1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/kernel.h> 23 #include <linux/err.h> 24 #include <linux/slab.h> 25 #include <linux/preempt.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sched/stat.h> 28 #include <linux/delay.h> 29 #include <linux/export.h> 30 #include <linux/fs.h> 31 #include <linux/anon_inodes.h> 32 #include <linux/cpu.h> 33 #include <linux/cpumask.h> 34 #include <linux/spinlock.h> 35 #include <linux/page-flags.h> 36 #include <linux/srcu.h> 37 #include <linux/miscdevice.h> 38 #include <linux/debugfs.h> 39 #include <linux/gfp.h> 40 #include <linux/vmalloc.h> 41 #include <linux/highmem.h> 42 #include <linux/hugetlb.h> 43 #include <linux/kvm_irqfd.h> 44 #include <linux/irqbypass.h> 45 #include <linux/module.h> 46 #include <linux/compiler.h> 47 #include <linux/of.h> 48 49 #include <asm/reg.h> 50 #include <asm/ppc-opcode.h> 51 #include <asm/asm-prototypes.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <asm/tlbflush.h> 56 #include <linux/uaccess.h> 57 #include <asm/io.h> 58 #include <asm/kvm_ppc.h> 59 #include <asm/kvm_book3s.h> 60 #include <asm/mmu_context.h> 61 #include <asm/lppaca.h> 62 #include <asm/processor.h> 63 #include <asm/cputhreads.h> 64 #include <asm/page.h> 65 #include <asm/hvcall.h> 66 #include <asm/switch_to.h> 67 #include <asm/smp.h> 68 #include <asm/dbell.h> 69 #include <asm/hmi.h> 70 #include <asm/pnv-pci.h> 71 #include <asm/mmu.h> 72 #include <asm/opal.h> 73 #include <asm/xics.h> 74 #include <asm/xive.h> 75 76 #include "book3s.h" 77 78 #define CREATE_TRACE_POINTS 79 #include "trace_hv.h" 80 81 /* #define EXIT_DEBUG */ 82 /* #define EXIT_DEBUG_SIMPLE */ 83 /* #define EXIT_DEBUG_INT */ 84 85 /* Used to indicate that a guest page fault needs to be handled */ 86 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 87 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 88 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 89 90 /* Used as a "null" value for timebase values */ 91 #define TB_NIL (~(u64)0) 92 93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 94 95 static int dynamic_mt_modes = 6; 96 module_param(dynamic_mt_modes, int, 0644); 97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 98 static int target_smt_mode; 99 module_param(target_smt_mode, int, 0644); 100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 101 102 static bool indep_threads_mode = true; 103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 105 106 #ifdef CONFIG_KVM_XICS 107 static struct kernel_param_ops module_param_ops = { 108 .set = param_set_int, 109 .get = param_get_int, 110 }; 111 112 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 113 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 114 115 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 116 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 117 #endif 118 119 /* If set, the threads on each CPU core have to be in the same MMU mode */ 120 static bool no_mixing_hpt_and_radix; 121 122 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 123 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 124 125 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 126 int *ip) 127 { 128 int i = *ip; 129 struct kvm_vcpu *vcpu; 130 131 while (++i < MAX_SMT_THREADS) { 132 vcpu = READ_ONCE(vc->runnable_threads[i]); 133 if (vcpu) { 134 *ip = i; 135 return vcpu; 136 } 137 } 138 return NULL; 139 } 140 141 /* Used to traverse the list of runnable threads for a given vcore */ 142 #define for_each_runnable_thread(i, vcpu, vc) \ 143 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 144 145 static bool kvmppc_ipi_thread(int cpu) 146 { 147 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 148 149 /* On POWER9 we can use msgsnd to IPI any cpu */ 150 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 151 msg |= get_hard_smp_processor_id(cpu); 152 smp_mb(); 153 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 154 return true; 155 } 156 157 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 158 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 159 preempt_disable(); 160 if (cpu_first_thread_sibling(cpu) == 161 cpu_first_thread_sibling(smp_processor_id())) { 162 msg |= cpu_thread_in_core(cpu); 163 smp_mb(); 164 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 165 preempt_enable(); 166 return true; 167 } 168 preempt_enable(); 169 } 170 171 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 172 if (cpu >= 0 && cpu < nr_cpu_ids) { 173 if (paca[cpu].kvm_hstate.xics_phys) { 174 xics_wake_cpu(cpu); 175 return true; 176 } 177 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 178 return true; 179 } 180 #endif 181 182 return false; 183 } 184 185 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 186 { 187 int cpu; 188 struct swait_queue_head *wqp; 189 190 wqp = kvm_arch_vcpu_wq(vcpu); 191 if (swq_has_sleeper(wqp)) { 192 swake_up(wqp); 193 ++vcpu->stat.halt_wakeup; 194 } 195 196 cpu = READ_ONCE(vcpu->arch.thread_cpu); 197 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 198 return; 199 200 /* CPU points to the first thread of the core */ 201 cpu = vcpu->cpu; 202 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 203 smp_send_reschedule(cpu); 204 } 205 206 /* 207 * We use the vcpu_load/put functions to measure stolen time. 208 * Stolen time is counted as time when either the vcpu is able to 209 * run as part of a virtual core, but the task running the vcore 210 * is preempted or sleeping, or when the vcpu needs something done 211 * in the kernel by the task running the vcpu, but that task is 212 * preempted or sleeping. Those two things have to be counted 213 * separately, since one of the vcpu tasks will take on the job 214 * of running the core, and the other vcpu tasks in the vcore will 215 * sleep waiting for it to do that, but that sleep shouldn't count 216 * as stolen time. 217 * 218 * Hence we accumulate stolen time when the vcpu can run as part of 219 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 220 * needs its task to do other things in the kernel (for example, 221 * service a page fault) in busy_stolen. We don't accumulate 222 * stolen time for a vcore when it is inactive, or for a vcpu 223 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 224 * a misnomer; it means that the vcpu task is not executing in 225 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 226 * the kernel. We don't have any way of dividing up that time 227 * between time that the vcpu is genuinely stopped, time that 228 * the task is actively working on behalf of the vcpu, and time 229 * that the task is preempted, so we don't count any of it as 230 * stolen. 231 * 232 * Updates to busy_stolen are protected by arch.tbacct_lock; 233 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 234 * lock. The stolen times are measured in units of timebase ticks. 235 * (Note that the != TB_NIL checks below are purely defensive; 236 * they should never fail.) 237 */ 238 239 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 240 { 241 unsigned long flags; 242 243 spin_lock_irqsave(&vc->stoltb_lock, flags); 244 vc->preempt_tb = mftb(); 245 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 246 } 247 248 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 249 { 250 unsigned long flags; 251 252 spin_lock_irqsave(&vc->stoltb_lock, flags); 253 if (vc->preempt_tb != TB_NIL) { 254 vc->stolen_tb += mftb() - vc->preempt_tb; 255 vc->preempt_tb = TB_NIL; 256 } 257 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 258 } 259 260 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 261 { 262 struct kvmppc_vcore *vc = vcpu->arch.vcore; 263 unsigned long flags; 264 265 /* 266 * We can test vc->runner without taking the vcore lock, 267 * because only this task ever sets vc->runner to this 268 * vcpu, and once it is set to this vcpu, only this task 269 * ever sets it to NULL. 270 */ 271 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 272 kvmppc_core_end_stolen(vc); 273 274 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 275 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 276 vcpu->arch.busy_preempt != TB_NIL) { 277 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 278 vcpu->arch.busy_preempt = TB_NIL; 279 } 280 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 281 } 282 283 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 284 { 285 struct kvmppc_vcore *vc = vcpu->arch.vcore; 286 unsigned long flags; 287 288 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 289 kvmppc_core_start_stolen(vc); 290 291 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 292 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 293 vcpu->arch.busy_preempt = mftb(); 294 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 295 } 296 297 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 298 { 299 /* 300 * Check for illegal transactional state bit combination 301 * and if we find it, force the TS field to a safe state. 302 */ 303 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 304 msr &= ~MSR_TS_MASK; 305 vcpu->arch.shregs.msr = msr; 306 kvmppc_end_cede(vcpu); 307 } 308 309 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 310 { 311 vcpu->arch.pvr = pvr; 312 } 313 314 /* Dummy value used in computing PCR value below */ 315 #define PCR_ARCH_300 (PCR_ARCH_207 << 1) 316 317 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 318 { 319 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 320 struct kvmppc_vcore *vc = vcpu->arch.vcore; 321 322 /* We can (emulate) our own architecture version and anything older */ 323 if (cpu_has_feature(CPU_FTR_ARCH_300)) 324 host_pcr_bit = PCR_ARCH_300; 325 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 326 host_pcr_bit = PCR_ARCH_207; 327 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 328 host_pcr_bit = PCR_ARCH_206; 329 else 330 host_pcr_bit = PCR_ARCH_205; 331 332 /* Determine lowest PCR bit needed to run guest in given PVR level */ 333 guest_pcr_bit = host_pcr_bit; 334 if (arch_compat) { 335 switch (arch_compat) { 336 case PVR_ARCH_205: 337 guest_pcr_bit = PCR_ARCH_205; 338 break; 339 case PVR_ARCH_206: 340 case PVR_ARCH_206p: 341 guest_pcr_bit = PCR_ARCH_206; 342 break; 343 case PVR_ARCH_207: 344 guest_pcr_bit = PCR_ARCH_207; 345 break; 346 case PVR_ARCH_300: 347 guest_pcr_bit = PCR_ARCH_300; 348 break; 349 default: 350 return -EINVAL; 351 } 352 } 353 354 /* Check requested PCR bits don't exceed our capabilities */ 355 if (guest_pcr_bit > host_pcr_bit) 356 return -EINVAL; 357 358 spin_lock(&vc->lock); 359 vc->arch_compat = arch_compat; 360 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */ 361 vc->pcr = host_pcr_bit - guest_pcr_bit; 362 spin_unlock(&vc->lock); 363 364 return 0; 365 } 366 367 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 368 { 369 int r; 370 371 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 372 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 373 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 374 for (r = 0; r < 16; ++r) 375 pr_err("r%2d = %.16lx r%d = %.16lx\n", 376 r, kvmppc_get_gpr(vcpu, r), 377 r+16, kvmppc_get_gpr(vcpu, r+16)); 378 pr_err("ctr = %.16lx lr = %.16lx\n", 379 vcpu->arch.ctr, vcpu->arch.lr); 380 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 381 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 382 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 383 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 384 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 385 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 386 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 387 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 388 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 389 pr_err("fault dar = %.16lx dsisr = %.8x\n", 390 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 391 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 392 for (r = 0; r < vcpu->arch.slb_max; ++r) 393 pr_err(" ESID = %.16llx VSID = %.16llx\n", 394 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 395 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 396 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 397 vcpu->arch.last_inst); 398 } 399 400 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 401 { 402 struct kvm_vcpu *ret; 403 404 mutex_lock(&kvm->lock); 405 ret = kvm_get_vcpu_by_id(kvm, id); 406 mutex_unlock(&kvm->lock); 407 return ret; 408 } 409 410 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 411 { 412 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 413 vpa->yield_count = cpu_to_be32(1); 414 } 415 416 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 417 unsigned long addr, unsigned long len) 418 { 419 /* check address is cacheline aligned */ 420 if (addr & (L1_CACHE_BYTES - 1)) 421 return -EINVAL; 422 spin_lock(&vcpu->arch.vpa_update_lock); 423 if (v->next_gpa != addr || v->len != len) { 424 v->next_gpa = addr; 425 v->len = addr ? len : 0; 426 v->update_pending = 1; 427 } 428 spin_unlock(&vcpu->arch.vpa_update_lock); 429 return 0; 430 } 431 432 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 433 struct reg_vpa { 434 u32 dummy; 435 union { 436 __be16 hword; 437 __be32 word; 438 } length; 439 }; 440 441 static int vpa_is_registered(struct kvmppc_vpa *vpap) 442 { 443 if (vpap->update_pending) 444 return vpap->next_gpa != 0; 445 return vpap->pinned_addr != NULL; 446 } 447 448 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 449 unsigned long flags, 450 unsigned long vcpuid, unsigned long vpa) 451 { 452 struct kvm *kvm = vcpu->kvm; 453 unsigned long len, nb; 454 void *va; 455 struct kvm_vcpu *tvcpu; 456 int err; 457 int subfunc; 458 struct kvmppc_vpa *vpap; 459 460 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 461 if (!tvcpu) 462 return H_PARAMETER; 463 464 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 465 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 466 subfunc == H_VPA_REG_SLB) { 467 /* Registering new area - address must be cache-line aligned */ 468 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 469 return H_PARAMETER; 470 471 /* convert logical addr to kernel addr and read length */ 472 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 473 if (va == NULL) 474 return H_PARAMETER; 475 if (subfunc == H_VPA_REG_VPA) 476 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 477 else 478 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 479 kvmppc_unpin_guest_page(kvm, va, vpa, false); 480 481 /* Check length */ 482 if (len > nb || len < sizeof(struct reg_vpa)) 483 return H_PARAMETER; 484 } else { 485 vpa = 0; 486 len = 0; 487 } 488 489 err = H_PARAMETER; 490 vpap = NULL; 491 spin_lock(&tvcpu->arch.vpa_update_lock); 492 493 switch (subfunc) { 494 case H_VPA_REG_VPA: /* register VPA */ 495 /* 496 * The size of our lppaca is 1kB because of the way we align 497 * it for the guest to avoid crossing a 4kB boundary. We only 498 * use 640 bytes of the structure though, so we should accept 499 * clients that set a size of 640. 500 */ 501 if (len < 640) 502 break; 503 vpap = &tvcpu->arch.vpa; 504 err = 0; 505 break; 506 507 case H_VPA_REG_DTL: /* register DTL */ 508 if (len < sizeof(struct dtl_entry)) 509 break; 510 len -= len % sizeof(struct dtl_entry); 511 512 /* Check that they have previously registered a VPA */ 513 err = H_RESOURCE; 514 if (!vpa_is_registered(&tvcpu->arch.vpa)) 515 break; 516 517 vpap = &tvcpu->arch.dtl; 518 err = 0; 519 break; 520 521 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 522 /* Check that they have previously registered a VPA */ 523 err = H_RESOURCE; 524 if (!vpa_is_registered(&tvcpu->arch.vpa)) 525 break; 526 527 vpap = &tvcpu->arch.slb_shadow; 528 err = 0; 529 break; 530 531 case H_VPA_DEREG_VPA: /* deregister VPA */ 532 /* Check they don't still have a DTL or SLB buf registered */ 533 err = H_RESOURCE; 534 if (vpa_is_registered(&tvcpu->arch.dtl) || 535 vpa_is_registered(&tvcpu->arch.slb_shadow)) 536 break; 537 538 vpap = &tvcpu->arch.vpa; 539 err = 0; 540 break; 541 542 case H_VPA_DEREG_DTL: /* deregister DTL */ 543 vpap = &tvcpu->arch.dtl; 544 err = 0; 545 break; 546 547 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 548 vpap = &tvcpu->arch.slb_shadow; 549 err = 0; 550 break; 551 } 552 553 if (vpap) { 554 vpap->next_gpa = vpa; 555 vpap->len = len; 556 vpap->update_pending = 1; 557 } 558 559 spin_unlock(&tvcpu->arch.vpa_update_lock); 560 561 return err; 562 } 563 564 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 565 { 566 struct kvm *kvm = vcpu->kvm; 567 void *va; 568 unsigned long nb; 569 unsigned long gpa; 570 571 /* 572 * We need to pin the page pointed to by vpap->next_gpa, 573 * but we can't call kvmppc_pin_guest_page under the lock 574 * as it does get_user_pages() and down_read(). So we 575 * have to drop the lock, pin the page, then get the lock 576 * again and check that a new area didn't get registered 577 * in the meantime. 578 */ 579 for (;;) { 580 gpa = vpap->next_gpa; 581 spin_unlock(&vcpu->arch.vpa_update_lock); 582 va = NULL; 583 nb = 0; 584 if (gpa) 585 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 586 spin_lock(&vcpu->arch.vpa_update_lock); 587 if (gpa == vpap->next_gpa) 588 break; 589 /* sigh... unpin that one and try again */ 590 if (va) 591 kvmppc_unpin_guest_page(kvm, va, gpa, false); 592 } 593 594 vpap->update_pending = 0; 595 if (va && nb < vpap->len) { 596 /* 597 * If it's now too short, it must be that userspace 598 * has changed the mappings underlying guest memory, 599 * so unregister the region. 600 */ 601 kvmppc_unpin_guest_page(kvm, va, gpa, false); 602 va = NULL; 603 } 604 if (vpap->pinned_addr) 605 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 606 vpap->dirty); 607 vpap->gpa = gpa; 608 vpap->pinned_addr = va; 609 vpap->dirty = false; 610 if (va) 611 vpap->pinned_end = va + vpap->len; 612 } 613 614 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 615 { 616 if (!(vcpu->arch.vpa.update_pending || 617 vcpu->arch.slb_shadow.update_pending || 618 vcpu->arch.dtl.update_pending)) 619 return; 620 621 spin_lock(&vcpu->arch.vpa_update_lock); 622 if (vcpu->arch.vpa.update_pending) { 623 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 624 if (vcpu->arch.vpa.pinned_addr) 625 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 626 } 627 if (vcpu->arch.dtl.update_pending) { 628 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 629 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 630 vcpu->arch.dtl_index = 0; 631 } 632 if (vcpu->arch.slb_shadow.update_pending) 633 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 634 spin_unlock(&vcpu->arch.vpa_update_lock); 635 } 636 637 /* 638 * Return the accumulated stolen time for the vcore up until `now'. 639 * The caller should hold the vcore lock. 640 */ 641 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 642 { 643 u64 p; 644 unsigned long flags; 645 646 spin_lock_irqsave(&vc->stoltb_lock, flags); 647 p = vc->stolen_tb; 648 if (vc->vcore_state != VCORE_INACTIVE && 649 vc->preempt_tb != TB_NIL) 650 p += now - vc->preempt_tb; 651 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 652 return p; 653 } 654 655 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 656 struct kvmppc_vcore *vc) 657 { 658 struct dtl_entry *dt; 659 struct lppaca *vpa; 660 unsigned long stolen; 661 unsigned long core_stolen; 662 u64 now; 663 unsigned long flags; 664 665 dt = vcpu->arch.dtl_ptr; 666 vpa = vcpu->arch.vpa.pinned_addr; 667 now = mftb(); 668 core_stolen = vcore_stolen_time(vc, now); 669 stolen = core_stolen - vcpu->arch.stolen_logged; 670 vcpu->arch.stolen_logged = core_stolen; 671 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 672 stolen += vcpu->arch.busy_stolen; 673 vcpu->arch.busy_stolen = 0; 674 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 675 if (!dt || !vpa) 676 return; 677 memset(dt, 0, sizeof(struct dtl_entry)); 678 dt->dispatch_reason = 7; 679 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 680 dt->timebase = cpu_to_be64(now + vc->tb_offset); 681 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 682 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 683 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 684 ++dt; 685 if (dt == vcpu->arch.dtl.pinned_end) 686 dt = vcpu->arch.dtl.pinned_addr; 687 vcpu->arch.dtl_ptr = dt; 688 /* order writing *dt vs. writing vpa->dtl_idx */ 689 smp_wmb(); 690 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 691 vcpu->arch.dtl.dirty = true; 692 } 693 694 /* See if there is a doorbell interrupt pending for a vcpu */ 695 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 696 { 697 int thr; 698 struct kvmppc_vcore *vc; 699 700 if (vcpu->arch.doorbell_request) 701 return true; 702 /* 703 * Ensure that the read of vcore->dpdes comes after the read 704 * of vcpu->doorbell_request. This barrier matches the 705 * lwsync in book3s_hv_rmhandlers.S just before the 706 * fast_guest_return label. 707 */ 708 smp_rmb(); 709 vc = vcpu->arch.vcore; 710 thr = vcpu->vcpu_id - vc->first_vcpuid; 711 return !!(vc->dpdes & (1 << thr)); 712 } 713 714 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 715 { 716 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 717 return true; 718 if ((!vcpu->arch.vcore->arch_compat) && 719 cpu_has_feature(CPU_FTR_ARCH_207S)) 720 return true; 721 return false; 722 } 723 724 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 725 unsigned long resource, unsigned long value1, 726 unsigned long value2) 727 { 728 switch (resource) { 729 case H_SET_MODE_RESOURCE_SET_CIABR: 730 if (!kvmppc_power8_compatible(vcpu)) 731 return H_P2; 732 if (value2) 733 return H_P4; 734 if (mflags) 735 return H_UNSUPPORTED_FLAG_START; 736 /* Guests can't breakpoint the hypervisor */ 737 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 738 return H_P3; 739 vcpu->arch.ciabr = value1; 740 return H_SUCCESS; 741 case H_SET_MODE_RESOURCE_SET_DAWR: 742 if (!kvmppc_power8_compatible(vcpu)) 743 return H_P2; 744 if (mflags) 745 return H_UNSUPPORTED_FLAG_START; 746 if (value2 & DABRX_HYP) 747 return H_P4; 748 vcpu->arch.dawr = value1; 749 vcpu->arch.dawrx = value2; 750 return H_SUCCESS; 751 default: 752 return H_TOO_HARD; 753 } 754 } 755 756 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 757 { 758 struct kvmppc_vcore *vcore = target->arch.vcore; 759 760 /* 761 * We expect to have been called by the real mode handler 762 * (kvmppc_rm_h_confer()) which would have directly returned 763 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 764 * have useful work to do and should not confer) so we don't 765 * recheck that here. 766 */ 767 768 spin_lock(&vcore->lock); 769 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 770 vcore->vcore_state != VCORE_INACTIVE && 771 vcore->runner) 772 target = vcore->runner; 773 spin_unlock(&vcore->lock); 774 775 return kvm_vcpu_yield_to(target); 776 } 777 778 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 779 { 780 int yield_count = 0; 781 struct lppaca *lppaca; 782 783 spin_lock(&vcpu->arch.vpa_update_lock); 784 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 785 if (lppaca) 786 yield_count = be32_to_cpu(lppaca->yield_count); 787 spin_unlock(&vcpu->arch.vpa_update_lock); 788 return yield_count; 789 } 790 791 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 792 { 793 unsigned long req = kvmppc_get_gpr(vcpu, 3); 794 unsigned long target, ret = H_SUCCESS; 795 int yield_count; 796 struct kvm_vcpu *tvcpu; 797 int idx, rc; 798 799 if (req <= MAX_HCALL_OPCODE && 800 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 801 return RESUME_HOST; 802 803 switch (req) { 804 case H_CEDE: 805 break; 806 case H_PROD: 807 target = kvmppc_get_gpr(vcpu, 4); 808 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 809 if (!tvcpu) { 810 ret = H_PARAMETER; 811 break; 812 } 813 tvcpu->arch.prodded = 1; 814 smp_mb(); 815 if (tvcpu->arch.ceded) 816 kvmppc_fast_vcpu_kick_hv(tvcpu); 817 break; 818 case H_CONFER: 819 target = kvmppc_get_gpr(vcpu, 4); 820 if (target == -1) 821 break; 822 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 823 if (!tvcpu) { 824 ret = H_PARAMETER; 825 break; 826 } 827 yield_count = kvmppc_get_gpr(vcpu, 5); 828 if (kvmppc_get_yield_count(tvcpu) != yield_count) 829 break; 830 kvm_arch_vcpu_yield_to(tvcpu); 831 break; 832 case H_REGISTER_VPA: 833 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 834 kvmppc_get_gpr(vcpu, 5), 835 kvmppc_get_gpr(vcpu, 6)); 836 break; 837 case H_RTAS: 838 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 839 return RESUME_HOST; 840 841 idx = srcu_read_lock(&vcpu->kvm->srcu); 842 rc = kvmppc_rtas_hcall(vcpu); 843 srcu_read_unlock(&vcpu->kvm->srcu, idx); 844 845 if (rc == -ENOENT) 846 return RESUME_HOST; 847 else if (rc == 0) 848 break; 849 850 /* Send the error out to userspace via KVM_RUN */ 851 return rc; 852 case H_LOGICAL_CI_LOAD: 853 ret = kvmppc_h_logical_ci_load(vcpu); 854 if (ret == H_TOO_HARD) 855 return RESUME_HOST; 856 break; 857 case H_LOGICAL_CI_STORE: 858 ret = kvmppc_h_logical_ci_store(vcpu); 859 if (ret == H_TOO_HARD) 860 return RESUME_HOST; 861 break; 862 case H_SET_MODE: 863 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 864 kvmppc_get_gpr(vcpu, 5), 865 kvmppc_get_gpr(vcpu, 6), 866 kvmppc_get_gpr(vcpu, 7)); 867 if (ret == H_TOO_HARD) 868 return RESUME_HOST; 869 break; 870 case H_XIRR: 871 case H_CPPR: 872 case H_EOI: 873 case H_IPI: 874 case H_IPOLL: 875 case H_XIRR_X: 876 if (kvmppc_xics_enabled(vcpu)) { 877 if (xive_enabled()) { 878 ret = H_NOT_AVAILABLE; 879 return RESUME_GUEST; 880 } 881 ret = kvmppc_xics_hcall(vcpu, req); 882 break; 883 } 884 return RESUME_HOST; 885 case H_PUT_TCE: 886 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 887 kvmppc_get_gpr(vcpu, 5), 888 kvmppc_get_gpr(vcpu, 6)); 889 if (ret == H_TOO_HARD) 890 return RESUME_HOST; 891 break; 892 case H_PUT_TCE_INDIRECT: 893 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 894 kvmppc_get_gpr(vcpu, 5), 895 kvmppc_get_gpr(vcpu, 6), 896 kvmppc_get_gpr(vcpu, 7)); 897 if (ret == H_TOO_HARD) 898 return RESUME_HOST; 899 break; 900 case H_STUFF_TCE: 901 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 902 kvmppc_get_gpr(vcpu, 5), 903 kvmppc_get_gpr(vcpu, 6), 904 kvmppc_get_gpr(vcpu, 7)); 905 if (ret == H_TOO_HARD) 906 return RESUME_HOST; 907 break; 908 default: 909 return RESUME_HOST; 910 } 911 kvmppc_set_gpr(vcpu, 3, ret); 912 vcpu->arch.hcall_needed = 0; 913 return RESUME_GUEST; 914 } 915 916 static int kvmppc_hcall_impl_hv(unsigned long cmd) 917 { 918 switch (cmd) { 919 case H_CEDE: 920 case H_PROD: 921 case H_CONFER: 922 case H_REGISTER_VPA: 923 case H_SET_MODE: 924 case H_LOGICAL_CI_LOAD: 925 case H_LOGICAL_CI_STORE: 926 #ifdef CONFIG_KVM_XICS 927 case H_XIRR: 928 case H_CPPR: 929 case H_EOI: 930 case H_IPI: 931 case H_IPOLL: 932 case H_XIRR_X: 933 #endif 934 return 1; 935 } 936 937 /* See if it's in the real-mode table */ 938 return kvmppc_hcall_impl_hv_realmode(cmd); 939 } 940 941 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 942 struct kvm_vcpu *vcpu) 943 { 944 u32 last_inst; 945 946 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 947 EMULATE_DONE) { 948 /* 949 * Fetch failed, so return to guest and 950 * try executing it again. 951 */ 952 return RESUME_GUEST; 953 } 954 955 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 956 run->exit_reason = KVM_EXIT_DEBUG; 957 run->debug.arch.address = kvmppc_get_pc(vcpu); 958 return RESUME_HOST; 959 } else { 960 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 961 return RESUME_GUEST; 962 } 963 } 964 965 static void do_nothing(void *x) 966 { 967 } 968 969 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 970 { 971 int thr, cpu, pcpu, nthreads; 972 struct kvm_vcpu *v; 973 unsigned long dpdes; 974 975 nthreads = vcpu->kvm->arch.emul_smt_mode; 976 dpdes = 0; 977 cpu = vcpu->vcpu_id & ~(nthreads - 1); 978 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 979 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 980 if (!v) 981 continue; 982 /* 983 * If the vcpu is currently running on a physical cpu thread, 984 * interrupt it in order to pull it out of the guest briefly, 985 * which will update its vcore->dpdes value. 986 */ 987 pcpu = READ_ONCE(v->cpu); 988 if (pcpu >= 0) 989 smp_call_function_single(pcpu, do_nothing, NULL, 1); 990 if (kvmppc_doorbell_pending(v)) 991 dpdes |= 1 << thr; 992 } 993 return dpdes; 994 } 995 996 /* 997 * On POWER9, emulate doorbell-related instructions in order to 998 * give the guest the illusion of running on a multi-threaded core. 999 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1000 * and mfspr DPDES. 1001 */ 1002 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1003 { 1004 u32 inst, rb, thr; 1005 unsigned long arg; 1006 struct kvm *kvm = vcpu->kvm; 1007 struct kvm_vcpu *tvcpu; 1008 1009 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1010 return RESUME_GUEST; 1011 if (get_op(inst) != 31) 1012 return EMULATE_FAIL; 1013 rb = get_rb(inst); 1014 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1015 switch (get_xop(inst)) { 1016 case OP_31_XOP_MSGSNDP: 1017 arg = kvmppc_get_gpr(vcpu, rb); 1018 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1019 break; 1020 arg &= 0x3f; 1021 if (arg >= kvm->arch.emul_smt_mode) 1022 break; 1023 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1024 if (!tvcpu) 1025 break; 1026 if (!tvcpu->arch.doorbell_request) { 1027 tvcpu->arch.doorbell_request = 1; 1028 kvmppc_fast_vcpu_kick_hv(tvcpu); 1029 } 1030 break; 1031 case OP_31_XOP_MSGCLRP: 1032 arg = kvmppc_get_gpr(vcpu, rb); 1033 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1034 break; 1035 vcpu->arch.vcore->dpdes = 0; 1036 vcpu->arch.doorbell_request = 0; 1037 break; 1038 case OP_31_XOP_MFSPR: 1039 switch (get_sprn(inst)) { 1040 case SPRN_TIR: 1041 arg = thr; 1042 break; 1043 case SPRN_DPDES: 1044 arg = kvmppc_read_dpdes(vcpu); 1045 break; 1046 default: 1047 return EMULATE_FAIL; 1048 } 1049 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1050 break; 1051 default: 1052 return EMULATE_FAIL; 1053 } 1054 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1055 return RESUME_GUEST; 1056 } 1057 1058 /* Called with vcpu->arch.vcore->lock held */ 1059 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 1060 struct task_struct *tsk) 1061 { 1062 int r = RESUME_HOST; 1063 1064 vcpu->stat.sum_exits++; 1065 1066 /* 1067 * This can happen if an interrupt occurs in the last stages 1068 * of guest entry or the first stages of guest exit (i.e. after 1069 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1070 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1071 * That can happen due to a bug, or due to a machine check 1072 * occurring at just the wrong time. 1073 */ 1074 if (vcpu->arch.shregs.msr & MSR_HV) { 1075 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1076 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1077 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1078 vcpu->arch.shregs.msr); 1079 kvmppc_dump_regs(vcpu); 1080 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1081 run->hw.hardware_exit_reason = vcpu->arch.trap; 1082 return RESUME_HOST; 1083 } 1084 run->exit_reason = KVM_EXIT_UNKNOWN; 1085 run->ready_for_interrupt_injection = 1; 1086 switch (vcpu->arch.trap) { 1087 /* We're good on these - the host merely wanted to get our attention */ 1088 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1089 vcpu->stat.dec_exits++; 1090 r = RESUME_GUEST; 1091 break; 1092 case BOOK3S_INTERRUPT_EXTERNAL: 1093 case BOOK3S_INTERRUPT_H_DOORBELL: 1094 case BOOK3S_INTERRUPT_H_VIRT: 1095 vcpu->stat.ext_intr_exits++; 1096 r = RESUME_GUEST; 1097 break; 1098 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1099 case BOOK3S_INTERRUPT_HMI: 1100 case BOOK3S_INTERRUPT_PERFMON: 1101 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1102 r = RESUME_GUEST; 1103 break; 1104 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1105 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1106 run->exit_reason = KVM_EXIT_NMI; 1107 run->hw.hardware_exit_reason = vcpu->arch.trap; 1108 /* Clear out the old NMI status from run->flags */ 1109 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1110 /* Now set the NMI status */ 1111 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1112 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1113 else 1114 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1115 1116 r = RESUME_HOST; 1117 /* Print the MCE event to host console. */ 1118 machine_check_print_event_info(&vcpu->arch.mce_evt, false); 1119 break; 1120 case BOOK3S_INTERRUPT_PROGRAM: 1121 { 1122 ulong flags; 1123 /* 1124 * Normally program interrupts are delivered directly 1125 * to the guest by the hardware, but we can get here 1126 * as a result of a hypervisor emulation interrupt 1127 * (e40) getting turned into a 700 by BML RTAS. 1128 */ 1129 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1130 kvmppc_core_queue_program(vcpu, flags); 1131 r = RESUME_GUEST; 1132 break; 1133 } 1134 case BOOK3S_INTERRUPT_SYSCALL: 1135 { 1136 /* hcall - punt to userspace */ 1137 int i; 1138 1139 /* hypercall with MSR_PR has already been handled in rmode, 1140 * and never reaches here. 1141 */ 1142 1143 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1144 for (i = 0; i < 9; ++i) 1145 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1146 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1147 vcpu->arch.hcall_needed = 1; 1148 r = RESUME_HOST; 1149 break; 1150 } 1151 /* 1152 * We get these next two if the guest accesses a page which it thinks 1153 * it has mapped but which is not actually present, either because 1154 * it is for an emulated I/O device or because the corresonding 1155 * host page has been paged out. Any other HDSI/HISI interrupts 1156 * have been handled already. 1157 */ 1158 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1159 r = RESUME_PAGE_FAULT; 1160 break; 1161 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1162 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1163 vcpu->arch.fault_dsisr = 0; 1164 r = RESUME_PAGE_FAULT; 1165 break; 1166 /* 1167 * This occurs if the guest executes an illegal instruction. 1168 * If the guest debug is disabled, generate a program interrupt 1169 * to the guest. If guest debug is enabled, we need to check 1170 * whether the instruction is a software breakpoint instruction. 1171 * Accordingly return to Guest or Host. 1172 */ 1173 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1174 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1175 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1176 swab32(vcpu->arch.emul_inst) : 1177 vcpu->arch.emul_inst; 1178 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1179 /* Need vcore unlocked to call kvmppc_get_last_inst */ 1180 spin_unlock(&vcpu->arch.vcore->lock); 1181 r = kvmppc_emulate_debug_inst(run, vcpu); 1182 spin_lock(&vcpu->arch.vcore->lock); 1183 } else { 1184 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1185 r = RESUME_GUEST; 1186 } 1187 break; 1188 /* 1189 * This occurs if the guest (kernel or userspace), does something that 1190 * is prohibited by HFSCR. 1191 * On POWER9, this could be a doorbell instruction that we need 1192 * to emulate. 1193 * Otherwise, we just generate a program interrupt to the guest. 1194 */ 1195 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1196 r = EMULATE_FAIL; 1197 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1198 cpu_has_feature(CPU_FTR_ARCH_300)) { 1199 /* Need vcore unlocked to call kvmppc_get_last_inst */ 1200 spin_unlock(&vcpu->arch.vcore->lock); 1201 r = kvmppc_emulate_doorbell_instr(vcpu); 1202 spin_lock(&vcpu->arch.vcore->lock); 1203 } 1204 if (r == EMULATE_FAIL) { 1205 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1206 r = RESUME_GUEST; 1207 } 1208 break; 1209 case BOOK3S_INTERRUPT_HV_RM_HARD: 1210 r = RESUME_PASSTHROUGH; 1211 break; 1212 default: 1213 kvmppc_dump_regs(vcpu); 1214 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1215 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1216 vcpu->arch.shregs.msr); 1217 run->hw.hardware_exit_reason = vcpu->arch.trap; 1218 r = RESUME_HOST; 1219 break; 1220 } 1221 1222 return r; 1223 } 1224 1225 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1226 struct kvm_sregs *sregs) 1227 { 1228 int i; 1229 1230 memset(sregs, 0, sizeof(struct kvm_sregs)); 1231 sregs->pvr = vcpu->arch.pvr; 1232 for (i = 0; i < vcpu->arch.slb_max; i++) { 1233 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1234 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1235 } 1236 1237 return 0; 1238 } 1239 1240 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1241 struct kvm_sregs *sregs) 1242 { 1243 int i, j; 1244 1245 /* Only accept the same PVR as the host's, since we can't spoof it */ 1246 if (sregs->pvr != vcpu->arch.pvr) 1247 return -EINVAL; 1248 1249 j = 0; 1250 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1251 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1252 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1253 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1254 ++j; 1255 } 1256 } 1257 vcpu->arch.slb_max = j; 1258 1259 return 0; 1260 } 1261 1262 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1263 bool preserve_top32) 1264 { 1265 struct kvm *kvm = vcpu->kvm; 1266 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1267 u64 mask; 1268 1269 mutex_lock(&kvm->lock); 1270 spin_lock(&vc->lock); 1271 /* 1272 * If ILE (interrupt little-endian) has changed, update the 1273 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1274 */ 1275 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1276 struct kvm_vcpu *vcpu; 1277 int i; 1278 1279 kvm_for_each_vcpu(i, vcpu, kvm) { 1280 if (vcpu->arch.vcore != vc) 1281 continue; 1282 if (new_lpcr & LPCR_ILE) 1283 vcpu->arch.intr_msr |= MSR_LE; 1284 else 1285 vcpu->arch.intr_msr &= ~MSR_LE; 1286 } 1287 } 1288 1289 /* 1290 * Userspace can only modify DPFD (default prefetch depth), 1291 * ILE (interrupt little-endian) and TC (translation control). 1292 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1293 */ 1294 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1295 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1296 mask |= LPCR_AIL; 1297 /* 1298 * On POWER9, allow userspace to enable large decrementer for the 1299 * guest, whether or not the host has it enabled. 1300 */ 1301 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1302 mask |= LPCR_LD; 1303 1304 /* Broken 32-bit version of LPCR must not clear top bits */ 1305 if (preserve_top32) 1306 mask &= 0xFFFFFFFF; 1307 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1308 spin_unlock(&vc->lock); 1309 mutex_unlock(&kvm->lock); 1310 } 1311 1312 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1313 union kvmppc_one_reg *val) 1314 { 1315 int r = 0; 1316 long int i; 1317 1318 switch (id) { 1319 case KVM_REG_PPC_DEBUG_INST: 1320 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1321 break; 1322 case KVM_REG_PPC_HIOR: 1323 *val = get_reg_val(id, 0); 1324 break; 1325 case KVM_REG_PPC_DABR: 1326 *val = get_reg_val(id, vcpu->arch.dabr); 1327 break; 1328 case KVM_REG_PPC_DABRX: 1329 *val = get_reg_val(id, vcpu->arch.dabrx); 1330 break; 1331 case KVM_REG_PPC_DSCR: 1332 *val = get_reg_val(id, vcpu->arch.dscr); 1333 break; 1334 case KVM_REG_PPC_PURR: 1335 *val = get_reg_val(id, vcpu->arch.purr); 1336 break; 1337 case KVM_REG_PPC_SPURR: 1338 *val = get_reg_val(id, vcpu->arch.spurr); 1339 break; 1340 case KVM_REG_PPC_AMR: 1341 *val = get_reg_val(id, vcpu->arch.amr); 1342 break; 1343 case KVM_REG_PPC_UAMOR: 1344 *val = get_reg_val(id, vcpu->arch.uamor); 1345 break; 1346 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1347 i = id - KVM_REG_PPC_MMCR0; 1348 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1349 break; 1350 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1351 i = id - KVM_REG_PPC_PMC1; 1352 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1353 break; 1354 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1355 i = id - KVM_REG_PPC_SPMC1; 1356 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1357 break; 1358 case KVM_REG_PPC_SIAR: 1359 *val = get_reg_val(id, vcpu->arch.siar); 1360 break; 1361 case KVM_REG_PPC_SDAR: 1362 *val = get_reg_val(id, vcpu->arch.sdar); 1363 break; 1364 case KVM_REG_PPC_SIER: 1365 *val = get_reg_val(id, vcpu->arch.sier); 1366 break; 1367 case KVM_REG_PPC_IAMR: 1368 *val = get_reg_val(id, vcpu->arch.iamr); 1369 break; 1370 case KVM_REG_PPC_PSPB: 1371 *val = get_reg_val(id, vcpu->arch.pspb); 1372 break; 1373 case KVM_REG_PPC_DPDES: 1374 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1375 break; 1376 case KVM_REG_PPC_VTB: 1377 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1378 break; 1379 case KVM_REG_PPC_DAWR: 1380 *val = get_reg_val(id, vcpu->arch.dawr); 1381 break; 1382 case KVM_REG_PPC_DAWRX: 1383 *val = get_reg_val(id, vcpu->arch.dawrx); 1384 break; 1385 case KVM_REG_PPC_CIABR: 1386 *val = get_reg_val(id, vcpu->arch.ciabr); 1387 break; 1388 case KVM_REG_PPC_CSIGR: 1389 *val = get_reg_val(id, vcpu->arch.csigr); 1390 break; 1391 case KVM_REG_PPC_TACR: 1392 *val = get_reg_val(id, vcpu->arch.tacr); 1393 break; 1394 case KVM_REG_PPC_TCSCR: 1395 *val = get_reg_val(id, vcpu->arch.tcscr); 1396 break; 1397 case KVM_REG_PPC_PID: 1398 *val = get_reg_val(id, vcpu->arch.pid); 1399 break; 1400 case KVM_REG_PPC_ACOP: 1401 *val = get_reg_val(id, vcpu->arch.acop); 1402 break; 1403 case KVM_REG_PPC_WORT: 1404 *val = get_reg_val(id, vcpu->arch.wort); 1405 break; 1406 case KVM_REG_PPC_TIDR: 1407 *val = get_reg_val(id, vcpu->arch.tid); 1408 break; 1409 case KVM_REG_PPC_PSSCR: 1410 *val = get_reg_val(id, vcpu->arch.psscr); 1411 break; 1412 case KVM_REG_PPC_VPA_ADDR: 1413 spin_lock(&vcpu->arch.vpa_update_lock); 1414 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1415 spin_unlock(&vcpu->arch.vpa_update_lock); 1416 break; 1417 case KVM_REG_PPC_VPA_SLB: 1418 spin_lock(&vcpu->arch.vpa_update_lock); 1419 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1420 val->vpaval.length = vcpu->arch.slb_shadow.len; 1421 spin_unlock(&vcpu->arch.vpa_update_lock); 1422 break; 1423 case KVM_REG_PPC_VPA_DTL: 1424 spin_lock(&vcpu->arch.vpa_update_lock); 1425 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1426 val->vpaval.length = vcpu->arch.dtl.len; 1427 spin_unlock(&vcpu->arch.vpa_update_lock); 1428 break; 1429 case KVM_REG_PPC_TB_OFFSET: 1430 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1431 break; 1432 case KVM_REG_PPC_LPCR: 1433 case KVM_REG_PPC_LPCR_64: 1434 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1435 break; 1436 case KVM_REG_PPC_PPR: 1437 *val = get_reg_val(id, vcpu->arch.ppr); 1438 break; 1439 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1440 case KVM_REG_PPC_TFHAR: 1441 *val = get_reg_val(id, vcpu->arch.tfhar); 1442 break; 1443 case KVM_REG_PPC_TFIAR: 1444 *val = get_reg_val(id, vcpu->arch.tfiar); 1445 break; 1446 case KVM_REG_PPC_TEXASR: 1447 *val = get_reg_val(id, vcpu->arch.texasr); 1448 break; 1449 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1450 i = id - KVM_REG_PPC_TM_GPR0; 1451 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1452 break; 1453 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1454 { 1455 int j; 1456 i = id - KVM_REG_PPC_TM_VSR0; 1457 if (i < 32) 1458 for (j = 0; j < TS_FPRWIDTH; j++) 1459 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1460 else { 1461 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1462 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1463 else 1464 r = -ENXIO; 1465 } 1466 break; 1467 } 1468 case KVM_REG_PPC_TM_CR: 1469 *val = get_reg_val(id, vcpu->arch.cr_tm); 1470 break; 1471 case KVM_REG_PPC_TM_XER: 1472 *val = get_reg_val(id, vcpu->arch.xer_tm); 1473 break; 1474 case KVM_REG_PPC_TM_LR: 1475 *val = get_reg_val(id, vcpu->arch.lr_tm); 1476 break; 1477 case KVM_REG_PPC_TM_CTR: 1478 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1479 break; 1480 case KVM_REG_PPC_TM_FPSCR: 1481 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1482 break; 1483 case KVM_REG_PPC_TM_AMR: 1484 *val = get_reg_val(id, vcpu->arch.amr_tm); 1485 break; 1486 case KVM_REG_PPC_TM_PPR: 1487 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1488 break; 1489 case KVM_REG_PPC_TM_VRSAVE: 1490 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1491 break; 1492 case KVM_REG_PPC_TM_VSCR: 1493 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1494 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1495 else 1496 r = -ENXIO; 1497 break; 1498 case KVM_REG_PPC_TM_DSCR: 1499 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1500 break; 1501 case KVM_REG_PPC_TM_TAR: 1502 *val = get_reg_val(id, vcpu->arch.tar_tm); 1503 break; 1504 #endif 1505 case KVM_REG_PPC_ARCH_COMPAT: 1506 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1507 break; 1508 case KVM_REG_PPC_DEC_EXPIRY: 1509 *val = get_reg_val(id, vcpu->arch.dec_expires + 1510 vcpu->arch.vcore->tb_offset); 1511 break; 1512 default: 1513 r = -EINVAL; 1514 break; 1515 } 1516 1517 return r; 1518 } 1519 1520 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1521 union kvmppc_one_reg *val) 1522 { 1523 int r = 0; 1524 long int i; 1525 unsigned long addr, len; 1526 1527 switch (id) { 1528 case KVM_REG_PPC_HIOR: 1529 /* Only allow this to be set to zero */ 1530 if (set_reg_val(id, *val)) 1531 r = -EINVAL; 1532 break; 1533 case KVM_REG_PPC_DABR: 1534 vcpu->arch.dabr = set_reg_val(id, *val); 1535 break; 1536 case KVM_REG_PPC_DABRX: 1537 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1538 break; 1539 case KVM_REG_PPC_DSCR: 1540 vcpu->arch.dscr = set_reg_val(id, *val); 1541 break; 1542 case KVM_REG_PPC_PURR: 1543 vcpu->arch.purr = set_reg_val(id, *val); 1544 break; 1545 case KVM_REG_PPC_SPURR: 1546 vcpu->arch.spurr = set_reg_val(id, *val); 1547 break; 1548 case KVM_REG_PPC_AMR: 1549 vcpu->arch.amr = set_reg_val(id, *val); 1550 break; 1551 case KVM_REG_PPC_UAMOR: 1552 vcpu->arch.uamor = set_reg_val(id, *val); 1553 break; 1554 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1555 i = id - KVM_REG_PPC_MMCR0; 1556 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1557 break; 1558 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1559 i = id - KVM_REG_PPC_PMC1; 1560 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1561 break; 1562 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1563 i = id - KVM_REG_PPC_SPMC1; 1564 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1565 break; 1566 case KVM_REG_PPC_SIAR: 1567 vcpu->arch.siar = set_reg_val(id, *val); 1568 break; 1569 case KVM_REG_PPC_SDAR: 1570 vcpu->arch.sdar = set_reg_val(id, *val); 1571 break; 1572 case KVM_REG_PPC_SIER: 1573 vcpu->arch.sier = set_reg_val(id, *val); 1574 break; 1575 case KVM_REG_PPC_IAMR: 1576 vcpu->arch.iamr = set_reg_val(id, *val); 1577 break; 1578 case KVM_REG_PPC_PSPB: 1579 vcpu->arch.pspb = set_reg_val(id, *val); 1580 break; 1581 case KVM_REG_PPC_DPDES: 1582 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1583 break; 1584 case KVM_REG_PPC_VTB: 1585 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1586 break; 1587 case KVM_REG_PPC_DAWR: 1588 vcpu->arch.dawr = set_reg_val(id, *val); 1589 break; 1590 case KVM_REG_PPC_DAWRX: 1591 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1592 break; 1593 case KVM_REG_PPC_CIABR: 1594 vcpu->arch.ciabr = set_reg_val(id, *val); 1595 /* Don't allow setting breakpoints in hypervisor code */ 1596 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1597 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1598 break; 1599 case KVM_REG_PPC_CSIGR: 1600 vcpu->arch.csigr = set_reg_val(id, *val); 1601 break; 1602 case KVM_REG_PPC_TACR: 1603 vcpu->arch.tacr = set_reg_val(id, *val); 1604 break; 1605 case KVM_REG_PPC_TCSCR: 1606 vcpu->arch.tcscr = set_reg_val(id, *val); 1607 break; 1608 case KVM_REG_PPC_PID: 1609 vcpu->arch.pid = set_reg_val(id, *val); 1610 break; 1611 case KVM_REG_PPC_ACOP: 1612 vcpu->arch.acop = set_reg_val(id, *val); 1613 break; 1614 case KVM_REG_PPC_WORT: 1615 vcpu->arch.wort = set_reg_val(id, *val); 1616 break; 1617 case KVM_REG_PPC_TIDR: 1618 vcpu->arch.tid = set_reg_val(id, *val); 1619 break; 1620 case KVM_REG_PPC_PSSCR: 1621 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1622 break; 1623 case KVM_REG_PPC_VPA_ADDR: 1624 addr = set_reg_val(id, *val); 1625 r = -EINVAL; 1626 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1627 vcpu->arch.dtl.next_gpa)) 1628 break; 1629 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1630 break; 1631 case KVM_REG_PPC_VPA_SLB: 1632 addr = val->vpaval.addr; 1633 len = val->vpaval.length; 1634 r = -EINVAL; 1635 if (addr && !vcpu->arch.vpa.next_gpa) 1636 break; 1637 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1638 break; 1639 case KVM_REG_PPC_VPA_DTL: 1640 addr = val->vpaval.addr; 1641 len = val->vpaval.length; 1642 r = -EINVAL; 1643 if (addr && (len < sizeof(struct dtl_entry) || 1644 !vcpu->arch.vpa.next_gpa)) 1645 break; 1646 len -= len % sizeof(struct dtl_entry); 1647 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1648 break; 1649 case KVM_REG_PPC_TB_OFFSET: 1650 /* 1651 * POWER9 DD1 has an erratum where writing TBU40 causes 1652 * the timebase to lose ticks. So we don't let the 1653 * timebase offset be changed on P9 DD1. (It is 1654 * initialized to zero.) 1655 */ 1656 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) 1657 break; 1658 /* round up to multiple of 2^24 */ 1659 vcpu->arch.vcore->tb_offset = 1660 ALIGN(set_reg_val(id, *val), 1UL << 24); 1661 break; 1662 case KVM_REG_PPC_LPCR: 1663 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1664 break; 1665 case KVM_REG_PPC_LPCR_64: 1666 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1667 break; 1668 case KVM_REG_PPC_PPR: 1669 vcpu->arch.ppr = set_reg_val(id, *val); 1670 break; 1671 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1672 case KVM_REG_PPC_TFHAR: 1673 vcpu->arch.tfhar = set_reg_val(id, *val); 1674 break; 1675 case KVM_REG_PPC_TFIAR: 1676 vcpu->arch.tfiar = set_reg_val(id, *val); 1677 break; 1678 case KVM_REG_PPC_TEXASR: 1679 vcpu->arch.texasr = set_reg_val(id, *val); 1680 break; 1681 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1682 i = id - KVM_REG_PPC_TM_GPR0; 1683 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1684 break; 1685 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1686 { 1687 int j; 1688 i = id - KVM_REG_PPC_TM_VSR0; 1689 if (i < 32) 1690 for (j = 0; j < TS_FPRWIDTH; j++) 1691 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1692 else 1693 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1694 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1695 else 1696 r = -ENXIO; 1697 break; 1698 } 1699 case KVM_REG_PPC_TM_CR: 1700 vcpu->arch.cr_tm = set_reg_val(id, *val); 1701 break; 1702 case KVM_REG_PPC_TM_XER: 1703 vcpu->arch.xer_tm = set_reg_val(id, *val); 1704 break; 1705 case KVM_REG_PPC_TM_LR: 1706 vcpu->arch.lr_tm = set_reg_val(id, *val); 1707 break; 1708 case KVM_REG_PPC_TM_CTR: 1709 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1710 break; 1711 case KVM_REG_PPC_TM_FPSCR: 1712 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1713 break; 1714 case KVM_REG_PPC_TM_AMR: 1715 vcpu->arch.amr_tm = set_reg_val(id, *val); 1716 break; 1717 case KVM_REG_PPC_TM_PPR: 1718 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1719 break; 1720 case KVM_REG_PPC_TM_VRSAVE: 1721 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1722 break; 1723 case KVM_REG_PPC_TM_VSCR: 1724 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1725 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1726 else 1727 r = - ENXIO; 1728 break; 1729 case KVM_REG_PPC_TM_DSCR: 1730 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1731 break; 1732 case KVM_REG_PPC_TM_TAR: 1733 vcpu->arch.tar_tm = set_reg_val(id, *val); 1734 break; 1735 #endif 1736 case KVM_REG_PPC_ARCH_COMPAT: 1737 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1738 break; 1739 case KVM_REG_PPC_DEC_EXPIRY: 1740 vcpu->arch.dec_expires = set_reg_val(id, *val) - 1741 vcpu->arch.vcore->tb_offset; 1742 break; 1743 default: 1744 r = -EINVAL; 1745 break; 1746 } 1747 1748 return r; 1749 } 1750 1751 /* 1752 * On POWER9, threads are independent and can be in different partitions. 1753 * Therefore we consider each thread to be a subcore. 1754 * There is a restriction that all threads have to be in the same 1755 * MMU mode (radix or HPT), unfortunately, but since we only support 1756 * HPT guests on a HPT host so far, that isn't an impediment yet. 1757 */ 1758 static int threads_per_vcore(struct kvm *kvm) 1759 { 1760 if (kvm->arch.threads_indep) 1761 return 1; 1762 return threads_per_subcore; 1763 } 1764 1765 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) 1766 { 1767 struct kvmppc_vcore *vcore; 1768 1769 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1770 1771 if (vcore == NULL) 1772 return NULL; 1773 1774 spin_lock_init(&vcore->lock); 1775 spin_lock_init(&vcore->stoltb_lock); 1776 init_swait_queue_head(&vcore->wq); 1777 vcore->preempt_tb = TB_NIL; 1778 vcore->lpcr = kvm->arch.lpcr; 1779 vcore->first_vcpuid = core * kvm->arch.smt_mode; 1780 vcore->kvm = kvm; 1781 INIT_LIST_HEAD(&vcore->preempt_list); 1782 1783 return vcore; 1784 } 1785 1786 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 1787 static struct debugfs_timings_element { 1788 const char *name; 1789 size_t offset; 1790 } timings[] = { 1791 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 1792 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 1793 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 1794 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 1795 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 1796 }; 1797 1798 #define N_TIMINGS (ARRAY_SIZE(timings)) 1799 1800 struct debugfs_timings_state { 1801 struct kvm_vcpu *vcpu; 1802 unsigned int buflen; 1803 char buf[N_TIMINGS * 100]; 1804 }; 1805 1806 static int debugfs_timings_open(struct inode *inode, struct file *file) 1807 { 1808 struct kvm_vcpu *vcpu = inode->i_private; 1809 struct debugfs_timings_state *p; 1810 1811 p = kzalloc(sizeof(*p), GFP_KERNEL); 1812 if (!p) 1813 return -ENOMEM; 1814 1815 kvm_get_kvm(vcpu->kvm); 1816 p->vcpu = vcpu; 1817 file->private_data = p; 1818 1819 return nonseekable_open(inode, file); 1820 } 1821 1822 static int debugfs_timings_release(struct inode *inode, struct file *file) 1823 { 1824 struct debugfs_timings_state *p = file->private_data; 1825 1826 kvm_put_kvm(p->vcpu->kvm); 1827 kfree(p); 1828 return 0; 1829 } 1830 1831 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 1832 size_t len, loff_t *ppos) 1833 { 1834 struct debugfs_timings_state *p = file->private_data; 1835 struct kvm_vcpu *vcpu = p->vcpu; 1836 char *s, *buf_end; 1837 struct kvmhv_tb_accumulator tb; 1838 u64 count; 1839 loff_t pos; 1840 ssize_t n; 1841 int i, loops; 1842 bool ok; 1843 1844 if (!p->buflen) { 1845 s = p->buf; 1846 buf_end = s + sizeof(p->buf); 1847 for (i = 0; i < N_TIMINGS; ++i) { 1848 struct kvmhv_tb_accumulator *acc; 1849 1850 acc = (struct kvmhv_tb_accumulator *) 1851 ((unsigned long)vcpu + timings[i].offset); 1852 ok = false; 1853 for (loops = 0; loops < 1000; ++loops) { 1854 count = acc->seqcount; 1855 if (!(count & 1)) { 1856 smp_rmb(); 1857 tb = *acc; 1858 smp_rmb(); 1859 if (count == acc->seqcount) { 1860 ok = true; 1861 break; 1862 } 1863 } 1864 udelay(1); 1865 } 1866 if (!ok) 1867 snprintf(s, buf_end - s, "%s: stuck\n", 1868 timings[i].name); 1869 else 1870 snprintf(s, buf_end - s, 1871 "%s: %llu %llu %llu %llu\n", 1872 timings[i].name, count / 2, 1873 tb_to_ns(tb.tb_total), 1874 tb_to_ns(tb.tb_min), 1875 tb_to_ns(tb.tb_max)); 1876 s += strlen(s); 1877 } 1878 p->buflen = s - p->buf; 1879 } 1880 1881 pos = *ppos; 1882 if (pos >= p->buflen) 1883 return 0; 1884 if (len > p->buflen - pos) 1885 len = p->buflen - pos; 1886 n = copy_to_user(buf, p->buf + pos, len); 1887 if (n) { 1888 if (n == len) 1889 return -EFAULT; 1890 len -= n; 1891 } 1892 *ppos = pos + len; 1893 return len; 1894 } 1895 1896 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 1897 size_t len, loff_t *ppos) 1898 { 1899 return -EACCES; 1900 } 1901 1902 static const struct file_operations debugfs_timings_ops = { 1903 .owner = THIS_MODULE, 1904 .open = debugfs_timings_open, 1905 .release = debugfs_timings_release, 1906 .read = debugfs_timings_read, 1907 .write = debugfs_timings_write, 1908 .llseek = generic_file_llseek, 1909 }; 1910 1911 /* Create a debugfs directory for the vcpu */ 1912 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1913 { 1914 char buf[16]; 1915 struct kvm *kvm = vcpu->kvm; 1916 1917 snprintf(buf, sizeof(buf), "vcpu%u", id); 1918 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 1919 return; 1920 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 1921 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 1922 return; 1923 vcpu->arch.debugfs_timings = 1924 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 1925 vcpu, &debugfs_timings_ops); 1926 } 1927 1928 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1929 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1930 { 1931 } 1932 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1933 1934 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1935 unsigned int id) 1936 { 1937 struct kvm_vcpu *vcpu; 1938 int err; 1939 int core; 1940 struct kvmppc_vcore *vcore; 1941 1942 err = -ENOMEM; 1943 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1944 if (!vcpu) 1945 goto out; 1946 1947 err = kvm_vcpu_init(vcpu, kvm, id); 1948 if (err) 1949 goto free_vcpu; 1950 1951 vcpu->arch.shared = &vcpu->arch.shregs; 1952 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1953 /* 1954 * The shared struct is never shared on HV, 1955 * so we can always use host endianness 1956 */ 1957 #ifdef __BIG_ENDIAN__ 1958 vcpu->arch.shared_big_endian = true; 1959 #else 1960 vcpu->arch.shared_big_endian = false; 1961 #endif 1962 #endif 1963 vcpu->arch.mmcr[0] = MMCR0_FC; 1964 vcpu->arch.ctrl = CTRL_RUNLATCH; 1965 /* default to host PVR, since we can't spoof it */ 1966 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1967 spin_lock_init(&vcpu->arch.vpa_update_lock); 1968 spin_lock_init(&vcpu->arch.tbacct_lock); 1969 vcpu->arch.busy_preempt = TB_NIL; 1970 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1971 1972 /* 1973 * Set the default HFSCR for the guest from the host value. 1974 * This value is only used on POWER9. 1975 * On POWER9 DD1, TM doesn't work, so we make sure to 1976 * prevent the guest from using it. 1977 * On POWER9, we want to virtualize the doorbell facility, so we 1978 * turn off the HFSCR bit, which causes those instructions to trap. 1979 */ 1980 vcpu->arch.hfscr = mfspr(SPRN_HFSCR); 1981 if (!cpu_has_feature(CPU_FTR_TM)) 1982 vcpu->arch.hfscr &= ~HFSCR_TM; 1983 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1984 vcpu->arch.hfscr &= ~HFSCR_MSGP; 1985 1986 kvmppc_mmu_book3s_hv_init(vcpu); 1987 1988 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1989 1990 init_waitqueue_head(&vcpu->arch.cpu_run); 1991 1992 mutex_lock(&kvm->lock); 1993 vcore = NULL; 1994 err = -EINVAL; 1995 core = id / kvm->arch.smt_mode; 1996 if (core < KVM_MAX_VCORES) { 1997 vcore = kvm->arch.vcores[core]; 1998 if (!vcore) { 1999 err = -ENOMEM; 2000 vcore = kvmppc_vcore_create(kvm, core); 2001 kvm->arch.vcores[core] = vcore; 2002 kvm->arch.online_vcores++; 2003 } 2004 } 2005 mutex_unlock(&kvm->lock); 2006 2007 if (!vcore) 2008 goto free_vcpu; 2009 2010 spin_lock(&vcore->lock); 2011 ++vcore->num_threads; 2012 spin_unlock(&vcore->lock); 2013 vcpu->arch.vcore = vcore; 2014 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2015 vcpu->arch.thread_cpu = -1; 2016 vcpu->arch.prev_cpu = -1; 2017 2018 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2019 kvmppc_sanity_check(vcpu); 2020 2021 debugfs_vcpu_init(vcpu, id); 2022 2023 return vcpu; 2024 2025 free_vcpu: 2026 kmem_cache_free(kvm_vcpu_cache, vcpu); 2027 out: 2028 return ERR_PTR(err); 2029 } 2030 2031 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2032 unsigned long flags) 2033 { 2034 int err; 2035 int esmt = 0; 2036 2037 if (flags) 2038 return -EINVAL; 2039 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2040 return -EINVAL; 2041 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2042 /* 2043 * On POWER8 (or POWER7), the threading mode is "strict", 2044 * so we pack smt_mode vcpus per vcore. 2045 */ 2046 if (smt_mode > threads_per_subcore) 2047 return -EINVAL; 2048 } else { 2049 /* 2050 * On POWER9, the threading mode is "loose", 2051 * so each vcpu gets its own vcore. 2052 */ 2053 esmt = smt_mode; 2054 smt_mode = 1; 2055 } 2056 mutex_lock(&kvm->lock); 2057 err = -EBUSY; 2058 if (!kvm->arch.online_vcores) { 2059 kvm->arch.smt_mode = smt_mode; 2060 kvm->arch.emul_smt_mode = esmt; 2061 err = 0; 2062 } 2063 mutex_unlock(&kvm->lock); 2064 2065 return err; 2066 } 2067 2068 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2069 { 2070 if (vpa->pinned_addr) 2071 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2072 vpa->dirty); 2073 } 2074 2075 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2076 { 2077 spin_lock(&vcpu->arch.vpa_update_lock); 2078 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2079 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2080 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2081 spin_unlock(&vcpu->arch.vpa_update_lock); 2082 kvm_vcpu_uninit(vcpu); 2083 kmem_cache_free(kvm_vcpu_cache, vcpu); 2084 } 2085 2086 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2087 { 2088 /* Indicate we want to get back into the guest */ 2089 return 1; 2090 } 2091 2092 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2093 { 2094 unsigned long dec_nsec, now; 2095 2096 now = get_tb(); 2097 if (now > vcpu->arch.dec_expires) { 2098 /* decrementer has already gone negative */ 2099 kvmppc_core_queue_dec(vcpu); 2100 kvmppc_core_prepare_to_enter(vcpu); 2101 return; 2102 } 2103 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 2104 / tb_ticks_per_sec; 2105 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2106 vcpu->arch.timer_running = 1; 2107 } 2108 2109 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 2110 { 2111 vcpu->arch.ceded = 0; 2112 if (vcpu->arch.timer_running) { 2113 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2114 vcpu->arch.timer_running = 0; 2115 } 2116 } 2117 2118 extern int __kvmppc_vcore_entry(void); 2119 2120 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2121 struct kvm_vcpu *vcpu) 2122 { 2123 u64 now; 2124 2125 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2126 return; 2127 spin_lock_irq(&vcpu->arch.tbacct_lock); 2128 now = mftb(); 2129 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2130 vcpu->arch.stolen_logged; 2131 vcpu->arch.busy_preempt = now; 2132 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2133 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2134 --vc->n_runnable; 2135 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2136 } 2137 2138 static int kvmppc_grab_hwthread(int cpu) 2139 { 2140 struct paca_struct *tpaca; 2141 long timeout = 10000; 2142 2143 tpaca = &paca[cpu]; 2144 2145 /* Ensure the thread won't go into the kernel if it wakes */ 2146 tpaca->kvm_hstate.kvm_vcpu = NULL; 2147 tpaca->kvm_hstate.kvm_vcore = NULL; 2148 tpaca->kvm_hstate.napping = 0; 2149 smp_wmb(); 2150 tpaca->kvm_hstate.hwthread_req = 1; 2151 2152 /* 2153 * If the thread is already executing in the kernel (e.g. handling 2154 * a stray interrupt), wait for it to get back to nap mode. 2155 * The smp_mb() is to ensure that our setting of hwthread_req 2156 * is visible before we look at hwthread_state, so if this 2157 * races with the code at system_reset_pSeries and the thread 2158 * misses our setting of hwthread_req, we are sure to see its 2159 * setting of hwthread_state, and vice versa. 2160 */ 2161 smp_mb(); 2162 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2163 if (--timeout <= 0) { 2164 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2165 return -EBUSY; 2166 } 2167 udelay(1); 2168 } 2169 return 0; 2170 } 2171 2172 static void kvmppc_release_hwthread(int cpu) 2173 { 2174 struct paca_struct *tpaca; 2175 2176 tpaca = &paca[cpu]; 2177 tpaca->kvm_hstate.hwthread_req = 0; 2178 tpaca->kvm_hstate.kvm_vcpu = NULL; 2179 tpaca->kvm_hstate.kvm_vcore = NULL; 2180 tpaca->kvm_hstate.kvm_split_mode = NULL; 2181 } 2182 2183 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2184 { 2185 int i; 2186 2187 cpu = cpu_first_thread_sibling(cpu); 2188 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2189 /* 2190 * Make sure setting of bit in need_tlb_flush precedes 2191 * testing of cpu_in_guest bits. The matching barrier on 2192 * the other side is the first smp_mb() in kvmppc_run_core(). 2193 */ 2194 smp_mb(); 2195 for (i = 0; i < threads_per_core; ++i) 2196 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest)) 2197 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2198 } 2199 2200 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2201 { 2202 struct kvm *kvm = vcpu->kvm; 2203 2204 /* 2205 * With radix, the guest can do TLB invalidations itself, 2206 * and it could choose to use the local form (tlbiel) if 2207 * it is invalidating a translation that has only ever been 2208 * used on one vcpu. However, that doesn't mean it has 2209 * only ever been used on one physical cpu, since vcpus 2210 * can move around between pcpus. To cope with this, when 2211 * a vcpu moves from one pcpu to another, we need to tell 2212 * any vcpus running on the same core as this vcpu previously 2213 * ran to flush the TLB. The TLB is shared between threads, 2214 * so we use a single bit in .need_tlb_flush for all 4 threads. 2215 */ 2216 if (vcpu->arch.prev_cpu != pcpu) { 2217 if (vcpu->arch.prev_cpu >= 0 && 2218 cpu_first_thread_sibling(vcpu->arch.prev_cpu) != 2219 cpu_first_thread_sibling(pcpu)) 2220 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu); 2221 vcpu->arch.prev_cpu = pcpu; 2222 } 2223 } 2224 2225 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2226 { 2227 int cpu; 2228 struct paca_struct *tpaca; 2229 struct kvm *kvm = vc->kvm; 2230 2231 cpu = vc->pcpu; 2232 if (vcpu) { 2233 if (vcpu->arch.timer_running) { 2234 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2235 vcpu->arch.timer_running = 0; 2236 } 2237 cpu += vcpu->arch.ptid; 2238 vcpu->cpu = vc->pcpu; 2239 vcpu->arch.thread_cpu = cpu; 2240 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2241 } 2242 tpaca = &paca[cpu]; 2243 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2244 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2245 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2246 smp_wmb(); 2247 tpaca->kvm_hstate.kvm_vcore = vc; 2248 if (cpu != smp_processor_id()) 2249 kvmppc_ipi_thread(cpu); 2250 } 2251 2252 static void kvmppc_wait_for_nap(int n_threads) 2253 { 2254 int cpu = smp_processor_id(); 2255 int i, loops; 2256 2257 if (n_threads <= 1) 2258 return; 2259 for (loops = 0; loops < 1000000; ++loops) { 2260 /* 2261 * Check if all threads are finished. 2262 * We set the vcore pointer when starting a thread 2263 * and the thread clears it when finished, so we look 2264 * for any threads that still have a non-NULL vcore ptr. 2265 */ 2266 for (i = 1; i < n_threads; ++i) 2267 if (paca[cpu + i].kvm_hstate.kvm_vcore) 2268 break; 2269 if (i == n_threads) { 2270 HMT_medium(); 2271 return; 2272 } 2273 HMT_low(); 2274 } 2275 HMT_medium(); 2276 for (i = 1; i < n_threads; ++i) 2277 if (paca[cpu + i].kvm_hstate.kvm_vcore) 2278 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2279 } 2280 2281 /* 2282 * Check that we are on thread 0 and that any other threads in 2283 * this core are off-line. Then grab the threads so they can't 2284 * enter the kernel. 2285 */ 2286 static int on_primary_thread(void) 2287 { 2288 int cpu = smp_processor_id(); 2289 int thr; 2290 2291 /* Are we on a primary subcore? */ 2292 if (cpu_thread_in_subcore(cpu)) 2293 return 0; 2294 2295 thr = 0; 2296 while (++thr < threads_per_subcore) 2297 if (cpu_online(cpu + thr)) 2298 return 0; 2299 2300 /* Grab all hw threads so they can't go into the kernel */ 2301 for (thr = 1; thr < threads_per_subcore; ++thr) { 2302 if (kvmppc_grab_hwthread(cpu + thr)) { 2303 /* Couldn't grab one; let the others go */ 2304 do { 2305 kvmppc_release_hwthread(cpu + thr); 2306 } while (--thr > 0); 2307 return 0; 2308 } 2309 } 2310 return 1; 2311 } 2312 2313 /* 2314 * A list of virtual cores for each physical CPU. 2315 * These are vcores that could run but their runner VCPU tasks are 2316 * (or may be) preempted. 2317 */ 2318 struct preempted_vcore_list { 2319 struct list_head list; 2320 spinlock_t lock; 2321 }; 2322 2323 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2324 2325 static void init_vcore_lists(void) 2326 { 2327 int cpu; 2328 2329 for_each_possible_cpu(cpu) { 2330 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2331 spin_lock_init(&lp->lock); 2332 INIT_LIST_HEAD(&lp->list); 2333 } 2334 } 2335 2336 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2337 { 2338 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2339 2340 vc->vcore_state = VCORE_PREEMPT; 2341 vc->pcpu = smp_processor_id(); 2342 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2343 spin_lock(&lp->lock); 2344 list_add_tail(&vc->preempt_list, &lp->list); 2345 spin_unlock(&lp->lock); 2346 } 2347 2348 /* Start accumulating stolen time */ 2349 kvmppc_core_start_stolen(vc); 2350 } 2351 2352 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2353 { 2354 struct preempted_vcore_list *lp; 2355 2356 kvmppc_core_end_stolen(vc); 2357 if (!list_empty(&vc->preempt_list)) { 2358 lp = &per_cpu(preempted_vcores, vc->pcpu); 2359 spin_lock(&lp->lock); 2360 list_del_init(&vc->preempt_list); 2361 spin_unlock(&lp->lock); 2362 } 2363 vc->vcore_state = VCORE_INACTIVE; 2364 } 2365 2366 /* 2367 * This stores information about the virtual cores currently 2368 * assigned to a physical core. 2369 */ 2370 struct core_info { 2371 int n_subcores; 2372 int max_subcore_threads; 2373 int total_threads; 2374 int subcore_threads[MAX_SUBCORES]; 2375 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2376 }; 2377 2378 /* 2379 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2380 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2381 */ 2382 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2383 2384 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2385 { 2386 memset(cip, 0, sizeof(*cip)); 2387 cip->n_subcores = 1; 2388 cip->max_subcore_threads = vc->num_threads; 2389 cip->total_threads = vc->num_threads; 2390 cip->subcore_threads[0] = vc->num_threads; 2391 cip->vc[0] = vc; 2392 } 2393 2394 static bool subcore_config_ok(int n_subcores, int n_threads) 2395 { 2396 /* 2397 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 2398 * split-core mode, with one thread per subcore. 2399 */ 2400 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2401 return n_subcores <= 4 && n_threads == 1; 2402 2403 /* On POWER8, can only dynamically split if unsplit to begin with */ 2404 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2405 return false; 2406 if (n_subcores > MAX_SUBCORES) 2407 return false; 2408 if (n_subcores > 1) { 2409 if (!(dynamic_mt_modes & 2)) 2410 n_subcores = 4; 2411 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2412 return false; 2413 } 2414 2415 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2416 } 2417 2418 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2419 { 2420 vc->entry_exit_map = 0; 2421 vc->in_guest = 0; 2422 vc->napping_threads = 0; 2423 vc->conferring_threads = 0; 2424 } 2425 2426 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2427 { 2428 int n_threads = vc->num_threads; 2429 int sub; 2430 2431 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2432 return false; 2433 2434 /* Some POWER9 chips require all threads to be in the same MMU mode */ 2435 if (no_mixing_hpt_and_radix && 2436 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm)) 2437 return false; 2438 2439 if (n_threads < cip->max_subcore_threads) 2440 n_threads = cip->max_subcore_threads; 2441 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2442 return false; 2443 cip->max_subcore_threads = n_threads; 2444 2445 sub = cip->n_subcores; 2446 ++cip->n_subcores; 2447 cip->total_threads += vc->num_threads; 2448 cip->subcore_threads[sub] = vc->num_threads; 2449 cip->vc[sub] = vc; 2450 init_vcore_to_run(vc); 2451 list_del_init(&vc->preempt_list); 2452 2453 return true; 2454 } 2455 2456 /* 2457 * Work out whether it is possible to piggyback the execution of 2458 * vcore *pvc onto the execution of the other vcores described in *cip. 2459 */ 2460 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2461 int target_threads) 2462 { 2463 if (cip->total_threads + pvc->num_threads > target_threads) 2464 return false; 2465 2466 return can_dynamic_split(pvc, cip); 2467 } 2468 2469 static void prepare_threads(struct kvmppc_vcore *vc) 2470 { 2471 int i; 2472 struct kvm_vcpu *vcpu; 2473 2474 for_each_runnable_thread(i, vcpu, vc) { 2475 if (signal_pending(vcpu->arch.run_task)) 2476 vcpu->arch.ret = -EINTR; 2477 else if (vcpu->arch.vpa.update_pending || 2478 vcpu->arch.slb_shadow.update_pending || 2479 vcpu->arch.dtl.update_pending) 2480 vcpu->arch.ret = RESUME_GUEST; 2481 else 2482 continue; 2483 kvmppc_remove_runnable(vc, vcpu); 2484 wake_up(&vcpu->arch.cpu_run); 2485 } 2486 } 2487 2488 static void collect_piggybacks(struct core_info *cip, int target_threads) 2489 { 2490 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2491 struct kvmppc_vcore *pvc, *vcnext; 2492 2493 spin_lock(&lp->lock); 2494 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2495 if (!spin_trylock(&pvc->lock)) 2496 continue; 2497 prepare_threads(pvc); 2498 if (!pvc->n_runnable) { 2499 list_del_init(&pvc->preempt_list); 2500 if (pvc->runner == NULL) { 2501 pvc->vcore_state = VCORE_INACTIVE; 2502 kvmppc_core_end_stolen(pvc); 2503 } 2504 spin_unlock(&pvc->lock); 2505 continue; 2506 } 2507 if (!can_piggyback(pvc, cip, target_threads)) { 2508 spin_unlock(&pvc->lock); 2509 continue; 2510 } 2511 kvmppc_core_end_stolen(pvc); 2512 pvc->vcore_state = VCORE_PIGGYBACK; 2513 if (cip->total_threads >= target_threads) 2514 break; 2515 } 2516 spin_unlock(&lp->lock); 2517 } 2518 2519 static bool recheck_signals(struct core_info *cip) 2520 { 2521 int sub, i; 2522 struct kvm_vcpu *vcpu; 2523 2524 for (sub = 0; sub < cip->n_subcores; ++sub) 2525 for_each_runnable_thread(i, vcpu, cip->vc[sub]) 2526 if (signal_pending(vcpu->arch.run_task)) 2527 return true; 2528 return false; 2529 } 2530 2531 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2532 { 2533 int still_running = 0, i; 2534 u64 now; 2535 long ret; 2536 struct kvm_vcpu *vcpu; 2537 2538 spin_lock(&vc->lock); 2539 now = get_tb(); 2540 for_each_runnable_thread(i, vcpu, vc) { 2541 /* cancel pending dec exception if dec is positive */ 2542 if (now < vcpu->arch.dec_expires && 2543 kvmppc_core_pending_dec(vcpu)) 2544 kvmppc_core_dequeue_dec(vcpu); 2545 2546 trace_kvm_guest_exit(vcpu); 2547 2548 ret = RESUME_GUEST; 2549 if (vcpu->arch.trap) 2550 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2551 vcpu->arch.run_task); 2552 2553 vcpu->arch.ret = ret; 2554 vcpu->arch.trap = 0; 2555 2556 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2557 if (vcpu->arch.pending_exceptions) 2558 kvmppc_core_prepare_to_enter(vcpu); 2559 if (vcpu->arch.ceded) 2560 kvmppc_set_timer(vcpu); 2561 else 2562 ++still_running; 2563 } else { 2564 kvmppc_remove_runnable(vc, vcpu); 2565 wake_up(&vcpu->arch.cpu_run); 2566 } 2567 } 2568 if (!is_master) { 2569 if (still_running > 0) { 2570 kvmppc_vcore_preempt(vc); 2571 } else if (vc->runner) { 2572 vc->vcore_state = VCORE_PREEMPT; 2573 kvmppc_core_start_stolen(vc); 2574 } else { 2575 vc->vcore_state = VCORE_INACTIVE; 2576 } 2577 if (vc->n_runnable > 0 && vc->runner == NULL) { 2578 /* make sure there's a candidate runner awake */ 2579 i = -1; 2580 vcpu = next_runnable_thread(vc, &i); 2581 wake_up(&vcpu->arch.cpu_run); 2582 } 2583 } 2584 spin_unlock(&vc->lock); 2585 } 2586 2587 /* 2588 * Clear core from the list of active host cores as we are about to 2589 * enter the guest. Only do this if it is the primary thread of the 2590 * core (not if a subcore) that is entering the guest. 2591 */ 2592 static inline int kvmppc_clear_host_core(unsigned int cpu) 2593 { 2594 int core; 2595 2596 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2597 return 0; 2598 /* 2599 * Memory barrier can be omitted here as we will do a smp_wmb() 2600 * later in kvmppc_start_thread and we need ensure that state is 2601 * visible to other CPUs only after we enter guest. 2602 */ 2603 core = cpu >> threads_shift; 2604 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2605 return 0; 2606 } 2607 2608 /* 2609 * Advertise this core as an active host core since we exited the guest 2610 * Only need to do this if it is the primary thread of the core that is 2611 * exiting. 2612 */ 2613 static inline int kvmppc_set_host_core(unsigned int cpu) 2614 { 2615 int core; 2616 2617 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2618 return 0; 2619 2620 /* 2621 * Memory barrier can be omitted here because we do a spin_unlock 2622 * immediately after this which provides the memory barrier. 2623 */ 2624 core = cpu >> threads_shift; 2625 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 2626 return 0; 2627 } 2628 2629 static void set_irq_happened(int trap) 2630 { 2631 switch (trap) { 2632 case BOOK3S_INTERRUPT_EXTERNAL: 2633 local_paca->irq_happened |= PACA_IRQ_EE; 2634 break; 2635 case BOOK3S_INTERRUPT_H_DOORBELL: 2636 local_paca->irq_happened |= PACA_IRQ_DBELL; 2637 break; 2638 case BOOK3S_INTERRUPT_HMI: 2639 local_paca->irq_happened |= PACA_IRQ_HMI; 2640 break; 2641 case BOOK3S_INTERRUPT_SYSTEM_RESET: 2642 replay_system_reset(); 2643 break; 2644 } 2645 } 2646 2647 /* 2648 * Run a set of guest threads on a physical core. 2649 * Called with vc->lock held. 2650 */ 2651 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 2652 { 2653 struct kvm_vcpu *vcpu; 2654 int i; 2655 int srcu_idx; 2656 struct core_info core_info; 2657 struct kvmppc_vcore *pvc; 2658 struct kvm_split_mode split_info, *sip; 2659 int split, subcore_size, active; 2660 int sub; 2661 bool thr0_done; 2662 unsigned long cmd_bit, stat_bit; 2663 int pcpu, thr; 2664 int target_threads; 2665 int controlled_threads; 2666 int trap; 2667 bool is_power8; 2668 bool hpt_on_radix; 2669 2670 /* 2671 * Remove from the list any threads that have a signal pending 2672 * or need a VPA update done 2673 */ 2674 prepare_threads(vc); 2675 2676 /* if the runner is no longer runnable, let the caller pick a new one */ 2677 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 2678 return; 2679 2680 /* 2681 * Initialize *vc. 2682 */ 2683 init_vcore_to_run(vc); 2684 vc->preempt_tb = TB_NIL; 2685 2686 /* 2687 * Number of threads that we will be controlling: the same as 2688 * the number of threads per subcore, except on POWER9, 2689 * where it's 1 because the threads are (mostly) independent. 2690 */ 2691 controlled_threads = threads_per_vcore(vc->kvm); 2692 2693 /* 2694 * Make sure we are running on primary threads, and that secondary 2695 * threads are offline. Also check if the number of threads in this 2696 * guest are greater than the current system threads per guest. 2697 * On POWER9, we need to be not in independent-threads mode if 2698 * this is a HPT guest on a radix host machine where the 2699 * CPU threads may not be in different MMU modes. 2700 */ 2701 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() && 2702 !kvm_is_radix(vc->kvm); 2703 if (((controlled_threads > 1) && 2704 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) || 2705 (hpt_on_radix && vc->kvm->arch.threads_indep)) { 2706 for_each_runnable_thread(i, vcpu, vc) { 2707 vcpu->arch.ret = -EBUSY; 2708 kvmppc_remove_runnable(vc, vcpu); 2709 wake_up(&vcpu->arch.cpu_run); 2710 } 2711 goto out; 2712 } 2713 2714 /* 2715 * See if we could run any other vcores on the physical core 2716 * along with this one. 2717 */ 2718 init_core_info(&core_info, vc); 2719 pcpu = smp_processor_id(); 2720 target_threads = controlled_threads; 2721 if (target_smt_mode && target_smt_mode < target_threads) 2722 target_threads = target_smt_mode; 2723 if (vc->num_threads < target_threads) 2724 collect_piggybacks(&core_info, target_threads); 2725 2726 /* 2727 * On radix, arrange for TLB flushing if necessary. 2728 * This has to be done before disabling interrupts since 2729 * it uses smp_call_function(). 2730 */ 2731 pcpu = smp_processor_id(); 2732 if (kvm_is_radix(vc->kvm)) { 2733 for (sub = 0; sub < core_info.n_subcores; ++sub) 2734 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 2735 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 2736 } 2737 2738 /* 2739 * Hard-disable interrupts, and check resched flag and signals. 2740 * If we need to reschedule or deliver a signal, clean up 2741 * and return without going into the guest(s). 2742 * If the mmu_ready flag has been cleared, don't go into the 2743 * guest because that means a HPT resize operation is in progress. 2744 */ 2745 local_irq_disable(); 2746 hard_irq_disable(); 2747 if (lazy_irq_pending() || need_resched() || 2748 recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) { 2749 local_irq_enable(); 2750 vc->vcore_state = VCORE_INACTIVE; 2751 /* Unlock all except the primary vcore */ 2752 for (sub = 1; sub < core_info.n_subcores; ++sub) { 2753 pvc = core_info.vc[sub]; 2754 /* Put back on to the preempted vcores list */ 2755 kvmppc_vcore_preempt(pvc); 2756 spin_unlock(&pvc->lock); 2757 } 2758 for (i = 0; i < controlled_threads; ++i) 2759 kvmppc_release_hwthread(pcpu + i); 2760 return; 2761 } 2762 2763 kvmppc_clear_host_core(pcpu); 2764 2765 /* Decide on micro-threading (split-core) mode */ 2766 subcore_size = threads_per_subcore; 2767 cmd_bit = stat_bit = 0; 2768 split = core_info.n_subcores; 2769 sip = NULL; 2770 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 2771 && !cpu_has_feature(CPU_FTR_ARCH_300); 2772 2773 if (split > 1 || hpt_on_radix) { 2774 sip = &split_info; 2775 memset(&split_info, 0, sizeof(split_info)); 2776 for (sub = 0; sub < core_info.n_subcores; ++sub) 2777 split_info.vc[sub] = core_info.vc[sub]; 2778 2779 if (is_power8) { 2780 if (split == 2 && (dynamic_mt_modes & 2)) { 2781 cmd_bit = HID0_POWER8_1TO2LPAR; 2782 stat_bit = HID0_POWER8_2LPARMODE; 2783 } else { 2784 split = 4; 2785 cmd_bit = HID0_POWER8_1TO4LPAR; 2786 stat_bit = HID0_POWER8_4LPARMODE; 2787 } 2788 subcore_size = MAX_SMT_THREADS / split; 2789 split_info.rpr = mfspr(SPRN_RPR); 2790 split_info.pmmar = mfspr(SPRN_PMMAR); 2791 split_info.ldbar = mfspr(SPRN_LDBAR); 2792 split_info.subcore_size = subcore_size; 2793 } else { 2794 split_info.subcore_size = 1; 2795 if (hpt_on_radix) { 2796 /* Use the split_info for LPCR/LPIDR changes */ 2797 split_info.lpcr_req = vc->lpcr; 2798 split_info.lpidr_req = vc->kvm->arch.lpid; 2799 split_info.host_lpcr = vc->kvm->arch.host_lpcr; 2800 split_info.do_set = 1; 2801 } 2802 } 2803 2804 /* order writes to split_info before kvm_split_mode pointer */ 2805 smp_wmb(); 2806 } 2807 2808 for (thr = 0; thr < controlled_threads; ++thr) { 2809 paca[pcpu + thr].kvm_hstate.tid = thr; 2810 paca[pcpu + thr].kvm_hstate.napping = 0; 2811 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip; 2812 } 2813 2814 /* Initiate micro-threading (split-core) on POWER8 if required */ 2815 if (cmd_bit) { 2816 unsigned long hid0 = mfspr(SPRN_HID0); 2817 2818 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 2819 mb(); 2820 mtspr(SPRN_HID0, hid0); 2821 isync(); 2822 for (;;) { 2823 hid0 = mfspr(SPRN_HID0); 2824 if (hid0 & stat_bit) 2825 break; 2826 cpu_relax(); 2827 } 2828 } 2829 2830 /* Start all the threads */ 2831 active = 0; 2832 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2833 thr = is_power8 ? subcore_thread_map[sub] : sub; 2834 thr0_done = false; 2835 active |= 1 << thr; 2836 pvc = core_info.vc[sub]; 2837 pvc->pcpu = pcpu + thr; 2838 for_each_runnable_thread(i, vcpu, pvc) { 2839 kvmppc_start_thread(vcpu, pvc); 2840 kvmppc_create_dtl_entry(vcpu, pvc); 2841 trace_kvm_guest_enter(vcpu); 2842 if (!vcpu->arch.ptid) 2843 thr0_done = true; 2844 active |= 1 << (thr + vcpu->arch.ptid); 2845 } 2846 /* 2847 * We need to start the first thread of each subcore 2848 * even if it doesn't have a vcpu. 2849 */ 2850 if (!thr0_done) 2851 kvmppc_start_thread(NULL, pvc); 2852 } 2853 2854 /* 2855 * Ensure that split_info.do_nap is set after setting 2856 * the vcore pointer in the PACA of the secondaries. 2857 */ 2858 smp_mb(); 2859 2860 /* 2861 * When doing micro-threading, poke the inactive threads as well. 2862 * This gets them to the nap instruction after kvm_do_nap, 2863 * which reduces the time taken to unsplit later. 2864 * For POWER9 HPT guest on radix host, we need all the secondary 2865 * threads woken up so they can do the LPCR/LPIDR change. 2866 */ 2867 if (cmd_bit || hpt_on_radix) { 2868 split_info.do_nap = 1; /* ask secondaries to nap when done */ 2869 for (thr = 1; thr < threads_per_subcore; ++thr) 2870 if (!(active & (1 << thr))) 2871 kvmppc_ipi_thread(pcpu + thr); 2872 } 2873 2874 vc->vcore_state = VCORE_RUNNING; 2875 preempt_disable(); 2876 2877 trace_kvmppc_run_core(vc, 0); 2878 2879 for (sub = 0; sub < core_info.n_subcores; ++sub) 2880 spin_unlock(&core_info.vc[sub]->lock); 2881 2882 /* 2883 * Interrupts will be enabled once we get into the guest, 2884 * so tell lockdep that we're about to enable interrupts. 2885 */ 2886 trace_hardirqs_on(); 2887 2888 guest_enter_irqoff(); 2889 2890 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 2891 2892 trap = __kvmppc_vcore_entry(); 2893 2894 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 2895 2896 trace_hardirqs_off(); 2897 set_irq_happened(trap); 2898 2899 spin_lock(&vc->lock); 2900 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 2901 vc->vcore_state = VCORE_EXITING; 2902 2903 /* wait for secondary threads to finish writing their state to memory */ 2904 kvmppc_wait_for_nap(controlled_threads); 2905 2906 /* Return to whole-core mode if we split the core earlier */ 2907 if (cmd_bit) { 2908 unsigned long hid0 = mfspr(SPRN_HID0); 2909 unsigned long loops = 0; 2910 2911 hid0 &= ~HID0_POWER8_DYNLPARDIS; 2912 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 2913 mb(); 2914 mtspr(SPRN_HID0, hid0); 2915 isync(); 2916 for (;;) { 2917 hid0 = mfspr(SPRN_HID0); 2918 if (!(hid0 & stat_bit)) 2919 break; 2920 cpu_relax(); 2921 ++loops; 2922 } 2923 } else if (hpt_on_radix) { 2924 /* Wait for all threads to have seen final sync */ 2925 for (thr = 1; thr < controlled_threads; ++thr) { 2926 while (paca[pcpu + thr].kvm_hstate.kvm_split_mode) { 2927 HMT_low(); 2928 barrier(); 2929 } 2930 HMT_medium(); 2931 } 2932 } 2933 split_info.do_nap = 0; 2934 2935 kvmppc_set_host_core(pcpu); 2936 2937 local_irq_enable(); 2938 guest_exit(); 2939 2940 /* Let secondaries go back to the offline loop */ 2941 for (i = 0; i < controlled_threads; ++i) { 2942 kvmppc_release_hwthread(pcpu + i); 2943 if (sip && sip->napped[i]) 2944 kvmppc_ipi_thread(pcpu + i); 2945 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 2946 } 2947 2948 spin_unlock(&vc->lock); 2949 2950 /* make sure updates to secondary vcpu structs are visible now */ 2951 smp_mb(); 2952 2953 preempt_enable(); 2954 2955 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2956 pvc = core_info.vc[sub]; 2957 post_guest_process(pvc, pvc == vc); 2958 } 2959 2960 spin_lock(&vc->lock); 2961 2962 out: 2963 vc->vcore_state = VCORE_INACTIVE; 2964 trace_kvmppc_run_core(vc, 1); 2965 } 2966 2967 /* 2968 * Wait for some other vcpu thread to execute us, and 2969 * wake us up when we need to handle something in the host. 2970 */ 2971 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 2972 struct kvm_vcpu *vcpu, int wait_state) 2973 { 2974 DEFINE_WAIT(wait); 2975 2976 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 2977 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2978 spin_unlock(&vc->lock); 2979 schedule(); 2980 spin_lock(&vc->lock); 2981 } 2982 finish_wait(&vcpu->arch.cpu_run, &wait); 2983 } 2984 2985 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 2986 { 2987 /* 10us base */ 2988 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow) 2989 vc->halt_poll_ns = 10000; 2990 else 2991 vc->halt_poll_ns *= halt_poll_ns_grow; 2992 } 2993 2994 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 2995 { 2996 if (halt_poll_ns_shrink == 0) 2997 vc->halt_poll_ns = 0; 2998 else 2999 vc->halt_poll_ns /= halt_poll_ns_shrink; 3000 } 3001 3002 #ifdef CONFIG_KVM_XICS 3003 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3004 { 3005 if (!xive_enabled()) 3006 return false; 3007 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 3008 vcpu->arch.xive_saved_state.cppr; 3009 } 3010 #else 3011 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3012 { 3013 return false; 3014 } 3015 #endif /* CONFIG_KVM_XICS */ 3016 3017 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3018 { 3019 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3020 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3021 return true; 3022 3023 return false; 3024 } 3025 3026 /* 3027 * Check to see if any of the runnable vcpus on the vcore have pending 3028 * exceptions or are no longer ceded 3029 */ 3030 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3031 { 3032 struct kvm_vcpu *vcpu; 3033 int i; 3034 3035 for_each_runnable_thread(i, vcpu, vc) { 3036 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3037 return 1; 3038 } 3039 3040 return 0; 3041 } 3042 3043 /* 3044 * All the vcpus in this vcore are idle, so wait for a decrementer 3045 * or external interrupt to one of the vcpus. vc->lock is held. 3046 */ 3047 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3048 { 3049 ktime_t cur, start_poll, start_wait; 3050 int do_sleep = 1; 3051 u64 block_ns; 3052 DECLARE_SWAITQUEUE(wait); 3053 3054 /* Poll for pending exceptions and ceded state */ 3055 cur = start_poll = ktime_get(); 3056 if (vc->halt_poll_ns) { 3057 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3058 ++vc->runner->stat.halt_attempted_poll; 3059 3060 vc->vcore_state = VCORE_POLLING; 3061 spin_unlock(&vc->lock); 3062 3063 do { 3064 if (kvmppc_vcore_check_block(vc)) { 3065 do_sleep = 0; 3066 break; 3067 } 3068 cur = ktime_get(); 3069 } while (single_task_running() && ktime_before(cur, stop)); 3070 3071 spin_lock(&vc->lock); 3072 vc->vcore_state = VCORE_INACTIVE; 3073 3074 if (!do_sleep) { 3075 ++vc->runner->stat.halt_successful_poll; 3076 goto out; 3077 } 3078 } 3079 3080 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 3081 3082 if (kvmppc_vcore_check_block(vc)) { 3083 finish_swait(&vc->wq, &wait); 3084 do_sleep = 0; 3085 /* If we polled, count this as a successful poll */ 3086 if (vc->halt_poll_ns) 3087 ++vc->runner->stat.halt_successful_poll; 3088 goto out; 3089 } 3090 3091 start_wait = ktime_get(); 3092 3093 vc->vcore_state = VCORE_SLEEPING; 3094 trace_kvmppc_vcore_blocked(vc, 0); 3095 spin_unlock(&vc->lock); 3096 schedule(); 3097 finish_swait(&vc->wq, &wait); 3098 spin_lock(&vc->lock); 3099 vc->vcore_state = VCORE_INACTIVE; 3100 trace_kvmppc_vcore_blocked(vc, 1); 3101 ++vc->runner->stat.halt_successful_wait; 3102 3103 cur = ktime_get(); 3104 3105 out: 3106 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3107 3108 /* Attribute wait time */ 3109 if (do_sleep) { 3110 vc->runner->stat.halt_wait_ns += 3111 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3112 /* Attribute failed poll time */ 3113 if (vc->halt_poll_ns) 3114 vc->runner->stat.halt_poll_fail_ns += 3115 ktime_to_ns(start_wait) - 3116 ktime_to_ns(start_poll); 3117 } else { 3118 /* Attribute successful poll time */ 3119 if (vc->halt_poll_ns) 3120 vc->runner->stat.halt_poll_success_ns += 3121 ktime_to_ns(cur) - 3122 ktime_to_ns(start_poll); 3123 } 3124 3125 /* Adjust poll time */ 3126 if (halt_poll_ns) { 3127 if (block_ns <= vc->halt_poll_ns) 3128 ; 3129 /* We slept and blocked for longer than the max halt time */ 3130 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3131 shrink_halt_poll_ns(vc); 3132 /* We slept and our poll time is too small */ 3133 else if (vc->halt_poll_ns < halt_poll_ns && 3134 block_ns < halt_poll_ns) 3135 grow_halt_poll_ns(vc); 3136 if (vc->halt_poll_ns > halt_poll_ns) 3137 vc->halt_poll_ns = halt_poll_ns; 3138 } else 3139 vc->halt_poll_ns = 0; 3140 3141 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3142 } 3143 3144 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 3145 { 3146 int r = 0; 3147 struct kvm *kvm = vcpu->kvm; 3148 3149 mutex_lock(&kvm->lock); 3150 if (!kvm->arch.mmu_ready) { 3151 if (!kvm_is_radix(kvm)) 3152 r = kvmppc_hv_setup_htab_rma(vcpu); 3153 if (!r) { 3154 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3155 kvmppc_setup_partition_table(kvm); 3156 kvm->arch.mmu_ready = 1; 3157 } 3158 } 3159 mutex_unlock(&kvm->lock); 3160 return r; 3161 } 3162 3163 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 3164 { 3165 int n_ceded, i, r; 3166 struct kvmppc_vcore *vc; 3167 struct kvm_vcpu *v; 3168 3169 trace_kvmppc_run_vcpu_enter(vcpu); 3170 3171 kvm_run->exit_reason = 0; 3172 vcpu->arch.ret = RESUME_GUEST; 3173 vcpu->arch.trap = 0; 3174 kvmppc_update_vpas(vcpu); 3175 3176 /* 3177 * Synchronize with other threads in this virtual core 3178 */ 3179 vc = vcpu->arch.vcore; 3180 spin_lock(&vc->lock); 3181 vcpu->arch.ceded = 0; 3182 vcpu->arch.run_task = current; 3183 vcpu->arch.kvm_run = kvm_run; 3184 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3185 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3186 vcpu->arch.busy_preempt = TB_NIL; 3187 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 3188 ++vc->n_runnable; 3189 3190 /* 3191 * This happens the first time this is called for a vcpu. 3192 * If the vcore is already running, we may be able to start 3193 * this thread straight away and have it join in. 3194 */ 3195 if (!signal_pending(current)) { 3196 if ((vc->vcore_state == VCORE_PIGGYBACK || 3197 vc->vcore_state == VCORE_RUNNING) && 3198 !VCORE_IS_EXITING(vc)) { 3199 kvmppc_create_dtl_entry(vcpu, vc); 3200 kvmppc_start_thread(vcpu, vc); 3201 trace_kvm_guest_enter(vcpu); 3202 } else if (vc->vcore_state == VCORE_SLEEPING) { 3203 swake_up(&vc->wq); 3204 } 3205 3206 } 3207 3208 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3209 !signal_pending(current)) { 3210 /* See if the MMU is ready to go */ 3211 if (!vcpu->kvm->arch.mmu_ready) { 3212 spin_unlock(&vc->lock); 3213 r = kvmhv_setup_mmu(vcpu); 3214 spin_lock(&vc->lock); 3215 if (r) { 3216 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3217 kvm_run->fail_entry. 3218 hardware_entry_failure_reason = 0; 3219 vcpu->arch.ret = r; 3220 break; 3221 } 3222 } 3223 3224 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3225 kvmppc_vcore_end_preempt(vc); 3226 3227 if (vc->vcore_state != VCORE_INACTIVE) { 3228 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 3229 continue; 3230 } 3231 for_each_runnable_thread(i, v, vc) { 3232 kvmppc_core_prepare_to_enter(v); 3233 if (signal_pending(v->arch.run_task)) { 3234 kvmppc_remove_runnable(vc, v); 3235 v->stat.signal_exits++; 3236 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 3237 v->arch.ret = -EINTR; 3238 wake_up(&v->arch.cpu_run); 3239 } 3240 } 3241 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3242 break; 3243 n_ceded = 0; 3244 for_each_runnable_thread(i, v, vc) { 3245 if (!kvmppc_vcpu_woken(v)) 3246 n_ceded += v->arch.ceded; 3247 else 3248 v->arch.ceded = 0; 3249 } 3250 vc->runner = vcpu; 3251 if (n_ceded == vc->n_runnable) { 3252 kvmppc_vcore_blocked(vc); 3253 } else if (need_resched()) { 3254 kvmppc_vcore_preempt(vc); 3255 /* Let something else run */ 3256 cond_resched_lock(&vc->lock); 3257 if (vc->vcore_state == VCORE_PREEMPT) 3258 kvmppc_vcore_end_preempt(vc); 3259 } else { 3260 kvmppc_run_core(vc); 3261 } 3262 vc->runner = NULL; 3263 } 3264 3265 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3266 (vc->vcore_state == VCORE_RUNNING || 3267 vc->vcore_state == VCORE_EXITING || 3268 vc->vcore_state == VCORE_PIGGYBACK)) 3269 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 3270 3271 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3272 kvmppc_vcore_end_preempt(vc); 3273 3274 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3275 kvmppc_remove_runnable(vc, vcpu); 3276 vcpu->stat.signal_exits++; 3277 kvm_run->exit_reason = KVM_EXIT_INTR; 3278 vcpu->arch.ret = -EINTR; 3279 } 3280 3281 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 3282 /* Wake up some vcpu to run the core */ 3283 i = -1; 3284 v = next_runnable_thread(vc, &i); 3285 wake_up(&v->arch.cpu_run); 3286 } 3287 3288 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 3289 spin_unlock(&vc->lock); 3290 return vcpu->arch.ret; 3291 } 3292 3293 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 3294 { 3295 int r; 3296 int srcu_idx; 3297 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 3298 unsigned long user_tar = 0; 3299 unsigned int user_vrsave; 3300 struct kvm *kvm; 3301 3302 if (!vcpu->arch.sane) { 3303 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3304 return -EINVAL; 3305 } 3306 3307 /* 3308 * Don't allow entry with a suspended transaction, because 3309 * the guest entry/exit code will lose it. 3310 * If the guest has TM enabled, save away their TM-related SPRs 3311 * (they will get restored by the TM unavailable interrupt). 3312 */ 3313 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 3314 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 3315 (current->thread.regs->msr & MSR_TM)) { 3316 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 3317 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3318 run->fail_entry.hardware_entry_failure_reason = 0; 3319 return -EINVAL; 3320 } 3321 /* Enable TM so we can read the TM SPRs */ 3322 mtmsr(mfmsr() | MSR_TM); 3323 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 3324 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 3325 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 3326 current->thread.regs->msr &= ~MSR_TM; 3327 } 3328 #endif 3329 3330 kvmppc_core_prepare_to_enter(vcpu); 3331 3332 /* No need to go into the guest when all we'll do is come back out */ 3333 if (signal_pending(current)) { 3334 run->exit_reason = KVM_EXIT_INTR; 3335 return -EINTR; 3336 } 3337 3338 kvm = vcpu->kvm; 3339 atomic_inc(&kvm->arch.vcpus_running); 3340 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 3341 smp_mb(); 3342 3343 flush_all_to_thread(current); 3344 3345 /* Save userspace EBB and other register values */ 3346 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 3347 ebb_regs[0] = mfspr(SPRN_EBBHR); 3348 ebb_regs[1] = mfspr(SPRN_EBBRR); 3349 ebb_regs[2] = mfspr(SPRN_BESCR); 3350 user_tar = mfspr(SPRN_TAR); 3351 } 3352 user_vrsave = mfspr(SPRN_VRSAVE); 3353 3354 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 3355 vcpu->arch.pgdir = current->mm->pgd; 3356 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 3357 3358 do { 3359 r = kvmppc_run_vcpu(run, vcpu); 3360 3361 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 3362 !(vcpu->arch.shregs.msr & MSR_PR)) { 3363 trace_kvm_hcall_enter(vcpu); 3364 r = kvmppc_pseries_do_hcall(vcpu); 3365 trace_kvm_hcall_exit(vcpu, r); 3366 kvmppc_core_prepare_to_enter(vcpu); 3367 } else if (r == RESUME_PAGE_FAULT) { 3368 srcu_idx = srcu_read_lock(&kvm->srcu); 3369 r = kvmppc_book3s_hv_page_fault(run, vcpu, 3370 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 3371 srcu_read_unlock(&kvm->srcu, srcu_idx); 3372 } else if (r == RESUME_PASSTHROUGH) { 3373 if (WARN_ON(xive_enabled())) 3374 r = H_SUCCESS; 3375 else 3376 r = kvmppc_xics_rm_complete(vcpu, 0); 3377 } 3378 } while (is_kvmppc_resume_guest(r)); 3379 3380 /* Restore userspace EBB and other register values */ 3381 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 3382 mtspr(SPRN_EBBHR, ebb_regs[0]); 3383 mtspr(SPRN_EBBRR, ebb_regs[1]); 3384 mtspr(SPRN_BESCR, ebb_regs[2]); 3385 mtspr(SPRN_TAR, user_tar); 3386 mtspr(SPRN_FSCR, current->thread.fscr); 3387 } 3388 mtspr(SPRN_VRSAVE, user_vrsave); 3389 3390 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 3391 atomic_dec(&kvm->arch.vcpus_running); 3392 return r; 3393 } 3394 3395 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 3396 int shift, int sllp) 3397 { 3398 (*sps)->page_shift = shift; 3399 (*sps)->slb_enc = sllp; 3400 (*sps)->enc[0].page_shift = shift; 3401 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 3402 /* 3403 * Add 16MB MPSS support (may get filtered out by userspace) 3404 */ 3405 if (shift != 24) { 3406 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 3407 if (penc != -1) { 3408 (*sps)->enc[1].page_shift = 24; 3409 (*sps)->enc[1].pte_enc = penc; 3410 } 3411 } 3412 (*sps)++; 3413 } 3414 3415 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 3416 struct kvm_ppc_smmu_info *info) 3417 { 3418 struct kvm_ppc_one_seg_page_size *sps; 3419 3420 /* 3421 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 3422 * POWER7 doesn't support keys for instruction accesses, 3423 * POWER8 and POWER9 do. 3424 */ 3425 info->data_keys = 32; 3426 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 3427 3428 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 3429 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 3430 info->slb_size = 32; 3431 3432 /* We only support these sizes for now, and no muti-size segments */ 3433 sps = &info->sps[0]; 3434 kvmppc_add_seg_page_size(&sps, 12, 0); 3435 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 3436 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 3437 3438 return 0; 3439 } 3440 3441 /* 3442 * Get (and clear) the dirty memory log for a memory slot. 3443 */ 3444 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 3445 struct kvm_dirty_log *log) 3446 { 3447 struct kvm_memslots *slots; 3448 struct kvm_memory_slot *memslot; 3449 int i, r; 3450 unsigned long n; 3451 unsigned long *buf, *p; 3452 struct kvm_vcpu *vcpu; 3453 3454 mutex_lock(&kvm->slots_lock); 3455 3456 r = -EINVAL; 3457 if (log->slot >= KVM_USER_MEM_SLOTS) 3458 goto out; 3459 3460 slots = kvm_memslots(kvm); 3461 memslot = id_to_memslot(slots, log->slot); 3462 r = -ENOENT; 3463 if (!memslot->dirty_bitmap) 3464 goto out; 3465 3466 /* 3467 * Use second half of bitmap area because both HPT and radix 3468 * accumulate bits in the first half. 3469 */ 3470 n = kvm_dirty_bitmap_bytes(memslot); 3471 buf = memslot->dirty_bitmap + n / sizeof(long); 3472 memset(buf, 0, n); 3473 3474 if (kvm_is_radix(kvm)) 3475 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 3476 else 3477 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 3478 if (r) 3479 goto out; 3480 3481 /* 3482 * We accumulate dirty bits in the first half of the 3483 * memslot's dirty_bitmap area, for when pages are paged 3484 * out or modified by the host directly. Pick up these 3485 * bits and add them to the map. 3486 */ 3487 p = memslot->dirty_bitmap; 3488 for (i = 0; i < n / sizeof(long); ++i) 3489 buf[i] |= xchg(&p[i], 0); 3490 3491 /* Harvest dirty bits from VPA and DTL updates */ 3492 /* Note: we never modify the SLB shadow buffer areas */ 3493 kvm_for_each_vcpu(i, vcpu, kvm) { 3494 spin_lock(&vcpu->arch.vpa_update_lock); 3495 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 3496 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 3497 spin_unlock(&vcpu->arch.vpa_update_lock); 3498 } 3499 3500 r = -EFAULT; 3501 if (copy_to_user(log->dirty_bitmap, buf, n)) 3502 goto out; 3503 3504 r = 0; 3505 out: 3506 mutex_unlock(&kvm->slots_lock); 3507 return r; 3508 } 3509 3510 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 3511 struct kvm_memory_slot *dont) 3512 { 3513 if (!dont || free->arch.rmap != dont->arch.rmap) { 3514 vfree(free->arch.rmap); 3515 free->arch.rmap = NULL; 3516 } 3517 } 3518 3519 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 3520 unsigned long npages) 3521 { 3522 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 3523 if (!slot->arch.rmap) 3524 return -ENOMEM; 3525 3526 return 0; 3527 } 3528 3529 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 3530 struct kvm_memory_slot *memslot, 3531 const struct kvm_userspace_memory_region *mem) 3532 { 3533 return 0; 3534 } 3535 3536 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 3537 const struct kvm_userspace_memory_region *mem, 3538 const struct kvm_memory_slot *old, 3539 const struct kvm_memory_slot *new) 3540 { 3541 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 3542 3543 /* 3544 * If we are making a new memslot, it might make 3545 * some address that was previously cached as emulated 3546 * MMIO be no longer emulated MMIO, so invalidate 3547 * all the caches of emulated MMIO translations. 3548 */ 3549 if (npages) 3550 atomic64_inc(&kvm->arch.mmio_update); 3551 } 3552 3553 /* 3554 * Update LPCR values in kvm->arch and in vcores. 3555 * Caller must hold kvm->lock. 3556 */ 3557 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 3558 { 3559 long int i; 3560 u32 cores_done = 0; 3561 3562 if ((kvm->arch.lpcr & mask) == lpcr) 3563 return; 3564 3565 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 3566 3567 for (i = 0; i < KVM_MAX_VCORES; ++i) { 3568 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 3569 if (!vc) 3570 continue; 3571 spin_lock(&vc->lock); 3572 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 3573 spin_unlock(&vc->lock); 3574 if (++cores_done >= kvm->arch.online_vcores) 3575 break; 3576 } 3577 } 3578 3579 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 3580 { 3581 return; 3582 } 3583 3584 void kvmppc_setup_partition_table(struct kvm *kvm) 3585 { 3586 unsigned long dw0, dw1; 3587 3588 if (!kvm_is_radix(kvm)) { 3589 /* PS field - page size for VRMA */ 3590 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 3591 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 3592 /* HTABSIZE and HTABORG fields */ 3593 dw0 |= kvm->arch.sdr1; 3594 3595 /* Second dword as set by userspace */ 3596 dw1 = kvm->arch.process_table; 3597 } else { 3598 dw0 = PATB_HR | radix__get_tree_size() | 3599 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 3600 dw1 = PATB_GR | kvm->arch.process_table; 3601 } 3602 3603 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1); 3604 } 3605 3606 /* 3607 * Set up HPT (hashed page table) and RMA (real-mode area). 3608 * Must be called with kvm->lock held. 3609 */ 3610 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 3611 { 3612 int err = 0; 3613 struct kvm *kvm = vcpu->kvm; 3614 unsigned long hva; 3615 struct kvm_memory_slot *memslot; 3616 struct vm_area_struct *vma; 3617 unsigned long lpcr = 0, senc; 3618 unsigned long psize, porder; 3619 int srcu_idx; 3620 3621 /* Allocate hashed page table (if not done already) and reset it */ 3622 if (!kvm->arch.hpt.virt) { 3623 int order = KVM_DEFAULT_HPT_ORDER; 3624 struct kvm_hpt_info info; 3625 3626 err = kvmppc_allocate_hpt(&info, order); 3627 /* If we get here, it means userspace didn't specify a 3628 * size explicitly. So, try successively smaller 3629 * sizes if the default failed. */ 3630 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 3631 err = kvmppc_allocate_hpt(&info, order); 3632 3633 if (err < 0) { 3634 pr_err("KVM: Couldn't alloc HPT\n"); 3635 goto out; 3636 } 3637 3638 kvmppc_set_hpt(kvm, &info); 3639 } 3640 3641 /* Look up the memslot for guest physical address 0 */ 3642 srcu_idx = srcu_read_lock(&kvm->srcu); 3643 memslot = gfn_to_memslot(kvm, 0); 3644 3645 /* We must have some memory at 0 by now */ 3646 err = -EINVAL; 3647 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 3648 goto out_srcu; 3649 3650 /* Look up the VMA for the start of this memory slot */ 3651 hva = memslot->userspace_addr; 3652 down_read(¤t->mm->mmap_sem); 3653 vma = find_vma(current->mm, hva); 3654 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 3655 goto up_out; 3656 3657 psize = vma_kernel_pagesize(vma); 3658 3659 up_read(¤t->mm->mmap_sem); 3660 3661 /* We can handle 4k, 64k or 16M pages in the VRMA */ 3662 if (psize >= 0x1000000) 3663 psize = 0x1000000; 3664 else if (psize >= 0x10000) 3665 psize = 0x10000; 3666 else 3667 psize = 0x1000; 3668 porder = __ilog2(psize); 3669 3670 senc = slb_pgsize_encoding(psize); 3671 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 3672 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3673 /* Create HPTEs in the hash page table for the VRMA */ 3674 kvmppc_map_vrma(vcpu, memslot, porder); 3675 3676 /* Update VRMASD field in the LPCR */ 3677 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 3678 /* the -4 is to account for senc values starting at 0x10 */ 3679 lpcr = senc << (LPCR_VRMASD_SH - 4); 3680 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 3681 } 3682 3683 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 3684 smp_wmb(); 3685 err = 0; 3686 out_srcu: 3687 srcu_read_unlock(&kvm->srcu, srcu_idx); 3688 out: 3689 return err; 3690 3691 up_out: 3692 up_read(¤t->mm->mmap_sem); 3693 goto out_srcu; 3694 } 3695 3696 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */ 3697 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 3698 { 3699 kvmppc_free_radix(kvm); 3700 kvmppc_update_lpcr(kvm, LPCR_VPM1, 3701 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 3702 kvmppc_rmap_reset(kvm); 3703 kvm->arch.radix = 0; 3704 kvm->arch.process_table = 0; 3705 return 0; 3706 } 3707 3708 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */ 3709 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 3710 { 3711 int err; 3712 3713 err = kvmppc_init_vm_radix(kvm); 3714 if (err) 3715 return err; 3716 3717 kvmppc_free_hpt(&kvm->arch.hpt); 3718 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 3719 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 3720 kvm->arch.radix = 1; 3721 return 0; 3722 } 3723 3724 #ifdef CONFIG_KVM_XICS 3725 /* 3726 * Allocate a per-core structure for managing state about which cores are 3727 * running in the host versus the guest and for exchanging data between 3728 * real mode KVM and CPU running in the host. 3729 * This is only done for the first VM. 3730 * The allocated structure stays even if all VMs have stopped. 3731 * It is only freed when the kvm-hv module is unloaded. 3732 * It's OK for this routine to fail, we just don't support host 3733 * core operations like redirecting H_IPI wakeups. 3734 */ 3735 void kvmppc_alloc_host_rm_ops(void) 3736 { 3737 struct kvmppc_host_rm_ops *ops; 3738 unsigned long l_ops; 3739 int cpu, core; 3740 int size; 3741 3742 /* Not the first time here ? */ 3743 if (kvmppc_host_rm_ops_hv != NULL) 3744 return; 3745 3746 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 3747 if (!ops) 3748 return; 3749 3750 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 3751 ops->rm_core = kzalloc(size, GFP_KERNEL); 3752 3753 if (!ops->rm_core) { 3754 kfree(ops); 3755 return; 3756 } 3757 3758 cpus_read_lock(); 3759 3760 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 3761 if (!cpu_online(cpu)) 3762 continue; 3763 3764 core = cpu >> threads_shift; 3765 ops->rm_core[core].rm_state.in_host = 1; 3766 } 3767 3768 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 3769 3770 /* 3771 * Make the contents of the kvmppc_host_rm_ops structure visible 3772 * to other CPUs before we assign it to the global variable. 3773 * Do an atomic assignment (no locks used here), but if someone 3774 * beats us to it, just free our copy and return. 3775 */ 3776 smp_wmb(); 3777 l_ops = (unsigned long) ops; 3778 3779 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 3780 cpus_read_unlock(); 3781 kfree(ops->rm_core); 3782 kfree(ops); 3783 return; 3784 } 3785 3786 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 3787 "ppc/kvm_book3s:prepare", 3788 kvmppc_set_host_core, 3789 kvmppc_clear_host_core); 3790 cpus_read_unlock(); 3791 } 3792 3793 void kvmppc_free_host_rm_ops(void) 3794 { 3795 if (kvmppc_host_rm_ops_hv) { 3796 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 3797 kfree(kvmppc_host_rm_ops_hv->rm_core); 3798 kfree(kvmppc_host_rm_ops_hv); 3799 kvmppc_host_rm_ops_hv = NULL; 3800 } 3801 } 3802 #endif 3803 3804 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 3805 { 3806 unsigned long lpcr, lpid; 3807 char buf[32]; 3808 int ret; 3809 3810 /* Allocate the guest's logical partition ID */ 3811 3812 lpid = kvmppc_alloc_lpid(); 3813 if ((long)lpid < 0) 3814 return -ENOMEM; 3815 kvm->arch.lpid = lpid; 3816 3817 kvmppc_alloc_host_rm_ops(); 3818 3819 /* 3820 * Since we don't flush the TLB when tearing down a VM, 3821 * and this lpid might have previously been used, 3822 * make sure we flush on each core before running the new VM. 3823 * On POWER9, the tlbie in mmu_partition_table_set_entry() 3824 * does this flush for us. 3825 */ 3826 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3827 cpumask_setall(&kvm->arch.need_tlb_flush); 3828 3829 /* Start out with the default set of hcalls enabled */ 3830 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 3831 sizeof(kvm->arch.enabled_hcalls)); 3832 3833 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3834 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 3835 3836 /* Init LPCR for virtual RMA mode */ 3837 kvm->arch.host_lpid = mfspr(SPRN_LPID); 3838 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 3839 lpcr &= LPCR_PECE | LPCR_LPES; 3840 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 3841 LPCR_VPM0 | LPCR_VPM1; 3842 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 3843 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3844 /* On POWER8 turn on online bit to enable PURR/SPURR */ 3845 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3846 lpcr |= LPCR_ONL; 3847 /* 3848 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 3849 * Set HVICE bit to enable hypervisor virtualization interrupts. 3850 * Set HEIC to prevent OS interrupts to go to hypervisor (should 3851 * be unnecessary but better safe than sorry in case we re-enable 3852 * EE in HV mode with this LPCR still set) 3853 */ 3854 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 3855 lpcr &= ~LPCR_VPM0; 3856 lpcr |= LPCR_HVICE | LPCR_HEIC; 3857 3858 /* 3859 * If xive is enabled, we route 0x500 interrupts directly 3860 * to the guest. 3861 */ 3862 if (xive_enabled()) 3863 lpcr |= LPCR_LPES; 3864 } 3865 3866 /* 3867 * If the host uses radix, the guest starts out as radix. 3868 */ 3869 if (radix_enabled()) { 3870 kvm->arch.radix = 1; 3871 kvm->arch.mmu_ready = 1; 3872 lpcr &= ~LPCR_VPM1; 3873 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 3874 ret = kvmppc_init_vm_radix(kvm); 3875 if (ret) { 3876 kvmppc_free_lpid(kvm->arch.lpid); 3877 return ret; 3878 } 3879 kvmppc_setup_partition_table(kvm); 3880 } 3881 3882 kvm->arch.lpcr = lpcr; 3883 3884 /* Initialization for future HPT resizes */ 3885 kvm->arch.resize_hpt = NULL; 3886 3887 /* 3888 * Work out how many sets the TLB has, for the use of 3889 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 3890 */ 3891 if (radix_enabled()) 3892 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 3893 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 3894 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 3895 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3896 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 3897 else 3898 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 3899 3900 /* 3901 * Track that we now have a HV mode VM active. This blocks secondary 3902 * CPU threads from coming online. 3903 * On POWER9, we only need to do this if the "indep_threads_mode" 3904 * module parameter has been set to N. 3905 */ 3906 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3907 kvm->arch.threads_indep = indep_threads_mode; 3908 if (!kvm->arch.threads_indep) 3909 kvm_hv_vm_activated(); 3910 3911 /* 3912 * Initialize smt_mode depending on processor. 3913 * POWER8 and earlier have to use "strict" threading, where 3914 * all vCPUs in a vcore have to run on the same (sub)core, 3915 * whereas on POWER9 the threads can each run a different 3916 * guest. 3917 */ 3918 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3919 kvm->arch.smt_mode = threads_per_subcore; 3920 else 3921 kvm->arch.smt_mode = 1; 3922 kvm->arch.emul_smt_mode = 1; 3923 3924 /* 3925 * Create a debugfs directory for the VM 3926 */ 3927 snprintf(buf, sizeof(buf), "vm%d", current->pid); 3928 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 3929 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 3930 kvmppc_mmu_debugfs_init(kvm); 3931 3932 return 0; 3933 } 3934 3935 static void kvmppc_free_vcores(struct kvm *kvm) 3936 { 3937 long int i; 3938 3939 for (i = 0; i < KVM_MAX_VCORES; ++i) 3940 kfree(kvm->arch.vcores[i]); 3941 kvm->arch.online_vcores = 0; 3942 } 3943 3944 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 3945 { 3946 debugfs_remove_recursive(kvm->arch.debugfs_dir); 3947 3948 if (!kvm->arch.threads_indep) 3949 kvm_hv_vm_deactivated(); 3950 3951 kvmppc_free_vcores(kvm); 3952 3953 kvmppc_free_lpid(kvm->arch.lpid); 3954 3955 if (kvm_is_radix(kvm)) 3956 kvmppc_free_radix(kvm); 3957 else 3958 kvmppc_free_hpt(&kvm->arch.hpt); 3959 3960 kvmppc_free_pimap(kvm); 3961 } 3962 3963 /* We don't need to emulate any privileged instructions or dcbz */ 3964 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 3965 unsigned int inst, int *advance) 3966 { 3967 return EMULATE_FAIL; 3968 } 3969 3970 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 3971 ulong spr_val) 3972 { 3973 return EMULATE_FAIL; 3974 } 3975 3976 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 3977 ulong *spr_val) 3978 { 3979 return EMULATE_FAIL; 3980 } 3981 3982 static int kvmppc_core_check_processor_compat_hv(void) 3983 { 3984 if (!cpu_has_feature(CPU_FTR_HVMODE) || 3985 !cpu_has_feature(CPU_FTR_ARCH_206)) 3986 return -EIO; 3987 3988 return 0; 3989 } 3990 3991 #ifdef CONFIG_KVM_XICS 3992 3993 void kvmppc_free_pimap(struct kvm *kvm) 3994 { 3995 kfree(kvm->arch.pimap); 3996 } 3997 3998 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 3999 { 4000 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 4001 } 4002 4003 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 4004 { 4005 struct irq_desc *desc; 4006 struct kvmppc_irq_map *irq_map; 4007 struct kvmppc_passthru_irqmap *pimap; 4008 struct irq_chip *chip; 4009 int i, rc = 0; 4010 4011 if (!kvm_irq_bypass) 4012 return 1; 4013 4014 desc = irq_to_desc(host_irq); 4015 if (!desc) 4016 return -EIO; 4017 4018 mutex_lock(&kvm->lock); 4019 4020 pimap = kvm->arch.pimap; 4021 if (pimap == NULL) { 4022 /* First call, allocate structure to hold IRQ map */ 4023 pimap = kvmppc_alloc_pimap(); 4024 if (pimap == NULL) { 4025 mutex_unlock(&kvm->lock); 4026 return -ENOMEM; 4027 } 4028 kvm->arch.pimap = pimap; 4029 } 4030 4031 /* 4032 * For now, we only support interrupts for which the EOI operation 4033 * is an OPAL call followed by a write to XIRR, since that's 4034 * what our real-mode EOI code does, or a XIVE interrupt 4035 */ 4036 chip = irq_data_get_irq_chip(&desc->irq_data); 4037 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 4038 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 4039 host_irq, guest_gsi); 4040 mutex_unlock(&kvm->lock); 4041 return -ENOENT; 4042 } 4043 4044 /* 4045 * See if we already have an entry for this guest IRQ number. 4046 * If it's mapped to a hardware IRQ number, that's an error, 4047 * otherwise re-use this entry. 4048 */ 4049 for (i = 0; i < pimap->n_mapped; i++) { 4050 if (guest_gsi == pimap->mapped[i].v_hwirq) { 4051 if (pimap->mapped[i].r_hwirq) { 4052 mutex_unlock(&kvm->lock); 4053 return -EINVAL; 4054 } 4055 break; 4056 } 4057 } 4058 4059 if (i == KVMPPC_PIRQ_MAPPED) { 4060 mutex_unlock(&kvm->lock); 4061 return -EAGAIN; /* table is full */ 4062 } 4063 4064 irq_map = &pimap->mapped[i]; 4065 4066 irq_map->v_hwirq = guest_gsi; 4067 irq_map->desc = desc; 4068 4069 /* 4070 * Order the above two stores before the next to serialize with 4071 * the KVM real mode handler. 4072 */ 4073 smp_wmb(); 4074 irq_map->r_hwirq = desc->irq_data.hwirq; 4075 4076 if (i == pimap->n_mapped) 4077 pimap->n_mapped++; 4078 4079 if (xive_enabled()) 4080 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 4081 else 4082 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 4083 if (rc) 4084 irq_map->r_hwirq = 0; 4085 4086 mutex_unlock(&kvm->lock); 4087 4088 return 0; 4089 } 4090 4091 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 4092 { 4093 struct irq_desc *desc; 4094 struct kvmppc_passthru_irqmap *pimap; 4095 int i, rc = 0; 4096 4097 if (!kvm_irq_bypass) 4098 return 0; 4099 4100 desc = irq_to_desc(host_irq); 4101 if (!desc) 4102 return -EIO; 4103 4104 mutex_lock(&kvm->lock); 4105 if (!kvm->arch.pimap) 4106 goto unlock; 4107 4108 pimap = kvm->arch.pimap; 4109 4110 for (i = 0; i < pimap->n_mapped; i++) { 4111 if (guest_gsi == pimap->mapped[i].v_hwirq) 4112 break; 4113 } 4114 4115 if (i == pimap->n_mapped) { 4116 mutex_unlock(&kvm->lock); 4117 return -ENODEV; 4118 } 4119 4120 if (xive_enabled()) 4121 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 4122 else 4123 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 4124 4125 /* invalidate the entry (what do do on error from the above ?) */ 4126 pimap->mapped[i].r_hwirq = 0; 4127 4128 /* 4129 * We don't free this structure even when the count goes to 4130 * zero. The structure is freed when we destroy the VM. 4131 */ 4132 unlock: 4133 mutex_unlock(&kvm->lock); 4134 return rc; 4135 } 4136 4137 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 4138 struct irq_bypass_producer *prod) 4139 { 4140 int ret = 0; 4141 struct kvm_kernel_irqfd *irqfd = 4142 container_of(cons, struct kvm_kernel_irqfd, consumer); 4143 4144 irqfd->producer = prod; 4145 4146 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 4147 if (ret) 4148 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 4149 prod->irq, irqfd->gsi, ret); 4150 4151 return ret; 4152 } 4153 4154 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 4155 struct irq_bypass_producer *prod) 4156 { 4157 int ret; 4158 struct kvm_kernel_irqfd *irqfd = 4159 container_of(cons, struct kvm_kernel_irqfd, consumer); 4160 4161 irqfd->producer = NULL; 4162 4163 /* 4164 * When producer of consumer is unregistered, we change back to 4165 * default external interrupt handling mode - KVM real mode 4166 * will switch back to host. 4167 */ 4168 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 4169 if (ret) 4170 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 4171 prod->irq, irqfd->gsi, ret); 4172 } 4173 #endif 4174 4175 static long kvm_arch_vm_ioctl_hv(struct file *filp, 4176 unsigned int ioctl, unsigned long arg) 4177 { 4178 struct kvm *kvm __maybe_unused = filp->private_data; 4179 void __user *argp = (void __user *)arg; 4180 long r; 4181 4182 switch (ioctl) { 4183 4184 case KVM_PPC_ALLOCATE_HTAB: { 4185 u32 htab_order; 4186 4187 r = -EFAULT; 4188 if (get_user(htab_order, (u32 __user *)argp)) 4189 break; 4190 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 4191 if (r) 4192 break; 4193 r = 0; 4194 break; 4195 } 4196 4197 case KVM_PPC_GET_HTAB_FD: { 4198 struct kvm_get_htab_fd ghf; 4199 4200 r = -EFAULT; 4201 if (copy_from_user(&ghf, argp, sizeof(ghf))) 4202 break; 4203 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 4204 break; 4205 } 4206 4207 case KVM_PPC_RESIZE_HPT_PREPARE: { 4208 struct kvm_ppc_resize_hpt rhpt; 4209 4210 r = -EFAULT; 4211 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 4212 break; 4213 4214 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 4215 break; 4216 } 4217 4218 case KVM_PPC_RESIZE_HPT_COMMIT: { 4219 struct kvm_ppc_resize_hpt rhpt; 4220 4221 r = -EFAULT; 4222 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 4223 break; 4224 4225 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 4226 break; 4227 } 4228 4229 default: 4230 r = -ENOTTY; 4231 } 4232 4233 return r; 4234 } 4235 4236 /* 4237 * List of hcall numbers to enable by default. 4238 * For compatibility with old userspace, we enable by default 4239 * all hcalls that were implemented before the hcall-enabling 4240 * facility was added. Note this list should not include H_RTAS. 4241 */ 4242 static unsigned int default_hcall_list[] = { 4243 H_REMOVE, 4244 H_ENTER, 4245 H_READ, 4246 H_PROTECT, 4247 H_BULK_REMOVE, 4248 H_GET_TCE, 4249 H_PUT_TCE, 4250 H_SET_DABR, 4251 H_SET_XDABR, 4252 H_CEDE, 4253 H_PROD, 4254 H_CONFER, 4255 H_REGISTER_VPA, 4256 #ifdef CONFIG_KVM_XICS 4257 H_EOI, 4258 H_CPPR, 4259 H_IPI, 4260 H_IPOLL, 4261 H_XIRR, 4262 H_XIRR_X, 4263 #endif 4264 0 4265 }; 4266 4267 static void init_default_hcalls(void) 4268 { 4269 int i; 4270 unsigned int hcall; 4271 4272 for (i = 0; default_hcall_list[i]; ++i) { 4273 hcall = default_hcall_list[i]; 4274 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 4275 __set_bit(hcall / 4, default_enabled_hcalls); 4276 } 4277 } 4278 4279 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 4280 { 4281 unsigned long lpcr; 4282 int radix; 4283 int err; 4284 4285 /* If not on a POWER9, reject it */ 4286 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4287 return -ENODEV; 4288 4289 /* If any unknown flags set, reject it */ 4290 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 4291 return -EINVAL; 4292 4293 /* GR (guest radix) bit in process_table field must match */ 4294 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 4295 if (!!(cfg->process_table & PATB_GR) != radix) 4296 return -EINVAL; 4297 4298 /* Process table size field must be reasonable, i.e. <= 24 */ 4299 if ((cfg->process_table & PRTS_MASK) > 24) 4300 return -EINVAL; 4301 4302 /* We can change a guest to/from radix now, if the host is radix */ 4303 if (radix && !radix_enabled()) 4304 return -EINVAL; 4305 4306 mutex_lock(&kvm->lock); 4307 if (radix != kvm_is_radix(kvm)) { 4308 if (kvm->arch.mmu_ready) { 4309 kvm->arch.mmu_ready = 0; 4310 /* order mmu_ready vs. vcpus_running */ 4311 smp_mb(); 4312 if (atomic_read(&kvm->arch.vcpus_running)) { 4313 kvm->arch.mmu_ready = 1; 4314 err = -EBUSY; 4315 goto out_unlock; 4316 } 4317 } 4318 if (radix) 4319 err = kvmppc_switch_mmu_to_radix(kvm); 4320 else 4321 err = kvmppc_switch_mmu_to_hpt(kvm); 4322 if (err) 4323 goto out_unlock; 4324 } 4325 4326 kvm->arch.process_table = cfg->process_table; 4327 kvmppc_setup_partition_table(kvm); 4328 4329 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 4330 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 4331 err = 0; 4332 4333 out_unlock: 4334 mutex_unlock(&kvm->lock); 4335 return err; 4336 } 4337 4338 static struct kvmppc_ops kvm_ops_hv = { 4339 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 4340 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 4341 .get_one_reg = kvmppc_get_one_reg_hv, 4342 .set_one_reg = kvmppc_set_one_reg_hv, 4343 .vcpu_load = kvmppc_core_vcpu_load_hv, 4344 .vcpu_put = kvmppc_core_vcpu_put_hv, 4345 .set_msr = kvmppc_set_msr_hv, 4346 .vcpu_run = kvmppc_vcpu_run_hv, 4347 .vcpu_create = kvmppc_core_vcpu_create_hv, 4348 .vcpu_free = kvmppc_core_vcpu_free_hv, 4349 .check_requests = kvmppc_core_check_requests_hv, 4350 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 4351 .flush_memslot = kvmppc_core_flush_memslot_hv, 4352 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 4353 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 4354 .unmap_hva = kvm_unmap_hva_hv, 4355 .unmap_hva_range = kvm_unmap_hva_range_hv, 4356 .age_hva = kvm_age_hva_hv, 4357 .test_age_hva = kvm_test_age_hva_hv, 4358 .set_spte_hva = kvm_set_spte_hva_hv, 4359 .mmu_destroy = kvmppc_mmu_destroy_hv, 4360 .free_memslot = kvmppc_core_free_memslot_hv, 4361 .create_memslot = kvmppc_core_create_memslot_hv, 4362 .init_vm = kvmppc_core_init_vm_hv, 4363 .destroy_vm = kvmppc_core_destroy_vm_hv, 4364 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 4365 .emulate_op = kvmppc_core_emulate_op_hv, 4366 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 4367 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 4368 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 4369 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 4370 .hcall_implemented = kvmppc_hcall_impl_hv, 4371 #ifdef CONFIG_KVM_XICS 4372 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 4373 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 4374 #endif 4375 .configure_mmu = kvmhv_configure_mmu, 4376 .get_rmmu_info = kvmhv_get_rmmu_info, 4377 .set_smt_mode = kvmhv_set_smt_mode, 4378 }; 4379 4380 static int kvm_init_subcore_bitmap(void) 4381 { 4382 int i, j; 4383 int nr_cores = cpu_nr_cores(); 4384 struct sibling_subcore_state *sibling_subcore_state; 4385 4386 for (i = 0; i < nr_cores; i++) { 4387 int first_cpu = i * threads_per_core; 4388 int node = cpu_to_node(first_cpu); 4389 4390 /* Ignore if it is already allocated. */ 4391 if (paca[first_cpu].sibling_subcore_state) 4392 continue; 4393 4394 sibling_subcore_state = 4395 kmalloc_node(sizeof(struct sibling_subcore_state), 4396 GFP_KERNEL, node); 4397 if (!sibling_subcore_state) 4398 return -ENOMEM; 4399 4400 memset(sibling_subcore_state, 0, 4401 sizeof(struct sibling_subcore_state)); 4402 4403 for (j = 0; j < threads_per_core; j++) { 4404 int cpu = first_cpu + j; 4405 4406 paca[cpu].sibling_subcore_state = sibling_subcore_state; 4407 } 4408 } 4409 return 0; 4410 } 4411 4412 static int kvmppc_radix_possible(void) 4413 { 4414 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 4415 } 4416 4417 static int kvmppc_book3s_init_hv(void) 4418 { 4419 int r; 4420 /* 4421 * FIXME!! Do we need to check on all cpus ? 4422 */ 4423 r = kvmppc_core_check_processor_compat_hv(); 4424 if (r < 0) 4425 return -ENODEV; 4426 4427 r = kvm_init_subcore_bitmap(); 4428 if (r) 4429 return r; 4430 4431 /* 4432 * We need a way of accessing the XICS interrupt controller, 4433 * either directly, via paca[cpu].kvm_hstate.xics_phys, or 4434 * indirectly, via OPAL. 4435 */ 4436 #ifdef CONFIG_SMP 4437 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) { 4438 struct device_node *np; 4439 4440 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 4441 if (!np) { 4442 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 4443 return -ENODEV; 4444 } 4445 } 4446 #endif 4447 4448 kvm_ops_hv.owner = THIS_MODULE; 4449 kvmppc_hv_ops = &kvm_ops_hv; 4450 4451 init_default_hcalls(); 4452 4453 init_vcore_lists(); 4454 4455 r = kvmppc_mmu_hv_init(); 4456 if (r) 4457 return r; 4458 4459 if (kvmppc_radix_possible()) 4460 r = kvmppc_radix_init(); 4461 4462 /* 4463 * POWER9 chips before version 2.02 can't have some threads in 4464 * HPT mode and some in radix mode on the same core. 4465 */ 4466 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4467 unsigned int pvr = mfspr(SPRN_PVR); 4468 if ((pvr >> 16) == PVR_POWER9 && 4469 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 4470 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 4471 no_mixing_hpt_and_radix = true; 4472 } 4473 4474 return r; 4475 } 4476 4477 static void kvmppc_book3s_exit_hv(void) 4478 { 4479 kvmppc_free_host_rm_ops(); 4480 if (kvmppc_radix_possible()) 4481 kvmppc_radix_exit(); 4482 kvmppc_hv_ops = NULL; 4483 } 4484 4485 module_init(kvmppc_book3s_init_hv); 4486 module_exit(kvmppc_book3s_exit_hv); 4487 MODULE_LICENSE("GPL"); 4488 MODULE_ALIAS_MISCDEV(KVM_MINOR); 4489 MODULE_ALIAS("devname:kvm"); 4490