1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 */ 5 6 #include <linux/cpu.h> 7 #include <linux/kvm_host.h> 8 #include <linux/preempt.h> 9 #include <linux/export.h> 10 #include <linux/sched.h> 11 #include <linux/spinlock.h> 12 #include <linux/init.h> 13 #include <linux/memblock.h> 14 #include <linux/sizes.h> 15 #include <linux/cma.h> 16 #include <linux/bitops.h> 17 18 #include <asm/asm-prototypes.h> 19 #include <asm/cputable.h> 20 #include <asm/interrupt.h> 21 #include <asm/kvm_ppc.h> 22 #include <asm/kvm_book3s.h> 23 #include <asm/archrandom.h> 24 #include <asm/xics.h> 25 #include <asm/xive.h> 26 #include <asm/dbell.h> 27 #include <asm/cputhreads.h> 28 #include <asm/io.h> 29 #include <asm/opal.h> 30 #include <asm/smp.h> 31 32 #define KVM_CMA_CHUNK_ORDER 18 33 34 #include "book3s_xics.h" 35 #include "book3s_xive.h" 36 37 /* 38 * The XIVE module will populate these when it loads 39 */ 40 unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu); 41 unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server); 42 int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server, 43 unsigned long mfrr); 44 int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr); 45 int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr); 46 EXPORT_SYMBOL_GPL(__xive_vm_h_xirr); 47 EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll); 48 EXPORT_SYMBOL_GPL(__xive_vm_h_ipi); 49 EXPORT_SYMBOL_GPL(__xive_vm_h_cppr); 50 EXPORT_SYMBOL_GPL(__xive_vm_h_eoi); 51 52 /* 53 * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206) 54 * should be power of 2. 55 */ 56 #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */ 57 /* 58 * By default we reserve 5% of memory for hash pagetable allocation. 59 */ 60 static unsigned long kvm_cma_resv_ratio = 5; 61 62 static struct cma *kvm_cma; 63 64 static int __init early_parse_kvm_cma_resv(char *p) 65 { 66 pr_debug("%s(%s)\n", __func__, p); 67 if (!p) 68 return -EINVAL; 69 return kstrtoul(p, 0, &kvm_cma_resv_ratio); 70 } 71 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv); 72 73 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages) 74 { 75 VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT); 76 77 return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES), 78 false); 79 } 80 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma); 81 82 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages) 83 { 84 cma_release(kvm_cma, page, nr_pages); 85 } 86 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma); 87 88 /** 89 * kvm_cma_reserve() - reserve area for kvm hash pagetable 90 * 91 * This function reserves memory from early allocator. It should be 92 * called by arch specific code once the memblock allocator 93 * has been activated and all other subsystems have already allocated/reserved 94 * memory. 95 */ 96 void __init kvm_cma_reserve(void) 97 { 98 unsigned long align_size; 99 phys_addr_t selected_size; 100 101 /* 102 * We need CMA reservation only when we are in HV mode 103 */ 104 if (!cpu_has_feature(CPU_FTR_HVMODE)) 105 return; 106 107 selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100); 108 if (selected_size) { 109 pr_info("%s: reserving %ld MiB for global area\n", __func__, 110 (unsigned long)selected_size / SZ_1M); 111 align_size = HPT_ALIGN_PAGES << PAGE_SHIFT; 112 cma_declare_contiguous(0, selected_size, 0, align_size, 113 KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma", 114 &kvm_cma); 115 } 116 } 117 118 /* 119 * Real-mode H_CONFER implementation. 120 * We check if we are the only vcpu out of this virtual core 121 * still running in the guest and not ceded. If so, we pop up 122 * to the virtual-mode implementation; if not, just return to 123 * the guest. 124 */ 125 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target, 126 unsigned int yield_count) 127 { 128 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; 129 int ptid = local_paca->kvm_hstate.ptid; 130 int threads_running; 131 int threads_ceded; 132 int threads_conferring; 133 u64 stop = get_tb() + 10 * tb_ticks_per_usec; 134 int rv = H_SUCCESS; /* => don't yield */ 135 136 set_bit(ptid, &vc->conferring_threads); 137 while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) { 138 threads_running = VCORE_ENTRY_MAP(vc); 139 threads_ceded = vc->napping_threads; 140 threads_conferring = vc->conferring_threads; 141 if ((threads_ceded | threads_conferring) == threads_running) { 142 rv = H_TOO_HARD; /* => do yield */ 143 break; 144 } 145 } 146 clear_bit(ptid, &vc->conferring_threads); 147 return rv; 148 } 149 150 /* 151 * When running HV mode KVM we need to block certain operations while KVM VMs 152 * exist in the system. We use a counter of VMs to track this. 153 * 154 * One of the operations we need to block is onlining of secondaries, so we 155 * protect hv_vm_count with get/put_online_cpus(). 156 */ 157 static atomic_t hv_vm_count; 158 159 void kvm_hv_vm_activated(void) 160 { 161 get_online_cpus(); 162 atomic_inc(&hv_vm_count); 163 put_online_cpus(); 164 } 165 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated); 166 167 void kvm_hv_vm_deactivated(void) 168 { 169 get_online_cpus(); 170 atomic_dec(&hv_vm_count); 171 put_online_cpus(); 172 } 173 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated); 174 175 bool kvm_hv_mode_active(void) 176 { 177 return atomic_read(&hv_vm_count) != 0; 178 } 179 180 extern int hcall_real_table[], hcall_real_table_end[]; 181 182 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd) 183 { 184 cmd /= 4; 185 if (cmd < hcall_real_table_end - hcall_real_table && 186 hcall_real_table[cmd]) 187 return 1; 188 189 return 0; 190 } 191 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode); 192 193 int kvmppc_hwrng_present(void) 194 { 195 return powernv_hwrng_present(); 196 } 197 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present); 198 199 long kvmppc_h_random(struct kvm_vcpu *vcpu) 200 { 201 int r; 202 203 /* Only need to do the expensive mfmsr() on radix */ 204 if (kvm_is_radix(vcpu->kvm) && (mfmsr() & MSR_IR)) 205 r = powernv_get_random_long(&vcpu->arch.regs.gpr[4]); 206 else 207 r = powernv_get_random_real_mode(&vcpu->arch.regs.gpr[4]); 208 if (r) 209 return H_SUCCESS; 210 211 return H_HARDWARE; 212 } 213 214 /* 215 * Send an interrupt or message to another CPU. 216 * The caller needs to include any barrier needed to order writes 217 * to memory vs. the IPI/message. 218 */ 219 void kvmhv_rm_send_ipi(int cpu) 220 { 221 void __iomem *xics_phys; 222 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 223 224 /* For a nested hypervisor, use the XICS via hcall */ 225 if (kvmhv_on_pseries()) { 226 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 227 228 plpar_hcall_raw(H_IPI, retbuf, get_hard_smp_processor_id(cpu), 229 IPI_PRIORITY); 230 return; 231 } 232 233 /* On POWER9 we can use msgsnd for any destination cpu. */ 234 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 235 msg |= get_hard_smp_processor_id(cpu); 236 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 237 return; 238 } 239 240 /* On POWER8 for IPIs to threads in the same core, use msgsnd. */ 241 if (cpu_has_feature(CPU_FTR_ARCH_207S) && 242 cpu_first_thread_sibling(cpu) == 243 cpu_first_thread_sibling(raw_smp_processor_id())) { 244 msg |= cpu_thread_in_core(cpu); 245 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 246 return; 247 } 248 249 /* We should never reach this */ 250 if (WARN_ON_ONCE(xics_on_xive())) 251 return; 252 253 /* Else poke the target with an IPI */ 254 xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys; 255 if (xics_phys) 256 __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR); 257 else 258 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 259 } 260 261 /* 262 * The following functions are called from the assembly code 263 * in book3s_hv_rmhandlers.S. 264 */ 265 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active) 266 { 267 int cpu = vc->pcpu; 268 269 /* Order setting of exit map vs. msgsnd/IPI */ 270 smp_mb(); 271 for (; active; active >>= 1, ++cpu) 272 if (active & 1) 273 kvmhv_rm_send_ipi(cpu); 274 } 275 276 void kvmhv_commence_exit(int trap) 277 { 278 struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; 279 int ptid = local_paca->kvm_hstate.ptid; 280 struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode; 281 int me, ee, i; 282 283 /* Set our bit in the threads-exiting-guest map in the 0xff00 284 bits of vcore->entry_exit_map */ 285 me = 0x100 << ptid; 286 do { 287 ee = vc->entry_exit_map; 288 } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee); 289 290 /* Are we the first here? */ 291 if ((ee >> 8) != 0) 292 return; 293 294 /* 295 * Trigger the other threads in this vcore to exit the guest. 296 * If this is a hypervisor decrementer interrupt then they 297 * will be already on their way out of the guest. 298 */ 299 if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER) 300 kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid)); 301 302 /* 303 * If we are doing dynamic micro-threading, interrupt the other 304 * subcores to pull them out of their guests too. 305 */ 306 if (!sip) 307 return; 308 309 for (i = 0; i < MAX_SUBCORES; ++i) { 310 vc = sip->vc[i]; 311 if (!vc) 312 break; 313 do { 314 ee = vc->entry_exit_map; 315 /* Already asked to exit? */ 316 if ((ee >> 8) != 0) 317 break; 318 } while (cmpxchg(&vc->entry_exit_map, ee, 319 ee | VCORE_EXIT_REQ) != ee); 320 if ((ee >> 8) == 0) 321 kvmhv_interrupt_vcore(vc, ee); 322 } 323 } 324 325 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv; 326 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv); 327 328 #ifdef CONFIG_KVM_XICS 329 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap, 330 u32 xisr) 331 { 332 int i; 333 334 /* 335 * We access the mapped array here without a lock. That 336 * is safe because we never reduce the number of entries 337 * in the array and we never change the v_hwirq field of 338 * an entry once it is set. 339 * 340 * We have also carefully ordered the stores in the writer 341 * and the loads here in the reader, so that if we find a matching 342 * hwirq here, the associated GSI and irq_desc fields are valid. 343 */ 344 for (i = 0; i < pimap->n_mapped; i++) { 345 if (xisr == pimap->mapped[i].r_hwirq) { 346 /* 347 * Order subsequent reads in the caller to serialize 348 * with the writer. 349 */ 350 smp_rmb(); 351 return &pimap->mapped[i]; 352 } 353 } 354 return NULL; 355 } 356 357 /* 358 * If we have an interrupt that's not an IPI, check if we have a 359 * passthrough adapter and if so, check if this external interrupt 360 * is for the adapter. 361 * We will attempt to deliver the IRQ directly to the target VCPU's 362 * ICP, the virtual ICP (based on affinity - the xive value in ICS). 363 * 364 * If the delivery fails or if this is not for a passthrough adapter, 365 * return to the host to handle this interrupt. We earlier 366 * saved a copy of the XIRR in the PACA, it will be picked up by 367 * the host ICP driver. 368 */ 369 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) 370 { 371 struct kvmppc_passthru_irqmap *pimap; 372 struct kvmppc_irq_map *irq_map; 373 struct kvm_vcpu *vcpu; 374 375 vcpu = local_paca->kvm_hstate.kvm_vcpu; 376 if (!vcpu) 377 return 1; 378 pimap = kvmppc_get_passthru_irqmap(vcpu->kvm); 379 if (!pimap) 380 return 1; 381 irq_map = get_irqmap(pimap, xisr); 382 if (!irq_map) 383 return 1; 384 385 /* We're handling this interrupt, generic code doesn't need to */ 386 local_paca->kvm_hstate.saved_xirr = 0; 387 388 return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again); 389 } 390 391 #else 392 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) 393 { 394 return 1; 395 } 396 #endif 397 398 /* 399 * Determine what sort of external interrupt is pending (if any). 400 * Returns: 401 * 0 if no interrupt is pending 402 * 1 if an interrupt is pending that needs to be handled by the host 403 * 2 Passthrough that needs completion in the host 404 * -1 if there was a guest wakeup IPI (which has now been cleared) 405 * -2 if there is PCI passthrough external interrupt that was handled 406 */ 407 static long kvmppc_read_one_intr(bool *again); 408 409 long kvmppc_read_intr(void) 410 { 411 long ret = 0; 412 long rc; 413 bool again; 414 415 if (xive_enabled()) 416 return 1; 417 418 do { 419 again = false; 420 rc = kvmppc_read_one_intr(&again); 421 if (rc && (ret == 0 || rc > ret)) 422 ret = rc; 423 } while (again); 424 return ret; 425 } 426 427 static long kvmppc_read_one_intr(bool *again) 428 { 429 void __iomem *xics_phys; 430 u32 h_xirr; 431 __be32 xirr; 432 u32 xisr; 433 u8 host_ipi; 434 int64_t rc; 435 436 if (xive_enabled()) 437 return 1; 438 439 /* see if a host IPI is pending */ 440 host_ipi = local_paca->kvm_hstate.host_ipi; 441 if (host_ipi) 442 return 1; 443 444 /* Now read the interrupt from the ICP */ 445 if (kvmhv_on_pseries()) { 446 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 447 448 rc = plpar_hcall_raw(H_XIRR, retbuf, 0xFF); 449 xirr = cpu_to_be32(retbuf[0]); 450 } else { 451 xics_phys = local_paca->kvm_hstate.xics_phys; 452 rc = 0; 453 if (!xics_phys) 454 rc = opal_int_get_xirr(&xirr, false); 455 else 456 xirr = __raw_rm_readl(xics_phys + XICS_XIRR); 457 } 458 if (rc < 0) 459 return 1; 460 461 /* 462 * Save XIRR for later. Since we get control in reverse endian 463 * on LE systems, save it byte reversed and fetch it back in 464 * host endian. Note that xirr is the value read from the 465 * XIRR register, while h_xirr is the host endian version. 466 */ 467 h_xirr = be32_to_cpu(xirr); 468 local_paca->kvm_hstate.saved_xirr = h_xirr; 469 xisr = h_xirr & 0xffffff; 470 /* 471 * Ensure that the store/load complete to guarantee all side 472 * effects of loading from XIRR has completed 473 */ 474 smp_mb(); 475 476 /* if nothing pending in the ICP */ 477 if (!xisr) 478 return 0; 479 480 /* We found something in the ICP... 481 * 482 * If it is an IPI, clear the MFRR and EOI it. 483 */ 484 if (xisr == XICS_IPI) { 485 rc = 0; 486 if (kvmhv_on_pseries()) { 487 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 488 489 plpar_hcall_raw(H_IPI, retbuf, 490 hard_smp_processor_id(), 0xff); 491 plpar_hcall_raw(H_EOI, retbuf, h_xirr); 492 } else if (xics_phys) { 493 __raw_rm_writeb(0xff, xics_phys + XICS_MFRR); 494 __raw_rm_writel(xirr, xics_phys + XICS_XIRR); 495 } else { 496 opal_int_set_mfrr(hard_smp_processor_id(), 0xff); 497 rc = opal_int_eoi(h_xirr); 498 } 499 /* If rc > 0, there is another interrupt pending */ 500 *again = rc > 0; 501 502 /* 503 * Need to ensure side effects of above stores 504 * complete before proceeding. 505 */ 506 smp_mb(); 507 508 /* 509 * We need to re-check host IPI now in case it got set in the 510 * meantime. If it's clear, we bounce the interrupt to the 511 * guest 512 */ 513 host_ipi = local_paca->kvm_hstate.host_ipi; 514 if (unlikely(host_ipi != 0)) { 515 /* We raced with the host, 516 * we need to resend that IPI, bummer 517 */ 518 if (kvmhv_on_pseries()) { 519 unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; 520 521 plpar_hcall_raw(H_IPI, retbuf, 522 hard_smp_processor_id(), 523 IPI_PRIORITY); 524 } else if (xics_phys) 525 __raw_rm_writeb(IPI_PRIORITY, 526 xics_phys + XICS_MFRR); 527 else 528 opal_int_set_mfrr(hard_smp_processor_id(), 529 IPI_PRIORITY); 530 /* Let side effects complete */ 531 smp_mb(); 532 return 1; 533 } 534 535 /* OK, it's an IPI for us */ 536 local_paca->kvm_hstate.saved_xirr = 0; 537 return -1; 538 } 539 540 return kvmppc_check_passthru(xisr, xirr, again); 541 } 542 543 #ifdef CONFIG_KVM_XICS 544 static inline bool is_rm(void) 545 { 546 return !(mfmsr() & MSR_DR); 547 } 548 549 unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu) 550 { 551 if (!kvmppc_xics_enabled(vcpu)) 552 return H_TOO_HARD; 553 if (xics_on_xive()) { 554 if (is_rm()) 555 return xive_rm_h_xirr(vcpu); 556 if (unlikely(!__xive_vm_h_xirr)) 557 return H_NOT_AVAILABLE; 558 return __xive_vm_h_xirr(vcpu); 559 } else 560 return xics_rm_h_xirr(vcpu); 561 } 562 563 unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu) 564 { 565 if (!kvmppc_xics_enabled(vcpu)) 566 return H_TOO_HARD; 567 vcpu->arch.regs.gpr[5] = get_tb(); 568 if (xics_on_xive()) { 569 if (is_rm()) 570 return xive_rm_h_xirr(vcpu); 571 if (unlikely(!__xive_vm_h_xirr)) 572 return H_NOT_AVAILABLE; 573 return __xive_vm_h_xirr(vcpu); 574 } else 575 return xics_rm_h_xirr(vcpu); 576 } 577 578 unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server) 579 { 580 if (!kvmppc_xics_enabled(vcpu)) 581 return H_TOO_HARD; 582 if (xics_on_xive()) { 583 if (is_rm()) 584 return xive_rm_h_ipoll(vcpu, server); 585 if (unlikely(!__xive_vm_h_ipoll)) 586 return H_NOT_AVAILABLE; 587 return __xive_vm_h_ipoll(vcpu, server); 588 } else 589 return H_TOO_HARD; 590 } 591 592 int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server, 593 unsigned long mfrr) 594 { 595 if (!kvmppc_xics_enabled(vcpu)) 596 return H_TOO_HARD; 597 if (xics_on_xive()) { 598 if (is_rm()) 599 return xive_rm_h_ipi(vcpu, server, mfrr); 600 if (unlikely(!__xive_vm_h_ipi)) 601 return H_NOT_AVAILABLE; 602 return __xive_vm_h_ipi(vcpu, server, mfrr); 603 } else 604 return xics_rm_h_ipi(vcpu, server, mfrr); 605 } 606 607 int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr) 608 { 609 if (!kvmppc_xics_enabled(vcpu)) 610 return H_TOO_HARD; 611 if (xics_on_xive()) { 612 if (is_rm()) 613 return xive_rm_h_cppr(vcpu, cppr); 614 if (unlikely(!__xive_vm_h_cppr)) 615 return H_NOT_AVAILABLE; 616 return __xive_vm_h_cppr(vcpu, cppr); 617 } else 618 return xics_rm_h_cppr(vcpu, cppr); 619 } 620 621 int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr) 622 { 623 if (!kvmppc_xics_enabled(vcpu)) 624 return H_TOO_HARD; 625 if (xics_on_xive()) { 626 if (is_rm()) 627 return xive_rm_h_eoi(vcpu, xirr); 628 if (unlikely(!__xive_vm_h_eoi)) 629 return H_NOT_AVAILABLE; 630 return __xive_vm_h_eoi(vcpu, xirr); 631 } else 632 return xics_rm_h_eoi(vcpu, xirr); 633 } 634 #endif /* CONFIG_KVM_XICS */ 635 636 void kvmppc_bad_interrupt(struct pt_regs *regs) 637 { 638 /* 639 * 100 could happen at any time, 200 can happen due to invalid real 640 * address access for example (or any time due to a hardware problem). 641 */ 642 if (TRAP(regs) == 0x100) { 643 get_paca()->in_nmi++; 644 system_reset_exception(regs); 645 get_paca()->in_nmi--; 646 } else if (TRAP(regs) == 0x200) { 647 machine_check_exception(regs); 648 } else { 649 die("Bad interrupt in KVM entry/exit code", regs, SIGABRT); 650 } 651 panic("Bad KVM trap"); 652 } 653 654 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 655 { 656 vcpu->arch.ceded = 0; 657 if (vcpu->arch.timer_running) { 658 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 659 vcpu->arch.timer_running = 0; 660 } 661 } 662 663 void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 664 { 665 /* Guest must always run with ME enabled, HV disabled. */ 666 msr = (msr | MSR_ME) & ~MSR_HV; 667 668 /* 669 * Check for illegal transactional state bit combination 670 * and if we find it, force the TS field to a safe state. 671 */ 672 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 673 msr &= ~MSR_TS_MASK; 674 vcpu->arch.shregs.msr = msr; 675 kvmppc_end_cede(vcpu); 676 } 677 EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv); 678 679 static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 680 { 681 unsigned long msr, pc, new_msr, new_pc; 682 683 msr = kvmppc_get_msr(vcpu); 684 pc = kvmppc_get_pc(vcpu); 685 new_msr = vcpu->arch.intr_msr; 686 new_pc = vec; 687 688 /* If transactional, change to suspend mode on IRQ delivery */ 689 if (MSR_TM_TRANSACTIONAL(msr)) 690 new_msr |= MSR_TS_S; 691 else 692 new_msr |= msr & MSR_TS_MASK; 693 694 /* 695 * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and 696 * applicable. AIL=2 is not supported. 697 * 698 * AIL does not apply to SRESET, MCE, or HMI (which is never 699 * delivered to the guest), and does not apply if IR=0 or DR=0. 700 */ 701 if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET && 702 vec != BOOK3S_INTERRUPT_MACHINE_CHECK && 703 (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 && 704 (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) { 705 new_msr |= MSR_IR | MSR_DR; 706 new_pc += 0xC000000000004000ULL; 707 } 708 709 kvmppc_set_srr0(vcpu, pc); 710 kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags); 711 kvmppc_set_pc(vcpu, new_pc); 712 vcpu->arch.shregs.msr = new_msr; 713 } 714 715 void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) 716 { 717 inject_interrupt(vcpu, vec, srr1_flags); 718 kvmppc_end_cede(vcpu); 719 } 720 EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv); 721 722 /* 723 * Is there a PRIV_DOORBELL pending for the guest (on POWER9)? 724 * Can we inject a Decrementer or a External interrupt? 725 */ 726 void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu) 727 { 728 int ext; 729 unsigned long lpcr; 730 731 /* Insert EXTERNAL bit into LPCR at the MER bit position */ 732 ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1; 733 lpcr = mfspr(SPRN_LPCR); 734 lpcr |= ext << LPCR_MER_SH; 735 mtspr(SPRN_LPCR, lpcr); 736 isync(); 737 738 if (vcpu->arch.shregs.msr & MSR_EE) { 739 if (ext) { 740 inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0); 741 } else { 742 long int dec = mfspr(SPRN_DEC); 743 if (!(lpcr & LPCR_LD)) 744 dec = (int) dec; 745 if (dec < 0) 746 inject_interrupt(vcpu, 747 BOOK3S_INTERRUPT_DECREMENTER, 0); 748 } 749 } 750 751 if (vcpu->arch.doorbell_request) { 752 mtspr(SPRN_DPDES, 1); 753 vcpu->arch.vcore->dpdes = 1; 754 smp_wmb(); 755 vcpu->arch.doorbell_request = 0; 756 } 757 } 758 759 static void flush_guest_tlb(struct kvm *kvm) 760 { 761 unsigned long rb, set; 762 763 rb = PPC_BIT(52); /* IS = 2 */ 764 if (kvm_is_radix(kvm)) { 765 /* R=1 PRS=1 RIC=2 */ 766 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) 767 : : "r" (rb), "i" (1), "i" (1), "i" (2), 768 "r" (0) : "memory"); 769 for (set = 1; set < kvm->arch.tlb_sets; ++set) { 770 rb += PPC_BIT(51); /* increment set number */ 771 /* R=1 PRS=1 RIC=0 */ 772 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) 773 : : "r" (rb), "i" (1), "i" (1), "i" (0), 774 "r" (0) : "memory"); 775 } 776 asm volatile("ptesync": : :"memory"); 777 asm volatile(PPC_RADIX_INVALIDATE_ERAT_GUEST : : :"memory"); 778 } else { 779 for (set = 0; set < kvm->arch.tlb_sets; ++set) { 780 /* R=0 PRS=0 RIC=0 */ 781 asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) 782 : : "r" (rb), "i" (0), "i" (0), "i" (0), 783 "r" (0) : "memory"); 784 rb += PPC_BIT(51); /* increment set number */ 785 } 786 asm volatile("ptesync": : :"memory"); 787 asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT : : :"memory"); 788 } 789 } 790 791 void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu, 792 struct kvm_nested_guest *nested) 793 { 794 cpumask_t *need_tlb_flush; 795 796 /* 797 * On POWER9, individual threads can come in here, but the 798 * TLB is shared between the 4 threads in a core, hence 799 * invalidating on one thread invalidates for all. 800 * Thus we make all 4 threads use the same bit. 801 */ 802 if (cpu_has_feature(CPU_FTR_ARCH_300)) 803 pcpu = cpu_first_thread_sibling(pcpu); 804 805 if (nested) 806 need_tlb_flush = &nested->need_tlb_flush; 807 else 808 need_tlb_flush = &kvm->arch.need_tlb_flush; 809 810 if (cpumask_test_cpu(pcpu, need_tlb_flush)) { 811 flush_guest_tlb(kvm); 812 813 /* Clear the bit after the TLB flush */ 814 cpumask_clear_cpu(pcpu, need_tlb_flush); 815 } 816 } 817 EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush); 818