1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 46 #include <asm/ftrace.h> 47 #include <asm/reg.h> 48 #include <asm/ppc-opcode.h> 49 #include <asm/asm-prototypes.h> 50 #include <asm/archrandom.h> 51 #include <asm/debug.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <linux/uaccess.h> 56 #include <asm/interrupt.h> 57 #include <asm/io.h> 58 #include <asm/kvm_ppc.h> 59 #include <asm/kvm_book3s.h> 60 #include <asm/mmu_context.h> 61 #include <asm/lppaca.h> 62 #include <asm/pmc.h> 63 #include <asm/processor.h> 64 #include <asm/cputhreads.h> 65 #include <asm/page.h> 66 #include <asm/hvcall.h> 67 #include <asm/switch_to.h> 68 #include <asm/smp.h> 69 #include <asm/dbell.h> 70 #include <asm/hmi.h> 71 #include <asm/pnv-pci.h> 72 #include <asm/mmu.h> 73 #include <asm/opal.h> 74 #include <asm/xics.h> 75 #include <asm/xive.h> 76 #include <asm/hw_breakpoint.h> 77 #include <asm/kvm_book3s_uvmem.h> 78 #include <asm/ultravisor.h> 79 #include <asm/dtl.h> 80 #include <asm/plpar_wrappers.h> 81 82 #include "book3s.h" 83 #include "book3s_hv.h" 84 85 #define CREATE_TRACE_POINTS 86 #include "trace_hv.h" 87 88 /* #define EXIT_DEBUG */ 89 /* #define EXIT_DEBUG_SIMPLE */ 90 /* #define EXIT_DEBUG_INT */ 91 92 /* Used to indicate that a guest page fault needs to be handled */ 93 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 94 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 95 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 96 97 /* Used as a "null" value for timebase values */ 98 #define TB_NIL (~(u64)0) 99 100 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 101 102 static int dynamic_mt_modes = 6; 103 module_param(dynamic_mt_modes, int, 0644); 104 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 105 static int target_smt_mode; 106 module_param(target_smt_mode, int, 0644); 107 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 108 109 static bool one_vm_per_core; 110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)"); 112 113 #ifdef CONFIG_KVM_XICS 114 static const struct kernel_param_ops module_param_ops = { 115 .set = param_set_int, 116 .get = param_get_int, 117 }; 118 119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 121 122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 124 #endif 125 126 /* If set, guests are allowed to create and control nested guests */ 127 static bool nested = true; 128 module_param(nested, bool, S_IRUGO | S_IWUSR); 129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 130 131 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 132 133 /* 134 * RWMR values for POWER8. These control the rate at which PURR 135 * and SPURR count and should be set according to the number of 136 * online threads in the vcore being run. 137 */ 138 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 139 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 140 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 141 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 142 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 143 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 144 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 145 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 146 147 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 148 RWMR_RPA_P8_1THREAD, 149 RWMR_RPA_P8_1THREAD, 150 RWMR_RPA_P8_2THREAD, 151 RWMR_RPA_P8_3THREAD, 152 RWMR_RPA_P8_4THREAD, 153 RWMR_RPA_P8_5THREAD, 154 RWMR_RPA_P8_6THREAD, 155 RWMR_RPA_P8_7THREAD, 156 RWMR_RPA_P8_8THREAD, 157 }; 158 159 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 160 int *ip) 161 { 162 int i = *ip; 163 struct kvm_vcpu *vcpu; 164 165 while (++i < MAX_SMT_THREADS) { 166 vcpu = READ_ONCE(vc->runnable_threads[i]); 167 if (vcpu) { 168 *ip = i; 169 return vcpu; 170 } 171 } 172 return NULL; 173 } 174 175 /* Used to traverse the list of runnable threads for a given vcore */ 176 #define for_each_runnable_thread(i, vcpu, vc) \ 177 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 178 179 static bool kvmppc_ipi_thread(int cpu) 180 { 181 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 182 183 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 184 if (kvmhv_on_pseries()) 185 return false; 186 187 /* On POWER9 we can use msgsnd to IPI any cpu */ 188 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 189 msg |= get_hard_smp_processor_id(cpu); 190 smp_mb(); 191 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 192 return true; 193 } 194 195 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 196 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 197 preempt_disable(); 198 if (cpu_first_thread_sibling(cpu) == 199 cpu_first_thread_sibling(smp_processor_id())) { 200 msg |= cpu_thread_in_core(cpu); 201 smp_mb(); 202 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 203 preempt_enable(); 204 return true; 205 } 206 preempt_enable(); 207 } 208 209 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 210 if (cpu >= 0 && cpu < nr_cpu_ids) { 211 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 212 xics_wake_cpu(cpu); 213 return true; 214 } 215 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 216 return true; 217 } 218 #endif 219 220 return false; 221 } 222 223 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 224 { 225 int cpu; 226 struct rcuwait *waitp; 227 228 waitp = kvm_arch_vcpu_get_wait(vcpu); 229 if (rcuwait_wake_up(waitp)) 230 ++vcpu->stat.generic.halt_wakeup; 231 232 cpu = READ_ONCE(vcpu->arch.thread_cpu); 233 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 234 return; 235 236 /* CPU points to the first thread of the core */ 237 cpu = vcpu->cpu; 238 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 239 smp_send_reschedule(cpu); 240 } 241 242 /* 243 * We use the vcpu_load/put functions to measure stolen time. 244 * Stolen time is counted as time when either the vcpu is able to 245 * run as part of a virtual core, but the task running the vcore 246 * is preempted or sleeping, or when the vcpu needs something done 247 * in the kernel by the task running the vcpu, but that task is 248 * preempted or sleeping. Those two things have to be counted 249 * separately, since one of the vcpu tasks will take on the job 250 * of running the core, and the other vcpu tasks in the vcore will 251 * sleep waiting for it to do that, but that sleep shouldn't count 252 * as stolen time. 253 * 254 * Hence we accumulate stolen time when the vcpu can run as part of 255 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 256 * needs its task to do other things in the kernel (for example, 257 * service a page fault) in busy_stolen. We don't accumulate 258 * stolen time for a vcore when it is inactive, or for a vcpu 259 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 260 * a misnomer; it means that the vcpu task is not executing in 261 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 262 * the kernel. We don't have any way of dividing up that time 263 * between time that the vcpu is genuinely stopped, time that 264 * the task is actively working on behalf of the vcpu, and time 265 * that the task is preempted, so we don't count any of it as 266 * stolen. 267 * 268 * Updates to busy_stolen are protected by arch.tbacct_lock; 269 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 270 * lock. The stolen times are measured in units of timebase ticks. 271 * (Note that the != TB_NIL checks below are purely defensive; 272 * they should never fail.) 273 */ 274 275 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb) 276 { 277 unsigned long flags; 278 279 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 280 281 spin_lock_irqsave(&vc->stoltb_lock, flags); 282 vc->preempt_tb = tb; 283 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 284 } 285 286 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb) 287 { 288 unsigned long flags; 289 290 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 291 292 spin_lock_irqsave(&vc->stoltb_lock, flags); 293 if (vc->preempt_tb != TB_NIL) { 294 vc->stolen_tb += tb - vc->preempt_tb; 295 vc->preempt_tb = TB_NIL; 296 } 297 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 298 } 299 300 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 301 { 302 struct kvmppc_vcore *vc = vcpu->arch.vcore; 303 unsigned long flags; 304 u64 now; 305 306 if (cpu_has_feature(CPU_FTR_ARCH_300)) 307 return; 308 309 now = mftb(); 310 311 /* 312 * We can test vc->runner without taking the vcore lock, 313 * because only this task ever sets vc->runner to this 314 * vcpu, and once it is set to this vcpu, only this task 315 * ever sets it to NULL. 316 */ 317 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 318 kvmppc_core_end_stolen(vc, now); 319 320 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 321 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 322 vcpu->arch.busy_preempt != TB_NIL) { 323 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt; 324 vcpu->arch.busy_preempt = TB_NIL; 325 } 326 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 327 } 328 329 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 330 { 331 struct kvmppc_vcore *vc = vcpu->arch.vcore; 332 unsigned long flags; 333 u64 now; 334 335 if (cpu_has_feature(CPU_FTR_ARCH_300)) 336 return; 337 338 now = mftb(); 339 340 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 341 kvmppc_core_start_stolen(vc, now); 342 343 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 344 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 345 vcpu->arch.busy_preempt = now; 346 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 347 } 348 349 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 350 { 351 vcpu->arch.pvr = pvr; 352 } 353 354 /* Dummy value used in computing PCR value below */ 355 #define PCR_ARCH_31 (PCR_ARCH_300 << 1) 356 357 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 358 { 359 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 360 struct kvmppc_vcore *vc = vcpu->arch.vcore; 361 362 /* We can (emulate) our own architecture version and anything older */ 363 if (cpu_has_feature(CPU_FTR_ARCH_31)) 364 host_pcr_bit = PCR_ARCH_31; 365 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 366 host_pcr_bit = PCR_ARCH_300; 367 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 368 host_pcr_bit = PCR_ARCH_207; 369 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 370 host_pcr_bit = PCR_ARCH_206; 371 else 372 host_pcr_bit = PCR_ARCH_205; 373 374 /* Determine lowest PCR bit needed to run guest in given PVR level */ 375 guest_pcr_bit = host_pcr_bit; 376 if (arch_compat) { 377 switch (arch_compat) { 378 case PVR_ARCH_205: 379 guest_pcr_bit = PCR_ARCH_205; 380 break; 381 case PVR_ARCH_206: 382 case PVR_ARCH_206p: 383 guest_pcr_bit = PCR_ARCH_206; 384 break; 385 case PVR_ARCH_207: 386 guest_pcr_bit = PCR_ARCH_207; 387 break; 388 case PVR_ARCH_300: 389 guest_pcr_bit = PCR_ARCH_300; 390 break; 391 case PVR_ARCH_31: 392 guest_pcr_bit = PCR_ARCH_31; 393 break; 394 default: 395 return -EINVAL; 396 } 397 } 398 399 /* Check requested PCR bits don't exceed our capabilities */ 400 if (guest_pcr_bit > host_pcr_bit) 401 return -EINVAL; 402 403 spin_lock(&vc->lock); 404 vc->arch_compat = arch_compat; 405 /* 406 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 407 * Also set all reserved PCR bits 408 */ 409 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 410 spin_unlock(&vc->lock); 411 412 return 0; 413 } 414 415 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 416 { 417 int r; 418 419 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 420 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 421 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 422 for (r = 0; r < 16; ++r) 423 pr_err("r%2d = %.16lx r%d = %.16lx\n", 424 r, kvmppc_get_gpr(vcpu, r), 425 r+16, kvmppc_get_gpr(vcpu, r+16)); 426 pr_err("ctr = %.16lx lr = %.16lx\n", 427 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 428 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 429 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 430 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 431 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 432 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 433 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 434 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 435 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 436 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 437 pr_err("fault dar = %.16lx dsisr = %.8x\n", 438 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 439 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 440 for (r = 0; r < vcpu->arch.slb_max; ++r) 441 pr_err(" ESID = %.16llx VSID = %.16llx\n", 442 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 443 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 444 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 445 vcpu->arch.last_inst); 446 } 447 448 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 449 { 450 return kvm_get_vcpu_by_id(kvm, id); 451 } 452 453 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 454 { 455 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 456 vpa->yield_count = cpu_to_be32(1); 457 } 458 459 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 460 unsigned long addr, unsigned long len) 461 { 462 /* check address is cacheline aligned */ 463 if (addr & (L1_CACHE_BYTES - 1)) 464 return -EINVAL; 465 spin_lock(&vcpu->arch.vpa_update_lock); 466 if (v->next_gpa != addr || v->len != len) { 467 v->next_gpa = addr; 468 v->len = addr ? len : 0; 469 v->update_pending = 1; 470 } 471 spin_unlock(&vcpu->arch.vpa_update_lock); 472 return 0; 473 } 474 475 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 476 struct reg_vpa { 477 u32 dummy; 478 union { 479 __be16 hword; 480 __be32 word; 481 } length; 482 }; 483 484 static int vpa_is_registered(struct kvmppc_vpa *vpap) 485 { 486 if (vpap->update_pending) 487 return vpap->next_gpa != 0; 488 return vpap->pinned_addr != NULL; 489 } 490 491 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 492 unsigned long flags, 493 unsigned long vcpuid, unsigned long vpa) 494 { 495 struct kvm *kvm = vcpu->kvm; 496 unsigned long len, nb; 497 void *va; 498 struct kvm_vcpu *tvcpu; 499 int err; 500 int subfunc; 501 struct kvmppc_vpa *vpap; 502 503 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 504 if (!tvcpu) 505 return H_PARAMETER; 506 507 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 508 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 509 subfunc == H_VPA_REG_SLB) { 510 /* Registering new area - address must be cache-line aligned */ 511 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 512 return H_PARAMETER; 513 514 /* convert logical addr to kernel addr and read length */ 515 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 516 if (va == NULL) 517 return H_PARAMETER; 518 if (subfunc == H_VPA_REG_VPA) 519 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 520 else 521 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 522 kvmppc_unpin_guest_page(kvm, va, vpa, false); 523 524 /* Check length */ 525 if (len > nb || len < sizeof(struct reg_vpa)) 526 return H_PARAMETER; 527 } else { 528 vpa = 0; 529 len = 0; 530 } 531 532 err = H_PARAMETER; 533 vpap = NULL; 534 spin_lock(&tvcpu->arch.vpa_update_lock); 535 536 switch (subfunc) { 537 case H_VPA_REG_VPA: /* register VPA */ 538 /* 539 * The size of our lppaca is 1kB because of the way we align 540 * it for the guest to avoid crossing a 4kB boundary. We only 541 * use 640 bytes of the structure though, so we should accept 542 * clients that set a size of 640. 543 */ 544 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 545 if (len < sizeof(struct lppaca)) 546 break; 547 vpap = &tvcpu->arch.vpa; 548 err = 0; 549 break; 550 551 case H_VPA_REG_DTL: /* register DTL */ 552 if (len < sizeof(struct dtl_entry)) 553 break; 554 len -= len % sizeof(struct dtl_entry); 555 556 /* Check that they have previously registered a VPA */ 557 err = H_RESOURCE; 558 if (!vpa_is_registered(&tvcpu->arch.vpa)) 559 break; 560 561 vpap = &tvcpu->arch.dtl; 562 err = 0; 563 break; 564 565 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 566 /* Check that they have previously registered a VPA */ 567 err = H_RESOURCE; 568 if (!vpa_is_registered(&tvcpu->arch.vpa)) 569 break; 570 571 vpap = &tvcpu->arch.slb_shadow; 572 err = 0; 573 break; 574 575 case H_VPA_DEREG_VPA: /* deregister VPA */ 576 /* Check they don't still have a DTL or SLB buf registered */ 577 err = H_RESOURCE; 578 if (vpa_is_registered(&tvcpu->arch.dtl) || 579 vpa_is_registered(&tvcpu->arch.slb_shadow)) 580 break; 581 582 vpap = &tvcpu->arch.vpa; 583 err = 0; 584 break; 585 586 case H_VPA_DEREG_DTL: /* deregister DTL */ 587 vpap = &tvcpu->arch.dtl; 588 err = 0; 589 break; 590 591 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 592 vpap = &tvcpu->arch.slb_shadow; 593 err = 0; 594 break; 595 } 596 597 if (vpap) { 598 vpap->next_gpa = vpa; 599 vpap->len = len; 600 vpap->update_pending = 1; 601 } 602 603 spin_unlock(&tvcpu->arch.vpa_update_lock); 604 605 return err; 606 } 607 608 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 609 { 610 struct kvm *kvm = vcpu->kvm; 611 void *va; 612 unsigned long nb; 613 unsigned long gpa; 614 615 /* 616 * We need to pin the page pointed to by vpap->next_gpa, 617 * but we can't call kvmppc_pin_guest_page under the lock 618 * as it does get_user_pages() and down_read(). So we 619 * have to drop the lock, pin the page, then get the lock 620 * again and check that a new area didn't get registered 621 * in the meantime. 622 */ 623 for (;;) { 624 gpa = vpap->next_gpa; 625 spin_unlock(&vcpu->arch.vpa_update_lock); 626 va = NULL; 627 nb = 0; 628 if (gpa) 629 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 630 spin_lock(&vcpu->arch.vpa_update_lock); 631 if (gpa == vpap->next_gpa) 632 break; 633 /* sigh... unpin that one and try again */ 634 if (va) 635 kvmppc_unpin_guest_page(kvm, va, gpa, false); 636 } 637 638 vpap->update_pending = 0; 639 if (va && nb < vpap->len) { 640 /* 641 * If it's now too short, it must be that userspace 642 * has changed the mappings underlying guest memory, 643 * so unregister the region. 644 */ 645 kvmppc_unpin_guest_page(kvm, va, gpa, false); 646 va = NULL; 647 } 648 if (vpap->pinned_addr) 649 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 650 vpap->dirty); 651 vpap->gpa = gpa; 652 vpap->pinned_addr = va; 653 vpap->dirty = false; 654 if (va) 655 vpap->pinned_end = va + vpap->len; 656 } 657 658 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 659 { 660 if (!(vcpu->arch.vpa.update_pending || 661 vcpu->arch.slb_shadow.update_pending || 662 vcpu->arch.dtl.update_pending)) 663 return; 664 665 spin_lock(&vcpu->arch.vpa_update_lock); 666 if (vcpu->arch.vpa.update_pending) { 667 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 668 if (vcpu->arch.vpa.pinned_addr) 669 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 670 } 671 if (vcpu->arch.dtl.update_pending) { 672 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 673 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 674 vcpu->arch.dtl_index = 0; 675 } 676 if (vcpu->arch.slb_shadow.update_pending) 677 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 678 spin_unlock(&vcpu->arch.vpa_update_lock); 679 } 680 681 /* 682 * Return the accumulated stolen time for the vcore up until `now'. 683 * The caller should hold the vcore lock. 684 */ 685 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 686 { 687 u64 p; 688 unsigned long flags; 689 690 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 691 692 spin_lock_irqsave(&vc->stoltb_lock, flags); 693 p = vc->stolen_tb; 694 if (vc->vcore_state != VCORE_INACTIVE && 695 vc->preempt_tb != TB_NIL) 696 p += now - vc->preempt_tb; 697 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 698 return p; 699 } 700 701 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 702 unsigned int pcpu, u64 now, 703 unsigned long stolen) 704 { 705 struct dtl_entry *dt; 706 struct lppaca *vpa; 707 708 dt = vcpu->arch.dtl_ptr; 709 vpa = vcpu->arch.vpa.pinned_addr; 710 711 if (!dt || !vpa) 712 return; 713 714 dt->dispatch_reason = 7; 715 dt->preempt_reason = 0; 716 dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid); 717 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 718 dt->ready_to_enqueue_time = 0; 719 dt->waiting_to_ready_time = 0; 720 dt->timebase = cpu_to_be64(now); 721 dt->fault_addr = 0; 722 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 723 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 724 725 ++dt; 726 if (dt == vcpu->arch.dtl.pinned_end) 727 dt = vcpu->arch.dtl.pinned_addr; 728 vcpu->arch.dtl_ptr = dt; 729 /* order writing *dt vs. writing vpa->dtl_idx */ 730 smp_wmb(); 731 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 732 vcpu->arch.dtl.dirty = true; 733 } 734 735 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 736 struct kvmppc_vcore *vc) 737 { 738 unsigned long stolen; 739 unsigned long core_stolen; 740 u64 now; 741 unsigned long flags; 742 743 now = mftb(); 744 745 core_stolen = vcore_stolen_time(vc, now); 746 stolen = core_stolen - vcpu->arch.stolen_logged; 747 vcpu->arch.stolen_logged = core_stolen; 748 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 749 stolen += vcpu->arch.busy_stolen; 750 vcpu->arch.busy_stolen = 0; 751 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 752 753 __kvmppc_create_dtl_entry(vcpu, vc->pcpu, now + vc->tb_offset, stolen); 754 } 755 756 /* See if there is a doorbell interrupt pending for a vcpu */ 757 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 758 { 759 int thr; 760 struct kvmppc_vcore *vc; 761 762 if (vcpu->arch.doorbell_request) 763 return true; 764 if (cpu_has_feature(CPU_FTR_ARCH_300)) 765 return false; 766 /* 767 * Ensure that the read of vcore->dpdes comes after the read 768 * of vcpu->doorbell_request. This barrier matches the 769 * smp_wmb() in kvmppc_guest_entry_inject(). 770 */ 771 smp_rmb(); 772 vc = vcpu->arch.vcore; 773 thr = vcpu->vcpu_id - vc->first_vcpuid; 774 return !!(vc->dpdes & (1 << thr)); 775 } 776 777 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 778 { 779 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 780 return true; 781 if ((!vcpu->arch.vcore->arch_compat) && 782 cpu_has_feature(CPU_FTR_ARCH_207S)) 783 return true; 784 return false; 785 } 786 787 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 788 unsigned long resource, unsigned long value1, 789 unsigned long value2) 790 { 791 switch (resource) { 792 case H_SET_MODE_RESOURCE_SET_CIABR: 793 if (!kvmppc_power8_compatible(vcpu)) 794 return H_P2; 795 if (value2) 796 return H_P4; 797 if (mflags) 798 return H_UNSUPPORTED_FLAG_START; 799 /* Guests can't breakpoint the hypervisor */ 800 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 801 return H_P3; 802 vcpu->arch.ciabr = value1; 803 return H_SUCCESS; 804 case H_SET_MODE_RESOURCE_SET_DAWR0: 805 if (!kvmppc_power8_compatible(vcpu)) 806 return H_P2; 807 if (!ppc_breakpoint_available()) 808 return H_P2; 809 if (mflags) 810 return H_UNSUPPORTED_FLAG_START; 811 if (value2 & DABRX_HYP) 812 return H_P4; 813 vcpu->arch.dawr0 = value1; 814 vcpu->arch.dawrx0 = value2; 815 return H_SUCCESS; 816 case H_SET_MODE_RESOURCE_SET_DAWR1: 817 if (!kvmppc_power8_compatible(vcpu)) 818 return H_P2; 819 if (!ppc_breakpoint_available()) 820 return H_P2; 821 if (!cpu_has_feature(CPU_FTR_DAWR1)) 822 return H_P2; 823 if (!vcpu->kvm->arch.dawr1_enabled) 824 return H_FUNCTION; 825 if (mflags) 826 return H_UNSUPPORTED_FLAG_START; 827 if (value2 & DABRX_HYP) 828 return H_P4; 829 vcpu->arch.dawr1 = value1; 830 vcpu->arch.dawrx1 = value2; 831 return H_SUCCESS; 832 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 833 /* 834 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved. 835 * Keep this in synch with kvmppc_filter_guest_lpcr_hv. 836 */ 837 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 838 kvmhv_vcpu_is_radix(vcpu) && mflags == 3) 839 return H_UNSUPPORTED_FLAG_START; 840 return H_TOO_HARD; 841 default: 842 return H_TOO_HARD; 843 } 844 } 845 846 /* Copy guest memory in place - must reside within a single memslot */ 847 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 848 unsigned long len) 849 { 850 struct kvm_memory_slot *to_memslot = NULL; 851 struct kvm_memory_slot *from_memslot = NULL; 852 unsigned long to_addr, from_addr; 853 int r; 854 855 /* Get HPA for from address */ 856 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 857 if (!from_memslot) 858 return -EFAULT; 859 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 860 << PAGE_SHIFT)) 861 return -EINVAL; 862 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 863 if (kvm_is_error_hva(from_addr)) 864 return -EFAULT; 865 from_addr |= (from & (PAGE_SIZE - 1)); 866 867 /* Get HPA for to address */ 868 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 869 if (!to_memslot) 870 return -EFAULT; 871 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 872 << PAGE_SHIFT)) 873 return -EINVAL; 874 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 875 if (kvm_is_error_hva(to_addr)) 876 return -EFAULT; 877 to_addr |= (to & (PAGE_SIZE - 1)); 878 879 /* Perform copy */ 880 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 881 len); 882 if (r) 883 return -EFAULT; 884 mark_page_dirty(kvm, to >> PAGE_SHIFT); 885 return 0; 886 } 887 888 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 889 unsigned long dest, unsigned long src) 890 { 891 u64 pg_sz = SZ_4K; /* 4K page size */ 892 u64 pg_mask = SZ_4K - 1; 893 int ret; 894 895 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 896 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 897 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 898 return H_PARAMETER; 899 900 /* dest (and src if copy_page flag set) must be page aligned */ 901 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 902 return H_PARAMETER; 903 904 /* zero and/or copy the page as determined by the flags */ 905 if (flags & H_COPY_PAGE) { 906 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 907 if (ret < 0) 908 return H_PARAMETER; 909 } else if (flags & H_ZERO_PAGE) { 910 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 911 if (ret < 0) 912 return H_PARAMETER; 913 } 914 915 /* We can ignore the remaining flags */ 916 917 return H_SUCCESS; 918 } 919 920 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 921 { 922 struct kvmppc_vcore *vcore = target->arch.vcore; 923 924 /* 925 * We expect to have been called by the real mode handler 926 * (kvmppc_rm_h_confer()) which would have directly returned 927 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 928 * have useful work to do and should not confer) so we don't 929 * recheck that here. 930 * 931 * In the case of the P9 single vcpu per vcore case, the real 932 * mode handler is not called but no other threads are in the 933 * source vcore. 934 */ 935 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 936 spin_lock(&vcore->lock); 937 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 938 vcore->vcore_state != VCORE_INACTIVE && 939 vcore->runner) 940 target = vcore->runner; 941 spin_unlock(&vcore->lock); 942 } 943 944 return kvm_vcpu_yield_to(target); 945 } 946 947 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 948 { 949 int yield_count = 0; 950 struct lppaca *lppaca; 951 952 spin_lock(&vcpu->arch.vpa_update_lock); 953 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 954 if (lppaca) 955 yield_count = be32_to_cpu(lppaca->yield_count); 956 spin_unlock(&vcpu->arch.vpa_update_lock); 957 return yield_count; 958 } 959 960 /* 961 * H_RPT_INVALIDATE hcall handler for nested guests. 962 * 963 * Handles only nested process-scoped invalidation requests in L0. 964 */ 965 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu) 966 { 967 unsigned long type = kvmppc_get_gpr(vcpu, 6); 968 unsigned long pid, pg_sizes, start, end; 969 970 /* 971 * The partition-scoped invalidations aren't handled here in L0. 972 */ 973 if (type & H_RPTI_TYPE_NESTED) 974 return RESUME_HOST; 975 976 pid = kvmppc_get_gpr(vcpu, 4); 977 pg_sizes = kvmppc_get_gpr(vcpu, 7); 978 start = kvmppc_get_gpr(vcpu, 8); 979 end = kvmppc_get_gpr(vcpu, 9); 980 981 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid, 982 type, pg_sizes, start, end); 983 984 kvmppc_set_gpr(vcpu, 3, H_SUCCESS); 985 return RESUME_GUEST; 986 } 987 988 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu, 989 unsigned long id, unsigned long target, 990 unsigned long type, unsigned long pg_sizes, 991 unsigned long start, unsigned long end) 992 { 993 if (!kvm_is_radix(vcpu->kvm)) 994 return H_UNSUPPORTED; 995 996 if (end < start) 997 return H_P5; 998 999 /* 1000 * Partition-scoped invalidation for nested guests. 1001 */ 1002 if (type & H_RPTI_TYPE_NESTED) { 1003 if (!nesting_enabled(vcpu->kvm)) 1004 return H_FUNCTION; 1005 1006 /* Support only cores as target */ 1007 if (target != H_RPTI_TARGET_CMMU) 1008 return H_P2; 1009 1010 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes, 1011 start, end); 1012 } 1013 1014 /* 1015 * Process-scoped invalidation for L1 guests. 1016 */ 1017 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid, 1018 type, pg_sizes, start, end); 1019 return H_SUCCESS; 1020 } 1021 1022 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 1023 { 1024 struct kvm *kvm = vcpu->kvm; 1025 unsigned long req = kvmppc_get_gpr(vcpu, 3); 1026 unsigned long target, ret = H_SUCCESS; 1027 int yield_count; 1028 struct kvm_vcpu *tvcpu; 1029 int idx, rc; 1030 1031 if (req <= MAX_HCALL_OPCODE && 1032 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 1033 return RESUME_HOST; 1034 1035 switch (req) { 1036 case H_REMOVE: 1037 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4), 1038 kvmppc_get_gpr(vcpu, 5), 1039 kvmppc_get_gpr(vcpu, 6)); 1040 if (ret == H_TOO_HARD) 1041 return RESUME_HOST; 1042 break; 1043 case H_ENTER: 1044 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 1045 kvmppc_get_gpr(vcpu, 5), 1046 kvmppc_get_gpr(vcpu, 6), 1047 kvmppc_get_gpr(vcpu, 7)); 1048 if (ret == H_TOO_HARD) 1049 return RESUME_HOST; 1050 break; 1051 case H_READ: 1052 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4), 1053 kvmppc_get_gpr(vcpu, 5)); 1054 if (ret == H_TOO_HARD) 1055 return RESUME_HOST; 1056 break; 1057 case H_CLEAR_MOD: 1058 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4), 1059 kvmppc_get_gpr(vcpu, 5)); 1060 if (ret == H_TOO_HARD) 1061 return RESUME_HOST; 1062 break; 1063 case H_CLEAR_REF: 1064 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4), 1065 kvmppc_get_gpr(vcpu, 5)); 1066 if (ret == H_TOO_HARD) 1067 return RESUME_HOST; 1068 break; 1069 case H_PROTECT: 1070 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4), 1071 kvmppc_get_gpr(vcpu, 5), 1072 kvmppc_get_gpr(vcpu, 6)); 1073 if (ret == H_TOO_HARD) 1074 return RESUME_HOST; 1075 break; 1076 case H_BULK_REMOVE: 1077 ret = kvmppc_h_bulk_remove(vcpu); 1078 if (ret == H_TOO_HARD) 1079 return RESUME_HOST; 1080 break; 1081 1082 case H_CEDE: 1083 break; 1084 case H_PROD: 1085 target = kvmppc_get_gpr(vcpu, 4); 1086 tvcpu = kvmppc_find_vcpu(kvm, target); 1087 if (!tvcpu) { 1088 ret = H_PARAMETER; 1089 break; 1090 } 1091 tvcpu->arch.prodded = 1; 1092 smp_mb(); 1093 if (tvcpu->arch.ceded) 1094 kvmppc_fast_vcpu_kick_hv(tvcpu); 1095 break; 1096 case H_CONFER: 1097 target = kvmppc_get_gpr(vcpu, 4); 1098 if (target == -1) 1099 break; 1100 tvcpu = kvmppc_find_vcpu(kvm, target); 1101 if (!tvcpu) { 1102 ret = H_PARAMETER; 1103 break; 1104 } 1105 yield_count = kvmppc_get_gpr(vcpu, 5); 1106 if (kvmppc_get_yield_count(tvcpu) != yield_count) 1107 break; 1108 kvm_arch_vcpu_yield_to(tvcpu); 1109 break; 1110 case H_REGISTER_VPA: 1111 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 1112 kvmppc_get_gpr(vcpu, 5), 1113 kvmppc_get_gpr(vcpu, 6)); 1114 break; 1115 case H_RTAS: 1116 if (list_empty(&kvm->arch.rtas_tokens)) 1117 return RESUME_HOST; 1118 1119 idx = srcu_read_lock(&kvm->srcu); 1120 rc = kvmppc_rtas_hcall(vcpu); 1121 srcu_read_unlock(&kvm->srcu, idx); 1122 1123 if (rc == -ENOENT) 1124 return RESUME_HOST; 1125 else if (rc == 0) 1126 break; 1127 1128 /* Send the error out to userspace via KVM_RUN */ 1129 return rc; 1130 case H_LOGICAL_CI_LOAD: 1131 ret = kvmppc_h_logical_ci_load(vcpu); 1132 if (ret == H_TOO_HARD) 1133 return RESUME_HOST; 1134 break; 1135 case H_LOGICAL_CI_STORE: 1136 ret = kvmppc_h_logical_ci_store(vcpu); 1137 if (ret == H_TOO_HARD) 1138 return RESUME_HOST; 1139 break; 1140 case H_SET_MODE: 1141 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 1142 kvmppc_get_gpr(vcpu, 5), 1143 kvmppc_get_gpr(vcpu, 6), 1144 kvmppc_get_gpr(vcpu, 7)); 1145 if (ret == H_TOO_HARD) 1146 return RESUME_HOST; 1147 break; 1148 case H_XIRR: 1149 case H_CPPR: 1150 case H_EOI: 1151 case H_IPI: 1152 case H_IPOLL: 1153 case H_XIRR_X: 1154 if (kvmppc_xics_enabled(vcpu)) { 1155 if (xics_on_xive()) { 1156 ret = H_NOT_AVAILABLE; 1157 return RESUME_GUEST; 1158 } 1159 ret = kvmppc_xics_hcall(vcpu, req); 1160 break; 1161 } 1162 return RESUME_HOST; 1163 case H_SET_DABR: 1164 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1165 break; 1166 case H_SET_XDABR: 1167 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1168 kvmppc_get_gpr(vcpu, 5)); 1169 break; 1170 #ifdef CONFIG_SPAPR_TCE_IOMMU 1171 case H_GET_TCE: 1172 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1173 kvmppc_get_gpr(vcpu, 5)); 1174 if (ret == H_TOO_HARD) 1175 return RESUME_HOST; 1176 break; 1177 case H_PUT_TCE: 1178 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1179 kvmppc_get_gpr(vcpu, 5), 1180 kvmppc_get_gpr(vcpu, 6)); 1181 if (ret == H_TOO_HARD) 1182 return RESUME_HOST; 1183 break; 1184 case H_PUT_TCE_INDIRECT: 1185 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1186 kvmppc_get_gpr(vcpu, 5), 1187 kvmppc_get_gpr(vcpu, 6), 1188 kvmppc_get_gpr(vcpu, 7)); 1189 if (ret == H_TOO_HARD) 1190 return RESUME_HOST; 1191 break; 1192 case H_STUFF_TCE: 1193 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1194 kvmppc_get_gpr(vcpu, 5), 1195 kvmppc_get_gpr(vcpu, 6), 1196 kvmppc_get_gpr(vcpu, 7)); 1197 if (ret == H_TOO_HARD) 1198 return RESUME_HOST; 1199 break; 1200 #endif 1201 case H_RANDOM: 1202 if (!arch_get_random_seed_long(&vcpu->arch.regs.gpr[4])) 1203 ret = H_HARDWARE; 1204 break; 1205 case H_RPT_INVALIDATE: 1206 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4), 1207 kvmppc_get_gpr(vcpu, 5), 1208 kvmppc_get_gpr(vcpu, 6), 1209 kvmppc_get_gpr(vcpu, 7), 1210 kvmppc_get_gpr(vcpu, 8), 1211 kvmppc_get_gpr(vcpu, 9)); 1212 break; 1213 1214 case H_SET_PARTITION_TABLE: 1215 ret = H_FUNCTION; 1216 if (nesting_enabled(kvm)) 1217 ret = kvmhv_set_partition_table(vcpu); 1218 break; 1219 case H_ENTER_NESTED: 1220 ret = H_FUNCTION; 1221 if (!nesting_enabled(kvm)) 1222 break; 1223 ret = kvmhv_enter_nested_guest(vcpu); 1224 if (ret == H_INTERRUPT) { 1225 kvmppc_set_gpr(vcpu, 3, 0); 1226 vcpu->arch.hcall_needed = 0; 1227 return -EINTR; 1228 } else if (ret == H_TOO_HARD) { 1229 kvmppc_set_gpr(vcpu, 3, 0); 1230 vcpu->arch.hcall_needed = 0; 1231 return RESUME_HOST; 1232 } 1233 break; 1234 case H_TLB_INVALIDATE: 1235 ret = H_FUNCTION; 1236 if (nesting_enabled(kvm)) 1237 ret = kvmhv_do_nested_tlbie(vcpu); 1238 break; 1239 case H_COPY_TOFROM_GUEST: 1240 ret = H_FUNCTION; 1241 if (nesting_enabled(kvm)) 1242 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1243 break; 1244 case H_PAGE_INIT: 1245 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1246 kvmppc_get_gpr(vcpu, 5), 1247 kvmppc_get_gpr(vcpu, 6)); 1248 break; 1249 case H_SVM_PAGE_IN: 1250 ret = H_UNSUPPORTED; 1251 if (kvmppc_get_srr1(vcpu) & MSR_S) 1252 ret = kvmppc_h_svm_page_in(kvm, 1253 kvmppc_get_gpr(vcpu, 4), 1254 kvmppc_get_gpr(vcpu, 5), 1255 kvmppc_get_gpr(vcpu, 6)); 1256 break; 1257 case H_SVM_PAGE_OUT: 1258 ret = H_UNSUPPORTED; 1259 if (kvmppc_get_srr1(vcpu) & MSR_S) 1260 ret = kvmppc_h_svm_page_out(kvm, 1261 kvmppc_get_gpr(vcpu, 4), 1262 kvmppc_get_gpr(vcpu, 5), 1263 kvmppc_get_gpr(vcpu, 6)); 1264 break; 1265 case H_SVM_INIT_START: 1266 ret = H_UNSUPPORTED; 1267 if (kvmppc_get_srr1(vcpu) & MSR_S) 1268 ret = kvmppc_h_svm_init_start(kvm); 1269 break; 1270 case H_SVM_INIT_DONE: 1271 ret = H_UNSUPPORTED; 1272 if (kvmppc_get_srr1(vcpu) & MSR_S) 1273 ret = kvmppc_h_svm_init_done(kvm); 1274 break; 1275 case H_SVM_INIT_ABORT: 1276 /* 1277 * Even if that call is made by the Ultravisor, the SSR1 value 1278 * is the guest context one, with the secure bit clear as it has 1279 * not yet been secured. So we can't check it here. 1280 * Instead the kvm->arch.secure_guest flag is checked inside 1281 * kvmppc_h_svm_init_abort(). 1282 */ 1283 ret = kvmppc_h_svm_init_abort(kvm); 1284 break; 1285 1286 default: 1287 return RESUME_HOST; 1288 } 1289 WARN_ON_ONCE(ret == H_TOO_HARD); 1290 kvmppc_set_gpr(vcpu, 3, ret); 1291 vcpu->arch.hcall_needed = 0; 1292 return RESUME_GUEST; 1293 } 1294 1295 /* 1296 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall 1297 * handlers in book3s_hv_rmhandlers.S. 1298 * 1299 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1300 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1301 */ 1302 static void kvmppc_cede(struct kvm_vcpu *vcpu) 1303 { 1304 vcpu->arch.shregs.msr |= MSR_EE; 1305 vcpu->arch.ceded = 1; 1306 smp_mb(); 1307 if (vcpu->arch.prodded) { 1308 vcpu->arch.prodded = 0; 1309 smp_mb(); 1310 vcpu->arch.ceded = 0; 1311 } 1312 } 1313 1314 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1315 { 1316 switch (cmd) { 1317 case H_CEDE: 1318 case H_PROD: 1319 case H_CONFER: 1320 case H_REGISTER_VPA: 1321 case H_SET_MODE: 1322 case H_LOGICAL_CI_LOAD: 1323 case H_LOGICAL_CI_STORE: 1324 #ifdef CONFIG_KVM_XICS 1325 case H_XIRR: 1326 case H_CPPR: 1327 case H_EOI: 1328 case H_IPI: 1329 case H_IPOLL: 1330 case H_XIRR_X: 1331 #endif 1332 case H_PAGE_INIT: 1333 case H_RPT_INVALIDATE: 1334 return 1; 1335 } 1336 1337 /* See if it's in the real-mode table */ 1338 return kvmppc_hcall_impl_hv_realmode(cmd); 1339 } 1340 1341 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) 1342 { 1343 u32 last_inst; 1344 1345 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1346 EMULATE_DONE) { 1347 /* 1348 * Fetch failed, so return to guest and 1349 * try executing it again. 1350 */ 1351 return RESUME_GUEST; 1352 } 1353 1354 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1355 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 1356 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); 1357 return RESUME_HOST; 1358 } else { 1359 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1360 return RESUME_GUEST; 1361 } 1362 } 1363 1364 static void do_nothing(void *x) 1365 { 1366 } 1367 1368 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1369 { 1370 int thr, cpu, pcpu, nthreads; 1371 struct kvm_vcpu *v; 1372 unsigned long dpdes; 1373 1374 nthreads = vcpu->kvm->arch.emul_smt_mode; 1375 dpdes = 0; 1376 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1377 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1378 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1379 if (!v) 1380 continue; 1381 /* 1382 * If the vcpu is currently running on a physical cpu thread, 1383 * interrupt it in order to pull it out of the guest briefly, 1384 * which will update its vcore->dpdes value. 1385 */ 1386 pcpu = READ_ONCE(v->cpu); 1387 if (pcpu >= 0) 1388 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1389 if (kvmppc_doorbell_pending(v)) 1390 dpdes |= 1 << thr; 1391 } 1392 return dpdes; 1393 } 1394 1395 /* 1396 * On POWER9, emulate doorbell-related instructions in order to 1397 * give the guest the illusion of running on a multi-threaded core. 1398 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1399 * and mfspr DPDES. 1400 */ 1401 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1402 { 1403 u32 inst, rb, thr; 1404 unsigned long arg; 1405 struct kvm *kvm = vcpu->kvm; 1406 struct kvm_vcpu *tvcpu; 1407 1408 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1409 return RESUME_GUEST; 1410 if (get_op(inst) != 31) 1411 return EMULATE_FAIL; 1412 rb = get_rb(inst); 1413 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1414 switch (get_xop(inst)) { 1415 case OP_31_XOP_MSGSNDP: 1416 arg = kvmppc_get_gpr(vcpu, rb); 1417 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1418 break; 1419 arg &= 0x7f; 1420 if (arg >= kvm->arch.emul_smt_mode) 1421 break; 1422 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1423 if (!tvcpu) 1424 break; 1425 if (!tvcpu->arch.doorbell_request) { 1426 tvcpu->arch.doorbell_request = 1; 1427 kvmppc_fast_vcpu_kick_hv(tvcpu); 1428 } 1429 break; 1430 case OP_31_XOP_MSGCLRP: 1431 arg = kvmppc_get_gpr(vcpu, rb); 1432 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1433 break; 1434 vcpu->arch.vcore->dpdes = 0; 1435 vcpu->arch.doorbell_request = 0; 1436 break; 1437 case OP_31_XOP_MFSPR: 1438 switch (get_sprn(inst)) { 1439 case SPRN_TIR: 1440 arg = thr; 1441 break; 1442 case SPRN_DPDES: 1443 arg = kvmppc_read_dpdes(vcpu); 1444 break; 1445 default: 1446 return EMULATE_FAIL; 1447 } 1448 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1449 break; 1450 default: 1451 return EMULATE_FAIL; 1452 } 1453 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1454 return RESUME_GUEST; 1455 } 1456 1457 /* 1458 * If the lppaca had pmcregs_in_use clear when we exited the guest, then 1459 * HFSCR_PM is cleared for next entry. If the guest then tries to access 1460 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM 1461 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and 1462 * allow the guest access to continue. 1463 */ 1464 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu) 1465 { 1466 if (!(vcpu->arch.hfscr_permitted & HFSCR_PM)) 1467 return EMULATE_FAIL; 1468 1469 vcpu->arch.hfscr |= HFSCR_PM; 1470 1471 return RESUME_GUEST; 1472 } 1473 1474 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu) 1475 { 1476 if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB)) 1477 return EMULATE_FAIL; 1478 1479 vcpu->arch.hfscr |= HFSCR_EBB; 1480 1481 return RESUME_GUEST; 1482 } 1483 1484 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu) 1485 { 1486 if (!(vcpu->arch.hfscr_permitted & HFSCR_TM)) 1487 return EMULATE_FAIL; 1488 1489 vcpu->arch.hfscr |= HFSCR_TM; 1490 1491 return RESUME_GUEST; 1492 } 1493 1494 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, 1495 struct task_struct *tsk) 1496 { 1497 struct kvm_run *run = vcpu->run; 1498 int r = RESUME_HOST; 1499 1500 vcpu->stat.sum_exits++; 1501 1502 /* 1503 * This can happen if an interrupt occurs in the last stages 1504 * of guest entry or the first stages of guest exit (i.e. after 1505 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1506 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1507 * That can happen due to a bug, or due to a machine check 1508 * occurring at just the wrong time. 1509 */ 1510 if (vcpu->arch.shregs.msr & MSR_HV) { 1511 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1512 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1513 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1514 vcpu->arch.shregs.msr); 1515 kvmppc_dump_regs(vcpu); 1516 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1517 run->hw.hardware_exit_reason = vcpu->arch.trap; 1518 return RESUME_HOST; 1519 } 1520 run->exit_reason = KVM_EXIT_UNKNOWN; 1521 run->ready_for_interrupt_injection = 1; 1522 switch (vcpu->arch.trap) { 1523 /* We're good on these - the host merely wanted to get our attention */ 1524 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1525 WARN_ON_ONCE(1); /* Should never happen */ 1526 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1527 fallthrough; 1528 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1529 vcpu->stat.dec_exits++; 1530 r = RESUME_GUEST; 1531 break; 1532 case BOOK3S_INTERRUPT_EXTERNAL: 1533 case BOOK3S_INTERRUPT_H_DOORBELL: 1534 case BOOK3S_INTERRUPT_H_VIRT: 1535 vcpu->stat.ext_intr_exits++; 1536 r = RESUME_GUEST; 1537 break; 1538 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1539 case BOOK3S_INTERRUPT_HMI: 1540 case BOOK3S_INTERRUPT_PERFMON: 1541 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1542 r = RESUME_GUEST; 1543 break; 1544 case BOOK3S_INTERRUPT_MACHINE_CHECK: { 1545 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1546 DEFAULT_RATELIMIT_BURST); 1547 /* 1548 * Print the MCE event to host console. Ratelimit so the guest 1549 * can't flood the host log. 1550 */ 1551 if (__ratelimit(&rs)) 1552 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true); 1553 1554 /* 1555 * If the guest can do FWNMI, exit to userspace so it can 1556 * deliver a FWNMI to the guest. 1557 * Otherwise we synthesize a machine check for the guest 1558 * so that it knows that the machine check occurred. 1559 */ 1560 if (!vcpu->kvm->arch.fwnmi_enabled) { 1561 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1562 kvmppc_core_queue_machine_check(vcpu, flags); 1563 r = RESUME_GUEST; 1564 break; 1565 } 1566 1567 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1568 run->exit_reason = KVM_EXIT_NMI; 1569 run->hw.hardware_exit_reason = vcpu->arch.trap; 1570 /* Clear out the old NMI status from run->flags */ 1571 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1572 /* Now set the NMI status */ 1573 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1574 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1575 else 1576 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1577 1578 r = RESUME_HOST; 1579 break; 1580 } 1581 case BOOK3S_INTERRUPT_PROGRAM: 1582 { 1583 ulong flags; 1584 /* 1585 * Normally program interrupts are delivered directly 1586 * to the guest by the hardware, but we can get here 1587 * as a result of a hypervisor emulation interrupt 1588 * (e40) getting turned into a 700 by BML RTAS. 1589 */ 1590 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1591 kvmppc_core_queue_program(vcpu, flags); 1592 r = RESUME_GUEST; 1593 break; 1594 } 1595 case BOOK3S_INTERRUPT_SYSCALL: 1596 { 1597 int i; 1598 1599 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) { 1600 /* 1601 * Guest userspace executed sc 1. This can only be 1602 * reached by the P9 path because the old path 1603 * handles this case in realmode hcall handlers. 1604 */ 1605 if (!kvmhv_vcpu_is_radix(vcpu)) { 1606 /* 1607 * A guest could be running PR KVM, so this 1608 * may be a PR KVM hcall. It must be reflected 1609 * to the guest kernel as a sc interrupt. 1610 */ 1611 kvmppc_core_queue_syscall(vcpu); 1612 } else { 1613 /* 1614 * Radix guests can not run PR KVM or nested HV 1615 * hash guests which might run PR KVM, so this 1616 * is always a privilege fault. Send a program 1617 * check to guest kernel. 1618 */ 1619 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); 1620 } 1621 r = RESUME_GUEST; 1622 break; 1623 } 1624 1625 /* 1626 * hcall - gather args and set exit_reason. This will next be 1627 * handled by kvmppc_pseries_do_hcall which may be able to deal 1628 * with it and resume guest, or may punt to userspace. 1629 */ 1630 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1631 for (i = 0; i < 9; ++i) 1632 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1633 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1634 vcpu->arch.hcall_needed = 1; 1635 r = RESUME_HOST; 1636 break; 1637 } 1638 /* 1639 * We get these next two if the guest accesses a page which it thinks 1640 * it has mapped but which is not actually present, either because 1641 * it is for an emulated I/O device or because the corresonding 1642 * host page has been paged out. 1643 * 1644 * Any other HDSI/HISI interrupts have been handled already for P7/8 1645 * guests. For POWER9 hash guests not using rmhandlers, basic hash 1646 * fault handling is done here. 1647 */ 1648 case BOOK3S_INTERRUPT_H_DATA_STORAGE: { 1649 unsigned long vsid; 1650 long err; 1651 1652 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 1653 unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) { 1654 r = RESUME_GUEST; /* Just retry if it's the canary */ 1655 break; 1656 } 1657 1658 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1659 /* 1660 * Radix doesn't require anything, and pre-ISAv3.0 hash 1661 * already attempted to handle this in rmhandlers. The 1662 * hash fault handling below is v3 only (it uses ASDR 1663 * via fault_gpa). 1664 */ 1665 r = RESUME_PAGE_FAULT; 1666 break; 1667 } 1668 1669 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) { 1670 kvmppc_core_queue_data_storage(vcpu, 1671 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1672 r = RESUME_GUEST; 1673 break; 1674 } 1675 1676 if (!(vcpu->arch.shregs.msr & MSR_DR)) 1677 vsid = vcpu->kvm->arch.vrma_slb_v; 1678 else 1679 vsid = vcpu->arch.fault_gpa; 1680 1681 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1682 vsid, vcpu->arch.fault_dsisr, true); 1683 if (err == 0) { 1684 r = RESUME_GUEST; 1685 } else if (err == -1 || err == -2) { 1686 r = RESUME_PAGE_FAULT; 1687 } else { 1688 kvmppc_core_queue_data_storage(vcpu, 1689 vcpu->arch.fault_dar, err); 1690 r = RESUME_GUEST; 1691 } 1692 break; 1693 } 1694 case BOOK3S_INTERRUPT_H_INST_STORAGE: { 1695 unsigned long vsid; 1696 long err; 1697 1698 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1699 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1700 DSISR_SRR1_MATCH_64S; 1701 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1702 /* 1703 * Radix doesn't require anything, and pre-ISAv3.0 hash 1704 * already attempted to handle this in rmhandlers. The 1705 * hash fault handling below is v3 only (it uses ASDR 1706 * via fault_gpa). 1707 */ 1708 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1709 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1710 r = RESUME_PAGE_FAULT; 1711 break; 1712 } 1713 1714 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) { 1715 kvmppc_core_queue_inst_storage(vcpu, 1716 vcpu->arch.fault_dsisr); 1717 r = RESUME_GUEST; 1718 break; 1719 } 1720 1721 if (!(vcpu->arch.shregs.msr & MSR_IR)) 1722 vsid = vcpu->kvm->arch.vrma_slb_v; 1723 else 1724 vsid = vcpu->arch.fault_gpa; 1725 1726 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1727 vsid, vcpu->arch.fault_dsisr, false); 1728 if (err == 0) { 1729 r = RESUME_GUEST; 1730 } else if (err == -1) { 1731 r = RESUME_PAGE_FAULT; 1732 } else { 1733 kvmppc_core_queue_inst_storage(vcpu, err); 1734 r = RESUME_GUEST; 1735 } 1736 break; 1737 } 1738 1739 /* 1740 * This occurs if the guest executes an illegal instruction. 1741 * If the guest debug is disabled, generate a program interrupt 1742 * to the guest. If guest debug is enabled, we need to check 1743 * whether the instruction is a software breakpoint instruction. 1744 * Accordingly return to Guest or Host. 1745 */ 1746 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1747 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1748 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1749 swab32(vcpu->arch.emul_inst) : 1750 vcpu->arch.emul_inst; 1751 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1752 r = kvmppc_emulate_debug_inst(vcpu); 1753 } else { 1754 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1755 r = RESUME_GUEST; 1756 } 1757 break; 1758 1759 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1760 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1761 /* 1762 * This occurs for various TM-related instructions that 1763 * we need to emulate on POWER9 DD2.2. We have already 1764 * handled the cases where the guest was in real-suspend 1765 * mode and was transitioning to transactional state. 1766 */ 1767 r = kvmhv_p9_tm_emulation(vcpu); 1768 if (r != -1) 1769 break; 1770 fallthrough; /* go to facility unavailable handler */ 1771 #endif 1772 1773 /* 1774 * This occurs if the guest (kernel or userspace), does something that 1775 * is prohibited by HFSCR. 1776 * On POWER9, this could be a doorbell instruction that we need 1777 * to emulate. 1778 * Otherwise, we just generate a program interrupt to the guest. 1779 */ 1780 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 1781 u64 cause = vcpu->arch.hfscr >> 56; 1782 1783 r = EMULATE_FAIL; 1784 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1785 if (cause == FSCR_MSGP_LG) 1786 r = kvmppc_emulate_doorbell_instr(vcpu); 1787 if (cause == FSCR_PM_LG) 1788 r = kvmppc_pmu_unavailable(vcpu); 1789 if (cause == FSCR_EBB_LG) 1790 r = kvmppc_ebb_unavailable(vcpu); 1791 if (cause == FSCR_TM_LG) 1792 r = kvmppc_tm_unavailable(vcpu); 1793 } 1794 if (r == EMULATE_FAIL) { 1795 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1796 r = RESUME_GUEST; 1797 } 1798 break; 1799 } 1800 1801 case BOOK3S_INTERRUPT_HV_RM_HARD: 1802 r = RESUME_PASSTHROUGH; 1803 break; 1804 default: 1805 kvmppc_dump_regs(vcpu); 1806 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1807 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1808 vcpu->arch.shregs.msr); 1809 run->hw.hardware_exit_reason = vcpu->arch.trap; 1810 r = RESUME_HOST; 1811 break; 1812 } 1813 1814 return r; 1815 } 1816 1817 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) 1818 { 1819 int r; 1820 int srcu_idx; 1821 1822 vcpu->stat.sum_exits++; 1823 1824 /* 1825 * This can happen if an interrupt occurs in the last stages 1826 * of guest entry or the first stages of guest exit (i.e. after 1827 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1828 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1829 * That can happen due to a bug, or due to a machine check 1830 * occurring at just the wrong time. 1831 */ 1832 if (vcpu->arch.shregs.msr & MSR_HV) { 1833 pr_emerg("KVM trap in HV mode while nested!\n"); 1834 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1835 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1836 vcpu->arch.shregs.msr); 1837 kvmppc_dump_regs(vcpu); 1838 return RESUME_HOST; 1839 } 1840 switch (vcpu->arch.trap) { 1841 /* We're good on these - the host merely wanted to get our attention */ 1842 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1843 vcpu->stat.dec_exits++; 1844 r = RESUME_GUEST; 1845 break; 1846 case BOOK3S_INTERRUPT_EXTERNAL: 1847 vcpu->stat.ext_intr_exits++; 1848 r = RESUME_HOST; 1849 break; 1850 case BOOK3S_INTERRUPT_H_DOORBELL: 1851 case BOOK3S_INTERRUPT_H_VIRT: 1852 vcpu->stat.ext_intr_exits++; 1853 r = RESUME_GUEST; 1854 break; 1855 /* These need to go to the nested HV */ 1856 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1857 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1858 vcpu->stat.dec_exits++; 1859 r = RESUME_HOST; 1860 break; 1861 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1862 case BOOK3S_INTERRUPT_HMI: 1863 case BOOK3S_INTERRUPT_PERFMON: 1864 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1865 r = RESUME_GUEST; 1866 break; 1867 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1868 { 1869 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1870 DEFAULT_RATELIMIT_BURST); 1871 /* Pass the machine check to the L1 guest */ 1872 r = RESUME_HOST; 1873 /* Print the MCE event to host console. */ 1874 if (__ratelimit(&rs)) 1875 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1876 break; 1877 } 1878 /* 1879 * We get these next two if the guest accesses a page which it thinks 1880 * it has mapped but which is not actually present, either because 1881 * it is for an emulated I/O device or because the corresonding 1882 * host page has been paged out. 1883 */ 1884 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1885 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1886 r = kvmhv_nested_page_fault(vcpu); 1887 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1888 break; 1889 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1890 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1891 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1892 DSISR_SRR1_MATCH_64S; 1893 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1894 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1895 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1896 r = kvmhv_nested_page_fault(vcpu); 1897 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1898 break; 1899 1900 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1901 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1902 /* 1903 * This occurs for various TM-related instructions that 1904 * we need to emulate on POWER9 DD2.2. We have already 1905 * handled the cases where the guest was in real-suspend 1906 * mode and was transitioning to transactional state. 1907 */ 1908 r = kvmhv_p9_tm_emulation(vcpu); 1909 if (r != -1) 1910 break; 1911 fallthrough; /* go to facility unavailable handler */ 1912 #endif 1913 1914 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 1915 u64 cause = vcpu->arch.hfscr >> 56; 1916 1917 /* 1918 * Only pass HFU interrupts to the L1 if the facility is 1919 * permitted but disabled by the L1's HFSCR, otherwise 1920 * the interrupt does not make sense to the L1 so turn 1921 * it into a HEAI. 1922 */ 1923 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) || 1924 (vcpu->arch.nested_hfscr & (1UL << cause))) { 1925 vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST; 1926 1927 /* 1928 * If the fetch failed, return to guest and 1929 * try executing it again. 1930 */ 1931 r = kvmppc_get_last_inst(vcpu, INST_GENERIC, 1932 &vcpu->arch.emul_inst); 1933 if (r != EMULATE_DONE) 1934 r = RESUME_GUEST; 1935 else 1936 r = RESUME_HOST; 1937 } else { 1938 r = RESUME_HOST; 1939 } 1940 1941 break; 1942 } 1943 1944 case BOOK3S_INTERRUPT_HV_RM_HARD: 1945 vcpu->arch.trap = 0; 1946 r = RESUME_GUEST; 1947 if (!xics_on_xive()) 1948 kvmppc_xics_rm_complete(vcpu, 0); 1949 break; 1950 case BOOK3S_INTERRUPT_SYSCALL: 1951 { 1952 unsigned long req = kvmppc_get_gpr(vcpu, 3); 1953 1954 /* 1955 * The H_RPT_INVALIDATE hcalls issued by nested 1956 * guests for process-scoped invalidations when 1957 * GTSE=0, are handled here in L0. 1958 */ 1959 if (req == H_RPT_INVALIDATE) { 1960 r = kvmppc_nested_h_rpt_invalidate(vcpu); 1961 break; 1962 } 1963 1964 r = RESUME_HOST; 1965 break; 1966 } 1967 default: 1968 r = RESUME_HOST; 1969 break; 1970 } 1971 1972 return r; 1973 } 1974 1975 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1976 struct kvm_sregs *sregs) 1977 { 1978 int i; 1979 1980 memset(sregs, 0, sizeof(struct kvm_sregs)); 1981 sregs->pvr = vcpu->arch.pvr; 1982 for (i = 0; i < vcpu->arch.slb_max; i++) { 1983 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1984 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1985 } 1986 1987 return 0; 1988 } 1989 1990 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1991 struct kvm_sregs *sregs) 1992 { 1993 int i, j; 1994 1995 /* Only accept the same PVR as the host's, since we can't spoof it */ 1996 if (sregs->pvr != vcpu->arch.pvr) 1997 return -EINVAL; 1998 1999 j = 0; 2000 for (i = 0; i < vcpu->arch.slb_nr; i++) { 2001 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 2002 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 2003 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 2004 ++j; 2005 } 2006 } 2007 vcpu->arch.slb_max = j; 2008 2009 return 0; 2010 } 2011 2012 /* 2013 * Enforce limits on guest LPCR values based on hardware availability, 2014 * guest configuration, and possibly hypervisor support and security 2015 * concerns. 2016 */ 2017 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr) 2018 { 2019 /* LPCR_TC only applies to HPT guests */ 2020 if (kvm_is_radix(kvm)) 2021 lpcr &= ~LPCR_TC; 2022 2023 /* On POWER8 and above, userspace can modify AIL */ 2024 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2025 lpcr &= ~LPCR_AIL; 2026 if ((lpcr & LPCR_AIL) != LPCR_AIL_3) 2027 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */ 2028 /* 2029 * On some POWER9s we force AIL off for radix guests to prevent 2030 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to 2031 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to 2032 * be cached, which the host TLB management does not expect. 2033 */ 2034 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) 2035 lpcr &= ~LPCR_AIL; 2036 2037 /* 2038 * On POWER9, allow userspace to enable large decrementer for the 2039 * guest, whether or not the host has it enabled. 2040 */ 2041 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2042 lpcr &= ~LPCR_LD; 2043 2044 return lpcr; 2045 } 2046 2047 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr) 2048 { 2049 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) { 2050 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n", 2051 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr)); 2052 } 2053 } 2054 2055 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 2056 bool preserve_top32) 2057 { 2058 struct kvm *kvm = vcpu->kvm; 2059 struct kvmppc_vcore *vc = vcpu->arch.vcore; 2060 u64 mask; 2061 2062 spin_lock(&vc->lock); 2063 2064 /* 2065 * Userspace can only modify 2066 * DPFD (default prefetch depth), ILE (interrupt little-endian), 2067 * TC (translation control), AIL (alternate interrupt location), 2068 * LD (large decrementer). 2069 * These are subject to restrictions from kvmppc_filter_lcpr_hv(). 2070 */ 2071 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD; 2072 2073 /* Broken 32-bit version of LPCR must not clear top bits */ 2074 if (preserve_top32) 2075 mask &= 0xFFFFFFFF; 2076 2077 new_lpcr = kvmppc_filter_lpcr_hv(kvm, 2078 (vc->lpcr & ~mask) | (new_lpcr & mask)); 2079 2080 /* 2081 * If ILE (interrupt little-endian) has changed, update the 2082 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 2083 */ 2084 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 2085 struct kvm_vcpu *vcpu; 2086 unsigned long i; 2087 2088 kvm_for_each_vcpu(i, vcpu, kvm) { 2089 if (vcpu->arch.vcore != vc) 2090 continue; 2091 if (new_lpcr & LPCR_ILE) 2092 vcpu->arch.intr_msr |= MSR_LE; 2093 else 2094 vcpu->arch.intr_msr &= ~MSR_LE; 2095 } 2096 } 2097 2098 vc->lpcr = new_lpcr; 2099 2100 spin_unlock(&vc->lock); 2101 } 2102 2103 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2104 union kvmppc_one_reg *val) 2105 { 2106 int r = 0; 2107 long int i; 2108 2109 switch (id) { 2110 case KVM_REG_PPC_DEBUG_INST: 2111 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 2112 break; 2113 case KVM_REG_PPC_HIOR: 2114 *val = get_reg_val(id, 0); 2115 break; 2116 case KVM_REG_PPC_DABR: 2117 *val = get_reg_val(id, vcpu->arch.dabr); 2118 break; 2119 case KVM_REG_PPC_DABRX: 2120 *val = get_reg_val(id, vcpu->arch.dabrx); 2121 break; 2122 case KVM_REG_PPC_DSCR: 2123 *val = get_reg_val(id, vcpu->arch.dscr); 2124 break; 2125 case KVM_REG_PPC_PURR: 2126 *val = get_reg_val(id, vcpu->arch.purr); 2127 break; 2128 case KVM_REG_PPC_SPURR: 2129 *val = get_reg_val(id, vcpu->arch.spurr); 2130 break; 2131 case KVM_REG_PPC_AMR: 2132 *val = get_reg_val(id, vcpu->arch.amr); 2133 break; 2134 case KVM_REG_PPC_UAMOR: 2135 *val = get_reg_val(id, vcpu->arch.uamor); 2136 break; 2137 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2138 i = id - KVM_REG_PPC_MMCR0; 2139 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 2140 break; 2141 case KVM_REG_PPC_MMCR2: 2142 *val = get_reg_val(id, vcpu->arch.mmcr[2]); 2143 break; 2144 case KVM_REG_PPC_MMCRA: 2145 *val = get_reg_val(id, vcpu->arch.mmcra); 2146 break; 2147 case KVM_REG_PPC_MMCRS: 2148 *val = get_reg_val(id, vcpu->arch.mmcrs); 2149 break; 2150 case KVM_REG_PPC_MMCR3: 2151 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 2152 break; 2153 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2154 i = id - KVM_REG_PPC_PMC1; 2155 *val = get_reg_val(id, vcpu->arch.pmc[i]); 2156 break; 2157 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2158 i = id - KVM_REG_PPC_SPMC1; 2159 *val = get_reg_val(id, vcpu->arch.spmc[i]); 2160 break; 2161 case KVM_REG_PPC_SIAR: 2162 *val = get_reg_val(id, vcpu->arch.siar); 2163 break; 2164 case KVM_REG_PPC_SDAR: 2165 *val = get_reg_val(id, vcpu->arch.sdar); 2166 break; 2167 case KVM_REG_PPC_SIER: 2168 *val = get_reg_val(id, vcpu->arch.sier[0]); 2169 break; 2170 case KVM_REG_PPC_SIER2: 2171 *val = get_reg_val(id, vcpu->arch.sier[1]); 2172 break; 2173 case KVM_REG_PPC_SIER3: 2174 *val = get_reg_val(id, vcpu->arch.sier[2]); 2175 break; 2176 case KVM_REG_PPC_IAMR: 2177 *val = get_reg_val(id, vcpu->arch.iamr); 2178 break; 2179 case KVM_REG_PPC_PSPB: 2180 *val = get_reg_val(id, vcpu->arch.pspb); 2181 break; 2182 case KVM_REG_PPC_DPDES: 2183 /* 2184 * On POWER9, where we are emulating msgsndp etc., 2185 * we return 1 bit for each vcpu, which can come from 2186 * either vcore->dpdes or doorbell_request. 2187 * On POWER8, doorbell_request is 0. 2188 */ 2189 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2190 *val = get_reg_val(id, vcpu->arch.doorbell_request); 2191 else 2192 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 2193 break; 2194 case KVM_REG_PPC_VTB: 2195 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 2196 break; 2197 case KVM_REG_PPC_DAWR: 2198 *val = get_reg_val(id, vcpu->arch.dawr0); 2199 break; 2200 case KVM_REG_PPC_DAWRX: 2201 *val = get_reg_val(id, vcpu->arch.dawrx0); 2202 break; 2203 case KVM_REG_PPC_DAWR1: 2204 *val = get_reg_val(id, vcpu->arch.dawr1); 2205 break; 2206 case KVM_REG_PPC_DAWRX1: 2207 *val = get_reg_val(id, vcpu->arch.dawrx1); 2208 break; 2209 case KVM_REG_PPC_CIABR: 2210 *val = get_reg_val(id, vcpu->arch.ciabr); 2211 break; 2212 case KVM_REG_PPC_CSIGR: 2213 *val = get_reg_val(id, vcpu->arch.csigr); 2214 break; 2215 case KVM_REG_PPC_TACR: 2216 *val = get_reg_val(id, vcpu->arch.tacr); 2217 break; 2218 case KVM_REG_PPC_TCSCR: 2219 *val = get_reg_val(id, vcpu->arch.tcscr); 2220 break; 2221 case KVM_REG_PPC_PID: 2222 *val = get_reg_val(id, vcpu->arch.pid); 2223 break; 2224 case KVM_REG_PPC_ACOP: 2225 *val = get_reg_val(id, vcpu->arch.acop); 2226 break; 2227 case KVM_REG_PPC_WORT: 2228 *val = get_reg_val(id, vcpu->arch.wort); 2229 break; 2230 case KVM_REG_PPC_TIDR: 2231 *val = get_reg_val(id, vcpu->arch.tid); 2232 break; 2233 case KVM_REG_PPC_PSSCR: 2234 *val = get_reg_val(id, vcpu->arch.psscr); 2235 break; 2236 case KVM_REG_PPC_VPA_ADDR: 2237 spin_lock(&vcpu->arch.vpa_update_lock); 2238 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 2239 spin_unlock(&vcpu->arch.vpa_update_lock); 2240 break; 2241 case KVM_REG_PPC_VPA_SLB: 2242 spin_lock(&vcpu->arch.vpa_update_lock); 2243 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 2244 val->vpaval.length = vcpu->arch.slb_shadow.len; 2245 spin_unlock(&vcpu->arch.vpa_update_lock); 2246 break; 2247 case KVM_REG_PPC_VPA_DTL: 2248 spin_lock(&vcpu->arch.vpa_update_lock); 2249 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 2250 val->vpaval.length = vcpu->arch.dtl.len; 2251 spin_unlock(&vcpu->arch.vpa_update_lock); 2252 break; 2253 case KVM_REG_PPC_TB_OFFSET: 2254 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 2255 break; 2256 case KVM_REG_PPC_LPCR: 2257 case KVM_REG_PPC_LPCR_64: 2258 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 2259 break; 2260 case KVM_REG_PPC_PPR: 2261 *val = get_reg_val(id, vcpu->arch.ppr); 2262 break; 2263 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2264 case KVM_REG_PPC_TFHAR: 2265 *val = get_reg_val(id, vcpu->arch.tfhar); 2266 break; 2267 case KVM_REG_PPC_TFIAR: 2268 *val = get_reg_val(id, vcpu->arch.tfiar); 2269 break; 2270 case KVM_REG_PPC_TEXASR: 2271 *val = get_reg_val(id, vcpu->arch.texasr); 2272 break; 2273 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2274 i = id - KVM_REG_PPC_TM_GPR0; 2275 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 2276 break; 2277 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2278 { 2279 int j; 2280 i = id - KVM_REG_PPC_TM_VSR0; 2281 if (i < 32) 2282 for (j = 0; j < TS_FPRWIDTH; j++) 2283 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 2284 else { 2285 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2286 val->vval = vcpu->arch.vr_tm.vr[i-32]; 2287 else 2288 r = -ENXIO; 2289 } 2290 break; 2291 } 2292 case KVM_REG_PPC_TM_CR: 2293 *val = get_reg_val(id, vcpu->arch.cr_tm); 2294 break; 2295 case KVM_REG_PPC_TM_XER: 2296 *val = get_reg_val(id, vcpu->arch.xer_tm); 2297 break; 2298 case KVM_REG_PPC_TM_LR: 2299 *val = get_reg_val(id, vcpu->arch.lr_tm); 2300 break; 2301 case KVM_REG_PPC_TM_CTR: 2302 *val = get_reg_val(id, vcpu->arch.ctr_tm); 2303 break; 2304 case KVM_REG_PPC_TM_FPSCR: 2305 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 2306 break; 2307 case KVM_REG_PPC_TM_AMR: 2308 *val = get_reg_val(id, vcpu->arch.amr_tm); 2309 break; 2310 case KVM_REG_PPC_TM_PPR: 2311 *val = get_reg_val(id, vcpu->arch.ppr_tm); 2312 break; 2313 case KVM_REG_PPC_TM_VRSAVE: 2314 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 2315 break; 2316 case KVM_REG_PPC_TM_VSCR: 2317 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2318 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 2319 else 2320 r = -ENXIO; 2321 break; 2322 case KVM_REG_PPC_TM_DSCR: 2323 *val = get_reg_val(id, vcpu->arch.dscr_tm); 2324 break; 2325 case KVM_REG_PPC_TM_TAR: 2326 *val = get_reg_val(id, vcpu->arch.tar_tm); 2327 break; 2328 #endif 2329 case KVM_REG_PPC_ARCH_COMPAT: 2330 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 2331 break; 2332 case KVM_REG_PPC_DEC_EXPIRY: 2333 *val = get_reg_val(id, vcpu->arch.dec_expires); 2334 break; 2335 case KVM_REG_PPC_ONLINE: 2336 *val = get_reg_val(id, vcpu->arch.online); 2337 break; 2338 case KVM_REG_PPC_PTCR: 2339 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 2340 break; 2341 default: 2342 r = -EINVAL; 2343 break; 2344 } 2345 2346 return r; 2347 } 2348 2349 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2350 union kvmppc_one_reg *val) 2351 { 2352 int r = 0; 2353 long int i; 2354 unsigned long addr, len; 2355 2356 switch (id) { 2357 case KVM_REG_PPC_HIOR: 2358 /* Only allow this to be set to zero */ 2359 if (set_reg_val(id, *val)) 2360 r = -EINVAL; 2361 break; 2362 case KVM_REG_PPC_DABR: 2363 vcpu->arch.dabr = set_reg_val(id, *val); 2364 break; 2365 case KVM_REG_PPC_DABRX: 2366 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 2367 break; 2368 case KVM_REG_PPC_DSCR: 2369 vcpu->arch.dscr = set_reg_val(id, *val); 2370 break; 2371 case KVM_REG_PPC_PURR: 2372 vcpu->arch.purr = set_reg_val(id, *val); 2373 break; 2374 case KVM_REG_PPC_SPURR: 2375 vcpu->arch.spurr = set_reg_val(id, *val); 2376 break; 2377 case KVM_REG_PPC_AMR: 2378 vcpu->arch.amr = set_reg_val(id, *val); 2379 break; 2380 case KVM_REG_PPC_UAMOR: 2381 vcpu->arch.uamor = set_reg_val(id, *val); 2382 break; 2383 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2384 i = id - KVM_REG_PPC_MMCR0; 2385 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 2386 break; 2387 case KVM_REG_PPC_MMCR2: 2388 vcpu->arch.mmcr[2] = set_reg_val(id, *val); 2389 break; 2390 case KVM_REG_PPC_MMCRA: 2391 vcpu->arch.mmcra = set_reg_val(id, *val); 2392 break; 2393 case KVM_REG_PPC_MMCRS: 2394 vcpu->arch.mmcrs = set_reg_val(id, *val); 2395 break; 2396 case KVM_REG_PPC_MMCR3: 2397 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 2398 break; 2399 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2400 i = id - KVM_REG_PPC_PMC1; 2401 vcpu->arch.pmc[i] = set_reg_val(id, *val); 2402 break; 2403 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2404 i = id - KVM_REG_PPC_SPMC1; 2405 vcpu->arch.spmc[i] = set_reg_val(id, *val); 2406 break; 2407 case KVM_REG_PPC_SIAR: 2408 vcpu->arch.siar = set_reg_val(id, *val); 2409 break; 2410 case KVM_REG_PPC_SDAR: 2411 vcpu->arch.sdar = set_reg_val(id, *val); 2412 break; 2413 case KVM_REG_PPC_SIER: 2414 vcpu->arch.sier[0] = set_reg_val(id, *val); 2415 break; 2416 case KVM_REG_PPC_SIER2: 2417 vcpu->arch.sier[1] = set_reg_val(id, *val); 2418 break; 2419 case KVM_REG_PPC_SIER3: 2420 vcpu->arch.sier[2] = set_reg_val(id, *val); 2421 break; 2422 case KVM_REG_PPC_IAMR: 2423 vcpu->arch.iamr = set_reg_val(id, *val); 2424 break; 2425 case KVM_REG_PPC_PSPB: 2426 vcpu->arch.pspb = set_reg_val(id, *val); 2427 break; 2428 case KVM_REG_PPC_DPDES: 2429 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2430 vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1; 2431 else 2432 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 2433 break; 2434 case KVM_REG_PPC_VTB: 2435 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 2436 break; 2437 case KVM_REG_PPC_DAWR: 2438 vcpu->arch.dawr0 = set_reg_val(id, *val); 2439 break; 2440 case KVM_REG_PPC_DAWRX: 2441 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP; 2442 break; 2443 case KVM_REG_PPC_DAWR1: 2444 vcpu->arch.dawr1 = set_reg_val(id, *val); 2445 break; 2446 case KVM_REG_PPC_DAWRX1: 2447 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP; 2448 break; 2449 case KVM_REG_PPC_CIABR: 2450 vcpu->arch.ciabr = set_reg_val(id, *val); 2451 /* Don't allow setting breakpoints in hypervisor code */ 2452 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 2453 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 2454 break; 2455 case KVM_REG_PPC_CSIGR: 2456 vcpu->arch.csigr = set_reg_val(id, *val); 2457 break; 2458 case KVM_REG_PPC_TACR: 2459 vcpu->arch.tacr = set_reg_val(id, *val); 2460 break; 2461 case KVM_REG_PPC_TCSCR: 2462 vcpu->arch.tcscr = set_reg_val(id, *val); 2463 break; 2464 case KVM_REG_PPC_PID: 2465 vcpu->arch.pid = set_reg_val(id, *val); 2466 break; 2467 case KVM_REG_PPC_ACOP: 2468 vcpu->arch.acop = set_reg_val(id, *val); 2469 break; 2470 case KVM_REG_PPC_WORT: 2471 vcpu->arch.wort = set_reg_val(id, *val); 2472 break; 2473 case KVM_REG_PPC_TIDR: 2474 vcpu->arch.tid = set_reg_val(id, *val); 2475 break; 2476 case KVM_REG_PPC_PSSCR: 2477 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 2478 break; 2479 case KVM_REG_PPC_VPA_ADDR: 2480 addr = set_reg_val(id, *val); 2481 r = -EINVAL; 2482 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 2483 vcpu->arch.dtl.next_gpa)) 2484 break; 2485 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 2486 break; 2487 case KVM_REG_PPC_VPA_SLB: 2488 addr = val->vpaval.addr; 2489 len = val->vpaval.length; 2490 r = -EINVAL; 2491 if (addr && !vcpu->arch.vpa.next_gpa) 2492 break; 2493 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 2494 break; 2495 case KVM_REG_PPC_VPA_DTL: 2496 addr = val->vpaval.addr; 2497 len = val->vpaval.length; 2498 r = -EINVAL; 2499 if (addr && (len < sizeof(struct dtl_entry) || 2500 !vcpu->arch.vpa.next_gpa)) 2501 break; 2502 len -= len % sizeof(struct dtl_entry); 2503 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 2504 break; 2505 case KVM_REG_PPC_TB_OFFSET: 2506 /* round up to multiple of 2^24 */ 2507 vcpu->arch.vcore->tb_offset = 2508 ALIGN(set_reg_val(id, *val), 1UL << 24); 2509 break; 2510 case KVM_REG_PPC_LPCR: 2511 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 2512 break; 2513 case KVM_REG_PPC_LPCR_64: 2514 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 2515 break; 2516 case KVM_REG_PPC_PPR: 2517 vcpu->arch.ppr = set_reg_val(id, *val); 2518 break; 2519 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2520 case KVM_REG_PPC_TFHAR: 2521 vcpu->arch.tfhar = set_reg_val(id, *val); 2522 break; 2523 case KVM_REG_PPC_TFIAR: 2524 vcpu->arch.tfiar = set_reg_val(id, *val); 2525 break; 2526 case KVM_REG_PPC_TEXASR: 2527 vcpu->arch.texasr = set_reg_val(id, *val); 2528 break; 2529 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2530 i = id - KVM_REG_PPC_TM_GPR0; 2531 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2532 break; 2533 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2534 { 2535 int j; 2536 i = id - KVM_REG_PPC_TM_VSR0; 2537 if (i < 32) 2538 for (j = 0; j < TS_FPRWIDTH; j++) 2539 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2540 else 2541 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2542 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2543 else 2544 r = -ENXIO; 2545 break; 2546 } 2547 case KVM_REG_PPC_TM_CR: 2548 vcpu->arch.cr_tm = set_reg_val(id, *val); 2549 break; 2550 case KVM_REG_PPC_TM_XER: 2551 vcpu->arch.xer_tm = set_reg_val(id, *val); 2552 break; 2553 case KVM_REG_PPC_TM_LR: 2554 vcpu->arch.lr_tm = set_reg_val(id, *val); 2555 break; 2556 case KVM_REG_PPC_TM_CTR: 2557 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2558 break; 2559 case KVM_REG_PPC_TM_FPSCR: 2560 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2561 break; 2562 case KVM_REG_PPC_TM_AMR: 2563 vcpu->arch.amr_tm = set_reg_val(id, *val); 2564 break; 2565 case KVM_REG_PPC_TM_PPR: 2566 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2567 break; 2568 case KVM_REG_PPC_TM_VRSAVE: 2569 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2570 break; 2571 case KVM_REG_PPC_TM_VSCR: 2572 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2573 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2574 else 2575 r = - ENXIO; 2576 break; 2577 case KVM_REG_PPC_TM_DSCR: 2578 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2579 break; 2580 case KVM_REG_PPC_TM_TAR: 2581 vcpu->arch.tar_tm = set_reg_val(id, *val); 2582 break; 2583 #endif 2584 case KVM_REG_PPC_ARCH_COMPAT: 2585 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2586 break; 2587 case KVM_REG_PPC_DEC_EXPIRY: 2588 vcpu->arch.dec_expires = set_reg_val(id, *val); 2589 break; 2590 case KVM_REG_PPC_ONLINE: 2591 i = set_reg_val(id, *val); 2592 if (i && !vcpu->arch.online) 2593 atomic_inc(&vcpu->arch.vcore->online_count); 2594 else if (!i && vcpu->arch.online) 2595 atomic_dec(&vcpu->arch.vcore->online_count); 2596 vcpu->arch.online = i; 2597 break; 2598 case KVM_REG_PPC_PTCR: 2599 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2600 break; 2601 default: 2602 r = -EINVAL; 2603 break; 2604 } 2605 2606 return r; 2607 } 2608 2609 /* 2610 * On POWER9, threads are independent and can be in different partitions. 2611 * Therefore we consider each thread to be a subcore. 2612 * There is a restriction that all threads have to be in the same 2613 * MMU mode (radix or HPT), unfortunately, but since we only support 2614 * HPT guests on a HPT host so far, that isn't an impediment yet. 2615 */ 2616 static int threads_per_vcore(struct kvm *kvm) 2617 { 2618 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2619 return 1; 2620 return threads_per_subcore; 2621 } 2622 2623 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2624 { 2625 struct kvmppc_vcore *vcore; 2626 2627 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2628 2629 if (vcore == NULL) 2630 return NULL; 2631 2632 spin_lock_init(&vcore->lock); 2633 spin_lock_init(&vcore->stoltb_lock); 2634 rcuwait_init(&vcore->wait); 2635 vcore->preempt_tb = TB_NIL; 2636 vcore->lpcr = kvm->arch.lpcr; 2637 vcore->first_vcpuid = id; 2638 vcore->kvm = kvm; 2639 INIT_LIST_HEAD(&vcore->preempt_list); 2640 2641 return vcore; 2642 } 2643 2644 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2645 static struct debugfs_timings_element { 2646 const char *name; 2647 size_t offset; 2648 } timings[] = { 2649 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2650 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2651 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2652 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2653 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2654 }; 2655 2656 #define N_TIMINGS (ARRAY_SIZE(timings)) 2657 2658 struct debugfs_timings_state { 2659 struct kvm_vcpu *vcpu; 2660 unsigned int buflen; 2661 char buf[N_TIMINGS * 100]; 2662 }; 2663 2664 static int debugfs_timings_open(struct inode *inode, struct file *file) 2665 { 2666 struct kvm_vcpu *vcpu = inode->i_private; 2667 struct debugfs_timings_state *p; 2668 2669 p = kzalloc(sizeof(*p), GFP_KERNEL); 2670 if (!p) 2671 return -ENOMEM; 2672 2673 kvm_get_kvm(vcpu->kvm); 2674 p->vcpu = vcpu; 2675 file->private_data = p; 2676 2677 return nonseekable_open(inode, file); 2678 } 2679 2680 static int debugfs_timings_release(struct inode *inode, struct file *file) 2681 { 2682 struct debugfs_timings_state *p = file->private_data; 2683 2684 kvm_put_kvm(p->vcpu->kvm); 2685 kfree(p); 2686 return 0; 2687 } 2688 2689 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2690 size_t len, loff_t *ppos) 2691 { 2692 struct debugfs_timings_state *p = file->private_data; 2693 struct kvm_vcpu *vcpu = p->vcpu; 2694 char *s, *buf_end; 2695 struct kvmhv_tb_accumulator tb; 2696 u64 count; 2697 loff_t pos; 2698 ssize_t n; 2699 int i, loops; 2700 bool ok; 2701 2702 if (!p->buflen) { 2703 s = p->buf; 2704 buf_end = s + sizeof(p->buf); 2705 for (i = 0; i < N_TIMINGS; ++i) { 2706 struct kvmhv_tb_accumulator *acc; 2707 2708 acc = (struct kvmhv_tb_accumulator *) 2709 ((unsigned long)vcpu + timings[i].offset); 2710 ok = false; 2711 for (loops = 0; loops < 1000; ++loops) { 2712 count = acc->seqcount; 2713 if (!(count & 1)) { 2714 smp_rmb(); 2715 tb = *acc; 2716 smp_rmb(); 2717 if (count == acc->seqcount) { 2718 ok = true; 2719 break; 2720 } 2721 } 2722 udelay(1); 2723 } 2724 if (!ok) 2725 snprintf(s, buf_end - s, "%s: stuck\n", 2726 timings[i].name); 2727 else 2728 snprintf(s, buf_end - s, 2729 "%s: %llu %llu %llu %llu\n", 2730 timings[i].name, count / 2, 2731 tb_to_ns(tb.tb_total), 2732 tb_to_ns(tb.tb_min), 2733 tb_to_ns(tb.tb_max)); 2734 s += strlen(s); 2735 } 2736 p->buflen = s - p->buf; 2737 } 2738 2739 pos = *ppos; 2740 if (pos >= p->buflen) 2741 return 0; 2742 if (len > p->buflen - pos) 2743 len = p->buflen - pos; 2744 n = copy_to_user(buf, p->buf + pos, len); 2745 if (n) { 2746 if (n == len) 2747 return -EFAULT; 2748 len -= n; 2749 } 2750 *ppos = pos + len; 2751 return len; 2752 } 2753 2754 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2755 size_t len, loff_t *ppos) 2756 { 2757 return -EACCES; 2758 } 2759 2760 static const struct file_operations debugfs_timings_ops = { 2761 .owner = THIS_MODULE, 2762 .open = debugfs_timings_open, 2763 .release = debugfs_timings_release, 2764 .read = debugfs_timings_read, 2765 .write = debugfs_timings_write, 2766 .llseek = generic_file_llseek, 2767 }; 2768 2769 /* Create a debugfs directory for the vcpu */ 2770 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2771 { 2772 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu, 2773 &debugfs_timings_ops); 2774 return 0; 2775 } 2776 2777 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2778 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2779 { 2780 return 0; 2781 } 2782 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2783 2784 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2785 { 2786 int err; 2787 int core; 2788 struct kvmppc_vcore *vcore; 2789 struct kvm *kvm; 2790 unsigned int id; 2791 2792 kvm = vcpu->kvm; 2793 id = vcpu->vcpu_id; 2794 2795 vcpu->arch.shared = &vcpu->arch.shregs; 2796 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2797 /* 2798 * The shared struct is never shared on HV, 2799 * so we can always use host endianness 2800 */ 2801 #ifdef __BIG_ENDIAN__ 2802 vcpu->arch.shared_big_endian = true; 2803 #else 2804 vcpu->arch.shared_big_endian = false; 2805 #endif 2806 #endif 2807 vcpu->arch.mmcr[0] = MMCR0_FC; 2808 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 2809 vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT; 2810 vcpu->arch.mmcra = MMCRA_BHRB_DISABLE; 2811 } 2812 2813 vcpu->arch.ctrl = CTRL_RUNLATCH; 2814 /* default to host PVR, since we can't spoof it */ 2815 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2816 spin_lock_init(&vcpu->arch.vpa_update_lock); 2817 spin_lock_init(&vcpu->arch.tbacct_lock); 2818 vcpu->arch.busy_preempt = TB_NIL; 2819 vcpu->arch.shregs.msr = MSR_ME; 2820 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2821 2822 /* 2823 * Set the default HFSCR for the guest from the host value. 2824 * This value is only used on POWER9. 2825 * On POWER9, we want to virtualize the doorbell facility, so we 2826 * don't set the HFSCR_MSGP bit, and that causes those instructions 2827 * to trap and then we emulate them. 2828 */ 2829 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2830 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX; 2831 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2832 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2833 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2834 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2835 vcpu->arch.hfscr |= HFSCR_TM; 2836 #endif 2837 } 2838 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2839 vcpu->arch.hfscr |= HFSCR_TM; 2840 2841 vcpu->arch.hfscr_permitted = vcpu->arch.hfscr; 2842 2843 /* 2844 * PM, EBB, TM are demand-faulted so start with it clear. 2845 */ 2846 vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM); 2847 2848 kvmppc_mmu_book3s_hv_init(vcpu); 2849 2850 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2851 2852 init_waitqueue_head(&vcpu->arch.cpu_run); 2853 2854 mutex_lock(&kvm->lock); 2855 vcore = NULL; 2856 err = -EINVAL; 2857 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2858 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2859 pr_devel("KVM: VCPU ID too high\n"); 2860 core = KVM_MAX_VCORES; 2861 } else { 2862 BUG_ON(kvm->arch.smt_mode != 1); 2863 core = kvmppc_pack_vcpu_id(kvm, id); 2864 } 2865 } else { 2866 core = id / kvm->arch.smt_mode; 2867 } 2868 if (core < KVM_MAX_VCORES) { 2869 vcore = kvm->arch.vcores[core]; 2870 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2871 pr_devel("KVM: collision on id %u", id); 2872 vcore = NULL; 2873 } else if (!vcore) { 2874 /* 2875 * Take mmu_setup_lock for mutual exclusion 2876 * with kvmppc_update_lpcr(). 2877 */ 2878 err = -ENOMEM; 2879 vcore = kvmppc_vcore_create(kvm, 2880 id & ~(kvm->arch.smt_mode - 1)); 2881 mutex_lock(&kvm->arch.mmu_setup_lock); 2882 kvm->arch.vcores[core] = vcore; 2883 kvm->arch.online_vcores++; 2884 mutex_unlock(&kvm->arch.mmu_setup_lock); 2885 } 2886 } 2887 mutex_unlock(&kvm->lock); 2888 2889 if (!vcore) 2890 return err; 2891 2892 spin_lock(&vcore->lock); 2893 ++vcore->num_threads; 2894 spin_unlock(&vcore->lock); 2895 vcpu->arch.vcore = vcore; 2896 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2897 vcpu->arch.thread_cpu = -1; 2898 vcpu->arch.prev_cpu = -1; 2899 2900 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2901 kvmppc_sanity_check(vcpu); 2902 2903 return 0; 2904 } 2905 2906 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2907 unsigned long flags) 2908 { 2909 int err; 2910 int esmt = 0; 2911 2912 if (flags) 2913 return -EINVAL; 2914 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2915 return -EINVAL; 2916 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2917 /* 2918 * On POWER8 (or POWER7), the threading mode is "strict", 2919 * so we pack smt_mode vcpus per vcore. 2920 */ 2921 if (smt_mode > threads_per_subcore) 2922 return -EINVAL; 2923 } else { 2924 /* 2925 * On POWER9, the threading mode is "loose", 2926 * so each vcpu gets its own vcore. 2927 */ 2928 esmt = smt_mode; 2929 smt_mode = 1; 2930 } 2931 mutex_lock(&kvm->lock); 2932 err = -EBUSY; 2933 if (!kvm->arch.online_vcores) { 2934 kvm->arch.smt_mode = smt_mode; 2935 kvm->arch.emul_smt_mode = esmt; 2936 err = 0; 2937 } 2938 mutex_unlock(&kvm->lock); 2939 2940 return err; 2941 } 2942 2943 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2944 { 2945 if (vpa->pinned_addr) 2946 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2947 vpa->dirty); 2948 } 2949 2950 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2951 { 2952 spin_lock(&vcpu->arch.vpa_update_lock); 2953 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2954 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2955 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2956 spin_unlock(&vcpu->arch.vpa_update_lock); 2957 } 2958 2959 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2960 { 2961 /* Indicate we want to get back into the guest */ 2962 return 1; 2963 } 2964 2965 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2966 { 2967 unsigned long dec_nsec, now; 2968 2969 now = get_tb(); 2970 if (now > kvmppc_dec_expires_host_tb(vcpu)) { 2971 /* decrementer has already gone negative */ 2972 kvmppc_core_queue_dec(vcpu); 2973 kvmppc_core_prepare_to_enter(vcpu); 2974 return; 2975 } 2976 dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now); 2977 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2978 vcpu->arch.timer_running = 1; 2979 } 2980 2981 extern int __kvmppc_vcore_entry(void); 2982 2983 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2984 struct kvm_vcpu *vcpu, u64 tb) 2985 { 2986 u64 now; 2987 2988 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2989 return; 2990 spin_lock_irq(&vcpu->arch.tbacct_lock); 2991 now = tb; 2992 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2993 vcpu->arch.stolen_logged; 2994 vcpu->arch.busy_preempt = now; 2995 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2996 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2997 --vc->n_runnable; 2998 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2999 } 3000 3001 static int kvmppc_grab_hwthread(int cpu) 3002 { 3003 struct paca_struct *tpaca; 3004 long timeout = 10000; 3005 3006 tpaca = paca_ptrs[cpu]; 3007 3008 /* Ensure the thread won't go into the kernel if it wakes */ 3009 tpaca->kvm_hstate.kvm_vcpu = NULL; 3010 tpaca->kvm_hstate.kvm_vcore = NULL; 3011 tpaca->kvm_hstate.napping = 0; 3012 smp_wmb(); 3013 tpaca->kvm_hstate.hwthread_req = 1; 3014 3015 /* 3016 * If the thread is already executing in the kernel (e.g. handling 3017 * a stray interrupt), wait for it to get back to nap mode. 3018 * The smp_mb() is to ensure that our setting of hwthread_req 3019 * is visible before we look at hwthread_state, so if this 3020 * races with the code at system_reset_pSeries and the thread 3021 * misses our setting of hwthread_req, we are sure to see its 3022 * setting of hwthread_state, and vice versa. 3023 */ 3024 smp_mb(); 3025 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 3026 if (--timeout <= 0) { 3027 pr_err("KVM: couldn't grab cpu %d\n", cpu); 3028 return -EBUSY; 3029 } 3030 udelay(1); 3031 } 3032 return 0; 3033 } 3034 3035 static void kvmppc_release_hwthread(int cpu) 3036 { 3037 struct paca_struct *tpaca; 3038 3039 tpaca = paca_ptrs[cpu]; 3040 tpaca->kvm_hstate.hwthread_req = 0; 3041 tpaca->kvm_hstate.kvm_vcpu = NULL; 3042 tpaca->kvm_hstate.kvm_vcore = NULL; 3043 tpaca->kvm_hstate.kvm_split_mode = NULL; 3044 } 3045 3046 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest); 3047 3048 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 3049 { 3050 struct kvm_nested_guest *nested = vcpu->arch.nested; 3051 cpumask_t *need_tlb_flush; 3052 int i; 3053 3054 if (nested) 3055 need_tlb_flush = &nested->need_tlb_flush; 3056 else 3057 need_tlb_flush = &kvm->arch.need_tlb_flush; 3058 3059 cpu = cpu_first_tlb_thread_sibling(cpu); 3060 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3061 i += cpu_tlb_thread_sibling_step()) 3062 cpumask_set_cpu(i, need_tlb_flush); 3063 3064 /* 3065 * Make sure setting of bit in need_tlb_flush precedes testing of 3066 * cpu_in_guest. The matching barrier on the other side is hwsync 3067 * when switching to guest MMU mode, which happens between 3068 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit 3069 * being tested. 3070 */ 3071 smp_mb(); 3072 3073 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3074 i += cpu_tlb_thread_sibling_step()) { 3075 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i); 3076 3077 if (running == kvm) 3078 smp_call_function_single(i, do_nothing, NULL, 1); 3079 } 3080 } 3081 3082 static void do_migrate_away_vcpu(void *arg) 3083 { 3084 struct kvm_vcpu *vcpu = arg; 3085 struct kvm *kvm = vcpu->kvm; 3086 3087 /* 3088 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync; 3089 * ptesync sequence on the old CPU before migrating to a new one, in 3090 * case we interrupted the guest between a tlbie ; eieio ; 3091 * tlbsync; ptesync sequence. 3092 * 3093 * Otherwise, ptesync is sufficient for ordering tlbiel sequences. 3094 */ 3095 if (kvm->arch.lpcr & LPCR_GTSE) 3096 asm volatile("eieio; tlbsync; ptesync"); 3097 else 3098 asm volatile("ptesync"); 3099 } 3100 3101 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 3102 { 3103 struct kvm_nested_guest *nested = vcpu->arch.nested; 3104 struct kvm *kvm = vcpu->kvm; 3105 int prev_cpu; 3106 3107 if (!cpu_has_feature(CPU_FTR_HVMODE)) 3108 return; 3109 3110 if (nested) 3111 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 3112 else 3113 prev_cpu = vcpu->arch.prev_cpu; 3114 3115 /* 3116 * With radix, the guest can do TLB invalidations itself, 3117 * and it could choose to use the local form (tlbiel) if 3118 * it is invalidating a translation that has only ever been 3119 * used on one vcpu. However, that doesn't mean it has 3120 * only ever been used on one physical cpu, since vcpus 3121 * can move around between pcpus. To cope with this, when 3122 * a vcpu moves from one pcpu to another, we need to tell 3123 * any vcpus running on the same core as this vcpu previously 3124 * ran to flush the TLB. 3125 */ 3126 if (prev_cpu != pcpu) { 3127 if (prev_cpu >= 0) { 3128 if (cpu_first_tlb_thread_sibling(prev_cpu) != 3129 cpu_first_tlb_thread_sibling(pcpu)) 3130 radix_flush_cpu(kvm, prev_cpu, vcpu); 3131 3132 smp_call_function_single(prev_cpu, 3133 do_migrate_away_vcpu, vcpu, 1); 3134 } 3135 if (nested) 3136 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 3137 else 3138 vcpu->arch.prev_cpu = pcpu; 3139 } 3140 } 3141 3142 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 3143 { 3144 int cpu; 3145 struct paca_struct *tpaca; 3146 3147 cpu = vc->pcpu; 3148 if (vcpu) { 3149 if (vcpu->arch.timer_running) { 3150 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 3151 vcpu->arch.timer_running = 0; 3152 } 3153 cpu += vcpu->arch.ptid; 3154 vcpu->cpu = vc->pcpu; 3155 vcpu->arch.thread_cpu = cpu; 3156 } 3157 tpaca = paca_ptrs[cpu]; 3158 tpaca->kvm_hstate.kvm_vcpu = vcpu; 3159 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 3160 tpaca->kvm_hstate.fake_suspend = 0; 3161 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 3162 smp_wmb(); 3163 tpaca->kvm_hstate.kvm_vcore = vc; 3164 if (cpu != smp_processor_id()) 3165 kvmppc_ipi_thread(cpu); 3166 } 3167 3168 static void kvmppc_wait_for_nap(int n_threads) 3169 { 3170 int cpu = smp_processor_id(); 3171 int i, loops; 3172 3173 if (n_threads <= 1) 3174 return; 3175 for (loops = 0; loops < 1000000; ++loops) { 3176 /* 3177 * Check if all threads are finished. 3178 * We set the vcore pointer when starting a thread 3179 * and the thread clears it when finished, so we look 3180 * for any threads that still have a non-NULL vcore ptr. 3181 */ 3182 for (i = 1; i < n_threads; ++i) 3183 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3184 break; 3185 if (i == n_threads) { 3186 HMT_medium(); 3187 return; 3188 } 3189 HMT_low(); 3190 } 3191 HMT_medium(); 3192 for (i = 1; i < n_threads; ++i) 3193 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3194 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 3195 } 3196 3197 /* 3198 * Check that we are on thread 0 and that any other threads in 3199 * this core are off-line. Then grab the threads so they can't 3200 * enter the kernel. 3201 */ 3202 static int on_primary_thread(void) 3203 { 3204 int cpu = smp_processor_id(); 3205 int thr; 3206 3207 /* Are we on a primary subcore? */ 3208 if (cpu_thread_in_subcore(cpu)) 3209 return 0; 3210 3211 thr = 0; 3212 while (++thr < threads_per_subcore) 3213 if (cpu_online(cpu + thr)) 3214 return 0; 3215 3216 /* Grab all hw threads so they can't go into the kernel */ 3217 for (thr = 1; thr < threads_per_subcore; ++thr) { 3218 if (kvmppc_grab_hwthread(cpu + thr)) { 3219 /* Couldn't grab one; let the others go */ 3220 do { 3221 kvmppc_release_hwthread(cpu + thr); 3222 } while (--thr > 0); 3223 return 0; 3224 } 3225 } 3226 return 1; 3227 } 3228 3229 /* 3230 * A list of virtual cores for each physical CPU. 3231 * These are vcores that could run but their runner VCPU tasks are 3232 * (or may be) preempted. 3233 */ 3234 struct preempted_vcore_list { 3235 struct list_head list; 3236 spinlock_t lock; 3237 }; 3238 3239 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 3240 3241 static void init_vcore_lists(void) 3242 { 3243 int cpu; 3244 3245 for_each_possible_cpu(cpu) { 3246 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 3247 spin_lock_init(&lp->lock); 3248 INIT_LIST_HEAD(&lp->list); 3249 } 3250 } 3251 3252 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 3253 { 3254 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3255 3256 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3257 3258 vc->vcore_state = VCORE_PREEMPT; 3259 vc->pcpu = smp_processor_id(); 3260 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 3261 spin_lock(&lp->lock); 3262 list_add_tail(&vc->preempt_list, &lp->list); 3263 spin_unlock(&lp->lock); 3264 } 3265 3266 /* Start accumulating stolen time */ 3267 kvmppc_core_start_stolen(vc, mftb()); 3268 } 3269 3270 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 3271 { 3272 struct preempted_vcore_list *lp; 3273 3274 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3275 3276 kvmppc_core_end_stolen(vc, mftb()); 3277 if (!list_empty(&vc->preempt_list)) { 3278 lp = &per_cpu(preempted_vcores, vc->pcpu); 3279 spin_lock(&lp->lock); 3280 list_del_init(&vc->preempt_list); 3281 spin_unlock(&lp->lock); 3282 } 3283 vc->vcore_state = VCORE_INACTIVE; 3284 } 3285 3286 /* 3287 * This stores information about the virtual cores currently 3288 * assigned to a physical core. 3289 */ 3290 struct core_info { 3291 int n_subcores; 3292 int max_subcore_threads; 3293 int total_threads; 3294 int subcore_threads[MAX_SUBCORES]; 3295 struct kvmppc_vcore *vc[MAX_SUBCORES]; 3296 }; 3297 3298 /* 3299 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 3300 * respectively in 2-way micro-threading (split-core) mode on POWER8. 3301 */ 3302 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 3303 3304 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 3305 { 3306 memset(cip, 0, sizeof(*cip)); 3307 cip->n_subcores = 1; 3308 cip->max_subcore_threads = vc->num_threads; 3309 cip->total_threads = vc->num_threads; 3310 cip->subcore_threads[0] = vc->num_threads; 3311 cip->vc[0] = vc; 3312 } 3313 3314 static bool subcore_config_ok(int n_subcores, int n_threads) 3315 { 3316 /* 3317 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 3318 * split-core mode, with one thread per subcore. 3319 */ 3320 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3321 return n_subcores <= 4 && n_threads == 1; 3322 3323 /* On POWER8, can only dynamically split if unsplit to begin with */ 3324 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 3325 return false; 3326 if (n_subcores > MAX_SUBCORES) 3327 return false; 3328 if (n_subcores > 1) { 3329 if (!(dynamic_mt_modes & 2)) 3330 n_subcores = 4; 3331 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 3332 return false; 3333 } 3334 3335 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 3336 } 3337 3338 static void init_vcore_to_run(struct kvmppc_vcore *vc) 3339 { 3340 vc->entry_exit_map = 0; 3341 vc->in_guest = 0; 3342 vc->napping_threads = 0; 3343 vc->conferring_threads = 0; 3344 vc->tb_offset_applied = 0; 3345 } 3346 3347 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 3348 { 3349 int n_threads = vc->num_threads; 3350 int sub; 3351 3352 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 3353 return false; 3354 3355 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 3356 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 3357 return false; 3358 3359 if (n_threads < cip->max_subcore_threads) 3360 n_threads = cip->max_subcore_threads; 3361 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 3362 return false; 3363 cip->max_subcore_threads = n_threads; 3364 3365 sub = cip->n_subcores; 3366 ++cip->n_subcores; 3367 cip->total_threads += vc->num_threads; 3368 cip->subcore_threads[sub] = vc->num_threads; 3369 cip->vc[sub] = vc; 3370 init_vcore_to_run(vc); 3371 list_del_init(&vc->preempt_list); 3372 3373 return true; 3374 } 3375 3376 /* 3377 * Work out whether it is possible to piggyback the execution of 3378 * vcore *pvc onto the execution of the other vcores described in *cip. 3379 */ 3380 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 3381 int target_threads) 3382 { 3383 if (cip->total_threads + pvc->num_threads > target_threads) 3384 return false; 3385 3386 return can_dynamic_split(pvc, cip); 3387 } 3388 3389 static void prepare_threads(struct kvmppc_vcore *vc) 3390 { 3391 int i; 3392 struct kvm_vcpu *vcpu; 3393 3394 for_each_runnable_thread(i, vcpu, vc) { 3395 if (signal_pending(vcpu->arch.run_task)) 3396 vcpu->arch.ret = -EINTR; 3397 else if (vcpu->arch.vpa.update_pending || 3398 vcpu->arch.slb_shadow.update_pending || 3399 vcpu->arch.dtl.update_pending) 3400 vcpu->arch.ret = RESUME_GUEST; 3401 else 3402 continue; 3403 kvmppc_remove_runnable(vc, vcpu, mftb()); 3404 wake_up(&vcpu->arch.cpu_run); 3405 } 3406 } 3407 3408 static void collect_piggybacks(struct core_info *cip, int target_threads) 3409 { 3410 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3411 struct kvmppc_vcore *pvc, *vcnext; 3412 3413 spin_lock(&lp->lock); 3414 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 3415 if (!spin_trylock(&pvc->lock)) 3416 continue; 3417 prepare_threads(pvc); 3418 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 3419 list_del_init(&pvc->preempt_list); 3420 if (pvc->runner == NULL) { 3421 pvc->vcore_state = VCORE_INACTIVE; 3422 kvmppc_core_end_stolen(pvc, mftb()); 3423 } 3424 spin_unlock(&pvc->lock); 3425 continue; 3426 } 3427 if (!can_piggyback(pvc, cip, target_threads)) { 3428 spin_unlock(&pvc->lock); 3429 continue; 3430 } 3431 kvmppc_core_end_stolen(pvc, mftb()); 3432 pvc->vcore_state = VCORE_PIGGYBACK; 3433 if (cip->total_threads >= target_threads) 3434 break; 3435 } 3436 spin_unlock(&lp->lock); 3437 } 3438 3439 static bool recheck_signals_and_mmu(struct core_info *cip) 3440 { 3441 int sub, i; 3442 struct kvm_vcpu *vcpu; 3443 struct kvmppc_vcore *vc; 3444 3445 for (sub = 0; sub < cip->n_subcores; ++sub) { 3446 vc = cip->vc[sub]; 3447 if (!vc->kvm->arch.mmu_ready) 3448 return true; 3449 for_each_runnable_thread(i, vcpu, vc) 3450 if (signal_pending(vcpu->arch.run_task)) 3451 return true; 3452 } 3453 return false; 3454 } 3455 3456 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 3457 { 3458 int still_running = 0, i; 3459 u64 now; 3460 long ret; 3461 struct kvm_vcpu *vcpu; 3462 3463 spin_lock(&vc->lock); 3464 now = get_tb(); 3465 for_each_runnable_thread(i, vcpu, vc) { 3466 /* 3467 * It's safe to unlock the vcore in the loop here, because 3468 * for_each_runnable_thread() is safe against removal of 3469 * the vcpu, and the vcore state is VCORE_EXITING here, 3470 * so any vcpus becoming runnable will have their arch.trap 3471 * set to zero and can't actually run in the guest. 3472 */ 3473 spin_unlock(&vc->lock); 3474 /* cancel pending dec exception if dec is positive */ 3475 if (now < kvmppc_dec_expires_host_tb(vcpu) && 3476 kvmppc_core_pending_dec(vcpu)) 3477 kvmppc_core_dequeue_dec(vcpu); 3478 3479 trace_kvm_guest_exit(vcpu); 3480 3481 ret = RESUME_GUEST; 3482 if (vcpu->arch.trap) 3483 ret = kvmppc_handle_exit_hv(vcpu, 3484 vcpu->arch.run_task); 3485 3486 vcpu->arch.ret = ret; 3487 vcpu->arch.trap = 0; 3488 3489 spin_lock(&vc->lock); 3490 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 3491 if (vcpu->arch.pending_exceptions) 3492 kvmppc_core_prepare_to_enter(vcpu); 3493 if (vcpu->arch.ceded) 3494 kvmppc_set_timer(vcpu); 3495 else 3496 ++still_running; 3497 } else { 3498 kvmppc_remove_runnable(vc, vcpu, mftb()); 3499 wake_up(&vcpu->arch.cpu_run); 3500 } 3501 } 3502 if (!is_master) { 3503 if (still_running > 0) { 3504 kvmppc_vcore_preempt(vc); 3505 } else if (vc->runner) { 3506 vc->vcore_state = VCORE_PREEMPT; 3507 kvmppc_core_start_stolen(vc, mftb()); 3508 } else { 3509 vc->vcore_state = VCORE_INACTIVE; 3510 } 3511 if (vc->n_runnable > 0 && vc->runner == NULL) { 3512 /* make sure there's a candidate runner awake */ 3513 i = -1; 3514 vcpu = next_runnable_thread(vc, &i); 3515 wake_up(&vcpu->arch.cpu_run); 3516 } 3517 } 3518 spin_unlock(&vc->lock); 3519 } 3520 3521 /* 3522 * Clear core from the list of active host cores as we are about to 3523 * enter the guest. Only do this if it is the primary thread of the 3524 * core (not if a subcore) that is entering the guest. 3525 */ 3526 static inline int kvmppc_clear_host_core(unsigned int cpu) 3527 { 3528 int core; 3529 3530 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3531 return 0; 3532 /* 3533 * Memory barrier can be omitted here as we will do a smp_wmb() 3534 * later in kvmppc_start_thread and we need ensure that state is 3535 * visible to other CPUs only after we enter guest. 3536 */ 3537 core = cpu >> threads_shift; 3538 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 3539 return 0; 3540 } 3541 3542 /* 3543 * Advertise this core as an active host core since we exited the guest 3544 * Only need to do this if it is the primary thread of the core that is 3545 * exiting. 3546 */ 3547 static inline int kvmppc_set_host_core(unsigned int cpu) 3548 { 3549 int core; 3550 3551 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3552 return 0; 3553 3554 /* 3555 * Memory barrier can be omitted here because we do a spin_unlock 3556 * immediately after this which provides the memory barrier. 3557 */ 3558 core = cpu >> threads_shift; 3559 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3560 return 0; 3561 } 3562 3563 static void set_irq_happened(int trap) 3564 { 3565 switch (trap) { 3566 case BOOK3S_INTERRUPT_EXTERNAL: 3567 local_paca->irq_happened |= PACA_IRQ_EE; 3568 break; 3569 case BOOK3S_INTERRUPT_H_DOORBELL: 3570 local_paca->irq_happened |= PACA_IRQ_DBELL; 3571 break; 3572 case BOOK3S_INTERRUPT_HMI: 3573 local_paca->irq_happened |= PACA_IRQ_HMI; 3574 break; 3575 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3576 replay_system_reset(); 3577 break; 3578 } 3579 } 3580 3581 /* 3582 * Run a set of guest threads on a physical core. 3583 * Called with vc->lock held. 3584 */ 3585 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3586 { 3587 struct kvm_vcpu *vcpu; 3588 int i; 3589 int srcu_idx; 3590 struct core_info core_info; 3591 struct kvmppc_vcore *pvc; 3592 struct kvm_split_mode split_info, *sip; 3593 int split, subcore_size, active; 3594 int sub; 3595 bool thr0_done; 3596 unsigned long cmd_bit, stat_bit; 3597 int pcpu, thr; 3598 int target_threads; 3599 int controlled_threads; 3600 int trap; 3601 bool is_power8; 3602 3603 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300))) 3604 return; 3605 3606 /* 3607 * Remove from the list any threads that have a signal pending 3608 * or need a VPA update done 3609 */ 3610 prepare_threads(vc); 3611 3612 /* if the runner is no longer runnable, let the caller pick a new one */ 3613 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3614 return; 3615 3616 /* 3617 * Initialize *vc. 3618 */ 3619 init_vcore_to_run(vc); 3620 vc->preempt_tb = TB_NIL; 3621 3622 /* 3623 * Number of threads that we will be controlling: the same as 3624 * the number of threads per subcore, except on POWER9, 3625 * where it's 1 because the threads are (mostly) independent. 3626 */ 3627 controlled_threads = threads_per_vcore(vc->kvm); 3628 3629 /* 3630 * Make sure we are running on primary threads, and that secondary 3631 * threads are offline. Also check if the number of threads in this 3632 * guest are greater than the current system threads per guest. 3633 */ 3634 if ((controlled_threads > 1) && 3635 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 3636 for_each_runnable_thread(i, vcpu, vc) { 3637 vcpu->arch.ret = -EBUSY; 3638 kvmppc_remove_runnable(vc, vcpu, mftb()); 3639 wake_up(&vcpu->arch.cpu_run); 3640 } 3641 goto out; 3642 } 3643 3644 /* 3645 * See if we could run any other vcores on the physical core 3646 * along with this one. 3647 */ 3648 init_core_info(&core_info, vc); 3649 pcpu = smp_processor_id(); 3650 target_threads = controlled_threads; 3651 if (target_smt_mode && target_smt_mode < target_threads) 3652 target_threads = target_smt_mode; 3653 if (vc->num_threads < target_threads) 3654 collect_piggybacks(&core_info, target_threads); 3655 3656 /* 3657 * Hard-disable interrupts, and check resched flag and signals. 3658 * If we need to reschedule or deliver a signal, clean up 3659 * and return without going into the guest(s). 3660 * If the mmu_ready flag has been cleared, don't go into the 3661 * guest because that means a HPT resize operation is in progress. 3662 */ 3663 local_irq_disable(); 3664 hard_irq_disable(); 3665 if (lazy_irq_pending() || need_resched() || 3666 recheck_signals_and_mmu(&core_info)) { 3667 local_irq_enable(); 3668 vc->vcore_state = VCORE_INACTIVE; 3669 /* Unlock all except the primary vcore */ 3670 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3671 pvc = core_info.vc[sub]; 3672 /* Put back on to the preempted vcores list */ 3673 kvmppc_vcore_preempt(pvc); 3674 spin_unlock(&pvc->lock); 3675 } 3676 for (i = 0; i < controlled_threads; ++i) 3677 kvmppc_release_hwthread(pcpu + i); 3678 return; 3679 } 3680 3681 kvmppc_clear_host_core(pcpu); 3682 3683 /* Decide on micro-threading (split-core) mode */ 3684 subcore_size = threads_per_subcore; 3685 cmd_bit = stat_bit = 0; 3686 split = core_info.n_subcores; 3687 sip = NULL; 3688 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S); 3689 3690 if (split > 1) { 3691 sip = &split_info; 3692 memset(&split_info, 0, sizeof(split_info)); 3693 for (sub = 0; sub < core_info.n_subcores; ++sub) 3694 split_info.vc[sub] = core_info.vc[sub]; 3695 3696 if (is_power8) { 3697 if (split == 2 && (dynamic_mt_modes & 2)) { 3698 cmd_bit = HID0_POWER8_1TO2LPAR; 3699 stat_bit = HID0_POWER8_2LPARMODE; 3700 } else { 3701 split = 4; 3702 cmd_bit = HID0_POWER8_1TO4LPAR; 3703 stat_bit = HID0_POWER8_4LPARMODE; 3704 } 3705 subcore_size = MAX_SMT_THREADS / split; 3706 split_info.rpr = mfspr(SPRN_RPR); 3707 split_info.pmmar = mfspr(SPRN_PMMAR); 3708 split_info.ldbar = mfspr(SPRN_LDBAR); 3709 split_info.subcore_size = subcore_size; 3710 } else { 3711 split_info.subcore_size = 1; 3712 } 3713 3714 /* order writes to split_info before kvm_split_mode pointer */ 3715 smp_wmb(); 3716 } 3717 3718 for (thr = 0; thr < controlled_threads; ++thr) { 3719 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3720 3721 paca->kvm_hstate.napping = 0; 3722 paca->kvm_hstate.kvm_split_mode = sip; 3723 } 3724 3725 /* Initiate micro-threading (split-core) on POWER8 if required */ 3726 if (cmd_bit) { 3727 unsigned long hid0 = mfspr(SPRN_HID0); 3728 3729 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3730 mb(); 3731 mtspr(SPRN_HID0, hid0); 3732 isync(); 3733 for (;;) { 3734 hid0 = mfspr(SPRN_HID0); 3735 if (hid0 & stat_bit) 3736 break; 3737 cpu_relax(); 3738 } 3739 } 3740 3741 /* 3742 * On POWER8, set RWMR register. 3743 * Since it only affects PURR and SPURR, it doesn't affect 3744 * the host, so we don't save/restore the host value. 3745 */ 3746 if (is_power8) { 3747 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3748 int n_online = atomic_read(&vc->online_count); 3749 3750 /* 3751 * Use the 8-thread value if we're doing split-core 3752 * or if the vcore's online count looks bogus. 3753 */ 3754 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3755 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3756 rwmr_val = p8_rwmr_values[n_online]; 3757 mtspr(SPRN_RWMR, rwmr_val); 3758 } 3759 3760 /* Start all the threads */ 3761 active = 0; 3762 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3763 thr = is_power8 ? subcore_thread_map[sub] : sub; 3764 thr0_done = false; 3765 active |= 1 << thr; 3766 pvc = core_info.vc[sub]; 3767 pvc->pcpu = pcpu + thr; 3768 for_each_runnable_thread(i, vcpu, pvc) { 3769 kvmppc_start_thread(vcpu, pvc); 3770 kvmppc_create_dtl_entry(vcpu, pvc); 3771 trace_kvm_guest_enter(vcpu); 3772 if (!vcpu->arch.ptid) 3773 thr0_done = true; 3774 active |= 1 << (thr + vcpu->arch.ptid); 3775 } 3776 /* 3777 * We need to start the first thread of each subcore 3778 * even if it doesn't have a vcpu. 3779 */ 3780 if (!thr0_done) 3781 kvmppc_start_thread(NULL, pvc); 3782 } 3783 3784 /* 3785 * Ensure that split_info.do_nap is set after setting 3786 * the vcore pointer in the PACA of the secondaries. 3787 */ 3788 smp_mb(); 3789 3790 /* 3791 * When doing micro-threading, poke the inactive threads as well. 3792 * This gets them to the nap instruction after kvm_do_nap, 3793 * which reduces the time taken to unsplit later. 3794 */ 3795 if (cmd_bit) { 3796 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3797 for (thr = 1; thr < threads_per_subcore; ++thr) 3798 if (!(active & (1 << thr))) 3799 kvmppc_ipi_thread(pcpu + thr); 3800 } 3801 3802 vc->vcore_state = VCORE_RUNNING; 3803 preempt_disable(); 3804 3805 trace_kvmppc_run_core(vc, 0); 3806 3807 for (sub = 0; sub < core_info.n_subcores; ++sub) 3808 spin_unlock(&core_info.vc[sub]->lock); 3809 3810 guest_enter_irqoff(); 3811 3812 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3813 3814 this_cpu_disable_ftrace(); 3815 3816 /* 3817 * Interrupts will be enabled once we get into the guest, 3818 * so tell lockdep that we're about to enable interrupts. 3819 */ 3820 trace_hardirqs_on(); 3821 3822 trap = __kvmppc_vcore_entry(); 3823 3824 trace_hardirqs_off(); 3825 3826 this_cpu_enable_ftrace(); 3827 3828 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3829 3830 set_irq_happened(trap); 3831 3832 spin_lock(&vc->lock); 3833 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3834 vc->vcore_state = VCORE_EXITING; 3835 3836 /* wait for secondary threads to finish writing their state to memory */ 3837 kvmppc_wait_for_nap(controlled_threads); 3838 3839 /* Return to whole-core mode if we split the core earlier */ 3840 if (cmd_bit) { 3841 unsigned long hid0 = mfspr(SPRN_HID0); 3842 unsigned long loops = 0; 3843 3844 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3845 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3846 mb(); 3847 mtspr(SPRN_HID0, hid0); 3848 isync(); 3849 for (;;) { 3850 hid0 = mfspr(SPRN_HID0); 3851 if (!(hid0 & stat_bit)) 3852 break; 3853 cpu_relax(); 3854 ++loops; 3855 } 3856 split_info.do_nap = 0; 3857 } 3858 3859 kvmppc_set_host_core(pcpu); 3860 3861 context_tracking_guest_exit(); 3862 if (!vtime_accounting_enabled_this_cpu()) { 3863 local_irq_enable(); 3864 /* 3865 * Service IRQs here before vtime_account_guest_exit() so any 3866 * ticks that occurred while running the guest are accounted to 3867 * the guest. If vtime accounting is enabled, accounting uses 3868 * TB rather than ticks, so it can be done without enabling 3869 * interrupts here, which has the problem that it accounts 3870 * interrupt processing overhead to the host. 3871 */ 3872 local_irq_disable(); 3873 } 3874 vtime_account_guest_exit(); 3875 3876 local_irq_enable(); 3877 3878 /* Let secondaries go back to the offline loop */ 3879 for (i = 0; i < controlled_threads; ++i) { 3880 kvmppc_release_hwthread(pcpu + i); 3881 if (sip && sip->napped[i]) 3882 kvmppc_ipi_thread(pcpu + i); 3883 } 3884 3885 spin_unlock(&vc->lock); 3886 3887 /* make sure updates to secondary vcpu structs are visible now */ 3888 smp_mb(); 3889 3890 preempt_enable(); 3891 3892 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3893 pvc = core_info.vc[sub]; 3894 post_guest_process(pvc, pvc == vc); 3895 } 3896 3897 spin_lock(&vc->lock); 3898 3899 out: 3900 vc->vcore_state = VCORE_INACTIVE; 3901 trace_kvmppc_run_core(vc, 1); 3902 } 3903 3904 static inline bool hcall_is_xics(unsigned long req) 3905 { 3906 return req == H_EOI || req == H_CPPR || req == H_IPI || 3907 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X; 3908 } 3909 3910 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu) 3911 { 3912 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3913 if (lp) { 3914 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3915 lp->yield_count = cpu_to_be32(yield_count); 3916 vcpu->arch.vpa.dirty = 1; 3917 } 3918 } 3919 3920 /* call our hypervisor to load up HV regs and go */ 3921 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb) 3922 { 3923 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3924 unsigned long host_psscr; 3925 unsigned long msr; 3926 struct hv_guest_state hvregs; 3927 struct p9_host_os_sprs host_os_sprs; 3928 s64 dec; 3929 int trap; 3930 3931 msr = mfmsr(); 3932 3933 save_p9_host_os_sprs(&host_os_sprs); 3934 3935 /* 3936 * We need to save and restore the guest visible part of the 3937 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 3938 * doesn't do this for us. Note only required if pseries since 3939 * this is done in kvmhv_vcpu_entry_p9() below otherwise. 3940 */ 3941 host_psscr = mfspr(SPRN_PSSCR_PR); 3942 3943 kvmppc_msr_hard_disable_set_facilities(vcpu, msr); 3944 if (lazy_irq_pending()) 3945 return 0; 3946 3947 if (unlikely(load_vcpu_state(vcpu, &host_os_sprs))) 3948 msr = mfmsr(); /* TM restore can update msr */ 3949 3950 if (vcpu->arch.psscr != host_psscr) 3951 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 3952 3953 kvmhv_save_hv_regs(vcpu, &hvregs); 3954 hvregs.lpcr = lpcr; 3955 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 3956 hvregs.version = HV_GUEST_STATE_VERSION; 3957 if (vcpu->arch.nested) { 3958 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 3959 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 3960 } else { 3961 hvregs.lpid = vcpu->kvm->arch.lpid; 3962 hvregs.vcpu_token = vcpu->vcpu_id; 3963 } 3964 hvregs.hdec_expiry = time_limit; 3965 3966 /* 3967 * When setting DEC, we must always deal with irq_work_raise 3968 * via NMI vs setting DEC. The problem occurs right as we 3969 * switch into guest mode if a NMI hits and sets pending work 3970 * and sets DEC, then that will apply to the guest and not 3971 * bring us back to the host. 3972 * 3973 * irq_work_raise could check a flag (or possibly LPCR[HDICE] 3974 * for example) and set HDEC to 1? That wouldn't solve the 3975 * nested hv case which needs to abort the hcall or zero the 3976 * time limit. 3977 * 3978 * XXX: Another day's problem. 3979 */ 3980 mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb); 3981 3982 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 3983 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 3984 switch_pmu_to_guest(vcpu, &host_os_sprs); 3985 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 3986 __pa(&vcpu->arch.regs)); 3987 kvmhv_restore_hv_return_state(vcpu, &hvregs); 3988 switch_pmu_to_host(vcpu, &host_os_sprs); 3989 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 3990 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 3991 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 3992 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 3993 3994 store_vcpu_state(vcpu); 3995 3996 dec = mfspr(SPRN_DEC); 3997 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 3998 dec = (s32) dec; 3999 *tb = mftb(); 4000 vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset); 4001 4002 timer_rearm_host_dec(*tb); 4003 4004 restore_p9_host_os_sprs(vcpu, &host_os_sprs); 4005 if (vcpu->arch.psscr != host_psscr) 4006 mtspr(SPRN_PSSCR_PR, host_psscr); 4007 4008 return trap; 4009 } 4010 4011 /* 4012 * Guest entry for POWER9 and later CPUs. 4013 */ 4014 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 4015 unsigned long lpcr, u64 *tb) 4016 { 4017 u64 next_timer; 4018 int trap; 4019 4020 next_timer = timer_get_next_tb(); 4021 if (*tb >= next_timer) 4022 return BOOK3S_INTERRUPT_HV_DECREMENTER; 4023 if (next_timer < time_limit) 4024 time_limit = next_timer; 4025 else if (*tb >= time_limit) /* nested time limit */ 4026 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER; 4027 4028 vcpu->arch.ceded = 0; 4029 4030 vcpu_vpa_increment_dispatch(vcpu); 4031 4032 if (kvmhv_on_pseries()) { 4033 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb); 4034 4035 /* H_CEDE has to be handled now, not later */ 4036 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 4037 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 4038 kvmppc_cede(vcpu); 4039 kvmppc_set_gpr(vcpu, 3, 0); 4040 trap = 0; 4041 } 4042 4043 } else { 4044 struct kvm *kvm = vcpu->kvm; 4045 4046 kvmppc_xive_push_vcpu(vcpu); 4047 4048 __this_cpu_write(cpu_in_guest, kvm); 4049 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); 4050 __this_cpu_write(cpu_in_guest, NULL); 4051 4052 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 4053 !(vcpu->arch.shregs.msr & MSR_PR)) { 4054 unsigned long req = kvmppc_get_gpr(vcpu, 3); 4055 4056 /* H_CEDE has to be handled now, not later */ 4057 if (req == H_CEDE) { 4058 kvmppc_cede(vcpu); 4059 kvmppc_xive_rearm_escalation(vcpu); /* may un-cede */ 4060 kvmppc_set_gpr(vcpu, 3, 0); 4061 trap = 0; 4062 4063 /* XICS hcalls must be handled before xive is pulled */ 4064 } else if (hcall_is_xics(req)) { 4065 int ret; 4066 4067 ret = kvmppc_xive_xics_hcall(vcpu, req); 4068 if (ret != H_TOO_HARD) { 4069 kvmppc_set_gpr(vcpu, 3, ret); 4070 trap = 0; 4071 } 4072 } 4073 } 4074 kvmppc_xive_pull_vcpu(vcpu); 4075 4076 if (kvm_is_radix(kvm)) 4077 vcpu->arch.slb_max = 0; 4078 } 4079 4080 vcpu_vpa_increment_dispatch(vcpu); 4081 4082 return trap; 4083 } 4084 4085 /* 4086 * Wait for some other vcpu thread to execute us, and 4087 * wake us up when we need to handle something in the host. 4088 */ 4089 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 4090 struct kvm_vcpu *vcpu, int wait_state) 4091 { 4092 DEFINE_WAIT(wait); 4093 4094 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 4095 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4096 spin_unlock(&vc->lock); 4097 schedule(); 4098 spin_lock(&vc->lock); 4099 } 4100 finish_wait(&vcpu->arch.cpu_run, &wait); 4101 } 4102 4103 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 4104 { 4105 if (!halt_poll_ns_grow) 4106 return; 4107 4108 vc->halt_poll_ns *= halt_poll_ns_grow; 4109 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 4110 vc->halt_poll_ns = halt_poll_ns_grow_start; 4111 } 4112 4113 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 4114 { 4115 if (halt_poll_ns_shrink == 0) 4116 vc->halt_poll_ns = 0; 4117 else 4118 vc->halt_poll_ns /= halt_poll_ns_shrink; 4119 } 4120 4121 #ifdef CONFIG_KVM_XICS 4122 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4123 { 4124 if (!xics_on_xive()) 4125 return false; 4126 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 4127 vcpu->arch.xive_saved_state.cppr; 4128 } 4129 #else 4130 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4131 { 4132 return false; 4133 } 4134 #endif /* CONFIG_KVM_XICS */ 4135 4136 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 4137 { 4138 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 4139 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 4140 return true; 4141 4142 return false; 4143 } 4144 4145 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu) 4146 { 4147 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 4148 return true; 4149 return false; 4150 } 4151 4152 /* 4153 * Check to see if any of the runnable vcpus on the vcore have pending 4154 * exceptions or are no longer ceded 4155 */ 4156 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 4157 { 4158 struct kvm_vcpu *vcpu; 4159 int i; 4160 4161 for_each_runnable_thread(i, vcpu, vc) { 4162 if (kvmppc_vcpu_check_block(vcpu)) 4163 return 1; 4164 } 4165 4166 return 0; 4167 } 4168 4169 /* 4170 * All the vcpus in this vcore are idle, so wait for a decrementer 4171 * or external interrupt to one of the vcpus. vc->lock is held. 4172 */ 4173 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 4174 { 4175 ktime_t cur, start_poll, start_wait; 4176 int do_sleep = 1; 4177 u64 block_ns; 4178 4179 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 4180 4181 /* Poll for pending exceptions and ceded state */ 4182 cur = start_poll = ktime_get(); 4183 if (vc->halt_poll_ns) { 4184 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 4185 ++vc->runner->stat.generic.halt_attempted_poll; 4186 4187 vc->vcore_state = VCORE_POLLING; 4188 spin_unlock(&vc->lock); 4189 4190 do { 4191 if (kvmppc_vcore_check_block(vc)) { 4192 do_sleep = 0; 4193 break; 4194 } 4195 cur = ktime_get(); 4196 } while (kvm_vcpu_can_poll(cur, stop)); 4197 4198 spin_lock(&vc->lock); 4199 vc->vcore_state = VCORE_INACTIVE; 4200 4201 if (!do_sleep) { 4202 ++vc->runner->stat.generic.halt_successful_poll; 4203 goto out; 4204 } 4205 } 4206 4207 prepare_to_rcuwait(&vc->wait); 4208 set_current_state(TASK_INTERRUPTIBLE); 4209 if (kvmppc_vcore_check_block(vc)) { 4210 finish_rcuwait(&vc->wait); 4211 do_sleep = 0; 4212 /* If we polled, count this as a successful poll */ 4213 if (vc->halt_poll_ns) 4214 ++vc->runner->stat.generic.halt_successful_poll; 4215 goto out; 4216 } 4217 4218 start_wait = ktime_get(); 4219 4220 vc->vcore_state = VCORE_SLEEPING; 4221 trace_kvmppc_vcore_blocked(vc, 0); 4222 spin_unlock(&vc->lock); 4223 schedule(); 4224 finish_rcuwait(&vc->wait); 4225 spin_lock(&vc->lock); 4226 vc->vcore_state = VCORE_INACTIVE; 4227 trace_kvmppc_vcore_blocked(vc, 1); 4228 ++vc->runner->stat.halt_successful_wait; 4229 4230 cur = ktime_get(); 4231 4232 out: 4233 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 4234 4235 /* Attribute wait time */ 4236 if (do_sleep) { 4237 vc->runner->stat.generic.halt_wait_ns += 4238 ktime_to_ns(cur) - ktime_to_ns(start_wait); 4239 KVM_STATS_LOG_HIST_UPDATE( 4240 vc->runner->stat.generic.halt_wait_hist, 4241 ktime_to_ns(cur) - ktime_to_ns(start_wait)); 4242 /* Attribute failed poll time */ 4243 if (vc->halt_poll_ns) { 4244 vc->runner->stat.generic.halt_poll_fail_ns += 4245 ktime_to_ns(start_wait) - 4246 ktime_to_ns(start_poll); 4247 KVM_STATS_LOG_HIST_UPDATE( 4248 vc->runner->stat.generic.halt_poll_fail_hist, 4249 ktime_to_ns(start_wait) - 4250 ktime_to_ns(start_poll)); 4251 } 4252 } else { 4253 /* Attribute successful poll time */ 4254 if (vc->halt_poll_ns) { 4255 vc->runner->stat.generic.halt_poll_success_ns += 4256 ktime_to_ns(cur) - 4257 ktime_to_ns(start_poll); 4258 KVM_STATS_LOG_HIST_UPDATE( 4259 vc->runner->stat.generic.halt_poll_success_hist, 4260 ktime_to_ns(cur) - ktime_to_ns(start_poll)); 4261 } 4262 } 4263 4264 /* Adjust poll time */ 4265 if (halt_poll_ns) { 4266 if (block_ns <= vc->halt_poll_ns) 4267 ; 4268 /* We slept and blocked for longer than the max halt time */ 4269 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 4270 shrink_halt_poll_ns(vc); 4271 /* We slept and our poll time is too small */ 4272 else if (vc->halt_poll_ns < halt_poll_ns && 4273 block_ns < halt_poll_ns) 4274 grow_halt_poll_ns(vc); 4275 if (vc->halt_poll_ns > halt_poll_ns) 4276 vc->halt_poll_ns = halt_poll_ns; 4277 } else 4278 vc->halt_poll_ns = 0; 4279 4280 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 4281 } 4282 4283 /* 4284 * This never fails for a radix guest, as none of the operations it does 4285 * for a radix guest can fail or have a way to report failure. 4286 */ 4287 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 4288 { 4289 int r = 0; 4290 struct kvm *kvm = vcpu->kvm; 4291 4292 mutex_lock(&kvm->arch.mmu_setup_lock); 4293 if (!kvm->arch.mmu_ready) { 4294 if (!kvm_is_radix(kvm)) 4295 r = kvmppc_hv_setup_htab_rma(vcpu); 4296 if (!r) { 4297 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4298 kvmppc_setup_partition_table(kvm); 4299 kvm->arch.mmu_ready = 1; 4300 } 4301 } 4302 mutex_unlock(&kvm->arch.mmu_setup_lock); 4303 return r; 4304 } 4305 4306 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) 4307 { 4308 struct kvm_run *run = vcpu->run; 4309 int n_ceded, i, r; 4310 struct kvmppc_vcore *vc; 4311 struct kvm_vcpu *v; 4312 4313 trace_kvmppc_run_vcpu_enter(vcpu); 4314 4315 run->exit_reason = 0; 4316 vcpu->arch.ret = RESUME_GUEST; 4317 vcpu->arch.trap = 0; 4318 kvmppc_update_vpas(vcpu); 4319 4320 /* 4321 * Synchronize with other threads in this virtual core 4322 */ 4323 vc = vcpu->arch.vcore; 4324 spin_lock(&vc->lock); 4325 vcpu->arch.ceded = 0; 4326 vcpu->arch.run_task = current; 4327 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4328 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4329 vcpu->arch.busy_preempt = TB_NIL; 4330 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 4331 ++vc->n_runnable; 4332 4333 /* 4334 * This happens the first time this is called for a vcpu. 4335 * If the vcore is already running, we may be able to start 4336 * this thread straight away and have it join in. 4337 */ 4338 if (!signal_pending(current)) { 4339 if ((vc->vcore_state == VCORE_PIGGYBACK || 4340 vc->vcore_state == VCORE_RUNNING) && 4341 !VCORE_IS_EXITING(vc)) { 4342 kvmppc_create_dtl_entry(vcpu, vc); 4343 kvmppc_start_thread(vcpu, vc); 4344 trace_kvm_guest_enter(vcpu); 4345 } else if (vc->vcore_state == VCORE_SLEEPING) { 4346 rcuwait_wake_up(&vc->wait); 4347 } 4348 4349 } 4350 4351 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4352 !signal_pending(current)) { 4353 /* See if the MMU is ready to go */ 4354 if (!vcpu->kvm->arch.mmu_ready) { 4355 spin_unlock(&vc->lock); 4356 r = kvmhv_setup_mmu(vcpu); 4357 spin_lock(&vc->lock); 4358 if (r) { 4359 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4360 run->fail_entry. 4361 hardware_entry_failure_reason = 0; 4362 vcpu->arch.ret = r; 4363 break; 4364 } 4365 } 4366 4367 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4368 kvmppc_vcore_end_preempt(vc); 4369 4370 if (vc->vcore_state != VCORE_INACTIVE) { 4371 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 4372 continue; 4373 } 4374 for_each_runnable_thread(i, v, vc) { 4375 kvmppc_core_prepare_to_enter(v); 4376 if (signal_pending(v->arch.run_task)) { 4377 kvmppc_remove_runnable(vc, v, mftb()); 4378 v->stat.signal_exits++; 4379 v->run->exit_reason = KVM_EXIT_INTR; 4380 v->arch.ret = -EINTR; 4381 wake_up(&v->arch.cpu_run); 4382 } 4383 } 4384 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 4385 break; 4386 n_ceded = 0; 4387 for_each_runnable_thread(i, v, vc) { 4388 if (!kvmppc_vcpu_woken(v)) 4389 n_ceded += v->arch.ceded; 4390 else 4391 v->arch.ceded = 0; 4392 } 4393 vc->runner = vcpu; 4394 if (n_ceded == vc->n_runnable) { 4395 kvmppc_vcore_blocked(vc); 4396 } else if (need_resched()) { 4397 kvmppc_vcore_preempt(vc); 4398 /* Let something else run */ 4399 cond_resched_lock(&vc->lock); 4400 if (vc->vcore_state == VCORE_PREEMPT) 4401 kvmppc_vcore_end_preempt(vc); 4402 } else { 4403 kvmppc_run_core(vc); 4404 } 4405 vc->runner = NULL; 4406 } 4407 4408 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4409 (vc->vcore_state == VCORE_RUNNING || 4410 vc->vcore_state == VCORE_EXITING || 4411 vc->vcore_state == VCORE_PIGGYBACK)) 4412 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4413 4414 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4415 kvmppc_vcore_end_preempt(vc); 4416 4417 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4418 kvmppc_remove_runnable(vc, vcpu, mftb()); 4419 vcpu->stat.signal_exits++; 4420 run->exit_reason = KVM_EXIT_INTR; 4421 vcpu->arch.ret = -EINTR; 4422 } 4423 4424 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4425 /* Wake up some vcpu to run the core */ 4426 i = -1; 4427 v = next_runnable_thread(vc, &i); 4428 wake_up(&v->arch.cpu_run); 4429 } 4430 4431 trace_kvmppc_run_vcpu_exit(vcpu); 4432 spin_unlock(&vc->lock); 4433 return vcpu->arch.ret; 4434 } 4435 4436 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, 4437 unsigned long lpcr) 4438 { 4439 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 4440 struct kvm_run *run = vcpu->run; 4441 int trap, r, pcpu; 4442 int srcu_idx; 4443 struct kvmppc_vcore *vc; 4444 struct kvm *kvm = vcpu->kvm; 4445 struct kvm_nested_guest *nested = vcpu->arch.nested; 4446 unsigned long flags; 4447 u64 tb; 4448 4449 trace_kvmppc_run_vcpu_enter(vcpu); 4450 4451 run->exit_reason = 0; 4452 vcpu->arch.ret = RESUME_GUEST; 4453 vcpu->arch.trap = 0; 4454 4455 vc = vcpu->arch.vcore; 4456 vcpu->arch.ceded = 0; 4457 vcpu->arch.run_task = current; 4458 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4459 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4460 4461 /* See if the MMU is ready to go */ 4462 if (unlikely(!kvm->arch.mmu_ready)) { 4463 r = kvmhv_setup_mmu(vcpu); 4464 if (r) { 4465 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4466 run->fail_entry.hardware_entry_failure_reason = 0; 4467 vcpu->arch.ret = r; 4468 return r; 4469 } 4470 } 4471 4472 if (need_resched()) 4473 cond_resched(); 4474 4475 kvmppc_update_vpas(vcpu); 4476 4477 preempt_disable(); 4478 pcpu = smp_processor_id(); 4479 if (kvm_is_radix(kvm)) 4480 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4481 4482 /* flags save not required, but irq_pmu has no disable/enable API */ 4483 powerpc_local_irq_pmu_save(flags); 4484 4485 if (signal_pending(current)) 4486 goto sigpend; 4487 if (need_resched() || !kvm->arch.mmu_ready) 4488 goto out; 4489 4490 if (!nested) { 4491 kvmppc_core_prepare_to_enter(vcpu); 4492 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4493 &vcpu->arch.pending_exceptions)) 4494 lpcr |= LPCR_MER; 4495 } else if (vcpu->arch.pending_exceptions || 4496 vcpu->arch.doorbell_request || 4497 xive_interrupt_pending(vcpu)) { 4498 vcpu->arch.ret = RESUME_HOST; 4499 goto out; 4500 } 4501 4502 if (vcpu->arch.timer_running) { 4503 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 4504 vcpu->arch.timer_running = 0; 4505 } 4506 4507 tb = mftb(); 4508 4509 vcpu->cpu = pcpu; 4510 vcpu->arch.thread_cpu = pcpu; 4511 vc->pcpu = pcpu; 4512 local_paca->kvm_hstate.kvm_vcpu = vcpu; 4513 local_paca->kvm_hstate.ptid = 0; 4514 local_paca->kvm_hstate.fake_suspend = 0; 4515 4516 __kvmppc_create_dtl_entry(vcpu, pcpu, tb + vc->tb_offset, 0); 4517 4518 trace_kvm_guest_enter(vcpu); 4519 4520 guest_enter_irqoff(); 4521 4522 srcu_idx = srcu_read_lock(&kvm->srcu); 4523 4524 this_cpu_disable_ftrace(); 4525 4526 /* Tell lockdep that we're about to enable interrupts */ 4527 trace_hardirqs_on(); 4528 4529 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb); 4530 vcpu->arch.trap = trap; 4531 4532 trace_hardirqs_off(); 4533 4534 this_cpu_enable_ftrace(); 4535 4536 srcu_read_unlock(&kvm->srcu, srcu_idx); 4537 4538 set_irq_happened(trap); 4539 4540 context_tracking_guest_exit(); 4541 if (!vtime_accounting_enabled_this_cpu()) { 4542 local_irq_enable(); 4543 /* 4544 * Service IRQs here before vtime_account_guest_exit() so any 4545 * ticks that occurred while running the guest are accounted to 4546 * the guest. If vtime accounting is enabled, accounting uses 4547 * TB rather than ticks, so it can be done without enabling 4548 * interrupts here, which has the problem that it accounts 4549 * interrupt processing overhead to the host. 4550 */ 4551 local_irq_disable(); 4552 } 4553 vtime_account_guest_exit(); 4554 4555 vcpu->cpu = -1; 4556 vcpu->arch.thread_cpu = -1; 4557 4558 powerpc_local_irq_pmu_restore(flags); 4559 4560 preempt_enable(); 4561 4562 /* 4563 * cancel pending decrementer exception if DEC is now positive, or if 4564 * entering a nested guest in which case the decrementer is now owned 4565 * by L2 and the L1 decrementer is provided in hdec_expires 4566 */ 4567 if (kvmppc_core_pending_dec(vcpu) && 4568 ((tb < kvmppc_dec_expires_host_tb(vcpu)) || 4569 (trap == BOOK3S_INTERRUPT_SYSCALL && 4570 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4571 kvmppc_core_dequeue_dec(vcpu); 4572 4573 trace_kvm_guest_exit(vcpu); 4574 r = RESUME_GUEST; 4575 if (trap) { 4576 if (!nested) 4577 r = kvmppc_handle_exit_hv(vcpu, current); 4578 else 4579 r = kvmppc_handle_nested_exit(vcpu); 4580 } 4581 vcpu->arch.ret = r; 4582 4583 if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) { 4584 kvmppc_set_timer(vcpu); 4585 4586 prepare_to_rcuwait(wait); 4587 for (;;) { 4588 set_current_state(TASK_INTERRUPTIBLE); 4589 if (signal_pending(current)) { 4590 vcpu->stat.signal_exits++; 4591 run->exit_reason = KVM_EXIT_INTR; 4592 vcpu->arch.ret = -EINTR; 4593 break; 4594 } 4595 4596 if (kvmppc_vcpu_check_block(vcpu)) 4597 break; 4598 4599 trace_kvmppc_vcore_blocked(vc, 0); 4600 schedule(); 4601 trace_kvmppc_vcore_blocked(vc, 1); 4602 } 4603 finish_rcuwait(wait); 4604 } 4605 vcpu->arch.ceded = 0; 4606 4607 done: 4608 trace_kvmppc_run_vcpu_exit(vcpu); 4609 4610 return vcpu->arch.ret; 4611 4612 sigpend: 4613 vcpu->stat.signal_exits++; 4614 run->exit_reason = KVM_EXIT_INTR; 4615 vcpu->arch.ret = -EINTR; 4616 out: 4617 powerpc_local_irq_pmu_restore(flags); 4618 preempt_enable(); 4619 goto done; 4620 } 4621 4622 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) 4623 { 4624 struct kvm_run *run = vcpu->run; 4625 int r; 4626 int srcu_idx; 4627 struct kvm *kvm; 4628 unsigned long msr; 4629 4630 if (!vcpu->arch.sane) { 4631 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4632 return -EINVAL; 4633 } 4634 4635 /* No need to go into the guest when all we'll do is come back out */ 4636 if (signal_pending(current)) { 4637 run->exit_reason = KVM_EXIT_INTR; 4638 return -EINTR; 4639 } 4640 4641 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4642 /* 4643 * Don't allow entry with a suspended transaction, because 4644 * the guest entry/exit code will lose it. 4645 */ 4646 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4647 (current->thread.regs->msr & MSR_TM)) { 4648 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4649 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4650 run->fail_entry.hardware_entry_failure_reason = 0; 4651 return -EINVAL; 4652 } 4653 } 4654 #endif 4655 4656 /* 4657 * Force online to 1 for the sake of old userspace which doesn't 4658 * set it. 4659 */ 4660 if (!vcpu->arch.online) { 4661 atomic_inc(&vcpu->arch.vcore->online_count); 4662 vcpu->arch.online = 1; 4663 } 4664 4665 kvmppc_core_prepare_to_enter(vcpu); 4666 4667 kvm = vcpu->kvm; 4668 atomic_inc(&kvm->arch.vcpus_running); 4669 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4670 smp_mb(); 4671 4672 msr = 0; 4673 if (IS_ENABLED(CONFIG_PPC_FPU)) 4674 msr |= MSR_FP; 4675 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 4676 msr |= MSR_VEC; 4677 if (cpu_has_feature(CPU_FTR_VSX)) 4678 msr |= MSR_VSX; 4679 if ((cpu_has_feature(CPU_FTR_TM) || 4680 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) && 4681 (vcpu->arch.hfscr & HFSCR_TM)) 4682 msr |= MSR_TM; 4683 msr = msr_check_and_set(msr); 4684 4685 kvmppc_save_user_regs(); 4686 4687 kvmppc_save_current_sprs(); 4688 4689 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4690 vcpu->arch.waitp = &vcpu->arch.vcore->wait; 4691 vcpu->arch.pgdir = kvm->mm->pgd; 4692 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4693 4694 do { 4695 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4696 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, 4697 vcpu->arch.vcore->lpcr); 4698 else 4699 r = kvmppc_run_vcpu(vcpu); 4700 4701 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) { 4702 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) { 4703 /* 4704 * These should have been caught reflected 4705 * into the guest by now. Final sanity check: 4706 * don't allow userspace to execute hcalls in 4707 * the hypervisor. 4708 */ 4709 r = RESUME_GUEST; 4710 continue; 4711 } 4712 trace_kvm_hcall_enter(vcpu); 4713 r = kvmppc_pseries_do_hcall(vcpu); 4714 trace_kvm_hcall_exit(vcpu, r); 4715 kvmppc_core_prepare_to_enter(vcpu); 4716 } else if (r == RESUME_PAGE_FAULT) { 4717 srcu_idx = srcu_read_lock(&kvm->srcu); 4718 r = kvmppc_book3s_hv_page_fault(vcpu, 4719 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4720 srcu_read_unlock(&kvm->srcu, srcu_idx); 4721 } else if (r == RESUME_PASSTHROUGH) { 4722 if (WARN_ON(xics_on_xive())) 4723 r = H_SUCCESS; 4724 else 4725 r = kvmppc_xics_rm_complete(vcpu, 0); 4726 } 4727 } while (is_kvmppc_resume_guest(r)); 4728 4729 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4730 atomic_dec(&kvm->arch.vcpus_running); 4731 4732 srr_regs_clobbered(); 4733 4734 return r; 4735 } 4736 4737 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4738 int shift, int sllp) 4739 { 4740 (*sps)->page_shift = shift; 4741 (*sps)->slb_enc = sllp; 4742 (*sps)->enc[0].page_shift = shift; 4743 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4744 /* 4745 * Add 16MB MPSS support (may get filtered out by userspace) 4746 */ 4747 if (shift != 24) { 4748 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4749 if (penc != -1) { 4750 (*sps)->enc[1].page_shift = 24; 4751 (*sps)->enc[1].pte_enc = penc; 4752 } 4753 } 4754 (*sps)++; 4755 } 4756 4757 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4758 struct kvm_ppc_smmu_info *info) 4759 { 4760 struct kvm_ppc_one_seg_page_size *sps; 4761 4762 /* 4763 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4764 * POWER7 doesn't support keys for instruction accesses, 4765 * POWER8 and POWER9 do. 4766 */ 4767 info->data_keys = 32; 4768 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4769 4770 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4771 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4772 info->slb_size = 32; 4773 4774 /* We only support these sizes for now, and no muti-size segments */ 4775 sps = &info->sps[0]; 4776 kvmppc_add_seg_page_size(&sps, 12, 0); 4777 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4778 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4779 4780 /* If running as a nested hypervisor, we don't support HPT guests */ 4781 if (kvmhv_on_pseries()) 4782 info->flags |= KVM_PPC_NO_HASH; 4783 4784 return 0; 4785 } 4786 4787 /* 4788 * Get (and clear) the dirty memory log for a memory slot. 4789 */ 4790 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4791 struct kvm_dirty_log *log) 4792 { 4793 struct kvm_memslots *slots; 4794 struct kvm_memory_slot *memslot; 4795 int r; 4796 unsigned long n, i; 4797 unsigned long *buf, *p; 4798 struct kvm_vcpu *vcpu; 4799 4800 mutex_lock(&kvm->slots_lock); 4801 4802 r = -EINVAL; 4803 if (log->slot >= KVM_USER_MEM_SLOTS) 4804 goto out; 4805 4806 slots = kvm_memslots(kvm); 4807 memslot = id_to_memslot(slots, log->slot); 4808 r = -ENOENT; 4809 if (!memslot || !memslot->dirty_bitmap) 4810 goto out; 4811 4812 /* 4813 * Use second half of bitmap area because both HPT and radix 4814 * accumulate bits in the first half. 4815 */ 4816 n = kvm_dirty_bitmap_bytes(memslot); 4817 buf = memslot->dirty_bitmap + n / sizeof(long); 4818 memset(buf, 0, n); 4819 4820 if (kvm_is_radix(kvm)) 4821 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4822 else 4823 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4824 if (r) 4825 goto out; 4826 4827 /* 4828 * We accumulate dirty bits in the first half of the 4829 * memslot's dirty_bitmap area, for when pages are paged 4830 * out or modified by the host directly. Pick up these 4831 * bits and add them to the map. 4832 */ 4833 p = memslot->dirty_bitmap; 4834 for (i = 0; i < n / sizeof(long); ++i) 4835 buf[i] |= xchg(&p[i], 0); 4836 4837 /* Harvest dirty bits from VPA and DTL updates */ 4838 /* Note: we never modify the SLB shadow buffer areas */ 4839 kvm_for_each_vcpu(i, vcpu, kvm) { 4840 spin_lock(&vcpu->arch.vpa_update_lock); 4841 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4842 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4843 spin_unlock(&vcpu->arch.vpa_update_lock); 4844 } 4845 4846 r = -EFAULT; 4847 if (copy_to_user(log->dirty_bitmap, buf, n)) 4848 goto out; 4849 4850 r = 0; 4851 out: 4852 mutex_unlock(&kvm->slots_lock); 4853 return r; 4854 } 4855 4856 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) 4857 { 4858 vfree(slot->arch.rmap); 4859 slot->arch.rmap = NULL; 4860 } 4861 4862 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 4863 const struct kvm_memory_slot *old, 4864 struct kvm_memory_slot *new, 4865 enum kvm_mr_change change) 4866 { 4867 if (change == KVM_MR_CREATE) { 4868 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap)); 4869 4870 if ((size >> PAGE_SHIFT) > totalram_pages()) 4871 return -ENOMEM; 4872 4873 new->arch.rmap = vzalloc(size); 4874 if (!new->arch.rmap) 4875 return -ENOMEM; 4876 } else if (change != KVM_MR_DELETE) { 4877 new->arch.rmap = old->arch.rmap; 4878 } 4879 4880 return 0; 4881 } 4882 4883 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 4884 struct kvm_memory_slot *old, 4885 const struct kvm_memory_slot *new, 4886 enum kvm_mr_change change) 4887 { 4888 /* 4889 * If we are creating or modifying a memslot, it might make 4890 * some address that was previously cached as emulated 4891 * MMIO be no longer emulated MMIO, so invalidate 4892 * all the caches of emulated MMIO translations. 4893 */ 4894 if (change != KVM_MR_DELETE) 4895 atomic64_inc(&kvm->arch.mmio_update); 4896 4897 /* 4898 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 4899 * have already called kvm_arch_flush_shadow_memslot() to 4900 * flush shadow mappings. For KVM_MR_CREATE we have no 4901 * previous mappings. So the only case to handle is 4902 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 4903 * has been changed. 4904 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 4905 * to get rid of any THP PTEs in the partition-scoped page tables 4906 * so we can track dirtiness at the page level; we flush when 4907 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 4908 * using THP PTEs. 4909 */ 4910 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 4911 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 4912 kvmppc_radix_flush_memslot(kvm, old); 4913 /* 4914 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 4915 */ 4916 if (!kvm->arch.secure_guest) 4917 return; 4918 4919 switch (change) { 4920 case KVM_MR_CREATE: 4921 /* 4922 * @TODO kvmppc_uvmem_memslot_create() can fail and 4923 * return error. Fix this. 4924 */ 4925 kvmppc_uvmem_memslot_create(kvm, new); 4926 break; 4927 case KVM_MR_DELETE: 4928 kvmppc_uvmem_memslot_delete(kvm, old); 4929 break; 4930 default: 4931 /* TODO: Handle KVM_MR_MOVE */ 4932 break; 4933 } 4934 } 4935 4936 /* 4937 * Update LPCR values in kvm->arch and in vcores. 4938 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 4939 * of kvm->arch.lpcr update). 4940 */ 4941 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 4942 { 4943 long int i; 4944 u32 cores_done = 0; 4945 4946 if ((kvm->arch.lpcr & mask) == lpcr) 4947 return; 4948 4949 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 4950 4951 for (i = 0; i < KVM_MAX_VCORES; ++i) { 4952 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 4953 if (!vc) 4954 continue; 4955 4956 spin_lock(&vc->lock); 4957 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 4958 verify_lpcr(kvm, vc->lpcr); 4959 spin_unlock(&vc->lock); 4960 if (++cores_done >= kvm->arch.online_vcores) 4961 break; 4962 } 4963 } 4964 4965 void kvmppc_setup_partition_table(struct kvm *kvm) 4966 { 4967 unsigned long dw0, dw1; 4968 4969 if (!kvm_is_radix(kvm)) { 4970 /* PS field - page size for VRMA */ 4971 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 4972 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 4973 /* HTABSIZE and HTABORG fields */ 4974 dw0 |= kvm->arch.sdr1; 4975 4976 /* Second dword as set by userspace */ 4977 dw1 = kvm->arch.process_table; 4978 } else { 4979 dw0 = PATB_HR | radix__get_tree_size() | 4980 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 4981 dw1 = PATB_GR | kvm->arch.process_table; 4982 } 4983 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 4984 } 4985 4986 /* 4987 * Set up HPT (hashed page table) and RMA (real-mode area). 4988 * Must be called with kvm->arch.mmu_setup_lock held. 4989 */ 4990 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 4991 { 4992 int err = 0; 4993 struct kvm *kvm = vcpu->kvm; 4994 unsigned long hva; 4995 struct kvm_memory_slot *memslot; 4996 struct vm_area_struct *vma; 4997 unsigned long lpcr = 0, senc; 4998 unsigned long psize, porder; 4999 int srcu_idx; 5000 5001 /* Allocate hashed page table (if not done already) and reset it */ 5002 if (!kvm->arch.hpt.virt) { 5003 int order = KVM_DEFAULT_HPT_ORDER; 5004 struct kvm_hpt_info info; 5005 5006 err = kvmppc_allocate_hpt(&info, order); 5007 /* If we get here, it means userspace didn't specify a 5008 * size explicitly. So, try successively smaller 5009 * sizes if the default failed. */ 5010 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 5011 err = kvmppc_allocate_hpt(&info, order); 5012 5013 if (err < 0) { 5014 pr_err("KVM: Couldn't alloc HPT\n"); 5015 goto out; 5016 } 5017 5018 kvmppc_set_hpt(kvm, &info); 5019 } 5020 5021 /* Look up the memslot for guest physical address 0 */ 5022 srcu_idx = srcu_read_lock(&kvm->srcu); 5023 memslot = gfn_to_memslot(kvm, 0); 5024 5025 /* We must have some memory at 0 by now */ 5026 err = -EINVAL; 5027 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 5028 goto out_srcu; 5029 5030 /* Look up the VMA for the start of this memory slot */ 5031 hva = memslot->userspace_addr; 5032 mmap_read_lock(kvm->mm); 5033 vma = vma_lookup(kvm->mm, hva); 5034 if (!vma || (vma->vm_flags & VM_IO)) 5035 goto up_out; 5036 5037 psize = vma_kernel_pagesize(vma); 5038 5039 mmap_read_unlock(kvm->mm); 5040 5041 /* We can handle 4k, 64k or 16M pages in the VRMA */ 5042 if (psize >= 0x1000000) 5043 psize = 0x1000000; 5044 else if (psize >= 0x10000) 5045 psize = 0x10000; 5046 else 5047 psize = 0x1000; 5048 porder = __ilog2(psize); 5049 5050 senc = slb_pgsize_encoding(psize); 5051 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 5052 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5053 /* Create HPTEs in the hash page table for the VRMA */ 5054 kvmppc_map_vrma(vcpu, memslot, porder); 5055 5056 /* Update VRMASD field in the LPCR */ 5057 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 5058 /* the -4 is to account for senc values starting at 0x10 */ 5059 lpcr = senc << (LPCR_VRMASD_SH - 4); 5060 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 5061 } 5062 5063 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 5064 smp_wmb(); 5065 err = 0; 5066 out_srcu: 5067 srcu_read_unlock(&kvm->srcu, srcu_idx); 5068 out: 5069 return err; 5070 5071 up_out: 5072 mmap_read_unlock(kvm->mm); 5073 goto out_srcu; 5074 } 5075 5076 /* 5077 * Must be called with kvm->arch.mmu_setup_lock held and 5078 * mmu_ready = 0 and no vcpus running. 5079 */ 5080 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 5081 { 5082 unsigned long lpcr, lpcr_mask; 5083 5084 if (nesting_enabled(kvm)) 5085 kvmhv_release_all_nested(kvm); 5086 kvmppc_rmap_reset(kvm); 5087 kvm->arch.process_table = 0; 5088 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5089 spin_lock(&kvm->mmu_lock); 5090 kvm->arch.radix = 0; 5091 spin_unlock(&kvm->mmu_lock); 5092 kvmppc_free_radix(kvm); 5093 5094 lpcr = LPCR_VPM1; 5095 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5096 if (cpu_has_feature(CPU_FTR_ARCH_31)) 5097 lpcr_mask |= LPCR_HAIL; 5098 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5099 5100 return 0; 5101 } 5102 5103 /* 5104 * Must be called with kvm->arch.mmu_setup_lock held and 5105 * mmu_ready = 0 and no vcpus running. 5106 */ 5107 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 5108 { 5109 unsigned long lpcr, lpcr_mask; 5110 int err; 5111 5112 err = kvmppc_init_vm_radix(kvm); 5113 if (err) 5114 return err; 5115 kvmppc_rmap_reset(kvm); 5116 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5117 spin_lock(&kvm->mmu_lock); 5118 kvm->arch.radix = 1; 5119 spin_unlock(&kvm->mmu_lock); 5120 kvmppc_free_hpt(&kvm->arch.hpt); 5121 5122 lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5123 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5124 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5125 lpcr_mask |= LPCR_HAIL; 5126 if (cpu_has_feature(CPU_FTR_HVMODE) && 5127 (kvm->arch.host_lpcr & LPCR_HAIL)) 5128 lpcr |= LPCR_HAIL; 5129 } 5130 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5131 5132 return 0; 5133 } 5134 5135 #ifdef CONFIG_KVM_XICS 5136 /* 5137 * Allocate a per-core structure for managing state about which cores are 5138 * running in the host versus the guest and for exchanging data between 5139 * real mode KVM and CPU running in the host. 5140 * This is only done for the first VM. 5141 * The allocated structure stays even if all VMs have stopped. 5142 * It is only freed when the kvm-hv module is unloaded. 5143 * It's OK for this routine to fail, we just don't support host 5144 * core operations like redirecting H_IPI wakeups. 5145 */ 5146 void kvmppc_alloc_host_rm_ops(void) 5147 { 5148 struct kvmppc_host_rm_ops *ops; 5149 unsigned long l_ops; 5150 int cpu, core; 5151 int size; 5152 5153 if (cpu_has_feature(CPU_FTR_ARCH_300)) 5154 return; 5155 5156 /* Not the first time here ? */ 5157 if (kvmppc_host_rm_ops_hv != NULL) 5158 return; 5159 5160 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 5161 if (!ops) 5162 return; 5163 5164 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 5165 ops->rm_core = kzalloc(size, GFP_KERNEL); 5166 5167 if (!ops->rm_core) { 5168 kfree(ops); 5169 return; 5170 } 5171 5172 cpus_read_lock(); 5173 5174 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 5175 if (!cpu_online(cpu)) 5176 continue; 5177 5178 core = cpu >> threads_shift; 5179 ops->rm_core[core].rm_state.in_host = 1; 5180 } 5181 5182 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 5183 5184 /* 5185 * Make the contents of the kvmppc_host_rm_ops structure visible 5186 * to other CPUs before we assign it to the global variable. 5187 * Do an atomic assignment (no locks used here), but if someone 5188 * beats us to it, just free our copy and return. 5189 */ 5190 smp_wmb(); 5191 l_ops = (unsigned long) ops; 5192 5193 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 5194 cpus_read_unlock(); 5195 kfree(ops->rm_core); 5196 kfree(ops); 5197 return; 5198 } 5199 5200 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 5201 "ppc/kvm_book3s:prepare", 5202 kvmppc_set_host_core, 5203 kvmppc_clear_host_core); 5204 cpus_read_unlock(); 5205 } 5206 5207 void kvmppc_free_host_rm_ops(void) 5208 { 5209 if (kvmppc_host_rm_ops_hv) { 5210 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 5211 kfree(kvmppc_host_rm_ops_hv->rm_core); 5212 kfree(kvmppc_host_rm_ops_hv); 5213 kvmppc_host_rm_ops_hv = NULL; 5214 } 5215 } 5216 #endif 5217 5218 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 5219 { 5220 unsigned long lpcr, lpid; 5221 int ret; 5222 5223 mutex_init(&kvm->arch.uvmem_lock); 5224 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 5225 mutex_init(&kvm->arch.mmu_setup_lock); 5226 5227 /* Allocate the guest's logical partition ID */ 5228 5229 lpid = kvmppc_alloc_lpid(); 5230 if ((long)lpid < 0) 5231 return -ENOMEM; 5232 kvm->arch.lpid = lpid; 5233 5234 kvmppc_alloc_host_rm_ops(); 5235 5236 kvmhv_vm_nested_init(kvm); 5237 5238 /* 5239 * Since we don't flush the TLB when tearing down a VM, 5240 * and this lpid might have previously been used, 5241 * make sure we flush on each core before running the new VM. 5242 * On POWER9, the tlbie in mmu_partition_table_set_entry() 5243 * does this flush for us. 5244 */ 5245 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5246 cpumask_setall(&kvm->arch.need_tlb_flush); 5247 5248 /* Start out with the default set of hcalls enabled */ 5249 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 5250 sizeof(kvm->arch.enabled_hcalls)); 5251 5252 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5253 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 5254 5255 /* Init LPCR for virtual RMA mode */ 5256 if (cpu_has_feature(CPU_FTR_HVMODE)) { 5257 kvm->arch.host_lpid = mfspr(SPRN_LPID); 5258 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 5259 lpcr &= LPCR_PECE | LPCR_LPES; 5260 } else { 5261 lpcr = 0; 5262 } 5263 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 5264 LPCR_VPM0 | LPCR_VPM1; 5265 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 5266 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5267 /* On POWER8 turn on online bit to enable PURR/SPURR */ 5268 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5269 lpcr |= LPCR_ONL; 5270 /* 5271 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 5272 * Set HVICE bit to enable hypervisor virtualization interrupts. 5273 * Set HEIC to prevent OS interrupts to go to hypervisor (should 5274 * be unnecessary but better safe than sorry in case we re-enable 5275 * EE in HV mode with this LPCR still set) 5276 */ 5277 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5278 lpcr &= ~LPCR_VPM0; 5279 lpcr |= LPCR_HVICE | LPCR_HEIC; 5280 5281 /* 5282 * If xive is enabled, we route 0x500 interrupts directly 5283 * to the guest. 5284 */ 5285 if (xics_on_xive()) 5286 lpcr |= LPCR_LPES; 5287 } 5288 5289 /* 5290 * If the host uses radix, the guest starts out as radix. 5291 */ 5292 if (radix_enabled()) { 5293 kvm->arch.radix = 1; 5294 kvm->arch.mmu_ready = 1; 5295 lpcr &= ~LPCR_VPM1; 5296 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5297 if (cpu_has_feature(CPU_FTR_HVMODE) && 5298 cpu_has_feature(CPU_FTR_ARCH_31) && 5299 (kvm->arch.host_lpcr & LPCR_HAIL)) 5300 lpcr |= LPCR_HAIL; 5301 ret = kvmppc_init_vm_radix(kvm); 5302 if (ret) { 5303 kvmppc_free_lpid(kvm->arch.lpid); 5304 return ret; 5305 } 5306 kvmppc_setup_partition_table(kvm); 5307 } 5308 5309 verify_lpcr(kvm, lpcr); 5310 kvm->arch.lpcr = lpcr; 5311 5312 /* Initialization for future HPT resizes */ 5313 kvm->arch.resize_hpt = NULL; 5314 5315 /* 5316 * Work out how many sets the TLB has, for the use of 5317 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 5318 */ 5319 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5320 /* 5321 * P10 will flush all the congruence class with a single tlbiel 5322 */ 5323 kvm->arch.tlb_sets = 1; 5324 } else if (radix_enabled()) 5325 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 5326 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 5327 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 5328 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5329 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 5330 else 5331 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 5332 5333 /* 5334 * Track that we now have a HV mode VM active. This blocks secondary 5335 * CPU threads from coming online. 5336 */ 5337 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5338 kvm_hv_vm_activated(); 5339 5340 /* 5341 * Initialize smt_mode depending on processor. 5342 * POWER8 and earlier have to use "strict" threading, where 5343 * all vCPUs in a vcore have to run on the same (sub)core, 5344 * whereas on POWER9 the threads can each run a different 5345 * guest. 5346 */ 5347 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5348 kvm->arch.smt_mode = threads_per_subcore; 5349 else 5350 kvm->arch.smt_mode = 1; 5351 kvm->arch.emul_smt_mode = 1; 5352 5353 return 0; 5354 } 5355 5356 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm) 5357 { 5358 kvmppc_mmu_debugfs_init(kvm); 5359 if (radix_enabled()) 5360 kvmhv_radix_debugfs_init(kvm); 5361 return 0; 5362 } 5363 5364 static void kvmppc_free_vcores(struct kvm *kvm) 5365 { 5366 long int i; 5367 5368 for (i = 0; i < KVM_MAX_VCORES; ++i) 5369 kfree(kvm->arch.vcores[i]); 5370 kvm->arch.online_vcores = 0; 5371 } 5372 5373 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 5374 { 5375 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5376 kvm_hv_vm_deactivated(); 5377 5378 kvmppc_free_vcores(kvm); 5379 5380 5381 if (kvm_is_radix(kvm)) 5382 kvmppc_free_radix(kvm); 5383 else 5384 kvmppc_free_hpt(&kvm->arch.hpt); 5385 5386 /* Perform global invalidation and return lpid to the pool */ 5387 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5388 if (nesting_enabled(kvm)) 5389 kvmhv_release_all_nested(kvm); 5390 kvm->arch.process_table = 0; 5391 if (kvm->arch.secure_guest) 5392 uv_svm_terminate(kvm->arch.lpid); 5393 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 5394 } 5395 5396 kvmppc_free_lpid(kvm->arch.lpid); 5397 5398 kvmppc_free_pimap(kvm); 5399 } 5400 5401 /* We don't need to emulate any privileged instructions or dcbz */ 5402 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, 5403 unsigned int inst, int *advance) 5404 { 5405 return EMULATE_FAIL; 5406 } 5407 5408 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 5409 ulong spr_val) 5410 { 5411 return EMULATE_FAIL; 5412 } 5413 5414 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 5415 ulong *spr_val) 5416 { 5417 return EMULATE_FAIL; 5418 } 5419 5420 static int kvmppc_core_check_processor_compat_hv(void) 5421 { 5422 if (cpu_has_feature(CPU_FTR_HVMODE) && 5423 cpu_has_feature(CPU_FTR_ARCH_206)) 5424 return 0; 5425 5426 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5427 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5428 return 0; 5429 5430 return -EIO; 5431 } 5432 5433 #ifdef CONFIG_KVM_XICS 5434 5435 void kvmppc_free_pimap(struct kvm *kvm) 5436 { 5437 kfree(kvm->arch.pimap); 5438 } 5439 5440 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5441 { 5442 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5443 } 5444 5445 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5446 { 5447 struct irq_desc *desc; 5448 struct kvmppc_irq_map *irq_map; 5449 struct kvmppc_passthru_irqmap *pimap; 5450 struct irq_chip *chip; 5451 int i, rc = 0; 5452 struct irq_data *host_data; 5453 5454 if (!kvm_irq_bypass) 5455 return 1; 5456 5457 desc = irq_to_desc(host_irq); 5458 if (!desc) 5459 return -EIO; 5460 5461 mutex_lock(&kvm->lock); 5462 5463 pimap = kvm->arch.pimap; 5464 if (pimap == NULL) { 5465 /* First call, allocate structure to hold IRQ map */ 5466 pimap = kvmppc_alloc_pimap(); 5467 if (pimap == NULL) { 5468 mutex_unlock(&kvm->lock); 5469 return -ENOMEM; 5470 } 5471 kvm->arch.pimap = pimap; 5472 } 5473 5474 /* 5475 * For now, we only support interrupts for which the EOI operation 5476 * is an OPAL call followed by a write to XIRR, since that's 5477 * what our real-mode EOI code does, or a XIVE interrupt 5478 */ 5479 chip = irq_data_get_irq_chip(&desc->irq_data); 5480 if (!chip || !is_pnv_opal_msi(chip)) { 5481 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5482 host_irq, guest_gsi); 5483 mutex_unlock(&kvm->lock); 5484 return -ENOENT; 5485 } 5486 5487 /* 5488 * See if we already have an entry for this guest IRQ number. 5489 * If it's mapped to a hardware IRQ number, that's an error, 5490 * otherwise re-use this entry. 5491 */ 5492 for (i = 0; i < pimap->n_mapped; i++) { 5493 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5494 if (pimap->mapped[i].r_hwirq) { 5495 mutex_unlock(&kvm->lock); 5496 return -EINVAL; 5497 } 5498 break; 5499 } 5500 } 5501 5502 if (i == KVMPPC_PIRQ_MAPPED) { 5503 mutex_unlock(&kvm->lock); 5504 return -EAGAIN; /* table is full */ 5505 } 5506 5507 irq_map = &pimap->mapped[i]; 5508 5509 irq_map->v_hwirq = guest_gsi; 5510 irq_map->desc = desc; 5511 5512 /* 5513 * Order the above two stores before the next to serialize with 5514 * the KVM real mode handler. 5515 */ 5516 smp_wmb(); 5517 5518 /* 5519 * The 'host_irq' number is mapped in the PCI-MSI domain but 5520 * the underlying calls, which will EOI the interrupt in real 5521 * mode, need an HW IRQ number mapped in the XICS IRQ domain. 5522 */ 5523 host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq); 5524 irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data); 5525 5526 if (i == pimap->n_mapped) 5527 pimap->n_mapped++; 5528 5529 if (xics_on_xive()) 5530 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq); 5531 else 5532 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq); 5533 if (rc) 5534 irq_map->r_hwirq = 0; 5535 5536 mutex_unlock(&kvm->lock); 5537 5538 return 0; 5539 } 5540 5541 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5542 { 5543 struct irq_desc *desc; 5544 struct kvmppc_passthru_irqmap *pimap; 5545 int i, rc = 0; 5546 5547 if (!kvm_irq_bypass) 5548 return 0; 5549 5550 desc = irq_to_desc(host_irq); 5551 if (!desc) 5552 return -EIO; 5553 5554 mutex_lock(&kvm->lock); 5555 if (!kvm->arch.pimap) 5556 goto unlock; 5557 5558 pimap = kvm->arch.pimap; 5559 5560 for (i = 0; i < pimap->n_mapped; i++) { 5561 if (guest_gsi == pimap->mapped[i].v_hwirq) 5562 break; 5563 } 5564 5565 if (i == pimap->n_mapped) { 5566 mutex_unlock(&kvm->lock); 5567 return -ENODEV; 5568 } 5569 5570 if (xics_on_xive()) 5571 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq); 5572 else 5573 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5574 5575 /* invalidate the entry (what do do on error from the above ?) */ 5576 pimap->mapped[i].r_hwirq = 0; 5577 5578 /* 5579 * We don't free this structure even when the count goes to 5580 * zero. The structure is freed when we destroy the VM. 5581 */ 5582 unlock: 5583 mutex_unlock(&kvm->lock); 5584 return rc; 5585 } 5586 5587 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5588 struct irq_bypass_producer *prod) 5589 { 5590 int ret = 0; 5591 struct kvm_kernel_irqfd *irqfd = 5592 container_of(cons, struct kvm_kernel_irqfd, consumer); 5593 5594 irqfd->producer = prod; 5595 5596 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5597 if (ret) 5598 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5599 prod->irq, irqfd->gsi, ret); 5600 5601 return ret; 5602 } 5603 5604 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5605 struct irq_bypass_producer *prod) 5606 { 5607 int ret; 5608 struct kvm_kernel_irqfd *irqfd = 5609 container_of(cons, struct kvm_kernel_irqfd, consumer); 5610 5611 irqfd->producer = NULL; 5612 5613 /* 5614 * When producer of consumer is unregistered, we change back to 5615 * default external interrupt handling mode - KVM real mode 5616 * will switch back to host. 5617 */ 5618 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5619 if (ret) 5620 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5621 prod->irq, irqfd->gsi, ret); 5622 } 5623 #endif 5624 5625 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5626 unsigned int ioctl, unsigned long arg) 5627 { 5628 struct kvm *kvm __maybe_unused = filp->private_data; 5629 void __user *argp = (void __user *)arg; 5630 long r; 5631 5632 switch (ioctl) { 5633 5634 case KVM_PPC_ALLOCATE_HTAB: { 5635 u32 htab_order; 5636 5637 /* If we're a nested hypervisor, we currently only support radix */ 5638 if (kvmhv_on_pseries()) { 5639 r = -EOPNOTSUPP; 5640 break; 5641 } 5642 5643 r = -EFAULT; 5644 if (get_user(htab_order, (u32 __user *)argp)) 5645 break; 5646 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5647 if (r) 5648 break; 5649 r = 0; 5650 break; 5651 } 5652 5653 case KVM_PPC_GET_HTAB_FD: { 5654 struct kvm_get_htab_fd ghf; 5655 5656 r = -EFAULT; 5657 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5658 break; 5659 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5660 break; 5661 } 5662 5663 case KVM_PPC_RESIZE_HPT_PREPARE: { 5664 struct kvm_ppc_resize_hpt rhpt; 5665 5666 r = -EFAULT; 5667 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5668 break; 5669 5670 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5671 break; 5672 } 5673 5674 case KVM_PPC_RESIZE_HPT_COMMIT: { 5675 struct kvm_ppc_resize_hpt rhpt; 5676 5677 r = -EFAULT; 5678 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5679 break; 5680 5681 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5682 break; 5683 } 5684 5685 default: 5686 r = -ENOTTY; 5687 } 5688 5689 return r; 5690 } 5691 5692 /* 5693 * List of hcall numbers to enable by default. 5694 * For compatibility with old userspace, we enable by default 5695 * all hcalls that were implemented before the hcall-enabling 5696 * facility was added. Note this list should not include H_RTAS. 5697 */ 5698 static unsigned int default_hcall_list[] = { 5699 H_REMOVE, 5700 H_ENTER, 5701 H_READ, 5702 H_PROTECT, 5703 H_BULK_REMOVE, 5704 #ifdef CONFIG_SPAPR_TCE_IOMMU 5705 H_GET_TCE, 5706 H_PUT_TCE, 5707 #endif 5708 H_SET_DABR, 5709 H_SET_XDABR, 5710 H_CEDE, 5711 H_PROD, 5712 H_CONFER, 5713 H_REGISTER_VPA, 5714 #ifdef CONFIG_KVM_XICS 5715 H_EOI, 5716 H_CPPR, 5717 H_IPI, 5718 H_IPOLL, 5719 H_XIRR, 5720 H_XIRR_X, 5721 #endif 5722 0 5723 }; 5724 5725 static void init_default_hcalls(void) 5726 { 5727 int i; 5728 unsigned int hcall; 5729 5730 for (i = 0; default_hcall_list[i]; ++i) { 5731 hcall = default_hcall_list[i]; 5732 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5733 __set_bit(hcall / 4, default_enabled_hcalls); 5734 } 5735 } 5736 5737 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5738 { 5739 unsigned long lpcr; 5740 int radix; 5741 int err; 5742 5743 /* If not on a POWER9, reject it */ 5744 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5745 return -ENODEV; 5746 5747 /* If any unknown flags set, reject it */ 5748 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5749 return -EINVAL; 5750 5751 /* GR (guest radix) bit in process_table field must match */ 5752 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5753 if (!!(cfg->process_table & PATB_GR) != radix) 5754 return -EINVAL; 5755 5756 /* Process table size field must be reasonable, i.e. <= 24 */ 5757 if ((cfg->process_table & PRTS_MASK) > 24) 5758 return -EINVAL; 5759 5760 /* We can change a guest to/from radix now, if the host is radix */ 5761 if (radix && !radix_enabled()) 5762 return -EINVAL; 5763 5764 /* If we're a nested hypervisor, we currently only support radix */ 5765 if (kvmhv_on_pseries() && !radix) 5766 return -EINVAL; 5767 5768 mutex_lock(&kvm->arch.mmu_setup_lock); 5769 if (radix != kvm_is_radix(kvm)) { 5770 if (kvm->arch.mmu_ready) { 5771 kvm->arch.mmu_ready = 0; 5772 /* order mmu_ready vs. vcpus_running */ 5773 smp_mb(); 5774 if (atomic_read(&kvm->arch.vcpus_running)) { 5775 kvm->arch.mmu_ready = 1; 5776 err = -EBUSY; 5777 goto out_unlock; 5778 } 5779 } 5780 if (radix) 5781 err = kvmppc_switch_mmu_to_radix(kvm); 5782 else 5783 err = kvmppc_switch_mmu_to_hpt(kvm); 5784 if (err) 5785 goto out_unlock; 5786 } 5787 5788 kvm->arch.process_table = cfg->process_table; 5789 kvmppc_setup_partition_table(kvm); 5790 5791 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5792 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5793 err = 0; 5794 5795 out_unlock: 5796 mutex_unlock(&kvm->arch.mmu_setup_lock); 5797 return err; 5798 } 5799 5800 static int kvmhv_enable_nested(struct kvm *kvm) 5801 { 5802 if (!nested) 5803 return -EPERM; 5804 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5805 return -ENODEV; 5806 if (!radix_enabled()) 5807 return -ENODEV; 5808 5809 /* kvm == NULL means the caller is testing if the capability exists */ 5810 if (kvm) 5811 kvm->arch.nested_enable = true; 5812 return 0; 5813 } 5814 5815 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5816 int size) 5817 { 5818 int rc = -EINVAL; 5819 5820 if (kvmhv_vcpu_is_radix(vcpu)) { 5821 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5822 5823 if (rc > 0) 5824 rc = -EINVAL; 5825 } 5826 5827 /* For now quadrants are the only way to access nested guest memory */ 5828 if (rc && vcpu->arch.nested) 5829 rc = -EAGAIN; 5830 5831 return rc; 5832 } 5833 5834 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5835 int size) 5836 { 5837 int rc = -EINVAL; 5838 5839 if (kvmhv_vcpu_is_radix(vcpu)) { 5840 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5841 5842 if (rc > 0) 5843 rc = -EINVAL; 5844 } 5845 5846 /* For now quadrants are the only way to access nested guest memory */ 5847 if (rc && vcpu->arch.nested) 5848 rc = -EAGAIN; 5849 5850 return rc; 5851 } 5852 5853 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 5854 { 5855 unpin_vpa(kvm, vpa); 5856 vpa->gpa = 0; 5857 vpa->pinned_addr = NULL; 5858 vpa->dirty = false; 5859 vpa->update_pending = 0; 5860 } 5861 5862 /* 5863 * Enable a guest to become a secure VM, or test whether 5864 * that could be enabled. 5865 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is 5866 * tested (kvm == NULL) or enabled (kvm != NULL). 5867 */ 5868 static int kvmhv_enable_svm(struct kvm *kvm) 5869 { 5870 if (!kvmppc_uvmem_available()) 5871 return -EINVAL; 5872 if (kvm) 5873 kvm->arch.svm_enabled = 1; 5874 return 0; 5875 } 5876 5877 /* 5878 * IOCTL handler to turn off secure mode of guest 5879 * 5880 * - Release all device pages 5881 * - Issue ucall to terminate the guest on the UV side 5882 * - Unpin the VPA pages. 5883 * - Reinit the partition scoped page tables 5884 */ 5885 static int kvmhv_svm_off(struct kvm *kvm) 5886 { 5887 struct kvm_vcpu *vcpu; 5888 int mmu_was_ready; 5889 int srcu_idx; 5890 int ret = 0; 5891 unsigned long i; 5892 5893 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 5894 return ret; 5895 5896 mutex_lock(&kvm->arch.mmu_setup_lock); 5897 mmu_was_ready = kvm->arch.mmu_ready; 5898 if (kvm->arch.mmu_ready) { 5899 kvm->arch.mmu_ready = 0; 5900 /* order mmu_ready vs. vcpus_running */ 5901 smp_mb(); 5902 if (atomic_read(&kvm->arch.vcpus_running)) { 5903 kvm->arch.mmu_ready = 1; 5904 ret = -EBUSY; 5905 goto out; 5906 } 5907 } 5908 5909 srcu_idx = srcu_read_lock(&kvm->srcu); 5910 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5911 struct kvm_memory_slot *memslot; 5912 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 5913 int bkt; 5914 5915 if (!slots) 5916 continue; 5917 5918 kvm_for_each_memslot(memslot, bkt, slots) { 5919 kvmppc_uvmem_drop_pages(memslot, kvm, true); 5920 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 5921 } 5922 } 5923 srcu_read_unlock(&kvm->srcu, srcu_idx); 5924 5925 ret = uv_svm_terminate(kvm->arch.lpid); 5926 if (ret != U_SUCCESS) { 5927 ret = -EINVAL; 5928 goto out; 5929 } 5930 5931 /* 5932 * When secure guest is reset, all the guest pages are sent 5933 * to UV via UV_PAGE_IN before the non-boot vcpus get a 5934 * chance to run and unpin their VPA pages. Unpinning of all 5935 * VPA pages is done here explicitly so that VPA pages 5936 * can be migrated to the secure side. 5937 * 5938 * This is required to for the secure SMP guest to reboot 5939 * correctly. 5940 */ 5941 kvm_for_each_vcpu(i, vcpu, kvm) { 5942 spin_lock(&vcpu->arch.vpa_update_lock); 5943 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 5944 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 5945 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 5946 spin_unlock(&vcpu->arch.vpa_update_lock); 5947 } 5948 5949 kvmppc_setup_partition_table(kvm); 5950 kvm->arch.secure_guest = 0; 5951 kvm->arch.mmu_ready = mmu_was_ready; 5952 out: 5953 mutex_unlock(&kvm->arch.mmu_setup_lock); 5954 return ret; 5955 } 5956 5957 static int kvmhv_enable_dawr1(struct kvm *kvm) 5958 { 5959 if (!cpu_has_feature(CPU_FTR_DAWR1)) 5960 return -ENODEV; 5961 5962 /* kvm == NULL means the caller is testing if the capability exists */ 5963 if (kvm) 5964 kvm->arch.dawr1_enabled = true; 5965 return 0; 5966 } 5967 5968 static bool kvmppc_hash_v3_possible(void) 5969 { 5970 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5971 return false; 5972 5973 if (!cpu_has_feature(CPU_FTR_HVMODE)) 5974 return false; 5975 5976 /* 5977 * POWER9 chips before version 2.02 can't have some threads in 5978 * HPT mode and some in radix mode on the same core. 5979 */ 5980 if (radix_enabled()) { 5981 unsigned int pvr = mfspr(SPRN_PVR); 5982 if ((pvr >> 16) == PVR_POWER9 && 5983 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 5984 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 5985 return false; 5986 } 5987 5988 return true; 5989 } 5990 5991 static struct kvmppc_ops kvm_ops_hv = { 5992 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 5993 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 5994 .get_one_reg = kvmppc_get_one_reg_hv, 5995 .set_one_reg = kvmppc_set_one_reg_hv, 5996 .vcpu_load = kvmppc_core_vcpu_load_hv, 5997 .vcpu_put = kvmppc_core_vcpu_put_hv, 5998 .inject_interrupt = kvmppc_inject_interrupt_hv, 5999 .set_msr = kvmppc_set_msr_hv, 6000 .vcpu_run = kvmppc_vcpu_run_hv, 6001 .vcpu_create = kvmppc_core_vcpu_create_hv, 6002 .vcpu_free = kvmppc_core_vcpu_free_hv, 6003 .check_requests = kvmppc_core_check_requests_hv, 6004 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 6005 .flush_memslot = kvmppc_core_flush_memslot_hv, 6006 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 6007 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 6008 .unmap_gfn_range = kvm_unmap_gfn_range_hv, 6009 .age_gfn = kvm_age_gfn_hv, 6010 .test_age_gfn = kvm_test_age_gfn_hv, 6011 .set_spte_gfn = kvm_set_spte_gfn_hv, 6012 .free_memslot = kvmppc_core_free_memslot_hv, 6013 .init_vm = kvmppc_core_init_vm_hv, 6014 .destroy_vm = kvmppc_core_destroy_vm_hv, 6015 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 6016 .emulate_op = kvmppc_core_emulate_op_hv, 6017 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 6018 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 6019 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 6020 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 6021 .hcall_implemented = kvmppc_hcall_impl_hv, 6022 #ifdef CONFIG_KVM_XICS 6023 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 6024 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 6025 #endif 6026 .configure_mmu = kvmhv_configure_mmu, 6027 .get_rmmu_info = kvmhv_get_rmmu_info, 6028 .set_smt_mode = kvmhv_set_smt_mode, 6029 .enable_nested = kvmhv_enable_nested, 6030 .load_from_eaddr = kvmhv_load_from_eaddr, 6031 .store_to_eaddr = kvmhv_store_to_eaddr, 6032 .enable_svm = kvmhv_enable_svm, 6033 .svm_off = kvmhv_svm_off, 6034 .enable_dawr1 = kvmhv_enable_dawr1, 6035 .hash_v3_possible = kvmppc_hash_v3_possible, 6036 .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv, 6037 .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv, 6038 }; 6039 6040 static int kvm_init_subcore_bitmap(void) 6041 { 6042 int i, j; 6043 int nr_cores = cpu_nr_cores(); 6044 struct sibling_subcore_state *sibling_subcore_state; 6045 6046 for (i = 0; i < nr_cores; i++) { 6047 int first_cpu = i * threads_per_core; 6048 int node = cpu_to_node(first_cpu); 6049 6050 /* Ignore if it is already allocated. */ 6051 if (paca_ptrs[first_cpu]->sibling_subcore_state) 6052 continue; 6053 6054 sibling_subcore_state = 6055 kzalloc_node(sizeof(struct sibling_subcore_state), 6056 GFP_KERNEL, node); 6057 if (!sibling_subcore_state) 6058 return -ENOMEM; 6059 6060 6061 for (j = 0; j < threads_per_core; j++) { 6062 int cpu = first_cpu + j; 6063 6064 paca_ptrs[cpu]->sibling_subcore_state = 6065 sibling_subcore_state; 6066 } 6067 } 6068 return 0; 6069 } 6070 6071 static int kvmppc_radix_possible(void) 6072 { 6073 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 6074 } 6075 6076 static int kvmppc_book3s_init_hv(void) 6077 { 6078 int r; 6079 6080 if (!tlbie_capable) { 6081 pr_err("KVM-HV: Host does not support TLBIE\n"); 6082 return -ENODEV; 6083 } 6084 6085 /* 6086 * FIXME!! Do we need to check on all cpus ? 6087 */ 6088 r = kvmppc_core_check_processor_compat_hv(); 6089 if (r < 0) 6090 return -ENODEV; 6091 6092 r = kvmhv_nested_init(); 6093 if (r) 6094 return r; 6095 6096 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 6097 r = kvm_init_subcore_bitmap(); 6098 if (r) 6099 goto err; 6100 } 6101 6102 /* 6103 * We need a way of accessing the XICS interrupt controller, 6104 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 6105 * indirectly, via OPAL. 6106 */ 6107 #ifdef CONFIG_SMP 6108 if (!xics_on_xive() && !kvmhv_on_pseries() && 6109 !local_paca->kvm_hstate.xics_phys) { 6110 struct device_node *np; 6111 6112 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 6113 if (!np) { 6114 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 6115 r = -ENODEV; 6116 goto err; 6117 } 6118 /* presence of intc confirmed - node can be dropped again */ 6119 of_node_put(np); 6120 } 6121 #endif 6122 6123 init_default_hcalls(); 6124 6125 init_vcore_lists(); 6126 6127 r = kvmppc_mmu_hv_init(); 6128 if (r) 6129 goto err; 6130 6131 if (kvmppc_radix_possible()) { 6132 r = kvmppc_radix_init(); 6133 if (r) 6134 goto err; 6135 } 6136 6137 r = kvmppc_uvmem_init(); 6138 if (r < 0) { 6139 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 6140 return r; 6141 } 6142 6143 kvm_ops_hv.owner = THIS_MODULE; 6144 kvmppc_hv_ops = &kvm_ops_hv; 6145 6146 return 0; 6147 6148 err: 6149 kvmhv_nested_exit(); 6150 kvmppc_radix_exit(); 6151 6152 return r; 6153 } 6154 6155 static void kvmppc_book3s_exit_hv(void) 6156 { 6157 kvmppc_uvmem_free(); 6158 kvmppc_free_host_rm_ops(); 6159 if (kvmppc_radix_possible()) 6160 kvmppc_radix_exit(); 6161 kvmppc_hv_ops = NULL; 6162 kvmhv_nested_exit(); 6163 } 6164 6165 module_init(kvmppc_book3s_init_hv); 6166 module_exit(kvmppc_book3s_exit_hv); 6167 MODULE_LICENSE("GPL"); 6168 MODULE_ALIAS_MISCDEV(KVM_MINOR); 6169 MODULE_ALIAS("devname:kvm"); 6170