1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm_host.h>
11 #include <linux/preempt.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/sizes.h>
18 #include <linux/cma.h>
19 #include <linux/bitops.h>
20 
21 #include <asm/cputable.h>
22 #include <asm/kvm_ppc.h>
23 #include <asm/kvm_book3s.h>
24 #include <asm/archrandom.h>
25 #include <asm/xics.h>
26 #include <asm/xive.h>
27 #include <asm/dbell.h>
28 #include <asm/cputhreads.h>
29 #include <asm/io.h>
30 #include <asm/opal.h>
31 #include <asm/smp.h>
32 
33 #define KVM_CMA_CHUNK_ORDER	18
34 
35 /*
36  * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
37  * should be power of 2.
38  */
39 #define HPT_ALIGN_PAGES		((1 << 18) >> PAGE_SHIFT) /* 256k */
40 /*
41  * By default we reserve 5% of memory for hash pagetable allocation.
42  */
43 static unsigned long kvm_cma_resv_ratio = 5;
44 
45 static struct cma *kvm_cma;
46 
47 static int __init early_parse_kvm_cma_resv(char *p)
48 {
49 	pr_debug("%s(%s)\n", __func__, p);
50 	if (!p)
51 		return -EINVAL;
52 	return kstrtoul(p, 0, &kvm_cma_resv_ratio);
53 }
54 early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
55 
56 struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
57 {
58 	VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
59 
60 	return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
61 			 GFP_KERNEL);
62 }
63 EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
64 
65 void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
66 {
67 	cma_release(kvm_cma, page, nr_pages);
68 }
69 EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
70 
71 /**
72  * kvm_cma_reserve() - reserve area for kvm hash pagetable
73  *
74  * This function reserves memory from early allocator. It should be
75  * called by arch specific code once the memblock allocator
76  * has been activated and all other subsystems have already allocated/reserved
77  * memory.
78  */
79 void __init kvm_cma_reserve(void)
80 {
81 	unsigned long align_size;
82 	struct memblock_region *reg;
83 	phys_addr_t selected_size = 0;
84 
85 	/*
86 	 * We need CMA reservation only when we are in HV mode
87 	 */
88 	if (!cpu_has_feature(CPU_FTR_HVMODE))
89 		return;
90 	/*
91 	 * We cannot use memblock_phys_mem_size() here, because
92 	 * memblock_analyze() has not been called yet.
93 	 */
94 	for_each_memblock(memory, reg)
95 		selected_size += memblock_region_memory_end_pfn(reg) -
96 				 memblock_region_memory_base_pfn(reg);
97 
98 	selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
99 	if (selected_size) {
100 		pr_debug("%s: reserving %ld MiB for global area\n", __func__,
101 			 (unsigned long)selected_size / SZ_1M);
102 		align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
103 		cma_declare_contiguous(0, selected_size, 0, align_size,
104 			KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, &kvm_cma);
105 	}
106 }
107 
108 /*
109  * Real-mode H_CONFER implementation.
110  * We check if we are the only vcpu out of this virtual core
111  * still running in the guest and not ceded.  If so, we pop up
112  * to the virtual-mode implementation; if not, just return to
113  * the guest.
114  */
115 long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
116 			    unsigned int yield_count)
117 {
118 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
119 	int ptid = local_paca->kvm_hstate.ptid;
120 	int threads_running;
121 	int threads_ceded;
122 	int threads_conferring;
123 	u64 stop = get_tb() + 10 * tb_ticks_per_usec;
124 	int rv = H_SUCCESS; /* => don't yield */
125 
126 	set_bit(ptid, &vc->conferring_threads);
127 	while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
128 		threads_running = VCORE_ENTRY_MAP(vc);
129 		threads_ceded = vc->napping_threads;
130 		threads_conferring = vc->conferring_threads;
131 		if ((threads_ceded | threads_conferring) == threads_running) {
132 			rv = H_TOO_HARD; /* => do yield */
133 			break;
134 		}
135 	}
136 	clear_bit(ptid, &vc->conferring_threads);
137 	return rv;
138 }
139 
140 /*
141  * When running HV mode KVM we need to block certain operations while KVM VMs
142  * exist in the system. We use a counter of VMs to track this.
143  *
144  * One of the operations we need to block is onlining of secondaries, so we
145  * protect hv_vm_count with get/put_online_cpus().
146  */
147 static atomic_t hv_vm_count;
148 
149 void kvm_hv_vm_activated(void)
150 {
151 	get_online_cpus();
152 	atomic_inc(&hv_vm_count);
153 	put_online_cpus();
154 }
155 EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
156 
157 void kvm_hv_vm_deactivated(void)
158 {
159 	get_online_cpus();
160 	atomic_dec(&hv_vm_count);
161 	put_online_cpus();
162 }
163 EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
164 
165 bool kvm_hv_mode_active(void)
166 {
167 	return atomic_read(&hv_vm_count) != 0;
168 }
169 
170 extern int hcall_real_table[], hcall_real_table_end[];
171 
172 int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
173 {
174 	cmd /= 4;
175 	if (cmd < hcall_real_table_end - hcall_real_table &&
176 	    hcall_real_table[cmd])
177 		return 1;
178 
179 	return 0;
180 }
181 EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
182 
183 int kvmppc_hwrng_present(void)
184 {
185 	return powernv_hwrng_present();
186 }
187 EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
188 
189 long kvmppc_h_random(struct kvm_vcpu *vcpu)
190 {
191 	if (powernv_get_random_real_mode(&vcpu->arch.gpr[4]))
192 		return H_SUCCESS;
193 
194 	return H_HARDWARE;
195 }
196 
197 static inline void rm_writeb(unsigned long paddr, u8 val)
198 {
199 	__asm__ __volatile__("stbcix %0,0,%1"
200 		: : "r" (val), "r" (paddr) : "memory");
201 }
202 
203 /*
204  * Send an interrupt or message to another CPU.
205  * The caller needs to include any barrier needed to order writes
206  * to memory vs. the IPI/message.
207  */
208 void kvmhv_rm_send_ipi(int cpu)
209 {
210 	unsigned long xics_phys;
211 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
212 
213 	/* On POWER9 we can use msgsnd for any destination cpu. */
214 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
215 		msg |= get_hard_smp_processor_id(cpu);
216 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
217 		return;
218 	}
219 	/* On POWER8 for IPIs to threads in the same core, use msgsnd. */
220 	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
221 	    cpu_first_thread_sibling(cpu) ==
222 	    cpu_first_thread_sibling(raw_smp_processor_id())) {
223 		msg |= cpu_thread_in_core(cpu);
224 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
225 		return;
226 	}
227 
228 	/* We should never reach this */
229 	if (WARN_ON_ONCE(xive_enabled()))
230 	    return;
231 
232 	/* Else poke the target with an IPI */
233 	xics_phys = paca[cpu].kvm_hstate.xics_phys;
234 	if (xics_phys)
235 		rm_writeb(xics_phys + XICS_MFRR, IPI_PRIORITY);
236 	else
237 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
238 }
239 
240 /*
241  * The following functions are called from the assembly code
242  * in book3s_hv_rmhandlers.S.
243  */
244 static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
245 {
246 	int cpu = vc->pcpu;
247 
248 	/* Order setting of exit map vs. msgsnd/IPI */
249 	smp_mb();
250 	for (; active; active >>= 1, ++cpu)
251 		if (active & 1)
252 			kvmhv_rm_send_ipi(cpu);
253 }
254 
255 void kvmhv_commence_exit(int trap)
256 {
257 	struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
258 	int ptid = local_paca->kvm_hstate.ptid;
259 	struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
260 	int me, ee, i;
261 
262 	/* Set our bit in the threads-exiting-guest map in the 0xff00
263 	   bits of vcore->entry_exit_map */
264 	me = 0x100 << ptid;
265 	do {
266 		ee = vc->entry_exit_map;
267 	} while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
268 
269 	/* Are we the first here? */
270 	if ((ee >> 8) != 0)
271 		return;
272 
273 	/*
274 	 * Trigger the other threads in this vcore to exit the guest.
275 	 * If this is a hypervisor decrementer interrupt then they
276 	 * will be already on their way out of the guest.
277 	 */
278 	if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
279 		kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
280 
281 	/*
282 	 * If we are doing dynamic micro-threading, interrupt the other
283 	 * subcores to pull them out of their guests too.
284 	 */
285 	if (!sip)
286 		return;
287 
288 	for (i = 0; i < MAX_SUBCORES; ++i) {
289 		vc = sip->master_vcs[i];
290 		if (!vc)
291 			break;
292 		do {
293 			ee = vc->entry_exit_map;
294 			/* Already asked to exit? */
295 			if ((ee >> 8) != 0)
296 				break;
297 		} while (cmpxchg(&vc->entry_exit_map, ee,
298 				 ee | VCORE_EXIT_REQ) != ee);
299 		if ((ee >> 8) == 0)
300 			kvmhv_interrupt_vcore(vc, ee);
301 	}
302 }
303 
304 struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
305 EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
306 
307 #ifdef CONFIG_KVM_XICS
308 static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
309 					 u32 xisr)
310 {
311 	int i;
312 
313 	/*
314 	 * We access the mapped array here without a lock.  That
315 	 * is safe because we never reduce the number of entries
316 	 * in the array and we never change the v_hwirq field of
317 	 * an entry once it is set.
318 	 *
319 	 * We have also carefully ordered the stores in the writer
320 	 * and the loads here in the reader, so that if we find a matching
321 	 * hwirq here, the associated GSI and irq_desc fields are valid.
322 	 */
323 	for (i = 0; i < pimap->n_mapped; i++)  {
324 		if (xisr == pimap->mapped[i].r_hwirq) {
325 			/*
326 			 * Order subsequent reads in the caller to serialize
327 			 * with the writer.
328 			 */
329 			smp_rmb();
330 			return &pimap->mapped[i];
331 		}
332 	}
333 	return NULL;
334 }
335 
336 /*
337  * If we have an interrupt that's not an IPI, check if we have a
338  * passthrough adapter and if so, check if this external interrupt
339  * is for the adapter.
340  * We will attempt to deliver the IRQ directly to the target VCPU's
341  * ICP, the virtual ICP (based on affinity - the xive value in ICS).
342  *
343  * If the delivery fails or if this is not for a passthrough adapter,
344  * return to the host to handle this interrupt. We earlier
345  * saved a copy of the XIRR in the PACA, it will be picked up by
346  * the host ICP driver.
347  */
348 static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
349 {
350 	struct kvmppc_passthru_irqmap *pimap;
351 	struct kvmppc_irq_map *irq_map;
352 	struct kvm_vcpu *vcpu;
353 
354 	vcpu = local_paca->kvm_hstate.kvm_vcpu;
355 	if (!vcpu)
356 		return 1;
357 	pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
358 	if (!pimap)
359 		return 1;
360 	irq_map = get_irqmap(pimap, xisr);
361 	if (!irq_map)
362 		return 1;
363 
364 	/* We're handling this interrupt, generic code doesn't need to */
365 	local_paca->kvm_hstate.saved_xirr = 0;
366 
367 	return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
368 }
369 
370 #else
371 static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
372 {
373 	return 1;
374 }
375 #endif
376 
377 /*
378  * Determine what sort of external interrupt is pending (if any).
379  * Returns:
380  *	0 if no interrupt is pending
381  *	1 if an interrupt is pending that needs to be handled by the host
382  *	2 Passthrough that needs completion in the host
383  *	-1 if there was a guest wakeup IPI (which has now been cleared)
384  *	-2 if there is PCI passthrough external interrupt that was handled
385  */
386 static long kvmppc_read_one_intr(bool *again);
387 
388 long kvmppc_read_intr(void)
389 {
390 	long ret = 0;
391 	long rc;
392 	bool again;
393 
394 	if (xive_enabled())
395 		return 1;
396 
397 	do {
398 		again = false;
399 		rc = kvmppc_read_one_intr(&again);
400 		if (rc && (ret == 0 || rc > ret))
401 			ret = rc;
402 	} while (again);
403 	return ret;
404 }
405 
406 static long kvmppc_read_one_intr(bool *again)
407 {
408 	unsigned long xics_phys;
409 	u32 h_xirr;
410 	__be32 xirr;
411 	u32 xisr;
412 	u8 host_ipi;
413 	int64_t rc;
414 
415 	/* see if a host IPI is pending */
416 	host_ipi = local_paca->kvm_hstate.host_ipi;
417 	if (host_ipi)
418 		return 1;
419 
420 	/* Now read the interrupt from the ICP */
421 	xics_phys = local_paca->kvm_hstate.xics_phys;
422 	rc = 0;
423 	if (!xics_phys)
424 		rc = opal_int_get_xirr(&xirr, false);
425 	else
426 		xirr = _lwzcix(xics_phys + XICS_XIRR);
427 	if (rc < 0)
428 		return 1;
429 
430 	/*
431 	 * Save XIRR for later. Since we get control in reverse endian
432 	 * on LE systems, save it byte reversed and fetch it back in
433 	 * host endian. Note that xirr is the value read from the
434 	 * XIRR register, while h_xirr is the host endian version.
435 	 */
436 	h_xirr = be32_to_cpu(xirr);
437 	local_paca->kvm_hstate.saved_xirr = h_xirr;
438 	xisr = h_xirr & 0xffffff;
439 	/*
440 	 * Ensure that the store/load complete to guarantee all side
441 	 * effects of loading from XIRR has completed
442 	 */
443 	smp_mb();
444 
445 	/* if nothing pending in the ICP */
446 	if (!xisr)
447 		return 0;
448 
449 	/* We found something in the ICP...
450 	 *
451 	 * If it is an IPI, clear the MFRR and EOI it.
452 	 */
453 	if (xisr == XICS_IPI) {
454 		rc = 0;
455 		if (xics_phys) {
456 			_stbcix(xics_phys + XICS_MFRR, 0xff);
457 			_stwcix(xics_phys + XICS_XIRR, xirr);
458 		} else {
459 			opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
460 			rc = opal_int_eoi(h_xirr);
461 		}
462 		/* If rc > 0, there is another interrupt pending */
463 		*again = rc > 0;
464 
465 		/*
466 		 * Need to ensure side effects of above stores
467 		 * complete before proceeding.
468 		 */
469 		smp_mb();
470 
471 		/*
472 		 * We need to re-check host IPI now in case it got set in the
473 		 * meantime. If it's clear, we bounce the interrupt to the
474 		 * guest
475 		 */
476 		host_ipi = local_paca->kvm_hstate.host_ipi;
477 		if (unlikely(host_ipi != 0)) {
478 			/* We raced with the host,
479 			 * we need to resend that IPI, bummer
480 			 */
481 			if (xics_phys)
482 				_stbcix(xics_phys + XICS_MFRR, IPI_PRIORITY);
483 			else
484 				opal_int_set_mfrr(hard_smp_processor_id(),
485 						  IPI_PRIORITY);
486 			/* Let side effects complete */
487 			smp_mb();
488 			return 1;
489 		}
490 
491 		/* OK, it's an IPI for us */
492 		local_paca->kvm_hstate.saved_xirr = 0;
493 		return -1;
494 	}
495 
496 	return kvmppc_check_passthru(xisr, xirr, again);
497 }
498