1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  */
5 
6 #include <linux/cpu.h>
7 #include <linux/kvm_host.h>
8 #include <linux/preempt.h>
9 #include <linux/export.h>
10 #include <linux/sched.h>
11 #include <linux/spinlock.h>
12 #include <linux/init.h>
13 #include <linux/memblock.h>
14 #include <linux/sizes.h>
15 #include <linux/cma.h>
16 #include <linux/bitops.h>
17 
18 #include <asm/asm-prototypes.h>
19 #include <asm/cputable.h>
20 #include <asm/interrupt.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/kvm_book3s.h>
23 #include <asm/archrandom.h>
24 #include <asm/xics.h>
25 #include <asm/xive.h>
26 #include <asm/dbell.h>
27 #include <asm/cputhreads.h>
28 #include <asm/io.h>
29 #include <asm/opal.h>
30 #include <asm/smp.h>
31 
32 #define KVM_CMA_CHUNK_ORDER	18
33 
34 #include "book3s_xics.h"
35 #include "book3s_xive.h"
36 
37 /*
38  * The XIVE module will populate these when it loads
39  */
40 unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu);
41 unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server);
42 int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server,
43 		       unsigned long mfrr);
44 int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr);
45 int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr);
46 EXPORT_SYMBOL_GPL(__xive_vm_h_xirr);
47 EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll);
48 EXPORT_SYMBOL_GPL(__xive_vm_h_ipi);
49 EXPORT_SYMBOL_GPL(__xive_vm_h_cppr);
50 EXPORT_SYMBOL_GPL(__xive_vm_h_eoi);
51 
52 /*
53  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
54  * should be power of 2.
55  */
56 #define HPT_ALIGN_PAGES		((1 << 18) >> PAGE_SHIFT) /* 256k */
57 /*
58  * By default we reserve 5% of memory for hash pagetable allocation.
59  */
60 static unsigned long kvm_cma_resv_ratio = 5;
61 
62 static struct cma *kvm_cma;
63 
64 static int __init early_parse_kvm_cma_resv(char *p)
65 {
66 	pr_debug("%s(%s)\n", __func__, p);
67 	if (!p)
68 		return -EINVAL;
69 	return kstrtoul(p, 0, &kvm_cma_resv_ratio);
70 }
71 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
72 
73 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
74 {
75 	VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
76 
77 	return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
78 			 false);
79 }
80 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
81 
82 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
83 {
84 	cma_release(kvm_cma, page, nr_pages);
85 }
86 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
87 
88 /**
89  * kvm_cma_reserve() - reserve area for kvm hash pagetable
90  *
91  * This function reserves memory from early allocator. It should be
92  * called by arch specific code once the memblock allocator
93  * has been activated and all other subsystems have already allocated/reserved
94  * memory.
95  */
96 void __init kvm_cma_reserve(void)
97 {
98 	unsigned long align_size;
99 	phys_addr_t selected_size;
100 
101 	/*
102 	 * We need CMA reservation only when we are in HV mode
103 	 */
104 	if (!cpu_has_feature(CPU_FTR_HVMODE))
105 		return;
106 
107 	selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100);
108 	if (selected_size) {
109 		pr_info("%s: reserving %ld MiB for global area\n", __func__,
110 			 (unsigned long)selected_size / SZ_1M);
111 		align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
112 		cma_declare_contiguous(0, selected_size, 0, align_size,
113 			KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
114 			&kvm_cma);
115 	}
116 }
117 
118 /*
119  * Real-mode H_CONFER implementation.
120  * We check if we are the only vcpu out of this virtual core
121  * still running in the guest and not ceded.  If so, we pop up
122  * to the virtual-mode implementation; if not, just return to
123  * the guest.
124  */
125 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
126 			    unsigned int yield_count)
127 {
128 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
129 	int ptid = local_paca->kvm_hstate.ptid;
130 	int threads_running;
131 	int threads_ceded;
132 	int threads_conferring;
133 	u64 stop = get_tb() + 10 * tb_ticks_per_usec;
134 	int rv = H_SUCCESS; /* => don't yield */
135 
136 	set_bit(ptid, &vc->conferring_threads);
137 	while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
138 		threads_running = VCORE_ENTRY_MAP(vc);
139 		threads_ceded = vc->napping_threads;
140 		threads_conferring = vc->conferring_threads;
141 		if ((threads_ceded | threads_conferring) == threads_running) {
142 			rv = H_TOO_HARD; /* => do yield */
143 			break;
144 		}
145 	}
146 	clear_bit(ptid, &vc->conferring_threads);
147 	return rv;
148 }
149 
150 /*
151  * When running HV mode KVM we need to block certain operations while KVM VMs
152  * exist in the system. We use a counter of VMs to track this.
153  *
154  * One of the operations we need to block is onlining of secondaries, so we
155  * protect hv_vm_count with get/put_online_cpus().
156  */
157 static atomic_t hv_vm_count;
158 
159 void kvm_hv_vm_activated(void)
160 {
161 	get_online_cpus();
162 	atomic_inc(&hv_vm_count);
163 	put_online_cpus();
164 }
165 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
166 
167 void kvm_hv_vm_deactivated(void)
168 {
169 	get_online_cpus();
170 	atomic_dec(&hv_vm_count);
171 	put_online_cpus();
172 }
173 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
174 
175 bool kvm_hv_mode_active(void)
176 {
177 	return atomic_read(&hv_vm_count) != 0;
178 }
179 
180 extern int hcall_real_table[], hcall_real_table_end[];
181 
182 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
183 {
184 	cmd /= 4;
185 	if (cmd < hcall_real_table_end - hcall_real_table &&
186 	    hcall_real_table[cmd])
187 		return 1;
188 
189 	return 0;
190 }
191 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
192 
193 int kvmppc_hwrng_present(void)
194 {
195 	return powernv_hwrng_present();
196 }
197 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
198 
199 long kvmppc_h_random(struct kvm_vcpu *vcpu)
200 {
201 	int r;
202 
203 	/* Only need to do the expensive mfmsr() on radix */
204 	if (kvm_is_radix(vcpu->kvm) && (mfmsr() & MSR_IR))
205 		r = powernv_get_random_long(&vcpu->arch.regs.gpr[4]);
206 	else
207 		r = powernv_get_random_real_mode(&vcpu->arch.regs.gpr[4]);
208 	if (r)
209 		return H_SUCCESS;
210 
211 	return H_HARDWARE;
212 }
213 
214 /*
215  * Send an interrupt or message to another CPU.
216  * The caller needs to include any barrier needed to order writes
217  * to memory vs. the IPI/message.
218  */
219 void kvmhv_rm_send_ipi(int cpu)
220 {
221 	void __iomem *xics_phys;
222 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
223 
224 	/* For a nested hypervisor, use the XICS via hcall */
225 	if (kvmhv_on_pseries()) {
226 		unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
227 
228 		plpar_hcall_raw(H_IPI, retbuf, get_hard_smp_processor_id(cpu),
229 				IPI_PRIORITY);
230 		return;
231 	}
232 
233 	/* On POWER9 we can use msgsnd for any destination cpu. */
234 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
235 		msg |= get_hard_smp_processor_id(cpu);
236 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
237 		return;
238 	}
239 
240 	/* On POWER8 for IPIs to threads in the same core, use msgsnd. */
241 	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
242 	    cpu_first_thread_sibling(cpu) ==
243 	    cpu_first_thread_sibling(raw_smp_processor_id())) {
244 		msg |= cpu_thread_in_core(cpu);
245 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
246 		return;
247 	}
248 
249 	/* We should never reach this */
250 	if (WARN_ON_ONCE(xics_on_xive()))
251 	    return;
252 
253 	/* Else poke the target with an IPI */
254 	xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
255 	if (xics_phys)
256 		__raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
257 	else
258 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
259 }
260 
261 /*
262  * The following functions are called from the assembly code
263  * in book3s_hv_rmhandlers.S.
264  */
265 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
266 {
267 	int cpu = vc->pcpu;
268 
269 	/* Order setting of exit map vs. msgsnd/IPI */
270 	smp_mb();
271 	for (; active; active >>= 1, ++cpu)
272 		if (active & 1)
273 			kvmhv_rm_send_ipi(cpu);
274 }
275 
276 void kvmhv_commence_exit(int trap)
277 {
278 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
279 	int ptid = local_paca->kvm_hstate.ptid;
280 	struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
281 	int me, ee, i, t;
282 	int cpu0;
283 
284 	/* Set our bit in the threads-exiting-guest map in the 0xff00
285 	   bits of vcore->entry_exit_map */
286 	me = 0x100 << ptid;
287 	do {
288 		ee = vc->entry_exit_map;
289 	} while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
290 
291 	/* Are we the first here? */
292 	if ((ee >> 8) != 0)
293 		return;
294 
295 	/*
296 	 * Trigger the other threads in this vcore to exit the guest.
297 	 * If this is a hypervisor decrementer interrupt then they
298 	 * will be already on their way out of the guest.
299 	 */
300 	if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
301 		kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
302 
303 	/*
304 	 * If we are doing dynamic micro-threading, interrupt the other
305 	 * subcores to pull them out of their guests too.
306 	 */
307 	if (!sip)
308 		return;
309 
310 	for (i = 0; i < MAX_SUBCORES; ++i) {
311 		vc = sip->vc[i];
312 		if (!vc)
313 			break;
314 		do {
315 			ee = vc->entry_exit_map;
316 			/* Already asked to exit? */
317 			if ((ee >> 8) != 0)
318 				break;
319 		} while (cmpxchg(&vc->entry_exit_map, ee,
320 				 ee | VCORE_EXIT_REQ) != ee);
321 		if ((ee >> 8) == 0)
322 			kvmhv_interrupt_vcore(vc, ee);
323 	}
324 
325 	/*
326 	 * On POWER9 when running a HPT guest on a radix host (sip != NULL),
327 	 * we have to interrupt inactive CPU threads to get them to
328 	 * restore the host LPCR value.
329 	 */
330 	if (sip->lpcr_req) {
331 		if (cmpxchg(&sip->do_restore, 0, 1) == 0) {
332 			vc = local_paca->kvm_hstate.kvm_vcore;
333 			cpu0 = vc->pcpu + ptid - local_paca->kvm_hstate.tid;
334 			for (t = 1; t < threads_per_core; ++t) {
335 				if (sip->napped[t])
336 					kvmhv_rm_send_ipi(cpu0 + t);
337 			}
338 		}
339 	}
340 }
341 
342 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
343 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
344 
345 #ifdef CONFIG_KVM_XICS
346 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
347 					 u32 xisr)
348 {
349 	int i;
350 
351 	/*
352 	 * We access the mapped array here without a lock.  That
353 	 * is safe because we never reduce the number of entries
354 	 * in the array and we never change the v_hwirq field of
355 	 * an entry once it is set.
356 	 *
357 	 * We have also carefully ordered the stores in the writer
358 	 * and the loads here in the reader, so that if we find a matching
359 	 * hwirq here, the associated GSI and irq_desc fields are valid.
360 	 */
361 	for (i = 0; i < pimap->n_mapped; i++)  {
362 		if (xisr == pimap->mapped[i].r_hwirq) {
363 			/*
364 			 * Order subsequent reads in the caller to serialize
365 			 * with the writer.
366 			 */
367 			smp_rmb();
368 			return &pimap->mapped[i];
369 		}
370 	}
371 	return NULL;
372 }
373 
374 /*
375  * If we have an interrupt that's not an IPI, check if we have a
376  * passthrough adapter and if so, check if this external interrupt
377  * is for the adapter.
378  * We will attempt to deliver the IRQ directly to the target VCPU's
379  * ICP, the virtual ICP (based on affinity - the xive value in ICS).
380  *
381  * If the delivery fails or if this is not for a passthrough adapter,
382  * return to the host to handle this interrupt. We earlier
383  * saved a copy of the XIRR in the PACA, it will be picked up by
384  * the host ICP driver.
385  */
386 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
387 {
388 	struct kvmppc_passthru_irqmap *pimap;
389 	struct kvmppc_irq_map *irq_map;
390 	struct kvm_vcpu *vcpu;
391 
392 	vcpu = local_paca->kvm_hstate.kvm_vcpu;
393 	if (!vcpu)
394 		return 1;
395 	pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
396 	if (!pimap)
397 		return 1;
398 	irq_map = get_irqmap(pimap, xisr);
399 	if (!irq_map)
400 		return 1;
401 
402 	/* We're handling this interrupt, generic code doesn't need to */
403 	local_paca->kvm_hstate.saved_xirr = 0;
404 
405 	return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
406 }
407 
408 #else
409 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
410 {
411 	return 1;
412 }
413 #endif
414 
415 /*
416  * Determine what sort of external interrupt is pending (if any).
417  * Returns:
418  *	0 if no interrupt is pending
419  *	1 if an interrupt is pending that needs to be handled by the host
420  *	2 Passthrough that needs completion in the host
421  *	-1 if there was a guest wakeup IPI (which has now been cleared)
422  *	-2 if there is PCI passthrough external interrupt that was handled
423  */
424 static long kvmppc_read_one_intr(bool *again);
425 
426 long kvmppc_read_intr(void)
427 {
428 	long ret = 0;
429 	long rc;
430 	bool again;
431 
432 	if (xive_enabled())
433 		return 1;
434 
435 	do {
436 		again = false;
437 		rc = kvmppc_read_one_intr(&again);
438 		if (rc && (ret == 0 || rc > ret))
439 			ret = rc;
440 	} while (again);
441 	return ret;
442 }
443 
444 static long kvmppc_read_one_intr(bool *again)
445 {
446 	void __iomem *xics_phys;
447 	u32 h_xirr;
448 	__be32 xirr;
449 	u32 xisr;
450 	u8 host_ipi;
451 	int64_t rc;
452 
453 	if (xive_enabled())
454 		return 1;
455 
456 	/* see if a host IPI is pending */
457 	host_ipi = local_paca->kvm_hstate.host_ipi;
458 	if (host_ipi)
459 		return 1;
460 
461 	/* Now read the interrupt from the ICP */
462 	if (kvmhv_on_pseries()) {
463 		unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
464 
465 		rc = plpar_hcall_raw(H_XIRR, retbuf, 0xFF);
466 		xirr = cpu_to_be32(retbuf[0]);
467 	} else {
468 		xics_phys = local_paca->kvm_hstate.xics_phys;
469 		rc = 0;
470 		if (!xics_phys)
471 			rc = opal_int_get_xirr(&xirr, false);
472 		else
473 			xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
474 	}
475 	if (rc < 0)
476 		return 1;
477 
478 	/*
479 	 * Save XIRR for later. Since we get control in reverse endian
480 	 * on LE systems, save it byte reversed and fetch it back in
481 	 * host endian. Note that xirr is the value read from the
482 	 * XIRR register, while h_xirr is the host endian version.
483 	 */
484 	h_xirr = be32_to_cpu(xirr);
485 	local_paca->kvm_hstate.saved_xirr = h_xirr;
486 	xisr = h_xirr & 0xffffff;
487 	/*
488 	 * Ensure that the store/load complete to guarantee all side
489 	 * effects of loading from XIRR has completed
490 	 */
491 	smp_mb();
492 
493 	/* if nothing pending in the ICP */
494 	if (!xisr)
495 		return 0;
496 
497 	/* We found something in the ICP...
498 	 *
499 	 * If it is an IPI, clear the MFRR and EOI it.
500 	 */
501 	if (xisr == XICS_IPI) {
502 		rc = 0;
503 		if (kvmhv_on_pseries()) {
504 			unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
505 
506 			plpar_hcall_raw(H_IPI, retbuf,
507 					hard_smp_processor_id(), 0xff);
508 			plpar_hcall_raw(H_EOI, retbuf, h_xirr);
509 		} else if (xics_phys) {
510 			__raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
511 			__raw_rm_writel(xirr, xics_phys + XICS_XIRR);
512 		} else {
513 			opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
514 			rc = opal_int_eoi(h_xirr);
515 		}
516 		/* If rc > 0, there is another interrupt pending */
517 		*again = rc > 0;
518 
519 		/*
520 		 * Need to ensure side effects of above stores
521 		 * complete before proceeding.
522 		 */
523 		smp_mb();
524 
525 		/*
526 		 * We need to re-check host IPI now in case it got set in the
527 		 * meantime. If it's clear, we bounce the interrupt to the
528 		 * guest
529 		 */
530 		host_ipi = local_paca->kvm_hstate.host_ipi;
531 		if (unlikely(host_ipi != 0)) {
532 			/* We raced with the host,
533 			 * we need to resend that IPI, bummer
534 			 */
535 			if (kvmhv_on_pseries()) {
536 				unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
537 
538 				plpar_hcall_raw(H_IPI, retbuf,
539 						hard_smp_processor_id(),
540 						IPI_PRIORITY);
541 			} else if (xics_phys)
542 				__raw_rm_writeb(IPI_PRIORITY,
543 						xics_phys + XICS_MFRR);
544 			else
545 				opal_int_set_mfrr(hard_smp_processor_id(),
546 						  IPI_PRIORITY);
547 			/* Let side effects complete */
548 			smp_mb();
549 			return 1;
550 		}
551 
552 		/* OK, it's an IPI for us */
553 		local_paca->kvm_hstate.saved_xirr = 0;
554 		return -1;
555 	}
556 
557 	return kvmppc_check_passthru(xisr, xirr, again);
558 }
559 
560 #ifdef CONFIG_KVM_XICS
561 static inline bool is_rm(void)
562 {
563 	return !(mfmsr() & MSR_DR);
564 }
565 
566 unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu)
567 {
568 	if (!kvmppc_xics_enabled(vcpu))
569 		return H_TOO_HARD;
570 	if (xics_on_xive()) {
571 		if (is_rm())
572 			return xive_rm_h_xirr(vcpu);
573 		if (unlikely(!__xive_vm_h_xirr))
574 			return H_NOT_AVAILABLE;
575 		return __xive_vm_h_xirr(vcpu);
576 	} else
577 		return xics_rm_h_xirr(vcpu);
578 }
579 
580 unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu)
581 {
582 	if (!kvmppc_xics_enabled(vcpu))
583 		return H_TOO_HARD;
584 	vcpu->arch.regs.gpr[5] = get_tb();
585 	if (xics_on_xive()) {
586 		if (is_rm())
587 			return xive_rm_h_xirr(vcpu);
588 		if (unlikely(!__xive_vm_h_xirr))
589 			return H_NOT_AVAILABLE;
590 		return __xive_vm_h_xirr(vcpu);
591 	} else
592 		return xics_rm_h_xirr(vcpu);
593 }
594 
595 unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
596 {
597 	if (!kvmppc_xics_enabled(vcpu))
598 		return H_TOO_HARD;
599 	if (xics_on_xive()) {
600 		if (is_rm())
601 			return xive_rm_h_ipoll(vcpu, server);
602 		if (unlikely(!__xive_vm_h_ipoll))
603 			return H_NOT_AVAILABLE;
604 		return __xive_vm_h_ipoll(vcpu, server);
605 	} else
606 		return H_TOO_HARD;
607 }
608 
609 int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
610 		    unsigned long mfrr)
611 {
612 	if (!kvmppc_xics_enabled(vcpu))
613 		return H_TOO_HARD;
614 	if (xics_on_xive()) {
615 		if (is_rm())
616 			return xive_rm_h_ipi(vcpu, server, mfrr);
617 		if (unlikely(!__xive_vm_h_ipi))
618 			return H_NOT_AVAILABLE;
619 		return __xive_vm_h_ipi(vcpu, server, mfrr);
620 	} else
621 		return xics_rm_h_ipi(vcpu, server, mfrr);
622 }
623 
624 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
625 {
626 	if (!kvmppc_xics_enabled(vcpu))
627 		return H_TOO_HARD;
628 	if (xics_on_xive()) {
629 		if (is_rm())
630 			return xive_rm_h_cppr(vcpu, cppr);
631 		if (unlikely(!__xive_vm_h_cppr))
632 			return H_NOT_AVAILABLE;
633 		return __xive_vm_h_cppr(vcpu, cppr);
634 	} else
635 		return xics_rm_h_cppr(vcpu, cppr);
636 }
637 
638 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
639 {
640 	if (!kvmppc_xics_enabled(vcpu))
641 		return H_TOO_HARD;
642 	if (xics_on_xive()) {
643 		if (is_rm())
644 			return xive_rm_h_eoi(vcpu, xirr);
645 		if (unlikely(!__xive_vm_h_eoi))
646 			return H_NOT_AVAILABLE;
647 		return __xive_vm_h_eoi(vcpu, xirr);
648 	} else
649 		return xics_rm_h_eoi(vcpu, xirr);
650 }
651 #endif /* CONFIG_KVM_XICS */
652 
653 void kvmppc_bad_interrupt(struct pt_regs *regs)
654 {
655 	/*
656 	 * 100 could happen at any time, 200 can happen due to invalid real
657 	 * address access for example (or any time due to a hardware problem).
658 	 */
659 	if (TRAP(regs) == 0x100) {
660 		get_paca()->in_nmi++;
661 		system_reset_exception(regs);
662 		get_paca()->in_nmi--;
663 	} else if (TRAP(regs) == 0x200) {
664 		machine_check_exception(regs);
665 	} else {
666 		die("Bad interrupt in KVM entry/exit code", regs, SIGABRT);
667 	}
668 	panic("Bad KVM trap");
669 }
670 
671 /*
672  * Functions used to switch LPCR HR and UPRT bits on all threads
673  * when entering and exiting HPT guests on a radix host.
674  */
675 
676 #define PHASE_REALMODE		1	/* in real mode */
677 #define PHASE_SET_LPCR		2	/* have set LPCR */
678 #define PHASE_OUT_OF_GUEST	4	/* have finished executing in guest */
679 #define PHASE_RESET_LPCR	8	/* have reset LPCR to host value */
680 
681 #define ALL(p)		(((p) << 24) | ((p) << 16) | ((p) << 8) | (p))
682 
683 static void wait_for_sync(struct kvm_split_mode *sip, int phase)
684 {
685 	int thr = local_paca->kvm_hstate.tid;
686 
687 	sip->lpcr_sync.phase[thr] |= phase;
688 	phase = ALL(phase);
689 	while ((sip->lpcr_sync.allphases & phase) != phase) {
690 		HMT_low();
691 		barrier();
692 	}
693 	HMT_medium();
694 }
695 
696 void kvmhv_p9_set_lpcr(struct kvm_split_mode *sip)
697 {
698 	int num_sets;
699 	unsigned long rb, set;
700 
701 	/* wait for every other thread to get to real mode */
702 	wait_for_sync(sip, PHASE_REALMODE);
703 
704 	/* Set LPCR and LPIDR */
705 	mtspr(SPRN_LPCR, sip->lpcr_req);
706 	mtspr(SPRN_LPID, sip->lpidr_req);
707 	isync();
708 
709 	/*
710 	 * P10 will flush all the congruence class with a single tlbiel
711 	 */
712 	if (cpu_has_feature(CPU_FTR_ARCH_31))
713 		num_sets =  1;
714 	else
715 		num_sets = POWER9_TLB_SETS_RADIX;
716 
717 	/* Invalidate the TLB on thread 0 */
718 	if (local_paca->kvm_hstate.tid == 0) {
719 		sip->do_set = 0;
720 		asm volatile("ptesync" : : : "memory");
721 		for (set = 0; set < num_sets; ++set) {
722 			rb = TLBIEL_INVAL_SET_LPID +
723 				(set << TLBIEL_INVAL_SET_SHIFT);
724 			asm volatile(PPC_TLBIEL(%0, %1, 0, 0, 0) : :
725 				     "r" (rb), "r" (0));
726 		}
727 		asm volatile("ptesync" : : : "memory");
728 	}
729 
730 	/* indicate that we have done so and wait for others */
731 	wait_for_sync(sip, PHASE_SET_LPCR);
732 	/* order read of sip->lpcr_sync.allphases vs. sip->do_set */
733 	smp_rmb();
734 }
735 
736 /*
737  * Called when a thread that has been in the guest needs
738  * to reload the host LPCR value - but only on POWER9 when
739  * running a HPT guest on a radix host.
740  */
741 void kvmhv_p9_restore_lpcr(struct kvm_split_mode *sip)
742 {
743 	/* we're out of the guest... */
744 	wait_for_sync(sip, PHASE_OUT_OF_GUEST);
745 
746 	mtspr(SPRN_LPID, 0);
747 	mtspr(SPRN_LPCR, sip->host_lpcr);
748 	isync();
749 
750 	if (local_paca->kvm_hstate.tid == 0) {
751 		sip->do_restore = 0;
752 		smp_wmb();	/* order store of do_restore vs. phase */
753 	}
754 
755 	wait_for_sync(sip, PHASE_RESET_LPCR);
756 	smp_mb();
757 	local_paca->kvm_hstate.kvm_split_mode = NULL;
758 }
759 
760 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
761 {
762 	vcpu->arch.ceded = 0;
763 	if (vcpu->arch.timer_running) {
764 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
765 		vcpu->arch.timer_running = 0;
766 	}
767 }
768 
769 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
770 {
771 	/*
772 	 * Check for illegal transactional state bit combination
773 	 * and if we find it, force the TS field to a safe state.
774 	 */
775 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
776 		msr &= ~MSR_TS_MASK;
777 	vcpu->arch.shregs.msr = msr;
778 	kvmppc_end_cede(vcpu);
779 }
780 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv);
781 
782 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
783 {
784 	unsigned long msr, pc, new_msr, new_pc;
785 
786 	msr = kvmppc_get_msr(vcpu);
787 	pc = kvmppc_get_pc(vcpu);
788 	new_msr = vcpu->arch.intr_msr;
789 	new_pc = vec;
790 
791 	/* If transactional, change to suspend mode on IRQ delivery */
792 	if (MSR_TM_TRANSACTIONAL(msr))
793 		new_msr |= MSR_TS_S;
794 	else
795 		new_msr |= msr & MSR_TS_MASK;
796 
797 	/*
798 	 * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and
799 	 * applicable. AIL=2 is not supported.
800 	 *
801 	 * AIL does not apply to SRESET, MCE, or HMI (which is never
802 	 * delivered to the guest), and does not apply if IR=0 or DR=0.
803 	 */
804 	if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET &&
805 	    vec != BOOK3S_INTERRUPT_MACHINE_CHECK &&
806 	    (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 &&
807 	    (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) {
808 		new_msr |= MSR_IR | MSR_DR;
809 		new_pc += 0xC000000000004000ULL;
810 	}
811 
812 	kvmppc_set_srr0(vcpu, pc);
813 	kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
814 	kvmppc_set_pc(vcpu, new_pc);
815 	vcpu->arch.shregs.msr = new_msr;
816 }
817 
818 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
819 {
820 	inject_interrupt(vcpu, vec, srr1_flags);
821 	kvmppc_end_cede(vcpu);
822 }
823 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv);
824 
825 /*
826  * Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
827  * Can we inject a Decrementer or a External interrupt?
828  */
829 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
830 {
831 	int ext;
832 	unsigned long lpcr;
833 
834 	/* Insert EXTERNAL bit into LPCR at the MER bit position */
835 	ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
836 	lpcr = mfspr(SPRN_LPCR);
837 	lpcr |= ext << LPCR_MER_SH;
838 	mtspr(SPRN_LPCR, lpcr);
839 	isync();
840 
841 	if (vcpu->arch.shregs.msr & MSR_EE) {
842 		if (ext) {
843 			inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0);
844 		} else {
845 			long int dec = mfspr(SPRN_DEC);
846 			if (!(lpcr & LPCR_LD))
847 				dec = (int) dec;
848 			if (dec < 0)
849 				inject_interrupt(vcpu,
850 					BOOK3S_INTERRUPT_DECREMENTER, 0);
851 		}
852 	}
853 
854 	if (vcpu->arch.doorbell_request) {
855 		mtspr(SPRN_DPDES, 1);
856 		vcpu->arch.vcore->dpdes = 1;
857 		smp_wmb();
858 		vcpu->arch.doorbell_request = 0;
859 	}
860 }
861 
862 static void flush_guest_tlb(struct kvm *kvm)
863 {
864 	unsigned long rb, set;
865 
866 	rb = PPC_BIT(52);	/* IS = 2 */
867 	if (kvm_is_radix(kvm)) {
868 		/* R=1 PRS=1 RIC=2 */
869 		asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
870 			     : : "r" (rb), "i" (1), "i" (1), "i" (2),
871 			       "r" (0) : "memory");
872 		for (set = 1; set < kvm->arch.tlb_sets; ++set) {
873 			rb += PPC_BIT(51);	/* increment set number */
874 			/* R=1 PRS=1 RIC=0 */
875 			asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
876 				     : : "r" (rb), "i" (1), "i" (1), "i" (0),
877 				       "r" (0) : "memory");
878 		}
879 		asm volatile("ptesync": : :"memory");
880 		asm volatile(PPC_RADIX_INVALIDATE_ERAT_GUEST : : :"memory");
881 	} else {
882 		for (set = 0; set < kvm->arch.tlb_sets; ++set) {
883 			/* R=0 PRS=0 RIC=0 */
884 			asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
885 				     : : "r" (rb), "i" (0), "i" (0), "i" (0),
886 				       "r" (0) : "memory");
887 			rb += PPC_BIT(51);	/* increment set number */
888 		}
889 		asm volatile("ptesync": : :"memory");
890 		asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT : : :"memory");
891 	}
892 }
893 
894 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu,
895 				 struct kvm_nested_guest *nested)
896 {
897 	cpumask_t *need_tlb_flush;
898 
899 	/*
900 	 * On POWER9, individual threads can come in here, but the
901 	 * TLB is shared between the 4 threads in a core, hence
902 	 * invalidating on one thread invalidates for all.
903 	 * Thus we make all 4 threads use the same bit.
904 	 */
905 	if (cpu_has_feature(CPU_FTR_ARCH_300))
906 		pcpu = cpu_first_thread_sibling(pcpu);
907 
908 	if (nested)
909 		need_tlb_flush = &nested->need_tlb_flush;
910 	else
911 		need_tlb_flush = &kvm->arch.need_tlb_flush;
912 
913 	if (cpumask_test_cpu(pcpu, need_tlb_flush)) {
914 		flush_guest_tlb(kvm);
915 
916 		/* Clear the bit after the TLB flush */
917 		cpumask_clear_cpu(pcpu, need_tlb_flush);
918 	}
919 }
920 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);
921