xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision f35e839a)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
55 
56 /* #define EXIT_DEBUG */
57 /* #define EXIT_DEBUG_SIMPLE */
58 /* #define EXIT_DEBUG_INT */
59 
60 /* Used to indicate that a guest page fault needs to be handled */
61 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
62 
63 /* Used as a "null" value for timebase values */
64 #define TB_NIL	(~(u64)0)
65 
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
68 
69 void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu)
70 {
71 	int me;
72 	int cpu = vcpu->cpu;
73 	wait_queue_head_t *wqp;
74 
75 	wqp = kvm_arch_vcpu_wq(vcpu);
76 	if (waitqueue_active(wqp)) {
77 		wake_up_interruptible(wqp);
78 		++vcpu->stat.halt_wakeup;
79 	}
80 
81 	me = get_cpu();
82 
83 	/* CPU points to the first thread of the core */
84 	if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
85 		int real_cpu = cpu + vcpu->arch.ptid;
86 		if (paca[real_cpu].kvm_hstate.xics_phys)
87 			xics_wake_cpu(real_cpu);
88 		else if (cpu_online(cpu))
89 			smp_send_reschedule(cpu);
90 	}
91 	put_cpu();
92 }
93 
94 /*
95  * We use the vcpu_load/put functions to measure stolen time.
96  * Stolen time is counted as time when either the vcpu is able to
97  * run as part of a virtual core, but the task running the vcore
98  * is preempted or sleeping, or when the vcpu needs something done
99  * in the kernel by the task running the vcpu, but that task is
100  * preempted or sleeping.  Those two things have to be counted
101  * separately, since one of the vcpu tasks will take on the job
102  * of running the core, and the other vcpu tasks in the vcore will
103  * sleep waiting for it to do that, but that sleep shouldn't count
104  * as stolen time.
105  *
106  * Hence we accumulate stolen time when the vcpu can run as part of
107  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
108  * needs its task to do other things in the kernel (for example,
109  * service a page fault) in busy_stolen.  We don't accumulate
110  * stolen time for a vcore when it is inactive, or for a vcpu
111  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
112  * a misnomer; it means that the vcpu task is not executing in
113  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
114  * the kernel.  We don't have any way of dividing up that time
115  * between time that the vcpu is genuinely stopped, time that
116  * the task is actively working on behalf of the vcpu, and time
117  * that the task is preempted, so we don't count any of it as
118  * stolen.
119  *
120  * Updates to busy_stolen are protected by arch.tbacct_lock;
121  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
122  * of the vcpu that has taken responsibility for running the vcore
123  * (i.e. vc->runner).  The stolen times are measured in units of
124  * timebase ticks.  (Note that the != TB_NIL checks below are
125  * purely defensive; they should never fail.)
126  */
127 
128 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
129 {
130 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
131 
132 	spin_lock(&vcpu->arch.tbacct_lock);
133 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
134 	    vc->preempt_tb != TB_NIL) {
135 		vc->stolen_tb += mftb() - vc->preempt_tb;
136 		vc->preempt_tb = TB_NIL;
137 	}
138 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
139 	    vcpu->arch.busy_preempt != TB_NIL) {
140 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
141 		vcpu->arch.busy_preempt = TB_NIL;
142 	}
143 	spin_unlock(&vcpu->arch.tbacct_lock);
144 }
145 
146 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
147 {
148 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
149 
150 	spin_lock(&vcpu->arch.tbacct_lock);
151 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
152 		vc->preempt_tb = mftb();
153 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
154 		vcpu->arch.busy_preempt = mftb();
155 	spin_unlock(&vcpu->arch.tbacct_lock);
156 }
157 
158 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
159 {
160 	vcpu->arch.shregs.msr = msr;
161 	kvmppc_end_cede(vcpu);
162 }
163 
164 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
165 {
166 	vcpu->arch.pvr = pvr;
167 }
168 
169 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
170 {
171 	int r;
172 
173 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
174 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
175 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
176 	for (r = 0; r < 16; ++r)
177 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
178 		       r, kvmppc_get_gpr(vcpu, r),
179 		       r+16, kvmppc_get_gpr(vcpu, r+16));
180 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
181 	       vcpu->arch.ctr, vcpu->arch.lr);
182 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
183 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
184 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
185 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
186 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
187 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
188 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
189 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
190 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
191 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
192 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
193 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
194 	for (r = 0; r < vcpu->arch.slb_max; ++r)
195 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
196 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
197 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
198 	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
199 	       vcpu->arch.last_inst);
200 }
201 
202 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
203 {
204 	int r;
205 	struct kvm_vcpu *v, *ret = NULL;
206 
207 	mutex_lock(&kvm->lock);
208 	kvm_for_each_vcpu(r, v, kvm) {
209 		if (v->vcpu_id == id) {
210 			ret = v;
211 			break;
212 		}
213 	}
214 	mutex_unlock(&kvm->lock);
215 	return ret;
216 }
217 
218 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
219 {
220 	vpa->shared_proc = 1;
221 	vpa->yield_count = 1;
222 }
223 
224 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
225 		   unsigned long addr, unsigned long len)
226 {
227 	/* check address is cacheline aligned */
228 	if (addr & (L1_CACHE_BYTES - 1))
229 		return -EINVAL;
230 	spin_lock(&vcpu->arch.vpa_update_lock);
231 	if (v->next_gpa != addr || v->len != len) {
232 		v->next_gpa = addr;
233 		v->len = addr ? len : 0;
234 		v->update_pending = 1;
235 	}
236 	spin_unlock(&vcpu->arch.vpa_update_lock);
237 	return 0;
238 }
239 
240 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
241 struct reg_vpa {
242 	u32 dummy;
243 	union {
244 		u16 hword;
245 		u32 word;
246 	} length;
247 };
248 
249 static int vpa_is_registered(struct kvmppc_vpa *vpap)
250 {
251 	if (vpap->update_pending)
252 		return vpap->next_gpa != 0;
253 	return vpap->pinned_addr != NULL;
254 }
255 
256 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
257 				       unsigned long flags,
258 				       unsigned long vcpuid, unsigned long vpa)
259 {
260 	struct kvm *kvm = vcpu->kvm;
261 	unsigned long len, nb;
262 	void *va;
263 	struct kvm_vcpu *tvcpu;
264 	int err;
265 	int subfunc;
266 	struct kvmppc_vpa *vpap;
267 
268 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
269 	if (!tvcpu)
270 		return H_PARAMETER;
271 
272 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
273 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
274 	    subfunc == H_VPA_REG_SLB) {
275 		/* Registering new area - address must be cache-line aligned */
276 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
277 			return H_PARAMETER;
278 
279 		/* convert logical addr to kernel addr and read length */
280 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
281 		if (va == NULL)
282 			return H_PARAMETER;
283 		if (subfunc == H_VPA_REG_VPA)
284 			len = ((struct reg_vpa *)va)->length.hword;
285 		else
286 			len = ((struct reg_vpa *)va)->length.word;
287 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
288 
289 		/* Check length */
290 		if (len > nb || len < sizeof(struct reg_vpa))
291 			return H_PARAMETER;
292 	} else {
293 		vpa = 0;
294 		len = 0;
295 	}
296 
297 	err = H_PARAMETER;
298 	vpap = NULL;
299 	spin_lock(&tvcpu->arch.vpa_update_lock);
300 
301 	switch (subfunc) {
302 	case H_VPA_REG_VPA:		/* register VPA */
303 		if (len < sizeof(struct lppaca))
304 			break;
305 		vpap = &tvcpu->arch.vpa;
306 		err = 0;
307 		break;
308 
309 	case H_VPA_REG_DTL:		/* register DTL */
310 		if (len < sizeof(struct dtl_entry))
311 			break;
312 		len -= len % sizeof(struct dtl_entry);
313 
314 		/* Check that they have previously registered a VPA */
315 		err = H_RESOURCE;
316 		if (!vpa_is_registered(&tvcpu->arch.vpa))
317 			break;
318 
319 		vpap = &tvcpu->arch.dtl;
320 		err = 0;
321 		break;
322 
323 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
324 		/* Check that they have previously registered a VPA */
325 		err = H_RESOURCE;
326 		if (!vpa_is_registered(&tvcpu->arch.vpa))
327 			break;
328 
329 		vpap = &tvcpu->arch.slb_shadow;
330 		err = 0;
331 		break;
332 
333 	case H_VPA_DEREG_VPA:		/* deregister VPA */
334 		/* Check they don't still have a DTL or SLB buf registered */
335 		err = H_RESOURCE;
336 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
337 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
338 			break;
339 
340 		vpap = &tvcpu->arch.vpa;
341 		err = 0;
342 		break;
343 
344 	case H_VPA_DEREG_DTL:		/* deregister DTL */
345 		vpap = &tvcpu->arch.dtl;
346 		err = 0;
347 		break;
348 
349 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
350 		vpap = &tvcpu->arch.slb_shadow;
351 		err = 0;
352 		break;
353 	}
354 
355 	if (vpap) {
356 		vpap->next_gpa = vpa;
357 		vpap->len = len;
358 		vpap->update_pending = 1;
359 	}
360 
361 	spin_unlock(&tvcpu->arch.vpa_update_lock);
362 
363 	return err;
364 }
365 
366 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
367 {
368 	struct kvm *kvm = vcpu->kvm;
369 	void *va;
370 	unsigned long nb;
371 	unsigned long gpa;
372 
373 	/*
374 	 * We need to pin the page pointed to by vpap->next_gpa,
375 	 * but we can't call kvmppc_pin_guest_page under the lock
376 	 * as it does get_user_pages() and down_read().  So we
377 	 * have to drop the lock, pin the page, then get the lock
378 	 * again and check that a new area didn't get registered
379 	 * in the meantime.
380 	 */
381 	for (;;) {
382 		gpa = vpap->next_gpa;
383 		spin_unlock(&vcpu->arch.vpa_update_lock);
384 		va = NULL;
385 		nb = 0;
386 		if (gpa)
387 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
388 		spin_lock(&vcpu->arch.vpa_update_lock);
389 		if (gpa == vpap->next_gpa)
390 			break;
391 		/* sigh... unpin that one and try again */
392 		if (va)
393 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
394 	}
395 
396 	vpap->update_pending = 0;
397 	if (va && nb < vpap->len) {
398 		/*
399 		 * If it's now too short, it must be that userspace
400 		 * has changed the mappings underlying guest memory,
401 		 * so unregister the region.
402 		 */
403 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
404 		va = NULL;
405 	}
406 	if (vpap->pinned_addr)
407 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
408 					vpap->dirty);
409 	vpap->gpa = gpa;
410 	vpap->pinned_addr = va;
411 	vpap->dirty = false;
412 	if (va)
413 		vpap->pinned_end = va + vpap->len;
414 }
415 
416 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
417 {
418 	if (!(vcpu->arch.vpa.update_pending ||
419 	      vcpu->arch.slb_shadow.update_pending ||
420 	      vcpu->arch.dtl.update_pending))
421 		return;
422 
423 	spin_lock(&vcpu->arch.vpa_update_lock);
424 	if (vcpu->arch.vpa.update_pending) {
425 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
426 		if (vcpu->arch.vpa.pinned_addr)
427 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
428 	}
429 	if (vcpu->arch.dtl.update_pending) {
430 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
431 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
432 		vcpu->arch.dtl_index = 0;
433 	}
434 	if (vcpu->arch.slb_shadow.update_pending)
435 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
436 	spin_unlock(&vcpu->arch.vpa_update_lock);
437 }
438 
439 /*
440  * Return the accumulated stolen time for the vcore up until `now'.
441  * The caller should hold the vcore lock.
442  */
443 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
444 {
445 	u64 p;
446 
447 	/*
448 	 * If we are the task running the vcore, then since we hold
449 	 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
450 	 * can't be updated, so we don't need the tbacct_lock.
451 	 * If the vcore is inactive, it can't become active (since we
452 	 * hold the vcore lock), so the vcpu load/put functions won't
453 	 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
454 	 */
455 	if (vc->vcore_state != VCORE_INACTIVE &&
456 	    vc->runner->arch.run_task != current) {
457 		spin_lock(&vc->runner->arch.tbacct_lock);
458 		p = vc->stolen_tb;
459 		if (vc->preempt_tb != TB_NIL)
460 			p += now - vc->preempt_tb;
461 		spin_unlock(&vc->runner->arch.tbacct_lock);
462 	} else {
463 		p = vc->stolen_tb;
464 	}
465 	return p;
466 }
467 
468 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
469 				    struct kvmppc_vcore *vc)
470 {
471 	struct dtl_entry *dt;
472 	struct lppaca *vpa;
473 	unsigned long stolen;
474 	unsigned long core_stolen;
475 	u64 now;
476 
477 	dt = vcpu->arch.dtl_ptr;
478 	vpa = vcpu->arch.vpa.pinned_addr;
479 	now = mftb();
480 	core_stolen = vcore_stolen_time(vc, now);
481 	stolen = core_stolen - vcpu->arch.stolen_logged;
482 	vcpu->arch.stolen_logged = core_stolen;
483 	spin_lock(&vcpu->arch.tbacct_lock);
484 	stolen += vcpu->arch.busy_stolen;
485 	vcpu->arch.busy_stolen = 0;
486 	spin_unlock(&vcpu->arch.tbacct_lock);
487 	if (!dt || !vpa)
488 		return;
489 	memset(dt, 0, sizeof(struct dtl_entry));
490 	dt->dispatch_reason = 7;
491 	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
492 	dt->timebase = now;
493 	dt->enqueue_to_dispatch_time = stolen;
494 	dt->srr0 = kvmppc_get_pc(vcpu);
495 	dt->srr1 = vcpu->arch.shregs.msr;
496 	++dt;
497 	if (dt == vcpu->arch.dtl.pinned_end)
498 		dt = vcpu->arch.dtl.pinned_addr;
499 	vcpu->arch.dtl_ptr = dt;
500 	/* order writing *dt vs. writing vpa->dtl_idx */
501 	smp_wmb();
502 	vpa->dtl_idx = ++vcpu->arch.dtl_index;
503 	vcpu->arch.dtl.dirty = true;
504 }
505 
506 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
507 {
508 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
509 	unsigned long target, ret = H_SUCCESS;
510 	struct kvm_vcpu *tvcpu;
511 	int idx, rc;
512 
513 	switch (req) {
514 	case H_ENTER:
515 		idx = srcu_read_lock(&vcpu->kvm->srcu);
516 		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
517 					      kvmppc_get_gpr(vcpu, 5),
518 					      kvmppc_get_gpr(vcpu, 6),
519 					      kvmppc_get_gpr(vcpu, 7));
520 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
521 		break;
522 	case H_CEDE:
523 		break;
524 	case H_PROD:
525 		target = kvmppc_get_gpr(vcpu, 4);
526 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
527 		if (!tvcpu) {
528 			ret = H_PARAMETER;
529 			break;
530 		}
531 		tvcpu->arch.prodded = 1;
532 		smp_mb();
533 		if (vcpu->arch.ceded) {
534 			if (waitqueue_active(&vcpu->wq)) {
535 				wake_up_interruptible(&vcpu->wq);
536 				vcpu->stat.halt_wakeup++;
537 			}
538 		}
539 		break;
540 	case H_CONFER:
541 		break;
542 	case H_REGISTER_VPA:
543 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
544 					kvmppc_get_gpr(vcpu, 5),
545 					kvmppc_get_gpr(vcpu, 6));
546 		break;
547 	case H_RTAS:
548 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
549 			return RESUME_HOST;
550 
551 		rc = kvmppc_rtas_hcall(vcpu);
552 
553 		if (rc == -ENOENT)
554 			return RESUME_HOST;
555 		else if (rc == 0)
556 			break;
557 
558 		/* Send the error out to userspace via KVM_RUN */
559 		return rc;
560 
561 	case H_XIRR:
562 	case H_CPPR:
563 	case H_EOI:
564 	case H_IPI:
565 		if (kvmppc_xics_enabled(vcpu)) {
566 			ret = kvmppc_xics_hcall(vcpu, req);
567 			break;
568 		} /* fallthrough */
569 	default:
570 		return RESUME_HOST;
571 	}
572 	kvmppc_set_gpr(vcpu, 3, ret);
573 	vcpu->arch.hcall_needed = 0;
574 	return RESUME_GUEST;
575 }
576 
577 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
578 			      struct task_struct *tsk)
579 {
580 	int r = RESUME_HOST;
581 
582 	vcpu->stat.sum_exits++;
583 
584 	run->exit_reason = KVM_EXIT_UNKNOWN;
585 	run->ready_for_interrupt_injection = 1;
586 	switch (vcpu->arch.trap) {
587 	/* We're good on these - the host merely wanted to get our attention */
588 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
589 		vcpu->stat.dec_exits++;
590 		r = RESUME_GUEST;
591 		break;
592 	case BOOK3S_INTERRUPT_EXTERNAL:
593 		vcpu->stat.ext_intr_exits++;
594 		r = RESUME_GUEST;
595 		break;
596 	case BOOK3S_INTERRUPT_PERFMON:
597 		r = RESUME_GUEST;
598 		break;
599 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
600 		/*
601 		 * Deliver a machine check interrupt to the guest.
602 		 * We have to do this, even if the host has handled the
603 		 * machine check, because machine checks use SRR0/1 and
604 		 * the interrupt might have trashed guest state in them.
605 		 */
606 		kvmppc_book3s_queue_irqprio(vcpu,
607 					    BOOK3S_INTERRUPT_MACHINE_CHECK);
608 		r = RESUME_GUEST;
609 		break;
610 	case BOOK3S_INTERRUPT_PROGRAM:
611 	{
612 		ulong flags;
613 		/*
614 		 * Normally program interrupts are delivered directly
615 		 * to the guest by the hardware, but we can get here
616 		 * as a result of a hypervisor emulation interrupt
617 		 * (e40) getting turned into a 700 by BML RTAS.
618 		 */
619 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
620 		kvmppc_core_queue_program(vcpu, flags);
621 		r = RESUME_GUEST;
622 		break;
623 	}
624 	case BOOK3S_INTERRUPT_SYSCALL:
625 	{
626 		/* hcall - punt to userspace */
627 		int i;
628 
629 		if (vcpu->arch.shregs.msr & MSR_PR) {
630 			/* sc 1 from userspace - reflect to guest syscall */
631 			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
632 			r = RESUME_GUEST;
633 			break;
634 		}
635 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
636 		for (i = 0; i < 9; ++i)
637 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
638 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
639 		vcpu->arch.hcall_needed = 1;
640 		r = RESUME_HOST;
641 		break;
642 	}
643 	/*
644 	 * We get these next two if the guest accesses a page which it thinks
645 	 * it has mapped but which is not actually present, either because
646 	 * it is for an emulated I/O device or because the corresonding
647 	 * host page has been paged out.  Any other HDSI/HISI interrupts
648 	 * have been handled already.
649 	 */
650 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
651 		r = RESUME_PAGE_FAULT;
652 		break;
653 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
654 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
655 		vcpu->arch.fault_dsisr = 0;
656 		r = RESUME_PAGE_FAULT;
657 		break;
658 	/*
659 	 * This occurs if the guest executes an illegal instruction.
660 	 * We just generate a program interrupt to the guest, since
661 	 * we don't emulate any guest instructions at this stage.
662 	 */
663 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
664 		kvmppc_core_queue_program(vcpu, 0x80000);
665 		r = RESUME_GUEST;
666 		break;
667 	default:
668 		kvmppc_dump_regs(vcpu);
669 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
670 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
671 			vcpu->arch.shregs.msr);
672 		r = RESUME_HOST;
673 		BUG();
674 		break;
675 	}
676 
677 	return r;
678 }
679 
680 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
681                                   struct kvm_sregs *sregs)
682 {
683 	int i;
684 
685 	sregs->pvr = vcpu->arch.pvr;
686 
687 	memset(sregs, 0, sizeof(struct kvm_sregs));
688 	for (i = 0; i < vcpu->arch.slb_max; i++) {
689 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
690 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
691 	}
692 
693 	return 0;
694 }
695 
696 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
697                                   struct kvm_sregs *sregs)
698 {
699 	int i, j;
700 
701 	kvmppc_set_pvr(vcpu, sregs->pvr);
702 
703 	j = 0;
704 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
705 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
706 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
707 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
708 			++j;
709 		}
710 	}
711 	vcpu->arch.slb_max = j;
712 
713 	return 0;
714 }
715 
716 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
717 {
718 	int r = 0;
719 	long int i;
720 
721 	switch (id) {
722 	case KVM_REG_PPC_HIOR:
723 		*val = get_reg_val(id, 0);
724 		break;
725 	case KVM_REG_PPC_DABR:
726 		*val = get_reg_val(id, vcpu->arch.dabr);
727 		break;
728 	case KVM_REG_PPC_DSCR:
729 		*val = get_reg_val(id, vcpu->arch.dscr);
730 		break;
731 	case KVM_REG_PPC_PURR:
732 		*val = get_reg_val(id, vcpu->arch.purr);
733 		break;
734 	case KVM_REG_PPC_SPURR:
735 		*val = get_reg_val(id, vcpu->arch.spurr);
736 		break;
737 	case KVM_REG_PPC_AMR:
738 		*val = get_reg_val(id, vcpu->arch.amr);
739 		break;
740 	case KVM_REG_PPC_UAMOR:
741 		*val = get_reg_val(id, vcpu->arch.uamor);
742 		break;
743 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
744 		i = id - KVM_REG_PPC_MMCR0;
745 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
746 		break;
747 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
748 		i = id - KVM_REG_PPC_PMC1;
749 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
750 		break;
751 #ifdef CONFIG_VSX
752 	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
753 		if (cpu_has_feature(CPU_FTR_VSX)) {
754 			/* VSX => FP reg i is stored in arch.vsr[2*i] */
755 			long int i = id - KVM_REG_PPC_FPR0;
756 			*val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
757 		} else {
758 			/* let generic code handle it */
759 			r = -EINVAL;
760 		}
761 		break;
762 	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
763 		if (cpu_has_feature(CPU_FTR_VSX)) {
764 			long int i = id - KVM_REG_PPC_VSR0;
765 			val->vsxval[0] = vcpu->arch.vsr[2 * i];
766 			val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
767 		} else {
768 			r = -ENXIO;
769 		}
770 		break;
771 #endif /* CONFIG_VSX */
772 	case KVM_REG_PPC_VPA_ADDR:
773 		spin_lock(&vcpu->arch.vpa_update_lock);
774 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
775 		spin_unlock(&vcpu->arch.vpa_update_lock);
776 		break;
777 	case KVM_REG_PPC_VPA_SLB:
778 		spin_lock(&vcpu->arch.vpa_update_lock);
779 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
780 		val->vpaval.length = vcpu->arch.slb_shadow.len;
781 		spin_unlock(&vcpu->arch.vpa_update_lock);
782 		break;
783 	case KVM_REG_PPC_VPA_DTL:
784 		spin_lock(&vcpu->arch.vpa_update_lock);
785 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
786 		val->vpaval.length = vcpu->arch.dtl.len;
787 		spin_unlock(&vcpu->arch.vpa_update_lock);
788 		break;
789 	default:
790 		r = -EINVAL;
791 		break;
792 	}
793 
794 	return r;
795 }
796 
797 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
798 {
799 	int r = 0;
800 	long int i;
801 	unsigned long addr, len;
802 
803 	switch (id) {
804 	case KVM_REG_PPC_HIOR:
805 		/* Only allow this to be set to zero */
806 		if (set_reg_val(id, *val))
807 			r = -EINVAL;
808 		break;
809 	case KVM_REG_PPC_DABR:
810 		vcpu->arch.dabr = set_reg_val(id, *val);
811 		break;
812 	case KVM_REG_PPC_DSCR:
813 		vcpu->arch.dscr = set_reg_val(id, *val);
814 		break;
815 	case KVM_REG_PPC_PURR:
816 		vcpu->arch.purr = set_reg_val(id, *val);
817 		break;
818 	case KVM_REG_PPC_SPURR:
819 		vcpu->arch.spurr = set_reg_val(id, *val);
820 		break;
821 	case KVM_REG_PPC_AMR:
822 		vcpu->arch.amr = set_reg_val(id, *val);
823 		break;
824 	case KVM_REG_PPC_UAMOR:
825 		vcpu->arch.uamor = set_reg_val(id, *val);
826 		break;
827 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
828 		i = id - KVM_REG_PPC_MMCR0;
829 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
830 		break;
831 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
832 		i = id - KVM_REG_PPC_PMC1;
833 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
834 		break;
835 #ifdef CONFIG_VSX
836 	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
837 		if (cpu_has_feature(CPU_FTR_VSX)) {
838 			/* VSX => FP reg i is stored in arch.vsr[2*i] */
839 			long int i = id - KVM_REG_PPC_FPR0;
840 			vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
841 		} else {
842 			/* let generic code handle it */
843 			r = -EINVAL;
844 		}
845 		break;
846 	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
847 		if (cpu_has_feature(CPU_FTR_VSX)) {
848 			long int i = id - KVM_REG_PPC_VSR0;
849 			vcpu->arch.vsr[2 * i] = val->vsxval[0];
850 			vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
851 		} else {
852 			r = -ENXIO;
853 		}
854 		break;
855 #endif /* CONFIG_VSX */
856 	case KVM_REG_PPC_VPA_ADDR:
857 		addr = set_reg_val(id, *val);
858 		r = -EINVAL;
859 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
860 			      vcpu->arch.dtl.next_gpa))
861 			break;
862 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
863 		break;
864 	case KVM_REG_PPC_VPA_SLB:
865 		addr = val->vpaval.addr;
866 		len = val->vpaval.length;
867 		r = -EINVAL;
868 		if (addr && !vcpu->arch.vpa.next_gpa)
869 			break;
870 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
871 		break;
872 	case KVM_REG_PPC_VPA_DTL:
873 		addr = val->vpaval.addr;
874 		len = val->vpaval.length;
875 		r = -EINVAL;
876 		if (addr && (len < sizeof(struct dtl_entry) ||
877 			     !vcpu->arch.vpa.next_gpa))
878 			break;
879 		len -= len % sizeof(struct dtl_entry);
880 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
881 		break;
882 	default:
883 		r = -EINVAL;
884 		break;
885 	}
886 
887 	return r;
888 }
889 
890 int kvmppc_core_check_processor_compat(void)
891 {
892 	if (cpu_has_feature(CPU_FTR_HVMODE))
893 		return 0;
894 	return -EIO;
895 }
896 
897 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
898 {
899 	struct kvm_vcpu *vcpu;
900 	int err = -EINVAL;
901 	int core;
902 	struct kvmppc_vcore *vcore;
903 
904 	core = id / threads_per_core;
905 	if (core >= KVM_MAX_VCORES)
906 		goto out;
907 
908 	err = -ENOMEM;
909 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
910 	if (!vcpu)
911 		goto out;
912 
913 	err = kvm_vcpu_init(vcpu, kvm, id);
914 	if (err)
915 		goto free_vcpu;
916 
917 	vcpu->arch.shared = &vcpu->arch.shregs;
918 	vcpu->arch.mmcr[0] = MMCR0_FC;
919 	vcpu->arch.ctrl = CTRL_RUNLATCH;
920 	/* default to host PVR, since we can't spoof it */
921 	vcpu->arch.pvr = mfspr(SPRN_PVR);
922 	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
923 	spin_lock_init(&vcpu->arch.vpa_update_lock);
924 	spin_lock_init(&vcpu->arch.tbacct_lock);
925 	vcpu->arch.busy_preempt = TB_NIL;
926 
927 	kvmppc_mmu_book3s_hv_init(vcpu);
928 
929 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
930 
931 	init_waitqueue_head(&vcpu->arch.cpu_run);
932 
933 	mutex_lock(&kvm->lock);
934 	vcore = kvm->arch.vcores[core];
935 	if (!vcore) {
936 		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
937 		if (vcore) {
938 			INIT_LIST_HEAD(&vcore->runnable_threads);
939 			spin_lock_init(&vcore->lock);
940 			init_waitqueue_head(&vcore->wq);
941 			vcore->preempt_tb = TB_NIL;
942 		}
943 		kvm->arch.vcores[core] = vcore;
944 		kvm->arch.online_vcores++;
945 	}
946 	mutex_unlock(&kvm->lock);
947 
948 	if (!vcore)
949 		goto free_vcpu;
950 
951 	spin_lock(&vcore->lock);
952 	++vcore->num_threads;
953 	spin_unlock(&vcore->lock);
954 	vcpu->arch.vcore = vcore;
955 
956 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
957 	kvmppc_sanity_check(vcpu);
958 
959 	return vcpu;
960 
961 free_vcpu:
962 	kmem_cache_free(kvm_vcpu_cache, vcpu);
963 out:
964 	return ERR_PTR(err);
965 }
966 
967 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
968 {
969 	if (vpa->pinned_addr)
970 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
971 					vpa->dirty);
972 }
973 
974 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
975 {
976 	spin_lock(&vcpu->arch.vpa_update_lock);
977 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
978 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
979 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
980 	spin_unlock(&vcpu->arch.vpa_update_lock);
981 	kvm_vcpu_uninit(vcpu);
982 	kmem_cache_free(kvm_vcpu_cache, vcpu);
983 }
984 
985 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
986 {
987 	unsigned long dec_nsec, now;
988 
989 	now = get_tb();
990 	if (now > vcpu->arch.dec_expires) {
991 		/* decrementer has already gone negative */
992 		kvmppc_core_queue_dec(vcpu);
993 		kvmppc_core_prepare_to_enter(vcpu);
994 		return;
995 	}
996 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
997 		   / tb_ticks_per_sec;
998 	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
999 		      HRTIMER_MODE_REL);
1000 	vcpu->arch.timer_running = 1;
1001 }
1002 
1003 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1004 {
1005 	vcpu->arch.ceded = 0;
1006 	if (vcpu->arch.timer_running) {
1007 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1008 		vcpu->arch.timer_running = 0;
1009 	}
1010 }
1011 
1012 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
1013 
1014 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1015 				   struct kvm_vcpu *vcpu)
1016 {
1017 	u64 now;
1018 
1019 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1020 		return;
1021 	spin_lock(&vcpu->arch.tbacct_lock);
1022 	now = mftb();
1023 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1024 		vcpu->arch.stolen_logged;
1025 	vcpu->arch.busy_preempt = now;
1026 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1027 	spin_unlock(&vcpu->arch.tbacct_lock);
1028 	--vc->n_runnable;
1029 	list_del(&vcpu->arch.run_list);
1030 }
1031 
1032 static int kvmppc_grab_hwthread(int cpu)
1033 {
1034 	struct paca_struct *tpaca;
1035 	long timeout = 1000;
1036 
1037 	tpaca = &paca[cpu];
1038 
1039 	/* Ensure the thread won't go into the kernel if it wakes */
1040 	tpaca->kvm_hstate.hwthread_req = 1;
1041 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1042 
1043 	/*
1044 	 * If the thread is already executing in the kernel (e.g. handling
1045 	 * a stray interrupt), wait for it to get back to nap mode.
1046 	 * The smp_mb() is to ensure that our setting of hwthread_req
1047 	 * is visible before we look at hwthread_state, so if this
1048 	 * races with the code at system_reset_pSeries and the thread
1049 	 * misses our setting of hwthread_req, we are sure to see its
1050 	 * setting of hwthread_state, and vice versa.
1051 	 */
1052 	smp_mb();
1053 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1054 		if (--timeout <= 0) {
1055 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
1056 			return -EBUSY;
1057 		}
1058 		udelay(1);
1059 	}
1060 	return 0;
1061 }
1062 
1063 static void kvmppc_release_hwthread(int cpu)
1064 {
1065 	struct paca_struct *tpaca;
1066 
1067 	tpaca = &paca[cpu];
1068 	tpaca->kvm_hstate.hwthread_req = 0;
1069 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1070 }
1071 
1072 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1073 {
1074 	int cpu;
1075 	struct paca_struct *tpaca;
1076 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1077 
1078 	if (vcpu->arch.timer_running) {
1079 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1080 		vcpu->arch.timer_running = 0;
1081 	}
1082 	cpu = vc->pcpu + vcpu->arch.ptid;
1083 	tpaca = &paca[cpu];
1084 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1085 	tpaca->kvm_hstate.kvm_vcore = vc;
1086 	tpaca->kvm_hstate.napping = 0;
1087 	vcpu->cpu = vc->pcpu;
1088 	smp_wmb();
1089 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1090 	if (vcpu->arch.ptid) {
1091 		xics_wake_cpu(cpu);
1092 		++vc->n_woken;
1093 	}
1094 #endif
1095 }
1096 
1097 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1098 {
1099 	int i;
1100 
1101 	HMT_low();
1102 	i = 0;
1103 	while (vc->nap_count < vc->n_woken) {
1104 		if (++i >= 1000000) {
1105 			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1106 			       vc->nap_count, vc->n_woken);
1107 			break;
1108 		}
1109 		cpu_relax();
1110 	}
1111 	HMT_medium();
1112 }
1113 
1114 /*
1115  * Check that we are on thread 0 and that any other threads in
1116  * this core are off-line.  Then grab the threads so they can't
1117  * enter the kernel.
1118  */
1119 static int on_primary_thread(void)
1120 {
1121 	int cpu = smp_processor_id();
1122 	int thr = cpu_thread_in_core(cpu);
1123 
1124 	if (thr)
1125 		return 0;
1126 	while (++thr < threads_per_core)
1127 		if (cpu_online(cpu + thr))
1128 			return 0;
1129 
1130 	/* Grab all hw threads so they can't go into the kernel */
1131 	for (thr = 1; thr < threads_per_core; ++thr) {
1132 		if (kvmppc_grab_hwthread(cpu + thr)) {
1133 			/* Couldn't grab one; let the others go */
1134 			do {
1135 				kvmppc_release_hwthread(cpu + thr);
1136 			} while (--thr > 0);
1137 			return 0;
1138 		}
1139 	}
1140 	return 1;
1141 }
1142 
1143 /*
1144  * Run a set of guest threads on a physical core.
1145  * Called with vc->lock held.
1146  */
1147 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1148 {
1149 	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1150 	long ret;
1151 	u64 now;
1152 	int ptid, i, need_vpa_update;
1153 	int srcu_idx;
1154 	struct kvm_vcpu *vcpus_to_update[threads_per_core];
1155 
1156 	/* don't start if any threads have a signal pending */
1157 	need_vpa_update = 0;
1158 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1159 		if (signal_pending(vcpu->arch.run_task))
1160 			return;
1161 		if (vcpu->arch.vpa.update_pending ||
1162 		    vcpu->arch.slb_shadow.update_pending ||
1163 		    vcpu->arch.dtl.update_pending)
1164 			vcpus_to_update[need_vpa_update++] = vcpu;
1165 	}
1166 
1167 	/*
1168 	 * Initialize *vc, in particular vc->vcore_state, so we can
1169 	 * drop the vcore lock if necessary.
1170 	 */
1171 	vc->n_woken = 0;
1172 	vc->nap_count = 0;
1173 	vc->entry_exit_count = 0;
1174 	vc->vcore_state = VCORE_STARTING;
1175 	vc->in_guest = 0;
1176 	vc->napping_threads = 0;
1177 
1178 	/*
1179 	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1180 	 * which can't be called with any spinlocks held.
1181 	 */
1182 	if (need_vpa_update) {
1183 		spin_unlock(&vc->lock);
1184 		for (i = 0; i < need_vpa_update; ++i)
1185 			kvmppc_update_vpas(vcpus_to_update[i]);
1186 		spin_lock(&vc->lock);
1187 	}
1188 
1189 	/*
1190 	 * Assign physical thread IDs, first to non-ceded vcpus
1191 	 * and then to ceded ones.
1192 	 */
1193 	ptid = 0;
1194 	vcpu0 = NULL;
1195 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1196 		if (!vcpu->arch.ceded) {
1197 			if (!ptid)
1198 				vcpu0 = vcpu;
1199 			vcpu->arch.ptid = ptid++;
1200 		}
1201 	}
1202 	if (!vcpu0)
1203 		goto out;	/* nothing to run; should never happen */
1204 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1205 		if (vcpu->arch.ceded)
1206 			vcpu->arch.ptid = ptid++;
1207 
1208 	/*
1209 	 * Make sure we are running on thread 0, and that
1210 	 * secondary threads are offline.
1211 	 */
1212 	if (threads_per_core > 1 && !on_primary_thread()) {
1213 		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1214 			vcpu->arch.ret = -EBUSY;
1215 		goto out;
1216 	}
1217 
1218 	vc->pcpu = smp_processor_id();
1219 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1220 		kvmppc_start_thread(vcpu);
1221 		kvmppc_create_dtl_entry(vcpu, vc);
1222 	}
1223 
1224 	vc->vcore_state = VCORE_RUNNING;
1225 	preempt_disable();
1226 	spin_unlock(&vc->lock);
1227 
1228 	kvm_guest_enter();
1229 
1230 	srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1231 
1232 	__kvmppc_vcore_entry(NULL, vcpu0);
1233 
1234 	spin_lock(&vc->lock);
1235 	/* disable sending of IPIs on virtual external irqs */
1236 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1237 		vcpu->cpu = -1;
1238 	/* wait for secondary threads to finish writing their state to memory */
1239 	if (vc->nap_count < vc->n_woken)
1240 		kvmppc_wait_for_nap(vc);
1241 	for (i = 0; i < threads_per_core; ++i)
1242 		kvmppc_release_hwthread(vc->pcpu + i);
1243 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1244 	vc->vcore_state = VCORE_EXITING;
1245 	spin_unlock(&vc->lock);
1246 
1247 	srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1248 
1249 	/* make sure updates to secondary vcpu structs are visible now */
1250 	smp_mb();
1251 	kvm_guest_exit();
1252 
1253 	preempt_enable();
1254 	kvm_resched(vcpu);
1255 
1256 	spin_lock(&vc->lock);
1257 	now = get_tb();
1258 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1259 		/* cancel pending dec exception if dec is positive */
1260 		if (now < vcpu->arch.dec_expires &&
1261 		    kvmppc_core_pending_dec(vcpu))
1262 			kvmppc_core_dequeue_dec(vcpu);
1263 
1264 		ret = RESUME_GUEST;
1265 		if (vcpu->arch.trap)
1266 			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
1267 						 vcpu->arch.run_task);
1268 
1269 		vcpu->arch.ret = ret;
1270 		vcpu->arch.trap = 0;
1271 
1272 		if (vcpu->arch.ceded) {
1273 			if (ret != RESUME_GUEST)
1274 				kvmppc_end_cede(vcpu);
1275 			else
1276 				kvmppc_set_timer(vcpu);
1277 		}
1278 	}
1279 
1280  out:
1281 	vc->vcore_state = VCORE_INACTIVE;
1282 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1283 				 arch.run_list) {
1284 		if (vcpu->arch.ret != RESUME_GUEST) {
1285 			kvmppc_remove_runnable(vc, vcpu);
1286 			wake_up(&vcpu->arch.cpu_run);
1287 		}
1288 	}
1289 }
1290 
1291 /*
1292  * Wait for some other vcpu thread to execute us, and
1293  * wake us up when we need to handle something in the host.
1294  */
1295 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1296 {
1297 	DEFINE_WAIT(wait);
1298 
1299 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1300 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1301 		schedule();
1302 	finish_wait(&vcpu->arch.cpu_run, &wait);
1303 }
1304 
1305 /*
1306  * All the vcpus in this vcore are idle, so wait for a decrementer
1307  * or external interrupt to one of the vcpus.  vc->lock is held.
1308  */
1309 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1310 {
1311 	DEFINE_WAIT(wait);
1312 
1313 	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1314 	vc->vcore_state = VCORE_SLEEPING;
1315 	spin_unlock(&vc->lock);
1316 	schedule();
1317 	finish_wait(&vc->wq, &wait);
1318 	spin_lock(&vc->lock);
1319 	vc->vcore_state = VCORE_INACTIVE;
1320 }
1321 
1322 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1323 {
1324 	int n_ceded;
1325 	struct kvmppc_vcore *vc;
1326 	struct kvm_vcpu *v, *vn;
1327 
1328 	kvm_run->exit_reason = 0;
1329 	vcpu->arch.ret = RESUME_GUEST;
1330 	vcpu->arch.trap = 0;
1331 	kvmppc_update_vpas(vcpu);
1332 
1333 	/*
1334 	 * Synchronize with other threads in this virtual core
1335 	 */
1336 	vc = vcpu->arch.vcore;
1337 	spin_lock(&vc->lock);
1338 	vcpu->arch.ceded = 0;
1339 	vcpu->arch.run_task = current;
1340 	vcpu->arch.kvm_run = kvm_run;
1341 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1342 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1343 	vcpu->arch.busy_preempt = TB_NIL;
1344 	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1345 	++vc->n_runnable;
1346 
1347 	/*
1348 	 * This happens the first time this is called for a vcpu.
1349 	 * If the vcore is already running, we may be able to start
1350 	 * this thread straight away and have it join in.
1351 	 */
1352 	if (!signal_pending(current)) {
1353 		if (vc->vcore_state == VCORE_RUNNING &&
1354 		    VCORE_EXIT_COUNT(vc) == 0) {
1355 			vcpu->arch.ptid = vc->n_runnable - 1;
1356 			kvmppc_create_dtl_entry(vcpu, vc);
1357 			kvmppc_start_thread(vcpu);
1358 		} else if (vc->vcore_state == VCORE_SLEEPING) {
1359 			wake_up(&vc->wq);
1360 		}
1361 
1362 	}
1363 
1364 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1365 	       !signal_pending(current)) {
1366 		if (vc->vcore_state != VCORE_INACTIVE) {
1367 			spin_unlock(&vc->lock);
1368 			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1369 			spin_lock(&vc->lock);
1370 			continue;
1371 		}
1372 		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1373 					 arch.run_list) {
1374 			kvmppc_core_prepare_to_enter(v);
1375 			if (signal_pending(v->arch.run_task)) {
1376 				kvmppc_remove_runnable(vc, v);
1377 				v->stat.signal_exits++;
1378 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1379 				v->arch.ret = -EINTR;
1380 				wake_up(&v->arch.cpu_run);
1381 			}
1382 		}
1383 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1384 			break;
1385 		vc->runner = vcpu;
1386 		n_ceded = 0;
1387 		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1388 			if (!v->arch.pending_exceptions)
1389 				n_ceded += v->arch.ceded;
1390 			else
1391 				v->arch.ceded = 0;
1392 		}
1393 		if (n_ceded == vc->n_runnable)
1394 			kvmppc_vcore_blocked(vc);
1395 		else
1396 			kvmppc_run_core(vc);
1397 		vc->runner = NULL;
1398 	}
1399 
1400 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1401 	       (vc->vcore_state == VCORE_RUNNING ||
1402 		vc->vcore_state == VCORE_EXITING)) {
1403 		spin_unlock(&vc->lock);
1404 		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1405 		spin_lock(&vc->lock);
1406 	}
1407 
1408 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1409 		kvmppc_remove_runnable(vc, vcpu);
1410 		vcpu->stat.signal_exits++;
1411 		kvm_run->exit_reason = KVM_EXIT_INTR;
1412 		vcpu->arch.ret = -EINTR;
1413 	}
1414 
1415 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1416 		/* Wake up some vcpu to run the core */
1417 		v = list_first_entry(&vc->runnable_threads,
1418 				     struct kvm_vcpu, arch.run_list);
1419 		wake_up(&v->arch.cpu_run);
1420 	}
1421 
1422 	spin_unlock(&vc->lock);
1423 	return vcpu->arch.ret;
1424 }
1425 
1426 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1427 {
1428 	int r;
1429 	int srcu_idx;
1430 
1431 	if (!vcpu->arch.sane) {
1432 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1433 		return -EINVAL;
1434 	}
1435 
1436 	kvmppc_core_prepare_to_enter(vcpu);
1437 
1438 	/* No need to go into the guest when all we'll do is come back out */
1439 	if (signal_pending(current)) {
1440 		run->exit_reason = KVM_EXIT_INTR;
1441 		return -EINTR;
1442 	}
1443 
1444 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
1445 	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1446 	smp_mb();
1447 
1448 	/* On the first time here, set up HTAB and VRMA or RMA */
1449 	if (!vcpu->kvm->arch.rma_setup_done) {
1450 		r = kvmppc_hv_setup_htab_rma(vcpu);
1451 		if (r)
1452 			goto out;
1453 	}
1454 
1455 	flush_fp_to_thread(current);
1456 	flush_altivec_to_thread(current);
1457 	flush_vsx_to_thread(current);
1458 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1459 	vcpu->arch.pgdir = current->mm->pgd;
1460 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1461 
1462 	do {
1463 		r = kvmppc_run_vcpu(run, vcpu);
1464 
1465 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1466 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
1467 			r = kvmppc_pseries_do_hcall(vcpu);
1468 			kvmppc_core_prepare_to_enter(vcpu);
1469 		} else if (r == RESUME_PAGE_FAULT) {
1470 			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1471 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
1472 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1473 			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1474 		}
1475 	} while (r == RESUME_GUEST);
1476 
1477  out:
1478 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1479 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1480 	return r;
1481 }
1482 
1483 
1484 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1485    Assumes POWER7 or PPC970. */
1486 static inline int lpcr_rmls(unsigned long rma_size)
1487 {
1488 	switch (rma_size) {
1489 	case 32ul << 20:	/* 32 MB */
1490 		if (cpu_has_feature(CPU_FTR_ARCH_206))
1491 			return 8;	/* only supported on POWER7 */
1492 		return -1;
1493 	case 64ul << 20:	/* 64 MB */
1494 		return 3;
1495 	case 128ul << 20:	/* 128 MB */
1496 		return 7;
1497 	case 256ul << 20:	/* 256 MB */
1498 		return 4;
1499 	case 1ul << 30:		/* 1 GB */
1500 		return 2;
1501 	case 16ul << 30:	/* 16 GB */
1502 		return 1;
1503 	case 256ul << 30:	/* 256 GB */
1504 		return 0;
1505 	default:
1506 		return -1;
1507 	}
1508 }
1509 
1510 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1511 {
1512 	struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1513 	struct page *page;
1514 
1515 	if (vmf->pgoff >= ri->npages)
1516 		return VM_FAULT_SIGBUS;
1517 
1518 	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1519 	get_page(page);
1520 	vmf->page = page;
1521 	return 0;
1522 }
1523 
1524 static const struct vm_operations_struct kvm_rma_vm_ops = {
1525 	.fault = kvm_rma_fault,
1526 };
1527 
1528 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1529 {
1530 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1531 	vma->vm_ops = &kvm_rma_vm_ops;
1532 	return 0;
1533 }
1534 
1535 static int kvm_rma_release(struct inode *inode, struct file *filp)
1536 {
1537 	struct kvmppc_linear_info *ri = filp->private_data;
1538 
1539 	kvm_release_rma(ri);
1540 	return 0;
1541 }
1542 
1543 static const struct file_operations kvm_rma_fops = {
1544 	.mmap           = kvm_rma_mmap,
1545 	.release	= kvm_rma_release,
1546 };
1547 
1548 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1549 {
1550 	struct kvmppc_linear_info *ri;
1551 	long fd;
1552 
1553 	ri = kvm_alloc_rma();
1554 	if (!ri)
1555 		return -ENOMEM;
1556 
1557 	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1558 	if (fd < 0)
1559 		kvm_release_rma(ri);
1560 
1561 	ret->rma_size = ri->npages << PAGE_SHIFT;
1562 	return fd;
1563 }
1564 
1565 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1566 				     int linux_psize)
1567 {
1568 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1569 
1570 	if (!def->shift)
1571 		return;
1572 	(*sps)->page_shift = def->shift;
1573 	(*sps)->slb_enc = def->sllp;
1574 	(*sps)->enc[0].page_shift = def->shift;
1575 	/*
1576 	 * Only return base page encoding. We don't want to return
1577 	 * all the supporting pte_enc, because our H_ENTER doesn't
1578 	 * support MPSS yet. Once they do, we can start passing all
1579 	 * support pte_enc here
1580 	 */
1581 	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
1582 	(*sps)++;
1583 }
1584 
1585 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1586 {
1587 	struct kvm_ppc_one_seg_page_size *sps;
1588 
1589 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
1590 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1591 		info->flags |= KVM_PPC_1T_SEGMENTS;
1592 	info->slb_size = mmu_slb_size;
1593 
1594 	/* We only support these sizes for now, and no muti-size segments */
1595 	sps = &info->sps[0];
1596 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1597 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1598 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1599 
1600 	return 0;
1601 }
1602 
1603 /*
1604  * Get (and clear) the dirty memory log for a memory slot.
1605  */
1606 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1607 {
1608 	struct kvm_memory_slot *memslot;
1609 	int r;
1610 	unsigned long n;
1611 
1612 	mutex_lock(&kvm->slots_lock);
1613 
1614 	r = -EINVAL;
1615 	if (log->slot >= KVM_USER_MEM_SLOTS)
1616 		goto out;
1617 
1618 	memslot = id_to_memslot(kvm->memslots, log->slot);
1619 	r = -ENOENT;
1620 	if (!memslot->dirty_bitmap)
1621 		goto out;
1622 
1623 	n = kvm_dirty_bitmap_bytes(memslot);
1624 	memset(memslot->dirty_bitmap, 0, n);
1625 
1626 	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1627 	if (r)
1628 		goto out;
1629 
1630 	r = -EFAULT;
1631 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1632 		goto out;
1633 
1634 	r = 0;
1635 out:
1636 	mutex_unlock(&kvm->slots_lock);
1637 	return r;
1638 }
1639 
1640 static void unpin_slot(struct kvm_memory_slot *memslot)
1641 {
1642 	unsigned long *physp;
1643 	unsigned long j, npages, pfn;
1644 	struct page *page;
1645 
1646 	physp = memslot->arch.slot_phys;
1647 	npages = memslot->npages;
1648 	if (!physp)
1649 		return;
1650 	for (j = 0; j < npages; j++) {
1651 		if (!(physp[j] & KVMPPC_GOT_PAGE))
1652 			continue;
1653 		pfn = physp[j] >> PAGE_SHIFT;
1654 		page = pfn_to_page(pfn);
1655 		SetPageDirty(page);
1656 		put_page(page);
1657 	}
1658 }
1659 
1660 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1661 			      struct kvm_memory_slot *dont)
1662 {
1663 	if (!dont || free->arch.rmap != dont->arch.rmap) {
1664 		vfree(free->arch.rmap);
1665 		free->arch.rmap = NULL;
1666 	}
1667 	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1668 		unpin_slot(free);
1669 		vfree(free->arch.slot_phys);
1670 		free->arch.slot_phys = NULL;
1671 	}
1672 }
1673 
1674 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1675 			       unsigned long npages)
1676 {
1677 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1678 	if (!slot->arch.rmap)
1679 		return -ENOMEM;
1680 	slot->arch.slot_phys = NULL;
1681 
1682 	return 0;
1683 }
1684 
1685 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1686 				      struct kvm_memory_slot *memslot,
1687 				      struct kvm_userspace_memory_region *mem)
1688 {
1689 	unsigned long *phys;
1690 
1691 	/* Allocate a slot_phys array if needed */
1692 	phys = memslot->arch.slot_phys;
1693 	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1694 		phys = vzalloc(memslot->npages * sizeof(unsigned long));
1695 		if (!phys)
1696 			return -ENOMEM;
1697 		memslot->arch.slot_phys = phys;
1698 	}
1699 
1700 	return 0;
1701 }
1702 
1703 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1704 				      struct kvm_userspace_memory_region *mem,
1705 				      const struct kvm_memory_slot *old)
1706 {
1707 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1708 	struct kvm_memory_slot *memslot;
1709 
1710 	if (npages && old->npages) {
1711 		/*
1712 		 * If modifying a memslot, reset all the rmap dirty bits.
1713 		 * If this is a new memslot, we don't need to do anything
1714 		 * since the rmap array starts out as all zeroes,
1715 		 * i.e. no pages are dirty.
1716 		 */
1717 		memslot = id_to_memslot(kvm->memslots, mem->slot);
1718 		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1719 	}
1720 }
1721 
1722 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1723 {
1724 	int err = 0;
1725 	struct kvm *kvm = vcpu->kvm;
1726 	struct kvmppc_linear_info *ri = NULL;
1727 	unsigned long hva;
1728 	struct kvm_memory_slot *memslot;
1729 	struct vm_area_struct *vma;
1730 	unsigned long lpcr, senc;
1731 	unsigned long psize, porder;
1732 	unsigned long rma_size;
1733 	unsigned long rmls;
1734 	unsigned long *physp;
1735 	unsigned long i, npages;
1736 	int srcu_idx;
1737 
1738 	mutex_lock(&kvm->lock);
1739 	if (kvm->arch.rma_setup_done)
1740 		goto out;	/* another vcpu beat us to it */
1741 
1742 	/* Allocate hashed page table (if not done already) and reset it */
1743 	if (!kvm->arch.hpt_virt) {
1744 		err = kvmppc_alloc_hpt(kvm, NULL);
1745 		if (err) {
1746 			pr_err("KVM: Couldn't alloc HPT\n");
1747 			goto out;
1748 		}
1749 	}
1750 
1751 	/* Look up the memslot for guest physical address 0 */
1752 	srcu_idx = srcu_read_lock(&kvm->srcu);
1753 	memslot = gfn_to_memslot(kvm, 0);
1754 
1755 	/* We must have some memory at 0 by now */
1756 	err = -EINVAL;
1757 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1758 		goto out_srcu;
1759 
1760 	/* Look up the VMA for the start of this memory slot */
1761 	hva = memslot->userspace_addr;
1762 	down_read(&current->mm->mmap_sem);
1763 	vma = find_vma(current->mm, hva);
1764 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1765 		goto up_out;
1766 
1767 	psize = vma_kernel_pagesize(vma);
1768 	porder = __ilog2(psize);
1769 
1770 	/* Is this one of our preallocated RMAs? */
1771 	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1772 	    hva == vma->vm_start)
1773 		ri = vma->vm_file->private_data;
1774 
1775 	up_read(&current->mm->mmap_sem);
1776 
1777 	if (!ri) {
1778 		/* On POWER7, use VRMA; on PPC970, give up */
1779 		err = -EPERM;
1780 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1781 			pr_err("KVM: CPU requires an RMO\n");
1782 			goto out_srcu;
1783 		}
1784 
1785 		/* We can handle 4k, 64k or 16M pages in the VRMA */
1786 		err = -EINVAL;
1787 		if (!(psize == 0x1000 || psize == 0x10000 ||
1788 		      psize == 0x1000000))
1789 			goto out_srcu;
1790 
1791 		/* Update VRMASD field in the LPCR */
1792 		senc = slb_pgsize_encoding(psize);
1793 		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1794 			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1795 		lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1796 		lpcr |= senc << (LPCR_VRMASD_SH - 4);
1797 		kvm->arch.lpcr = lpcr;
1798 
1799 		/* Create HPTEs in the hash page table for the VRMA */
1800 		kvmppc_map_vrma(vcpu, memslot, porder);
1801 
1802 	} else {
1803 		/* Set up to use an RMO region */
1804 		rma_size = ri->npages;
1805 		if (rma_size > memslot->npages)
1806 			rma_size = memslot->npages;
1807 		rma_size <<= PAGE_SHIFT;
1808 		rmls = lpcr_rmls(rma_size);
1809 		err = -EINVAL;
1810 		if (rmls < 0) {
1811 			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1812 			goto out_srcu;
1813 		}
1814 		atomic_inc(&ri->use_count);
1815 		kvm->arch.rma = ri;
1816 
1817 		/* Update LPCR and RMOR */
1818 		lpcr = kvm->arch.lpcr;
1819 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1820 			/* PPC970; insert RMLS value (split field) in HID4 */
1821 			lpcr &= ~((1ul << HID4_RMLS0_SH) |
1822 				  (3ul << HID4_RMLS2_SH));
1823 			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1824 				((rmls & 3) << HID4_RMLS2_SH);
1825 			/* RMOR is also in HID4 */
1826 			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1827 				<< HID4_RMOR_SH;
1828 		} else {
1829 			/* POWER7 */
1830 			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1831 			lpcr |= rmls << LPCR_RMLS_SH;
1832 			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1833 		}
1834 		kvm->arch.lpcr = lpcr;
1835 		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1836 			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1837 
1838 		/* Initialize phys addrs of pages in RMO */
1839 		npages = ri->npages;
1840 		porder = __ilog2(npages);
1841 		physp = memslot->arch.slot_phys;
1842 		if (physp) {
1843 			if (npages > memslot->npages)
1844 				npages = memslot->npages;
1845 			spin_lock(&kvm->arch.slot_phys_lock);
1846 			for (i = 0; i < npages; ++i)
1847 				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1848 					porder;
1849 			spin_unlock(&kvm->arch.slot_phys_lock);
1850 		}
1851 	}
1852 
1853 	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1854 	smp_wmb();
1855 	kvm->arch.rma_setup_done = 1;
1856 	err = 0;
1857  out_srcu:
1858 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1859  out:
1860 	mutex_unlock(&kvm->lock);
1861 	return err;
1862 
1863  up_out:
1864 	up_read(&current->mm->mmap_sem);
1865 	goto out;
1866 }
1867 
1868 int kvmppc_core_init_vm(struct kvm *kvm)
1869 {
1870 	unsigned long lpcr, lpid;
1871 
1872 	/* Allocate the guest's logical partition ID */
1873 
1874 	lpid = kvmppc_alloc_lpid();
1875 	if (lpid < 0)
1876 		return -ENOMEM;
1877 	kvm->arch.lpid = lpid;
1878 
1879 	/*
1880 	 * Since we don't flush the TLB when tearing down a VM,
1881 	 * and this lpid might have previously been used,
1882 	 * make sure we flush on each core before running the new VM.
1883 	 */
1884 	cpumask_setall(&kvm->arch.need_tlb_flush);
1885 
1886 	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1887 	INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
1888 
1889 	kvm->arch.rma = NULL;
1890 
1891 	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1892 
1893 	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1894 		/* PPC970; HID4 is effectively the LPCR */
1895 		kvm->arch.host_lpid = 0;
1896 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1897 		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1898 		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1899 			((lpid & 0xf) << HID4_LPID5_SH);
1900 	} else {
1901 		/* POWER7; init LPCR for virtual RMA mode */
1902 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
1903 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1904 		lpcr &= LPCR_PECE | LPCR_LPES;
1905 		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1906 			LPCR_VPM0 | LPCR_VPM1;
1907 		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1908 			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1909 	}
1910 	kvm->arch.lpcr = lpcr;
1911 
1912 	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1913 	spin_lock_init(&kvm->arch.slot_phys_lock);
1914 
1915 	/*
1916 	 * Don't allow secondary CPU threads to come online
1917 	 * while any KVM VMs exist.
1918 	 */
1919 	inhibit_secondary_onlining();
1920 
1921 	return 0;
1922 }
1923 
1924 void kvmppc_core_destroy_vm(struct kvm *kvm)
1925 {
1926 	uninhibit_secondary_onlining();
1927 
1928 	if (kvm->arch.rma) {
1929 		kvm_release_rma(kvm->arch.rma);
1930 		kvm->arch.rma = NULL;
1931 	}
1932 
1933 	kvmppc_rtas_tokens_free(kvm);
1934 
1935 	kvmppc_free_hpt(kvm);
1936 	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1937 }
1938 
1939 /* These are stubs for now */
1940 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1941 {
1942 }
1943 
1944 /* We don't need to emulate any privileged instructions or dcbz */
1945 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1946                            unsigned int inst, int *advance)
1947 {
1948 	return EMULATE_FAIL;
1949 }
1950 
1951 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1952 {
1953 	return EMULATE_FAIL;
1954 }
1955 
1956 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1957 {
1958 	return EMULATE_FAIL;
1959 }
1960 
1961 static int kvmppc_book3s_hv_init(void)
1962 {
1963 	int r;
1964 
1965 	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1966 
1967 	if (r)
1968 		return r;
1969 
1970 	r = kvmppc_mmu_hv_init();
1971 
1972 	return r;
1973 }
1974 
1975 static void kvmppc_book3s_hv_exit(void)
1976 {
1977 	kvm_exit();
1978 }
1979 
1980 module_init(kvmppc_book3s_hv_init);
1981 module_exit(kvmppc_book3s_hv_exit);
1982