1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 46 #include <asm/ftrace.h> 47 #include <asm/reg.h> 48 #include <asm/ppc-opcode.h> 49 #include <asm/asm-prototypes.h> 50 #include <asm/archrandom.h> 51 #include <asm/debug.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <linux/uaccess.h> 56 #include <asm/io.h> 57 #include <asm/kvm_ppc.h> 58 #include <asm/kvm_book3s.h> 59 #include <asm/mmu_context.h> 60 #include <asm/lppaca.h> 61 #include <asm/processor.h> 62 #include <asm/cputhreads.h> 63 #include <asm/page.h> 64 #include <asm/hvcall.h> 65 #include <asm/switch_to.h> 66 #include <asm/smp.h> 67 #include <asm/dbell.h> 68 #include <asm/hmi.h> 69 #include <asm/pnv-pci.h> 70 #include <asm/mmu.h> 71 #include <asm/opal.h> 72 #include <asm/xics.h> 73 #include <asm/xive.h> 74 #include <asm/hw_breakpoint.h> 75 #include <asm/kvm_host.h> 76 #include <asm/kvm_book3s_uvmem.h> 77 #include <asm/ultravisor.h> 78 79 #include "book3s.h" 80 81 #define CREATE_TRACE_POINTS 82 #include "trace_hv.h" 83 84 /* #define EXIT_DEBUG */ 85 /* #define EXIT_DEBUG_SIMPLE */ 86 /* #define EXIT_DEBUG_INT */ 87 88 /* Used to indicate that a guest page fault needs to be handled */ 89 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 90 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 91 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 92 93 /* Used as a "null" value for timebase values */ 94 #define TB_NIL (~(u64)0) 95 96 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 97 98 static int dynamic_mt_modes = 6; 99 module_param(dynamic_mt_modes, int, 0644); 100 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 101 static int target_smt_mode; 102 module_param(target_smt_mode, int, 0644); 103 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 104 105 static bool indep_threads_mode = true; 106 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 107 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 108 109 static bool one_vm_per_core; 110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)"); 112 113 #ifdef CONFIG_KVM_XICS 114 static struct kernel_param_ops module_param_ops = { 115 .set = param_set_int, 116 .get = param_get_int, 117 }; 118 119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 121 122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 124 #endif 125 126 /* If set, guests are allowed to create and control nested guests */ 127 static bool nested = true; 128 module_param(nested, bool, S_IRUGO | S_IWUSR); 129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 130 131 static inline bool nesting_enabled(struct kvm *kvm) 132 { 133 return kvm->arch.nested_enable && kvm_is_radix(kvm); 134 } 135 136 /* If set, the threads on each CPU core have to be in the same MMU mode */ 137 static bool no_mixing_hpt_and_radix; 138 139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 140 141 /* 142 * RWMR values for POWER8. These control the rate at which PURR 143 * and SPURR count and should be set according to the number of 144 * online threads in the vcore being run. 145 */ 146 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 147 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 148 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 149 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 150 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 151 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 152 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 153 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 154 155 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 156 RWMR_RPA_P8_1THREAD, 157 RWMR_RPA_P8_1THREAD, 158 RWMR_RPA_P8_2THREAD, 159 RWMR_RPA_P8_3THREAD, 160 RWMR_RPA_P8_4THREAD, 161 RWMR_RPA_P8_5THREAD, 162 RWMR_RPA_P8_6THREAD, 163 RWMR_RPA_P8_7THREAD, 164 RWMR_RPA_P8_8THREAD, 165 }; 166 167 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 168 int *ip) 169 { 170 int i = *ip; 171 struct kvm_vcpu *vcpu; 172 173 while (++i < MAX_SMT_THREADS) { 174 vcpu = READ_ONCE(vc->runnable_threads[i]); 175 if (vcpu) { 176 *ip = i; 177 return vcpu; 178 } 179 } 180 return NULL; 181 } 182 183 /* Used to traverse the list of runnable threads for a given vcore */ 184 #define for_each_runnable_thread(i, vcpu, vc) \ 185 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 186 187 static bool kvmppc_ipi_thread(int cpu) 188 { 189 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 190 191 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 192 if (kvmhv_on_pseries()) 193 return false; 194 195 /* On POWER9 we can use msgsnd to IPI any cpu */ 196 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 197 msg |= get_hard_smp_processor_id(cpu); 198 smp_mb(); 199 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 200 return true; 201 } 202 203 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 204 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 205 preempt_disable(); 206 if (cpu_first_thread_sibling(cpu) == 207 cpu_first_thread_sibling(smp_processor_id())) { 208 msg |= cpu_thread_in_core(cpu); 209 smp_mb(); 210 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 211 preempt_enable(); 212 return true; 213 } 214 preempt_enable(); 215 } 216 217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 218 if (cpu >= 0 && cpu < nr_cpu_ids) { 219 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 220 xics_wake_cpu(cpu); 221 return true; 222 } 223 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 224 return true; 225 } 226 #endif 227 228 return false; 229 } 230 231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 232 { 233 int cpu; 234 struct swait_queue_head *wqp; 235 236 wqp = kvm_arch_vcpu_wq(vcpu); 237 if (swq_has_sleeper(wqp)) { 238 swake_up_one(wqp); 239 ++vcpu->stat.halt_wakeup; 240 } 241 242 cpu = READ_ONCE(vcpu->arch.thread_cpu); 243 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 244 return; 245 246 /* CPU points to the first thread of the core */ 247 cpu = vcpu->cpu; 248 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 249 smp_send_reschedule(cpu); 250 } 251 252 /* 253 * We use the vcpu_load/put functions to measure stolen time. 254 * Stolen time is counted as time when either the vcpu is able to 255 * run as part of a virtual core, but the task running the vcore 256 * is preempted or sleeping, or when the vcpu needs something done 257 * in the kernel by the task running the vcpu, but that task is 258 * preempted or sleeping. Those two things have to be counted 259 * separately, since one of the vcpu tasks will take on the job 260 * of running the core, and the other vcpu tasks in the vcore will 261 * sleep waiting for it to do that, but that sleep shouldn't count 262 * as stolen time. 263 * 264 * Hence we accumulate stolen time when the vcpu can run as part of 265 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 266 * needs its task to do other things in the kernel (for example, 267 * service a page fault) in busy_stolen. We don't accumulate 268 * stolen time for a vcore when it is inactive, or for a vcpu 269 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 270 * a misnomer; it means that the vcpu task is not executing in 271 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 272 * the kernel. We don't have any way of dividing up that time 273 * between time that the vcpu is genuinely stopped, time that 274 * the task is actively working on behalf of the vcpu, and time 275 * that the task is preempted, so we don't count any of it as 276 * stolen. 277 * 278 * Updates to busy_stolen are protected by arch.tbacct_lock; 279 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 280 * lock. The stolen times are measured in units of timebase ticks. 281 * (Note that the != TB_NIL checks below are purely defensive; 282 * they should never fail.) 283 */ 284 285 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 286 { 287 unsigned long flags; 288 289 spin_lock_irqsave(&vc->stoltb_lock, flags); 290 vc->preempt_tb = mftb(); 291 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 292 } 293 294 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 295 { 296 unsigned long flags; 297 298 spin_lock_irqsave(&vc->stoltb_lock, flags); 299 if (vc->preempt_tb != TB_NIL) { 300 vc->stolen_tb += mftb() - vc->preempt_tb; 301 vc->preempt_tb = TB_NIL; 302 } 303 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 304 } 305 306 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 307 { 308 struct kvmppc_vcore *vc = vcpu->arch.vcore; 309 unsigned long flags; 310 311 /* 312 * We can test vc->runner without taking the vcore lock, 313 * because only this task ever sets vc->runner to this 314 * vcpu, and once it is set to this vcpu, only this task 315 * ever sets it to NULL. 316 */ 317 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 318 kvmppc_core_end_stolen(vc); 319 320 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 321 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 322 vcpu->arch.busy_preempt != TB_NIL) { 323 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 324 vcpu->arch.busy_preempt = TB_NIL; 325 } 326 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 327 } 328 329 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 330 { 331 struct kvmppc_vcore *vc = vcpu->arch.vcore; 332 unsigned long flags; 333 334 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 335 kvmppc_core_start_stolen(vc); 336 337 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 338 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 339 vcpu->arch.busy_preempt = mftb(); 340 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 341 } 342 343 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 344 { 345 vcpu->arch.pvr = pvr; 346 } 347 348 /* Dummy value used in computing PCR value below */ 349 #define PCR_ARCH_300 (PCR_ARCH_207 << 1) 350 351 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 352 { 353 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 354 struct kvmppc_vcore *vc = vcpu->arch.vcore; 355 356 /* We can (emulate) our own architecture version and anything older */ 357 if (cpu_has_feature(CPU_FTR_ARCH_300)) 358 host_pcr_bit = PCR_ARCH_300; 359 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 360 host_pcr_bit = PCR_ARCH_207; 361 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 362 host_pcr_bit = PCR_ARCH_206; 363 else 364 host_pcr_bit = PCR_ARCH_205; 365 366 /* Determine lowest PCR bit needed to run guest in given PVR level */ 367 guest_pcr_bit = host_pcr_bit; 368 if (arch_compat) { 369 switch (arch_compat) { 370 case PVR_ARCH_205: 371 guest_pcr_bit = PCR_ARCH_205; 372 break; 373 case PVR_ARCH_206: 374 case PVR_ARCH_206p: 375 guest_pcr_bit = PCR_ARCH_206; 376 break; 377 case PVR_ARCH_207: 378 guest_pcr_bit = PCR_ARCH_207; 379 break; 380 case PVR_ARCH_300: 381 guest_pcr_bit = PCR_ARCH_300; 382 break; 383 default: 384 return -EINVAL; 385 } 386 } 387 388 /* Check requested PCR bits don't exceed our capabilities */ 389 if (guest_pcr_bit > host_pcr_bit) 390 return -EINVAL; 391 392 spin_lock(&vc->lock); 393 vc->arch_compat = arch_compat; 394 /* 395 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 396 * Also set all reserved PCR bits 397 */ 398 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 399 spin_unlock(&vc->lock); 400 401 return 0; 402 } 403 404 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 405 { 406 int r; 407 408 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 409 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 410 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 411 for (r = 0; r < 16; ++r) 412 pr_err("r%2d = %.16lx r%d = %.16lx\n", 413 r, kvmppc_get_gpr(vcpu, r), 414 r+16, kvmppc_get_gpr(vcpu, r+16)); 415 pr_err("ctr = %.16lx lr = %.16lx\n", 416 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 417 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 418 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 419 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 420 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 421 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 422 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 423 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 424 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 425 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 426 pr_err("fault dar = %.16lx dsisr = %.8x\n", 427 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 428 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 429 for (r = 0; r < vcpu->arch.slb_max; ++r) 430 pr_err(" ESID = %.16llx VSID = %.16llx\n", 431 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 432 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 433 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 434 vcpu->arch.last_inst); 435 } 436 437 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 438 { 439 return kvm_get_vcpu_by_id(kvm, id); 440 } 441 442 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 443 { 444 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 445 vpa->yield_count = cpu_to_be32(1); 446 } 447 448 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 449 unsigned long addr, unsigned long len) 450 { 451 /* check address is cacheline aligned */ 452 if (addr & (L1_CACHE_BYTES - 1)) 453 return -EINVAL; 454 spin_lock(&vcpu->arch.vpa_update_lock); 455 if (v->next_gpa != addr || v->len != len) { 456 v->next_gpa = addr; 457 v->len = addr ? len : 0; 458 v->update_pending = 1; 459 } 460 spin_unlock(&vcpu->arch.vpa_update_lock); 461 return 0; 462 } 463 464 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 465 struct reg_vpa { 466 u32 dummy; 467 union { 468 __be16 hword; 469 __be32 word; 470 } length; 471 }; 472 473 static int vpa_is_registered(struct kvmppc_vpa *vpap) 474 { 475 if (vpap->update_pending) 476 return vpap->next_gpa != 0; 477 return vpap->pinned_addr != NULL; 478 } 479 480 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 481 unsigned long flags, 482 unsigned long vcpuid, unsigned long vpa) 483 { 484 struct kvm *kvm = vcpu->kvm; 485 unsigned long len, nb; 486 void *va; 487 struct kvm_vcpu *tvcpu; 488 int err; 489 int subfunc; 490 struct kvmppc_vpa *vpap; 491 492 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 493 if (!tvcpu) 494 return H_PARAMETER; 495 496 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 497 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 498 subfunc == H_VPA_REG_SLB) { 499 /* Registering new area - address must be cache-line aligned */ 500 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 501 return H_PARAMETER; 502 503 /* convert logical addr to kernel addr and read length */ 504 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 505 if (va == NULL) 506 return H_PARAMETER; 507 if (subfunc == H_VPA_REG_VPA) 508 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 509 else 510 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 511 kvmppc_unpin_guest_page(kvm, va, vpa, false); 512 513 /* Check length */ 514 if (len > nb || len < sizeof(struct reg_vpa)) 515 return H_PARAMETER; 516 } else { 517 vpa = 0; 518 len = 0; 519 } 520 521 err = H_PARAMETER; 522 vpap = NULL; 523 spin_lock(&tvcpu->arch.vpa_update_lock); 524 525 switch (subfunc) { 526 case H_VPA_REG_VPA: /* register VPA */ 527 /* 528 * The size of our lppaca is 1kB because of the way we align 529 * it for the guest to avoid crossing a 4kB boundary. We only 530 * use 640 bytes of the structure though, so we should accept 531 * clients that set a size of 640. 532 */ 533 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 534 if (len < sizeof(struct lppaca)) 535 break; 536 vpap = &tvcpu->arch.vpa; 537 err = 0; 538 break; 539 540 case H_VPA_REG_DTL: /* register DTL */ 541 if (len < sizeof(struct dtl_entry)) 542 break; 543 len -= len % sizeof(struct dtl_entry); 544 545 /* Check that they have previously registered a VPA */ 546 err = H_RESOURCE; 547 if (!vpa_is_registered(&tvcpu->arch.vpa)) 548 break; 549 550 vpap = &tvcpu->arch.dtl; 551 err = 0; 552 break; 553 554 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 555 /* Check that they have previously registered a VPA */ 556 err = H_RESOURCE; 557 if (!vpa_is_registered(&tvcpu->arch.vpa)) 558 break; 559 560 vpap = &tvcpu->arch.slb_shadow; 561 err = 0; 562 break; 563 564 case H_VPA_DEREG_VPA: /* deregister VPA */ 565 /* Check they don't still have a DTL or SLB buf registered */ 566 err = H_RESOURCE; 567 if (vpa_is_registered(&tvcpu->arch.dtl) || 568 vpa_is_registered(&tvcpu->arch.slb_shadow)) 569 break; 570 571 vpap = &tvcpu->arch.vpa; 572 err = 0; 573 break; 574 575 case H_VPA_DEREG_DTL: /* deregister DTL */ 576 vpap = &tvcpu->arch.dtl; 577 err = 0; 578 break; 579 580 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 581 vpap = &tvcpu->arch.slb_shadow; 582 err = 0; 583 break; 584 } 585 586 if (vpap) { 587 vpap->next_gpa = vpa; 588 vpap->len = len; 589 vpap->update_pending = 1; 590 } 591 592 spin_unlock(&tvcpu->arch.vpa_update_lock); 593 594 return err; 595 } 596 597 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 598 { 599 struct kvm *kvm = vcpu->kvm; 600 void *va; 601 unsigned long nb; 602 unsigned long gpa; 603 604 /* 605 * We need to pin the page pointed to by vpap->next_gpa, 606 * but we can't call kvmppc_pin_guest_page under the lock 607 * as it does get_user_pages() and down_read(). So we 608 * have to drop the lock, pin the page, then get the lock 609 * again and check that a new area didn't get registered 610 * in the meantime. 611 */ 612 for (;;) { 613 gpa = vpap->next_gpa; 614 spin_unlock(&vcpu->arch.vpa_update_lock); 615 va = NULL; 616 nb = 0; 617 if (gpa) 618 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 619 spin_lock(&vcpu->arch.vpa_update_lock); 620 if (gpa == vpap->next_gpa) 621 break; 622 /* sigh... unpin that one and try again */ 623 if (va) 624 kvmppc_unpin_guest_page(kvm, va, gpa, false); 625 } 626 627 vpap->update_pending = 0; 628 if (va && nb < vpap->len) { 629 /* 630 * If it's now too short, it must be that userspace 631 * has changed the mappings underlying guest memory, 632 * so unregister the region. 633 */ 634 kvmppc_unpin_guest_page(kvm, va, gpa, false); 635 va = NULL; 636 } 637 if (vpap->pinned_addr) 638 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 639 vpap->dirty); 640 vpap->gpa = gpa; 641 vpap->pinned_addr = va; 642 vpap->dirty = false; 643 if (va) 644 vpap->pinned_end = va + vpap->len; 645 } 646 647 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 648 { 649 if (!(vcpu->arch.vpa.update_pending || 650 vcpu->arch.slb_shadow.update_pending || 651 vcpu->arch.dtl.update_pending)) 652 return; 653 654 spin_lock(&vcpu->arch.vpa_update_lock); 655 if (vcpu->arch.vpa.update_pending) { 656 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 657 if (vcpu->arch.vpa.pinned_addr) 658 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 659 } 660 if (vcpu->arch.dtl.update_pending) { 661 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 662 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 663 vcpu->arch.dtl_index = 0; 664 } 665 if (vcpu->arch.slb_shadow.update_pending) 666 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 667 spin_unlock(&vcpu->arch.vpa_update_lock); 668 } 669 670 /* 671 * Return the accumulated stolen time for the vcore up until `now'. 672 * The caller should hold the vcore lock. 673 */ 674 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 675 { 676 u64 p; 677 unsigned long flags; 678 679 spin_lock_irqsave(&vc->stoltb_lock, flags); 680 p = vc->stolen_tb; 681 if (vc->vcore_state != VCORE_INACTIVE && 682 vc->preempt_tb != TB_NIL) 683 p += now - vc->preempt_tb; 684 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 685 return p; 686 } 687 688 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 689 struct kvmppc_vcore *vc) 690 { 691 struct dtl_entry *dt; 692 struct lppaca *vpa; 693 unsigned long stolen; 694 unsigned long core_stolen; 695 u64 now; 696 unsigned long flags; 697 698 dt = vcpu->arch.dtl_ptr; 699 vpa = vcpu->arch.vpa.pinned_addr; 700 now = mftb(); 701 core_stolen = vcore_stolen_time(vc, now); 702 stolen = core_stolen - vcpu->arch.stolen_logged; 703 vcpu->arch.stolen_logged = core_stolen; 704 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 705 stolen += vcpu->arch.busy_stolen; 706 vcpu->arch.busy_stolen = 0; 707 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 708 if (!dt || !vpa) 709 return; 710 memset(dt, 0, sizeof(struct dtl_entry)); 711 dt->dispatch_reason = 7; 712 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 713 dt->timebase = cpu_to_be64(now + vc->tb_offset); 714 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 715 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 716 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 717 ++dt; 718 if (dt == vcpu->arch.dtl.pinned_end) 719 dt = vcpu->arch.dtl.pinned_addr; 720 vcpu->arch.dtl_ptr = dt; 721 /* order writing *dt vs. writing vpa->dtl_idx */ 722 smp_wmb(); 723 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 724 vcpu->arch.dtl.dirty = true; 725 } 726 727 /* See if there is a doorbell interrupt pending for a vcpu */ 728 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 729 { 730 int thr; 731 struct kvmppc_vcore *vc; 732 733 if (vcpu->arch.doorbell_request) 734 return true; 735 /* 736 * Ensure that the read of vcore->dpdes comes after the read 737 * of vcpu->doorbell_request. This barrier matches the 738 * smp_wmb() in kvmppc_guest_entry_inject(). 739 */ 740 smp_rmb(); 741 vc = vcpu->arch.vcore; 742 thr = vcpu->vcpu_id - vc->first_vcpuid; 743 return !!(vc->dpdes & (1 << thr)); 744 } 745 746 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 747 { 748 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 749 return true; 750 if ((!vcpu->arch.vcore->arch_compat) && 751 cpu_has_feature(CPU_FTR_ARCH_207S)) 752 return true; 753 return false; 754 } 755 756 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 757 unsigned long resource, unsigned long value1, 758 unsigned long value2) 759 { 760 switch (resource) { 761 case H_SET_MODE_RESOURCE_SET_CIABR: 762 if (!kvmppc_power8_compatible(vcpu)) 763 return H_P2; 764 if (value2) 765 return H_P4; 766 if (mflags) 767 return H_UNSUPPORTED_FLAG_START; 768 /* Guests can't breakpoint the hypervisor */ 769 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 770 return H_P3; 771 vcpu->arch.ciabr = value1; 772 return H_SUCCESS; 773 case H_SET_MODE_RESOURCE_SET_DAWR: 774 if (!kvmppc_power8_compatible(vcpu)) 775 return H_P2; 776 if (!ppc_breakpoint_available()) 777 return H_P2; 778 if (mflags) 779 return H_UNSUPPORTED_FLAG_START; 780 if (value2 & DABRX_HYP) 781 return H_P4; 782 vcpu->arch.dawr = value1; 783 vcpu->arch.dawrx = value2; 784 return H_SUCCESS; 785 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 786 /* KVM does not support mflags=2 (AIL=2) */ 787 if (mflags != 0 && mflags != 3) 788 return H_UNSUPPORTED_FLAG_START; 789 return H_TOO_HARD; 790 default: 791 return H_TOO_HARD; 792 } 793 } 794 795 /* Copy guest memory in place - must reside within a single memslot */ 796 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 797 unsigned long len) 798 { 799 struct kvm_memory_slot *to_memslot = NULL; 800 struct kvm_memory_slot *from_memslot = NULL; 801 unsigned long to_addr, from_addr; 802 int r; 803 804 /* Get HPA for from address */ 805 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 806 if (!from_memslot) 807 return -EFAULT; 808 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 809 << PAGE_SHIFT)) 810 return -EINVAL; 811 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 812 if (kvm_is_error_hva(from_addr)) 813 return -EFAULT; 814 from_addr |= (from & (PAGE_SIZE - 1)); 815 816 /* Get HPA for to address */ 817 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 818 if (!to_memslot) 819 return -EFAULT; 820 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 821 << PAGE_SHIFT)) 822 return -EINVAL; 823 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 824 if (kvm_is_error_hva(to_addr)) 825 return -EFAULT; 826 to_addr |= (to & (PAGE_SIZE - 1)); 827 828 /* Perform copy */ 829 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 830 len); 831 if (r) 832 return -EFAULT; 833 mark_page_dirty(kvm, to >> PAGE_SHIFT); 834 return 0; 835 } 836 837 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 838 unsigned long dest, unsigned long src) 839 { 840 u64 pg_sz = SZ_4K; /* 4K page size */ 841 u64 pg_mask = SZ_4K - 1; 842 int ret; 843 844 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 845 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 846 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 847 return H_PARAMETER; 848 849 /* dest (and src if copy_page flag set) must be page aligned */ 850 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 851 return H_PARAMETER; 852 853 /* zero and/or copy the page as determined by the flags */ 854 if (flags & H_COPY_PAGE) { 855 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 856 if (ret < 0) 857 return H_PARAMETER; 858 } else if (flags & H_ZERO_PAGE) { 859 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 860 if (ret < 0) 861 return H_PARAMETER; 862 } 863 864 /* We can ignore the remaining flags */ 865 866 return H_SUCCESS; 867 } 868 869 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 870 { 871 struct kvmppc_vcore *vcore = target->arch.vcore; 872 873 /* 874 * We expect to have been called by the real mode handler 875 * (kvmppc_rm_h_confer()) which would have directly returned 876 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 877 * have useful work to do and should not confer) so we don't 878 * recheck that here. 879 */ 880 881 spin_lock(&vcore->lock); 882 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 883 vcore->vcore_state != VCORE_INACTIVE && 884 vcore->runner) 885 target = vcore->runner; 886 spin_unlock(&vcore->lock); 887 888 return kvm_vcpu_yield_to(target); 889 } 890 891 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 892 { 893 int yield_count = 0; 894 struct lppaca *lppaca; 895 896 spin_lock(&vcpu->arch.vpa_update_lock); 897 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 898 if (lppaca) 899 yield_count = be32_to_cpu(lppaca->yield_count); 900 spin_unlock(&vcpu->arch.vpa_update_lock); 901 return yield_count; 902 } 903 904 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 905 { 906 unsigned long req = kvmppc_get_gpr(vcpu, 3); 907 unsigned long target, ret = H_SUCCESS; 908 int yield_count; 909 struct kvm_vcpu *tvcpu; 910 int idx, rc; 911 912 if (req <= MAX_HCALL_OPCODE && 913 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 914 return RESUME_HOST; 915 916 switch (req) { 917 case H_CEDE: 918 break; 919 case H_PROD: 920 target = kvmppc_get_gpr(vcpu, 4); 921 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 922 if (!tvcpu) { 923 ret = H_PARAMETER; 924 break; 925 } 926 tvcpu->arch.prodded = 1; 927 smp_mb(); 928 if (tvcpu->arch.ceded) 929 kvmppc_fast_vcpu_kick_hv(tvcpu); 930 break; 931 case H_CONFER: 932 target = kvmppc_get_gpr(vcpu, 4); 933 if (target == -1) 934 break; 935 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 936 if (!tvcpu) { 937 ret = H_PARAMETER; 938 break; 939 } 940 yield_count = kvmppc_get_gpr(vcpu, 5); 941 if (kvmppc_get_yield_count(tvcpu) != yield_count) 942 break; 943 kvm_arch_vcpu_yield_to(tvcpu); 944 break; 945 case H_REGISTER_VPA: 946 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 947 kvmppc_get_gpr(vcpu, 5), 948 kvmppc_get_gpr(vcpu, 6)); 949 break; 950 case H_RTAS: 951 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 952 return RESUME_HOST; 953 954 idx = srcu_read_lock(&vcpu->kvm->srcu); 955 rc = kvmppc_rtas_hcall(vcpu); 956 srcu_read_unlock(&vcpu->kvm->srcu, idx); 957 958 if (rc == -ENOENT) 959 return RESUME_HOST; 960 else if (rc == 0) 961 break; 962 963 /* Send the error out to userspace via KVM_RUN */ 964 return rc; 965 case H_LOGICAL_CI_LOAD: 966 ret = kvmppc_h_logical_ci_load(vcpu); 967 if (ret == H_TOO_HARD) 968 return RESUME_HOST; 969 break; 970 case H_LOGICAL_CI_STORE: 971 ret = kvmppc_h_logical_ci_store(vcpu); 972 if (ret == H_TOO_HARD) 973 return RESUME_HOST; 974 break; 975 case H_SET_MODE: 976 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 977 kvmppc_get_gpr(vcpu, 5), 978 kvmppc_get_gpr(vcpu, 6), 979 kvmppc_get_gpr(vcpu, 7)); 980 if (ret == H_TOO_HARD) 981 return RESUME_HOST; 982 break; 983 case H_XIRR: 984 case H_CPPR: 985 case H_EOI: 986 case H_IPI: 987 case H_IPOLL: 988 case H_XIRR_X: 989 if (kvmppc_xics_enabled(vcpu)) { 990 if (xics_on_xive()) { 991 ret = H_NOT_AVAILABLE; 992 return RESUME_GUEST; 993 } 994 ret = kvmppc_xics_hcall(vcpu, req); 995 break; 996 } 997 return RESUME_HOST; 998 case H_SET_DABR: 999 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1000 break; 1001 case H_SET_XDABR: 1002 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1003 kvmppc_get_gpr(vcpu, 5)); 1004 break; 1005 #ifdef CONFIG_SPAPR_TCE_IOMMU 1006 case H_GET_TCE: 1007 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1008 kvmppc_get_gpr(vcpu, 5)); 1009 if (ret == H_TOO_HARD) 1010 return RESUME_HOST; 1011 break; 1012 case H_PUT_TCE: 1013 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1014 kvmppc_get_gpr(vcpu, 5), 1015 kvmppc_get_gpr(vcpu, 6)); 1016 if (ret == H_TOO_HARD) 1017 return RESUME_HOST; 1018 break; 1019 case H_PUT_TCE_INDIRECT: 1020 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1021 kvmppc_get_gpr(vcpu, 5), 1022 kvmppc_get_gpr(vcpu, 6), 1023 kvmppc_get_gpr(vcpu, 7)); 1024 if (ret == H_TOO_HARD) 1025 return RESUME_HOST; 1026 break; 1027 case H_STUFF_TCE: 1028 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1029 kvmppc_get_gpr(vcpu, 5), 1030 kvmppc_get_gpr(vcpu, 6), 1031 kvmppc_get_gpr(vcpu, 7)); 1032 if (ret == H_TOO_HARD) 1033 return RESUME_HOST; 1034 break; 1035 #endif 1036 case H_RANDOM: 1037 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4])) 1038 ret = H_HARDWARE; 1039 break; 1040 1041 case H_SET_PARTITION_TABLE: 1042 ret = H_FUNCTION; 1043 if (nesting_enabled(vcpu->kvm)) 1044 ret = kvmhv_set_partition_table(vcpu); 1045 break; 1046 case H_ENTER_NESTED: 1047 ret = H_FUNCTION; 1048 if (!nesting_enabled(vcpu->kvm)) 1049 break; 1050 ret = kvmhv_enter_nested_guest(vcpu); 1051 if (ret == H_INTERRUPT) { 1052 kvmppc_set_gpr(vcpu, 3, 0); 1053 vcpu->arch.hcall_needed = 0; 1054 return -EINTR; 1055 } else if (ret == H_TOO_HARD) { 1056 kvmppc_set_gpr(vcpu, 3, 0); 1057 vcpu->arch.hcall_needed = 0; 1058 return RESUME_HOST; 1059 } 1060 break; 1061 case H_TLB_INVALIDATE: 1062 ret = H_FUNCTION; 1063 if (nesting_enabled(vcpu->kvm)) 1064 ret = kvmhv_do_nested_tlbie(vcpu); 1065 break; 1066 case H_COPY_TOFROM_GUEST: 1067 ret = H_FUNCTION; 1068 if (nesting_enabled(vcpu->kvm)) 1069 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1070 break; 1071 case H_PAGE_INIT: 1072 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1073 kvmppc_get_gpr(vcpu, 5), 1074 kvmppc_get_gpr(vcpu, 6)); 1075 break; 1076 case H_SVM_PAGE_IN: 1077 ret = kvmppc_h_svm_page_in(vcpu->kvm, 1078 kvmppc_get_gpr(vcpu, 4), 1079 kvmppc_get_gpr(vcpu, 5), 1080 kvmppc_get_gpr(vcpu, 6)); 1081 break; 1082 case H_SVM_PAGE_OUT: 1083 ret = kvmppc_h_svm_page_out(vcpu->kvm, 1084 kvmppc_get_gpr(vcpu, 4), 1085 kvmppc_get_gpr(vcpu, 5), 1086 kvmppc_get_gpr(vcpu, 6)); 1087 break; 1088 case H_SVM_INIT_START: 1089 ret = kvmppc_h_svm_init_start(vcpu->kvm); 1090 break; 1091 case H_SVM_INIT_DONE: 1092 ret = kvmppc_h_svm_init_done(vcpu->kvm); 1093 break; 1094 case H_SVM_INIT_ABORT: 1095 ret = kvmppc_h_svm_init_abort(vcpu->kvm); 1096 break; 1097 1098 default: 1099 return RESUME_HOST; 1100 } 1101 kvmppc_set_gpr(vcpu, 3, ret); 1102 vcpu->arch.hcall_needed = 0; 1103 return RESUME_GUEST; 1104 } 1105 1106 /* 1107 * Handle H_CEDE in the nested virtualization case where we haven't 1108 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S. 1109 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1110 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1111 */ 1112 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu) 1113 { 1114 vcpu->arch.shregs.msr |= MSR_EE; 1115 vcpu->arch.ceded = 1; 1116 smp_mb(); 1117 if (vcpu->arch.prodded) { 1118 vcpu->arch.prodded = 0; 1119 smp_mb(); 1120 vcpu->arch.ceded = 0; 1121 } 1122 } 1123 1124 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1125 { 1126 switch (cmd) { 1127 case H_CEDE: 1128 case H_PROD: 1129 case H_CONFER: 1130 case H_REGISTER_VPA: 1131 case H_SET_MODE: 1132 case H_LOGICAL_CI_LOAD: 1133 case H_LOGICAL_CI_STORE: 1134 #ifdef CONFIG_KVM_XICS 1135 case H_XIRR: 1136 case H_CPPR: 1137 case H_EOI: 1138 case H_IPI: 1139 case H_IPOLL: 1140 case H_XIRR_X: 1141 #endif 1142 case H_PAGE_INIT: 1143 return 1; 1144 } 1145 1146 /* See if it's in the real-mode table */ 1147 return kvmppc_hcall_impl_hv_realmode(cmd); 1148 } 1149 1150 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 1151 struct kvm_vcpu *vcpu) 1152 { 1153 u32 last_inst; 1154 1155 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1156 EMULATE_DONE) { 1157 /* 1158 * Fetch failed, so return to guest and 1159 * try executing it again. 1160 */ 1161 return RESUME_GUEST; 1162 } 1163 1164 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1165 run->exit_reason = KVM_EXIT_DEBUG; 1166 run->debug.arch.address = kvmppc_get_pc(vcpu); 1167 return RESUME_HOST; 1168 } else { 1169 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1170 return RESUME_GUEST; 1171 } 1172 } 1173 1174 static void do_nothing(void *x) 1175 { 1176 } 1177 1178 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1179 { 1180 int thr, cpu, pcpu, nthreads; 1181 struct kvm_vcpu *v; 1182 unsigned long dpdes; 1183 1184 nthreads = vcpu->kvm->arch.emul_smt_mode; 1185 dpdes = 0; 1186 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1187 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1188 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1189 if (!v) 1190 continue; 1191 /* 1192 * If the vcpu is currently running on a physical cpu thread, 1193 * interrupt it in order to pull it out of the guest briefly, 1194 * which will update its vcore->dpdes value. 1195 */ 1196 pcpu = READ_ONCE(v->cpu); 1197 if (pcpu >= 0) 1198 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1199 if (kvmppc_doorbell_pending(v)) 1200 dpdes |= 1 << thr; 1201 } 1202 return dpdes; 1203 } 1204 1205 /* 1206 * On POWER9, emulate doorbell-related instructions in order to 1207 * give the guest the illusion of running on a multi-threaded core. 1208 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1209 * and mfspr DPDES. 1210 */ 1211 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1212 { 1213 u32 inst, rb, thr; 1214 unsigned long arg; 1215 struct kvm *kvm = vcpu->kvm; 1216 struct kvm_vcpu *tvcpu; 1217 1218 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1219 return RESUME_GUEST; 1220 if (get_op(inst) != 31) 1221 return EMULATE_FAIL; 1222 rb = get_rb(inst); 1223 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1224 switch (get_xop(inst)) { 1225 case OP_31_XOP_MSGSNDP: 1226 arg = kvmppc_get_gpr(vcpu, rb); 1227 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1228 break; 1229 arg &= 0x3f; 1230 if (arg >= kvm->arch.emul_smt_mode) 1231 break; 1232 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1233 if (!tvcpu) 1234 break; 1235 if (!tvcpu->arch.doorbell_request) { 1236 tvcpu->arch.doorbell_request = 1; 1237 kvmppc_fast_vcpu_kick_hv(tvcpu); 1238 } 1239 break; 1240 case OP_31_XOP_MSGCLRP: 1241 arg = kvmppc_get_gpr(vcpu, rb); 1242 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1243 break; 1244 vcpu->arch.vcore->dpdes = 0; 1245 vcpu->arch.doorbell_request = 0; 1246 break; 1247 case OP_31_XOP_MFSPR: 1248 switch (get_sprn(inst)) { 1249 case SPRN_TIR: 1250 arg = thr; 1251 break; 1252 case SPRN_DPDES: 1253 arg = kvmppc_read_dpdes(vcpu); 1254 break; 1255 default: 1256 return EMULATE_FAIL; 1257 } 1258 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1259 break; 1260 default: 1261 return EMULATE_FAIL; 1262 } 1263 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1264 return RESUME_GUEST; 1265 } 1266 1267 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 1268 struct task_struct *tsk) 1269 { 1270 int r = RESUME_HOST; 1271 1272 vcpu->stat.sum_exits++; 1273 1274 /* 1275 * This can happen if an interrupt occurs in the last stages 1276 * of guest entry or the first stages of guest exit (i.e. after 1277 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1278 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1279 * That can happen due to a bug, or due to a machine check 1280 * occurring at just the wrong time. 1281 */ 1282 if (vcpu->arch.shregs.msr & MSR_HV) { 1283 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1284 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1285 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1286 vcpu->arch.shregs.msr); 1287 kvmppc_dump_regs(vcpu); 1288 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1289 run->hw.hardware_exit_reason = vcpu->arch.trap; 1290 return RESUME_HOST; 1291 } 1292 run->exit_reason = KVM_EXIT_UNKNOWN; 1293 run->ready_for_interrupt_injection = 1; 1294 switch (vcpu->arch.trap) { 1295 /* We're good on these - the host merely wanted to get our attention */ 1296 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1297 vcpu->stat.dec_exits++; 1298 r = RESUME_GUEST; 1299 break; 1300 case BOOK3S_INTERRUPT_EXTERNAL: 1301 case BOOK3S_INTERRUPT_H_DOORBELL: 1302 case BOOK3S_INTERRUPT_H_VIRT: 1303 vcpu->stat.ext_intr_exits++; 1304 r = RESUME_GUEST; 1305 break; 1306 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1307 case BOOK3S_INTERRUPT_HMI: 1308 case BOOK3S_INTERRUPT_PERFMON: 1309 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1310 r = RESUME_GUEST; 1311 break; 1312 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1313 /* Print the MCE event to host console. */ 1314 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1315 1316 /* 1317 * If the guest can do FWNMI, exit to userspace so it can 1318 * deliver a FWNMI to the guest. 1319 * Otherwise we synthesize a machine check for the guest 1320 * so that it knows that the machine check occurred. 1321 */ 1322 if (!vcpu->kvm->arch.fwnmi_enabled) { 1323 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1324 kvmppc_core_queue_machine_check(vcpu, flags); 1325 r = RESUME_GUEST; 1326 break; 1327 } 1328 1329 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1330 run->exit_reason = KVM_EXIT_NMI; 1331 run->hw.hardware_exit_reason = vcpu->arch.trap; 1332 /* Clear out the old NMI status from run->flags */ 1333 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1334 /* Now set the NMI status */ 1335 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1336 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1337 else 1338 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1339 1340 r = RESUME_HOST; 1341 break; 1342 case BOOK3S_INTERRUPT_PROGRAM: 1343 { 1344 ulong flags; 1345 /* 1346 * Normally program interrupts are delivered directly 1347 * to the guest by the hardware, but we can get here 1348 * as a result of a hypervisor emulation interrupt 1349 * (e40) getting turned into a 700 by BML RTAS. 1350 */ 1351 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1352 kvmppc_core_queue_program(vcpu, flags); 1353 r = RESUME_GUEST; 1354 break; 1355 } 1356 case BOOK3S_INTERRUPT_SYSCALL: 1357 { 1358 /* hcall - punt to userspace */ 1359 int i; 1360 1361 /* hypercall with MSR_PR has already been handled in rmode, 1362 * and never reaches here. 1363 */ 1364 1365 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1366 for (i = 0; i < 9; ++i) 1367 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1368 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1369 vcpu->arch.hcall_needed = 1; 1370 r = RESUME_HOST; 1371 break; 1372 } 1373 /* 1374 * We get these next two if the guest accesses a page which it thinks 1375 * it has mapped but which is not actually present, either because 1376 * it is for an emulated I/O device or because the corresonding 1377 * host page has been paged out. Any other HDSI/HISI interrupts 1378 * have been handled already. 1379 */ 1380 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1381 r = RESUME_PAGE_FAULT; 1382 break; 1383 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1384 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1385 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1386 DSISR_SRR1_MATCH_64S; 1387 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1388 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1389 r = RESUME_PAGE_FAULT; 1390 break; 1391 /* 1392 * This occurs if the guest executes an illegal instruction. 1393 * If the guest debug is disabled, generate a program interrupt 1394 * to the guest. If guest debug is enabled, we need to check 1395 * whether the instruction is a software breakpoint instruction. 1396 * Accordingly return to Guest or Host. 1397 */ 1398 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1399 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1400 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1401 swab32(vcpu->arch.emul_inst) : 1402 vcpu->arch.emul_inst; 1403 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1404 r = kvmppc_emulate_debug_inst(run, vcpu); 1405 } else { 1406 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1407 r = RESUME_GUEST; 1408 } 1409 break; 1410 /* 1411 * This occurs if the guest (kernel or userspace), does something that 1412 * is prohibited by HFSCR. 1413 * On POWER9, this could be a doorbell instruction that we need 1414 * to emulate. 1415 * Otherwise, we just generate a program interrupt to the guest. 1416 */ 1417 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1418 r = EMULATE_FAIL; 1419 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1420 cpu_has_feature(CPU_FTR_ARCH_300)) 1421 r = kvmppc_emulate_doorbell_instr(vcpu); 1422 if (r == EMULATE_FAIL) { 1423 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1424 r = RESUME_GUEST; 1425 } 1426 break; 1427 1428 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1429 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1430 /* 1431 * This occurs for various TM-related instructions that 1432 * we need to emulate on POWER9 DD2.2. We have already 1433 * handled the cases where the guest was in real-suspend 1434 * mode and was transitioning to transactional state. 1435 */ 1436 r = kvmhv_p9_tm_emulation(vcpu); 1437 break; 1438 #endif 1439 1440 case BOOK3S_INTERRUPT_HV_RM_HARD: 1441 r = RESUME_PASSTHROUGH; 1442 break; 1443 default: 1444 kvmppc_dump_regs(vcpu); 1445 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1446 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1447 vcpu->arch.shregs.msr); 1448 run->hw.hardware_exit_reason = vcpu->arch.trap; 1449 r = RESUME_HOST; 1450 break; 1451 } 1452 1453 return r; 1454 } 1455 1456 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu) 1457 { 1458 int r; 1459 int srcu_idx; 1460 1461 vcpu->stat.sum_exits++; 1462 1463 /* 1464 * This can happen if an interrupt occurs in the last stages 1465 * of guest entry or the first stages of guest exit (i.e. after 1466 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1467 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1468 * That can happen due to a bug, or due to a machine check 1469 * occurring at just the wrong time. 1470 */ 1471 if (vcpu->arch.shregs.msr & MSR_HV) { 1472 pr_emerg("KVM trap in HV mode while nested!\n"); 1473 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1474 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1475 vcpu->arch.shregs.msr); 1476 kvmppc_dump_regs(vcpu); 1477 return RESUME_HOST; 1478 } 1479 switch (vcpu->arch.trap) { 1480 /* We're good on these - the host merely wanted to get our attention */ 1481 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1482 vcpu->stat.dec_exits++; 1483 r = RESUME_GUEST; 1484 break; 1485 case BOOK3S_INTERRUPT_EXTERNAL: 1486 vcpu->stat.ext_intr_exits++; 1487 r = RESUME_HOST; 1488 break; 1489 case BOOK3S_INTERRUPT_H_DOORBELL: 1490 case BOOK3S_INTERRUPT_H_VIRT: 1491 vcpu->stat.ext_intr_exits++; 1492 r = RESUME_GUEST; 1493 break; 1494 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1495 case BOOK3S_INTERRUPT_HMI: 1496 case BOOK3S_INTERRUPT_PERFMON: 1497 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1498 r = RESUME_GUEST; 1499 break; 1500 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1501 /* Pass the machine check to the L1 guest */ 1502 r = RESUME_HOST; 1503 /* Print the MCE event to host console. */ 1504 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1505 break; 1506 /* 1507 * We get these next two if the guest accesses a page which it thinks 1508 * it has mapped but which is not actually present, either because 1509 * it is for an emulated I/O device or because the corresonding 1510 * host page has been paged out. 1511 */ 1512 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1513 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1514 r = kvmhv_nested_page_fault(run, vcpu); 1515 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1516 break; 1517 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1518 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1519 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1520 DSISR_SRR1_MATCH_64S; 1521 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1522 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1523 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1524 r = kvmhv_nested_page_fault(run, vcpu); 1525 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1526 break; 1527 1528 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1529 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1530 /* 1531 * This occurs for various TM-related instructions that 1532 * we need to emulate on POWER9 DD2.2. We have already 1533 * handled the cases where the guest was in real-suspend 1534 * mode and was transitioning to transactional state. 1535 */ 1536 r = kvmhv_p9_tm_emulation(vcpu); 1537 break; 1538 #endif 1539 1540 case BOOK3S_INTERRUPT_HV_RM_HARD: 1541 vcpu->arch.trap = 0; 1542 r = RESUME_GUEST; 1543 if (!xics_on_xive()) 1544 kvmppc_xics_rm_complete(vcpu, 0); 1545 break; 1546 default: 1547 r = RESUME_HOST; 1548 break; 1549 } 1550 1551 return r; 1552 } 1553 1554 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1555 struct kvm_sregs *sregs) 1556 { 1557 int i; 1558 1559 memset(sregs, 0, sizeof(struct kvm_sregs)); 1560 sregs->pvr = vcpu->arch.pvr; 1561 for (i = 0; i < vcpu->arch.slb_max; i++) { 1562 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1563 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1564 } 1565 1566 return 0; 1567 } 1568 1569 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1570 struct kvm_sregs *sregs) 1571 { 1572 int i, j; 1573 1574 /* Only accept the same PVR as the host's, since we can't spoof it */ 1575 if (sregs->pvr != vcpu->arch.pvr) 1576 return -EINVAL; 1577 1578 j = 0; 1579 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1580 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1581 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1582 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1583 ++j; 1584 } 1585 } 1586 vcpu->arch.slb_max = j; 1587 1588 return 0; 1589 } 1590 1591 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1592 bool preserve_top32) 1593 { 1594 struct kvm *kvm = vcpu->kvm; 1595 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1596 u64 mask; 1597 1598 spin_lock(&vc->lock); 1599 /* 1600 * If ILE (interrupt little-endian) has changed, update the 1601 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1602 */ 1603 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1604 struct kvm_vcpu *vcpu; 1605 int i; 1606 1607 kvm_for_each_vcpu(i, vcpu, kvm) { 1608 if (vcpu->arch.vcore != vc) 1609 continue; 1610 if (new_lpcr & LPCR_ILE) 1611 vcpu->arch.intr_msr |= MSR_LE; 1612 else 1613 vcpu->arch.intr_msr &= ~MSR_LE; 1614 } 1615 } 1616 1617 /* 1618 * Userspace can only modify DPFD (default prefetch depth), 1619 * ILE (interrupt little-endian) and TC (translation control). 1620 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1621 */ 1622 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1623 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1624 mask |= LPCR_AIL; 1625 /* 1626 * On POWER9, allow userspace to enable large decrementer for the 1627 * guest, whether or not the host has it enabled. 1628 */ 1629 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1630 mask |= LPCR_LD; 1631 1632 /* Broken 32-bit version of LPCR must not clear top bits */ 1633 if (preserve_top32) 1634 mask &= 0xFFFFFFFF; 1635 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1636 spin_unlock(&vc->lock); 1637 } 1638 1639 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1640 union kvmppc_one_reg *val) 1641 { 1642 int r = 0; 1643 long int i; 1644 1645 switch (id) { 1646 case KVM_REG_PPC_DEBUG_INST: 1647 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1648 break; 1649 case KVM_REG_PPC_HIOR: 1650 *val = get_reg_val(id, 0); 1651 break; 1652 case KVM_REG_PPC_DABR: 1653 *val = get_reg_val(id, vcpu->arch.dabr); 1654 break; 1655 case KVM_REG_PPC_DABRX: 1656 *val = get_reg_val(id, vcpu->arch.dabrx); 1657 break; 1658 case KVM_REG_PPC_DSCR: 1659 *val = get_reg_val(id, vcpu->arch.dscr); 1660 break; 1661 case KVM_REG_PPC_PURR: 1662 *val = get_reg_val(id, vcpu->arch.purr); 1663 break; 1664 case KVM_REG_PPC_SPURR: 1665 *val = get_reg_val(id, vcpu->arch.spurr); 1666 break; 1667 case KVM_REG_PPC_AMR: 1668 *val = get_reg_val(id, vcpu->arch.amr); 1669 break; 1670 case KVM_REG_PPC_UAMOR: 1671 *val = get_reg_val(id, vcpu->arch.uamor); 1672 break; 1673 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1674 i = id - KVM_REG_PPC_MMCR0; 1675 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1676 break; 1677 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1678 i = id - KVM_REG_PPC_PMC1; 1679 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1680 break; 1681 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1682 i = id - KVM_REG_PPC_SPMC1; 1683 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1684 break; 1685 case KVM_REG_PPC_SIAR: 1686 *val = get_reg_val(id, vcpu->arch.siar); 1687 break; 1688 case KVM_REG_PPC_SDAR: 1689 *val = get_reg_val(id, vcpu->arch.sdar); 1690 break; 1691 case KVM_REG_PPC_SIER: 1692 *val = get_reg_val(id, vcpu->arch.sier); 1693 break; 1694 case KVM_REG_PPC_IAMR: 1695 *val = get_reg_val(id, vcpu->arch.iamr); 1696 break; 1697 case KVM_REG_PPC_PSPB: 1698 *val = get_reg_val(id, vcpu->arch.pspb); 1699 break; 1700 case KVM_REG_PPC_DPDES: 1701 /* 1702 * On POWER9, where we are emulating msgsndp etc., 1703 * we return 1 bit for each vcpu, which can come from 1704 * either vcore->dpdes or doorbell_request. 1705 * On POWER8, doorbell_request is 0. 1706 */ 1707 *val = get_reg_val(id, vcpu->arch.vcore->dpdes | 1708 vcpu->arch.doorbell_request); 1709 break; 1710 case KVM_REG_PPC_VTB: 1711 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1712 break; 1713 case KVM_REG_PPC_DAWR: 1714 *val = get_reg_val(id, vcpu->arch.dawr); 1715 break; 1716 case KVM_REG_PPC_DAWRX: 1717 *val = get_reg_val(id, vcpu->arch.dawrx); 1718 break; 1719 case KVM_REG_PPC_CIABR: 1720 *val = get_reg_val(id, vcpu->arch.ciabr); 1721 break; 1722 case KVM_REG_PPC_CSIGR: 1723 *val = get_reg_val(id, vcpu->arch.csigr); 1724 break; 1725 case KVM_REG_PPC_TACR: 1726 *val = get_reg_val(id, vcpu->arch.tacr); 1727 break; 1728 case KVM_REG_PPC_TCSCR: 1729 *val = get_reg_val(id, vcpu->arch.tcscr); 1730 break; 1731 case KVM_REG_PPC_PID: 1732 *val = get_reg_val(id, vcpu->arch.pid); 1733 break; 1734 case KVM_REG_PPC_ACOP: 1735 *val = get_reg_val(id, vcpu->arch.acop); 1736 break; 1737 case KVM_REG_PPC_WORT: 1738 *val = get_reg_val(id, vcpu->arch.wort); 1739 break; 1740 case KVM_REG_PPC_TIDR: 1741 *val = get_reg_val(id, vcpu->arch.tid); 1742 break; 1743 case KVM_REG_PPC_PSSCR: 1744 *val = get_reg_val(id, vcpu->arch.psscr); 1745 break; 1746 case KVM_REG_PPC_VPA_ADDR: 1747 spin_lock(&vcpu->arch.vpa_update_lock); 1748 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1749 spin_unlock(&vcpu->arch.vpa_update_lock); 1750 break; 1751 case KVM_REG_PPC_VPA_SLB: 1752 spin_lock(&vcpu->arch.vpa_update_lock); 1753 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1754 val->vpaval.length = vcpu->arch.slb_shadow.len; 1755 spin_unlock(&vcpu->arch.vpa_update_lock); 1756 break; 1757 case KVM_REG_PPC_VPA_DTL: 1758 spin_lock(&vcpu->arch.vpa_update_lock); 1759 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1760 val->vpaval.length = vcpu->arch.dtl.len; 1761 spin_unlock(&vcpu->arch.vpa_update_lock); 1762 break; 1763 case KVM_REG_PPC_TB_OFFSET: 1764 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1765 break; 1766 case KVM_REG_PPC_LPCR: 1767 case KVM_REG_PPC_LPCR_64: 1768 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1769 break; 1770 case KVM_REG_PPC_PPR: 1771 *val = get_reg_val(id, vcpu->arch.ppr); 1772 break; 1773 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1774 case KVM_REG_PPC_TFHAR: 1775 *val = get_reg_val(id, vcpu->arch.tfhar); 1776 break; 1777 case KVM_REG_PPC_TFIAR: 1778 *val = get_reg_val(id, vcpu->arch.tfiar); 1779 break; 1780 case KVM_REG_PPC_TEXASR: 1781 *val = get_reg_val(id, vcpu->arch.texasr); 1782 break; 1783 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1784 i = id - KVM_REG_PPC_TM_GPR0; 1785 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1786 break; 1787 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1788 { 1789 int j; 1790 i = id - KVM_REG_PPC_TM_VSR0; 1791 if (i < 32) 1792 for (j = 0; j < TS_FPRWIDTH; j++) 1793 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1794 else { 1795 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1796 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1797 else 1798 r = -ENXIO; 1799 } 1800 break; 1801 } 1802 case KVM_REG_PPC_TM_CR: 1803 *val = get_reg_val(id, vcpu->arch.cr_tm); 1804 break; 1805 case KVM_REG_PPC_TM_XER: 1806 *val = get_reg_val(id, vcpu->arch.xer_tm); 1807 break; 1808 case KVM_REG_PPC_TM_LR: 1809 *val = get_reg_val(id, vcpu->arch.lr_tm); 1810 break; 1811 case KVM_REG_PPC_TM_CTR: 1812 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1813 break; 1814 case KVM_REG_PPC_TM_FPSCR: 1815 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1816 break; 1817 case KVM_REG_PPC_TM_AMR: 1818 *val = get_reg_val(id, vcpu->arch.amr_tm); 1819 break; 1820 case KVM_REG_PPC_TM_PPR: 1821 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1822 break; 1823 case KVM_REG_PPC_TM_VRSAVE: 1824 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1825 break; 1826 case KVM_REG_PPC_TM_VSCR: 1827 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1828 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1829 else 1830 r = -ENXIO; 1831 break; 1832 case KVM_REG_PPC_TM_DSCR: 1833 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1834 break; 1835 case KVM_REG_PPC_TM_TAR: 1836 *val = get_reg_val(id, vcpu->arch.tar_tm); 1837 break; 1838 #endif 1839 case KVM_REG_PPC_ARCH_COMPAT: 1840 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1841 break; 1842 case KVM_REG_PPC_DEC_EXPIRY: 1843 *val = get_reg_val(id, vcpu->arch.dec_expires + 1844 vcpu->arch.vcore->tb_offset); 1845 break; 1846 case KVM_REG_PPC_ONLINE: 1847 *val = get_reg_val(id, vcpu->arch.online); 1848 break; 1849 case KVM_REG_PPC_PTCR: 1850 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 1851 break; 1852 default: 1853 r = -EINVAL; 1854 break; 1855 } 1856 1857 return r; 1858 } 1859 1860 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1861 union kvmppc_one_reg *val) 1862 { 1863 int r = 0; 1864 long int i; 1865 unsigned long addr, len; 1866 1867 switch (id) { 1868 case KVM_REG_PPC_HIOR: 1869 /* Only allow this to be set to zero */ 1870 if (set_reg_val(id, *val)) 1871 r = -EINVAL; 1872 break; 1873 case KVM_REG_PPC_DABR: 1874 vcpu->arch.dabr = set_reg_val(id, *val); 1875 break; 1876 case KVM_REG_PPC_DABRX: 1877 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1878 break; 1879 case KVM_REG_PPC_DSCR: 1880 vcpu->arch.dscr = set_reg_val(id, *val); 1881 break; 1882 case KVM_REG_PPC_PURR: 1883 vcpu->arch.purr = set_reg_val(id, *val); 1884 break; 1885 case KVM_REG_PPC_SPURR: 1886 vcpu->arch.spurr = set_reg_val(id, *val); 1887 break; 1888 case KVM_REG_PPC_AMR: 1889 vcpu->arch.amr = set_reg_val(id, *val); 1890 break; 1891 case KVM_REG_PPC_UAMOR: 1892 vcpu->arch.uamor = set_reg_val(id, *val); 1893 break; 1894 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1895 i = id - KVM_REG_PPC_MMCR0; 1896 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1897 break; 1898 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1899 i = id - KVM_REG_PPC_PMC1; 1900 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1901 break; 1902 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1903 i = id - KVM_REG_PPC_SPMC1; 1904 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1905 break; 1906 case KVM_REG_PPC_SIAR: 1907 vcpu->arch.siar = set_reg_val(id, *val); 1908 break; 1909 case KVM_REG_PPC_SDAR: 1910 vcpu->arch.sdar = set_reg_val(id, *val); 1911 break; 1912 case KVM_REG_PPC_SIER: 1913 vcpu->arch.sier = set_reg_val(id, *val); 1914 break; 1915 case KVM_REG_PPC_IAMR: 1916 vcpu->arch.iamr = set_reg_val(id, *val); 1917 break; 1918 case KVM_REG_PPC_PSPB: 1919 vcpu->arch.pspb = set_reg_val(id, *val); 1920 break; 1921 case KVM_REG_PPC_DPDES: 1922 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1923 break; 1924 case KVM_REG_PPC_VTB: 1925 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1926 break; 1927 case KVM_REG_PPC_DAWR: 1928 vcpu->arch.dawr = set_reg_val(id, *val); 1929 break; 1930 case KVM_REG_PPC_DAWRX: 1931 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1932 break; 1933 case KVM_REG_PPC_CIABR: 1934 vcpu->arch.ciabr = set_reg_val(id, *val); 1935 /* Don't allow setting breakpoints in hypervisor code */ 1936 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1937 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1938 break; 1939 case KVM_REG_PPC_CSIGR: 1940 vcpu->arch.csigr = set_reg_val(id, *val); 1941 break; 1942 case KVM_REG_PPC_TACR: 1943 vcpu->arch.tacr = set_reg_val(id, *val); 1944 break; 1945 case KVM_REG_PPC_TCSCR: 1946 vcpu->arch.tcscr = set_reg_val(id, *val); 1947 break; 1948 case KVM_REG_PPC_PID: 1949 vcpu->arch.pid = set_reg_val(id, *val); 1950 break; 1951 case KVM_REG_PPC_ACOP: 1952 vcpu->arch.acop = set_reg_val(id, *val); 1953 break; 1954 case KVM_REG_PPC_WORT: 1955 vcpu->arch.wort = set_reg_val(id, *val); 1956 break; 1957 case KVM_REG_PPC_TIDR: 1958 vcpu->arch.tid = set_reg_val(id, *val); 1959 break; 1960 case KVM_REG_PPC_PSSCR: 1961 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1962 break; 1963 case KVM_REG_PPC_VPA_ADDR: 1964 addr = set_reg_val(id, *val); 1965 r = -EINVAL; 1966 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1967 vcpu->arch.dtl.next_gpa)) 1968 break; 1969 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1970 break; 1971 case KVM_REG_PPC_VPA_SLB: 1972 addr = val->vpaval.addr; 1973 len = val->vpaval.length; 1974 r = -EINVAL; 1975 if (addr && !vcpu->arch.vpa.next_gpa) 1976 break; 1977 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1978 break; 1979 case KVM_REG_PPC_VPA_DTL: 1980 addr = val->vpaval.addr; 1981 len = val->vpaval.length; 1982 r = -EINVAL; 1983 if (addr && (len < sizeof(struct dtl_entry) || 1984 !vcpu->arch.vpa.next_gpa)) 1985 break; 1986 len -= len % sizeof(struct dtl_entry); 1987 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1988 break; 1989 case KVM_REG_PPC_TB_OFFSET: 1990 /* round up to multiple of 2^24 */ 1991 vcpu->arch.vcore->tb_offset = 1992 ALIGN(set_reg_val(id, *val), 1UL << 24); 1993 break; 1994 case KVM_REG_PPC_LPCR: 1995 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1996 break; 1997 case KVM_REG_PPC_LPCR_64: 1998 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1999 break; 2000 case KVM_REG_PPC_PPR: 2001 vcpu->arch.ppr = set_reg_val(id, *val); 2002 break; 2003 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2004 case KVM_REG_PPC_TFHAR: 2005 vcpu->arch.tfhar = set_reg_val(id, *val); 2006 break; 2007 case KVM_REG_PPC_TFIAR: 2008 vcpu->arch.tfiar = set_reg_val(id, *val); 2009 break; 2010 case KVM_REG_PPC_TEXASR: 2011 vcpu->arch.texasr = set_reg_val(id, *val); 2012 break; 2013 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2014 i = id - KVM_REG_PPC_TM_GPR0; 2015 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2016 break; 2017 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2018 { 2019 int j; 2020 i = id - KVM_REG_PPC_TM_VSR0; 2021 if (i < 32) 2022 for (j = 0; j < TS_FPRWIDTH; j++) 2023 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2024 else 2025 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2026 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2027 else 2028 r = -ENXIO; 2029 break; 2030 } 2031 case KVM_REG_PPC_TM_CR: 2032 vcpu->arch.cr_tm = set_reg_val(id, *val); 2033 break; 2034 case KVM_REG_PPC_TM_XER: 2035 vcpu->arch.xer_tm = set_reg_val(id, *val); 2036 break; 2037 case KVM_REG_PPC_TM_LR: 2038 vcpu->arch.lr_tm = set_reg_val(id, *val); 2039 break; 2040 case KVM_REG_PPC_TM_CTR: 2041 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2042 break; 2043 case KVM_REG_PPC_TM_FPSCR: 2044 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2045 break; 2046 case KVM_REG_PPC_TM_AMR: 2047 vcpu->arch.amr_tm = set_reg_val(id, *val); 2048 break; 2049 case KVM_REG_PPC_TM_PPR: 2050 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2051 break; 2052 case KVM_REG_PPC_TM_VRSAVE: 2053 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2054 break; 2055 case KVM_REG_PPC_TM_VSCR: 2056 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2057 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2058 else 2059 r = - ENXIO; 2060 break; 2061 case KVM_REG_PPC_TM_DSCR: 2062 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2063 break; 2064 case KVM_REG_PPC_TM_TAR: 2065 vcpu->arch.tar_tm = set_reg_val(id, *val); 2066 break; 2067 #endif 2068 case KVM_REG_PPC_ARCH_COMPAT: 2069 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2070 break; 2071 case KVM_REG_PPC_DEC_EXPIRY: 2072 vcpu->arch.dec_expires = set_reg_val(id, *val) - 2073 vcpu->arch.vcore->tb_offset; 2074 break; 2075 case KVM_REG_PPC_ONLINE: 2076 i = set_reg_val(id, *val); 2077 if (i && !vcpu->arch.online) 2078 atomic_inc(&vcpu->arch.vcore->online_count); 2079 else if (!i && vcpu->arch.online) 2080 atomic_dec(&vcpu->arch.vcore->online_count); 2081 vcpu->arch.online = i; 2082 break; 2083 case KVM_REG_PPC_PTCR: 2084 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2085 break; 2086 default: 2087 r = -EINVAL; 2088 break; 2089 } 2090 2091 return r; 2092 } 2093 2094 /* 2095 * On POWER9, threads are independent and can be in different partitions. 2096 * Therefore we consider each thread to be a subcore. 2097 * There is a restriction that all threads have to be in the same 2098 * MMU mode (radix or HPT), unfortunately, but since we only support 2099 * HPT guests on a HPT host so far, that isn't an impediment yet. 2100 */ 2101 static int threads_per_vcore(struct kvm *kvm) 2102 { 2103 if (kvm->arch.threads_indep) 2104 return 1; 2105 return threads_per_subcore; 2106 } 2107 2108 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2109 { 2110 struct kvmppc_vcore *vcore; 2111 2112 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2113 2114 if (vcore == NULL) 2115 return NULL; 2116 2117 spin_lock_init(&vcore->lock); 2118 spin_lock_init(&vcore->stoltb_lock); 2119 init_swait_queue_head(&vcore->wq); 2120 vcore->preempt_tb = TB_NIL; 2121 vcore->lpcr = kvm->arch.lpcr; 2122 vcore->first_vcpuid = id; 2123 vcore->kvm = kvm; 2124 INIT_LIST_HEAD(&vcore->preempt_list); 2125 2126 return vcore; 2127 } 2128 2129 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2130 static struct debugfs_timings_element { 2131 const char *name; 2132 size_t offset; 2133 } timings[] = { 2134 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2135 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2136 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2137 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2138 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2139 }; 2140 2141 #define N_TIMINGS (ARRAY_SIZE(timings)) 2142 2143 struct debugfs_timings_state { 2144 struct kvm_vcpu *vcpu; 2145 unsigned int buflen; 2146 char buf[N_TIMINGS * 100]; 2147 }; 2148 2149 static int debugfs_timings_open(struct inode *inode, struct file *file) 2150 { 2151 struct kvm_vcpu *vcpu = inode->i_private; 2152 struct debugfs_timings_state *p; 2153 2154 p = kzalloc(sizeof(*p), GFP_KERNEL); 2155 if (!p) 2156 return -ENOMEM; 2157 2158 kvm_get_kvm(vcpu->kvm); 2159 p->vcpu = vcpu; 2160 file->private_data = p; 2161 2162 return nonseekable_open(inode, file); 2163 } 2164 2165 static int debugfs_timings_release(struct inode *inode, struct file *file) 2166 { 2167 struct debugfs_timings_state *p = file->private_data; 2168 2169 kvm_put_kvm(p->vcpu->kvm); 2170 kfree(p); 2171 return 0; 2172 } 2173 2174 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2175 size_t len, loff_t *ppos) 2176 { 2177 struct debugfs_timings_state *p = file->private_data; 2178 struct kvm_vcpu *vcpu = p->vcpu; 2179 char *s, *buf_end; 2180 struct kvmhv_tb_accumulator tb; 2181 u64 count; 2182 loff_t pos; 2183 ssize_t n; 2184 int i, loops; 2185 bool ok; 2186 2187 if (!p->buflen) { 2188 s = p->buf; 2189 buf_end = s + sizeof(p->buf); 2190 for (i = 0; i < N_TIMINGS; ++i) { 2191 struct kvmhv_tb_accumulator *acc; 2192 2193 acc = (struct kvmhv_tb_accumulator *) 2194 ((unsigned long)vcpu + timings[i].offset); 2195 ok = false; 2196 for (loops = 0; loops < 1000; ++loops) { 2197 count = acc->seqcount; 2198 if (!(count & 1)) { 2199 smp_rmb(); 2200 tb = *acc; 2201 smp_rmb(); 2202 if (count == acc->seqcount) { 2203 ok = true; 2204 break; 2205 } 2206 } 2207 udelay(1); 2208 } 2209 if (!ok) 2210 snprintf(s, buf_end - s, "%s: stuck\n", 2211 timings[i].name); 2212 else 2213 snprintf(s, buf_end - s, 2214 "%s: %llu %llu %llu %llu\n", 2215 timings[i].name, count / 2, 2216 tb_to_ns(tb.tb_total), 2217 tb_to_ns(tb.tb_min), 2218 tb_to_ns(tb.tb_max)); 2219 s += strlen(s); 2220 } 2221 p->buflen = s - p->buf; 2222 } 2223 2224 pos = *ppos; 2225 if (pos >= p->buflen) 2226 return 0; 2227 if (len > p->buflen - pos) 2228 len = p->buflen - pos; 2229 n = copy_to_user(buf, p->buf + pos, len); 2230 if (n) { 2231 if (n == len) 2232 return -EFAULT; 2233 len -= n; 2234 } 2235 *ppos = pos + len; 2236 return len; 2237 } 2238 2239 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2240 size_t len, loff_t *ppos) 2241 { 2242 return -EACCES; 2243 } 2244 2245 static const struct file_operations debugfs_timings_ops = { 2246 .owner = THIS_MODULE, 2247 .open = debugfs_timings_open, 2248 .release = debugfs_timings_release, 2249 .read = debugfs_timings_read, 2250 .write = debugfs_timings_write, 2251 .llseek = generic_file_llseek, 2252 }; 2253 2254 /* Create a debugfs directory for the vcpu */ 2255 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2256 { 2257 char buf[16]; 2258 struct kvm *kvm = vcpu->kvm; 2259 2260 snprintf(buf, sizeof(buf), "vcpu%u", id); 2261 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 2262 return; 2263 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 2264 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 2265 return; 2266 vcpu->arch.debugfs_timings = 2267 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 2268 vcpu, &debugfs_timings_ops); 2269 } 2270 2271 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2272 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2273 { 2274 } 2275 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2276 2277 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2278 { 2279 int err; 2280 int core; 2281 struct kvmppc_vcore *vcore; 2282 struct kvm *kvm; 2283 unsigned int id; 2284 2285 kvm = vcpu->kvm; 2286 id = vcpu->vcpu_id; 2287 2288 vcpu->arch.shared = &vcpu->arch.shregs; 2289 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2290 /* 2291 * The shared struct is never shared on HV, 2292 * so we can always use host endianness 2293 */ 2294 #ifdef __BIG_ENDIAN__ 2295 vcpu->arch.shared_big_endian = true; 2296 #else 2297 vcpu->arch.shared_big_endian = false; 2298 #endif 2299 #endif 2300 vcpu->arch.mmcr[0] = MMCR0_FC; 2301 vcpu->arch.ctrl = CTRL_RUNLATCH; 2302 /* default to host PVR, since we can't spoof it */ 2303 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2304 spin_lock_init(&vcpu->arch.vpa_update_lock); 2305 spin_lock_init(&vcpu->arch.tbacct_lock); 2306 vcpu->arch.busy_preempt = TB_NIL; 2307 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2308 2309 /* 2310 * Set the default HFSCR for the guest from the host value. 2311 * This value is only used on POWER9. 2312 * On POWER9, we want to virtualize the doorbell facility, so we 2313 * don't set the HFSCR_MSGP bit, and that causes those instructions 2314 * to trap and then we emulate them. 2315 */ 2316 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2317 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP; 2318 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2319 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2320 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2321 vcpu->arch.hfscr |= HFSCR_TM; 2322 } 2323 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2324 vcpu->arch.hfscr |= HFSCR_TM; 2325 2326 kvmppc_mmu_book3s_hv_init(vcpu); 2327 2328 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2329 2330 init_waitqueue_head(&vcpu->arch.cpu_run); 2331 2332 mutex_lock(&kvm->lock); 2333 vcore = NULL; 2334 err = -EINVAL; 2335 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2336 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2337 pr_devel("KVM: VCPU ID too high\n"); 2338 core = KVM_MAX_VCORES; 2339 } else { 2340 BUG_ON(kvm->arch.smt_mode != 1); 2341 core = kvmppc_pack_vcpu_id(kvm, id); 2342 } 2343 } else { 2344 core = id / kvm->arch.smt_mode; 2345 } 2346 if (core < KVM_MAX_VCORES) { 2347 vcore = kvm->arch.vcores[core]; 2348 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2349 pr_devel("KVM: collision on id %u", id); 2350 vcore = NULL; 2351 } else if (!vcore) { 2352 /* 2353 * Take mmu_setup_lock for mutual exclusion 2354 * with kvmppc_update_lpcr(). 2355 */ 2356 err = -ENOMEM; 2357 vcore = kvmppc_vcore_create(kvm, 2358 id & ~(kvm->arch.smt_mode - 1)); 2359 mutex_lock(&kvm->arch.mmu_setup_lock); 2360 kvm->arch.vcores[core] = vcore; 2361 kvm->arch.online_vcores++; 2362 mutex_unlock(&kvm->arch.mmu_setup_lock); 2363 } 2364 } 2365 mutex_unlock(&kvm->lock); 2366 2367 if (!vcore) 2368 return err; 2369 2370 spin_lock(&vcore->lock); 2371 ++vcore->num_threads; 2372 spin_unlock(&vcore->lock); 2373 vcpu->arch.vcore = vcore; 2374 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2375 vcpu->arch.thread_cpu = -1; 2376 vcpu->arch.prev_cpu = -1; 2377 2378 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2379 kvmppc_sanity_check(vcpu); 2380 2381 debugfs_vcpu_init(vcpu, id); 2382 2383 return 0; 2384 } 2385 2386 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2387 unsigned long flags) 2388 { 2389 int err; 2390 int esmt = 0; 2391 2392 if (flags) 2393 return -EINVAL; 2394 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2395 return -EINVAL; 2396 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2397 /* 2398 * On POWER8 (or POWER7), the threading mode is "strict", 2399 * so we pack smt_mode vcpus per vcore. 2400 */ 2401 if (smt_mode > threads_per_subcore) 2402 return -EINVAL; 2403 } else { 2404 /* 2405 * On POWER9, the threading mode is "loose", 2406 * so each vcpu gets its own vcore. 2407 */ 2408 esmt = smt_mode; 2409 smt_mode = 1; 2410 } 2411 mutex_lock(&kvm->lock); 2412 err = -EBUSY; 2413 if (!kvm->arch.online_vcores) { 2414 kvm->arch.smt_mode = smt_mode; 2415 kvm->arch.emul_smt_mode = esmt; 2416 err = 0; 2417 } 2418 mutex_unlock(&kvm->lock); 2419 2420 return err; 2421 } 2422 2423 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2424 { 2425 if (vpa->pinned_addr) 2426 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2427 vpa->dirty); 2428 } 2429 2430 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2431 { 2432 spin_lock(&vcpu->arch.vpa_update_lock); 2433 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2434 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2435 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2436 spin_unlock(&vcpu->arch.vpa_update_lock); 2437 } 2438 2439 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2440 { 2441 /* Indicate we want to get back into the guest */ 2442 return 1; 2443 } 2444 2445 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2446 { 2447 unsigned long dec_nsec, now; 2448 2449 now = get_tb(); 2450 if (now > vcpu->arch.dec_expires) { 2451 /* decrementer has already gone negative */ 2452 kvmppc_core_queue_dec(vcpu); 2453 kvmppc_core_prepare_to_enter(vcpu); 2454 return; 2455 } 2456 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now); 2457 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2458 vcpu->arch.timer_running = 1; 2459 } 2460 2461 extern int __kvmppc_vcore_entry(void); 2462 2463 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2464 struct kvm_vcpu *vcpu) 2465 { 2466 u64 now; 2467 2468 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2469 return; 2470 spin_lock_irq(&vcpu->arch.tbacct_lock); 2471 now = mftb(); 2472 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2473 vcpu->arch.stolen_logged; 2474 vcpu->arch.busy_preempt = now; 2475 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2476 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2477 --vc->n_runnable; 2478 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2479 } 2480 2481 static int kvmppc_grab_hwthread(int cpu) 2482 { 2483 struct paca_struct *tpaca; 2484 long timeout = 10000; 2485 2486 tpaca = paca_ptrs[cpu]; 2487 2488 /* Ensure the thread won't go into the kernel if it wakes */ 2489 tpaca->kvm_hstate.kvm_vcpu = NULL; 2490 tpaca->kvm_hstate.kvm_vcore = NULL; 2491 tpaca->kvm_hstate.napping = 0; 2492 smp_wmb(); 2493 tpaca->kvm_hstate.hwthread_req = 1; 2494 2495 /* 2496 * If the thread is already executing in the kernel (e.g. handling 2497 * a stray interrupt), wait for it to get back to nap mode. 2498 * The smp_mb() is to ensure that our setting of hwthread_req 2499 * is visible before we look at hwthread_state, so if this 2500 * races with the code at system_reset_pSeries and the thread 2501 * misses our setting of hwthread_req, we are sure to see its 2502 * setting of hwthread_state, and vice versa. 2503 */ 2504 smp_mb(); 2505 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2506 if (--timeout <= 0) { 2507 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2508 return -EBUSY; 2509 } 2510 udelay(1); 2511 } 2512 return 0; 2513 } 2514 2515 static void kvmppc_release_hwthread(int cpu) 2516 { 2517 struct paca_struct *tpaca; 2518 2519 tpaca = paca_ptrs[cpu]; 2520 tpaca->kvm_hstate.hwthread_req = 0; 2521 tpaca->kvm_hstate.kvm_vcpu = NULL; 2522 tpaca->kvm_hstate.kvm_vcore = NULL; 2523 tpaca->kvm_hstate.kvm_split_mode = NULL; 2524 } 2525 2526 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2527 { 2528 struct kvm_nested_guest *nested = vcpu->arch.nested; 2529 cpumask_t *cpu_in_guest; 2530 int i; 2531 2532 cpu = cpu_first_thread_sibling(cpu); 2533 if (nested) { 2534 cpumask_set_cpu(cpu, &nested->need_tlb_flush); 2535 cpu_in_guest = &nested->cpu_in_guest; 2536 } else { 2537 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2538 cpu_in_guest = &kvm->arch.cpu_in_guest; 2539 } 2540 /* 2541 * Make sure setting of bit in need_tlb_flush precedes 2542 * testing of cpu_in_guest bits. The matching barrier on 2543 * the other side is the first smp_mb() in kvmppc_run_core(). 2544 */ 2545 smp_mb(); 2546 for (i = 0; i < threads_per_core; ++i) 2547 if (cpumask_test_cpu(cpu + i, cpu_in_guest)) 2548 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2549 } 2550 2551 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2552 { 2553 struct kvm_nested_guest *nested = vcpu->arch.nested; 2554 struct kvm *kvm = vcpu->kvm; 2555 int prev_cpu; 2556 2557 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2558 return; 2559 2560 if (nested) 2561 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 2562 else 2563 prev_cpu = vcpu->arch.prev_cpu; 2564 2565 /* 2566 * With radix, the guest can do TLB invalidations itself, 2567 * and it could choose to use the local form (tlbiel) if 2568 * it is invalidating a translation that has only ever been 2569 * used on one vcpu. However, that doesn't mean it has 2570 * only ever been used on one physical cpu, since vcpus 2571 * can move around between pcpus. To cope with this, when 2572 * a vcpu moves from one pcpu to another, we need to tell 2573 * any vcpus running on the same core as this vcpu previously 2574 * ran to flush the TLB. The TLB is shared between threads, 2575 * so we use a single bit in .need_tlb_flush for all 4 threads. 2576 */ 2577 if (prev_cpu != pcpu) { 2578 if (prev_cpu >= 0 && 2579 cpu_first_thread_sibling(prev_cpu) != 2580 cpu_first_thread_sibling(pcpu)) 2581 radix_flush_cpu(kvm, prev_cpu, vcpu); 2582 if (nested) 2583 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 2584 else 2585 vcpu->arch.prev_cpu = pcpu; 2586 } 2587 } 2588 2589 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2590 { 2591 int cpu; 2592 struct paca_struct *tpaca; 2593 struct kvm *kvm = vc->kvm; 2594 2595 cpu = vc->pcpu; 2596 if (vcpu) { 2597 if (vcpu->arch.timer_running) { 2598 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2599 vcpu->arch.timer_running = 0; 2600 } 2601 cpu += vcpu->arch.ptid; 2602 vcpu->cpu = vc->pcpu; 2603 vcpu->arch.thread_cpu = cpu; 2604 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2605 } 2606 tpaca = paca_ptrs[cpu]; 2607 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2608 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2609 tpaca->kvm_hstate.fake_suspend = 0; 2610 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2611 smp_wmb(); 2612 tpaca->kvm_hstate.kvm_vcore = vc; 2613 if (cpu != smp_processor_id()) 2614 kvmppc_ipi_thread(cpu); 2615 } 2616 2617 static void kvmppc_wait_for_nap(int n_threads) 2618 { 2619 int cpu = smp_processor_id(); 2620 int i, loops; 2621 2622 if (n_threads <= 1) 2623 return; 2624 for (loops = 0; loops < 1000000; ++loops) { 2625 /* 2626 * Check if all threads are finished. 2627 * We set the vcore pointer when starting a thread 2628 * and the thread clears it when finished, so we look 2629 * for any threads that still have a non-NULL vcore ptr. 2630 */ 2631 for (i = 1; i < n_threads; ++i) 2632 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2633 break; 2634 if (i == n_threads) { 2635 HMT_medium(); 2636 return; 2637 } 2638 HMT_low(); 2639 } 2640 HMT_medium(); 2641 for (i = 1; i < n_threads; ++i) 2642 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2643 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2644 } 2645 2646 /* 2647 * Check that we are on thread 0 and that any other threads in 2648 * this core are off-line. Then grab the threads so they can't 2649 * enter the kernel. 2650 */ 2651 static int on_primary_thread(void) 2652 { 2653 int cpu = smp_processor_id(); 2654 int thr; 2655 2656 /* Are we on a primary subcore? */ 2657 if (cpu_thread_in_subcore(cpu)) 2658 return 0; 2659 2660 thr = 0; 2661 while (++thr < threads_per_subcore) 2662 if (cpu_online(cpu + thr)) 2663 return 0; 2664 2665 /* Grab all hw threads so they can't go into the kernel */ 2666 for (thr = 1; thr < threads_per_subcore; ++thr) { 2667 if (kvmppc_grab_hwthread(cpu + thr)) { 2668 /* Couldn't grab one; let the others go */ 2669 do { 2670 kvmppc_release_hwthread(cpu + thr); 2671 } while (--thr > 0); 2672 return 0; 2673 } 2674 } 2675 return 1; 2676 } 2677 2678 /* 2679 * A list of virtual cores for each physical CPU. 2680 * These are vcores that could run but their runner VCPU tasks are 2681 * (or may be) preempted. 2682 */ 2683 struct preempted_vcore_list { 2684 struct list_head list; 2685 spinlock_t lock; 2686 }; 2687 2688 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2689 2690 static void init_vcore_lists(void) 2691 { 2692 int cpu; 2693 2694 for_each_possible_cpu(cpu) { 2695 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2696 spin_lock_init(&lp->lock); 2697 INIT_LIST_HEAD(&lp->list); 2698 } 2699 } 2700 2701 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2702 { 2703 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2704 2705 vc->vcore_state = VCORE_PREEMPT; 2706 vc->pcpu = smp_processor_id(); 2707 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2708 spin_lock(&lp->lock); 2709 list_add_tail(&vc->preempt_list, &lp->list); 2710 spin_unlock(&lp->lock); 2711 } 2712 2713 /* Start accumulating stolen time */ 2714 kvmppc_core_start_stolen(vc); 2715 } 2716 2717 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2718 { 2719 struct preempted_vcore_list *lp; 2720 2721 kvmppc_core_end_stolen(vc); 2722 if (!list_empty(&vc->preempt_list)) { 2723 lp = &per_cpu(preempted_vcores, vc->pcpu); 2724 spin_lock(&lp->lock); 2725 list_del_init(&vc->preempt_list); 2726 spin_unlock(&lp->lock); 2727 } 2728 vc->vcore_state = VCORE_INACTIVE; 2729 } 2730 2731 /* 2732 * This stores information about the virtual cores currently 2733 * assigned to a physical core. 2734 */ 2735 struct core_info { 2736 int n_subcores; 2737 int max_subcore_threads; 2738 int total_threads; 2739 int subcore_threads[MAX_SUBCORES]; 2740 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2741 }; 2742 2743 /* 2744 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2745 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2746 */ 2747 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2748 2749 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2750 { 2751 memset(cip, 0, sizeof(*cip)); 2752 cip->n_subcores = 1; 2753 cip->max_subcore_threads = vc->num_threads; 2754 cip->total_threads = vc->num_threads; 2755 cip->subcore_threads[0] = vc->num_threads; 2756 cip->vc[0] = vc; 2757 } 2758 2759 static bool subcore_config_ok(int n_subcores, int n_threads) 2760 { 2761 /* 2762 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 2763 * split-core mode, with one thread per subcore. 2764 */ 2765 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2766 return n_subcores <= 4 && n_threads == 1; 2767 2768 /* On POWER8, can only dynamically split if unsplit to begin with */ 2769 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2770 return false; 2771 if (n_subcores > MAX_SUBCORES) 2772 return false; 2773 if (n_subcores > 1) { 2774 if (!(dynamic_mt_modes & 2)) 2775 n_subcores = 4; 2776 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2777 return false; 2778 } 2779 2780 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2781 } 2782 2783 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2784 { 2785 vc->entry_exit_map = 0; 2786 vc->in_guest = 0; 2787 vc->napping_threads = 0; 2788 vc->conferring_threads = 0; 2789 vc->tb_offset_applied = 0; 2790 } 2791 2792 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2793 { 2794 int n_threads = vc->num_threads; 2795 int sub; 2796 2797 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2798 return false; 2799 2800 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 2801 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 2802 return false; 2803 2804 /* Some POWER9 chips require all threads to be in the same MMU mode */ 2805 if (no_mixing_hpt_and_radix && 2806 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm)) 2807 return false; 2808 2809 if (n_threads < cip->max_subcore_threads) 2810 n_threads = cip->max_subcore_threads; 2811 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2812 return false; 2813 cip->max_subcore_threads = n_threads; 2814 2815 sub = cip->n_subcores; 2816 ++cip->n_subcores; 2817 cip->total_threads += vc->num_threads; 2818 cip->subcore_threads[sub] = vc->num_threads; 2819 cip->vc[sub] = vc; 2820 init_vcore_to_run(vc); 2821 list_del_init(&vc->preempt_list); 2822 2823 return true; 2824 } 2825 2826 /* 2827 * Work out whether it is possible to piggyback the execution of 2828 * vcore *pvc onto the execution of the other vcores described in *cip. 2829 */ 2830 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2831 int target_threads) 2832 { 2833 if (cip->total_threads + pvc->num_threads > target_threads) 2834 return false; 2835 2836 return can_dynamic_split(pvc, cip); 2837 } 2838 2839 static void prepare_threads(struct kvmppc_vcore *vc) 2840 { 2841 int i; 2842 struct kvm_vcpu *vcpu; 2843 2844 for_each_runnable_thread(i, vcpu, vc) { 2845 if (signal_pending(vcpu->arch.run_task)) 2846 vcpu->arch.ret = -EINTR; 2847 else if (vcpu->arch.vpa.update_pending || 2848 vcpu->arch.slb_shadow.update_pending || 2849 vcpu->arch.dtl.update_pending) 2850 vcpu->arch.ret = RESUME_GUEST; 2851 else 2852 continue; 2853 kvmppc_remove_runnable(vc, vcpu); 2854 wake_up(&vcpu->arch.cpu_run); 2855 } 2856 } 2857 2858 static void collect_piggybacks(struct core_info *cip, int target_threads) 2859 { 2860 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2861 struct kvmppc_vcore *pvc, *vcnext; 2862 2863 spin_lock(&lp->lock); 2864 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2865 if (!spin_trylock(&pvc->lock)) 2866 continue; 2867 prepare_threads(pvc); 2868 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 2869 list_del_init(&pvc->preempt_list); 2870 if (pvc->runner == NULL) { 2871 pvc->vcore_state = VCORE_INACTIVE; 2872 kvmppc_core_end_stolen(pvc); 2873 } 2874 spin_unlock(&pvc->lock); 2875 continue; 2876 } 2877 if (!can_piggyback(pvc, cip, target_threads)) { 2878 spin_unlock(&pvc->lock); 2879 continue; 2880 } 2881 kvmppc_core_end_stolen(pvc); 2882 pvc->vcore_state = VCORE_PIGGYBACK; 2883 if (cip->total_threads >= target_threads) 2884 break; 2885 } 2886 spin_unlock(&lp->lock); 2887 } 2888 2889 static bool recheck_signals_and_mmu(struct core_info *cip) 2890 { 2891 int sub, i; 2892 struct kvm_vcpu *vcpu; 2893 struct kvmppc_vcore *vc; 2894 2895 for (sub = 0; sub < cip->n_subcores; ++sub) { 2896 vc = cip->vc[sub]; 2897 if (!vc->kvm->arch.mmu_ready) 2898 return true; 2899 for_each_runnable_thread(i, vcpu, vc) 2900 if (signal_pending(vcpu->arch.run_task)) 2901 return true; 2902 } 2903 return false; 2904 } 2905 2906 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2907 { 2908 int still_running = 0, i; 2909 u64 now; 2910 long ret; 2911 struct kvm_vcpu *vcpu; 2912 2913 spin_lock(&vc->lock); 2914 now = get_tb(); 2915 for_each_runnable_thread(i, vcpu, vc) { 2916 /* 2917 * It's safe to unlock the vcore in the loop here, because 2918 * for_each_runnable_thread() is safe against removal of 2919 * the vcpu, and the vcore state is VCORE_EXITING here, 2920 * so any vcpus becoming runnable will have their arch.trap 2921 * set to zero and can't actually run in the guest. 2922 */ 2923 spin_unlock(&vc->lock); 2924 /* cancel pending dec exception if dec is positive */ 2925 if (now < vcpu->arch.dec_expires && 2926 kvmppc_core_pending_dec(vcpu)) 2927 kvmppc_core_dequeue_dec(vcpu); 2928 2929 trace_kvm_guest_exit(vcpu); 2930 2931 ret = RESUME_GUEST; 2932 if (vcpu->arch.trap) 2933 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2934 vcpu->arch.run_task); 2935 2936 vcpu->arch.ret = ret; 2937 vcpu->arch.trap = 0; 2938 2939 spin_lock(&vc->lock); 2940 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2941 if (vcpu->arch.pending_exceptions) 2942 kvmppc_core_prepare_to_enter(vcpu); 2943 if (vcpu->arch.ceded) 2944 kvmppc_set_timer(vcpu); 2945 else 2946 ++still_running; 2947 } else { 2948 kvmppc_remove_runnable(vc, vcpu); 2949 wake_up(&vcpu->arch.cpu_run); 2950 } 2951 } 2952 if (!is_master) { 2953 if (still_running > 0) { 2954 kvmppc_vcore_preempt(vc); 2955 } else if (vc->runner) { 2956 vc->vcore_state = VCORE_PREEMPT; 2957 kvmppc_core_start_stolen(vc); 2958 } else { 2959 vc->vcore_state = VCORE_INACTIVE; 2960 } 2961 if (vc->n_runnable > 0 && vc->runner == NULL) { 2962 /* make sure there's a candidate runner awake */ 2963 i = -1; 2964 vcpu = next_runnable_thread(vc, &i); 2965 wake_up(&vcpu->arch.cpu_run); 2966 } 2967 } 2968 spin_unlock(&vc->lock); 2969 } 2970 2971 /* 2972 * Clear core from the list of active host cores as we are about to 2973 * enter the guest. Only do this if it is the primary thread of the 2974 * core (not if a subcore) that is entering the guest. 2975 */ 2976 static inline int kvmppc_clear_host_core(unsigned int cpu) 2977 { 2978 int core; 2979 2980 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2981 return 0; 2982 /* 2983 * Memory barrier can be omitted here as we will do a smp_wmb() 2984 * later in kvmppc_start_thread and we need ensure that state is 2985 * visible to other CPUs only after we enter guest. 2986 */ 2987 core = cpu >> threads_shift; 2988 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2989 return 0; 2990 } 2991 2992 /* 2993 * Advertise this core as an active host core since we exited the guest 2994 * Only need to do this if it is the primary thread of the core that is 2995 * exiting. 2996 */ 2997 static inline int kvmppc_set_host_core(unsigned int cpu) 2998 { 2999 int core; 3000 3001 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3002 return 0; 3003 3004 /* 3005 * Memory barrier can be omitted here because we do a spin_unlock 3006 * immediately after this which provides the memory barrier. 3007 */ 3008 core = cpu >> threads_shift; 3009 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3010 return 0; 3011 } 3012 3013 static void set_irq_happened(int trap) 3014 { 3015 switch (trap) { 3016 case BOOK3S_INTERRUPT_EXTERNAL: 3017 local_paca->irq_happened |= PACA_IRQ_EE; 3018 break; 3019 case BOOK3S_INTERRUPT_H_DOORBELL: 3020 local_paca->irq_happened |= PACA_IRQ_DBELL; 3021 break; 3022 case BOOK3S_INTERRUPT_HMI: 3023 local_paca->irq_happened |= PACA_IRQ_HMI; 3024 break; 3025 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3026 replay_system_reset(); 3027 break; 3028 } 3029 } 3030 3031 /* 3032 * Run a set of guest threads on a physical core. 3033 * Called with vc->lock held. 3034 */ 3035 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3036 { 3037 struct kvm_vcpu *vcpu; 3038 int i; 3039 int srcu_idx; 3040 struct core_info core_info; 3041 struct kvmppc_vcore *pvc; 3042 struct kvm_split_mode split_info, *sip; 3043 int split, subcore_size, active; 3044 int sub; 3045 bool thr0_done; 3046 unsigned long cmd_bit, stat_bit; 3047 int pcpu, thr; 3048 int target_threads; 3049 int controlled_threads; 3050 int trap; 3051 bool is_power8; 3052 bool hpt_on_radix; 3053 3054 /* 3055 * Remove from the list any threads that have a signal pending 3056 * or need a VPA update done 3057 */ 3058 prepare_threads(vc); 3059 3060 /* if the runner is no longer runnable, let the caller pick a new one */ 3061 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3062 return; 3063 3064 /* 3065 * Initialize *vc. 3066 */ 3067 init_vcore_to_run(vc); 3068 vc->preempt_tb = TB_NIL; 3069 3070 /* 3071 * Number of threads that we will be controlling: the same as 3072 * the number of threads per subcore, except on POWER9, 3073 * where it's 1 because the threads are (mostly) independent. 3074 */ 3075 controlled_threads = threads_per_vcore(vc->kvm); 3076 3077 /* 3078 * Make sure we are running on primary threads, and that secondary 3079 * threads are offline. Also check if the number of threads in this 3080 * guest are greater than the current system threads per guest. 3081 * On POWER9, we need to be not in independent-threads mode if 3082 * this is a HPT guest on a radix host machine where the 3083 * CPU threads may not be in different MMU modes. 3084 */ 3085 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() && 3086 !kvm_is_radix(vc->kvm); 3087 if (((controlled_threads > 1) && 3088 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) || 3089 (hpt_on_radix && vc->kvm->arch.threads_indep)) { 3090 for_each_runnable_thread(i, vcpu, vc) { 3091 vcpu->arch.ret = -EBUSY; 3092 kvmppc_remove_runnable(vc, vcpu); 3093 wake_up(&vcpu->arch.cpu_run); 3094 } 3095 goto out; 3096 } 3097 3098 /* 3099 * See if we could run any other vcores on the physical core 3100 * along with this one. 3101 */ 3102 init_core_info(&core_info, vc); 3103 pcpu = smp_processor_id(); 3104 target_threads = controlled_threads; 3105 if (target_smt_mode && target_smt_mode < target_threads) 3106 target_threads = target_smt_mode; 3107 if (vc->num_threads < target_threads) 3108 collect_piggybacks(&core_info, target_threads); 3109 3110 /* 3111 * On radix, arrange for TLB flushing if necessary. 3112 * This has to be done before disabling interrupts since 3113 * it uses smp_call_function(). 3114 */ 3115 pcpu = smp_processor_id(); 3116 if (kvm_is_radix(vc->kvm)) { 3117 for (sub = 0; sub < core_info.n_subcores; ++sub) 3118 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 3119 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 3120 } 3121 3122 /* 3123 * Hard-disable interrupts, and check resched flag and signals. 3124 * If we need to reschedule or deliver a signal, clean up 3125 * and return without going into the guest(s). 3126 * If the mmu_ready flag has been cleared, don't go into the 3127 * guest because that means a HPT resize operation is in progress. 3128 */ 3129 local_irq_disable(); 3130 hard_irq_disable(); 3131 if (lazy_irq_pending() || need_resched() || 3132 recheck_signals_and_mmu(&core_info)) { 3133 local_irq_enable(); 3134 vc->vcore_state = VCORE_INACTIVE; 3135 /* Unlock all except the primary vcore */ 3136 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3137 pvc = core_info.vc[sub]; 3138 /* Put back on to the preempted vcores list */ 3139 kvmppc_vcore_preempt(pvc); 3140 spin_unlock(&pvc->lock); 3141 } 3142 for (i = 0; i < controlled_threads; ++i) 3143 kvmppc_release_hwthread(pcpu + i); 3144 return; 3145 } 3146 3147 kvmppc_clear_host_core(pcpu); 3148 3149 /* Decide on micro-threading (split-core) mode */ 3150 subcore_size = threads_per_subcore; 3151 cmd_bit = stat_bit = 0; 3152 split = core_info.n_subcores; 3153 sip = NULL; 3154 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 3155 && !cpu_has_feature(CPU_FTR_ARCH_300); 3156 3157 if (split > 1 || hpt_on_radix) { 3158 sip = &split_info; 3159 memset(&split_info, 0, sizeof(split_info)); 3160 for (sub = 0; sub < core_info.n_subcores; ++sub) 3161 split_info.vc[sub] = core_info.vc[sub]; 3162 3163 if (is_power8) { 3164 if (split == 2 && (dynamic_mt_modes & 2)) { 3165 cmd_bit = HID0_POWER8_1TO2LPAR; 3166 stat_bit = HID0_POWER8_2LPARMODE; 3167 } else { 3168 split = 4; 3169 cmd_bit = HID0_POWER8_1TO4LPAR; 3170 stat_bit = HID0_POWER8_4LPARMODE; 3171 } 3172 subcore_size = MAX_SMT_THREADS / split; 3173 split_info.rpr = mfspr(SPRN_RPR); 3174 split_info.pmmar = mfspr(SPRN_PMMAR); 3175 split_info.ldbar = mfspr(SPRN_LDBAR); 3176 split_info.subcore_size = subcore_size; 3177 } else { 3178 split_info.subcore_size = 1; 3179 if (hpt_on_radix) { 3180 /* Use the split_info for LPCR/LPIDR changes */ 3181 split_info.lpcr_req = vc->lpcr; 3182 split_info.lpidr_req = vc->kvm->arch.lpid; 3183 split_info.host_lpcr = vc->kvm->arch.host_lpcr; 3184 split_info.do_set = 1; 3185 } 3186 } 3187 3188 /* order writes to split_info before kvm_split_mode pointer */ 3189 smp_wmb(); 3190 } 3191 3192 for (thr = 0; thr < controlled_threads; ++thr) { 3193 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3194 3195 paca->kvm_hstate.tid = thr; 3196 paca->kvm_hstate.napping = 0; 3197 paca->kvm_hstate.kvm_split_mode = sip; 3198 } 3199 3200 /* Initiate micro-threading (split-core) on POWER8 if required */ 3201 if (cmd_bit) { 3202 unsigned long hid0 = mfspr(SPRN_HID0); 3203 3204 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3205 mb(); 3206 mtspr(SPRN_HID0, hid0); 3207 isync(); 3208 for (;;) { 3209 hid0 = mfspr(SPRN_HID0); 3210 if (hid0 & stat_bit) 3211 break; 3212 cpu_relax(); 3213 } 3214 } 3215 3216 /* 3217 * On POWER8, set RWMR register. 3218 * Since it only affects PURR and SPURR, it doesn't affect 3219 * the host, so we don't save/restore the host value. 3220 */ 3221 if (is_power8) { 3222 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3223 int n_online = atomic_read(&vc->online_count); 3224 3225 /* 3226 * Use the 8-thread value if we're doing split-core 3227 * or if the vcore's online count looks bogus. 3228 */ 3229 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3230 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3231 rwmr_val = p8_rwmr_values[n_online]; 3232 mtspr(SPRN_RWMR, rwmr_val); 3233 } 3234 3235 /* Start all the threads */ 3236 active = 0; 3237 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3238 thr = is_power8 ? subcore_thread_map[sub] : sub; 3239 thr0_done = false; 3240 active |= 1 << thr; 3241 pvc = core_info.vc[sub]; 3242 pvc->pcpu = pcpu + thr; 3243 for_each_runnable_thread(i, vcpu, pvc) { 3244 kvmppc_start_thread(vcpu, pvc); 3245 kvmppc_create_dtl_entry(vcpu, pvc); 3246 trace_kvm_guest_enter(vcpu); 3247 if (!vcpu->arch.ptid) 3248 thr0_done = true; 3249 active |= 1 << (thr + vcpu->arch.ptid); 3250 } 3251 /* 3252 * We need to start the first thread of each subcore 3253 * even if it doesn't have a vcpu. 3254 */ 3255 if (!thr0_done) 3256 kvmppc_start_thread(NULL, pvc); 3257 } 3258 3259 /* 3260 * Ensure that split_info.do_nap is set after setting 3261 * the vcore pointer in the PACA of the secondaries. 3262 */ 3263 smp_mb(); 3264 3265 /* 3266 * When doing micro-threading, poke the inactive threads as well. 3267 * This gets them to the nap instruction after kvm_do_nap, 3268 * which reduces the time taken to unsplit later. 3269 * For POWER9 HPT guest on radix host, we need all the secondary 3270 * threads woken up so they can do the LPCR/LPIDR change. 3271 */ 3272 if (cmd_bit || hpt_on_radix) { 3273 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3274 for (thr = 1; thr < threads_per_subcore; ++thr) 3275 if (!(active & (1 << thr))) 3276 kvmppc_ipi_thread(pcpu + thr); 3277 } 3278 3279 vc->vcore_state = VCORE_RUNNING; 3280 preempt_disable(); 3281 3282 trace_kvmppc_run_core(vc, 0); 3283 3284 for (sub = 0; sub < core_info.n_subcores; ++sub) 3285 spin_unlock(&core_info.vc[sub]->lock); 3286 3287 guest_enter_irqoff(); 3288 3289 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3290 3291 this_cpu_disable_ftrace(); 3292 3293 /* 3294 * Interrupts will be enabled once we get into the guest, 3295 * so tell lockdep that we're about to enable interrupts. 3296 */ 3297 trace_hardirqs_on(); 3298 3299 trap = __kvmppc_vcore_entry(); 3300 3301 trace_hardirqs_off(); 3302 3303 this_cpu_enable_ftrace(); 3304 3305 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3306 3307 set_irq_happened(trap); 3308 3309 spin_lock(&vc->lock); 3310 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3311 vc->vcore_state = VCORE_EXITING; 3312 3313 /* wait for secondary threads to finish writing their state to memory */ 3314 kvmppc_wait_for_nap(controlled_threads); 3315 3316 /* Return to whole-core mode if we split the core earlier */ 3317 if (cmd_bit) { 3318 unsigned long hid0 = mfspr(SPRN_HID0); 3319 unsigned long loops = 0; 3320 3321 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3322 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3323 mb(); 3324 mtspr(SPRN_HID0, hid0); 3325 isync(); 3326 for (;;) { 3327 hid0 = mfspr(SPRN_HID0); 3328 if (!(hid0 & stat_bit)) 3329 break; 3330 cpu_relax(); 3331 ++loops; 3332 } 3333 } else if (hpt_on_radix) { 3334 /* Wait for all threads to have seen final sync */ 3335 for (thr = 1; thr < controlled_threads; ++thr) { 3336 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3337 3338 while (paca->kvm_hstate.kvm_split_mode) { 3339 HMT_low(); 3340 barrier(); 3341 } 3342 HMT_medium(); 3343 } 3344 } 3345 split_info.do_nap = 0; 3346 3347 kvmppc_set_host_core(pcpu); 3348 3349 local_irq_enable(); 3350 guest_exit(); 3351 3352 /* Let secondaries go back to the offline loop */ 3353 for (i = 0; i < controlled_threads; ++i) { 3354 kvmppc_release_hwthread(pcpu + i); 3355 if (sip && sip->napped[i]) 3356 kvmppc_ipi_thread(pcpu + i); 3357 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 3358 } 3359 3360 spin_unlock(&vc->lock); 3361 3362 /* make sure updates to secondary vcpu structs are visible now */ 3363 smp_mb(); 3364 3365 preempt_enable(); 3366 3367 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3368 pvc = core_info.vc[sub]; 3369 post_guest_process(pvc, pvc == vc); 3370 } 3371 3372 spin_lock(&vc->lock); 3373 3374 out: 3375 vc->vcore_state = VCORE_INACTIVE; 3376 trace_kvmppc_run_core(vc, 1); 3377 } 3378 3379 /* 3380 * Load up hypervisor-mode registers on P9. 3381 */ 3382 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit, 3383 unsigned long lpcr) 3384 { 3385 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3386 s64 hdec; 3387 u64 tb, purr, spurr; 3388 int trap; 3389 unsigned long host_hfscr = mfspr(SPRN_HFSCR); 3390 unsigned long host_ciabr = mfspr(SPRN_CIABR); 3391 unsigned long host_dawr = mfspr(SPRN_DAWR); 3392 unsigned long host_dawrx = mfspr(SPRN_DAWRX); 3393 unsigned long host_psscr = mfspr(SPRN_PSSCR); 3394 unsigned long host_pidr = mfspr(SPRN_PID); 3395 3396 hdec = time_limit - mftb(); 3397 if (hdec < 0) 3398 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3399 mtspr(SPRN_HDEC, hdec); 3400 3401 if (vc->tb_offset) { 3402 u64 new_tb = mftb() + vc->tb_offset; 3403 mtspr(SPRN_TBU40, new_tb); 3404 tb = mftb(); 3405 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3406 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3407 vc->tb_offset_applied = vc->tb_offset; 3408 } 3409 3410 if (vc->pcr) 3411 mtspr(SPRN_PCR, vc->pcr | PCR_MASK); 3412 mtspr(SPRN_DPDES, vc->dpdes); 3413 mtspr(SPRN_VTB, vc->vtb); 3414 3415 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR); 3416 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR); 3417 mtspr(SPRN_PURR, vcpu->arch.purr); 3418 mtspr(SPRN_SPURR, vcpu->arch.spurr); 3419 3420 if (dawr_enabled()) { 3421 mtspr(SPRN_DAWR, vcpu->arch.dawr); 3422 mtspr(SPRN_DAWRX, vcpu->arch.dawrx); 3423 } 3424 mtspr(SPRN_CIABR, vcpu->arch.ciabr); 3425 mtspr(SPRN_IC, vcpu->arch.ic); 3426 mtspr(SPRN_PID, vcpu->arch.pid); 3427 3428 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC | 3429 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3430 3431 mtspr(SPRN_HFSCR, vcpu->arch.hfscr); 3432 3433 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0); 3434 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1); 3435 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2); 3436 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3); 3437 3438 mtspr(SPRN_AMOR, ~0UL); 3439 3440 mtspr(SPRN_LPCR, lpcr); 3441 isync(); 3442 3443 kvmppc_xive_push_vcpu(vcpu); 3444 3445 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0); 3446 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1); 3447 3448 trap = __kvmhv_vcpu_entry_p9(vcpu); 3449 3450 /* Advance host PURR/SPURR by the amount used by guest */ 3451 purr = mfspr(SPRN_PURR); 3452 spurr = mfspr(SPRN_SPURR); 3453 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr + 3454 purr - vcpu->arch.purr); 3455 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr + 3456 spurr - vcpu->arch.spurr); 3457 vcpu->arch.purr = purr; 3458 vcpu->arch.spurr = spurr; 3459 3460 vcpu->arch.ic = mfspr(SPRN_IC); 3461 vcpu->arch.pid = mfspr(SPRN_PID); 3462 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS; 3463 3464 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0); 3465 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1); 3466 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2); 3467 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3); 3468 3469 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */ 3470 mtspr(SPRN_PSSCR, host_psscr | 3471 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3472 mtspr(SPRN_HFSCR, host_hfscr); 3473 mtspr(SPRN_CIABR, host_ciabr); 3474 mtspr(SPRN_DAWR, host_dawr); 3475 mtspr(SPRN_DAWRX, host_dawrx); 3476 mtspr(SPRN_PID, host_pidr); 3477 3478 /* 3479 * Since this is radix, do a eieio; tlbsync; ptesync sequence in 3480 * case we interrupted the guest between a tlbie and a ptesync. 3481 */ 3482 asm volatile("eieio; tlbsync; ptesync"); 3483 3484 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */ 3485 isync(); 3486 3487 vc->dpdes = mfspr(SPRN_DPDES); 3488 vc->vtb = mfspr(SPRN_VTB); 3489 mtspr(SPRN_DPDES, 0); 3490 if (vc->pcr) 3491 mtspr(SPRN_PCR, PCR_MASK); 3492 3493 if (vc->tb_offset_applied) { 3494 u64 new_tb = mftb() - vc->tb_offset_applied; 3495 mtspr(SPRN_TBU40, new_tb); 3496 tb = mftb(); 3497 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3498 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3499 vc->tb_offset_applied = 0; 3500 } 3501 3502 mtspr(SPRN_HDEC, 0x7fffffff); 3503 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr); 3504 3505 return trap; 3506 } 3507 3508 /* 3509 * Virtual-mode guest entry for POWER9 and later when the host and 3510 * guest are both using the radix MMU. The LPIDR has already been set. 3511 */ 3512 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 3513 unsigned long lpcr) 3514 { 3515 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3516 unsigned long host_dscr = mfspr(SPRN_DSCR); 3517 unsigned long host_tidr = mfspr(SPRN_TIDR); 3518 unsigned long host_iamr = mfspr(SPRN_IAMR); 3519 unsigned long host_amr = mfspr(SPRN_AMR); 3520 s64 dec; 3521 u64 tb; 3522 int trap, save_pmu; 3523 3524 dec = mfspr(SPRN_DEC); 3525 tb = mftb(); 3526 if (dec < 512) 3527 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3528 local_paca->kvm_hstate.dec_expires = dec + tb; 3529 if (local_paca->kvm_hstate.dec_expires < time_limit) 3530 time_limit = local_paca->kvm_hstate.dec_expires; 3531 3532 vcpu->arch.ceded = 0; 3533 3534 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */ 3535 3536 kvmppc_subcore_enter_guest(); 3537 3538 vc->entry_exit_map = 1; 3539 vc->in_guest = 1; 3540 3541 if (vcpu->arch.vpa.pinned_addr) { 3542 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3543 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3544 lp->yield_count = cpu_to_be32(yield_count); 3545 vcpu->arch.vpa.dirty = 1; 3546 } 3547 3548 if (cpu_has_feature(CPU_FTR_TM) || 3549 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3550 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3551 3552 kvmhv_load_guest_pmu(vcpu); 3553 3554 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3555 load_fp_state(&vcpu->arch.fp); 3556 #ifdef CONFIG_ALTIVEC 3557 load_vr_state(&vcpu->arch.vr); 3558 #endif 3559 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 3560 3561 mtspr(SPRN_DSCR, vcpu->arch.dscr); 3562 mtspr(SPRN_IAMR, vcpu->arch.iamr); 3563 mtspr(SPRN_PSPB, vcpu->arch.pspb); 3564 mtspr(SPRN_FSCR, vcpu->arch.fscr); 3565 mtspr(SPRN_TAR, vcpu->arch.tar); 3566 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr); 3567 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr); 3568 mtspr(SPRN_BESCR, vcpu->arch.bescr); 3569 mtspr(SPRN_WORT, vcpu->arch.wort); 3570 mtspr(SPRN_TIDR, vcpu->arch.tid); 3571 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 3572 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 3573 mtspr(SPRN_AMR, vcpu->arch.amr); 3574 mtspr(SPRN_UAMOR, vcpu->arch.uamor); 3575 3576 if (!(vcpu->arch.ctrl & 1)) 3577 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1); 3578 3579 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb()); 3580 3581 if (kvmhv_on_pseries()) { 3582 /* 3583 * We need to save and restore the guest visible part of the 3584 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 3585 * doesn't do this for us. Note only required if pseries since 3586 * this is done in kvmhv_load_hv_regs_and_go() below otherwise. 3587 */ 3588 unsigned long host_psscr; 3589 /* call our hypervisor to load up HV regs and go */ 3590 struct hv_guest_state hvregs; 3591 3592 host_psscr = mfspr(SPRN_PSSCR_PR); 3593 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 3594 kvmhv_save_hv_regs(vcpu, &hvregs); 3595 hvregs.lpcr = lpcr; 3596 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 3597 hvregs.version = HV_GUEST_STATE_VERSION; 3598 if (vcpu->arch.nested) { 3599 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 3600 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 3601 } else { 3602 hvregs.lpid = vcpu->kvm->arch.lpid; 3603 hvregs.vcpu_token = vcpu->vcpu_id; 3604 } 3605 hvregs.hdec_expiry = time_limit; 3606 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 3607 __pa(&vcpu->arch.regs)); 3608 kvmhv_restore_hv_return_state(vcpu, &hvregs); 3609 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 3610 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 3611 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 3612 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 3613 mtspr(SPRN_PSSCR_PR, host_psscr); 3614 3615 /* H_CEDE has to be handled now, not later */ 3616 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 3617 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 3618 kvmppc_nested_cede(vcpu); 3619 trap = 0; 3620 } 3621 } else { 3622 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr); 3623 } 3624 3625 vcpu->arch.slb_max = 0; 3626 dec = mfspr(SPRN_DEC); 3627 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 3628 dec = (s32) dec; 3629 tb = mftb(); 3630 vcpu->arch.dec_expires = dec + tb; 3631 vcpu->cpu = -1; 3632 vcpu->arch.thread_cpu = -1; 3633 vcpu->arch.ctrl = mfspr(SPRN_CTRLF); 3634 3635 vcpu->arch.iamr = mfspr(SPRN_IAMR); 3636 vcpu->arch.pspb = mfspr(SPRN_PSPB); 3637 vcpu->arch.fscr = mfspr(SPRN_FSCR); 3638 vcpu->arch.tar = mfspr(SPRN_TAR); 3639 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR); 3640 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR); 3641 vcpu->arch.bescr = mfspr(SPRN_BESCR); 3642 vcpu->arch.wort = mfspr(SPRN_WORT); 3643 vcpu->arch.tid = mfspr(SPRN_TIDR); 3644 vcpu->arch.amr = mfspr(SPRN_AMR); 3645 vcpu->arch.uamor = mfspr(SPRN_UAMOR); 3646 vcpu->arch.dscr = mfspr(SPRN_DSCR); 3647 3648 mtspr(SPRN_PSPB, 0); 3649 mtspr(SPRN_WORT, 0); 3650 mtspr(SPRN_UAMOR, 0); 3651 mtspr(SPRN_DSCR, host_dscr); 3652 mtspr(SPRN_TIDR, host_tidr); 3653 mtspr(SPRN_IAMR, host_iamr); 3654 mtspr(SPRN_PSPB, 0); 3655 3656 if (host_amr != vcpu->arch.amr) 3657 mtspr(SPRN_AMR, host_amr); 3658 3659 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3660 store_fp_state(&vcpu->arch.fp); 3661 #ifdef CONFIG_ALTIVEC 3662 store_vr_state(&vcpu->arch.vr); 3663 #endif 3664 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 3665 3666 if (cpu_has_feature(CPU_FTR_TM) || 3667 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3668 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3669 3670 save_pmu = 1; 3671 if (vcpu->arch.vpa.pinned_addr) { 3672 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3673 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3674 lp->yield_count = cpu_to_be32(yield_count); 3675 vcpu->arch.vpa.dirty = 1; 3676 save_pmu = lp->pmcregs_in_use; 3677 } 3678 /* Must save pmu if this guest is capable of running nested guests */ 3679 save_pmu |= nesting_enabled(vcpu->kvm); 3680 3681 kvmhv_save_guest_pmu(vcpu, save_pmu); 3682 3683 vc->entry_exit_map = 0x101; 3684 vc->in_guest = 0; 3685 3686 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb()); 3687 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso); 3688 3689 kvmhv_load_host_pmu(); 3690 3691 kvmppc_subcore_exit_guest(); 3692 3693 return trap; 3694 } 3695 3696 /* 3697 * Wait for some other vcpu thread to execute us, and 3698 * wake us up when we need to handle something in the host. 3699 */ 3700 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 3701 struct kvm_vcpu *vcpu, int wait_state) 3702 { 3703 DEFINE_WAIT(wait); 3704 3705 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 3706 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3707 spin_unlock(&vc->lock); 3708 schedule(); 3709 spin_lock(&vc->lock); 3710 } 3711 finish_wait(&vcpu->arch.cpu_run, &wait); 3712 } 3713 3714 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 3715 { 3716 if (!halt_poll_ns_grow) 3717 return; 3718 3719 vc->halt_poll_ns *= halt_poll_ns_grow; 3720 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 3721 vc->halt_poll_ns = halt_poll_ns_grow_start; 3722 } 3723 3724 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 3725 { 3726 if (halt_poll_ns_shrink == 0) 3727 vc->halt_poll_ns = 0; 3728 else 3729 vc->halt_poll_ns /= halt_poll_ns_shrink; 3730 } 3731 3732 #ifdef CONFIG_KVM_XICS 3733 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3734 { 3735 if (!xics_on_xive()) 3736 return false; 3737 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 3738 vcpu->arch.xive_saved_state.cppr; 3739 } 3740 #else 3741 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3742 { 3743 return false; 3744 } 3745 #endif /* CONFIG_KVM_XICS */ 3746 3747 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3748 { 3749 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3750 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3751 return true; 3752 3753 return false; 3754 } 3755 3756 /* 3757 * Check to see if any of the runnable vcpus on the vcore have pending 3758 * exceptions or are no longer ceded 3759 */ 3760 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3761 { 3762 struct kvm_vcpu *vcpu; 3763 int i; 3764 3765 for_each_runnable_thread(i, vcpu, vc) { 3766 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3767 return 1; 3768 } 3769 3770 return 0; 3771 } 3772 3773 /* 3774 * All the vcpus in this vcore are idle, so wait for a decrementer 3775 * or external interrupt to one of the vcpus. vc->lock is held. 3776 */ 3777 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3778 { 3779 ktime_t cur, start_poll, start_wait; 3780 int do_sleep = 1; 3781 u64 block_ns; 3782 DECLARE_SWAITQUEUE(wait); 3783 3784 /* Poll for pending exceptions and ceded state */ 3785 cur = start_poll = ktime_get(); 3786 if (vc->halt_poll_ns) { 3787 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3788 ++vc->runner->stat.halt_attempted_poll; 3789 3790 vc->vcore_state = VCORE_POLLING; 3791 spin_unlock(&vc->lock); 3792 3793 do { 3794 if (kvmppc_vcore_check_block(vc)) { 3795 do_sleep = 0; 3796 break; 3797 } 3798 cur = ktime_get(); 3799 } while (single_task_running() && ktime_before(cur, stop)); 3800 3801 spin_lock(&vc->lock); 3802 vc->vcore_state = VCORE_INACTIVE; 3803 3804 if (!do_sleep) { 3805 ++vc->runner->stat.halt_successful_poll; 3806 goto out; 3807 } 3808 } 3809 3810 prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE); 3811 3812 if (kvmppc_vcore_check_block(vc)) { 3813 finish_swait(&vc->wq, &wait); 3814 do_sleep = 0; 3815 /* If we polled, count this as a successful poll */ 3816 if (vc->halt_poll_ns) 3817 ++vc->runner->stat.halt_successful_poll; 3818 goto out; 3819 } 3820 3821 start_wait = ktime_get(); 3822 3823 vc->vcore_state = VCORE_SLEEPING; 3824 trace_kvmppc_vcore_blocked(vc, 0); 3825 spin_unlock(&vc->lock); 3826 schedule(); 3827 finish_swait(&vc->wq, &wait); 3828 spin_lock(&vc->lock); 3829 vc->vcore_state = VCORE_INACTIVE; 3830 trace_kvmppc_vcore_blocked(vc, 1); 3831 ++vc->runner->stat.halt_successful_wait; 3832 3833 cur = ktime_get(); 3834 3835 out: 3836 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3837 3838 /* Attribute wait time */ 3839 if (do_sleep) { 3840 vc->runner->stat.halt_wait_ns += 3841 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3842 /* Attribute failed poll time */ 3843 if (vc->halt_poll_ns) 3844 vc->runner->stat.halt_poll_fail_ns += 3845 ktime_to_ns(start_wait) - 3846 ktime_to_ns(start_poll); 3847 } else { 3848 /* Attribute successful poll time */ 3849 if (vc->halt_poll_ns) 3850 vc->runner->stat.halt_poll_success_ns += 3851 ktime_to_ns(cur) - 3852 ktime_to_ns(start_poll); 3853 } 3854 3855 /* Adjust poll time */ 3856 if (halt_poll_ns) { 3857 if (block_ns <= vc->halt_poll_ns) 3858 ; 3859 /* We slept and blocked for longer than the max halt time */ 3860 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3861 shrink_halt_poll_ns(vc); 3862 /* We slept and our poll time is too small */ 3863 else if (vc->halt_poll_ns < halt_poll_ns && 3864 block_ns < halt_poll_ns) 3865 grow_halt_poll_ns(vc); 3866 if (vc->halt_poll_ns > halt_poll_ns) 3867 vc->halt_poll_ns = halt_poll_ns; 3868 } else 3869 vc->halt_poll_ns = 0; 3870 3871 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3872 } 3873 3874 /* 3875 * This never fails for a radix guest, as none of the operations it does 3876 * for a radix guest can fail or have a way to report failure. 3877 * kvmhv_run_single_vcpu() relies on this fact. 3878 */ 3879 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 3880 { 3881 int r = 0; 3882 struct kvm *kvm = vcpu->kvm; 3883 3884 mutex_lock(&kvm->arch.mmu_setup_lock); 3885 if (!kvm->arch.mmu_ready) { 3886 if (!kvm_is_radix(kvm)) 3887 r = kvmppc_hv_setup_htab_rma(vcpu); 3888 if (!r) { 3889 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3890 kvmppc_setup_partition_table(kvm); 3891 kvm->arch.mmu_ready = 1; 3892 } 3893 } 3894 mutex_unlock(&kvm->arch.mmu_setup_lock); 3895 return r; 3896 } 3897 3898 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 3899 { 3900 int n_ceded, i, r; 3901 struct kvmppc_vcore *vc; 3902 struct kvm_vcpu *v; 3903 3904 trace_kvmppc_run_vcpu_enter(vcpu); 3905 3906 kvm_run->exit_reason = 0; 3907 vcpu->arch.ret = RESUME_GUEST; 3908 vcpu->arch.trap = 0; 3909 kvmppc_update_vpas(vcpu); 3910 3911 /* 3912 * Synchronize with other threads in this virtual core 3913 */ 3914 vc = vcpu->arch.vcore; 3915 spin_lock(&vc->lock); 3916 vcpu->arch.ceded = 0; 3917 vcpu->arch.run_task = current; 3918 vcpu->arch.kvm_run = kvm_run; 3919 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3920 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3921 vcpu->arch.busy_preempt = TB_NIL; 3922 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 3923 ++vc->n_runnable; 3924 3925 /* 3926 * This happens the first time this is called for a vcpu. 3927 * If the vcore is already running, we may be able to start 3928 * this thread straight away and have it join in. 3929 */ 3930 if (!signal_pending(current)) { 3931 if ((vc->vcore_state == VCORE_PIGGYBACK || 3932 vc->vcore_state == VCORE_RUNNING) && 3933 !VCORE_IS_EXITING(vc)) { 3934 kvmppc_create_dtl_entry(vcpu, vc); 3935 kvmppc_start_thread(vcpu, vc); 3936 trace_kvm_guest_enter(vcpu); 3937 } else if (vc->vcore_state == VCORE_SLEEPING) { 3938 swake_up_one(&vc->wq); 3939 } 3940 3941 } 3942 3943 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3944 !signal_pending(current)) { 3945 /* See if the MMU is ready to go */ 3946 if (!vcpu->kvm->arch.mmu_ready) { 3947 spin_unlock(&vc->lock); 3948 r = kvmhv_setup_mmu(vcpu); 3949 spin_lock(&vc->lock); 3950 if (r) { 3951 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3952 kvm_run->fail_entry. 3953 hardware_entry_failure_reason = 0; 3954 vcpu->arch.ret = r; 3955 break; 3956 } 3957 } 3958 3959 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3960 kvmppc_vcore_end_preempt(vc); 3961 3962 if (vc->vcore_state != VCORE_INACTIVE) { 3963 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 3964 continue; 3965 } 3966 for_each_runnable_thread(i, v, vc) { 3967 kvmppc_core_prepare_to_enter(v); 3968 if (signal_pending(v->arch.run_task)) { 3969 kvmppc_remove_runnable(vc, v); 3970 v->stat.signal_exits++; 3971 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 3972 v->arch.ret = -EINTR; 3973 wake_up(&v->arch.cpu_run); 3974 } 3975 } 3976 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3977 break; 3978 n_ceded = 0; 3979 for_each_runnable_thread(i, v, vc) { 3980 if (!kvmppc_vcpu_woken(v)) 3981 n_ceded += v->arch.ceded; 3982 else 3983 v->arch.ceded = 0; 3984 } 3985 vc->runner = vcpu; 3986 if (n_ceded == vc->n_runnable) { 3987 kvmppc_vcore_blocked(vc); 3988 } else if (need_resched()) { 3989 kvmppc_vcore_preempt(vc); 3990 /* Let something else run */ 3991 cond_resched_lock(&vc->lock); 3992 if (vc->vcore_state == VCORE_PREEMPT) 3993 kvmppc_vcore_end_preempt(vc); 3994 } else { 3995 kvmppc_run_core(vc); 3996 } 3997 vc->runner = NULL; 3998 } 3999 4000 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4001 (vc->vcore_state == VCORE_RUNNING || 4002 vc->vcore_state == VCORE_EXITING || 4003 vc->vcore_state == VCORE_PIGGYBACK)) 4004 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4005 4006 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4007 kvmppc_vcore_end_preempt(vc); 4008 4009 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4010 kvmppc_remove_runnable(vc, vcpu); 4011 vcpu->stat.signal_exits++; 4012 kvm_run->exit_reason = KVM_EXIT_INTR; 4013 vcpu->arch.ret = -EINTR; 4014 } 4015 4016 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4017 /* Wake up some vcpu to run the core */ 4018 i = -1; 4019 v = next_runnable_thread(vc, &i); 4020 wake_up(&v->arch.cpu_run); 4021 } 4022 4023 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 4024 spin_unlock(&vc->lock); 4025 return vcpu->arch.ret; 4026 } 4027 4028 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run, 4029 struct kvm_vcpu *vcpu, u64 time_limit, 4030 unsigned long lpcr) 4031 { 4032 int trap, r, pcpu; 4033 int srcu_idx, lpid; 4034 struct kvmppc_vcore *vc; 4035 struct kvm *kvm = vcpu->kvm; 4036 struct kvm_nested_guest *nested = vcpu->arch.nested; 4037 4038 trace_kvmppc_run_vcpu_enter(vcpu); 4039 4040 kvm_run->exit_reason = 0; 4041 vcpu->arch.ret = RESUME_GUEST; 4042 vcpu->arch.trap = 0; 4043 4044 vc = vcpu->arch.vcore; 4045 vcpu->arch.ceded = 0; 4046 vcpu->arch.run_task = current; 4047 vcpu->arch.kvm_run = kvm_run; 4048 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4049 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4050 vcpu->arch.busy_preempt = TB_NIL; 4051 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4052 vc->runnable_threads[0] = vcpu; 4053 vc->n_runnable = 1; 4054 vc->runner = vcpu; 4055 4056 /* See if the MMU is ready to go */ 4057 if (!kvm->arch.mmu_ready) 4058 kvmhv_setup_mmu(vcpu); 4059 4060 if (need_resched()) 4061 cond_resched(); 4062 4063 kvmppc_update_vpas(vcpu); 4064 4065 init_vcore_to_run(vc); 4066 vc->preempt_tb = TB_NIL; 4067 4068 preempt_disable(); 4069 pcpu = smp_processor_id(); 4070 vc->pcpu = pcpu; 4071 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4072 4073 local_irq_disable(); 4074 hard_irq_disable(); 4075 if (signal_pending(current)) 4076 goto sigpend; 4077 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready) 4078 goto out; 4079 4080 if (!nested) { 4081 kvmppc_core_prepare_to_enter(vcpu); 4082 if (vcpu->arch.doorbell_request) { 4083 vc->dpdes = 1; 4084 smp_wmb(); 4085 vcpu->arch.doorbell_request = 0; 4086 } 4087 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4088 &vcpu->arch.pending_exceptions)) 4089 lpcr |= LPCR_MER; 4090 } else if (vcpu->arch.pending_exceptions || 4091 vcpu->arch.doorbell_request || 4092 xive_interrupt_pending(vcpu)) { 4093 vcpu->arch.ret = RESUME_HOST; 4094 goto out; 4095 } 4096 4097 kvmppc_clear_host_core(pcpu); 4098 4099 local_paca->kvm_hstate.tid = 0; 4100 local_paca->kvm_hstate.napping = 0; 4101 local_paca->kvm_hstate.kvm_split_mode = NULL; 4102 kvmppc_start_thread(vcpu, vc); 4103 kvmppc_create_dtl_entry(vcpu, vc); 4104 trace_kvm_guest_enter(vcpu); 4105 4106 vc->vcore_state = VCORE_RUNNING; 4107 trace_kvmppc_run_core(vc, 0); 4108 4109 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4110 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid; 4111 mtspr(SPRN_LPID, lpid); 4112 isync(); 4113 kvmppc_check_need_tlb_flush(kvm, pcpu, nested); 4114 } 4115 4116 guest_enter_irqoff(); 4117 4118 srcu_idx = srcu_read_lock(&kvm->srcu); 4119 4120 this_cpu_disable_ftrace(); 4121 4122 /* Tell lockdep that we're about to enable interrupts */ 4123 trace_hardirqs_on(); 4124 4125 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr); 4126 vcpu->arch.trap = trap; 4127 4128 trace_hardirqs_off(); 4129 4130 this_cpu_enable_ftrace(); 4131 4132 srcu_read_unlock(&kvm->srcu, srcu_idx); 4133 4134 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4135 mtspr(SPRN_LPID, kvm->arch.host_lpid); 4136 isync(); 4137 } 4138 4139 set_irq_happened(trap); 4140 4141 kvmppc_set_host_core(pcpu); 4142 4143 local_irq_enable(); 4144 guest_exit(); 4145 4146 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest); 4147 4148 preempt_enable(); 4149 4150 /* 4151 * cancel pending decrementer exception if DEC is now positive, or if 4152 * entering a nested guest in which case the decrementer is now owned 4153 * by L2 and the L1 decrementer is provided in hdec_expires 4154 */ 4155 if (kvmppc_core_pending_dec(vcpu) && 4156 ((get_tb() < vcpu->arch.dec_expires) || 4157 (trap == BOOK3S_INTERRUPT_SYSCALL && 4158 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4159 kvmppc_core_dequeue_dec(vcpu); 4160 4161 trace_kvm_guest_exit(vcpu); 4162 r = RESUME_GUEST; 4163 if (trap) { 4164 if (!nested) 4165 r = kvmppc_handle_exit_hv(kvm_run, vcpu, current); 4166 else 4167 r = kvmppc_handle_nested_exit(kvm_run, vcpu); 4168 } 4169 vcpu->arch.ret = r; 4170 4171 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded && 4172 !kvmppc_vcpu_woken(vcpu)) { 4173 kvmppc_set_timer(vcpu); 4174 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) { 4175 if (signal_pending(current)) { 4176 vcpu->stat.signal_exits++; 4177 kvm_run->exit_reason = KVM_EXIT_INTR; 4178 vcpu->arch.ret = -EINTR; 4179 break; 4180 } 4181 spin_lock(&vc->lock); 4182 kvmppc_vcore_blocked(vc); 4183 spin_unlock(&vc->lock); 4184 } 4185 } 4186 vcpu->arch.ceded = 0; 4187 4188 vc->vcore_state = VCORE_INACTIVE; 4189 trace_kvmppc_run_core(vc, 1); 4190 4191 done: 4192 kvmppc_remove_runnable(vc, vcpu); 4193 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 4194 4195 return vcpu->arch.ret; 4196 4197 sigpend: 4198 vcpu->stat.signal_exits++; 4199 kvm_run->exit_reason = KVM_EXIT_INTR; 4200 vcpu->arch.ret = -EINTR; 4201 out: 4202 local_irq_enable(); 4203 preempt_enable(); 4204 goto done; 4205 } 4206 4207 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 4208 { 4209 int r; 4210 int srcu_idx; 4211 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 4212 unsigned long user_tar = 0; 4213 unsigned int user_vrsave; 4214 struct kvm *kvm; 4215 4216 if (!vcpu->arch.sane) { 4217 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4218 return -EINVAL; 4219 } 4220 4221 /* 4222 * Don't allow entry with a suspended transaction, because 4223 * the guest entry/exit code will lose it. 4224 * If the guest has TM enabled, save away their TM-related SPRs 4225 * (they will get restored by the TM unavailable interrupt). 4226 */ 4227 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4228 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4229 (current->thread.regs->msr & MSR_TM)) { 4230 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4231 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4232 run->fail_entry.hardware_entry_failure_reason = 0; 4233 return -EINVAL; 4234 } 4235 /* Enable TM so we can read the TM SPRs */ 4236 mtmsr(mfmsr() | MSR_TM); 4237 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 4238 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 4239 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 4240 current->thread.regs->msr &= ~MSR_TM; 4241 } 4242 #endif 4243 4244 /* 4245 * Force online to 1 for the sake of old userspace which doesn't 4246 * set it. 4247 */ 4248 if (!vcpu->arch.online) { 4249 atomic_inc(&vcpu->arch.vcore->online_count); 4250 vcpu->arch.online = 1; 4251 } 4252 4253 kvmppc_core_prepare_to_enter(vcpu); 4254 4255 /* No need to go into the guest when all we'll do is come back out */ 4256 if (signal_pending(current)) { 4257 run->exit_reason = KVM_EXIT_INTR; 4258 return -EINTR; 4259 } 4260 4261 kvm = vcpu->kvm; 4262 atomic_inc(&kvm->arch.vcpus_running); 4263 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4264 smp_mb(); 4265 4266 flush_all_to_thread(current); 4267 4268 /* Save userspace EBB and other register values */ 4269 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4270 ebb_regs[0] = mfspr(SPRN_EBBHR); 4271 ebb_regs[1] = mfspr(SPRN_EBBRR); 4272 ebb_regs[2] = mfspr(SPRN_BESCR); 4273 user_tar = mfspr(SPRN_TAR); 4274 } 4275 user_vrsave = mfspr(SPRN_VRSAVE); 4276 4277 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 4278 vcpu->arch.pgdir = kvm->mm->pgd; 4279 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4280 4281 do { 4282 /* 4283 * The early POWER9 chips that can't mix radix and HPT threads 4284 * on the same core also need the workaround for the problem 4285 * where the TLB would prefetch entries in the guest exit path 4286 * for radix guests using the guest PIDR value and LPID 0. 4287 * The workaround is in the old path (kvmppc_run_vcpu()) 4288 * but not the new path (kvmhv_run_single_vcpu()). 4289 */ 4290 if (kvm->arch.threads_indep && kvm_is_radix(kvm) && 4291 !no_mixing_hpt_and_radix) 4292 r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0, 4293 vcpu->arch.vcore->lpcr); 4294 else 4295 r = kvmppc_run_vcpu(run, vcpu); 4296 4297 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 4298 !(vcpu->arch.shregs.msr & MSR_PR)) { 4299 trace_kvm_hcall_enter(vcpu); 4300 r = kvmppc_pseries_do_hcall(vcpu); 4301 trace_kvm_hcall_exit(vcpu, r); 4302 kvmppc_core_prepare_to_enter(vcpu); 4303 } else if (r == RESUME_PAGE_FAULT) { 4304 srcu_idx = srcu_read_lock(&kvm->srcu); 4305 r = kvmppc_book3s_hv_page_fault(run, vcpu, 4306 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4307 srcu_read_unlock(&kvm->srcu, srcu_idx); 4308 } else if (r == RESUME_PASSTHROUGH) { 4309 if (WARN_ON(xics_on_xive())) 4310 r = H_SUCCESS; 4311 else 4312 r = kvmppc_xics_rm_complete(vcpu, 0); 4313 } 4314 } while (is_kvmppc_resume_guest(r)); 4315 4316 /* Restore userspace EBB and other register values */ 4317 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4318 mtspr(SPRN_EBBHR, ebb_regs[0]); 4319 mtspr(SPRN_EBBRR, ebb_regs[1]); 4320 mtspr(SPRN_BESCR, ebb_regs[2]); 4321 mtspr(SPRN_TAR, user_tar); 4322 mtspr(SPRN_FSCR, current->thread.fscr); 4323 } 4324 mtspr(SPRN_VRSAVE, user_vrsave); 4325 4326 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4327 atomic_dec(&kvm->arch.vcpus_running); 4328 return r; 4329 } 4330 4331 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4332 int shift, int sllp) 4333 { 4334 (*sps)->page_shift = shift; 4335 (*sps)->slb_enc = sllp; 4336 (*sps)->enc[0].page_shift = shift; 4337 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4338 /* 4339 * Add 16MB MPSS support (may get filtered out by userspace) 4340 */ 4341 if (shift != 24) { 4342 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4343 if (penc != -1) { 4344 (*sps)->enc[1].page_shift = 24; 4345 (*sps)->enc[1].pte_enc = penc; 4346 } 4347 } 4348 (*sps)++; 4349 } 4350 4351 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4352 struct kvm_ppc_smmu_info *info) 4353 { 4354 struct kvm_ppc_one_seg_page_size *sps; 4355 4356 /* 4357 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4358 * POWER7 doesn't support keys for instruction accesses, 4359 * POWER8 and POWER9 do. 4360 */ 4361 info->data_keys = 32; 4362 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4363 4364 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4365 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4366 info->slb_size = 32; 4367 4368 /* We only support these sizes for now, and no muti-size segments */ 4369 sps = &info->sps[0]; 4370 kvmppc_add_seg_page_size(&sps, 12, 0); 4371 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4372 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4373 4374 /* If running as a nested hypervisor, we don't support HPT guests */ 4375 if (kvmhv_on_pseries()) 4376 info->flags |= KVM_PPC_NO_HASH; 4377 4378 return 0; 4379 } 4380 4381 /* 4382 * Get (and clear) the dirty memory log for a memory slot. 4383 */ 4384 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4385 struct kvm_dirty_log *log) 4386 { 4387 struct kvm_memslots *slots; 4388 struct kvm_memory_slot *memslot; 4389 int i, r; 4390 unsigned long n; 4391 unsigned long *buf, *p; 4392 struct kvm_vcpu *vcpu; 4393 4394 mutex_lock(&kvm->slots_lock); 4395 4396 r = -EINVAL; 4397 if (log->slot >= KVM_USER_MEM_SLOTS) 4398 goto out; 4399 4400 slots = kvm_memslots(kvm); 4401 memslot = id_to_memslot(slots, log->slot); 4402 r = -ENOENT; 4403 if (!memslot->dirty_bitmap) 4404 goto out; 4405 4406 /* 4407 * Use second half of bitmap area because both HPT and radix 4408 * accumulate bits in the first half. 4409 */ 4410 n = kvm_dirty_bitmap_bytes(memslot); 4411 buf = memslot->dirty_bitmap + n / sizeof(long); 4412 memset(buf, 0, n); 4413 4414 if (kvm_is_radix(kvm)) 4415 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4416 else 4417 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4418 if (r) 4419 goto out; 4420 4421 /* 4422 * We accumulate dirty bits in the first half of the 4423 * memslot's dirty_bitmap area, for when pages are paged 4424 * out or modified by the host directly. Pick up these 4425 * bits and add them to the map. 4426 */ 4427 p = memslot->dirty_bitmap; 4428 for (i = 0; i < n / sizeof(long); ++i) 4429 buf[i] |= xchg(&p[i], 0); 4430 4431 /* Harvest dirty bits from VPA and DTL updates */ 4432 /* Note: we never modify the SLB shadow buffer areas */ 4433 kvm_for_each_vcpu(i, vcpu, kvm) { 4434 spin_lock(&vcpu->arch.vpa_update_lock); 4435 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4436 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4437 spin_unlock(&vcpu->arch.vpa_update_lock); 4438 } 4439 4440 r = -EFAULT; 4441 if (copy_to_user(log->dirty_bitmap, buf, n)) 4442 goto out; 4443 4444 r = 0; 4445 out: 4446 mutex_unlock(&kvm->slots_lock); 4447 return r; 4448 } 4449 4450 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 4451 struct kvm_memory_slot *dont) 4452 { 4453 if (!dont || free->arch.rmap != dont->arch.rmap) { 4454 vfree(free->arch.rmap); 4455 free->arch.rmap = NULL; 4456 } 4457 } 4458 4459 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 4460 unsigned long npages) 4461 { 4462 slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap))); 4463 if (!slot->arch.rmap) 4464 return -ENOMEM; 4465 4466 return 0; 4467 } 4468 4469 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 4470 struct kvm_memory_slot *memslot, 4471 const struct kvm_userspace_memory_region *mem) 4472 { 4473 return 0; 4474 } 4475 4476 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 4477 const struct kvm_userspace_memory_region *mem, 4478 const struct kvm_memory_slot *old, 4479 const struct kvm_memory_slot *new, 4480 enum kvm_mr_change change) 4481 { 4482 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4483 4484 /* 4485 * If we are making a new memslot, it might make 4486 * some address that was previously cached as emulated 4487 * MMIO be no longer emulated MMIO, so invalidate 4488 * all the caches of emulated MMIO translations. 4489 */ 4490 if (npages) 4491 atomic64_inc(&kvm->arch.mmio_update); 4492 4493 /* 4494 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 4495 * have already called kvm_arch_flush_shadow_memslot() to 4496 * flush shadow mappings. For KVM_MR_CREATE we have no 4497 * previous mappings. So the only case to handle is 4498 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 4499 * has been changed. 4500 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 4501 * to get rid of any THP PTEs in the partition-scoped page tables 4502 * so we can track dirtiness at the page level; we flush when 4503 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 4504 * using THP PTEs. 4505 */ 4506 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 4507 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 4508 kvmppc_radix_flush_memslot(kvm, old); 4509 /* 4510 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 4511 */ 4512 if (!kvm->arch.secure_guest) 4513 return; 4514 4515 switch (change) { 4516 case KVM_MR_CREATE: 4517 if (kvmppc_uvmem_slot_init(kvm, new)) 4518 return; 4519 uv_register_mem_slot(kvm->arch.lpid, 4520 new->base_gfn << PAGE_SHIFT, 4521 new->npages * PAGE_SIZE, 4522 0, new->id); 4523 break; 4524 case KVM_MR_DELETE: 4525 uv_unregister_mem_slot(kvm->arch.lpid, old->id); 4526 kvmppc_uvmem_slot_free(kvm, old); 4527 break; 4528 default: 4529 /* TODO: Handle KVM_MR_MOVE */ 4530 break; 4531 } 4532 } 4533 4534 /* 4535 * Update LPCR values in kvm->arch and in vcores. 4536 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 4537 * of kvm->arch.lpcr update). 4538 */ 4539 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 4540 { 4541 long int i; 4542 u32 cores_done = 0; 4543 4544 if ((kvm->arch.lpcr & mask) == lpcr) 4545 return; 4546 4547 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 4548 4549 for (i = 0; i < KVM_MAX_VCORES; ++i) { 4550 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 4551 if (!vc) 4552 continue; 4553 spin_lock(&vc->lock); 4554 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 4555 spin_unlock(&vc->lock); 4556 if (++cores_done >= kvm->arch.online_vcores) 4557 break; 4558 } 4559 } 4560 4561 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 4562 { 4563 return; 4564 } 4565 4566 void kvmppc_setup_partition_table(struct kvm *kvm) 4567 { 4568 unsigned long dw0, dw1; 4569 4570 if (!kvm_is_radix(kvm)) { 4571 /* PS field - page size for VRMA */ 4572 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 4573 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 4574 /* HTABSIZE and HTABORG fields */ 4575 dw0 |= kvm->arch.sdr1; 4576 4577 /* Second dword as set by userspace */ 4578 dw1 = kvm->arch.process_table; 4579 } else { 4580 dw0 = PATB_HR | radix__get_tree_size() | 4581 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 4582 dw1 = PATB_GR | kvm->arch.process_table; 4583 } 4584 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 4585 } 4586 4587 /* 4588 * Set up HPT (hashed page table) and RMA (real-mode area). 4589 * Must be called with kvm->arch.mmu_setup_lock held. 4590 */ 4591 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 4592 { 4593 int err = 0; 4594 struct kvm *kvm = vcpu->kvm; 4595 unsigned long hva; 4596 struct kvm_memory_slot *memslot; 4597 struct vm_area_struct *vma; 4598 unsigned long lpcr = 0, senc; 4599 unsigned long psize, porder; 4600 int srcu_idx; 4601 4602 /* Allocate hashed page table (if not done already) and reset it */ 4603 if (!kvm->arch.hpt.virt) { 4604 int order = KVM_DEFAULT_HPT_ORDER; 4605 struct kvm_hpt_info info; 4606 4607 err = kvmppc_allocate_hpt(&info, order); 4608 /* If we get here, it means userspace didn't specify a 4609 * size explicitly. So, try successively smaller 4610 * sizes if the default failed. */ 4611 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 4612 err = kvmppc_allocate_hpt(&info, order); 4613 4614 if (err < 0) { 4615 pr_err("KVM: Couldn't alloc HPT\n"); 4616 goto out; 4617 } 4618 4619 kvmppc_set_hpt(kvm, &info); 4620 } 4621 4622 /* Look up the memslot for guest physical address 0 */ 4623 srcu_idx = srcu_read_lock(&kvm->srcu); 4624 memslot = gfn_to_memslot(kvm, 0); 4625 4626 /* We must have some memory at 0 by now */ 4627 err = -EINVAL; 4628 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 4629 goto out_srcu; 4630 4631 /* Look up the VMA for the start of this memory slot */ 4632 hva = memslot->userspace_addr; 4633 down_read(&kvm->mm->mmap_sem); 4634 vma = find_vma(kvm->mm, hva); 4635 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 4636 goto up_out; 4637 4638 psize = vma_kernel_pagesize(vma); 4639 4640 up_read(&kvm->mm->mmap_sem); 4641 4642 /* We can handle 4k, 64k or 16M pages in the VRMA */ 4643 if (psize >= 0x1000000) 4644 psize = 0x1000000; 4645 else if (psize >= 0x10000) 4646 psize = 0x10000; 4647 else 4648 psize = 0x1000; 4649 porder = __ilog2(psize); 4650 4651 senc = slb_pgsize_encoding(psize); 4652 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 4653 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4654 /* Create HPTEs in the hash page table for the VRMA */ 4655 kvmppc_map_vrma(vcpu, memslot, porder); 4656 4657 /* Update VRMASD field in the LPCR */ 4658 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 4659 /* the -4 is to account for senc values starting at 0x10 */ 4660 lpcr = senc << (LPCR_VRMASD_SH - 4); 4661 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 4662 } 4663 4664 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 4665 smp_wmb(); 4666 err = 0; 4667 out_srcu: 4668 srcu_read_unlock(&kvm->srcu, srcu_idx); 4669 out: 4670 return err; 4671 4672 up_out: 4673 up_read(&kvm->mm->mmap_sem); 4674 goto out_srcu; 4675 } 4676 4677 /* 4678 * Must be called with kvm->arch.mmu_setup_lock held and 4679 * mmu_ready = 0 and no vcpus running. 4680 */ 4681 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 4682 { 4683 if (nesting_enabled(kvm)) 4684 kvmhv_release_all_nested(kvm); 4685 kvmppc_rmap_reset(kvm); 4686 kvm->arch.process_table = 0; 4687 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4688 spin_lock(&kvm->mmu_lock); 4689 kvm->arch.radix = 0; 4690 spin_unlock(&kvm->mmu_lock); 4691 kvmppc_free_radix(kvm); 4692 kvmppc_update_lpcr(kvm, LPCR_VPM1, 4693 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4694 return 0; 4695 } 4696 4697 /* 4698 * Must be called with kvm->arch.mmu_setup_lock held and 4699 * mmu_ready = 0 and no vcpus running. 4700 */ 4701 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 4702 { 4703 int err; 4704 4705 err = kvmppc_init_vm_radix(kvm); 4706 if (err) 4707 return err; 4708 kvmppc_rmap_reset(kvm); 4709 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4710 spin_lock(&kvm->mmu_lock); 4711 kvm->arch.radix = 1; 4712 spin_unlock(&kvm->mmu_lock); 4713 kvmppc_free_hpt(&kvm->arch.hpt); 4714 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 4715 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4716 return 0; 4717 } 4718 4719 #ifdef CONFIG_KVM_XICS 4720 /* 4721 * Allocate a per-core structure for managing state about which cores are 4722 * running in the host versus the guest and for exchanging data between 4723 * real mode KVM and CPU running in the host. 4724 * This is only done for the first VM. 4725 * The allocated structure stays even if all VMs have stopped. 4726 * It is only freed when the kvm-hv module is unloaded. 4727 * It's OK for this routine to fail, we just don't support host 4728 * core operations like redirecting H_IPI wakeups. 4729 */ 4730 void kvmppc_alloc_host_rm_ops(void) 4731 { 4732 struct kvmppc_host_rm_ops *ops; 4733 unsigned long l_ops; 4734 int cpu, core; 4735 int size; 4736 4737 /* Not the first time here ? */ 4738 if (kvmppc_host_rm_ops_hv != NULL) 4739 return; 4740 4741 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 4742 if (!ops) 4743 return; 4744 4745 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 4746 ops->rm_core = kzalloc(size, GFP_KERNEL); 4747 4748 if (!ops->rm_core) { 4749 kfree(ops); 4750 return; 4751 } 4752 4753 cpus_read_lock(); 4754 4755 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 4756 if (!cpu_online(cpu)) 4757 continue; 4758 4759 core = cpu >> threads_shift; 4760 ops->rm_core[core].rm_state.in_host = 1; 4761 } 4762 4763 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 4764 4765 /* 4766 * Make the contents of the kvmppc_host_rm_ops structure visible 4767 * to other CPUs before we assign it to the global variable. 4768 * Do an atomic assignment (no locks used here), but if someone 4769 * beats us to it, just free our copy and return. 4770 */ 4771 smp_wmb(); 4772 l_ops = (unsigned long) ops; 4773 4774 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 4775 cpus_read_unlock(); 4776 kfree(ops->rm_core); 4777 kfree(ops); 4778 return; 4779 } 4780 4781 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 4782 "ppc/kvm_book3s:prepare", 4783 kvmppc_set_host_core, 4784 kvmppc_clear_host_core); 4785 cpus_read_unlock(); 4786 } 4787 4788 void kvmppc_free_host_rm_ops(void) 4789 { 4790 if (kvmppc_host_rm_ops_hv) { 4791 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 4792 kfree(kvmppc_host_rm_ops_hv->rm_core); 4793 kfree(kvmppc_host_rm_ops_hv); 4794 kvmppc_host_rm_ops_hv = NULL; 4795 } 4796 } 4797 #endif 4798 4799 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 4800 { 4801 unsigned long lpcr, lpid; 4802 char buf[32]; 4803 int ret; 4804 4805 mutex_init(&kvm->arch.uvmem_lock); 4806 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 4807 mutex_init(&kvm->arch.mmu_setup_lock); 4808 4809 /* Allocate the guest's logical partition ID */ 4810 4811 lpid = kvmppc_alloc_lpid(); 4812 if ((long)lpid < 0) 4813 return -ENOMEM; 4814 kvm->arch.lpid = lpid; 4815 4816 kvmppc_alloc_host_rm_ops(); 4817 4818 kvmhv_vm_nested_init(kvm); 4819 4820 /* 4821 * Since we don't flush the TLB when tearing down a VM, 4822 * and this lpid might have previously been used, 4823 * make sure we flush on each core before running the new VM. 4824 * On POWER9, the tlbie in mmu_partition_table_set_entry() 4825 * does this flush for us. 4826 */ 4827 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4828 cpumask_setall(&kvm->arch.need_tlb_flush); 4829 4830 /* Start out with the default set of hcalls enabled */ 4831 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 4832 sizeof(kvm->arch.enabled_hcalls)); 4833 4834 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4835 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 4836 4837 /* Init LPCR for virtual RMA mode */ 4838 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4839 kvm->arch.host_lpid = mfspr(SPRN_LPID); 4840 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 4841 lpcr &= LPCR_PECE | LPCR_LPES; 4842 } else { 4843 lpcr = 0; 4844 } 4845 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 4846 LPCR_VPM0 | LPCR_VPM1; 4847 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 4848 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4849 /* On POWER8 turn on online bit to enable PURR/SPURR */ 4850 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4851 lpcr |= LPCR_ONL; 4852 /* 4853 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 4854 * Set HVICE bit to enable hypervisor virtualization interrupts. 4855 * Set HEIC to prevent OS interrupts to go to hypervisor (should 4856 * be unnecessary but better safe than sorry in case we re-enable 4857 * EE in HV mode with this LPCR still set) 4858 */ 4859 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4860 lpcr &= ~LPCR_VPM0; 4861 lpcr |= LPCR_HVICE | LPCR_HEIC; 4862 4863 /* 4864 * If xive is enabled, we route 0x500 interrupts directly 4865 * to the guest. 4866 */ 4867 if (xics_on_xive()) 4868 lpcr |= LPCR_LPES; 4869 } 4870 4871 /* 4872 * If the host uses radix, the guest starts out as radix. 4873 */ 4874 if (radix_enabled()) { 4875 kvm->arch.radix = 1; 4876 kvm->arch.mmu_ready = 1; 4877 lpcr &= ~LPCR_VPM1; 4878 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 4879 ret = kvmppc_init_vm_radix(kvm); 4880 if (ret) { 4881 kvmppc_free_lpid(kvm->arch.lpid); 4882 return ret; 4883 } 4884 kvmppc_setup_partition_table(kvm); 4885 } 4886 4887 kvm->arch.lpcr = lpcr; 4888 4889 /* Initialization for future HPT resizes */ 4890 kvm->arch.resize_hpt = NULL; 4891 4892 /* 4893 * Work out how many sets the TLB has, for the use of 4894 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 4895 */ 4896 if (radix_enabled()) 4897 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 4898 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 4899 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 4900 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4901 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 4902 else 4903 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 4904 4905 /* 4906 * Track that we now have a HV mode VM active. This blocks secondary 4907 * CPU threads from coming online. 4908 * On POWER9, we only need to do this if the "indep_threads_mode" 4909 * module parameter has been set to N. 4910 */ 4911 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4912 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) { 4913 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n"); 4914 kvm->arch.threads_indep = true; 4915 } else { 4916 kvm->arch.threads_indep = indep_threads_mode; 4917 } 4918 } 4919 if (!kvm->arch.threads_indep) 4920 kvm_hv_vm_activated(); 4921 4922 /* 4923 * Initialize smt_mode depending on processor. 4924 * POWER8 and earlier have to use "strict" threading, where 4925 * all vCPUs in a vcore have to run on the same (sub)core, 4926 * whereas on POWER9 the threads can each run a different 4927 * guest. 4928 */ 4929 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4930 kvm->arch.smt_mode = threads_per_subcore; 4931 else 4932 kvm->arch.smt_mode = 1; 4933 kvm->arch.emul_smt_mode = 1; 4934 4935 /* 4936 * Create a debugfs directory for the VM 4937 */ 4938 snprintf(buf, sizeof(buf), "vm%d", current->pid); 4939 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 4940 kvmppc_mmu_debugfs_init(kvm); 4941 if (radix_enabled()) 4942 kvmhv_radix_debugfs_init(kvm); 4943 4944 return 0; 4945 } 4946 4947 static void kvmppc_free_vcores(struct kvm *kvm) 4948 { 4949 long int i; 4950 4951 for (i = 0; i < KVM_MAX_VCORES; ++i) 4952 kfree(kvm->arch.vcores[i]); 4953 kvm->arch.online_vcores = 0; 4954 } 4955 4956 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 4957 { 4958 debugfs_remove_recursive(kvm->arch.debugfs_dir); 4959 4960 if (!kvm->arch.threads_indep) 4961 kvm_hv_vm_deactivated(); 4962 4963 kvmppc_free_vcores(kvm); 4964 4965 4966 if (kvm_is_radix(kvm)) 4967 kvmppc_free_radix(kvm); 4968 else 4969 kvmppc_free_hpt(&kvm->arch.hpt); 4970 4971 /* Perform global invalidation and return lpid to the pool */ 4972 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4973 if (nesting_enabled(kvm)) 4974 kvmhv_release_all_nested(kvm); 4975 kvm->arch.process_table = 0; 4976 if (kvm->arch.secure_guest) 4977 uv_svm_terminate(kvm->arch.lpid); 4978 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 4979 } 4980 4981 kvmppc_free_lpid(kvm->arch.lpid); 4982 4983 kvmppc_free_pimap(kvm); 4984 } 4985 4986 /* We don't need to emulate any privileged instructions or dcbz */ 4987 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 4988 unsigned int inst, int *advance) 4989 { 4990 return EMULATE_FAIL; 4991 } 4992 4993 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 4994 ulong spr_val) 4995 { 4996 return EMULATE_FAIL; 4997 } 4998 4999 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 5000 ulong *spr_val) 5001 { 5002 return EMULATE_FAIL; 5003 } 5004 5005 static int kvmppc_core_check_processor_compat_hv(void) 5006 { 5007 if (cpu_has_feature(CPU_FTR_HVMODE) && 5008 cpu_has_feature(CPU_FTR_ARCH_206)) 5009 return 0; 5010 5011 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5012 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5013 return 0; 5014 5015 return -EIO; 5016 } 5017 5018 #ifdef CONFIG_KVM_XICS 5019 5020 void kvmppc_free_pimap(struct kvm *kvm) 5021 { 5022 kfree(kvm->arch.pimap); 5023 } 5024 5025 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5026 { 5027 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5028 } 5029 5030 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5031 { 5032 struct irq_desc *desc; 5033 struct kvmppc_irq_map *irq_map; 5034 struct kvmppc_passthru_irqmap *pimap; 5035 struct irq_chip *chip; 5036 int i, rc = 0; 5037 5038 if (!kvm_irq_bypass) 5039 return 1; 5040 5041 desc = irq_to_desc(host_irq); 5042 if (!desc) 5043 return -EIO; 5044 5045 mutex_lock(&kvm->lock); 5046 5047 pimap = kvm->arch.pimap; 5048 if (pimap == NULL) { 5049 /* First call, allocate structure to hold IRQ map */ 5050 pimap = kvmppc_alloc_pimap(); 5051 if (pimap == NULL) { 5052 mutex_unlock(&kvm->lock); 5053 return -ENOMEM; 5054 } 5055 kvm->arch.pimap = pimap; 5056 } 5057 5058 /* 5059 * For now, we only support interrupts for which the EOI operation 5060 * is an OPAL call followed by a write to XIRR, since that's 5061 * what our real-mode EOI code does, or a XIVE interrupt 5062 */ 5063 chip = irq_data_get_irq_chip(&desc->irq_data); 5064 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 5065 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5066 host_irq, guest_gsi); 5067 mutex_unlock(&kvm->lock); 5068 return -ENOENT; 5069 } 5070 5071 /* 5072 * See if we already have an entry for this guest IRQ number. 5073 * If it's mapped to a hardware IRQ number, that's an error, 5074 * otherwise re-use this entry. 5075 */ 5076 for (i = 0; i < pimap->n_mapped; i++) { 5077 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5078 if (pimap->mapped[i].r_hwirq) { 5079 mutex_unlock(&kvm->lock); 5080 return -EINVAL; 5081 } 5082 break; 5083 } 5084 } 5085 5086 if (i == KVMPPC_PIRQ_MAPPED) { 5087 mutex_unlock(&kvm->lock); 5088 return -EAGAIN; /* table is full */ 5089 } 5090 5091 irq_map = &pimap->mapped[i]; 5092 5093 irq_map->v_hwirq = guest_gsi; 5094 irq_map->desc = desc; 5095 5096 /* 5097 * Order the above two stores before the next to serialize with 5098 * the KVM real mode handler. 5099 */ 5100 smp_wmb(); 5101 irq_map->r_hwirq = desc->irq_data.hwirq; 5102 5103 if (i == pimap->n_mapped) 5104 pimap->n_mapped++; 5105 5106 if (xics_on_xive()) 5107 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 5108 else 5109 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 5110 if (rc) 5111 irq_map->r_hwirq = 0; 5112 5113 mutex_unlock(&kvm->lock); 5114 5115 return 0; 5116 } 5117 5118 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5119 { 5120 struct irq_desc *desc; 5121 struct kvmppc_passthru_irqmap *pimap; 5122 int i, rc = 0; 5123 5124 if (!kvm_irq_bypass) 5125 return 0; 5126 5127 desc = irq_to_desc(host_irq); 5128 if (!desc) 5129 return -EIO; 5130 5131 mutex_lock(&kvm->lock); 5132 if (!kvm->arch.pimap) 5133 goto unlock; 5134 5135 pimap = kvm->arch.pimap; 5136 5137 for (i = 0; i < pimap->n_mapped; i++) { 5138 if (guest_gsi == pimap->mapped[i].v_hwirq) 5139 break; 5140 } 5141 5142 if (i == pimap->n_mapped) { 5143 mutex_unlock(&kvm->lock); 5144 return -ENODEV; 5145 } 5146 5147 if (xics_on_xive()) 5148 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 5149 else 5150 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5151 5152 /* invalidate the entry (what do do on error from the above ?) */ 5153 pimap->mapped[i].r_hwirq = 0; 5154 5155 /* 5156 * We don't free this structure even when the count goes to 5157 * zero. The structure is freed when we destroy the VM. 5158 */ 5159 unlock: 5160 mutex_unlock(&kvm->lock); 5161 return rc; 5162 } 5163 5164 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5165 struct irq_bypass_producer *prod) 5166 { 5167 int ret = 0; 5168 struct kvm_kernel_irqfd *irqfd = 5169 container_of(cons, struct kvm_kernel_irqfd, consumer); 5170 5171 irqfd->producer = prod; 5172 5173 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5174 if (ret) 5175 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5176 prod->irq, irqfd->gsi, ret); 5177 5178 return ret; 5179 } 5180 5181 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5182 struct irq_bypass_producer *prod) 5183 { 5184 int ret; 5185 struct kvm_kernel_irqfd *irqfd = 5186 container_of(cons, struct kvm_kernel_irqfd, consumer); 5187 5188 irqfd->producer = NULL; 5189 5190 /* 5191 * When producer of consumer is unregistered, we change back to 5192 * default external interrupt handling mode - KVM real mode 5193 * will switch back to host. 5194 */ 5195 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5196 if (ret) 5197 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5198 prod->irq, irqfd->gsi, ret); 5199 } 5200 #endif 5201 5202 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5203 unsigned int ioctl, unsigned long arg) 5204 { 5205 struct kvm *kvm __maybe_unused = filp->private_data; 5206 void __user *argp = (void __user *)arg; 5207 long r; 5208 5209 switch (ioctl) { 5210 5211 case KVM_PPC_ALLOCATE_HTAB: { 5212 u32 htab_order; 5213 5214 r = -EFAULT; 5215 if (get_user(htab_order, (u32 __user *)argp)) 5216 break; 5217 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5218 if (r) 5219 break; 5220 r = 0; 5221 break; 5222 } 5223 5224 case KVM_PPC_GET_HTAB_FD: { 5225 struct kvm_get_htab_fd ghf; 5226 5227 r = -EFAULT; 5228 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5229 break; 5230 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5231 break; 5232 } 5233 5234 case KVM_PPC_RESIZE_HPT_PREPARE: { 5235 struct kvm_ppc_resize_hpt rhpt; 5236 5237 r = -EFAULT; 5238 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5239 break; 5240 5241 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5242 break; 5243 } 5244 5245 case KVM_PPC_RESIZE_HPT_COMMIT: { 5246 struct kvm_ppc_resize_hpt rhpt; 5247 5248 r = -EFAULT; 5249 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5250 break; 5251 5252 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5253 break; 5254 } 5255 5256 default: 5257 r = -ENOTTY; 5258 } 5259 5260 return r; 5261 } 5262 5263 /* 5264 * List of hcall numbers to enable by default. 5265 * For compatibility with old userspace, we enable by default 5266 * all hcalls that were implemented before the hcall-enabling 5267 * facility was added. Note this list should not include H_RTAS. 5268 */ 5269 static unsigned int default_hcall_list[] = { 5270 H_REMOVE, 5271 H_ENTER, 5272 H_READ, 5273 H_PROTECT, 5274 H_BULK_REMOVE, 5275 H_GET_TCE, 5276 H_PUT_TCE, 5277 H_SET_DABR, 5278 H_SET_XDABR, 5279 H_CEDE, 5280 H_PROD, 5281 H_CONFER, 5282 H_REGISTER_VPA, 5283 #ifdef CONFIG_KVM_XICS 5284 H_EOI, 5285 H_CPPR, 5286 H_IPI, 5287 H_IPOLL, 5288 H_XIRR, 5289 H_XIRR_X, 5290 #endif 5291 0 5292 }; 5293 5294 static void init_default_hcalls(void) 5295 { 5296 int i; 5297 unsigned int hcall; 5298 5299 for (i = 0; default_hcall_list[i]; ++i) { 5300 hcall = default_hcall_list[i]; 5301 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5302 __set_bit(hcall / 4, default_enabled_hcalls); 5303 } 5304 } 5305 5306 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5307 { 5308 unsigned long lpcr; 5309 int radix; 5310 int err; 5311 5312 /* If not on a POWER9, reject it */ 5313 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5314 return -ENODEV; 5315 5316 /* If any unknown flags set, reject it */ 5317 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5318 return -EINVAL; 5319 5320 /* GR (guest radix) bit in process_table field must match */ 5321 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5322 if (!!(cfg->process_table & PATB_GR) != radix) 5323 return -EINVAL; 5324 5325 /* Process table size field must be reasonable, i.e. <= 24 */ 5326 if ((cfg->process_table & PRTS_MASK) > 24) 5327 return -EINVAL; 5328 5329 /* We can change a guest to/from radix now, if the host is radix */ 5330 if (radix && !radix_enabled()) 5331 return -EINVAL; 5332 5333 /* If we're a nested hypervisor, we currently only support radix */ 5334 if (kvmhv_on_pseries() && !radix) 5335 return -EINVAL; 5336 5337 mutex_lock(&kvm->arch.mmu_setup_lock); 5338 if (radix != kvm_is_radix(kvm)) { 5339 if (kvm->arch.mmu_ready) { 5340 kvm->arch.mmu_ready = 0; 5341 /* order mmu_ready vs. vcpus_running */ 5342 smp_mb(); 5343 if (atomic_read(&kvm->arch.vcpus_running)) { 5344 kvm->arch.mmu_ready = 1; 5345 err = -EBUSY; 5346 goto out_unlock; 5347 } 5348 } 5349 if (radix) 5350 err = kvmppc_switch_mmu_to_radix(kvm); 5351 else 5352 err = kvmppc_switch_mmu_to_hpt(kvm); 5353 if (err) 5354 goto out_unlock; 5355 } 5356 5357 kvm->arch.process_table = cfg->process_table; 5358 kvmppc_setup_partition_table(kvm); 5359 5360 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5361 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5362 err = 0; 5363 5364 out_unlock: 5365 mutex_unlock(&kvm->arch.mmu_setup_lock); 5366 return err; 5367 } 5368 5369 static int kvmhv_enable_nested(struct kvm *kvm) 5370 { 5371 if (!nested) 5372 return -EPERM; 5373 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix) 5374 return -ENODEV; 5375 5376 /* kvm == NULL means the caller is testing if the capability exists */ 5377 if (kvm) 5378 kvm->arch.nested_enable = true; 5379 return 0; 5380 } 5381 5382 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5383 int size) 5384 { 5385 int rc = -EINVAL; 5386 5387 if (kvmhv_vcpu_is_radix(vcpu)) { 5388 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5389 5390 if (rc > 0) 5391 rc = -EINVAL; 5392 } 5393 5394 /* For now quadrants are the only way to access nested guest memory */ 5395 if (rc && vcpu->arch.nested) 5396 rc = -EAGAIN; 5397 5398 return rc; 5399 } 5400 5401 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5402 int size) 5403 { 5404 int rc = -EINVAL; 5405 5406 if (kvmhv_vcpu_is_radix(vcpu)) { 5407 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5408 5409 if (rc > 0) 5410 rc = -EINVAL; 5411 } 5412 5413 /* For now quadrants are the only way to access nested guest memory */ 5414 if (rc && vcpu->arch.nested) 5415 rc = -EAGAIN; 5416 5417 return rc; 5418 } 5419 5420 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 5421 { 5422 unpin_vpa(kvm, vpa); 5423 vpa->gpa = 0; 5424 vpa->pinned_addr = NULL; 5425 vpa->dirty = false; 5426 vpa->update_pending = 0; 5427 } 5428 5429 /* 5430 * IOCTL handler to turn off secure mode of guest 5431 * 5432 * - Release all device pages 5433 * - Issue ucall to terminate the guest on the UV side 5434 * - Unpin the VPA pages. 5435 * - Reinit the partition scoped page tables 5436 */ 5437 static int kvmhv_svm_off(struct kvm *kvm) 5438 { 5439 struct kvm_vcpu *vcpu; 5440 int mmu_was_ready; 5441 int srcu_idx; 5442 int ret = 0; 5443 int i; 5444 5445 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 5446 return ret; 5447 5448 mutex_lock(&kvm->arch.mmu_setup_lock); 5449 mmu_was_ready = kvm->arch.mmu_ready; 5450 if (kvm->arch.mmu_ready) { 5451 kvm->arch.mmu_ready = 0; 5452 /* order mmu_ready vs. vcpus_running */ 5453 smp_mb(); 5454 if (atomic_read(&kvm->arch.vcpus_running)) { 5455 kvm->arch.mmu_ready = 1; 5456 ret = -EBUSY; 5457 goto out; 5458 } 5459 } 5460 5461 srcu_idx = srcu_read_lock(&kvm->srcu); 5462 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5463 struct kvm_memory_slot *memslot; 5464 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 5465 5466 if (!slots) 5467 continue; 5468 5469 kvm_for_each_memslot(memslot, slots) { 5470 kvmppc_uvmem_drop_pages(memslot, kvm, true); 5471 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 5472 } 5473 } 5474 srcu_read_unlock(&kvm->srcu, srcu_idx); 5475 5476 ret = uv_svm_terminate(kvm->arch.lpid); 5477 if (ret != U_SUCCESS) { 5478 ret = -EINVAL; 5479 goto out; 5480 } 5481 5482 /* 5483 * When secure guest is reset, all the guest pages are sent 5484 * to UV via UV_PAGE_IN before the non-boot vcpus get a 5485 * chance to run and unpin their VPA pages. Unpinning of all 5486 * VPA pages is done here explicitly so that VPA pages 5487 * can be migrated to the secure side. 5488 * 5489 * This is required to for the secure SMP guest to reboot 5490 * correctly. 5491 */ 5492 kvm_for_each_vcpu(i, vcpu, kvm) { 5493 spin_lock(&vcpu->arch.vpa_update_lock); 5494 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 5495 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 5496 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 5497 spin_unlock(&vcpu->arch.vpa_update_lock); 5498 } 5499 5500 kvmppc_setup_partition_table(kvm); 5501 kvm->arch.secure_guest = 0; 5502 kvm->arch.mmu_ready = mmu_was_ready; 5503 out: 5504 mutex_unlock(&kvm->arch.mmu_setup_lock); 5505 return ret; 5506 } 5507 5508 static struct kvmppc_ops kvm_ops_hv = { 5509 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 5510 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 5511 .get_one_reg = kvmppc_get_one_reg_hv, 5512 .set_one_reg = kvmppc_set_one_reg_hv, 5513 .vcpu_load = kvmppc_core_vcpu_load_hv, 5514 .vcpu_put = kvmppc_core_vcpu_put_hv, 5515 .inject_interrupt = kvmppc_inject_interrupt_hv, 5516 .set_msr = kvmppc_set_msr_hv, 5517 .vcpu_run = kvmppc_vcpu_run_hv, 5518 .vcpu_create = kvmppc_core_vcpu_create_hv, 5519 .vcpu_free = kvmppc_core_vcpu_free_hv, 5520 .check_requests = kvmppc_core_check_requests_hv, 5521 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 5522 .flush_memslot = kvmppc_core_flush_memslot_hv, 5523 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 5524 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 5525 .unmap_hva_range = kvm_unmap_hva_range_hv, 5526 .age_hva = kvm_age_hva_hv, 5527 .test_age_hva = kvm_test_age_hva_hv, 5528 .set_spte_hva = kvm_set_spte_hva_hv, 5529 .mmu_destroy = kvmppc_mmu_destroy_hv, 5530 .free_memslot = kvmppc_core_free_memslot_hv, 5531 .create_memslot = kvmppc_core_create_memslot_hv, 5532 .init_vm = kvmppc_core_init_vm_hv, 5533 .destroy_vm = kvmppc_core_destroy_vm_hv, 5534 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 5535 .emulate_op = kvmppc_core_emulate_op_hv, 5536 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 5537 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 5538 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 5539 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 5540 .hcall_implemented = kvmppc_hcall_impl_hv, 5541 #ifdef CONFIG_KVM_XICS 5542 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 5543 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 5544 #endif 5545 .configure_mmu = kvmhv_configure_mmu, 5546 .get_rmmu_info = kvmhv_get_rmmu_info, 5547 .set_smt_mode = kvmhv_set_smt_mode, 5548 .enable_nested = kvmhv_enable_nested, 5549 .load_from_eaddr = kvmhv_load_from_eaddr, 5550 .store_to_eaddr = kvmhv_store_to_eaddr, 5551 .svm_off = kvmhv_svm_off, 5552 }; 5553 5554 static int kvm_init_subcore_bitmap(void) 5555 { 5556 int i, j; 5557 int nr_cores = cpu_nr_cores(); 5558 struct sibling_subcore_state *sibling_subcore_state; 5559 5560 for (i = 0; i < nr_cores; i++) { 5561 int first_cpu = i * threads_per_core; 5562 int node = cpu_to_node(first_cpu); 5563 5564 /* Ignore if it is already allocated. */ 5565 if (paca_ptrs[first_cpu]->sibling_subcore_state) 5566 continue; 5567 5568 sibling_subcore_state = 5569 kzalloc_node(sizeof(struct sibling_subcore_state), 5570 GFP_KERNEL, node); 5571 if (!sibling_subcore_state) 5572 return -ENOMEM; 5573 5574 5575 for (j = 0; j < threads_per_core; j++) { 5576 int cpu = first_cpu + j; 5577 5578 paca_ptrs[cpu]->sibling_subcore_state = 5579 sibling_subcore_state; 5580 } 5581 } 5582 return 0; 5583 } 5584 5585 static int kvmppc_radix_possible(void) 5586 { 5587 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 5588 } 5589 5590 static int kvmppc_book3s_init_hv(void) 5591 { 5592 int r; 5593 5594 if (!tlbie_capable) { 5595 pr_err("KVM-HV: Host does not support TLBIE\n"); 5596 return -ENODEV; 5597 } 5598 5599 /* 5600 * FIXME!! Do we need to check on all cpus ? 5601 */ 5602 r = kvmppc_core_check_processor_compat_hv(); 5603 if (r < 0) 5604 return -ENODEV; 5605 5606 r = kvmhv_nested_init(); 5607 if (r) 5608 return r; 5609 5610 r = kvm_init_subcore_bitmap(); 5611 if (r) 5612 return r; 5613 5614 /* 5615 * We need a way of accessing the XICS interrupt controller, 5616 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 5617 * indirectly, via OPAL. 5618 */ 5619 #ifdef CONFIG_SMP 5620 if (!xics_on_xive() && !kvmhv_on_pseries() && 5621 !local_paca->kvm_hstate.xics_phys) { 5622 struct device_node *np; 5623 5624 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 5625 if (!np) { 5626 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 5627 return -ENODEV; 5628 } 5629 /* presence of intc confirmed - node can be dropped again */ 5630 of_node_put(np); 5631 } 5632 #endif 5633 5634 kvm_ops_hv.owner = THIS_MODULE; 5635 kvmppc_hv_ops = &kvm_ops_hv; 5636 5637 init_default_hcalls(); 5638 5639 init_vcore_lists(); 5640 5641 r = kvmppc_mmu_hv_init(); 5642 if (r) 5643 return r; 5644 5645 if (kvmppc_radix_possible()) 5646 r = kvmppc_radix_init(); 5647 5648 /* 5649 * POWER9 chips before version 2.02 can't have some threads in 5650 * HPT mode and some in radix mode on the same core. 5651 */ 5652 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5653 unsigned int pvr = mfspr(SPRN_PVR); 5654 if ((pvr >> 16) == PVR_POWER9 && 5655 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 5656 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 5657 no_mixing_hpt_and_radix = true; 5658 } 5659 5660 r = kvmppc_uvmem_init(); 5661 if (r < 0) 5662 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 5663 5664 return r; 5665 } 5666 5667 static void kvmppc_book3s_exit_hv(void) 5668 { 5669 kvmppc_uvmem_free(); 5670 kvmppc_free_host_rm_ops(); 5671 if (kvmppc_radix_possible()) 5672 kvmppc_radix_exit(); 5673 kvmppc_hv_ops = NULL; 5674 kvmhv_nested_exit(); 5675 } 5676 5677 module_init(kvmppc_book3s_init_hv); 5678 module_exit(kvmppc_book3s_exit_hv); 5679 MODULE_LICENSE("GPL"); 5680 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5681 MODULE_ALIAS("devname:kvm"); 5682