624 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush); 625