1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/kernel.h> 23 #include <linux/err.h> 24 #include <linux/slab.h> 25 #include <linux/preempt.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sched/stat.h> 28 #include <linux/delay.h> 29 #include <linux/export.h> 30 #include <linux/fs.h> 31 #include <linux/anon_inodes.h> 32 #include <linux/cpu.h> 33 #include <linux/cpumask.h> 34 #include <linux/spinlock.h> 35 #include <linux/page-flags.h> 36 #include <linux/srcu.h> 37 #include <linux/miscdevice.h> 38 #include <linux/debugfs.h> 39 #include <linux/gfp.h> 40 #include <linux/vmalloc.h> 41 #include <linux/highmem.h> 42 #include <linux/hugetlb.h> 43 #include <linux/kvm_irqfd.h> 44 #include <linux/irqbypass.h> 45 #include <linux/module.h> 46 #include <linux/compiler.h> 47 #include <linux/of.h> 48 49 #include <asm/ftrace.h> 50 #include <asm/reg.h> 51 #include <asm/ppc-opcode.h> 52 #include <asm/asm-prototypes.h> 53 #include <asm/debug.h> 54 #include <asm/disassemble.h> 55 #include <asm/cputable.h> 56 #include <asm/cacheflush.h> 57 #include <linux/uaccess.h> 58 #include <asm/io.h> 59 #include <asm/kvm_ppc.h> 60 #include <asm/kvm_book3s.h> 61 #include <asm/mmu_context.h> 62 #include <asm/lppaca.h> 63 #include <asm/processor.h> 64 #include <asm/cputhreads.h> 65 #include <asm/page.h> 66 #include <asm/hvcall.h> 67 #include <asm/switch_to.h> 68 #include <asm/smp.h> 69 #include <asm/dbell.h> 70 #include <asm/hmi.h> 71 #include <asm/pnv-pci.h> 72 #include <asm/mmu.h> 73 #include <asm/opal.h> 74 #include <asm/xics.h> 75 #include <asm/xive.h> 76 77 #include "book3s.h" 78 79 #define CREATE_TRACE_POINTS 80 #include "trace_hv.h" 81 82 /* #define EXIT_DEBUG */ 83 /* #define EXIT_DEBUG_SIMPLE */ 84 /* #define EXIT_DEBUG_INT */ 85 86 /* Used to indicate that a guest page fault needs to be handled */ 87 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 88 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 89 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 90 91 /* Used as a "null" value for timebase values */ 92 #define TB_NIL (~(u64)0) 93 94 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 95 96 static int dynamic_mt_modes = 6; 97 module_param(dynamic_mt_modes, int, 0644); 98 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 99 static int target_smt_mode; 100 module_param(target_smt_mode, int, 0644); 101 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 102 103 static bool indep_threads_mode = true; 104 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 105 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 106 107 #ifdef CONFIG_KVM_XICS 108 static struct kernel_param_ops module_param_ops = { 109 .set = param_set_int, 110 .get = param_get_int, 111 }; 112 113 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 114 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 115 116 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 117 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 118 #endif 119 120 /* If set, the threads on each CPU core have to be in the same MMU mode */ 121 static bool no_mixing_hpt_and_radix; 122 123 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 124 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 125 126 /* 127 * RWMR values for POWER8. These control the rate at which PURR 128 * and SPURR count and should be set according to the number of 129 * online threads in the vcore being run. 130 */ 131 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 132 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 133 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 134 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 135 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 136 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 137 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 138 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 139 140 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 141 RWMR_RPA_P8_1THREAD, 142 RWMR_RPA_P8_1THREAD, 143 RWMR_RPA_P8_2THREAD, 144 RWMR_RPA_P8_3THREAD, 145 RWMR_RPA_P8_4THREAD, 146 RWMR_RPA_P8_5THREAD, 147 RWMR_RPA_P8_6THREAD, 148 RWMR_RPA_P8_7THREAD, 149 RWMR_RPA_P8_8THREAD, 150 }; 151 152 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 153 int *ip) 154 { 155 int i = *ip; 156 struct kvm_vcpu *vcpu; 157 158 while (++i < MAX_SMT_THREADS) { 159 vcpu = READ_ONCE(vc->runnable_threads[i]); 160 if (vcpu) { 161 *ip = i; 162 return vcpu; 163 } 164 } 165 return NULL; 166 } 167 168 /* Used to traverse the list of runnable threads for a given vcore */ 169 #define for_each_runnable_thread(i, vcpu, vc) \ 170 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 171 172 static bool kvmppc_ipi_thread(int cpu) 173 { 174 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 175 176 /* On POWER9 we can use msgsnd to IPI any cpu */ 177 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 178 msg |= get_hard_smp_processor_id(cpu); 179 smp_mb(); 180 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 181 return true; 182 } 183 184 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 185 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 186 preempt_disable(); 187 if (cpu_first_thread_sibling(cpu) == 188 cpu_first_thread_sibling(smp_processor_id())) { 189 msg |= cpu_thread_in_core(cpu); 190 smp_mb(); 191 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 192 preempt_enable(); 193 return true; 194 } 195 preempt_enable(); 196 } 197 198 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 199 if (cpu >= 0 && cpu < nr_cpu_ids) { 200 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 201 xics_wake_cpu(cpu); 202 return true; 203 } 204 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 205 return true; 206 } 207 #endif 208 209 return false; 210 } 211 212 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 213 { 214 int cpu; 215 struct swait_queue_head *wqp; 216 217 wqp = kvm_arch_vcpu_wq(vcpu); 218 if (swq_has_sleeper(wqp)) { 219 swake_up_one(wqp); 220 ++vcpu->stat.halt_wakeup; 221 } 222 223 cpu = READ_ONCE(vcpu->arch.thread_cpu); 224 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 225 return; 226 227 /* CPU points to the first thread of the core */ 228 cpu = vcpu->cpu; 229 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 230 smp_send_reschedule(cpu); 231 } 232 233 /* 234 * We use the vcpu_load/put functions to measure stolen time. 235 * Stolen time is counted as time when either the vcpu is able to 236 * run as part of a virtual core, but the task running the vcore 237 * is preempted or sleeping, or when the vcpu needs something done 238 * in the kernel by the task running the vcpu, but that task is 239 * preempted or sleeping. Those two things have to be counted 240 * separately, since one of the vcpu tasks will take on the job 241 * of running the core, and the other vcpu tasks in the vcore will 242 * sleep waiting for it to do that, but that sleep shouldn't count 243 * as stolen time. 244 * 245 * Hence we accumulate stolen time when the vcpu can run as part of 246 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 247 * needs its task to do other things in the kernel (for example, 248 * service a page fault) in busy_stolen. We don't accumulate 249 * stolen time for a vcore when it is inactive, or for a vcpu 250 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 251 * a misnomer; it means that the vcpu task is not executing in 252 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 253 * the kernel. We don't have any way of dividing up that time 254 * between time that the vcpu is genuinely stopped, time that 255 * the task is actively working on behalf of the vcpu, and time 256 * that the task is preempted, so we don't count any of it as 257 * stolen. 258 * 259 * Updates to busy_stolen are protected by arch.tbacct_lock; 260 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 261 * lock. The stolen times are measured in units of timebase ticks. 262 * (Note that the != TB_NIL checks below are purely defensive; 263 * they should never fail.) 264 */ 265 266 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 267 { 268 unsigned long flags; 269 270 spin_lock_irqsave(&vc->stoltb_lock, flags); 271 vc->preempt_tb = mftb(); 272 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 273 } 274 275 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 276 { 277 unsigned long flags; 278 279 spin_lock_irqsave(&vc->stoltb_lock, flags); 280 if (vc->preempt_tb != TB_NIL) { 281 vc->stolen_tb += mftb() - vc->preempt_tb; 282 vc->preempt_tb = TB_NIL; 283 } 284 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 285 } 286 287 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 288 { 289 struct kvmppc_vcore *vc = vcpu->arch.vcore; 290 unsigned long flags; 291 292 /* 293 * We can test vc->runner without taking the vcore lock, 294 * because only this task ever sets vc->runner to this 295 * vcpu, and once it is set to this vcpu, only this task 296 * ever sets it to NULL. 297 */ 298 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 299 kvmppc_core_end_stolen(vc); 300 301 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 302 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 303 vcpu->arch.busy_preempt != TB_NIL) { 304 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 305 vcpu->arch.busy_preempt = TB_NIL; 306 } 307 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 308 } 309 310 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 311 { 312 struct kvmppc_vcore *vc = vcpu->arch.vcore; 313 unsigned long flags; 314 315 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 316 kvmppc_core_start_stolen(vc); 317 318 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 319 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 320 vcpu->arch.busy_preempt = mftb(); 321 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 322 } 323 324 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 325 { 326 /* 327 * Check for illegal transactional state bit combination 328 * and if we find it, force the TS field to a safe state. 329 */ 330 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 331 msr &= ~MSR_TS_MASK; 332 vcpu->arch.shregs.msr = msr; 333 kvmppc_end_cede(vcpu); 334 } 335 336 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 337 { 338 vcpu->arch.pvr = pvr; 339 } 340 341 /* Dummy value used in computing PCR value below */ 342 #define PCR_ARCH_300 (PCR_ARCH_207 << 1) 343 344 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 345 { 346 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 347 struct kvmppc_vcore *vc = vcpu->arch.vcore; 348 349 /* We can (emulate) our own architecture version and anything older */ 350 if (cpu_has_feature(CPU_FTR_ARCH_300)) 351 host_pcr_bit = PCR_ARCH_300; 352 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 353 host_pcr_bit = PCR_ARCH_207; 354 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 355 host_pcr_bit = PCR_ARCH_206; 356 else 357 host_pcr_bit = PCR_ARCH_205; 358 359 /* Determine lowest PCR bit needed to run guest in given PVR level */ 360 guest_pcr_bit = host_pcr_bit; 361 if (arch_compat) { 362 switch (arch_compat) { 363 case PVR_ARCH_205: 364 guest_pcr_bit = PCR_ARCH_205; 365 break; 366 case PVR_ARCH_206: 367 case PVR_ARCH_206p: 368 guest_pcr_bit = PCR_ARCH_206; 369 break; 370 case PVR_ARCH_207: 371 guest_pcr_bit = PCR_ARCH_207; 372 break; 373 case PVR_ARCH_300: 374 guest_pcr_bit = PCR_ARCH_300; 375 break; 376 default: 377 return -EINVAL; 378 } 379 } 380 381 /* Check requested PCR bits don't exceed our capabilities */ 382 if (guest_pcr_bit > host_pcr_bit) 383 return -EINVAL; 384 385 spin_lock(&vc->lock); 386 vc->arch_compat = arch_compat; 387 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */ 388 vc->pcr = host_pcr_bit - guest_pcr_bit; 389 spin_unlock(&vc->lock); 390 391 return 0; 392 } 393 394 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 395 { 396 int r; 397 398 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 399 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 400 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 401 for (r = 0; r < 16; ++r) 402 pr_err("r%2d = %.16lx r%d = %.16lx\n", 403 r, kvmppc_get_gpr(vcpu, r), 404 r+16, kvmppc_get_gpr(vcpu, r+16)); 405 pr_err("ctr = %.16lx lr = %.16lx\n", 406 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 407 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 408 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 409 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 410 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 411 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 412 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 413 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 414 vcpu->arch.cr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 415 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 416 pr_err("fault dar = %.16lx dsisr = %.8x\n", 417 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 418 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 419 for (r = 0; r < vcpu->arch.slb_max; ++r) 420 pr_err(" ESID = %.16llx VSID = %.16llx\n", 421 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 422 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 423 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 424 vcpu->arch.last_inst); 425 } 426 427 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 428 { 429 struct kvm_vcpu *ret; 430 431 mutex_lock(&kvm->lock); 432 ret = kvm_get_vcpu_by_id(kvm, id); 433 mutex_unlock(&kvm->lock); 434 return ret; 435 } 436 437 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 438 { 439 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 440 vpa->yield_count = cpu_to_be32(1); 441 } 442 443 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 444 unsigned long addr, unsigned long len) 445 { 446 /* check address is cacheline aligned */ 447 if (addr & (L1_CACHE_BYTES - 1)) 448 return -EINVAL; 449 spin_lock(&vcpu->arch.vpa_update_lock); 450 if (v->next_gpa != addr || v->len != len) { 451 v->next_gpa = addr; 452 v->len = addr ? len : 0; 453 v->update_pending = 1; 454 } 455 spin_unlock(&vcpu->arch.vpa_update_lock); 456 return 0; 457 } 458 459 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 460 struct reg_vpa { 461 u32 dummy; 462 union { 463 __be16 hword; 464 __be32 word; 465 } length; 466 }; 467 468 static int vpa_is_registered(struct kvmppc_vpa *vpap) 469 { 470 if (vpap->update_pending) 471 return vpap->next_gpa != 0; 472 return vpap->pinned_addr != NULL; 473 } 474 475 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 476 unsigned long flags, 477 unsigned long vcpuid, unsigned long vpa) 478 { 479 struct kvm *kvm = vcpu->kvm; 480 unsigned long len, nb; 481 void *va; 482 struct kvm_vcpu *tvcpu; 483 int err; 484 int subfunc; 485 struct kvmppc_vpa *vpap; 486 487 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 488 if (!tvcpu) 489 return H_PARAMETER; 490 491 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 492 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 493 subfunc == H_VPA_REG_SLB) { 494 /* Registering new area - address must be cache-line aligned */ 495 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 496 return H_PARAMETER; 497 498 /* convert logical addr to kernel addr and read length */ 499 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 500 if (va == NULL) 501 return H_PARAMETER; 502 if (subfunc == H_VPA_REG_VPA) 503 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 504 else 505 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 506 kvmppc_unpin_guest_page(kvm, va, vpa, false); 507 508 /* Check length */ 509 if (len > nb || len < sizeof(struct reg_vpa)) 510 return H_PARAMETER; 511 } else { 512 vpa = 0; 513 len = 0; 514 } 515 516 err = H_PARAMETER; 517 vpap = NULL; 518 spin_lock(&tvcpu->arch.vpa_update_lock); 519 520 switch (subfunc) { 521 case H_VPA_REG_VPA: /* register VPA */ 522 /* 523 * The size of our lppaca is 1kB because of the way we align 524 * it for the guest to avoid crossing a 4kB boundary. We only 525 * use 640 bytes of the structure though, so we should accept 526 * clients that set a size of 640. 527 */ 528 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 529 if (len < sizeof(struct lppaca)) 530 break; 531 vpap = &tvcpu->arch.vpa; 532 err = 0; 533 break; 534 535 case H_VPA_REG_DTL: /* register DTL */ 536 if (len < sizeof(struct dtl_entry)) 537 break; 538 len -= len % sizeof(struct dtl_entry); 539 540 /* Check that they have previously registered a VPA */ 541 err = H_RESOURCE; 542 if (!vpa_is_registered(&tvcpu->arch.vpa)) 543 break; 544 545 vpap = &tvcpu->arch.dtl; 546 err = 0; 547 break; 548 549 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 550 /* Check that they have previously registered a VPA */ 551 err = H_RESOURCE; 552 if (!vpa_is_registered(&tvcpu->arch.vpa)) 553 break; 554 555 vpap = &tvcpu->arch.slb_shadow; 556 err = 0; 557 break; 558 559 case H_VPA_DEREG_VPA: /* deregister VPA */ 560 /* Check they don't still have a DTL or SLB buf registered */ 561 err = H_RESOURCE; 562 if (vpa_is_registered(&tvcpu->arch.dtl) || 563 vpa_is_registered(&tvcpu->arch.slb_shadow)) 564 break; 565 566 vpap = &tvcpu->arch.vpa; 567 err = 0; 568 break; 569 570 case H_VPA_DEREG_DTL: /* deregister DTL */ 571 vpap = &tvcpu->arch.dtl; 572 err = 0; 573 break; 574 575 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 576 vpap = &tvcpu->arch.slb_shadow; 577 err = 0; 578 break; 579 } 580 581 if (vpap) { 582 vpap->next_gpa = vpa; 583 vpap->len = len; 584 vpap->update_pending = 1; 585 } 586 587 spin_unlock(&tvcpu->arch.vpa_update_lock); 588 589 return err; 590 } 591 592 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 593 { 594 struct kvm *kvm = vcpu->kvm; 595 void *va; 596 unsigned long nb; 597 unsigned long gpa; 598 599 /* 600 * We need to pin the page pointed to by vpap->next_gpa, 601 * but we can't call kvmppc_pin_guest_page under the lock 602 * as it does get_user_pages() and down_read(). So we 603 * have to drop the lock, pin the page, then get the lock 604 * again and check that a new area didn't get registered 605 * in the meantime. 606 */ 607 for (;;) { 608 gpa = vpap->next_gpa; 609 spin_unlock(&vcpu->arch.vpa_update_lock); 610 va = NULL; 611 nb = 0; 612 if (gpa) 613 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 614 spin_lock(&vcpu->arch.vpa_update_lock); 615 if (gpa == vpap->next_gpa) 616 break; 617 /* sigh... unpin that one and try again */ 618 if (va) 619 kvmppc_unpin_guest_page(kvm, va, gpa, false); 620 } 621 622 vpap->update_pending = 0; 623 if (va && nb < vpap->len) { 624 /* 625 * If it's now too short, it must be that userspace 626 * has changed the mappings underlying guest memory, 627 * so unregister the region. 628 */ 629 kvmppc_unpin_guest_page(kvm, va, gpa, false); 630 va = NULL; 631 } 632 if (vpap->pinned_addr) 633 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 634 vpap->dirty); 635 vpap->gpa = gpa; 636 vpap->pinned_addr = va; 637 vpap->dirty = false; 638 if (va) 639 vpap->pinned_end = va + vpap->len; 640 } 641 642 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 643 { 644 if (!(vcpu->arch.vpa.update_pending || 645 vcpu->arch.slb_shadow.update_pending || 646 vcpu->arch.dtl.update_pending)) 647 return; 648 649 spin_lock(&vcpu->arch.vpa_update_lock); 650 if (vcpu->arch.vpa.update_pending) { 651 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 652 if (vcpu->arch.vpa.pinned_addr) 653 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 654 } 655 if (vcpu->arch.dtl.update_pending) { 656 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 657 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 658 vcpu->arch.dtl_index = 0; 659 } 660 if (vcpu->arch.slb_shadow.update_pending) 661 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 662 spin_unlock(&vcpu->arch.vpa_update_lock); 663 } 664 665 /* 666 * Return the accumulated stolen time for the vcore up until `now'. 667 * The caller should hold the vcore lock. 668 */ 669 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 670 { 671 u64 p; 672 unsigned long flags; 673 674 spin_lock_irqsave(&vc->stoltb_lock, flags); 675 p = vc->stolen_tb; 676 if (vc->vcore_state != VCORE_INACTIVE && 677 vc->preempt_tb != TB_NIL) 678 p += now - vc->preempt_tb; 679 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 680 return p; 681 } 682 683 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 684 struct kvmppc_vcore *vc) 685 { 686 struct dtl_entry *dt; 687 struct lppaca *vpa; 688 unsigned long stolen; 689 unsigned long core_stolen; 690 u64 now; 691 unsigned long flags; 692 693 dt = vcpu->arch.dtl_ptr; 694 vpa = vcpu->arch.vpa.pinned_addr; 695 now = mftb(); 696 core_stolen = vcore_stolen_time(vc, now); 697 stolen = core_stolen - vcpu->arch.stolen_logged; 698 vcpu->arch.stolen_logged = core_stolen; 699 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 700 stolen += vcpu->arch.busy_stolen; 701 vcpu->arch.busy_stolen = 0; 702 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 703 if (!dt || !vpa) 704 return; 705 memset(dt, 0, sizeof(struct dtl_entry)); 706 dt->dispatch_reason = 7; 707 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 708 dt->timebase = cpu_to_be64(now + vc->tb_offset); 709 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 710 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 711 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 712 ++dt; 713 if (dt == vcpu->arch.dtl.pinned_end) 714 dt = vcpu->arch.dtl.pinned_addr; 715 vcpu->arch.dtl_ptr = dt; 716 /* order writing *dt vs. writing vpa->dtl_idx */ 717 smp_wmb(); 718 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 719 vcpu->arch.dtl.dirty = true; 720 } 721 722 /* See if there is a doorbell interrupt pending for a vcpu */ 723 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 724 { 725 int thr; 726 struct kvmppc_vcore *vc; 727 728 if (vcpu->arch.doorbell_request) 729 return true; 730 /* 731 * Ensure that the read of vcore->dpdes comes after the read 732 * of vcpu->doorbell_request. This barrier matches the 733 * lwsync in book3s_hv_rmhandlers.S just before the 734 * fast_guest_return label. 735 */ 736 smp_rmb(); 737 vc = vcpu->arch.vcore; 738 thr = vcpu->vcpu_id - vc->first_vcpuid; 739 return !!(vc->dpdes & (1 << thr)); 740 } 741 742 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 743 { 744 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 745 return true; 746 if ((!vcpu->arch.vcore->arch_compat) && 747 cpu_has_feature(CPU_FTR_ARCH_207S)) 748 return true; 749 return false; 750 } 751 752 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 753 unsigned long resource, unsigned long value1, 754 unsigned long value2) 755 { 756 switch (resource) { 757 case H_SET_MODE_RESOURCE_SET_CIABR: 758 if (!kvmppc_power8_compatible(vcpu)) 759 return H_P2; 760 if (value2) 761 return H_P4; 762 if (mflags) 763 return H_UNSUPPORTED_FLAG_START; 764 /* Guests can't breakpoint the hypervisor */ 765 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 766 return H_P3; 767 vcpu->arch.ciabr = value1; 768 return H_SUCCESS; 769 case H_SET_MODE_RESOURCE_SET_DAWR: 770 if (!kvmppc_power8_compatible(vcpu)) 771 return H_P2; 772 if (!ppc_breakpoint_available()) 773 return H_P2; 774 if (mflags) 775 return H_UNSUPPORTED_FLAG_START; 776 if (value2 & DABRX_HYP) 777 return H_P4; 778 vcpu->arch.dawr = value1; 779 vcpu->arch.dawrx = value2; 780 return H_SUCCESS; 781 default: 782 return H_TOO_HARD; 783 } 784 } 785 786 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 787 { 788 struct kvmppc_vcore *vcore = target->arch.vcore; 789 790 /* 791 * We expect to have been called by the real mode handler 792 * (kvmppc_rm_h_confer()) which would have directly returned 793 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 794 * have useful work to do and should not confer) so we don't 795 * recheck that here. 796 */ 797 798 spin_lock(&vcore->lock); 799 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 800 vcore->vcore_state != VCORE_INACTIVE && 801 vcore->runner) 802 target = vcore->runner; 803 spin_unlock(&vcore->lock); 804 805 return kvm_vcpu_yield_to(target); 806 } 807 808 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 809 { 810 int yield_count = 0; 811 struct lppaca *lppaca; 812 813 spin_lock(&vcpu->arch.vpa_update_lock); 814 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 815 if (lppaca) 816 yield_count = be32_to_cpu(lppaca->yield_count); 817 spin_unlock(&vcpu->arch.vpa_update_lock); 818 return yield_count; 819 } 820 821 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 822 { 823 unsigned long req = kvmppc_get_gpr(vcpu, 3); 824 unsigned long target, ret = H_SUCCESS; 825 int yield_count; 826 struct kvm_vcpu *tvcpu; 827 int idx, rc; 828 829 if (req <= MAX_HCALL_OPCODE && 830 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 831 return RESUME_HOST; 832 833 switch (req) { 834 case H_CEDE: 835 break; 836 case H_PROD: 837 target = kvmppc_get_gpr(vcpu, 4); 838 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 839 if (!tvcpu) { 840 ret = H_PARAMETER; 841 break; 842 } 843 tvcpu->arch.prodded = 1; 844 smp_mb(); 845 if (tvcpu->arch.ceded) 846 kvmppc_fast_vcpu_kick_hv(tvcpu); 847 break; 848 case H_CONFER: 849 target = kvmppc_get_gpr(vcpu, 4); 850 if (target == -1) 851 break; 852 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 853 if (!tvcpu) { 854 ret = H_PARAMETER; 855 break; 856 } 857 yield_count = kvmppc_get_gpr(vcpu, 5); 858 if (kvmppc_get_yield_count(tvcpu) != yield_count) 859 break; 860 kvm_arch_vcpu_yield_to(tvcpu); 861 break; 862 case H_REGISTER_VPA: 863 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 864 kvmppc_get_gpr(vcpu, 5), 865 kvmppc_get_gpr(vcpu, 6)); 866 break; 867 case H_RTAS: 868 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 869 return RESUME_HOST; 870 871 idx = srcu_read_lock(&vcpu->kvm->srcu); 872 rc = kvmppc_rtas_hcall(vcpu); 873 srcu_read_unlock(&vcpu->kvm->srcu, idx); 874 875 if (rc == -ENOENT) 876 return RESUME_HOST; 877 else if (rc == 0) 878 break; 879 880 /* Send the error out to userspace via KVM_RUN */ 881 return rc; 882 case H_LOGICAL_CI_LOAD: 883 ret = kvmppc_h_logical_ci_load(vcpu); 884 if (ret == H_TOO_HARD) 885 return RESUME_HOST; 886 break; 887 case H_LOGICAL_CI_STORE: 888 ret = kvmppc_h_logical_ci_store(vcpu); 889 if (ret == H_TOO_HARD) 890 return RESUME_HOST; 891 break; 892 case H_SET_MODE: 893 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 894 kvmppc_get_gpr(vcpu, 5), 895 kvmppc_get_gpr(vcpu, 6), 896 kvmppc_get_gpr(vcpu, 7)); 897 if (ret == H_TOO_HARD) 898 return RESUME_HOST; 899 break; 900 case H_XIRR: 901 case H_CPPR: 902 case H_EOI: 903 case H_IPI: 904 case H_IPOLL: 905 case H_XIRR_X: 906 if (kvmppc_xics_enabled(vcpu)) { 907 if (xive_enabled()) { 908 ret = H_NOT_AVAILABLE; 909 return RESUME_GUEST; 910 } 911 ret = kvmppc_xics_hcall(vcpu, req); 912 break; 913 } 914 return RESUME_HOST; 915 case H_PUT_TCE: 916 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 917 kvmppc_get_gpr(vcpu, 5), 918 kvmppc_get_gpr(vcpu, 6)); 919 if (ret == H_TOO_HARD) 920 return RESUME_HOST; 921 break; 922 case H_PUT_TCE_INDIRECT: 923 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 924 kvmppc_get_gpr(vcpu, 5), 925 kvmppc_get_gpr(vcpu, 6), 926 kvmppc_get_gpr(vcpu, 7)); 927 if (ret == H_TOO_HARD) 928 return RESUME_HOST; 929 break; 930 case H_STUFF_TCE: 931 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 932 kvmppc_get_gpr(vcpu, 5), 933 kvmppc_get_gpr(vcpu, 6), 934 kvmppc_get_gpr(vcpu, 7)); 935 if (ret == H_TOO_HARD) 936 return RESUME_HOST; 937 break; 938 default: 939 return RESUME_HOST; 940 } 941 kvmppc_set_gpr(vcpu, 3, ret); 942 vcpu->arch.hcall_needed = 0; 943 return RESUME_GUEST; 944 } 945 946 static int kvmppc_hcall_impl_hv(unsigned long cmd) 947 { 948 switch (cmd) { 949 case H_CEDE: 950 case H_PROD: 951 case H_CONFER: 952 case H_REGISTER_VPA: 953 case H_SET_MODE: 954 case H_LOGICAL_CI_LOAD: 955 case H_LOGICAL_CI_STORE: 956 #ifdef CONFIG_KVM_XICS 957 case H_XIRR: 958 case H_CPPR: 959 case H_EOI: 960 case H_IPI: 961 case H_IPOLL: 962 case H_XIRR_X: 963 #endif 964 return 1; 965 } 966 967 /* See if it's in the real-mode table */ 968 return kvmppc_hcall_impl_hv_realmode(cmd); 969 } 970 971 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 972 struct kvm_vcpu *vcpu) 973 { 974 u32 last_inst; 975 976 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 977 EMULATE_DONE) { 978 /* 979 * Fetch failed, so return to guest and 980 * try executing it again. 981 */ 982 return RESUME_GUEST; 983 } 984 985 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 986 run->exit_reason = KVM_EXIT_DEBUG; 987 run->debug.arch.address = kvmppc_get_pc(vcpu); 988 return RESUME_HOST; 989 } else { 990 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 991 return RESUME_GUEST; 992 } 993 } 994 995 static void do_nothing(void *x) 996 { 997 } 998 999 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1000 { 1001 int thr, cpu, pcpu, nthreads; 1002 struct kvm_vcpu *v; 1003 unsigned long dpdes; 1004 1005 nthreads = vcpu->kvm->arch.emul_smt_mode; 1006 dpdes = 0; 1007 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1008 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1009 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1010 if (!v) 1011 continue; 1012 /* 1013 * If the vcpu is currently running on a physical cpu thread, 1014 * interrupt it in order to pull it out of the guest briefly, 1015 * which will update its vcore->dpdes value. 1016 */ 1017 pcpu = READ_ONCE(v->cpu); 1018 if (pcpu >= 0) 1019 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1020 if (kvmppc_doorbell_pending(v)) 1021 dpdes |= 1 << thr; 1022 } 1023 return dpdes; 1024 } 1025 1026 /* 1027 * On POWER9, emulate doorbell-related instructions in order to 1028 * give the guest the illusion of running on a multi-threaded core. 1029 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1030 * and mfspr DPDES. 1031 */ 1032 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1033 { 1034 u32 inst, rb, thr; 1035 unsigned long arg; 1036 struct kvm *kvm = vcpu->kvm; 1037 struct kvm_vcpu *tvcpu; 1038 1039 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1040 return RESUME_GUEST; 1041 if (get_op(inst) != 31) 1042 return EMULATE_FAIL; 1043 rb = get_rb(inst); 1044 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1045 switch (get_xop(inst)) { 1046 case OP_31_XOP_MSGSNDP: 1047 arg = kvmppc_get_gpr(vcpu, rb); 1048 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1049 break; 1050 arg &= 0x3f; 1051 if (arg >= kvm->arch.emul_smt_mode) 1052 break; 1053 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1054 if (!tvcpu) 1055 break; 1056 if (!tvcpu->arch.doorbell_request) { 1057 tvcpu->arch.doorbell_request = 1; 1058 kvmppc_fast_vcpu_kick_hv(tvcpu); 1059 } 1060 break; 1061 case OP_31_XOP_MSGCLRP: 1062 arg = kvmppc_get_gpr(vcpu, rb); 1063 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1064 break; 1065 vcpu->arch.vcore->dpdes = 0; 1066 vcpu->arch.doorbell_request = 0; 1067 break; 1068 case OP_31_XOP_MFSPR: 1069 switch (get_sprn(inst)) { 1070 case SPRN_TIR: 1071 arg = thr; 1072 break; 1073 case SPRN_DPDES: 1074 arg = kvmppc_read_dpdes(vcpu); 1075 break; 1076 default: 1077 return EMULATE_FAIL; 1078 } 1079 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1080 break; 1081 default: 1082 return EMULATE_FAIL; 1083 } 1084 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1085 return RESUME_GUEST; 1086 } 1087 1088 /* Called with vcpu->arch.vcore->lock held */ 1089 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 1090 struct task_struct *tsk) 1091 { 1092 int r = RESUME_HOST; 1093 1094 vcpu->stat.sum_exits++; 1095 1096 /* 1097 * This can happen if an interrupt occurs in the last stages 1098 * of guest entry or the first stages of guest exit (i.e. after 1099 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1100 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1101 * That can happen due to a bug, or due to a machine check 1102 * occurring at just the wrong time. 1103 */ 1104 if (vcpu->arch.shregs.msr & MSR_HV) { 1105 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1106 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1107 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1108 vcpu->arch.shregs.msr); 1109 kvmppc_dump_regs(vcpu); 1110 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1111 run->hw.hardware_exit_reason = vcpu->arch.trap; 1112 return RESUME_HOST; 1113 } 1114 run->exit_reason = KVM_EXIT_UNKNOWN; 1115 run->ready_for_interrupt_injection = 1; 1116 switch (vcpu->arch.trap) { 1117 /* We're good on these - the host merely wanted to get our attention */ 1118 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1119 vcpu->stat.dec_exits++; 1120 r = RESUME_GUEST; 1121 break; 1122 case BOOK3S_INTERRUPT_EXTERNAL: 1123 case BOOK3S_INTERRUPT_H_DOORBELL: 1124 case BOOK3S_INTERRUPT_H_VIRT: 1125 vcpu->stat.ext_intr_exits++; 1126 r = RESUME_GUEST; 1127 break; 1128 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1129 case BOOK3S_INTERRUPT_HMI: 1130 case BOOK3S_INTERRUPT_PERFMON: 1131 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1132 r = RESUME_GUEST; 1133 break; 1134 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1135 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1136 run->exit_reason = KVM_EXIT_NMI; 1137 run->hw.hardware_exit_reason = vcpu->arch.trap; 1138 /* Clear out the old NMI status from run->flags */ 1139 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1140 /* Now set the NMI status */ 1141 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1142 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1143 else 1144 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1145 1146 r = RESUME_HOST; 1147 /* Print the MCE event to host console. */ 1148 machine_check_print_event_info(&vcpu->arch.mce_evt, false); 1149 break; 1150 case BOOK3S_INTERRUPT_PROGRAM: 1151 { 1152 ulong flags; 1153 /* 1154 * Normally program interrupts are delivered directly 1155 * to the guest by the hardware, but we can get here 1156 * as a result of a hypervisor emulation interrupt 1157 * (e40) getting turned into a 700 by BML RTAS. 1158 */ 1159 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1160 kvmppc_core_queue_program(vcpu, flags); 1161 r = RESUME_GUEST; 1162 break; 1163 } 1164 case BOOK3S_INTERRUPT_SYSCALL: 1165 { 1166 /* hcall - punt to userspace */ 1167 int i; 1168 1169 /* hypercall with MSR_PR has already been handled in rmode, 1170 * and never reaches here. 1171 */ 1172 1173 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1174 for (i = 0; i < 9; ++i) 1175 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1176 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1177 vcpu->arch.hcall_needed = 1; 1178 r = RESUME_HOST; 1179 break; 1180 } 1181 /* 1182 * We get these next two if the guest accesses a page which it thinks 1183 * it has mapped but which is not actually present, either because 1184 * it is for an emulated I/O device or because the corresonding 1185 * host page has been paged out. Any other HDSI/HISI interrupts 1186 * have been handled already. 1187 */ 1188 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1189 r = RESUME_PAGE_FAULT; 1190 break; 1191 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1192 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1193 vcpu->arch.fault_dsisr = 0; 1194 r = RESUME_PAGE_FAULT; 1195 break; 1196 /* 1197 * This occurs if the guest executes an illegal instruction. 1198 * If the guest debug is disabled, generate a program interrupt 1199 * to the guest. If guest debug is enabled, we need to check 1200 * whether the instruction is a software breakpoint instruction. 1201 * Accordingly return to Guest or Host. 1202 */ 1203 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1204 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1205 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1206 swab32(vcpu->arch.emul_inst) : 1207 vcpu->arch.emul_inst; 1208 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1209 /* Need vcore unlocked to call kvmppc_get_last_inst */ 1210 spin_unlock(&vcpu->arch.vcore->lock); 1211 r = kvmppc_emulate_debug_inst(run, vcpu); 1212 spin_lock(&vcpu->arch.vcore->lock); 1213 } else { 1214 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1215 r = RESUME_GUEST; 1216 } 1217 break; 1218 /* 1219 * This occurs if the guest (kernel or userspace), does something that 1220 * is prohibited by HFSCR. 1221 * On POWER9, this could be a doorbell instruction that we need 1222 * to emulate. 1223 * Otherwise, we just generate a program interrupt to the guest. 1224 */ 1225 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1226 r = EMULATE_FAIL; 1227 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1228 cpu_has_feature(CPU_FTR_ARCH_300)) { 1229 /* Need vcore unlocked to call kvmppc_get_last_inst */ 1230 spin_unlock(&vcpu->arch.vcore->lock); 1231 r = kvmppc_emulate_doorbell_instr(vcpu); 1232 spin_lock(&vcpu->arch.vcore->lock); 1233 } 1234 if (r == EMULATE_FAIL) { 1235 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1236 r = RESUME_GUEST; 1237 } 1238 break; 1239 1240 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1241 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1242 /* 1243 * This occurs for various TM-related instructions that 1244 * we need to emulate on POWER9 DD2.2. We have already 1245 * handled the cases where the guest was in real-suspend 1246 * mode and was transitioning to transactional state. 1247 */ 1248 r = kvmhv_p9_tm_emulation(vcpu); 1249 break; 1250 #endif 1251 1252 case BOOK3S_INTERRUPT_HV_RM_HARD: 1253 r = RESUME_PASSTHROUGH; 1254 break; 1255 default: 1256 kvmppc_dump_regs(vcpu); 1257 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1258 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1259 vcpu->arch.shregs.msr); 1260 run->hw.hardware_exit_reason = vcpu->arch.trap; 1261 r = RESUME_HOST; 1262 break; 1263 } 1264 1265 return r; 1266 } 1267 1268 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1269 struct kvm_sregs *sregs) 1270 { 1271 int i; 1272 1273 memset(sregs, 0, sizeof(struct kvm_sregs)); 1274 sregs->pvr = vcpu->arch.pvr; 1275 for (i = 0; i < vcpu->arch.slb_max; i++) { 1276 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1277 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1278 } 1279 1280 return 0; 1281 } 1282 1283 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1284 struct kvm_sregs *sregs) 1285 { 1286 int i, j; 1287 1288 /* Only accept the same PVR as the host's, since we can't spoof it */ 1289 if (sregs->pvr != vcpu->arch.pvr) 1290 return -EINVAL; 1291 1292 j = 0; 1293 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1294 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1295 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1296 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1297 ++j; 1298 } 1299 } 1300 vcpu->arch.slb_max = j; 1301 1302 return 0; 1303 } 1304 1305 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1306 bool preserve_top32) 1307 { 1308 struct kvm *kvm = vcpu->kvm; 1309 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1310 u64 mask; 1311 1312 mutex_lock(&kvm->lock); 1313 spin_lock(&vc->lock); 1314 /* 1315 * If ILE (interrupt little-endian) has changed, update the 1316 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1317 */ 1318 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1319 struct kvm_vcpu *vcpu; 1320 int i; 1321 1322 kvm_for_each_vcpu(i, vcpu, kvm) { 1323 if (vcpu->arch.vcore != vc) 1324 continue; 1325 if (new_lpcr & LPCR_ILE) 1326 vcpu->arch.intr_msr |= MSR_LE; 1327 else 1328 vcpu->arch.intr_msr &= ~MSR_LE; 1329 } 1330 } 1331 1332 /* 1333 * Userspace can only modify DPFD (default prefetch depth), 1334 * ILE (interrupt little-endian) and TC (translation control). 1335 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1336 */ 1337 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1338 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1339 mask |= LPCR_AIL; 1340 /* 1341 * On POWER9, allow userspace to enable large decrementer for the 1342 * guest, whether or not the host has it enabled. 1343 */ 1344 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1345 mask |= LPCR_LD; 1346 1347 /* Broken 32-bit version of LPCR must not clear top bits */ 1348 if (preserve_top32) 1349 mask &= 0xFFFFFFFF; 1350 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1351 spin_unlock(&vc->lock); 1352 mutex_unlock(&kvm->lock); 1353 } 1354 1355 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1356 union kvmppc_one_reg *val) 1357 { 1358 int r = 0; 1359 long int i; 1360 1361 switch (id) { 1362 case KVM_REG_PPC_DEBUG_INST: 1363 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1364 break; 1365 case KVM_REG_PPC_HIOR: 1366 *val = get_reg_val(id, 0); 1367 break; 1368 case KVM_REG_PPC_DABR: 1369 *val = get_reg_val(id, vcpu->arch.dabr); 1370 break; 1371 case KVM_REG_PPC_DABRX: 1372 *val = get_reg_val(id, vcpu->arch.dabrx); 1373 break; 1374 case KVM_REG_PPC_DSCR: 1375 *val = get_reg_val(id, vcpu->arch.dscr); 1376 break; 1377 case KVM_REG_PPC_PURR: 1378 *val = get_reg_val(id, vcpu->arch.purr); 1379 break; 1380 case KVM_REG_PPC_SPURR: 1381 *val = get_reg_val(id, vcpu->arch.spurr); 1382 break; 1383 case KVM_REG_PPC_AMR: 1384 *val = get_reg_val(id, vcpu->arch.amr); 1385 break; 1386 case KVM_REG_PPC_UAMOR: 1387 *val = get_reg_val(id, vcpu->arch.uamor); 1388 break; 1389 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1390 i = id - KVM_REG_PPC_MMCR0; 1391 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1392 break; 1393 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1394 i = id - KVM_REG_PPC_PMC1; 1395 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1396 break; 1397 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1398 i = id - KVM_REG_PPC_SPMC1; 1399 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1400 break; 1401 case KVM_REG_PPC_SIAR: 1402 *val = get_reg_val(id, vcpu->arch.siar); 1403 break; 1404 case KVM_REG_PPC_SDAR: 1405 *val = get_reg_val(id, vcpu->arch.sdar); 1406 break; 1407 case KVM_REG_PPC_SIER: 1408 *val = get_reg_val(id, vcpu->arch.sier); 1409 break; 1410 case KVM_REG_PPC_IAMR: 1411 *val = get_reg_val(id, vcpu->arch.iamr); 1412 break; 1413 case KVM_REG_PPC_PSPB: 1414 *val = get_reg_val(id, vcpu->arch.pspb); 1415 break; 1416 case KVM_REG_PPC_DPDES: 1417 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1418 break; 1419 case KVM_REG_PPC_VTB: 1420 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1421 break; 1422 case KVM_REG_PPC_DAWR: 1423 *val = get_reg_val(id, vcpu->arch.dawr); 1424 break; 1425 case KVM_REG_PPC_DAWRX: 1426 *val = get_reg_val(id, vcpu->arch.dawrx); 1427 break; 1428 case KVM_REG_PPC_CIABR: 1429 *val = get_reg_val(id, vcpu->arch.ciabr); 1430 break; 1431 case KVM_REG_PPC_CSIGR: 1432 *val = get_reg_val(id, vcpu->arch.csigr); 1433 break; 1434 case KVM_REG_PPC_TACR: 1435 *val = get_reg_val(id, vcpu->arch.tacr); 1436 break; 1437 case KVM_REG_PPC_TCSCR: 1438 *val = get_reg_val(id, vcpu->arch.tcscr); 1439 break; 1440 case KVM_REG_PPC_PID: 1441 *val = get_reg_val(id, vcpu->arch.pid); 1442 break; 1443 case KVM_REG_PPC_ACOP: 1444 *val = get_reg_val(id, vcpu->arch.acop); 1445 break; 1446 case KVM_REG_PPC_WORT: 1447 *val = get_reg_val(id, vcpu->arch.wort); 1448 break; 1449 case KVM_REG_PPC_TIDR: 1450 *val = get_reg_val(id, vcpu->arch.tid); 1451 break; 1452 case KVM_REG_PPC_PSSCR: 1453 *val = get_reg_val(id, vcpu->arch.psscr); 1454 break; 1455 case KVM_REG_PPC_VPA_ADDR: 1456 spin_lock(&vcpu->arch.vpa_update_lock); 1457 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1458 spin_unlock(&vcpu->arch.vpa_update_lock); 1459 break; 1460 case KVM_REG_PPC_VPA_SLB: 1461 spin_lock(&vcpu->arch.vpa_update_lock); 1462 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1463 val->vpaval.length = vcpu->arch.slb_shadow.len; 1464 spin_unlock(&vcpu->arch.vpa_update_lock); 1465 break; 1466 case KVM_REG_PPC_VPA_DTL: 1467 spin_lock(&vcpu->arch.vpa_update_lock); 1468 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1469 val->vpaval.length = vcpu->arch.dtl.len; 1470 spin_unlock(&vcpu->arch.vpa_update_lock); 1471 break; 1472 case KVM_REG_PPC_TB_OFFSET: 1473 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1474 break; 1475 case KVM_REG_PPC_LPCR: 1476 case KVM_REG_PPC_LPCR_64: 1477 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1478 break; 1479 case KVM_REG_PPC_PPR: 1480 *val = get_reg_val(id, vcpu->arch.ppr); 1481 break; 1482 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1483 case KVM_REG_PPC_TFHAR: 1484 *val = get_reg_val(id, vcpu->arch.tfhar); 1485 break; 1486 case KVM_REG_PPC_TFIAR: 1487 *val = get_reg_val(id, vcpu->arch.tfiar); 1488 break; 1489 case KVM_REG_PPC_TEXASR: 1490 *val = get_reg_val(id, vcpu->arch.texasr); 1491 break; 1492 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1493 i = id - KVM_REG_PPC_TM_GPR0; 1494 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1495 break; 1496 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1497 { 1498 int j; 1499 i = id - KVM_REG_PPC_TM_VSR0; 1500 if (i < 32) 1501 for (j = 0; j < TS_FPRWIDTH; j++) 1502 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1503 else { 1504 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1505 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1506 else 1507 r = -ENXIO; 1508 } 1509 break; 1510 } 1511 case KVM_REG_PPC_TM_CR: 1512 *val = get_reg_val(id, vcpu->arch.cr_tm); 1513 break; 1514 case KVM_REG_PPC_TM_XER: 1515 *val = get_reg_val(id, vcpu->arch.xer_tm); 1516 break; 1517 case KVM_REG_PPC_TM_LR: 1518 *val = get_reg_val(id, vcpu->arch.lr_tm); 1519 break; 1520 case KVM_REG_PPC_TM_CTR: 1521 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1522 break; 1523 case KVM_REG_PPC_TM_FPSCR: 1524 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1525 break; 1526 case KVM_REG_PPC_TM_AMR: 1527 *val = get_reg_val(id, vcpu->arch.amr_tm); 1528 break; 1529 case KVM_REG_PPC_TM_PPR: 1530 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1531 break; 1532 case KVM_REG_PPC_TM_VRSAVE: 1533 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1534 break; 1535 case KVM_REG_PPC_TM_VSCR: 1536 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1537 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1538 else 1539 r = -ENXIO; 1540 break; 1541 case KVM_REG_PPC_TM_DSCR: 1542 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1543 break; 1544 case KVM_REG_PPC_TM_TAR: 1545 *val = get_reg_val(id, vcpu->arch.tar_tm); 1546 break; 1547 #endif 1548 case KVM_REG_PPC_ARCH_COMPAT: 1549 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1550 break; 1551 case KVM_REG_PPC_DEC_EXPIRY: 1552 *val = get_reg_val(id, vcpu->arch.dec_expires + 1553 vcpu->arch.vcore->tb_offset); 1554 break; 1555 case KVM_REG_PPC_ONLINE: 1556 *val = get_reg_val(id, vcpu->arch.online); 1557 break; 1558 default: 1559 r = -EINVAL; 1560 break; 1561 } 1562 1563 return r; 1564 } 1565 1566 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1567 union kvmppc_one_reg *val) 1568 { 1569 int r = 0; 1570 long int i; 1571 unsigned long addr, len; 1572 1573 switch (id) { 1574 case KVM_REG_PPC_HIOR: 1575 /* Only allow this to be set to zero */ 1576 if (set_reg_val(id, *val)) 1577 r = -EINVAL; 1578 break; 1579 case KVM_REG_PPC_DABR: 1580 vcpu->arch.dabr = set_reg_val(id, *val); 1581 break; 1582 case KVM_REG_PPC_DABRX: 1583 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1584 break; 1585 case KVM_REG_PPC_DSCR: 1586 vcpu->arch.dscr = set_reg_val(id, *val); 1587 break; 1588 case KVM_REG_PPC_PURR: 1589 vcpu->arch.purr = set_reg_val(id, *val); 1590 break; 1591 case KVM_REG_PPC_SPURR: 1592 vcpu->arch.spurr = set_reg_val(id, *val); 1593 break; 1594 case KVM_REG_PPC_AMR: 1595 vcpu->arch.amr = set_reg_val(id, *val); 1596 break; 1597 case KVM_REG_PPC_UAMOR: 1598 vcpu->arch.uamor = set_reg_val(id, *val); 1599 break; 1600 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1601 i = id - KVM_REG_PPC_MMCR0; 1602 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1603 break; 1604 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1605 i = id - KVM_REG_PPC_PMC1; 1606 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1607 break; 1608 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1609 i = id - KVM_REG_PPC_SPMC1; 1610 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1611 break; 1612 case KVM_REG_PPC_SIAR: 1613 vcpu->arch.siar = set_reg_val(id, *val); 1614 break; 1615 case KVM_REG_PPC_SDAR: 1616 vcpu->arch.sdar = set_reg_val(id, *val); 1617 break; 1618 case KVM_REG_PPC_SIER: 1619 vcpu->arch.sier = set_reg_val(id, *val); 1620 break; 1621 case KVM_REG_PPC_IAMR: 1622 vcpu->arch.iamr = set_reg_val(id, *val); 1623 break; 1624 case KVM_REG_PPC_PSPB: 1625 vcpu->arch.pspb = set_reg_val(id, *val); 1626 break; 1627 case KVM_REG_PPC_DPDES: 1628 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1629 break; 1630 case KVM_REG_PPC_VTB: 1631 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1632 break; 1633 case KVM_REG_PPC_DAWR: 1634 vcpu->arch.dawr = set_reg_val(id, *val); 1635 break; 1636 case KVM_REG_PPC_DAWRX: 1637 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1638 break; 1639 case KVM_REG_PPC_CIABR: 1640 vcpu->arch.ciabr = set_reg_val(id, *val); 1641 /* Don't allow setting breakpoints in hypervisor code */ 1642 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1643 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1644 break; 1645 case KVM_REG_PPC_CSIGR: 1646 vcpu->arch.csigr = set_reg_val(id, *val); 1647 break; 1648 case KVM_REG_PPC_TACR: 1649 vcpu->arch.tacr = set_reg_val(id, *val); 1650 break; 1651 case KVM_REG_PPC_TCSCR: 1652 vcpu->arch.tcscr = set_reg_val(id, *val); 1653 break; 1654 case KVM_REG_PPC_PID: 1655 vcpu->arch.pid = set_reg_val(id, *val); 1656 break; 1657 case KVM_REG_PPC_ACOP: 1658 vcpu->arch.acop = set_reg_val(id, *val); 1659 break; 1660 case KVM_REG_PPC_WORT: 1661 vcpu->arch.wort = set_reg_val(id, *val); 1662 break; 1663 case KVM_REG_PPC_TIDR: 1664 vcpu->arch.tid = set_reg_val(id, *val); 1665 break; 1666 case KVM_REG_PPC_PSSCR: 1667 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1668 break; 1669 case KVM_REG_PPC_VPA_ADDR: 1670 addr = set_reg_val(id, *val); 1671 r = -EINVAL; 1672 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1673 vcpu->arch.dtl.next_gpa)) 1674 break; 1675 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1676 break; 1677 case KVM_REG_PPC_VPA_SLB: 1678 addr = val->vpaval.addr; 1679 len = val->vpaval.length; 1680 r = -EINVAL; 1681 if (addr && !vcpu->arch.vpa.next_gpa) 1682 break; 1683 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1684 break; 1685 case KVM_REG_PPC_VPA_DTL: 1686 addr = val->vpaval.addr; 1687 len = val->vpaval.length; 1688 r = -EINVAL; 1689 if (addr && (len < sizeof(struct dtl_entry) || 1690 !vcpu->arch.vpa.next_gpa)) 1691 break; 1692 len -= len % sizeof(struct dtl_entry); 1693 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1694 break; 1695 case KVM_REG_PPC_TB_OFFSET: 1696 /* round up to multiple of 2^24 */ 1697 vcpu->arch.vcore->tb_offset = 1698 ALIGN(set_reg_val(id, *val), 1UL << 24); 1699 break; 1700 case KVM_REG_PPC_LPCR: 1701 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1702 break; 1703 case KVM_REG_PPC_LPCR_64: 1704 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1705 break; 1706 case KVM_REG_PPC_PPR: 1707 vcpu->arch.ppr = set_reg_val(id, *val); 1708 break; 1709 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1710 case KVM_REG_PPC_TFHAR: 1711 vcpu->arch.tfhar = set_reg_val(id, *val); 1712 break; 1713 case KVM_REG_PPC_TFIAR: 1714 vcpu->arch.tfiar = set_reg_val(id, *val); 1715 break; 1716 case KVM_REG_PPC_TEXASR: 1717 vcpu->arch.texasr = set_reg_val(id, *val); 1718 break; 1719 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1720 i = id - KVM_REG_PPC_TM_GPR0; 1721 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1722 break; 1723 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1724 { 1725 int j; 1726 i = id - KVM_REG_PPC_TM_VSR0; 1727 if (i < 32) 1728 for (j = 0; j < TS_FPRWIDTH; j++) 1729 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1730 else 1731 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1732 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1733 else 1734 r = -ENXIO; 1735 break; 1736 } 1737 case KVM_REG_PPC_TM_CR: 1738 vcpu->arch.cr_tm = set_reg_val(id, *val); 1739 break; 1740 case KVM_REG_PPC_TM_XER: 1741 vcpu->arch.xer_tm = set_reg_val(id, *val); 1742 break; 1743 case KVM_REG_PPC_TM_LR: 1744 vcpu->arch.lr_tm = set_reg_val(id, *val); 1745 break; 1746 case KVM_REG_PPC_TM_CTR: 1747 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1748 break; 1749 case KVM_REG_PPC_TM_FPSCR: 1750 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1751 break; 1752 case KVM_REG_PPC_TM_AMR: 1753 vcpu->arch.amr_tm = set_reg_val(id, *val); 1754 break; 1755 case KVM_REG_PPC_TM_PPR: 1756 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1757 break; 1758 case KVM_REG_PPC_TM_VRSAVE: 1759 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1760 break; 1761 case KVM_REG_PPC_TM_VSCR: 1762 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1763 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1764 else 1765 r = - ENXIO; 1766 break; 1767 case KVM_REG_PPC_TM_DSCR: 1768 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1769 break; 1770 case KVM_REG_PPC_TM_TAR: 1771 vcpu->arch.tar_tm = set_reg_val(id, *val); 1772 break; 1773 #endif 1774 case KVM_REG_PPC_ARCH_COMPAT: 1775 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1776 break; 1777 case KVM_REG_PPC_DEC_EXPIRY: 1778 vcpu->arch.dec_expires = set_reg_val(id, *val) - 1779 vcpu->arch.vcore->tb_offset; 1780 break; 1781 case KVM_REG_PPC_ONLINE: 1782 i = set_reg_val(id, *val); 1783 if (i && !vcpu->arch.online) 1784 atomic_inc(&vcpu->arch.vcore->online_count); 1785 else if (!i && vcpu->arch.online) 1786 atomic_dec(&vcpu->arch.vcore->online_count); 1787 vcpu->arch.online = i; 1788 break; 1789 default: 1790 r = -EINVAL; 1791 break; 1792 } 1793 1794 return r; 1795 } 1796 1797 /* 1798 * On POWER9, threads are independent and can be in different partitions. 1799 * Therefore we consider each thread to be a subcore. 1800 * There is a restriction that all threads have to be in the same 1801 * MMU mode (radix or HPT), unfortunately, but since we only support 1802 * HPT guests on a HPT host so far, that isn't an impediment yet. 1803 */ 1804 static int threads_per_vcore(struct kvm *kvm) 1805 { 1806 if (kvm->arch.threads_indep) 1807 return 1; 1808 return threads_per_subcore; 1809 } 1810 1811 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 1812 { 1813 struct kvmppc_vcore *vcore; 1814 1815 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1816 1817 if (vcore == NULL) 1818 return NULL; 1819 1820 spin_lock_init(&vcore->lock); 1821 spin_lock_init(&vcore->stoltb_lock); 1822 init_swait_queue_head(&vcore->wq); 1823 vcore->preempt_tb = TB_NIL; 1824 vcore->lpcr = kvm->arch.lpcr; 1825 vcore->first_vcpuid = id; 1826 vcore->kvm = kvm; 1827 INIT_LIST_HEAD(&vcore->preempt_list); 1828 1829 return vcore; 1830 } 1831 1832 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 1833 static struct debugfs_timings_element { 1834 const char *name; 1835 size_t offset; 1836 } timings[] = { 1837 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 1838 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 1839 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 1840 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 1841 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 1842 }; 1843 1844 #define N_TIMINGS (ARRAY_SIZE(timings)) 1845 1846 struct debugfs_timings_state { 1847 struct kvm_vcpu *vcpu; 1848 unsigned int buflen; 1849 char buf[N_TIMINGS * 100]; 1850 }; 1851 1852 static int debugfs_timings_open(struct inode *inode, struct file *file) 1853 { 1854 struct kvm_vcpu *vcpu = inode->i_private; 1855 struct debugfs_timings_state *p; 1856 1857 p = kzalloc(sizeof(*p), GFP_KERNEL); 1858 if (!p) 1859 return -ENOMEM; 1860 1861 kvm_get_kvm(vcpu->kvm); 1862 p->vcpu = vcpu; 1863 file->private_data = p; 1864 1865 return nonseekable_open(inode, file); 1866 } 1867 1868 static int debugfs_timings_release(struct inode *inode, struct file *file) 1869 { 1870 struct debugfs_timings_state *p = file->private_data; 1871 1872 kvm_put_kvm(p->vcpu->kvm); 1873 kfree(p); 1874 return 0; 1875 } 1876 1877 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 1878 size_t len, loff_t *ppos) 1879 { 1880 struct debugfs_timings_state *p = file->private_data; 1881 struct kvm_vcpu *vcpu = p->vcpu; 1882 char *s, *buf_end; 1883 struct kvmhv_tb_accumulator tb; 1884 u64 count; 1885 loff_t pos; 1886 ssize_t n; 1887 int i, loops; 1888 bool ok; 1889 1890 if (!p->buflen) { 1891 s = p->buf; 1892 buf_end = s + sizeof(p->buf); 1893 for (i = 0; i < N_TIMINGS; ++i) { 1894 struct kvmhv_tb_accumulator *acc; 1895 1896 acc = (struct kvmhv_tb_accumulator *) 1897 ((unsigned long)vcpu + timings[i].offset); 1898 ok = false; 1899 for (loops = 0; loops < 1000; ++loops) { 1900 count = acc->seqcount; 1901 if (!(count & 1)) { 1902 smp_rmb(); 1903 tb = *acc; 1904 smp_rmb(); 1905 if (count == acc->seqcount) { 1906 ok = true; 1907 break; 1908 } 1909 } 1910 udelay(1); 1911 } 1912 if (!ok) 1913 snprintf(s, buf_end - s, "%s: stuck\n", 1914 timings[i].name); 1915 else 1916 snprintf(s, buf_end - s, 1917 "%s: %llu %llu %llu %llu\n", 1918 timings[i].name, count / 2, 1919 tb_to_ns(tb.tb_total), 1920 tb_to_ns(tb.tb_min), 1921 tb_to_ns(tb.tb_max)); 1922 s += strlen(s); 1923 } 1924 p->buflen = s - p->buf; 1925 } 1926 1927 pos = *ppos; 1928 if (pos >= p->buflen) 1929 return 0; 1930 if (len > p->buflen - pos) 1931 len = p->buflen - pos; 1932 n = copy_to_user(buf, p->buf + pos, len); 1933 if (n) { 1934 if (n == len) 1935 return -EFAULT; 1936 len -= n; 1937 } 1938 *ppos = pos + len; 1939 return len; 1940 } 1941 1942 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 1943 size_t len, loff_t *ppos) 1944 { 1945 return -EACCES; 1946 } 1947 1948 static const struct file_operations debugfs_timings_ops = { 1949 .owner = THIS_MODULE, 1950 .open = debugfs_timings_open, 1951 .release = debugfs_timings_release, 1952 .read = debugfs_timings_read, 1953 .write = debugfs_timings_write, 1954 .llseek = generic_file_llseek, 1955 }; 1956 1957 /* Create a debugfs directory for the vcpu */ 1958 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1959 { 1960 char buf[16]; 1961 struct kvm *kvm = vcpu->kvm; 1962 1963 snprintf(buf, sizeof(buf), "vcpu%u", id); 1964 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 1965 return; 1966 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 1967 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 1968 return; 1969 vcpu->arch.debugfs_timings = 1970 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 1971 vcpu, &debugfs_timings_ops); 1972 } 1973 1974 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1975 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1976 { 1977 } 1978 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1979 1980 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1981 unsigned int id) 1982 { 1983 struct kvm_vcpu *vcpu; 1984 int err; 1985 int core; 1986 struct kvmppc_vcore *vcore; 1987 1988 err = -ENOMEM; 1989 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1990 if (!vcpu) 1991 goto out; 1992 1993 err = kvm_vcpu_init(vcpu, kvm, id); 1994 if (err) 1995 goto free_vcpu; 1996 1997 vcpu->arch.shared = &vcpu->arch.shregs; 1998 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1999 /* 2000 * The shared struct is never shared on HV, 2001 * so we can always use host endianness 2002 */ 2003 #ifdef __BIG_ENDIAN__ 2004 vcpu->arch.shared_big_endian = true; 2005 #else 2006 vcpu->arch.shared_big_endian = false; 2007 #endif 2008 #endif 2009 vcpu->arch.mmcr[0] = MMCR0_FC; 2010 vcpu->arch.ctrl = CTRL_RUNLATCH; 2011 /* default to host PVR, since we can't spoof it */ 2012 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2013 spin_lock_init(&vcpu->arch.vpa_update_lock); 2014 spin_lock_init(&vcpu->arch.tbacct_lock); 2015 vcpu->arch.busy_preempt = TB_NIL; 2016 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2017 2018 /* 2019 * Set the default HFSCR for the guest from the host value. 2020 * This value is only used on POWER9. 2021 * On POWER9, we want to virtualize the doorbell facility, so we 2022 * turn off the HFSCR bit, which causes those instructions to trap. 2023 */ 2024 vcpu->arch.hfscr = mfspr(SPRN_HFSCR); 2025 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2026 vcpu->arch.hfscr |= HFSCR_TM; 2027 else if (!cpu_has_feature(CPU_FTR_TM_COMP)) 2028 vcpu->arch.hfscr &= ~HFSCR_TM; 2029 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2030 vcpu->arch.hfscr &= ~HFSCR_MSGP; 2031 2032 kvmppc_mmu_book3s_hv_init(vcpu); 2033 2034 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2035 2036 init_waitqueue_head(&vcpu->arch.cpu_run); 2037 2038 mutex_lock(&kvm->lock); 2039 vcore = NULL; 2040 err = -EINVAL; 2041 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2042 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2043 pr_devel("KVM: VCPU ID too high\n"); 2044 core = KVM_MAX_VCORES; 2045 } else { 2046 BUG_ON(kvm->arch.smt_mode != 1); 2047 core = kvmppc_pack_vcpu_id(kvm, id); 2048 } 2049 } else { 2050 core = id / kvm->arch.smt_mode; 2051 } 2052 if (core < KVM_MAX_VCORES) { 2053 vcore = kvm->arch.vcores[core]; 2054 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2055 pr_devel("KVM: collision on id %u", id); 2056 vcore = NULL; 2057 } else if (!vcore) { 2058 err = -ENOMEM; 2059 vcore = kvmppc_vcore_create(kvm, 2060 id & ~(kvm->arch.smt_mode - 1)); 2061 kvm->arch.vcores[core] = vcore; 2062 kvm->arch.online_vcores++; 2063 } 2064 } 2065 mutex_unlock(&kvm->lock); 2066 2067 if (!vcore) 2068 goto free_vcpu; 2069 2070 spin_lock(&vcore->lock); 2071 ++vcore->num_threads; 2072 spin_unlock(&vcore->lock); 2073 vcpu->arch.vcore = vcore; 2074 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2075 vcpu->arch.thread_cpu = -1; 2076 vcpu->arch.prev_cpu = -1; 2077 2078 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2079 kvmppc_sanity_check(vcpu); 2080 2081 debugfs_vcpu_init(vcpu, id); 2082 2083 return vcpu; 2084 2085 free_vcpu: 2086 kmem_cache_free(kvm_vcpu_cache, vcpu); 2087 out: 2088 return ERR_PTR(err); 2089 } 2090 2091 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2092 unsigned long flags) 2093 { 2094 int err; 2095 int esmt = 0; 2096 2097 if (flags) 2098 return -EINVAL; 2099 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2100 return -EINVAL; 2101 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2102 /* 2103 * On POWER8 (or POWER7), the threading mode is "strict", 2104 * so we pack smt_mode vcpus per vcore. 2105 */ 2106 if (smt_mode > threads_per_subcore) 2107 return -EINVAL; 2108 } else { 2109 /* 2110 * On POWER9, the threading mode is "loose", 2111 * so each vcpu gets its own vcore. 2112 */ 2113 esmt = smt_mode; 2114 smt_mode = 1; 2115 } 2116 mutex_lock(&kvm->lock); 2117 err = -EBUSY; 2118 if (!kvm->arch.online_vcores) { 2119 kvm->arch.smt_mode = smt_mode; 2120 kvm->arch.emul_smt_mode = esmt; 2121 err = 0; 2122 } 2123 mutex_unlock(&kvm->lock); 2124 2125 return err; 2126 } 2127 2128 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2129 { 2130 if (vpa->pinned_addr) 2131 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2132 vpa->dirty); 2133 } 2134 2135 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2136 { 2137 spin_lock(&vcpu->arch.vpa_update_lock); 2138 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2139 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2140 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2141 spin_unlock(&vcpu->arch.vpa_update_lock); 2142 kvm_vcpu_uninit(vcpu); 2143 kmem_cache_free(kvm_vcpu_cache, vcpu); 2144 } 2145 2146 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2147 { 2148 /* Indicate we want to get back into the guest */ 2149 return 1; 2150 } 2151 2152 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2153 { 2154 unsigned long dec_nsec, now; 2155 2156 now = get_tb(); 2157 if (now > vcpu->arch.dec_expires) { 2158 /* decrementer has already gone negative */ 2159 kvmppc_core_queue_dec(vcpu); 2160 kvmppc_core_prepare_to_enter(vcpu); 2161 return; 2162 } 2163 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 2164 / tb_ticks_per_sec; 2165 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2166 vcpu->arch.timer_running = 1; 2167 } 2168 2169 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 2170 { 2171 vcpu->arch.ceded = 0; 2172 if (vcpu->arch.timer_running) { 2173 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2174 vcpu->arch.timer_running = 0; 2175 } 2176 } 2177 2178 extern int __kvmppc_vcore_entry(void); 2179 2180 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2181 struct kvm_vcpu *vcpu) 2182 { 2183 u64 now; 2184 2185 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2186 return; 2187 spin_lock_irq(&vcpu->arch.tbacct_lock); 2188 now = mftb(); 2189 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2190 vcpu->arch.stolen_logged; 2191 vcpu->arch.busy_preempt = now; 2192 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2193 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2194 --vc->n_runnable; 2195 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2196 } 2197 2198 static int kvmppc_grab_hwthread(int cpu) 2199 { 2200 struct paca_struct *tpaca; 2201 long timeout = 10000; 2202 2203 tpaca = paca_ptrs[cpu]; 2204 2205 /* Ensure the thread won't go into the kernel if it wakes */ 2206 tpaca->kvm_hstate.kvm_vcpu = NULL; 2207 tpaca->kvm_hstate.kvm_vcore = NULL; 2208 tpaca->kvm_hstate.napping = 0; 2209 smp_wmb(); 2210 tpaca->kvm_hstate.hwthread_req = 1; 2211 2212 /* 2213 * If the thread is already executing in the kernel (e.g. handling 2214 * a stray interrupt), wait for it to get back to nap mode. 2215 * The smp_mb() is to ensure that our setting of hwthread_req 2216 * is visible before we look at hwthread_state, so if this 2217 * races with the code at system_reset_pSeries and the thread 2218 * misses our setting of hwthread_req, we are sure to see its 2219 * setting of hwthread_state, and vice versa. 2220 */ 2221 smp_mb(); 2222 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2223 if (--timeout <= 0) { 2224 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2225 return -EBUSY; 2226 } 2227 udelay(1); 2228 } 2229 return 0; 2230 } 2231 2232 static void kvmppc_release_hwthread(int cpu) 2233 { 2234 struct paca_struct *tpaca; 2235 2236 tpaca = paca_ptrs[cpu]; 2237 tpaca->kvm_hstate.hwthread_req = 0; 2238 tpaca->kvm_hstate.kvm_vcpu = NULL; 2239 tpaca->kvm_hstate.kvm_vcore = NULL; 2240 tpaca->kvm_hstate.kvm_split_mode = NULL; 2241 } 2242 2243 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2244 { 2245 int i; 2246 2247 cpu = cpu_first_thread_sibling(cpu); 2248 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2249 /* 2250 * Make sure setting of bit in need_tlb_flush precedes 2251 * testing of cpu_in_guest bits. The matching barrier on 2252 * the other side is the first smp_mb() in kvmppc_run_core(). 2253 */ 2254 smp_mb(); 2255 for (i = 0; i < threads_per_core; ++i) 2256 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest)) 2257 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2258 } 2259 2260 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2261 { 2262 struct kvm *kvm = vcpu->kvm; 2263 2264 /* 2265 * With radix, the guest can do TLB invalidations itself, 2266 * and it could choose to use the local form (tlbiel) if 2267 * it is invalidating a translation that has only ever been 2268 * used on one vcpu. However, that doesn't mean it has 2269 * only ever been used on one physical cpu, since vcpus 2270 * can move around between pcpus. To cope with this, when 2271 * a vcpu moves from one pcpu to another, we need to tell 2272 * any vcpus running on the same core as this vcpu previously 2273 * ran to flush the TLB. The TLB is shared between threads, 2274 * so we use a single bit in .need_tlb_flush for all 4 threads. 2275 */ 2276 if (vcpu->arch.prev_cpu != pcpu) { 2277 if (vcpu->arch.prev_cpu >= 0 && 2278 cpu_first_thread_sibling(vcpu->arch.prev_cpu) != 2279 cpu_first_thread_sibling(pcpu)) 2280 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu); 2281 vcpu->arch.prev_cpu = pcpu; 2282 } 2283 } 2284 2285 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2286 { 2287 int cpu; 2288 struct paca_struct *tpaca; 2289 struct kvm *kvm = vc->kvm; 2290 2291 cpu = vc->pcpu; 2292 if (vcpu) { 2293 if (vcpu->arch.timer_running) { 2294 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2295 vcpu->arch.timer_running = 0; 2296 } 2297 cpu += vcpu->arch.ptid; 2298 vcpu->cpu = vc->pcpu; 2299 vcpu->arch.thread_cpu = cpu; 2300 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2301 } 2302 tpaca = paca_ptrs[cpu]; 2303 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2304 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2305 tpaca->kvm_hstate.fake_suspend = 0; 2306 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2307 smp_wmb(); 2308 tpaca->kvm_hstate.kvm_vcore = vc; 2309 if (cpu != smp_processor_id()) 2310 kvmppc_ipi_thread(cpu); 2311 } 2312 2313 static void kvmppc_wait_for_nap(int n_threads) 2314 { 2315 int cpu = smp_processor_id(); 2316 int i, loops; 2317 2318 if (n_threads <= 1) 2319 return; 2320 for (loops = 0; loops < 1000000; ++loops) { 2321 /* 2322 * Check if all threads are finished. 2323 * We set the vcore pointer when starting a thread 2324 * and the thread clears it when finished, so we look 2325 * for any threads that still have a non-NULL vcore ptr. 2326 */ 2327 for (i = 1; i < n_threads; ++i) 2328 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2329 break; 2330 if (i == n_threads) { 2331 HMT_medium(); 2332 return; 2333 } 2334 HMT_low(); 2335 } 2336 HMT_medium(); 2337 for (i = 1; i < n_threads; ++i) 2338 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2339 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2340 } 2341 2342 /* 2343 * Check that we are on thread 0 and that any other threads in 2344 * this core are off-line. Then grab the threads so they can't 2345 * enter the kernel. 2346 */ 2347 static int on_primary_thread(void) 2348 { 2349 int cpu = smp_processor_id(); 2350 int thr; 2351 2352 /* Are we on a primary subcore? */ 2353 if (cpu_thread_in_subcore(cpu)) 2354 return 0; 2355 2356 thr = 0; 2357 while (++thr < threads_per_subcore) 2358 if (cpu_online(cpu + thr)) 2359 return 0; 2360 2361 /* Grab all hw threads so they can't go into the kernel */ 2362 for (thr = 1; thr < threads_per_subcore; ++thr) { 2363 if (kvmppc_grab_hwthread(cpu + thr)) { 2364 /* Couldn't grab one; let the others go */ 2365 do { 2366 kvmppc_release_hwthread(cpu + thr); 2367 } while (--thr > 0); 2368 return 0; 2369 } 2370 } 2371 return 1; 2372 } 2373 2374 /* 2375 * A list of virtual cores for each physical CPU. 2376 * These are vcores that could run but their runner VCPU tasks are 2377 * (or may be) preempted. 2378 */ 2379 struct preempted_vcore_list { 2380 struct list_head list; 2381 spinlock_t lock; 2382 }; 2383 2384 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2385 2386 static void init_vcore_lists(void) 2387 { 2388 int cpu; 2389 2390 for_each_possible_cpu(cpu) { 2391 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2392 spin_lock_init(&lp->lock); 2393 INIT_LIST_HEAD(&lp->list); 2394 } 2395 } 2396 2397 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2398 { 2399 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2400 2401 vc->vcore_state = VCORE_PREEMPT; 2402 vc->pcpu = smp_processor_id(); 2403 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2404 spin_lock(&lp->lock); 2405 list_add_tail(&vc->preempt_list, &lp->list); 2406 spin_unlock(&lp->lock); 2407 } 2408 2409 /* Start accumulating stolen time */ 2410 kvmppc_core_start_stolen(vc); 2411 } 2412 2413 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2414 { 2415 struct preempted_vcore_list *lp; 2416 2417 kvmppc_core_end_stolen(vc); 2418 if (!list_empty(&vc->preempt_list)) { 2419 lp = &per_cpu(preempted_vcores, vc->pcpu); 2420 spin_lock(&lp->lock); 2421 list_del_init(&vc->preempt_list); 2422 spin_unlock(&lp->lock); 2423 } 2424 vc->vcore_state = VCORE_INACTIVE; 2425 } 2426 2427 /* 2428 * This stores information about the virtual cores currently 2429 * assigned to a physical core. 2430 */ 2431 struct core_info { 2432 int n_subcores; 2433 int max_subcore_threads; 2434 int total_threads; 2435 int subcore_threads[MAX_SUBCORES]; 2436 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2437 }; 2438 2439 /* 2440 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2441 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2442 */ 2443 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2444 2445 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2446 { 2447 memset(cip, 0, sizeof(*cip)); 2448 cip->n_subcores = 1; 2449 cip->max_subcore_threads = vc->num_threads; 2450 cip->total_threads = vc->num_threads; 2451 cip->subcore_threads[0] = vc->num_threads; 2452 cip->vc[0] = vc; 2453 } 2454 2455 static bool subcore_config_ok(int n_subcores, int n_threads) 2456 { 2457 /* 2458 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 2459 * split-core mode, with one thread per subcore. 2460 */ 2461 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2462 return n_subcores <= 4 && n_threads == 1; 2463 2464 /* On POWER8, can only dynamically split if unsplit to begin with */ 2465 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2466 return false; 2467 if (n_subcores > MAX_SUBCORES) 2468 return false; 2469 if (n_subcores > 1) { 2470 if (!(dynamic_mt_modes & 2)) 2471 n_subcores = 4; 2472 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2473 return false; 2474 } 2475 2476 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2477 } 2478 2479 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2480 { 2481 vc->entry_exit_map = 0; 2482 vc->in_guest = 0; 2483 vc->napping_threads = 0; 2484 vc->conferring_threads = 0; 2485 vc->tb_offset_applied = 0; 2486 } 2487 2488 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2489 { 2490 int n_threads = vc->num_threads; 2491 int sub; 2492 2493 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2494 return false; 2495 2496 /* Some POWER9 chips require all threads to be in the same MMU mode */ 2497 if (no_mixing_hpt_and_radix && 2498 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm)) 2499 return false; 2500 2501 if (n_threads < cip->max_subcore_threads) 2502 n_threads = cip->max_subcore_threads; 2503 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2504 return false; 2505 cip->max_subcore_threads = n_threads; 2506 2507 sub = cip->n_subcores; 2508 ++cip->n_subcores; 2509 cip->total_threads += vc->num_threads; 2510 cip->subcore_threads[sub] = vc->num_threads; 2511 cip->vc[sub] = vc; 2512 init_vcore_to_run(vc); 2513 list_del_init(&vc->preempt_list); 2514 2515 return true; 2516 } 2517 2518 /* 2519 * Work out whether it is possible to piggyback the execution of 2520 * vcore *pvc onto the execution of the other vcores described in *cip. 2521 */ 2522 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2523 int target_threads) 2524 { 2525 if (cip->total_threads + pvc->num_threads > target_threads) 2526 return false; 2527 2528 return can_dynamic_split(pvc, cip); 2529 } 2530 2531 static void prepare_threads(struct kvmppc_vcore *vc) 2532 { 2533 int i; 2534 struct kvm_vcpu *vcpu; 2535 2536 for_each_runnable_thread(i, vcpu, vc) { 2537 if (signal_pending(vcpu->arch.run_task)) 2538 vcpu->arch.ret = -EINTR; 2539 else if (vcpu->arch.vpa.update_pending || 2540 vcpu->arch.slb_shadow.update_pending || 2541 vcpu->arch.dtl.update_pending) 2542 vcpu->arch.ret = RESUME_GUEST; 2543 else 2544 continue; 2545 kvmppc_remove_runnable(vc, vcpu); 2546 wake_up(&vcpu->arch.cpu_run); 2547 } 2548 } 2549 2550 static void collect_piggybacks(struct core_info *cip, int target_threads) 2551 { 2552 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2553 struct kvmppc_vcore *pvc, *vcnext; 2554 2555 spin_lock(&lp->lock); 2556 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2557 if (!spin_trylock(&pvc->lock)) 2558 continue; 2559 prepare_threads(pvc); 2560 if (!pvc->n_runnable) { 2561 list_del_init(&pvc->preempt_list); 2562 if (pvc->runner == NULL) { 2563 pvc->vcore_state = VCORE_INACTIVE; 2564 kvmppc_core_end_stolen(pvc); 2565 } 2566 spin_unlock(&pvc->lock); 2567 continue; 2568 } 2569 if (!can_piggyback(pvc, cip, target_threads)) { 2570 spin_unlock(&pvc->lock); 2571 continue; 2572 } 2573 kvmppc_core_end_stolen(pvc); 2574 pvc->vcore_state = VCORE_PIGGYBACK; 2575 if (cip->total_threads >= target_threads) 2576 break; 2577 } 2578 spin_unlock(&lp->lock); 2579 } 2580 2581 static bool recheck_signals(struct core_info *cip) 2582 { 2583 int sub, i; 2584 struct kvm_vcpu *vcpu; 2585 2586 for (sub = 0; sub < cip->n_subcores; ++sub) 2587 for_each_runnable_thread(i, vcpu, cip->vc[sub]) 2588 if (signal_pending(vcpu->arch.run_task)) 2589 return true; 2590 return false; 2591 } 2592 2593 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2594 { 2595 int still_running = 0, i; 2596 u64 now; 2597 long ret; 2598 struct kvm_vcpu *vcpu; 2599 2600 spin_lock(&vc->lock); 2601 now = get_tb(); 2602 for_each_runnable_thread(i, vcpu, vc) { 2603 /* cancel pending dec exception if dec is positive */ 2604 if (now < vcpu->arch.dec_expires && 2605 kvmppc_core_pending_dec(vcpu)) 2606 kvmppc_core_dequeue_dec(vcpu); 2607 2608 trace_kvm_guest_exit(vcpu); 2609 2610 ret = RESUME_GUEST; 2611 if (vcpu->arch.trap) 2612 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2613 vcpu->arch.run_task); 2614 2615 vcpu->arch.ret = ret; 2616 vcpu->arch.trap = 0; 2617 2618 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2619 if (vcpu->arch.pending_exceptions) 2620 kvmppc_core_prepare_to_enter(vcpu); 2621 if (vcpu->arch.ceded) 2622 kvmppc_set_timer(vcpu); 2623 else 2624 ++still_running; 2625 } else { 2626 kvmppc_remove_runnable(vc, vcpu); 2627 wake_up(&vcpu->arch.cpu_run); 2628 } 2629 } 2630 if (!is_master) { 2631 if (still_running > 0) { 2632 kvmppc_vcore_preempt(vc); 2633 } else if (vc->runner) { 2634 vc->vcore_state = VCORE_PREEMPT; 2635 kvmppc_core_start_stolen(vc); 2636 } else { 2637 vc->vcore_state = VCORE_INACTIVE; 2638 } 2639 if (vc->n_runnable > 0 && vc->runner == NULL) { 2640 /* make sure there's a candidate runner awake */ 2641 i = -1; 2642 vcpu = next_runnable_thread(vc, &i); 2643 wake_up(&vcpu->arch.cpu_run); 2644 } 2645 } 2646 spin_unlock(&vc->lock); 2647 } 2648 2649 /* 2650 * Clear core from the list of active host cores as we are about to 2651 * enter the guest. Only do this if it is the primary thread of the 2652 * core (not if a subcore) that is entering the guest. 2653 */ 2654 static inline int kvmppc_clear_host_core(unsigned int cpu) 2655 { 2656 int core; 2657 2658 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2659 return 0; 2660 /* 2661 * Memory barrier can be omitted here as we will do a smp_wmb() 2662 * later in kvmppc_start_thread and we need ensure that state is 2663 * visible to other CPUs only after we enter guest. 2664 */ 2665 core = cpu >> threads_shift; 2666 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2667 return 0; 2668 } 2669 2670 /* 2671 * Advertise this core as an active host core since we exited the guest 2672 * Only need to do this if it is the primary thread of the core that is 2673 * exiting. 2674 */ 2675 static inline int kvmppc_set_host_core(unsigned int cpu) 2676 { 2677 int core; 2678 2679 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2680 return 0; 2681 2682 /* 2683 * Memory barrier can be omitted here because we do a spin_unlock 2684 * immediately after this which provides the memory barrier. 2685 */ 2686 core = cpu >> threads_shift; 2687 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 2688 return 0; 2689 } 2690 2691 static void set_irq_happened(int trap) 2692 { 2693 switch (trap) { 2694 case BOOK3S_INTERRUPT_EXTERNAL: 2695 local_paca->irq_happened |= PACA_IRQ_EE; 2696 break; 2697 case BOOK3S_INTERRUPT_H_DOORBELL: 2698 local_paca->irq_happened |= PACA_IRQ_DBELL; 2699 break; 2700 case BOOK3S_INTERRUPT_HMI: 2701 local_paca->irq_happened |= PACA_IRQ_HMI; 2702 break; 2703 case BOOK3S_INTERRUPT_SYSTEM_RESET: 2704 replay_system_reset(); 2705 break; 2706 } 2707 } 2708 2709 /* 2710 * Run a set of guest threads on a physical core. 2711 * Called with vc->lock held. 2712 */ 2713 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 2714 { 2715 struct kvm_vcpu *vcpu; 2716 int i; 2717 int srcu_idx; 2718 struct core_info core_info; 2719 struct kvmppc_vcore *pvc; 2720 struct kvm_split_mode split_info, *sip; 2721 int split, subcore_size, active; 2722 int sub; 2723 bool thr0_done; 2724 unsigned long cmd_bit, stat_bit; 2725 int pcpu, thr; 2726 int target_threads; 2727 int controlled_threads; 2728 int trap; 2729 bool is_power8; 2730 bool hpt_on_radix; 2731 2732 /* 2733 * Remove from the list any threads that have a signal pending 2734 * or need a VPA update done 2735 */ 2736 prepare_threads(vc); 2737 2738 /* if the runner is no longer runnable, let the caller pick a new one */ 2739 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 2740 return; 2741 2742 /* 2743 * Initialize *vc. 2744 */ 2745 init_vcore_to_run(vc); 2746 vc->preempt_tb = TB_NIL; 2747 2748 /* 2749 * Number of threads that we will be controlling: the same as 2750 * the number of threads per subcore, except on POWER9, 2751 * where it's 1 because the threads are (mostly) independent. 2752 */ 2753 controlled_threads = threads_per_vcore(vc->kvm); 2754 2755 /* 2756 * Make sure we are running on primary threads, and that secondary 2757 * threads are offline. Also check if the number of threads in this 2758 * guest are greater than the current system threads per guest. 2759 * On POWER9, we need to be not in independent-threads mode if 2760 * this is a HPT guest on a radix host machine where the 2761 * CPU threads may not be in different MMU modes. 2762 */ 2763 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() && 2764 !kvm_is_radix(vc->kvm); 2765 if (((controlled_threads > 1) && 2766 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) || 2767 (hpt_on_radix && vc->kvm->arch.threads_indep)) { 2768 for_each_runnable_thread(i, vcpu, vc) { 2769 vcpu->arch.ret = -EBUSY; 2770 kvmppc_remove_runnable(vc, vcpu); 2771 wake_up(&vcpu->arch.cpu_run); 2772 } 2773 goto out; 2774 } 2775 2776 /* 2777 * See if we could run any other vcores on the physical core 2778 * along with this one. 2779 */ 2780 init_core_info(&core_info, vc); 2781 pcpu = smp_processor_id(); 2782 target_threads = controlled_threads; 2783 if (target_smt_mode && target_smt_mode < target_threads) 2784 target_threads = target_smt_mode; 2785 if (vc->num_threads < target_threads) 2786 collect_piggybacks(&core_info, target_threads); 2787 2788 /* 2789 * On radix, arrange for TLB flushing if necessary. 2790 * This has to be done before disabling interrupts since 2791 * it uses smp_call_function(). 2792 */ 2793 pcpu = smp_processor_id(); 2794 if (kvm_is_radix(vc->kvm)) { 2795 for (sub = 0; sub < core_info.n_subcores; ++sub) 2796 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 2797 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 2798 } 2799 2800 /* 2801 * Hard-disable interrupts, and check resched flag and signals. 2802 * If we need to reschedule or deliver a signal, clean up 2803 * and return without going into the guest(s). 2804 * If the mmu_ready flag has been cleared, don't go into the 2805 * guest because that means a HPT resize operation is in progress. 2806 */ 2807 local_irq_disable(); 2808 hard_irq_disable(); 2809 if (lazy_irq_pending() || need_resched() || 2810 recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) { 2811 local_irq_enable(); 2812 vc->vcore_state = VCORE_INACTIVE; 2813 /* Unlock all except the primary vcore */ 2814 for (sub = 1; sub < core_info.n_subcores; ++sub) { 2815 pvc = core_info.vc[sub]; 2816 /* Put back on to the preempted vcores list */ 2817 kvmppc_vcore_preempt(pvc); 2818 spin_unlock(&pvc->lock); 2819 } 2820 for (i = 0; i < controlled_threads; ++i) 2821 kvmppc_release_hwthread(pcpu + i); 2822 return; 2823 } 2824 2825 kvmppc_clear_host_core(pcpu); 2826 2827 /* Decide on micro-threading (split-core) mode */ 2828 subcore_size = threads_per_subcore; 2829 cmd_bit = stat_bit = 0; 2830 split = core_info.n_subcores; 2831 sip = NULL; 2832 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 2833 && !cpu_has_feature(CPU_FTR_ARCH_300); 2834 2835 if (split > 1 || hpt_on_radix) { 2836 sip = &split_info; 2837 memset(&split_info, 0, sizeof(split_info)); 2838 for (sub = 0; sub < core_info.n_subcores; ++sub) 2839 split_info.vc[sub] = core_info.vc[sub]; 2840 2841 if (is_power8) { 2842 if (split == 2 && (dynamic_mt_modes & 2)) { 2843 cmd_bit = HID0_POWER8_1TO2LPAR; 2844 stat_bit = HID0_POWER8_2LPARMODE; 2845 } else { 2846 split = 4; 2847 cmd_bit = HID0_POWER8_1TO4LPAR; 2848 stat_bit = HID0_POWER8_4LPARMODE; 2849 } 2850 subcore_size = MAX_SMT_THREADS / split; 2851 split_info.rpr = mfspr(SPRN_RPR); 2852 split_info.pmmar = mfspr(SPRN_PMMAR); 2853 split_info.ldbar = mfspr(SPRN_LDBAR); 2854 split_info.subcore_size = subcore_size; 2855 } else { 2856 split_info.subcore_size = 1; 2857 if (hpt_on_radix) { 2858 /* Use the split_info for LPCR/LPIDR changes */ 2859 split_info.lpcr_req = vc->lpcr; 2860 split_info.lpidr_req = vc->kvm->arch.lpid; 2861 split_info.host_lpcr = vc->kvm->arch.host_lpcr; 2862 split_info.do_set = 1; 2863 } 2864 } 2865 2866 /* order writes to split_info before kvm_split_mode pointer */ 2867 smp_wmb(); 2868 } 2869 2870 for (thr = 0; thr < controlled_threads; ++thr) { 2871 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 2872 2873 paca->kvm_hstate.tid = thr; 2874 paca->kvm_hstate.napping = 0; 2875 paca->kvm_hstate.kvm_split_mode = sip; 2876 } 2877 2878 /* Initiate micro-threading (split-core) on POWER8 if required */ 2879 if (cmd_bit) { 2880 unsigned long hid0 = mfspr(SPRN_HID0); 2881 2882 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 2883 mb(); 2884 mtspr(SPRN_HID0, hid0); 2885 isync(); 2886 for (;;) { 2887 hid0 = mfspr(SPRN_HID0); 2888 if (hid0 & stat_bit) 2889 break; 2890 cpu_relax(); 2891 } 2892 } 2893 2894 /* 2895 * On POWER8, set RWMR register. 2896 * Since it only affects PURR and SPURR, it doesn't affect 2897 * the host, so we don't save/restore the host value. 2898 */ 2899 if (is_power8) { 2900 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 2901 int n_online = atomic_read(&vc->online_count); 2902 2903 /* 2904 * Use the 8-thread value if we're doing split-core 2905 * or if the vcore's online count looks bogus. 2906 */ 2907 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 2908 n_online >= 1 && n_online <= MAX_SMT_THREADS) 2909 rwmr_val = p8_rwmr_values[n_online]; 2910 mtspr(SPRN_RWMR, rwmr_val); 2911 } 2912 2913 /* Start all the threads */ 2914 active = 0; 2915 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2916 thr = is_power8 ? subcore_thread_map[sub] : sub; 2917 thr0_done = false; 2918 active |= 1 << thr; 2919 pvc = core_info.vc[sub]; 2920 pvc->pcpu = pcpu + thr; 2921 for_each_runnable_thread(i, vcpu, pvc) { 2922 kvmppc_start_thread(vcpu, pvc); 2923 kvmppc_create_dtl_entry(vcpu, pvc); 2924 trace_kvm_guest_enter(vcpu); 2925 if (!vcpu->arch.ptid) 2926 thr0_done = true; 2927 active |= 1 << (thr + vcpu->arch.ptid); 2928 } 2929 /* 2930 * We need to start the first thread of each subcore 2931 * even if it doesn't have a vcpu. 2932 */ 2933 if (!thr0_done) 2934 kvmppc_start_thread(NULL, pvc); 2935 } 2936 2937 /* 2938 * Ensure that split_info.do_nap is set after setting 2939 * the vcore pointer in the PACA of the secondaries. 2940 */ 2941 smp_mb(); 2942 2943 /* 2944 * When doing micro-threading, poke the inactive threads as well. 2945 * This gets them to the nap instruction after kvm_do_nap, 2946 * which reduces the time taken to unsplit later. 2947 * For POWER9 HPT guest on radix host, we need all the secondary 2948 * threads woken up so they can do the LPCR/LPIDR change. 2949 */ 2950 if (cmd_bit || hpt_on_radix) { 2951 split_info.do_nap = 1; /* ask secondaries to nap when done */ 2952 for (thr = 1; thr < threads_per_subcore; ++thr) 2953 if (!(active & (1 << thr))) 2954 kvmppc_ipi_thread(pcpu + thr); 2955 } 2956 2957 vc->vcore_state = VCORE_RUNNING; 2958 preempt_disable(); 2959 2960 trace_kvmppc_run_core(vc, 0); 2961 2962 for (sub = 0; sub < core_info.n_subcores; ++sub) 2963 spin_unlock(&core_info.vc[sub]->lock); 2964 2965 if (kvm_is_radix(vc->kvm)) { 2966 int tmp = pcpu; 2967 2968 /* 2969 * Do we need to flush the process scoped TLB for the LPAR? 2970 * 2971 * On POWER9, individual threads can come in here, but the 2972 * TLB is shared between the 4 threads in a core, hence 2973 * invalidating on one thread invalidates for all. 2974 * Thus we make all 4 threads use the same bit here. 2975 * 2976 * Hash must be flushed in realmode in order to use tlbiel. 2977 */ 2978 mtspr(SPRN_LPID, vc->kvm->arch.lpid); 2979 isync(); 2980 2981 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2982 tmp &= ~0x3UL; 2983 2984 if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) { 2985 radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid); 2986 /* Clear the bit after the TLB flush */ 2987 cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush); 2988 } 2989 } 2990 2991 /* 2992 * Interrupts will be enabled once we get into the guest, 2993 * so tell lockdep that we're about to enable interrupts. 2994 */ 2995 trace_hardirqs_on(); 2996 2997 guest_enter_irqoff(); 2998 2999 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3000 3001 this_cpu_disable_ftrace(); 3002 3003 trap = __kvmppc_vcore_entry(); 3004 3005 this_cpu_enable_ftrace(); 3006 3007 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3008 3009 trace_hardirqs_off(); 3010 set_irq_happened(trap); 3011 3012 spin_lock(&vc->lock); 3013 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3014 vc->vcore_state = VCORE_EXITING; 3015 3016 /* wait for secondary threads to finish writing their state to memory */ 3017 kvmppc_wait_for_nap(controlled_threads); 3018 3019 /* Return to whole-core mode if we split the core earlier */ 3020 if (cmd_bit) { 3021 unsigned long hid0 = mfspr(SPRN_HID0); 3022 unsigned long loops = 0; 3023 3024 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3025 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3026 mb(); 3027 mtspr(SPRN_HID0, hid0); 3028 isync(); 3029 for (;;) { 3030 hid0 = mfspr(SPRN_HID0); 3031 if (!(hid0 & stat_bit)) 3032 break; 3033 cpu_relax(); 3034 ++loops; 3035 } 3036 } else if (hpt_on_radix) { 3037 /* Wait for all threads to have seen final sync */ 3038 for (thr = 1; thr < controlled_threads; ++thr) { 3039 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3040 3041 while (paca->kvm_hstate.kvm_split_mode) { 3042 HMT_low(); 3043 barrier(); 3044 } 3045 HMT_medium(); 3046 } 3047 } 3048 split_info.do_nap = 0; 3049 3050 kvmppc_set_host_core(pcpu); 3051 3052 local_irq_enable(); 3053 guest_exit(); 3054 3055 /* Let secondaries go back to the offline loop */ 3056 for (i = 0; i < controlled_threads; ++i) { 3057 kvmppc_release_hwthread(pcpu + i); 3058 if (sip && sip->napped[i]) 3059 kvmppc_ipi_thread(pcpu + i); 3060 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 3061 } 3062 3063 spin_unlock(&vc->lock); 3064 3065 /* make sure updates to secondary vcpu structs are visible now */ 3066 smp_mb(); 3067 3068 preempt_enable(); 3069 3070 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3071 pvc = core_info.vc[sub]; 3072 post_guest_process(pvc, pvc == vc); 3073 } 3074 3075 spin_lock(&vc->lock); 3076 3077 out: 3078 vc->vcore_state = VCORE_INACTIVE; 3079 trace_kvmppc_run_core(vc, 1); 3080 } 3081 3082 /* 3083 * Wait for some other vcpu thread to execute us, and 3084 * wake us up when we need to handle something in the host. 3085 */ 3086 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 3087 struct kvm_vcpu *vcpu, int wait_state) 3088 { 3089 DEFINE_WAIT(wait); 3090 3091 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 3092 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3093 spin_unlock(&vc->lock); 3094 schedule(); 3095 spin_lock(&vc->lock); 3096 } 3097 finish_wait(&vcpu->arch.cpu_run, &wait); 3098 } 3099 3100 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 3101 { 3102 /* 10us base */ 3103 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow) 3104 vc->halt_poll_ns = 10000; 3105 else 3106 vc->halt_poll_ns *= halt_poll_ns_grow; 3107 } 3108 3109 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 3110 { 3111 if (halt_poll_ns_shrink == 0) 3112 vc->halt_poll_ns = 0; 3113 else 3114 vc->halt_poll_ns /= halt_poll_ns_shrink; 3115 } 3116 3117 #ifdef CONFIG_KVM_XICS 3118 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3119 { 3120 if (!xive_enabled()) 3121 return false; 3122 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 3123 vcpu->arch.xive_saved_state.cppr; 3124 } 3125 #else 3126 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3127 { 3128 return false; 3129 } 3130 #endif /* CONFIG_KVM_XICS */ 3131 3132 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3133 { 3134 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3135 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3136 return true; 3137 3138 return false; 3139 } 3140 3141 /* 3142 * Check to see if any of the runnable vcpus on the vcore have pending 3143 * exceptions or are no longer ceded 3144 */ 3145 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3146 { 3147 struct kvm_vcpu *vcpu; 3148 int i; 3149 3150 for_each_runnable_thread(i, vcpu, vc) { 3151 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3152 return 1; 3153 } 3154 3155 return 0; 3156 } 3157 3158 /* 3159 * All the vcpus in this vcore are idle, so wait for a decrementer 3160 * or external interrupt to one of the vcpus. vc->lock is held. 3161 */ 3162 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3163 { 3164 ktime_t cur, start_poll, start_wait; 3165 int do_sleep = 1; 3166 u64 block_ns; 3167 DECLARE_SWAITQUEUE(wait); 3168 3169 /* Poll for pending exceptions and ceded state */ 3170 cur = start_poll = ktime_get(); 3171 if (vc->halt_poll_ns) { 3172 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3173 ++vc->runner->stat.halt_attempted_poll; 3174 3175 vc->vcore_state = VCORE_POLLING; 3176 spin_unlock(&vc->lock); 3177 3178 do { 3179 if (kvmppc_vcore_check_block(vc)) { 3180 do_sleep = 0; 3181 break; 3182 } 3183 cur = ktime_get(); 3184 } while (single_task_running() && ktime_before(cur, stop)); 3185 3186 spin_lock(&vc->lock); 3187 vc->vcore_state = VCORE_INACTIVE; 3188 3189 if (!do_sleep) { 3190 ++vc->runner->stat.halt_successful_poll; 3191 goto out; 3192 } 3193 } 3194 3195 prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE); 3196 3197 if (kvmppc_vcore_check_block(vc)) { 3198 finish_swait(&vc->wq, &wait); 3199 do_sleep = 0; 3200 /* If we polled, count this as a successful poll */ 3201 if (vc->halt_poll_ns) 3202 ++vc->runner->stat.halt_successful_poll; 3203 goto out; 3204 } 3205 3206 start_wait = ktime_get(); 3207 3208 vc->vcore_state = VCORE_SLEEPING; 3209 trace_kvmppc_vcore_blocked(vc, 0); 3210 spin_unlock(&vc->lock); 3211 schedule(); 3212 finish_swait(&vc->wq, &wait); 3213 spin_lock(&vc->lock); 3214 vc->vcore_state = VCORE_INACTIVE; 3215 trace_kvmppc_vcore_blocked(vc, 1); 3216 ++vc->runner->stat.halt_successful_wait; 3217 3218 cur = ktime_get(); 3219 3220 out: 3221 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3222 3223 /* Attribute wait time */ 3224 if (do_sleep) { 3225 vc->runner->stat.halt_wait_ns += 3226 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3227 /* Attribute failed poll time */ 3228 if (vc->halt_poll_ns) 3229 vc->runner->stat.halt_poll_fail_ns += 3230 ktime_to_ns(start_wait) - 3231 ktime_to_ns(start_poll); 3232 } else { 3233 /* Attribute successful poll time */ 3234 if (vc->halt_poll_ns) 3235 vc->runner->stat.halt_poll_success_ns += 3236 ktime_to_ns(cur) - 3237 ktime_to_ns(start_poll); 3238 } 3239 3240 /* Adjust poll time */ 3241 if (halt_poll_ns) { 3242 if (block_ns <= vc->halt_poll_ns) 3243 ; 3244 /* We slept and blocked for longer than the max halt time */ 3245 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3246 shrink_halt_poll_ns(vc); 3247 /* We slept and our poll time is too small */ 3248 else if (vc->halt_poll_ns < halt_poll_ns && 3249 block_ns < halt_poll_ns) 3250 grow_halt_poll_ns(vc); 3251 if (vc->halt_poll_ns > halt_poll_ns) 3252 vc->halt_poll_ns = halt_poll_ns; 3253 } else 3254 vc->halt_poll_ns = 0; 3255 3256 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3257 } 3258 3259 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 3260 { 3261 int r = 0; 3262 struct kvm *kvm = vcpu->kvm; 3263 3264 mutex_lock(&kvm->lock); 3265 if (!kvm->arch.mmu_ready) { 3266 if (!kvm_is_radix(kvm)) 3267 r = kvmppc_hv_setup_htab_rma(vcpu); 3268 if (!r) { 3269 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3270 kvmppc_setup_partition_table(kvm); 3271 kvm->arch.mmu_ready = 1; 3272 } 3273 } 3274 mutex_unlock(&kvm->lock); 3275 return r; 3276 } 3277 3278 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 3279 { 3280 int n_ceded, i, r; 3281 struct kvmppc_vcore *vc; 3282 struct kvm_vcpu *v; 3283 3284 trace_kvmppc_run_vcpu_enter(vcpu); 3285 3286 kvm_run->exit_reason = 0; 3287 vcpu->arch.ret = RESUME_GUEST; 3288 vcpu->arch.trap = 0; 3289 kvmppc_update_vpas(vcpu); 3290 3291 /* 3292 * Synchronize with other threads in this virtual core 3293 */ 3294 vc = vcpu->arch.vcore; 3295 spin_lock(&vc->lock); 3296 vcpu->arch.ceded = 0; 3297 vcpu->arch.run_task = current; 3298 vcpu->arch.kvm_run = kvm_run; 3299 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3300 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3301 vcpu->arch.busy_preempt = TB_NIL; 3302 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 3303 ++vc->n_runnable; 3304 3305 /* 3306 * This happens the first time this is called for a vcpu. 3307 * If the vcore is already running, we may be able to start 3308 * this thread straight away and have it join in. 3309 */ 3310 if (!signal_pending(current)) { 3311 if ((vc->vcore_state == VCORE_PIGGYBACK || 3312 vc->vcore_state == VCORE_RUNNING) && 3313 !VCORE_IS_EXITING(vc)) { 3314 kvmppc_create_dtl_entry(vcpu, vc); 3315 kvmppc_start_thread(vcpu, vc); 3316 trace_kvm_guest_enter(vcpu); 3317 } else if (vc->vcore_state == VCORE_SLEEPING) { 3318 swake_up_one(&vc->wq); 3319 } 3320 3321 } 3322 3323 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3324 !signal_pending(current)) { 3325 /* See if the MMU is ready to go */ 3326 if (!vcpu->kvm->arch.mmu_ready) { 3327 spin_unlock(&vc->lock); 3328 r = kvmhv_setup_mmu(vcpu); 3329 spin_lock(&vc->lock); 3330 if (r) { 3331 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3332 kvm_run->fail_entry. 3333 hardware_entry_failure_reason = 0; 3334 vcpu->arch.ret = r; 3335 break; 3336 } 3337 } 3338 3339 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3340 kvmppc_vcore_end_preempt(vc); 3341 3342 if (vc->vcore_state != VCORE_INACTIVE) { 3343 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 3344 continue; 3345 } 3346 for_each_runnable_thread(i, v, vc) { 3347 kvmppc_core_prepare_to_enter(v); 3348 if (signal_pending(v->arch.run_task)) { 3349 kvmppc_remove_runnable(vc, v); 3350 v->stat.signal_exits++; 3351 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 3352 v->arch.ret = -EINTR; 3353 wake_up(&v->arch.cpu_run); 3354 } 3355 } 3356 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3357 break; 3358 n_ceded = 0; 3359 for_each_runnable_thread(i, v, vc) { 3360 if (!kvmppc_vcpu_woken(v)) 3361 n_ceded += v->arch.ceded; 3362 else 3363 v->arch.ceded = 0; 3364 } 3365 vc->runner = vcpu; 3366 if (n_ceded == vc->n_runnable) { 3367 kvmppc_vcore_blocked(vc); 3368 } else if (need_resched()) { 3369 kvmppc_vcore_preempt(vc); 3370 /* Let something else run */ 3371 cond_resched_lock(&vc->lock); 3372 if (vc->vcore_state == VCORE_PREEMPT) 3373 kvmppc_vcore_end_preempt(vc); 3374 } else { 3375 kvmppc_run_core(vc); 3376 } 3377 vc->runner = NULL; 3378 } 3379 3380 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3381 (vc->vcore_state == VCORE_RUNNING || 3382 vc->vcore_state == VCORE_EXITING || 3383 vc->vcore_state == VCORE_PIGGYBACK)) 3384 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 3385 3386 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3387 kvmppc_vcore_end_preempt(vc); 3388 3389 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3390 kvmppc_remove_runnable(vc, vcpu); 3391 vcpu->stat.signal_exits++; 3392 kvm_run->exit_reason = KVM_EXIT_INTR; 3393 vcpu->arch.ret = -EINTR; 3394 } 3395 3396 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 3397 /* Wake up some vcpu to run the core */ 3398 i = -1; 3399 v = next_runnable_thread(vc, &i); 3400 wake_up(&v->arch.cpu_run); 3401 } 3402 3403 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 3404 spin_unlock(&vc->lock); 3405 return vcpu->arch.ret; 3406 } 3407 3408 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 3409 { 3410 int r; 3411 int srcu_idx; 3412 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 3413 unsigned long user_tar = 0; 3414 unsigned int user_vrsave; 3415 struct kvm *kvm; 3416 3417 if (!vcpu->arch.sane) { 3418 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3419 return -EINVAL; 3420 } 3421 3422 /* 3423 * Don't allow entry with a suspended transaction, because 3424 * the guest entry/exit code will lose it. 3425 * If the guest has TM enabled, save away their TM-related SPRs 3426 * (they will get restored by the TM unavailable interrupt). 3427 */ 3428 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 3429 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 3430 (current->thread.regs->msr & MSR_TM)) { 3431 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 3432 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3433 run->fail_entry.hardware_entry_failure_reason = 0; 3434 return -EINVAL; 3435 } 3436 /* Enable TM so we can read the TM SPRs */ 3437 mtmsr(mfmsr() | MSR_TM); 3438 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 3439 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 3440 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 3441 current->thread.regs->msr &= ~MSR_TM; 3442 } 3443 #endif 3444 3445 /* 3446 * Force online to 1 for the sake of old userspace which doesn't 3447 * set it. 3448 */ 3449 if (!vcpu->arch.online) { 3450 atomic_inc(&vcpu->arch.vcore->online_count); 3451 vcpu->arch.online = 1; 3452 } 3453 3454 kvmppc_core_prepare_to_enter(vcpu); 3455 3456 /* No need to go into the guest when all we'll do is come back out */ 3457 if (signal_pending(current)) { 3458 run->exit_reason = KVM_EXIT_INTR; 3459 return -EINTR; 3460 } 3461 3462 kvm = vcpu->kvm; 3463 atomic_inc(&kvm->arch.vcpus_running); 3464 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 3465 smp_mb(); 3466 3467 flush_all_to_thread(current); 3468 3469 /* Save userspace EBB and other register values */ 3470 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 3471 ebb_regs[0] = mfspr(SPRN_EBBHR); 3472 ebb_regs[1] = mfspr(SPRN_EBBRR); 3473 ebb_regs[2] = mfspr(SPRN_BESCR); 3474 user_tar = mfspr(SPRN_TAR); 3475 } 3476 user_vrsave = mfspr(SPRN_VRSAVE); 3477 3478 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 3479 vcpu->arch.pgdir = current->mm->pgd; 3480 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 3481 3482 do { 3483 r = kvmppc_run_vcpu(run, vcpu); 3484 3485 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 3486 !(vcpu->arch.shregs.msr & MSR_PR)) { 3487 trace_kvm_hcall_enter(vcpu); 3488 r = kvmppc_pseries_do_hcall(vcpu); 3489 trace_kvm_hcall_exit(vcpu, r); 3490 kvmppc_core_prepare_to_enter(vcpu); 3491 } else if (r == RESUME_PAGE_FAULT) { 3492 srcu_idx = srcu_read_lock(&kvm->srcu); 3493 r = kvmppc_book3s_hv_page_fault(run, vcpu, 3494 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 3495 srcu_read_unlock(&kvm->srcu, srcu_idx); 3496 } else if (r == RESUME_PASSTHROUGH) { 3497 if (WARN_ON(xive_enabled())) 3498 r = H_SUCCESS; 3499 else 3500 r = kvmppc_xics_rm_complete(vcpu, 0); 3501 } 3502 } while (is_kvmppc_resume_guest(r)); 3503 3504 /* Restore userspace EBB and other register values */ 3505 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 3506 mtspr(SPRN_EBBHR, ebb_regs[0]); 3507 mtspr(SPRN_EBBRR, ebb_regs[1]); 3508 mtspr(SPRN_BESCR, ebb_regs[2]); 3509 mtspr(SPRN_TAR, user_tar); 3510 mtspr(SPRN_FSCR, current->thread.fscr); 3511 } 3512 mtspr(SPRN_VRSAVE, user_vrsave); 3513 3514 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 3515 atomic_dec(&kvm->arch.vcpus_running); 3516 return r; 3517 } 3518 3519 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 3520 int shift, int sllp) 3521 { 3522 (*sps)->page_shift = shift; 3523 (*sps)->slb_enc = sllp; 3524 (*sps)->enc[0].page_shift = shift; 3525 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 3526 /* 3527 * Add 16MB MPSS support (may get filtered out by userspace) 3528 */ 3529 if (shift != 24) { 3530 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 3531 if (penc != -1) { 3532 (*sps)->enc[1].page_shift = 24; 3533 (*sps)->enc[1].pte_enc = penc; 3534 } 3535 } 3536 (*sps)++; 3537 } 3538 3539 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 3540 struct kvm_ppc_smmu_info *info) 3541 { 3542 struct kvm_ppc_one_seg_page_size *sps; 3543 3544 /* 3545 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 3546 * POWER7 doesn't support keys for instruction accesses, 3547 * POWER8 and POWER9 do. 3548 */ 3549 info->data_keys = 32; 3550 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 3551 3552 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 3553 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 3554 info->slb_size = 32; 3555 3556 /* We only support these sizes for now, and no muti-size segments */ 3557 sps = &info->sps[0]; 3558 kvmppc_add_seg_page_size(&sps, 12, 0); 3559 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 3560 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 3561 3562 return 0; 3563 } 3564 3565 /* 3566 * Get (and clear) the dirty memory log for a memory slot. 3567 */ 3568 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 3569 struct kvm_dirty_log *log) 3570 { 3571 struct kvm_memslots *slots; 3572 struct kvm_memory_slot *memslot; 3573 int i, r; 3574 unsigned long n; 3575 unsigned long *buf, *p; 3576 struct kvm_vcpu *vcpu; 3577 3578 mutex_lock(&kvm->slots_lock); 3579 3580 r = -EINVAL; 3581 if (log->slot >= KVM_USER_MEM_SLOTS) 3582 goto out; 3583 3584 slots = kvm_memslots(kvm); 3585 memslot = id_to_memslot(slots, log->slot); 3586 r = -ENOENT; 3587 if (!memslot->dirty_bitmap) 3588 goto out; 3589 3590 /* 3591 * Use second half of bitmap area because both HPT and radix 3592 * accumulate bits in the first half. 3593 */ 3594 n = kvm_dirty_bitmap_bytes(memslot); 3595 buf = memslot->dirty_bitmap + n / sizeof(long); 3596 memset(buf, 0, n); 3597 3598 if (kvm_is_radix(kvm)) 3599 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 3600 else 3601 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 3602 if (r) 3603 goto out; 3604 3605 /* 3606 * We accumulate dirty bits in the first half of the 3607 * memslot's dirty_bitmap area, for when pages are paged 3608 * out or modified by the host directly. Pick up these 3609 * bits and add them to the map. 3610 */ 3611 p = memslot->dirty_bitmap; 3612 for (i = 0; i < n / sizeof(long); ++i) 3613 buf[i] |= xchg(&p[i], 0); 3614 3615 /* Harvest dirty bits from VPA and DTL updates */ 3616 /* Note: we never modify the SLB shadow buffer areas */ 3617 kvm_for_each_vcpu(i, vcpu, kvm) { 3618 spin_lock(&vcpu->arch.vpa_update_lock); 3619 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 3620 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 3621 spin_unlock(&vcpu->arch.vpa_update_lock); 3622 } 3623 3624 r = -EFAULT; 3625 if (copy_to_user(log->dirty_bitmap, buf, n)) 3626 goto out; 3627 3628 r = 0; 3629 out: 3630 mutex_unlock(&kvm->slots_lock); 3631 return r; 3632 } 3633 3634 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 3635 struct kvm_memory_slot *dont) 3636 { 3637 if (!dont || free->arch.rmap != dont->arch.rmap) { 3638 vfree(free->arch.rmap); 3639 free->arch.rmap = NULL; 3640 } 3641 } 3642 3643 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 3644 unsigned long npages) 3645 { 3646 slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap))); 3647 if (!slot->arch.rmap) 3648 return -ENOMEM; 3649 3650 return 0; 3651 } 3652 3653 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 3654 struct kvm_memory_slot *memslot, 3655 const struct kvm_userspace_memory_region *mem) 3656 { 3657 return 0; 3658 } 3659 3660 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 3661 const struct kvm_userspace_memory_region *mem, 3662 const struct kvm_memory_slot *old, 3663 const struct kvm_memory_slot *new) 3664 { 3665 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 3666 3667 /* 3668 * If we are making a new memslot, it might make 3669 * some address that was previously cached as emulated 3670 * MMIO be no longer emulated MMIO, so invalidate 3671 * all the caches of emulated MMIO translations. 3672 */ 3673 if (npages) 3674 atomic64_inc(&kvm->arch.mmio_update); 3675 } 3676 3677 /* 3678 * Update LPCR values in kvm->arch and in vcores. 3679 * Caller must hold kvm->lock. 3680 */ 3681 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 3682 { 3683 long int i; 3684 u32 cores_done = 0; 3685 3686 if ((kvm->arch.lpcr & mask) == lpcr) 3687 return; 3688 3689 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 3690 3691 for (i = 0; i < KVM_MAX_VCORES; ++i) { 3692 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 3693 if (!vc) 3694 continue; 3695 spin_lock(&vc->lock); 3696 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 3697 spin_unlock(&vc->lock); 3698 if (++cores_done >= kvm->arch.online_vcores) 3699 break; 3700 } 3701 } 3702 3703 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 3704 { 3705 return; 3706 } 3707 3708 void kvmppc_setup_partition_table(struct kvm *kvm) 3709 { 3710 unsigned long dw0, dw1; 3711 3712 if (!kvm_is_radix(kvm)) { 3713 /* PS field - page size for VRMA */ 3714 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 3715 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 3716 /* HTABSIZE and HTABORG fields */ 3717 dw0 |= kvm->arch.sdr1; 3718 3719 /* Second dword as set by userspace */ 3720 dw1 = kvm->arch.process_table; 3721 } else { 3722 dw0 = PATB_HR | radix__get_tree_size() | 3723 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 3724 dw1 = PATB_GR | kvm->arch.process_table; 3725 } 3726 3727 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1); 3728 } 3729 3730 /* 3731 * Set up HPT (hashed page table) and RMA (real-mode area). 3732 * Must be called with kvm->lock held. 3733 */ 3734 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 3735 { 3736 int err = 0; 3737 struct kvm *kvm = vcpu->kvm; 3738 unsigned long hva; 3739 struct kvm_memory_slot *memslot; 3740 struct vm_area_struct *vma; 3741 unsigned long lpcr = 0, senc; 3742 unsigned long psize, porder; 3743 int srcu_idx; 3744 3745 /* Allocate hashed page table (if not done already) and reset it */ 3746 if (!kvm->arch.hpt.virt) { 3747 int order = KVM_DEFAULT_HPT_ORDER; 3748 struct kvm_hpt_info info; 3749 3750 err = kvmppc_allocate_hpt(&info, order); 3751 /* If we get here, it means userspace didn't specify a 3752 * size explicitly. So, try successively smaller 3753 * sizes if the default failed. */ 3754 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 3755 err = kvmppc_allocate_hpt(&info, order); 3756 3757 if (err < 0) { 3758 pr_err("KVM: Couldn't alloc HPT\n"); 3759 goto out; 3760 } 3761 3762 kvmppc_set_hpt(kvm, &info); 3763 } 3764 3765 /* Look up the memslot for guest physical address 0 */ 3766 srcu_idx = srcu_read_lock(&kvm->srcu); 3767 memslot = gfn_to_memslot(kvm, 0); 3768 3769 /* We must have some memory at 0 by now */ 3770 err = -EINVAL; 3771 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 3772 goto out_srcu; 3773 3774 /* Look up the VMA for the start of this memory slot */ 3775 hva = memslot->userspace_addr; 3776 down_read(¤t->mm->mmap_sem); 3777 vma = find_vma(current->mm, hva); 3778 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 3779 goto up_out; 3780 3781 psize = vma_kernel_pagesize(vma); 3782 3783 up_read(¤t->mm->mmap_sem); 3784 3785 /* We can handle 4k, 64k or 16M pages in the VRMA */ 3786 if (psize >= 0x1000000) 3787 psize = 0x1000000; 3788 else if (psize >= 0x10000) 3789 psize = 0x10000; 3790 else 3791 psize = 0x1000; 3792 porder = __ilog2(psize); 3793 3794 senc = slb_pgsize_encoding(psize); 3795 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 3796 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3797 /* Create HPTEs in the hash page table for the VRMA */ 3798 kvmppc_map_vrma(vcpu, memslot, porder); 3799 3800 /* Update VRMASD field in the LPCR */ 3801 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 3802 /* the -4 is to account for senc values starting at 0x10 */ 3803 lpcr = senc << (LPCR_VRMASD_SH - 4); 3804 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 3805 } 3806 3807 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 3808 smp_wmb(); 3809 err = 0; 3810 out_srcu: 3811 srcu_read_unlock(&kvm->srcu, srcu_idx); 3812 out: 3813 return err; 3814 3815 up_out: 3816 up_read(¤t->mm->mmap_sem); 3817 goto out_srcu; 3818 } 3819 3820 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */ 3821 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 3822 { 3823 kvmppc_free_radix(kvm); 3824 kvmppc_update_lpcr(kvm, LPCR_VPM1, 3825 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 3826 kvmppc_rmap_reset(kvm); 3827 kvm->arch.radix = 0; 3828 kvm->arch.process_table = 0; 3829 return 0; 3830 } 3831 3832 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */ 3833 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 3834 { 3835 int err; 3836 3837 err = kvmppc_init_vm_radix(kvm); 3838 if (err) 3839 return err; 3840 3841 kvmppc_free_hpt(&kvm->arch.hpt); 3842 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 3843 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 3844 kvm->arch.radix = 1; 3845 return 0; 3846 } 3847 3848 #ifdef CONFIG_KVM_XICS 3849 /* 3850 * Allocate a per-core structure for managing state about which cores are 3851 * running in the host versus the guest and for exchanging data between 3852 * real mode KVM and CPU running in the host. 3853 * This is only done for the first VM. 3854 * The allocated structure stays even if all VMs have stopped. 3855 * It is only freed when the kvm-hv module is unloaded. 3856 * It's OK for this routine to fail, we just don't support host 3857 * core operations like redirecting H_IPI wakeups. 3858 */ 3859 void kvmppc_alloc_host_rm_ops(void) 3860 { 3861 struct kvmppc_host_rm_ops *ops; 3862 unsigned long l_ops; 3863 int cpu, core; 3864 int size; 3865 3866 /* Not the first time here ? */ 3867 if (kvmppc_host_rm_ops_hv != NULL) 3868 return; 3869 3870 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 3871 if (!ops) 3872 return; 3873 3874 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 3875 ops->rm_core = kzalloc(size, GFP_KERNEL); 3876 3877 if (!ops->rm_core) { 3878 kfree(ops); 3879 return; 3880 } 3881 3882 cpus_read_lock(); 3883 3884 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 3885 if (!cpu_online(cpu)) 3886 continue; 3887 3888 core = cpu >> threads_shift; 3889 ops->rm_core[core].rm_state.in_host = 1; 3890 } 3891 3892 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 3893 3894 /* 3895 * Make the contents of the kvmppc_host_rm_ops structure visible 3896 * to other CPUs before we assign it to the global variable. 3897 * Do an atomic assignment (no locks used here), but if someone 3898 * beats us to it, just free our copy and return. 3899 */ 3900 smp_wmb(); 3901 l_ops = (unsigned long) ops; 3902 3903 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 3904 cpus_read_unlock(); 3905 kfree(ops->rm_core); 3906 kfree(ops); 3907 return; 3908 } 3909 3910 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 3911 "ppc/kvm_book3s:prepare", 3912 kvmppc_set_host_core, 3913 kvmppc_clear_host_core); 3914 cpus_read_unlock(); 3915 } 3916 3917 void kvmppc_free_host_rm_ops(void) 3918 { 3919 if (kvmppc_host_rm_ops_hv) { 3920 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 3921 kfree(kvmppc_host_rm_ops_hv->rm_core); 3922 kfree(kvmppc_host_rm_ops_hv); 3923 kvmppc_host_rm_ops_hv = NULL; 3924 } 3925 } 3926 #endif 3927 3928 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 3929 { 3930 unsigned long lpcr, lpid; 3931 char buf[32]; 3932 int ret; 3933 3934 /* Allocate the guest's logical partition ID */ 3935 3936 lpid = kvmppc_alloc_lpid(); 3937 if ((long)lpid < 0) 3938 return -ENOMEM; 3939 kvm->arch.lpid = lpid; 3940 3941 kvmppc_alloc_host_rm_ops(); 3942 3943 /* 3944 * Since we don't flush the TLB when tearing down a VM, 3945 * and this lpid might have previously been used, 3946 * make sure we flush on each core before running the new VM. 3947 * On POWER9, the tlbie in mmu_partition_table_set_entry() 3948 * does this flush for us. 3949 */ 3950 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3951 cpumask_setall(&kvm->arch.need_tlb_flush); 3952 3953 /* Start out with the default set of hcalls enabled */ 3954 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 3955 sizeof(kvm->arch.enabled_hcalls)); 3956 3957 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3958 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 3959 3960 /* Init LPCR for virtual RMA mode */ 3961 kvm->arch.host_lpid = mfspr(SPRN_LPID); 3962 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 3963 lpcr &= LPCR_PECE | LPCR_LPES; 3964 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 3965 LPCR_VPM0 | LPCR_VPM1; 3966 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 3967 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3968 /* On POWER8 turn on online bit to enable PURR/SPURR */ 3969 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3970 lpcr |= LPCR_ONL; 3971 /* 3972 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 3973 * Set HVICE bit to enable hypervisor virtualization interrupts. 3974 * Set HEIC to prevent OS interrupts to go to hypervisor (should 3975 * be unnecessary but better safe than sorry in case we re-enable 3976 * EE in HV mode with this LPCR still set) 3977 */ 3978 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 3979 lpcr &= ~LPCR_VPM0; 3980 lpcr |= LPCR_HVICE | LPCR_HEIC; 3981 3982 /* 3983 * If xive is enabled, we route 0x500 interrupts directly 3984 * to the guest. 3985 */ 3986 if (xive_enabled()) 3987 lpcr |= LPCR_LPES; 3988 } 3989 3990 /* 3991 * If the host uses radix, the guest starts out as radix. 3992 */ 3993 if (radix_enabled()) { 3994 kvm->arch.radix = 1; 3995 kvm->arch.mmu_ready = 1; 3996 lpcr &= ~LPCR_VPM1; 3997 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 3998 ret = kvmppc_init_vm_radix(kvm); 3999 if (ret) { 4000 kvmppc_free_lpid(kvm->arch.lpid); 4001 return ret; 4002 } 4003 kvmppc_setup_partition_table(kvm); 4004 } 4005 4006 kvm->arch.lpcr = lpcr; 4007 4008 /* Initialization for future HPT resizes */ 4009 kvm->arch.resize_hpt = NULL; 4010 4011 /* 4012 * Work out how many sets the TLB has, for the use of 4013 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 4014 */ 4015 if (radix_enabled()) 4016 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 4017 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 4018 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 4019 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4020 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 4021 else 4022 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 4023 4024 /* 4025 * Track that we now have a HV mode VM active. This blocks secondary 4026 * CPU threads from coming online. 4027 * On POWER9, we only need to do this if the "indep_threads_mode" 4028 * module parameter has been set to N. 4029 */ 4030 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4031 kvm->arch.threads_indep = indep_threads_mode; 4032 if (!kvm->arch.threads_indep) 4033 kvm_hv_vm_activated(); 4034 4035 /* 4036 * Initialize smt_mode depending on processor. 4037 * POWER8 and earlier have to use "strict" threading, where 4038 * all vCPUs in a vcore have to run on the same (sub)core, 4039 * whereas on POWER9 the threads can each run a different 4040 * guest. 4041 */ 4042 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4043 kvm->arch.smt_mode = threads_per_subcore; 4044 else 4045 kvm->arch.smt_mode = 1; 4046 kvm->arch.emul_smt_mode = 1; 4047 4048 /* 4049 * Create a debugfs directory for the VM 4050 */ 4051 snprintf(buf, sizeof(buf), "vm%d", current->pid); 4052 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 4053 kvmppc_mmu_debugfs_init(kvm); 4054 4055 return 0; 4056 } 4057 4058 static void kvmppc_free_vcores(struct kvm *kvm) 4059 { 4060 long int i; 4061 4062 for (i = 0; i < KVM_MAX_VCORES; ++i) 4063 kfree(kvm->arch.vcores[i]); 4064 kvm->arch.online_vcores = 0; 4065 } 4066 4067 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 4068 { 4069 debugfs_remove_recursive(kvm->arch.debugfs_dir); 4070 4071 if (!kvm->arch.threads_indep) 4072 kvm_hv_vm_deactivated(); 4073 4074 kvmppc_free_vcores(kvm); 4075 4076 kvmppc_free_lpid(kvm->arch.lpid); 4077 4078 if (kvm_is_radix(kvm)) 4079 kvmppc_free_radix(kvm); 4080 else 4081 kvmppc_free_hpt(&kvm->arch.hpt); 4082 4083 kvmppc_free_pimap(kvm); 4084 } 4085 4086 /* We don't need to emulate any privileged instructions or dcbz */ 4087 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 4088 unsigned int inst, int *advance) 4089 { 4090 return EMULATE_FAIL; 4091 } 4092 4093 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 4094 ulong spr_val) 4095 { 4096 return EMULATE_FAIL; 4097 } 4098 4099 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 4100 ulong *spr_val) 4101 { 4102 return EMULATE_FAIL; 4103 } 4104 4105 static int kvmppc_core_check_processor_compat_hv(void) 4106 { 4107 if (!cpu_has_feature(CPU_FTR_HVMODE) || 4108 !cpu_has_feature(CPU_FTR_ARCH_206)) 4109 return -EIO; 4110 4111 return 0; 4112 } 4113 4114 #ifdef CONFIG_KVM_XICS 4115 4116 void kvmppc_free_pimap(struct kvm *kvm) 4117 { 4118 kfree(kvm->arch.pimap); 4119 } 4120 4121 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 4122 { 4123 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 4124 } 4125 4126 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 4127 { 4128 struct irq_desc *desc; 4129 struct kvmppc_irq_map *irq_map; 4130 struct kvmppc_passthru_irqmap *pimap; 4131 struct irq_chip *chip; 4132 int i, rc = 0; 4133 4134 if (!kvm_irq_bypass) 4135 return 1; 4136 4137 desc = irq_to_desc(host_irq); 4138 if (!desc) 4139 return -EIO; 4140 4141 mutex_lock(&kvm->lock); 4142 4143 pimap = kvm->arch.pimap; 4144 if (pimap == NULL) { 4145 /* First call, allocate structure to hold IRQ map */ 4146 pimap = kvmppc_alloc_pimap(); 4147 if (pimap == NULL) { 4148 mutex_unlock(&kvm->lock); 4149 return -ENOMEM; 4150 } 4151 kvm->arch.pimap = pimap; 4152 } 4153 4154 /* 4155 * For now, we only support interrupts for which the EOI operation 4156 * is an OPAL call followed by a write to XIRR, since that's 4157 * what our real-mode EOI code does, or a XIVE interrupt 4158 */ 4159 chip = irq_data_get_irq_chip(&desc->irq_data); 4160 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 4161 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 4162 host_irq, guest_gsi); 4163 mutex_unlock(&kvm->lock); 4164 return -ENOENT; 4165 } 4166 4167 /* 4168 * See if we already have an entry for this guest IRQ number. 4169 * If it's mapped to a hardware IRQ number, that's an error, 4170 * otherwise re-use this entry. 4171 */ 4172 for (i = 0; i < pimap->n_mapped; i++) { 4173 if (guest_gsi == pimap->mapped[i].v_hwirq) { 4174 if (pimap->mapped[i].r_hwirq) { 4175 mutex_unlock(&kvm->lock); 4176 return -EINVAL; 4177 } 4178 break; 4179 } 4180 } 4181 4182 if (i == KVMPPC_PIRQ_MAPPED) { 4183 mutex_unlock(&kvm->lock); 4184 return -EAGAIN; /* table is full */ 4185 } 4186 4187 irq_map = &pimap->mapped[i]; 4188 4189 irq_map->v_hwirq = guest_gsi; 4190 irq_map->desc = desc; 4191 4192 /* 4193 * Order the above two stores before the next to serialize with 4194 * the KVM real mode handler. 4195 */ 4196 smp_wmb(); 4197 irq_map->r_hwirq = desc->irq_data.hwirq; 4198 4199 if (i == pimap->n_mapped) 4200 pimap->n_mapped++; 4201 4202 if (xive_enabled()) 4203 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 4204 else 4205 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 4206 if (rc) 4207 irq_map->r_hwirq = 0; 4208 4209 mutex_unlock(&kvm->lock); 4210 4211 return 0; 4212 } 4213 4214 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 4215 { 4216 struct irq_desc *desc; 4217 struct kvmppc_passthru_irqmap *pimap; 4218 int i, rc = 0; 4219 4220 if (!kvm_irq_bypass) 4221 return 0; 4222 4223 desc = irq_to_desc(host_irq); 4224 if (!desc) 4225 return -EIO; 4226 4227 mutex_lock(&kvm->lock); 4228 if (!kvm->arch.pimap) 4229 goto unlock; 4230 4231 pimap = kvm->arch.pimap; 4232 4233 for (i = 0; i < pimap->n_mapped; i++) { 4234 if (guest_gsi == pimap->mapped[i].v_hwirq) 4235 break; 4236 } 4237 4238 if (i == pimap->n_mapped) { 4239 mutex_unlock(&kvm->lock); 4240 return -ENODEV; 4241 } 4242 4243 if (xive_enabled()) 4244 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 4245 else 4246 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 4247 4248 /* invalidate the entry (what do do on error from the above ?) */ 4249 pimap->mapped[i].r_hwirq = 0; 4250 4251 /* 4252 * We don't free this structure even when the count goes to 4253 * zero. The structure is freed when we destroy the VM. 4254 */ 4255 unlock: 4256 mutex_unlock(&kvm->lock); 4257 return rc; 4258 } 4259 4260 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 4261 struct irq_bypass_producer *prod) 4262 { 4263 int ret = 0; 4264 struct kvm_kernel_irqfd *irqfd = 4265 container_of(cons, struct kvm_kernel_irqfd, consumer); 4266 4267 irqfd->producer = prod; 4268 4269 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 4270 if (ret) 4271 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 4272 prod->irq, irqfd->gsi, ret); 4273 4274 return ret; 4275 } 4276 4277 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 4278 struct irq_bypass_producer *prod) 4279 { 4280 int ret; 4281 struct kvm_kernel_irqfd *irqfd = 4282 container_of(cons, struct kvm_kernel_irqfd, consumer); 4283 4284 irqfd->producer = NULL; 4285 4286 /* 4287 * When producer of consumer is unregistered, we change back to 4288 * default external interrupt handling mode - KVM real mode 4289 * will switch back to host. 4290 */ 4291 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 4292 if (ret) 4293 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 4294 prod->irq, irqfd->gsi, ret); 4295 } 4296 #endif 4297 4298 static long kvm_arch_vm_ioctl_hv(struct file *filp, 4299 unsigned int ioctl, unsigned long arg) 4300 { 4301 struct kvm *kvm __maybe_unused = filp->private_data; 4302 void __user *argp = (void __user *)arg; 4303 long r; 4304 4305 switch (ioctl) { 4306 4307 case KVM_PPC_ALLOCATE_HTAB: { 4308 u32 htab_order; 4309 4310 r = -EFAULT; 4311 if (get_user(htab_order, (u32 __user *)argp)) 4312 break; 4313 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 4314 if (r) 4315 break; 4316 r = 0; 4317 break; 4318 } 4319 4320 case KVM_PPC_GET_HTAB_FD: { 4321 struct kvm_get_htab_fd ghf; 4322 4323 r = -EFAULT; 4324 if (copy_from_user(&ghf, argp, sizeof(ghf))) 4325 break; 4326 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 4327 break; 4328 } 4329 4330 case KVM_PPC_RESIZE_HPT_PREPARE: { 4331 struct kvm_ppc_resize_hpt rhpt; 4332 4333 r = -EFAULT; 4334 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 4335 break; 4336 4337 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 4338 break; 4339 } 4340 4341 case KVM_PPC_RESIZE_HPT_COMMIT: { 4342 struct kvm_ppc_resize_hpt rhpt; 4343 4344 r = -EFAULT; 4345 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 4346 break; 4347 4348 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 4349 break; 4350 } 4351 4352 default: 4353 r = -ENOTTY; 4354 } 4355 4356 return r; 4357 } 4358 4359 /* 4360 * List of hcall numbers to enable by default. 4361 * For compatibility with old userspace, we enable by default 4362 * all hcalls that were implemented before the hcall-enabling 4363 * facility was added. Note this list should not include H_RTAS. 4364 */ 4365 static unsigned int default_hcall_list[] = { 4366 H_REMOVE, 4367 H_ENTER, 4368 H_READ, 4369 H_PROTECT, 4370 H_BULK_REMOVE, 4371 H_GET_TCE, 4372 H_PUT_TCE, 4373 H_SET_DABR, 4374 H_SET_XDABR, 4375 H_CEDE, 4376 H_PROD, 4377 H_CONFER, 4378 H_REGISTER_VPA, 4379 #ifdef CONFIG_KVM_XICS 4380 H_EOI, 4381 H_CPPR, 4382 H_IPI, 4383 H_IPOLL, 4384 H_XIRR, 4385 H_XIRR_X, 4386 #endif 4387 0 4388 }; 4389 4390 static void init_default_hcalls(void) 4391 { 4392 int i; 4393 unsigned int hcall; 4394 4395 for (i = 0; default_hcall_list[i]; ++i) { 4396 hcall = default_hcall_list[i]; 4397 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 4398 __set_bit(hcall / 4, default_enabled_hcalls); 4399 } 4400 } 4401 4402 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 4403 { 4404 unsigned long lpcr; 4405 int radix; 4406 int err; 4407 4408 /* If not on a POWER9, reject it */ 4409 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4410 return -ENODEV; 4411 4412 /* If any unknown flags set, reject it */ 4413 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 4414 return -EINVAL; 4415 4416 /* GR (guest radix) bit in process_table field must match */ 4417 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 4418 if (!!(cfg->process_table & PATB_GR) != radix) 4419 return -EINVAL; 4420 4421 /* Process table size field must be reasonable, i.e. <= 24 */ 4422 if ((cfg->process_table & PRTS_MASK) > 24) 4423 return -EINVAL; 4424 4425 /* We can change a guest to/from radix now, if the host is radix */ 4426 if (radix && !radix_enabled()) 4427 return -EINVAL; 4428 4429 mutex_lock(&kvm->lock); 4430 if (radix != kvm_is_radix(kvm)) { 4431 if (kvm->arch.mmu_ready) { 4432 kvm->arch.mmu_ready = 0; 4433 /* order mmu_ready vs. vcpus_running */ 4434 smp_mb(); 4435 if (atomic_read(&kvm->arch.vcpus_running)) { 4436 kvm->arch.mmu_ready = 1; 4437 err = -EBUSY; 4438 goto out_unlock; 4439 } 4440 } 4441 if (radix) 4442 err = kvmppc_switch_mmu_to_radix(kvm); 4443 else 4444 err = kvmppc_switch_mmu_to_hpt(kvm); 4445 if (err) 4446 goto out_unlock; 4447 } 4448 4449 kvm->arch.process_table = cfg->process_table; 4450 kvmppc_setup_partition_table(kvm); 4451 4452 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 4453 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 4454 err = 0; 4455 4456 out_unlock: 4457 mutex_unlock(&kvm->lock); 4458 return err; 4459 } 4460 4461 static struct kvmppc_ops kvm_ops_hv = { 4462 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 4463 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 4464 .get_one_reg = kvmppc_get_one_reg_hv, 4465 .set_one_reg = kvmppc_set_one_reg_hv, 4466 .vcpu_load = kvmppc_core_vcpu_load_hv, 4467 .vcpu_put = kvmppc_core_vcpu_put_hv, 4468 .set_msr = kvmppc_set_msr_hv, 4469 .vcpu_run = kvmppc_vcpu_run_hv, 4470 .vcpu_create = kvmppc_core_vcpu_create_hv, 4471 .vcpu_free = kvmppc_core_vcpu_free_hv, 4472 .check_requests = kvmppc_core_check_requests_hv, 4473 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 4474 .flush_memslot = kvmppc_core_flush_memslot_hv, 4475 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 4476 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 4477 .unmap_hva_range = kvm_unmap_hva_range_hv, 4478 .age_hva = kvm_age_hva_hv, 4479 .test_age_hva = kvm_test_age_hva_hv, 4480 .set_spte_hva = kvm_set_spte_hva_hv, 4481 .mmu_destroy = kvmppc_mmu_destroy_hv, 4482 .free_memslot = kvmppc_core_free_memslot_hv, 4483 .create_memslot = kvmppc_core_create_memslot_hv, 4484 .init_vm = kvmppc_core_init_vm_hv, 4485 .destroy_vm = kvmppc_core_destroy_vm_hv, 4486 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 4487 .emulate_op = kvmppc_core_emulate_op_hv, 4488 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 4489 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 4490 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 4491 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 4492 .hcall_implemented = kvmppc_hcall_impl_hv, 4493 #ifdef CONFIG_KVM_XICS 4494 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 4495 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 4496 #endif 4497 .configure_mmu = kvmhv_configure_mmu, 4498 .get_rmmu_info = kvmhv_get_rmmu_info, 4499 .set_smt_mode = kvmhv_set_smt_mode, 4500 }; 4501 4502 static int kvm_init_subcore_bitmap(void) 4503 { 4504 int i, j; 4505 int nr_cores = cpu_nr_cores(); 4506 struct sibling_subcore_state *sibling_subcore_state; 4507 4508 for (i = 0; i < nr_cores; i++) { 4509 int first_cpu = i * threads_per_core; 4510 int node = cpu_to_node(first_cpu); 4511 4512 /* Ignore if it is already allocated. */ 4513 if (paca_ptrs[first_cpu]->sibling_subcore_state) 4514 continue; 4515 4516 sibling_subcore_state = 4517 kmalloc_node(sizeof(struct sibling_subcore_state), 4518 GFP_KERNEL, node); 4519 if (!sibling_subcore_state) 4520 return -ENOMEM; 4521 4522 memset(sibling_subcore_state, 0, 4523 sizeof(struct sibling_subcore_state)); 4524 4525 for (j = 0; j < threads_per_core; j++) { 4526 int cpu = first_cpu + j; 4527 4528 paca_ptrs[cpu]->sibling_subcore_state = 4529 sibling_subcore_state; 4530 } 4531 } 4532 return 0; 4533 } 4534 4535 static int kvmppc_radix_possible(void) 4536 { 4537 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 4538 } 4539 4540 static int kvmppc_book3s_init_hv(void) 4541 { 4542 int r; 4543 /* 4544 * FIXME!! Do we need to check on all cpus ? 4545 */ 4546 r = kvmppc_core_check_processor_compat_hv(); 4547 if (r < 0) 4548 return -ENODEV; 4549 4550 r = kvm_init_subcore_bitmap(); 4551 if (r) 4552 return r; 4553 4554 /* 4555 * We need a way of accessing the XICS interrupt controller, 4556 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 4557 * indirectly, via OPAL. 4558 */ 4559 #ifdef CONFIG_SMP 4560 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) { 4561 struct device_node *np; 4562 4563 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 4564 if (!np) { 4565 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 4566 return -ENODEV; 4567 } 4568 /* presence of intc confirmed - node can be dropped again */ 4569 of_node_put(np); 4570 } 4571 #endif 4572 4573 kvm_ops_hv.owner = THIS_MODULE; 4574 kvmppc_hv_ops = &kvm_ops_hv; 4575 4576 init_default_hcalls(); 4577 4578 init_vcore_lists(); 4579 4580 r = kvmppc_mmu_hv_init(); 4581 if (r) 4582 return r; 4583 4584 if (kvmppc_radix_possible()) 4585 r = kvmppc_radix_init(); 4586 4587 /* 4588 * POWER9 chips before version 2.02 can't have some threads in 4589 * HPT mode and some in radix mode on the same core. 4590 */ 4591 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4592 unsigned int pvr = mfspr(SPRN_PVR); 4593 if ((pvr >> 16) == PVR_POWER9 && 4594 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 4595 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 4596 no_mixing_hpt_and_radix = true; 4597 } 4598 4599 return r; 4600 } 4601 4602 static void kvmppc_book3s_exit_hv(void) 4603 { 4604 kvmppc_free_host_rm_ops(); 4605 if (kvmppc_radix_possible()) 4606 kvmppc_radix_exit(); 4607 kvmppc_hv_ops = NULL; 4608 } 4609 4610 module_init(kvmppc_book3s_init_hv); 4611 module_exit(kvmppc_book3s_exit_hv); 4612 MODULE_LICENSE("GPL"); 4613 MODULE_ALIAS_MISCDEV(KVM_MINOR); 4614 MODULE_ALIAS("devname:kvm"); 4615