1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 37 #include <asm/reg.h> 38 #include <asm/cputable.h> 39 #include <asm/cache.h> 40 #include <asm/cacheflush.h> 41 #include <asm/tlbflush.h> 42 #include <asm/uaccess.h> 43 #include <asm/io.h> 44 #include <asm/kvm_ppc.h> 45 #include <asm/kvm_book3s.h> 46 #include <asm/mmu_context.h> 47 #include <asm/lppaca.h> 48 #include <asm/processor.h> 49 #include <asm/cputhreads.h> 50 #include <asm/page.h> 51 #include <asm/hvcall.h> 52 #include <asm/switch_to.h> 53 #include <asm/smp.h> 54 #include <asm/dbell.h> 55 #include <linux/gfp.h> 56 #include <linux/vmalloc.h> 57 #include <linux/highmem.h> 58 #include <linux/hugetlb.h> 59 #include <linux/module.h> 60 61 #include "book3s.h" 62 63 #define CREATE_TRACE_POINTS 64 #include "trace_hv.h" 65 66 /* #define EXIT_DEBUG */ 67 /* #define EXIT_DEBUG_SIMPLE */ 68 /* #define EXIT_DEBUG_INT */ 69 70 /* Used to indicate that a guest page fault needs to be handled */ 71 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 72 73 /* Used as a "null" value for timebase values */ 74 #define TB_NIL (~(u64)0) 75 76 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 77 78 #if defined(CONFIG_PPC_64K_PAGES) 79 #define MPP_BUFFER_ORDER 0 80 #elif defined(CONFIG_PPC_4K_PAGES) 81 #define MPP_BUFFER_ORDER 3 82 #endif 83 84 85 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 86 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 87 88 static bool kvmppc_ipi_thread(int cpu) 89 { 90 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 91 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 92 preempt_disable(); 93 if (cpu_first_thread_sibling(cpu) == 94 cpu_first_thread_sibling(smp_processor_id())) { 95 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 96 msg |= cpu_thread_in_core(cpu); 97 smp_mb(); 98 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 99 preempt_enable(); 100 return true; 101 } 102 preempt_enable(); 103 } 104 105 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 106 if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) { 107 xics_wake_cpu(cpu); 108 return true; 109 } 110 #endif 111 112 return false; 113 } 114 115 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 116 { 117 int cpu = vcpu->cpu; 118 wait_queue_head_t *wqp; 119 120 wqp = kvm_arch_vcpu_wq(vcpu); 121 if (waitqueue_active(wqp)) { 122 wake_up_interruptible(wqp); 123 ++vcpu->stat.halt_wakeup; 124 } 125 126 if (kvmppc_ipi_thread(cpu + vcpu->arch.ptid)) 127 return; 128 129 /* CPU points to the first thread of the core */ 130 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 131 smp_send_reschedule(cpu); 132 } 133 134 /* 135 * We use the vcpu_load/put functions to measure stolen time. 136 * Stolen time is counted as time when either the vcpu is able to 137 * run as part of a virtual core, but the task running the vcore 138 * is preempted or sleeping, or when the vcpu needs something done 139 * in the kernel by the task running the vcpu, but that task is 140 * preempted or sleeping. Those two things have to be counted 141 * separately, since one of the vcpu tasks will take on the job 142 * of running the core, and the other vcpu tasks in the vcore will 143 * sleep waiting for it to do that, but that sleep shouldn't count 144 * as stolen time. 145 * 146 * Hence we accumulate stolen time when the vcpu can run as part of 147 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 148 * needs its task to do other things in the kernel (for example, 149 * service a page fault) in busy_stolen. We don't accumulate 150 * stolen time for a vcore when it is inactive, or for a vcpu 151 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 152 * a misnomer; it means that the vcpu task is not executing in 153 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 154 * the kernel. We don't have any way of dividing up that time 155 * between time that the vcpu is genuinely stopped, time that 156 * the task is actively working on behalf of the vcpu, and time 157 * that the task is preempted, so we don't count any of it as 158 * stolen. 159 * 160 * Updates to busy_stolen are protected by arch.tbacct_lock; 161 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 162 * lock. The stolen times are measured in units of timebase ticks. 163 * (Note that the != TB_NIL checks below are purely defensive; 164 * they should never fail.) 165 */ 166 167 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 168 { 169 struct kvmppc_vcore *vc = vcpu->arch.vcore; 170 unsigned long flags; 171 172 /* 173 * We can test vc->runner without taking the vcore lock, 174 * because only this task ever sets vc->runner to this 175 * vcpu, and once it is set to this vcpu, only this task 176 * ever sets it to NULL. 177 */ 178 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) { 179 spin_lock_irqsave(&vc->stoltb_lock, flags); 180 if (vc->preempt_tb != TB_NIL) { 181 vc->stolen_tb += mftb() - vc->preempt_tb; 182 vc->preempt_tb = TB_NIL; 183 } 184 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 185 } 186 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 187 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 188 vcpu->arch.busy_preempt != TB_NIL) { 189 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 190 vcpu->arch.busy_preempt = TB_NIL; 191 } 192 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 193 } 194 195 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 196 { 197 struct kvmppc_vcore *vc = vcpu->arch.vcore; 198 unsigned long flags; 199 200 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) { 201 spin_lock_irqsave(&vc->stoltb_lock, flags); 202 vc->preempt_tb = mftb(); 203 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 204 } 205 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 206 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 207 vcpu->arch.busy_preempt = mftb(); 208 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 209 } 210 211 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 212 { 213 vcpu->arch.shregs.msr = msr; 214 kvmppc_end_cede(vcpu); 215 } 216 217 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 218 { 219 vcpu->arch.pvr = pvr; 220 } 221 222 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 223 { 224 unsigned long pcr = 0; 225 struct kvmppc_vcore *vc = vcpu->arch.vcore; 226 227 if (arch_compat) { 228 switch (arch_compat) { 229 case PVR_ARCH_205: 230 /* 231 * If an arch bit is set in PCR, all the defined 232 * higher-order arch bits also have to be set. 233 */ 234 pcr = PCR_ARCH_206 | PCR_ARCH_205; 235 break; 236 case PVR_ARCH_206: 237 case PVR_ARCH_206p: 238 pcr = PCR_ARCH_206; 239 break; 240 case PVR_ARCH_207: 241 break; 242 default: 243 return -EINVAL; 244 } 245 246 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) { 247 /* POWER7 can't emulate POWER8 */ 248 if (!(pcr & PCR_ARCH_206)) 249 return -EINVAL; 250 pcr &= ~PCR_ARCH_206; 251 } 252 } 253 254 spin_lock(&vc->lock); 255 vc->arch_compat = arch_compat; 256 vc->pcr = pcr; 257 spin_unlock(&vc->lock); 258 259 return 0; 260 } 261 262 void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 263 { 264 int r; 265 266 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 267 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 268 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 269 for (r = 0; r < 16; ++r) 270 pr_err("r%2d = %.16lx r%d = %.16lx\n", 271 r, kvmppc_get_gpr(vcpu, r), 272 r+16, kvmppc_get_gpr(vcpu, r+16)); 273 pr_err("ctr = %.16lx lr = %.16lx\n", 274 vcpu->arch.ctr, vcpu->arch.lr); 275 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 276 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 277 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 278 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 279 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 280 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 281 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 282 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 283 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 284 pr_err("fault dar = %.16lx dsisr = %.8x\n", 285 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 286 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 287 for (r = 0; r < vcpu->arch.slb_max; ++r) 288 pr_err(" ESID = %.16llx VSID = %.16llx\n", 289 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 290 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 291 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 292 vcpu->arch.last_inst); 293 } 294 295 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 296 { 297 int r; 298 struct kvm_vcpu *v, *ret = NULL; 299 300 mutex_lock(&kvm->lock); 301 kvm_for_each_vcpu(r, v, kvm) { 302 if (v->vcpu_id == id) { 303 ret = v; 304 break; 305 } 306 } 307 mutex_unlock(&kvm->lock); 308 return ret; 309 } 310 311 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 312 { 313 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 314 vpa->yield_count = cpu_to_be32(1); 315 } 316 317 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 318 unsigned long addr, unsigned long len) 319 { 320 /* check address is cacheline aligned */ 321 if (addr & (L1_CACHE_BYTES - 1)) 322 return -EINVAL; 323 spin_lock(&vcpu->arch.vpa_update_lock); 324 if (v->next_gpa != addr || v->len != len) { 325 v->next_gpa = addr; 326 v->len = addr ? len : 0; 327 v->update_pending = 1; 328 } 329 spin_unlock(&vcpu->arch.vpa_update_lock); 330 return 0; 331 } 332 333 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 334 struct reg_vpa { 335 u32 dummy; 336 union { 337 __be16 hword; 338 __be32 word; 339 } length; 340 }; 341 342 static int vpa_is_registered(struct kvmppc_vpa *vpap) 343 { 344 if (vpap->update_pending) 345 return vpap->next_gpa != 0; 346 return vpap->pinned_addr != NULL; 347 } 348 349 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 350 unsigned long flags, 351 unsigned long vcpuid, unsigned long vpa) 352 { 353 struct kvm *kvm = vcpu->kvm; 354 unsigned long len, nb; 355 void *va; 356 struct kvm_vcpu *tvcpu; 357 int err; 358 int subfunc; 359 struct kvmppc_vpa *vpap; 360 361 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 362 if (!tvcpu) 363 return H_PARAMETER; 364 365 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 366 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 367 subfunc == H_VPA_REG_SLB) { 368 /* Registering new area - address must be cache-line aligned */ 369 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 370 return H_PARAMETER; 371 372 /* convert logical addr to kernel addr and read length */ 373 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 374 if (va == NULL) 375 return H_PARAMETER; 376 if (subfunc == H_VPA_REG_VPA) 377 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 378 else 379 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 380 kvmppc_unpin_guest_page(kvm, va, vpa, false); 381 382 /* Check length */ 383 if (len > nb || len < sizeof(struct reg_vpa)) 384 return H_PARAMETER; 385 } else { 386 vpa = 0; 387 len = 0; 388 } 389 390 err = H_PARAMETER; 391 vpap = NULL; 392 spin_lock(&tvcpu->arch.vpa_update_lock); 393 394 switch (subfunc) { 395 case H_VPA_REG_VPA: /* register VPA */ 396 if (len < sizeof(struct lppaca)) 397 break; 398 vpap = &tvcpu->arch.vpa; 399 err = 0; 400 break; 401 402 case H_VPA_REG_DTL: /* register DTL */ 403 if (len < sizeof(struct dtl_entry)) 404 break; 405 len -= len % sizeof(struct dtl_entry); 406 407 /* Check that they have previously registered a VPA */ 408 err = H_RESOURCE; 409 if (!vpa_is_registered(&tvcpu->arch.vpa)) 410 break; 411 412 vpap = &tvcpu->arch.dtl; 413 err = 0; 414 break; 415 416 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 417 /* Check that they have previously registered a VPA */ 418 err = H_RESOURCE; 419 if (!vpa_is_registered(&tvcpu->arch.vpa)) 420 break; 421 422 vpap = &tvcpu->arch.slb_shadow; 423 err = 0; 424 break; 425 426 case H_VPA_DEREG_VPA: /* deregister VPA */ 427 /* Check they don't still have a DTL or SLB buf registered */ 428 err = H_RESOURCE; 429 if (vpa_is_registered(&tvcpu->arch.dtl) || 430 vpa_is_registered(&tvcpu->arch.slb_shadow)) 431 break; 432 433 vpap = &tvcpu->arch.vpa; 434 err = 0; 435 break; 436 437 case H_VPA_DEREG_DTL: /* deregister DTL */ 438 vpap = &tvcpu->arch.dtl; 439 err = 0; 440 break; 441 442 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 443 vpap = &tvcpu->arch.slb_shadow; 444 err = 0; 445 break; 446 } 447 448 if (vpap) { 449 vpap->next_gpa = vpa; 450 vpap->len = len; 451 vpap->update_pending = 1; 452 } 453 454 spin_unlock(&tvcpu->arch.vpa_update_lock); 455 456 return err; 457 } 458 459 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 460 { 461 struct kvm *kvm = vcpu->kvm; 462 void *va; 463 unsigned long nb; 464 unsigned long gpa; 465 466 /* 467 * We need to pin the page pointed to by vpap->next_gpa, 468 * but we can't call kvmppc_pin_guest_page under the lock 469 * as it does get_user_pages() and down_read(). So we 470 * have to drop the lock, pin the page, then get the lock 471 * again and check that a new area didn't get registered 472 * in the meantime. 473 */ 474 for (;;) { 475 gpa = vpap->next_gpa; 476 spin_unlock(&vcpu->arch.vpa_update_lock); 477 va = NULL; 478 nb = 0; 479 if (gpa) 480 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 481 spin_lock(&vcpu->arch.vpa_update_lock); 482 if (gpa == vpap->next_gpa) 483 break; 484 /* sigh... unpin that one and try again */ 485 if (va) 486 kvmppc_unpin_guest_page(kvm, va, gpa, false); 487 } 488 489 vpap->update_pending = 0; 490 if (va && nb < vpap->len) { 491 /* 492 * If it's now too short, it must be that userspace 493 * has changed the mappings underlying guest memory, 494 * so unregister the region. 495 */ 496 kvmppc_unpin_guest_page(kvm, va, gpa, false); 497 va = NULL; 498 } 499 if (vpap->pinned_addr) 500 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 501 vpap->dirty); 502 vpap->gpa = gpa; 503 vpap->pinned_addr = va; 504 vpap->dirty = false; 505 if (va) 506 vpap->pinned_end = va + vpap->len; 507 } 508 509 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 510 { 511 if (!(vcpu->arch.vpa.update_pending || 512 vcpu->arch.slb_shadow.update_pending || 513 vcpu->arch.dtl.update_pending)) 514 return; 515 516 spin_lock(&vcpu->arch.vpa_update_lock); 517 if (vcpu->arch.vpa.update_pending) { 518 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 519 if (vcpu->arch.vpa.pinned_addr) 520 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 521 } 522 if (vcpu->arch.dtl.update_pending) { 523 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 524 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 525 vcpu->arch.dtl_index = 0; 526 } 527 if (vcpu->arch.slb_shadow.update_pending) 528 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 529 spin_unlock(&vcpu->arch.vpa_update_lock); 530 } 531 532 /* 533 * Return the accumulated stolen time for the vcore up until `now'. 534 * The caller should hold the vcore lock. 535 */ 536 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 537 { 538 u64 p; 539 unsigned long flags; 540 541 spin_lock_irqsave(&vc->stoltb_lock, flags); 542 p = vc->stolen_tb; 543 if (vc->vcore_state != VCORE_INACTIVE && 544 vc->preempt_tb != TB_NIL) 545 p += now - vc->preempt_tb; 546 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 547 return p; 548 } 549 550 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 551 struct kvmppc_vcore *vc) 552 { 553 struct dtl_entry *dt; 554 struct lppaca *vpa; 555 unsigned long stolen; 556 unsigned long core_stolen; 557 u64 now; 558 559 dt = vcpu->arch.dtl_ptr; 560 vpa = vcpu->arch.vpa.pinned_addr; 561 now = mftb(); 562 core_stolen = vcore_stolen_time(vc, now); 563 stolen = core_stolen - vcpu->arch.stolen_logged; 564 vcpu->arch.stolen_logged = core_stolen; 565 spin_lock_irq(&vcpu->arch.tbacct_lock); 566 stolen += vcpu->arch.busy_stolen; 567 vcpu->arch.busy_stolen = 0; 568 spin_unlock_irq(&vcpu->arch.tbacct_lock); 569 if (!dt || !vpa) 570 return; 571 memset(dt, 0, sizeof(struct dtl_entry)); 572 dt->dispatch_reason = 7; 573 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 574 dt->timebase = cpu_to_be64(now + vc->tb_offset); 575 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 576 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 577 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 578 ++dt; 579 if (dt == vcpu->arch.dtl.pinned_end) 580 dt = vcpu->arch.dtl.pinned_addr; 581 vcpu->arch.dtl_ptr = dt; 582 /* order writing *dt vs. writing vpa->dtl_idx */ 583 smp_wmb(); 584 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 585 vcpu->arch.dtl.dirty = true; 586 } 587 588 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 589 { 590 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 591 return true; 592 if ((!vcpu->arch.vcore->arch_compat) && 593 cpu_has_feature(CPU_FTR_ARCH_207S)) 594 return true; 595 return false; 596 } 597 598 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 599 unsigned long resource, unsigned long value1, 600 unsigned long value2) 601 { 602 switch (resource) { 603 case H_SET_MODE_RESOURCE_SET_CIABR: 604 if (!kvmppc_power8_compatible(vcpu)) 605 return H_P2; 606 if (value2) 607 return H_P4; 608 if (mflags) 609 return H_UNSUPPORTED_FLAG_START; 610 /* Guests can't breakpoint the hypervisor */ 611 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 612 return H_P3; 613 vcpu->arch.ciabr = value1; 614 return H_SUCCESS; 615 case H_SET_MODE_RESOURCE_SET_DAWR: 616 if (!kvmppc_power8_compatible(vcpu)) 617 return H_P2; 618 if (mflags) 619 return H_UNSUPPORTED_FLAG_START; 620 if (value2 & DABRX_HYP) 621 return H_P4; 622 vcpu->arch.dawr = value1; 623 vcpu->arch.dawrx = value2; 624 return H_SUCCESS; 625 default: 626 return H_TOO_HARD; 627 } 628 } 629 630 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 631 { 632 struct kvmppc_vcore *vcore = target->arch.vcore; 633 634 /* 635 * We expect to have been called by the real mode handler 636 * (kvmppc_rm_h_confer()) which would have directly returned 637 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 638 * have useful work to do and should not confer) so we don't 639 * recheck that here. 640 */ 641 642 spin_lock(&vcore->lock); 643 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 644 vcore->vcore_state != VCORE_INACTIVE) 645 target = vcore->runner; 646 spin_unlock(&vcore->lock); 647 648 return kvm_vcpu_yield_to(target); 649 } 650 651 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 652 { 653 int yield_count = 0; 654 struct lppaca *lppaca; 655 656 spin_lock(&vcpu->arch.vpa_update_lock); 657 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 658 if (lppaca) 659 yield_count = be32_to_cpu(lppaca->yield_count); 660 spin_unlock(&vcpu->arch.vpa_update_lock); 661 return yield_count; 662 } 663 664 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 665 { 666 unsigned long req = kvmppc_get_gpr(vcpu, 3); 667 unsigned long target, ret = H_SUCCESS; 668 int yield_count; 669 struct kvm_vcpu *tvcpu; 670 int idx, rc; 671 672 if (req <= MAX_HCALL_OPCODE && 673 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 674 return RESUME_HOST; 675 676 switch (req) { 677 case H_CEDE: 678 break; 679 case H_PROD: 680 target = kvmppc_get_gpr(vcpu, 4); 681 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 682 if (!tvcpu) { 683 ret = H_PARAMETER; 684 break; 685 } 686 tvcpu->arch.prodded = 1; 687 smp_mb(); 688 if (vcpu->arch.ceded) { 689 if (waitqueue_active(&vcpu->wq)) { 690 wake_up_interruptible(&vcpu->wq); 691 vcpu->stat.halt_wakeup++; 692 } 693 } 694 break; 695 case H_CONFER: 696 target = kvmppc_get_gpr(vcpu, 4); 697 if (target == -1) 698 break; 699 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 700 if (!tvcpu) { 701 ret = H_PARAMETER; 702 break; 703 } 704 yield_count = kvmppc_get_gpr(vcpu, 5); 705 if (kvmppc_get_yield_count(tvcpu) != yield_count) 706 break; 707 kvm_arch_vcpu_yield_to(tvcpu); 708 break; 709 case H_REGISTER_VPA: 710 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 711 kvmppc_get_gpr(vcpu, 5), 712 kvmppc_get_gpr(vcpu, 6)); 713 break; 714 case H_RTAS: 715 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 716 return RESUME_HOST; 717 718 idx = srcu_read_lock(&vcpu->kvm->srcu); 719 rc = kvmppc_rtas_hcall(vcpu); 720 srcu_read_unlock(&vcpu->kvm->srcu, idx); 721 722 if (rc == -ENOENT) 723 return RESUME_HOST; 724 else if (rc == 0) 725 break; 726 727 /* Send the error out to userspace via KVM_RUN */ 728 return rc; 729 case H_LOGICAL_CI_LOAD: 730 ret = kvmppc_h_logical_ci_load(vcpu); 731 if (ret == H_TOO_HARD) 732 return RESUME_HOST; 733 break; 734 case H_LOGICAL_CI_STORE: 735 ret = kvmppc_h_logical_ci_store(vcpu); 736 if (ret == H_TOO_HARD) 737 return RESUME_HOST; 738 break; 739 case H_SET_MODE: 740 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 741 kvmppc_get_gpr(vcpu, 5), 742 kvmppc_get_gpr(vcpu, 6), 743 kvmppc_get_gpr(vcpu, 7)); 744 if (ret == H_TOO_HARD) 745 return RESUME_HOST; 746 break; 747 case H_XIRR: 748 case H_CPPR: 749 case H_EOI: 750 case H_IPI: 751 case H_IPOLL: 752 case H_XIRR_X: 753 if (kvmppc_xics_enabled(vcpu)) { 754 ret = kvmppc_xics_hcall(vcpu, req); 755 break; 756 } /* fallthrough */ 757 default: 758 return RESUME_HOST; 759 } 760 kvmppc_set_gpr(vcpu, 3, ret); 761 vcpu->arch.hcall_needed = 0; 762 return RESUME_GUEST; 763 } 764 765 static int kvmppc_hcall_impl_hv(unsigned long cmd) 766 { 767 switch (cmd) { 768 case H_CEDE: 769 case H_PROD: 770 case H_CONFER: 771 case H_REGISTER_VPA: 772 case H_SET_MODE: 773 case H_LOGICAL_CI_LOAD: 774 case H_LOGICAL_CI_STORE: 775 #ifdef CONFIG_KVM_XICS 776 case H_XIRR: 777 case H_CPPR: 778 case H_EOI: 779 case H_IPI: 780 case H_IPOLL: 781 case H_XIRR_X: 782 #endif 783 return 1; 784 } 785 786 /* See if it's in the real-mode table */ 787 return kvmppc_hcall_impl_hv_realmode(cmd); 788 } 789 790 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 791 struct kvm_vcpu *vcpu) 792 { 793 u32 last_inst; 794 795 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 796 EMULATE_DONE) { 797 /* 798 * Fetch failed, so return to guest and 799 * try executing it again. 800 */ 801 return RESUME_GUEST; 802 } 803 804 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 805 run->exit_reason = KVM_EXIT_DEBUG; 806 run->debug.arch.address = kvmppc_get_pc(vcpu); 807 return RESUME_HOST; 808 } else { 809 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 810 return RESUME_GUEST; 811 } 812 } 813 814 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 815 struct task_struct *tsk) 816 { 817 int r = RESUME_HOST; 818 819 vcpu->stat.sum_exits++; 820 821 run->exit_reason = KVM_EXIT_UNKNOWN; 822 run->ready_for_interrupt_injection = 1; 823 switch (vcpu->arch.trap) { 824 /* We're good on these - the host merely wanted to get our attention */ 825 case BOOK3S_INTERRUPT_HV_DECREMENTER: 826 vcpu->stat.dec_exits++; 827 r = RESUME_GUEST; 828 break; 829 case BOOK3S_INTERRUPT_EXTERNAL: 830 case BOOK3S_INTERRUPT_H_DOORBELL: 831 vcpu->stat.ext_intr_exits++; 832 r = RESUME_GUEST; 833 break; 834 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/ 835 case BOOK3S_INTERRUPT_HMI: 836 case BOOK3S_INTERRUPT_PERFMON: 837 r = RESUME_GUEST; 838 break; 839 case BOOK3S_INTERRUPT_MACHINE_CHECK: 840 /* 841 * Deliver a machine check interrupt to the guest. 842 * We have to do this, even if the host has handled the 843 * machine check, because machine checks use SRR0/1 and 844 * the interrupt might have trashed guest state in them. 845 */ 846 kvmppc_book3s_queue_irqprio(vcpu, 847 BOOK3S_INTERRUPT_MACHINE_CHECK); 848 r = RESUME_GUEST; 849 break; 850 case BOOK3S_INTERRUPT_PROGRAM: 851 { 852 ulong flags; 853 /* 854 * Normally program interrupts are delivered directly 855 * to the guest by the hardware, but we can get here 856 * as a result of a hypervisor emulation interrupt 857 * (e40) getting turned into a 700 by BML RTAS. 858 */ 859 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 860 kvmppc_core_queue_program(vcpu, flags); 861 r = RESUME_GUEST; 862 break; 863 } 864 case BOOK3S_INTERRUPT_SYSCALL: 865 { 866 /* hcall - punt to userspace */ 867 int i; 868 869 /* hypercall with MSR_PR has already been handled in rmode, 870 * and never reaches here. 871 */ 872 873 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 874 for (i = 0; i < 9; ++i) 875 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 876 run->exit_reason = KVM_EXIT_PAPR_HCALL; 877 vcpu->arch.hcall_needed = 1; 878 r = RESUME_HOST; 879 break; 880 } 881 /* 882 * We get these next two if the guest accesses a page which it thinks 883 * it has mapped but which is not actually present, either because 884 * it is for an emulated I/O device or because the corresonding 885 * host page has been paged out. Any other HDSI/HISI interrupts 886 * have been handled already. 887 */ 888 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 889 r = RESUME_PAGE_FAULT; 890 break; 891 case BOOK3S_INTERRUPT_H_INST_STORAGE: 892 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 893 vcpu->arch.fault_dsisr = 0; 894 r = RESUME_PAGE_FAULT; 895 break; 896 /* 897 * This occurs if the guest executes an illegal instruction. 898 * If the guest debug is disabled, generate a program interrupt 899 * to the guest. If guest debug is enabled, we need to check 900 * whether the instruction is a software breakpoint instruction. 901 * Accordingly return to Guest or Host. 902 */ 903 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 904 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 905 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 906 swab32(vcpu->arch.emul_inst) : 907 vcpu->arch.emul_inst; 908 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 909 r = kvmppc_emulate_debug_inst(run, vcpu); 910 } else { 911 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 912 r = RESUME_GUEST; 913 } 914 break; 915 /* 916 * This occurs if the guest (kernel or userspace), does something that 917 * is prohibited by HFSCR. We just generate a program interrupt to 918 * the guest. 919 */ 920 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 921 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 922 r = RESUME_GUEST; 923 break; 924 default: 925 kvmppc_dump_regs(vcpu); 926 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 927 vcpu->arch.trap, kvmppc_get_pc(vcpu), 928 vcpu->arch.shregs.msr); 929 run->hw.hardware_exit_reason = vcpu->arch.trap; 930 r = RESUME_HOST; 931 break; 932 } 933 934 return r; 935 } 936 937 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 938 struct kvm_sregs *sregs) 939 { 940 int i; 941 942 memset(sregs, 0, sizeof(struct kvm_sregs)); 943 sregs->pvr = vcpu->arch.pvr; 944 for (i = 0; i < vcpu->arch.slb_max; i++) { 945 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 946 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 947 } 948 949 return 0; 950 } 951 952 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 953 struct kvm_sregs *sregs) 954 { 955 int i, j; 956 957 /* Only accept the same PVR as the host's, since we can't spoof it */ 958 if (sregs->pvr != vcpu->arch.pvr) 959 return -EINVAL; 960 961 j = 0; 962 for (i = 0; i < vcpu->arch.slb_nr; i++) { 963 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 964 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 965 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 966 ++j; 967 } 968 } 969 vcpu->arch.slb_max = j; 970 971 return 0; 972 } 973 974 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 975 bool preserve_top32) 976 { 977 struct kvm *kvm = vcpu->kvm; 978 struct kvmppc_vcore *vc = vcpu->arch.vcore; 979 u64 mask; 980 981 mutex_lock(&kvm->lock); 982 spin_lock(&vc->lock); 983 /* 984 * If ILE (interrupt little-endian) has changed, update the 985 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 986 */ 987 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 988 struct kvm_vcpu *vcpu; 989 int i; 990 991 kvm_for_each_vcpu(i, vcpu, kvm) { 992 if (vcpu->arch.vcore != vc) 993 continue; 994 if (new_lpcr & LPCR_ILE) 995 vcpu->arch.intr_msr |= MSR_LE; 996 else 997 vcpu->arch.intr_msr &= ~MSR_LE; 998 } 999 } 1000 1001 /* 1002 * Userspace can only modify DPFD (default prefetch depth), 1003 * ILE (interrupt little-endian) and TC (translation control). 1004 * On POWER8 userspace can also modify AIL (alt. interrupt loc.) 1005 */ 1006 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1007 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1008 mask |= LPCR_AIL; 1009 1010 /* Broken 32-bit version of LPCR must not clear top bits */ 1011 if (preserve_top32) 1012 mask &= 0xFFFFFFFF; 1013 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1014 spin_unlock(&vc->lock); 1015 mutex_unlock(&kvm->lock); 1016 } 1017 1018 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1019 union kvmppc_one_reg *val) 1020 { 1021 int r = 0; 1022 long int i; 1023 1024 switch (id) { 1025 case KVM_REG_PPC_DEBUG_INST: 1026 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1027 break; 1028 case KVM_REG_PPC_HIOR: 1029 *val = get_reg_val(id, 0); 1030 break; 1031 case KVM_REG_PPC_DABR: 1032 *val = get_reg_val(id, vcpu->arch.dabr); 1033 break; 1034 case KVM_REG_PPC_DABRX: 1035 *val = get_reg_val(id, vcpu->arch.dabrx); 1036 break; 1037 case KVM_REG_PPC_DSCR: 1038 *val = get_reg_val(id, vcpu->arch.dscr); 1039 break; 1040 case KVM_REG_PPC_PURR: 1041 *val = get_reg_val(id, vcpu->arch.purr); 1042 break; 1043 case KVM_REG_PPC_SPURR: 1044 *val = get_reg_val(id, vcpu->arch.spurr); 1045 break; 1046 case KVM_REG_PPC_AMR: 1047 *val = get_reg_val(id, vcpu->arch.amr); 1048 break; 1049 case KVM_REG_PPC_UAMOR: 1050 *val = get_reg_val(id, vcpu->arch.uamor); 1051 break; 1052 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1053 i = id - KVM_REG_PPC_MMCR0; 1054 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1055 break; 1056 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1057 i = id - KVM_REG_PPC_PMC1; 1058 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1059 break; 1060 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1061 i = id - KVM_REG_PPC_SPMC1; 1062 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1063 break; 1064 case KVM_REG_PPC_SIAR: 1065 *val = get_reg_val(id, vcpu->arch.siar); 1066 break; 1067 case KVM_REG_PPC_SDAR: 1068 *val = get_reg_val(id, vcpu->arch.sdar); 1069 break; 1070 case KVM_REG_PPC_SIER: 1071 *val = get_reg_val(id, vcpu->arch.sier); 1072 break; 1073 case KVM_REG_PPC_IAMR: 1074 *val = get_reg_val(id, vcpu->arch.iamr); 1075 break; 1076 case KVM_REG_PPC_PSPB: 1077 *val = get_reg_val(id, vcpu->arch.pspb); 1078 break; 1079 case KVM_REG_PPC_DPDES: 1080 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1081 break; 1082 case KVM_REG_PPC_DAWR: 1083 *val = get_reg_val(id, vcpu->arch.dawr); 1084 break; 1085 case KVM_REG_PPC_DAWRX: 1086 *val = get_reg_val(id, vcpu->arch.dawrx); 1087 break; 1088 case KVM_REG_PPC_CIABR: 1089 *val = get_reg_val(id, vcpu->arch.ciabr); 1090 break; 1091 case KVM_REG_PPC_CSIGR: 1092 *val = get_reg_val(id, vcpu->arch.csigr); 1093 break; 1094 case KVM_REG_PPC_TACR: 1095 *val = get_reg_val(id, vcpu->arch.tacr); 1096 break; 1097 case KVM_REG_PPC_TCSCR: 1098 *val = get_reg_val(id, vcpu->arch.tcscr); 1099 break; 1100 case KVM_REG_PPC_PID: 1101 *val = get_reg_val(id, vcpu->arch.pid); 1102 break; 1103 case KVM_REG_PPC_ACOP: 1104 *val = get_reg_val(id, vcpu->arch.acop); 1105 break; 1106 case KVM_REG_PPC_WORT: 1107 *val = get_reg_val(id, vcpu->arch.wort); 1108 break; 1109 case KVM_REG_PPC_VPA_ADDR: 1110 spin_lock(&vcpu->arch.vpa_update_lock); 1111 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1112 spin_unlock(&vcpu->arch.vpa_update_lock); 1113 break; 1114 case KVM_REG_PPC_VPA_SLB: 1115 spin_lock(&vcpu->arch.vpa_update_lock); 1116 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1117 val->vpaval.length = vcpu->arch.slb_shadow.len; 1118 spin_unlock(&vcpu->arch.vpa_update_lock); 1119 break; 1120 case KVM_REG_PPC_VPA_DTL: 1121 spin_lock(&vcpu->arch.vpa_update_lock); 1122 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1123 val->vpaval.length = vcpu->arch.dtl.len; 1124 spin_unlock(&vcpu->arch.vpa_update_lock); 1125 break; 1126 case KVM_REG_PPC_TB_OFFSET: 1127 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1128 break; 1129 case KVM_REG_PPC_LPCR: 1130 case KVM_REG_PPC_LPCR_64: 1131 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1132 break; 1133 case KVM_REG_PPC_PPR: 1134 *val = get_reg_val(id, vcpu->arch.ppr); 1135 break; 1136 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1137 case KVM_REG_PPC_TFHAR: 1138 *val = get_reg_val(id, vcpu->arch.tfhar); 1139 break; 1140 case KVM_REG_PPC_TFIAR: 1141 *val = get_reg_val(id, vcpu->arch.tfiar); 1142 break; 1143 case KVM_REG_PPC_TEXASR: 1144 *val = get_reg_val(id, vcpu->arch.texasr); 1145 break; 1146 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1147 i = id - KVM_REG_PPC_TM_GPR0; 1148 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1149 break; 1150 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1151 { 1152 int j; 1153 i = id - KVM_REG_PPC_TM_VSR0; 1154 if (i < 32) 1155 for (j = 0; j < TS_FPRWIDTH; j++) 1156 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1157 else { 1158 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1159 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1160 else 1161 r = -ENXIO; 1162 } 1163 break; 1164 } 1165 case KVM_REG_PPC_TM_CR: 1166 *val = get_reg_val(id, vcpu->arch.cr_tm); 1167 break; 1168 case KVM_REG_PPC_TM_LR: 1169 *val = get_reg_val(id, vcpu->arch.lr_tm); 1170 break; 1171 case KVM_REG_PPC_TM_CTR: 1172 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1173 break; 1174 case KVM_REG_PPC_TM_FPSCR: 1175 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1176 break; 1177 case KVM_REG_PPC_TM_AMR: 1178 *val = get_reg_val(id, vcpu->arch.amr_tm); 1179 break; 1180 case KVM_REG_PPC_TM_PPR: 1181 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1182 break; 1183 case KVM_REG_PPC_TM_VRSAVE: 1184 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1185 break; 1186 case KVM_REG_PPC_TM_VSCR: 1187 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1188 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1189 else 1190 r = -ENXIO; 1191 break; 1192 case KVM_REG_PPC_TM_DSCR: 1193 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1194 break; 1195 case KVM_REG_PPC_TM_TAR: 1196 *val = get_reg_val(id, vcpu->arch.tar_tm); 1197 break; 1198 #endif 1199 case KVM_REG_PPC_ARCH_COMPAT: 1200 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1201 break; 1202 default: 1203 r = -EINVAL; 1204 break; 1205 } 1206 1207 return r; 1208 } 1209 1210 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1211 union kvmppc_one_reg *val) 1212 { 1213 int r = 0; 1214 long int i; 1215 unsigned long addr, len; 1216 1217 switch (id) { 1218 case KVM_REG_PPC_HIOR: 1219 /* Only allow this to be set to zero */ 1220 if (set_reg_val(id, *val)) 1221 r = -EINVAL; 1222 break; 1223 case KVM_REG_PPC_DABR: 1224 vcpu->arch.dabr = set_reg_val(id, *val); 1225 break; 1226 case KVM_REG_PPC_DABRX: 1227 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1228 break; 1229 case KVM_REG_PPC_DSCR: 1230 vcpu->arch.dscr = set_reg_val(id, *val); 1231 break; 1232 case KVM_REG_PPC_PURR: 1233 vcpu->arch.purr = set_reg_val(id, *val); 1234 break; 1235 case KVM_REG_PPC_SPURR: 1236 vcpu->arch.spurr = set_reg_val(id, *val); 1237 break; 1238 case KVM_REG_PPC_AMR: 1239 vcpu->arch.amr = set_reg_val(id, *val); 1240 break; 1241 case KVM_REG_PPC_UAMOR: 1242 vcpu->arch.uamor = set_reg_val(id, *val); 1243 break; 1244 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1245 i = id - KVM_REG_PPC_MMCR0; 1246 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1247 break; 1248 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1249 i = id - KVM_REG_PPC_PMC1; 1250 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1251 break; 1252 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1253 i = id - KVM_REG_PPC_SPMC1; 1254 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1255 break; 1256 case KVM_REG_PPC_SIAR: 1257 vcpu->arch.siar = set_reg_val(id, *val); 1258 break; 1259 case KVM_REG_PPC_SDAR: 1260 vcpu->arch.sdar = set_reg_val(id, *val); 1261 break; 1262 case KVM_REG_PPC_SIER: 1263 vcpu->arch.sier = set_reg_val(id, *val); 1264 break; 1265 case KVM_REG_PPC_IAMR: 1266 vcpu->arch.iamr = set_reg_val(id, *val); 1267 break; 1268 case KVM_REG_PPC_PSPB: 1269 vcpu->arch.pspb = set_reg_val(id, *val); 1270 break; 1271 case KVM_REG_PPC_DPDES: 1272 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1273 break; 1274 case KVM_REG_PPC_DAWR: 1275 vcpu->arch.dawr = set_reg_val(id, *val); 1276 break; 1277 case KVM_REG_PPC_DAWRX: 1278 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1279 break; 1280 case KVM_REG_PPC_CIABR: 1281 vcpu->arch.ciabr = set_reg_val(id, *val); 1282 /* Don't allow setting breakpoints in hypervisor code */ 1283 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1284 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1285 break; 1286 case KVM_REG_PPC_CSIGR: 1287 vcpu->arch.csigr = set_reg_val(id, *val); 1288 break; 1289 case KVM_REG_PPC_TACR: 1290 vcpu->arch.tacr = set_reg_val(id, *val); 1291 break; 1292 case KVM_REG_PPC_TCSCR: 1293 vcpu->arch.tcscr = set_reg_val(id, *val); 1294 break; 1295 case KVM_REG_PPC_PID: 1296 vcpu->arch.pid = set_reg_val(id, *val); 1297 break; 1298 case KVM_REG_PPC_ACOP: 1299 vcpu->arch.acop = set_reg_val(id, *val); 1300 break; 1301 case KVM_REG_PPC_WORT: 1302 vcpu->arch.wort = set_reg_val(id, *val); 1303 break; 1304 case KVM_REG_PPC_VPA_ADDR: 1305 addr = set_reg_val(id, *val); 1306 r = -EINVAL; 1307 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1308 vcpu->arch.dtl.next_gpa)) 1309 break; 1310 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1311 break; 1312 case KVM_REG_PPC_VPA_SLB: 1313 addr = val->vpaval.addr; 1314 len = val->vpaval.length; 1315 r = -EINVAL; 1316 if (addr && !vcpu->arch.vpa.next_gpa) 1317 break; 1318 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1319 break; 1320 case KVM_REG_PPC_VPA_DTL: 1321 addr = val->vpaval.addr; 1322 len = val->vpaval.length; 1323 r = -EINVAL; 1324 if (addr && (len < sizeof(struct dtl_entry) || 1325 !vcpu->arch.vpa.next_gpa)) 1326 break; 1327 len -= len % sizeof(struct dtl_entry); 1328 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1329 break; 1330 case KVM_REG_PPC_TB_OFFSET: 1331 /* round up to multiple of 2^24 */ 1332 vcpu->arch.vcore->tb_offset = 1333 ALIGN(set_reg_val(id, *val), 1UL << 24); 1334 break; 1335 case KVM_REG_PPC_LPCR: 1336 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1337 break; 1338 case KVM_REG_PPC_LPCR_64: 1339 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1340 break; 1341 case KVM_REG_PPC_PPR: 1342 vcpu->arch.ppr = set_reg_val(id, *val); 1343 break; 1344 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1345 case KVM_REG_PPC_TFHAR: 1346 vcpu->arch.tfhar = set_reg_val(id, *val); 1347 break; 1348 case KVM_REG_PPC_TFIAR: 1349 vcpu->arch.tfiar = set_reg_val(id, *val); 1350 break; 1351 case KVM_REG_PPC_TEXASR: 1352 vcpu->arch.texasr = set_reg_val(id, *val); 1353 break; 1354 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1355 i = id - KVM_REG_PPC_TM_GPR0; 1356 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1357 break; 1358 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1359 { 1360 int j; 1361 i = id - KVM_REG_PPC_TM_VSR0; 1362 if (i < 32) 1363 for (j = 0; j < TS_FPRWIDTH; j++) 1364 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1365 else 1366 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1367 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1368 else 1369 r = -ENXIO; 1370 break; 1371 } 1372 case KVM_REG_PPC_TM_CR: 1373 vcpu->arch.cr_tm = set_reg_val(id, *val); 1374 break; 1375 case KVM_REG_PPC_TM_LR: 1376 vcpu->arch.lr_tm = set_reg_val(id, *val); 1377 break; 1378 case KVM_REG_PPC_TM_CTR: 1379 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1380 break; 1381 case KVM_REG_PPC_TM_FPSCR: 1382 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1383 break; 1384 case KVM_REG_PPC_TM_AMR: 1385 vcpu->arch.amr_tm = set_reg_val(id, *val); 1386 break; 1387 case KVM_REG_PPC_TM_PPR: 1388 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1389 break; 1390 case KVM_REG_PPC_TM_VRSAVE: 1391 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1392 break; 1393 case KVM_REG_PPC_TM_VSCR: 1394 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1395 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1396 else 1397 r = - ENXIO; 1398 break; 1399 case KVM_REG_PPC_TM_DSCR: 1400 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1401 break; 1402 case KVM_REG_PPC_TM_TAR: 1403 vcpu->arch.tar_tm = set_reg_val(id, *val); 1404 break; 1405 #endif 1406 case KVM_REG_PPC_ARCH_COMPAT: 1407 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1408 break; 1409 default: 1410 r = -EINVAL; 1411 break; 1412 } 1413 1414 return r; 1415 } 1416 1417 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) 1418 { 1419 struct kvmppc_vcore *vcore; 1420 1421 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1422 1423 if (vcore == NULL) 1424 return NULL; 1425 1426 INIT_LIST_HEAD(&vcore->runnable_threads); 1427 spin_lock_init(&vcore->lock); 1428 spin_lock_init(&vcore->stoltb_lock); 1429 init_waitqueue_head(&vcore->wq); 1430 vcore->preempt_tb = TB_NIL; 1431 vcore->lpcr = kvm->arch.lpcr; 1432 vcore->first_vcpuid = core * threads_per_subcore; 1433 vcore->kvm = kvm; 1434 1435 vcore->mpp_buffer_is_valid = false; 1436 1437 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1438 vcore->mpp_buffer = (void *)__get_free_pages( 1439 GFP_KERNEL|__GFP_ZERO, 1440 MPP_BUFFER_ORDER); 1441 1442 return vcore; 1443 } 1444 1445 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 1446 static struct debugfs_timings_element { 1447 const char *name; 1448 size_t offset; 1449 } timings[] = { 1450 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 1451 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 1452 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 1453 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 1454 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 1455 }; 1456 1457 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0])) 1458 1459 struct debugfs_timings_state { 1460 struct kvm_vcpu *vcpu; 1461 unsigned int buflen; 1462 char buf[N_TIMINGS * 100]; 1463 }; 1464 1465 static int debugfs_timings_open(struct inode *inode, struct file *file) 1466 { 1467 struct kvm_vcpu *vcpu = inode->i_private; 1468 struct debugfs_timings_state *p; 1469 1470 p = kzalloc(sizeof(*p), GFP_KERNEL); 1471 if (!p) 1472 return -ENOMEM; 1473 1474 kvm_get_kvm(vcpu->kvm); 1475 p->vcpu = vcpu; 1476 file->private_data = p; 1477 1478 return nonseekable_open(inode, file); 1479 } 1480 1481 static int debugfs_timings_release(struct inode *inode, struct file *file) 1482 { 1483 struct debugfs_timings_state *p = file->private_data; 1484 1485 kvm_put_kvm(p->vcpu->kvm); 1486 kfree(p); 1487 return 0; 1488 } 1489 1490 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 1491 size_t len, loff_t *ppos) 1492 { 1493 struct debugfs_timings_state *p = file->private_data; 1494 struct kvm_vcpu *vcpu = p->vcpu; 1495 char *s, *buf_end; 1496 struct kvmhv_tb_accumulator tb; 1497 u64 count; 1498 loff_t pos; 1499 ssize_t n; 1500 int i, loops; 1501 bool ok; 1502 1503 if (!p->buflen) { 1504 s = p->buf; 1505 buf_end = s + sizeof(p->buf); 1506 for (i = 0; i < N_TIMINGS; ++i) { 1507 struct kvmhv_tb_accumulator *acc; 1508 1509 acc = (struct kvmhv_tb_accumulator *) 1510 ((unsigned long)vcpu + timings[i].offset); 1511 ok = false; 1512 for (loops = 0; loops < 1000; ++loops) { 1513 count = acc->seqcount; 1514 if (!(count & 1)) { 1515 smp_rmb(); 1516 tb = *acc; 1517 smp_rmb(); 1518 if (count == acc->seqcount) { 1519 ok = true; 1520 break; 1521 } 1522 } 1523 udelay(1); 1524 } 1525 if (!ok) 1526 snprintf(s, buf_end - s, "%s: stuck\n", 1527 timings[i].name); 1528 else 1529 snprintf(s, buf_end - s, 1530 "%s: %llu %llu %llu %llu\n", 1531 timings[i].name, count / 2, 1532 tb_to_ns(tb.tb_total), 1533 tb_to_ns(tb.tb_min), 1534 tb_to_ns(tb.tb_max)); 1535 s += strlen(s); 1536 } 1537 p->buflen = s - p->buf; 1538 } 1539 1540 pos = *ppos; 1541 if (pos >= p->buflen) 1542 return 0; 1543 if (len > p->buflen - pos) 1544 len = p->buflen - pos; 1545 n = copy_to_user(buf, p->buf + pos, len); 1546 if (n) { 1547 if (n == len) 1548 return -EFAULT; 1549 len -= n; 1550 } 1551 *ppos = pos + len; 1552 return len; 1553 } 1554 1555 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 1556 size_t len, loff_t *ppos) 1557 { 1558 return -EACCES; 1559 } 1560 1561 static const struct file_operations debugfs_timings_ops = { 1562 .owner = THIS_MODULE, 1563 .open = debugfs_timings_open, 1564 .release = debugfs_timings_release, 1565 .read = debugfs_timings_read, 1566 .write = debugfs_timings_write, 1567 .llseek = generic_file_llseek, 1568 }; 1569 1570 /* Create a debugfs directory for the vcpu */ 1571 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1572 { 1573 char buf[16]; 1574 struct kvm *kvm = vcpu->kvm; 1575 1576 snprintf(buf, sizeof(buf), "vcpu%u", id); 1577 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 1578 return; 1579 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 1580 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 1581 return; 1582 vcpu->arch.debugfs_timings = 1583 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 1584 vcpu, &debugfs_timings_ops); 1585 } 1586 1587 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1588 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1589 { 1590 } 1591 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1592 1593 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1594 unsigned int id) 1595 { 1596 struct kvm_vcpu *vcpu; 1597 int err = -EINVAL; 1598 int core; 1599 struct kvmppc_vcore *vcore; 1600 1601 core = id / threads_per_subcore; 1602 if (core >= KVM_MAX_VCORES) 1603 goto out; 1604 1605 err = -ENOMEM; 1606 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1607 if (!vcpu) 1608 goto out; 1609 1610 err = kvm_vcpu_init(vcpu, kvm, id); 1611 if (err) 1612 goto free_vcpu; 1613 1614 vcpu->arch.shared = &vcpu->arch.shregs; 1615 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1616 /* 1617 * The shared struct is never shared on HV, 1618 * so we can always use host endianness 1619 */ 1620 #ifdef __BIG_ENDIAN__ 1621 vcpu->arch.shared_big_endian = true; 1622 #else 1623 vcpu->arch.shared_big_endian = false; 1624 #endif 1625 #endif 1626 vcpu->arch.mmcr[0] = MMCR0_FC; 1627 vcpu->arch.ctrl = CTRL_RUNLATCH; 1628 /* default to host PVR, since we can't spoof it */ 1629 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1630 spin_lock_init(&vcpu->arch.vpa_update_lock); 1631 spin_lock_init(&vcpu->arch.tbacct_lock); 1632 vcpu->arch.busy_preempt = TB_NIL; 1633 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1634 1635 kvmppc_mmu_book3s_hv_init(vcpu); 1636 1637 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1638 1639 init_waitqueue_head(&vcpu->arch.cpu_run); 1640 1641 mutex_lock(&kvm->lock); 1642 vcore = kvm->arch.vcores[core]; 1643 if (!vcore) { 1644 vcore = kvmppc_vcore_create(kvm, core); 1645 kvm->arch.vcores[core] = vcore; 1646 kvm->arch.online_vcores++; 1647 } 1648 mutex_unlock(&kvm->lock); 1649 1650 if (!vcore) 1651 goto free_vcpu; 1652 1653 spin_lock(&vcore->lock); 1654 ++vcore->num_threads; 1655 spin_unlock(&vcore->lock); 1656 vcpu->arch.vcore = vcore; 1657 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 1658 1659 vcpu->arch.cpu_type = KVM_CPU_3S_64; 1660 kvmppc_sanity_check(vcpu); 1661 1662 debugfs_vcpu_init(vcpu, id); 1663 1664 return vcpu; 1665 1666 free_vcpu: 1667 kmem_cache_free(kvm_vcpu_cache, vcpu); 1668 out: 1669 return ERR_PTR(err); 1670 } 1671 1672 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 1673 { 1674 if (vpa->pinned_addr) 1675 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 1676 vpa->dirty); 1677 } 1678 1679 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 1680 { 1681 spin_lock(&vcpu->arch.vpa_update_lock); 1682 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 1683 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 1684 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 1685 spin_unlock(&vcpu->arch.vpa_update_lock); 1686 kvm_vcpu_uninit(vcpu); 1687 kmem_cache_free(kvm_vcpu_cache, vcpu); 1688 } 1689 1690 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 1691 { 1692 /* Indicate we want to get back into the guest */ 1693 return 1; 1694 } 1695 1696 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 1697 { 1698 unsigned long dec_nsec, now; 1699 1700 now = get_tb(); 1701 if (now > vcpu->arch.dec_expires) { 1702 /* decrementer has already gone negative */ 1703 kvmppc_core_queue_dec(vcpu); 1704 kvmppc_core_prepare_to_enter(vcpu); 1705 return; 1706 } 1707 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 1708 / tb_ticks_per_sec; 1709 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 1710 HRTIMER_MODE_REL); 1711 vcpu->arch.timer_running = 1; 1712 } 1713 1714 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1715 { 1716 vcpu->arch.ceded = 0; 1717 if (vcpu->arch.timer_running) { 1718 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1719 vcpu->arch.timer_running = 0; 1720 } 1721 } 1722 1723 extern void __kvmppc_vcore_entry(void); 1724 1725 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1726 struct kvm_vcpu *vcpu) 1727 { 1728 u64 now; 1729 1730 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1731 return; 1732 spin_lock_irq(&vcpu->arch.tbacct_lock); 1733 now = mftb(); 1734 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1735 vcpu->arch.stolen_logged; 1736 vcpu->arch.busy_preempt = now; 1737 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1738 spin_unlock_irq(&vcpu->arch.tbacct_lock); 1739 --vc->n_runnable; 1740 list_del(&vcpu->arch.run_list); 1741 } 1742 1743 static int kvmppc_grab_hwthread(int cpu) 1744 { 1745 struct paca_struct *tpaca; 1746 long timeout = 10000; 1747 1748 tpaca = &paca[cpu]; 1749 1750 /* Ensure the thread won't go into the kernel if it wakes */ 1751 tpaca->kvm_hstate.kvm_vcpu = NULL; 1752 tpaca->kvm_hstate.napping = 0; 1753 smp_wmb(); 1754 tpaca->kvm_hstate.hwthread_req = 1; 1755 1756 /* 1757 * If the thread is already executing in the kernel (e.g. handling 1758 * a stray interrupt), wait for it to get back to nap mode. 1759 * The smp_mb() is to ensure that our setting of hwthread_req 1760 * is visible before we look at hwthread_state, so if this 1761 * races with the code at system_reset_pSeries and the thread 1762 * misses our setting of hwthread_req, we are sure to see its 1763 * setting of hwthread_state, and vice versa. 1764 */ 1765 smp_mb(); 1766 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1767 if (--timeout <= 0) { 1768 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1769 return -EBUSY; 1770 } 1771 udelay(1); 1772 } 1773 return 0; 1774 } 1775 1776 static void kvmppc_release_hwthread(int cpu) 1777 { 1778 struct paca_struct *tpaca; 1779 1780 tpaca = &paca[cpu]; 1781 tpaca->kvm_hstate.hwthread_req = 0; 1782 tpaca->kvm_hstate.kvm_vcpu = NULL; 1783 } 1784 1785 static void kvmppc_start_thread(struct kvm_vcpu *vcpu) 1786 { 1787 int cpu; 1788 struct paca_struct *tpaca; 1789 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1790 1791 if (vcpu->arch.timer_running) { 1792 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1793 vcpu->arch.timer_running = 0; 1794 } 1795 cpu = vc->pcpu + vcpu->arch.ptid; 1796 tpaca = &paca[cpu]; 1797 tpaca->kvm_hstate.kvm_vcore = vc; 1798 tpaca->kvm_hstate.ptid = vcpu->arch.ptid; 1799 vcpu->cpu = vc->pcpu; 1800 /* Order stores to hstate.kvm_vcore etc. before store to kvm_vcpu */ 1801 smp_wmb(); 1802 tpaca->kvm_hstate.kvm_vcpu = vcpu; 1803 if (cpu != smp_processor_id()) 1804 kvmppc_ipi_thread(cpu); 1805 } 1806 1807 static void kvmppc_wait_for_nap(void) 1808 { 1809 int cpu = smp_processor_id(); 1810 int i, loops; 1811 1812 for (loops = 0; loops < 1000000; ++loops) { 1813 /* 1814 * Check if all threads are finished. 1815 * We set the vcpu pointer when starting a thread 1816 * and the thread clears it when finished, so we look 1817 * for any threads that still have a non-NULL vcpu ptr. 1818 */ 1819 for (i = 1; i < threads_per_subcore; ++i) 1820 if (paca[cpu + i].kvm_hstate.kvm_vcpu) 1821 break; 1822 if (i == threads_per_subcore) { 1823 HMT_medium(); 1824 return; 1825 } 1826 HMT_low(); 1827 } 1828 HMT_medium(); 1829 for (i = 1; i < threads_per_subcore; ++i) 1830 if (paca[cpu + i].kvm_hstate.kvm_vcpu) 1831 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 1832 } 1833 1834 /* 1835 * Check that we are on thread 0 and that any other threads in 1836 * this core are off-line. Then grab the threads so they can't 1837 * enter the kernel. 1838 */ 1839 static int on_primary_thread(void) 1840 { 1841 int cpu = smp_processor_id(); 1842 int thr; 1843 1844 /* Are we on a primary subcore? */ 1845 if (cpu_thread_in_subcore(cpu)) 1846 return 0; 1847 1848 thr = 0; 1849 while (++thr < threads_per_subcore) 1850 if (cpu_online(cpu + thr)) 1851 return 0; 1852 1853 /* Grab all hw threads so they can't go into the kernel */ 1854 for (thr = 1; thr < threads_per_subcore; ++thr) { 1855 if (kvmppc_grab_hwthread(cpu + thr)) { 1856 /* Couldn't grab one; let the others go */ 1857 do { 1858 kvmppc_release_hwthread(cpu + thr); 1859 } while (--thr > 0); 1860 return 0; 1861 } 1862 } 1863 return 1; 1864 } 1865 1866 static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc) 1867 { 1868 phys_addr_t phy_addr, mpp_addr; 1869 1870 phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer); 1871 mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK; 1872 1873 mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT); 1874 logmpp(mpp_addr | PPC_LOGMPP_LOG_L2); 1875 1876 vc->mpp_buffer_is_valid = true; 1877 } 1878 1879 static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc) 1880 { 1881 phys_addr_t phy_addr, mpp_addr; 1882 1883 phy_addr = virt_to_phys(vc->mpp_buffer); 1884 mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK; 1885 1886 /* We must abort any in-progress save operations to ensure 1887 * the table is valid so that prefetch engine knows when to 1888 * stop prefetching. */ 1889 logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT); 1890 mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE); 1891 } 1892 1893 static void prepare_threads(struct kvmppc_vcore *vc) 1894 { 1895 struct kvm_vcpu *vcpu, *vnext; 1896 1897 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 1898 arch.run_list) { 1899 if (signal_pending(vcpu->arch.run_task)) 1900 vcpu->arch.ret = -EINTR; 1901 else if (vcpu->arch.vpa.update_pending || 1902 vcpu->arch.slb_shadow.update_pending || 1903 vcpu->arch.dtl.update_pending) 1904 vcpu->arch.ret = RESUME_GUEST; 1905 else 1906 continue; 1907 kvmppc_remove_runnable(vc, vcpu); 1908 wake_up(&vcpu->arch.cpu_run); 1909 } 1910 } 1911 1912 static void post_guest_process(struct kvmppc_vcore *vc) 1913 { 1914 u64 now; 1915 long ret; 1916 struct kvm_vcpu *vcpu, *vnext; 1917 1918 now = get_tb(); 1919 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 1920 arch.run_list) { 1921 /* cancel pending dec exception if dec is positive */ 1922 if (now < vcpu->arch.dec_expires && 1923 kvmppc_core_pending_dec(vcpu)) 1924 kvmppc_core_dequeue_dec(vcpu); 1925 1926 trace_kvm_guest_exit(vcpu); 1927 1928 ret = RESUME_GUEST; 1929 if (vcpu->arch.trap) 1930 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 1931 vcpu->arch.run_task); 1932 1933 vcpu->arch.ret = ret; 1934 vcpu->arch.trap = 0; 1935 1936 if (vcpu->arch.ceded) { 1937 if (!is_kvmppc_resume_guest(ret)) 1938 kvmppc_end_cede(vcpu); 1939 else 1940 kvmppc_set_timer(vcpu); 1941 } 1942 if (!is_kvmppc_resume_guest(vcpu->arch.ret)) { 1943 kvmppc_remove_runnable(vc, vcpu); 1944 wake_up(&vcpu->arch.cpu_run); 1945 } 1946 } 1947 } 1948 1949 /* 1950 * Run a set of guest threads on a physical core. 1951 * Called with vc->lock held. 1952 */ 1953 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 1954 { 1955 struct kvm_vcpu *vcpu, *vnext; 1956 int i; 1957 int srcu_idx; 1958 1959 /* 1960 * Remove from the list any threads that have a signal pending 1961 * or need a VPA update done 1962 */ 1963 prepare_threads(vc); 1964 1965 /* if the runner is no longer runnable, let the caller pick a new one */ 1966 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 1967 return; 1968 1969 /* 1970 * Initialize *vc. 1971 */ 1972 vc->entry_exit_map = 0; 1973 vc->preempt_tb = TB_NIL; 1974 vc->in_guest = 0; 1975 vc->napping_threads = 0; 1976 vc->conferring_threads = 0; 1977 1978 /* 1979 * Make sure we are running on primary threads, and that secondary 1980 * threads are offline. Also check if the number of threads in this 1981 * guest are greater than the current system threads per guest. 1982 */ 1983 if ((threads_per_core > 1) && 1984 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 1985 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 1986 arch.run_list) { 1987 vcpu->arch.ret = -EBUSY; 1988 kvmppc_remove_runnable(vc, vcpu); 1989 wake_up(&vcpu->arch.cpu_run); 1990 } 1991 goto out; 1992 } 1993 1994 1995 vc->pcpu = smp_processor_id(); 1996 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1997 kvmppc_start_thread(vcpu); 1998 kvmppc_create_dtl_entry(vcpu, vc); 1999 trace_kvm_guest_enter(vcpu); 2000 } 2001 2002 /* Set this explicitly in case thread 0 doesn't have a vcpu */ 2003 get_paca()->kvm_hstate.kvm_vcore = vc; 2004 get_paca()->kvm_hstate.ptid = 0; 2005 2006 vc->vcore_state = VCORE_RUNNING; 2007 preempt_disable(); 2008 2009 trace_kvmppc_run_core(vc, 0); 2010 2011 spin_unlock(&vc->lock); 2012 2013 kvm_guest_enter(); 2014 2015 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 2016 2017 if (vc->mpp_buffer_is_valid) 2018 kvmppc_start_restoring_l2_cache(vc); 2019 2020 __kvmppc_vcore_entry(); 2021 2022 spin_lock(&vc->lock); 2023 2024 if (vc->mpp_buffer) 2025 kvmppc_start_saving_l2_cache(vc); 2026 2027 /* disable sending of IPIs on virtual external irqs */ 2028 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 2029 vcpu->cpu = -1; 2030 /* wait for secondary threads to finish writing their state to memory */ 2031 kvmppc_wait_for_nap(); 2032 for (i = 0; i < threads_per_subcore; ++i) 2033 kvmppc_release_hwthread(vc->pcpu + i); 2034 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 2035 vc->vcore_state = VCORE_EXITING; 2036 spin_unlock(&vc->lock); 2037 2038 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 2039 2040 /* make sure updates to secondary vcpu structs are visible now */ 2041 smp_mb(); 2042 kvm_guest_exit(); 2043 2044 preempt_enable(); 2045 2046 spin_lock(&vc->lock); 2047 post_guest_process(vc); 2048 2049 out: 2050 vc->vcore_state = VCORE_INACTIVE; 2051 trace_kvmppc_run_core(vc, 1); 2052 } 2053 2054 /* 2055 * Wait for some other vcpu thread to execute us, and 2056 * wake us up when we need to handle something in the host. 2057 */ 2058 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) 2059 { 2060 DEFINE_WAIT(wait); 2061 2062 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 2063 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) 2064 schedule(); 2065 finish_wait(&vcpu->arch.cpu_run, &wait); 2066 } 2067 2068 /* 2069 * All the vcpus in this vcore are idle, so wait for a decrementer 2070 * or external interrupt to one of the vcpus. vc->lock is held. 2071 */ 2072 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 2073 { 2074 struct kvm_vcpu *vcpu; 2075 int do_sleep = 1; 2076 2077 DEFINE_WAIT(wait); 2078 2079 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 2080 2081 /* 2082 * Check one last time for pending exceptions and ceded state after 2083 * we put ourselves on the wait queue 2084 */ 2085 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 2086 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) { 2087 do_sleep = 0; 2088 break; 2089 } 2090 } 2091 2092 if (!do_sleep) { 2093 finish_wait(&vc->wq, &wait); 2094 return; 2095 } 2096 2097 vc->vcore_state = VCORE_SLEEPING; 2098 trace_kvmppc_vcore_blocked(vc, 0); 2099 spin_unlock(&vc->lock); 2100 schedule(); 2101 finish_wait(&vc->wq, &wait); 2102 spin_lock(&vc->lock); 2103 vc->vcore_state = VCORE_INACTIVE; 2104 trace_kvmppc_vcore_blocked(vc, 1); 2105 } 2106 2107 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 2108 { 2109 int n_ceded; 2110 struct kvmppc_vcore *vc; 2111 struct kvm_vcpu *v, *vn; 2112 2113 trace_kvmppc_run_vcpu_enter(vcpu); 2114 2115 kvm_run->exit_reason = 0; 2116 vcpu->arch.ret = RESUME_GUEST; 2117 vcpu->arch.trap = 0; 2118 kvmppc_update_vpas(vcpu); 2119 2120 /* 2121 * Synchronize with other threads in this virtual core 2122 */ 2123 vc = vcpu->arch.vcore; 2124 spin_lock(&vc->lock); 2125 vcpu->arch.ceded = 0; 2126 vcpu->arch.run_task = current; 2127 vcpu->arch.kvm_run = kvm_run; 2128 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 2129 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 2130 vcpu->arch.busy_preempt = TB_NIL; 2131 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 2132 ++vc->n_runnable; 2133 2134 /* 2135 * This happens the first time this is called for a vcpu. 2136 * If the vcore is already running, we may be able to start 2137 * this thread straight away and have it join in. 2138 */ 2139 if (!signal_pending(current)) { 2140 if (vc->vcore_state == VCORE_RUNNING && !VCORE_IS_EXITING(vc)) { 2141 kvmppc_create_dtl_entry(vcpu, vc); 2142 kvmppc_start_thread(vcpu); 2143 trace_kvm_guest_enter(vcpu); 2144 } else if (vc->vcore_state == VCORE_SLEEPING) { 2145 wake_up(&vc->wq); 2146 } 2147 2148 } 2149 2150 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2151 !signal_pending(current)) { 2152 if (vc->vcore_state != VCORE_INACTIVE) { 2153 spin_unlock(&vc->lock); 2154 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); 2155 spin_lock(&vc->lock); 2156 continue; 2157 } 2158 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 2159 arch.run_list) { 2160 kvmppc_core_prepare_to_enter(v); 2161 if (signal_pending(v->arch.run_task)) { 2162 kvmppc_remove_runnable(vc, v); 2163 v->stat.signal_exits++; 2164 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 2165 v->arch.ret = -EINTR; 2166 wake_up(&v->arch.cpu_run); 2167 } 2168 } 2169 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2170 break; 2171 n_ceded = 0; 2172 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 2173 if (!v->arch.pending_exceptions) 2174 n_ceded += v->arch.ceded; 2175 else 2176 v->arch.ceded = 0; 2177 } 2178 vc->runner = vcpu; 2179 if (n_ceded == vc->n_runnable) { 2180 kvmppc_vcore_blocked(vc); 2181 } else if (should_resched()) { 2182 vc->vcore_state = VCORE_PREEMPT; 2183 /* Let something else run */ 2184 cond_resched_lock(&vc->lock); 2185 vc->vcore_state = VCORE_INACTIVE; 2186 } else { 2187 kvmppc_run_core(vc); 2188 } 2189 vc->runner = NULL; 2190 } 2191 2192 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2193 (vc->vcore_state == VCORE_RUNNING || 2194 vc->vcore_state == VCORE_EXITING)) { 2195 spin_unlock(&vc->lock); 2196 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); 2197 spin_lock(&vc->lock); 2198 } 2199 2200 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2201 kvmppc_remove_runnable(vc, vcpu); 2202 vcpu->stat.signal_exits++; 2203 kvm_run->exit_reason = KVM_EXIT_INTR; 2204 vcpu->arch.ret = -EINTR; 2205 } 2206 2207 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 2208 /* Wake up some vcpu to run the core */ 2209 v = list_first_entry(&vc->runnable_threads, 2210 struct kvm_vcpu, arch.run_list); 2211 wake_up(&v->arch.cpu_run); 2212 } 2213 2214 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 2215 spin_unlock(&vc->lock); 2216 return vcpu->arch.ret; 2217 } 2218 2219 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 2220 { 2221 int r; 2222 int srcu_idx; 2223 2224 if (!vcpu->arch.sane) { 2225 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2226 return -EINVAL; 2227 } 2228 2229 kvmppc_core_prepare_to_enter(vcpu); 2230 2231 /* No need to go into the guest when all we'll do is come back out */ 2232 if (signal_pending(current)) { 2233 run->exit_reason = KVM_EXIT_INTR; 2234 return -EINTR; 2235 } 2236 2237 atomic_inc(&vcpu->kvm->arch.vcpus_running); 2238 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */ 2239 smp_mb(); 2240 2241 /* On the first time here, set up HTAB and VRMA */ 2242 if (!vcpu->kvm->arch.hpte_setup_done) { 2243 r = kvmppc_hv_setup_htab_rma(vcpu); 2244 if (r) 2245 goto out; 2246 } 2247 2248 flush_fp_to_thread(current); 2249 flush_altivec_to_thread(current); 2250 flush_vsx_to_thread(current); 2251 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 2252 vcpu->arch.pgdir = current->mm->pgd; 2253 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2254 2255 do { 2256 r = kvmppc_run_vcpu(run, vcpu); 2257 2258 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 2259 !(vcpu->arch.shregs.msr & MSR_PR)) { 2260 trace_kvm_hcall_enter(vcpu); 2261 r = kvmppc_pseries_do_hcall(vcpu); 2262 trace_kvm_hcall_exit(vcpu, r); 2263 kvmppc_core_prepare_to_enter(vcpu); 2264 } else if (r == RESUME_PAGE_FAULT) { 2265 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2266 r = kvmppc_book3s_hv_page_fault(run, vcpu, 2267 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 2268 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2269 } 2270 } while (is_kvmppc_resume_guest(r)); 2271 2272 out: 2273 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2274 atomic_dec(&vcpu->kvm->arch.vcpus_running); 2275 return r; 2276 } 2277 2278 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 2279 int linux_psize) 2280 { 2281 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 2282 2283 if (!def->shift) 2284 return; 2285 (*sps)->page_shift = def->shift; 2286 (*sps)->slb_enc = def->sllp; 2287 (*sps)->enc[0].page_shift = def->shift; 2288 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 2289 /* 2290 * Add 16MB MPSS support if host supports it 2291 */ 2292 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) { 2293 (*sps)->enc[1].page_shift = 24; 2294 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M]; 2295 } 2296 (*sps)++; 2297 } 2298 2299 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 2300 struct kvm_ppc_smmu_info *info) 2301 { 2302 struct kvm_ppc_one_seg_page_size *sps; 2303 2304 info->flags = KVM_PPC_PAGE_SIZES_REAL; 2305 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 2306 info->flags |= KVM_PPC_1T_SEGMENTS; 2307 info->slb_size = mmu_slb_size; 2308 2309 /* We only support these sizes for now, and no muti-size segments */ 2310 sps = &info->sps[0]; 2311 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 2312 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 2313 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 2314 2315 return 0; 2316 } 2317 2318 /* 2319 * Get (and clear) the dirty memory log for a memory slot. 2320 */ 2321 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 2322 struct kvm_dirty_log *log) 2323 { 2324 struct kvm_memory_slot *memslot; 2325 int r; 2326 unsigned long n; 2327 2328 mutex_lock(&kvm->slots_lock); 2329 2330 r = -EINVAL; 2331 if (log->slot >= KVM_USER_MEM_SLOTS) 2332 goto out; 2333 2334 memslot = id_to_memslot(kvm->memslots, log->slot); 2335 r = -ENOENT; 2336 if (!memslot->dirty_bitmap) 2337 goto out; 2338 2339 n = kvm_dirty_bitmap_bytes(memslot); 2340 memset(memslot->dirty_bitmap, 0, n); 2341 2342 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); 2343 if (r) 2344 goto out; 2345 2346 r = -EFAULT; 2347 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 2348 goto out; 2349 2350 r = 0; 2351 out: 2352 mutex_unlock(&kvm->slots_lock); 2353 return r; 2354 } 2355 2356 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 2357 struct kvm_memory_slot *dont) 2358 { 2359 if (!dont || free->arch.rmap != dont->arch.rmap) { 2360 vfree(free->arch.rmap); 2361 free->arch.rmap = NULL; 2362 } 2363 } 2364 2365 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 2366 unsigned long npages) 2367 { 2368 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 2369 if (!slot->arch.rmap) 2370 return -ENOMEM; 2371 2372 return 0; 2373 } 2374 2375 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 2376 struct kvm_memory_slot *memslot, 2377 struct kvm_userspace_memory_region *mem) 2378 { 2379 return 0; 2380 } 2381 2382 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 2383 struct kvm_userspace_memory_region *mem, 2384 const struct kvm_memory_slot *old) 2385 { 2386 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 2387 struct kvm_memory_slot *memslot; 2388 2389 if (npages && old->npages) { 2390 /* 2391 * If modifying a memslot, reset all the rmap dirty bits. 2392 * If this is a new memslot, we don't need to do anything 2393 * since the rmap array starts out as all zeroes, 2394 * i.e. no pages are dirty. 2395 */ 2396 memslot = id_to_memslot(kvm->memslots, mem->slot); 2397 kvmppc_hv_get_dirty_log(kvm, memslot, NULL); 2398 } 2399 } 2400 2401 /* 2402 * Update LPCR values in kvm->arch and in vcores. 2403 * Caller must hold kvm->lock. 2404 */ 2405 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 2406 { 2407 long int i; 2408 u32 cores_done = 0; 2409 2410 if ((kvm->arch.lpcr & mask) == lpcr) 2411 return; 2412 2413 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 2414 2415 for (i = 0; i < KVM_MAX_VCORES; ++i) { 2416 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 2417 if (!vc) 2418 continue; 2419 spin_lock(&vc->lock); 2420 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 2421 spin_unlock(&vc->lock); 2422 if (++cores_done >= kvm->arch.online_vcores) 2423 break; 2424 } 2425 } 2426 2427 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 2428 { 2429 return; 2430 } 2431 2432 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 2433 { 2434 int err = 0; 2435 struct kvm *kvm = vcpu->kvm; 2436 unsigned long hva; 2437 struct kvm_memory_slot *memslot; 2438 struct vm_area_struct *vma; 2439 unsigned long lpcr = 0, senc; 2440 unsigned long psize, porder; 2441 int srcu_idx; 2442 2443 mutex_lock(&kvm->lock); 2444 if (kvm->arch.hpte_setup_done) 2445 goto out; /* another vcpu beat us to it */ 2446 2447 /* Allocate hashed page table (if not done already) and reset it */ 2448 if (!kvm->arch.hpt_virt) { 2449 err = kvmppc_alloc_hpt(kvm, NULL); 2450 if (err) { 2451 pr_err("KVM: Couldn't alloc HPT\n"); 2452 goto out; 2453 } 2454 } 2455 2456 /* Look up the memslot for guest physical address 0 */ 2457 srcu_idx = srcu_read_lock(&kvm->srcu); 2458 memslot = gfn_to_memslot(kvm, 0); 2459 2460 /* We must have some memory at 0 by now */ 2461 err = -EINVAL; 2462 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 2463 goto out_srcu; 2464 2465 /* Look up the VMA for the start of this memory slot */ 2466 hva = memslot->userspace_addr; 2467 down_read(¤t->mm->mmap_sem); 2468 vma = find_vma(current->mm, hva); 2469 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 2470 goto up_out; 2471 2472 psize = vma_kernel_pagesize(vma); 2473 porder = __ilog2(psize); 2474 2475 up_read(¤t->mm->mmap_sem); 2476 2477 /* We can handle 4k, 64k or 16M pages in the VRMA */ 2478 err = -EINVAL; 2479 if (!(psize == 0x1000 || psize == 0x10000 || 2480 psize == 0x1000000)) 2481 goto out_srcu; 2482 2483 /* Update VRMASD field in the LPCR */ 2484 senc = slb_pgsize_encoding(psize); 2485 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 2486 (VRMA_VSID << SLB_VSID_SHIFT_1T); 2487 /* the -4 is to account for senc values starting at 0x10 */ 2488 lpcr = senc << (LPCR_VRMASD_SH - 4); 2489 2490 /* Create HPTEs in the hash page table for the VRMA */ 2491 kvmppc_map_vrma(vcpu, memslot, porder); 2492 2493 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 2494 2495 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */ 2496 smp_wmb(); 2497 kvm->arch.hpte_setup_done = 1; 2498 err = 0; 2499 out_srcu: 2500 srcu_read_unlock(&kvm->srcu, srcu_idx); 2501 out: 2502 mutex_unlock(&kvm->lock); 2503 return err; 2504 2505 up_out: 2506 up_read(¤t->mm->mmap_sem); 2507 goto out_srcu; 2508 } 2509 2510 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 2511 { 2512 unsigned long lpcr, lpid; 2513 char buf[32]; 2514 2515 /* Allocate the guest's logical partition ID */ 2516 2517 lpid = kvmppc_alloc_lpid(); 2518 if ((long)lpid < 0) 2519 return -ENOMEM; 2520 kvm->arch.lpid = lpid; 2521 2522 /* 2523 * Since we don't flush the TLB when tearing down a VM, 2524 * and this lpid might have previously been used, 2525 * make sure we flush on each core before running the new VM. 2526 */ 2527 cpumask_setall(&kvm->arch.need_tlb_flush); 2528 2529 /* Start out with the default set of hcalls enabled */ 2530 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 2531 sizeof(kvm->arch.enabled_hcalls)); 2532 2533 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 2534 2535 /* Init LPCR for virtual RMA mode */ 2536 kvm->arch.host_lpid = mfspr(SPRN_LPID); 2537 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 2538 lpcr &= LPCR_PECE | LPCR_LPES; 2539 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 2540 LPCR_VPM0 | LPCR_VPM1; 2541 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 2542 (VRMA_VSID << SLB_VSID_SHIFT_1T); 2543 /* On POWER8 turn on online bit to enable PURR/SPURR */ 2544 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 2545 lpcr |= LPCR_ONL; 2546 kvm->arch.lpcr = lpcr; 2547 2548 /* 2549 * Track that we now have a HV mode VM active. This blocks secondary 2550 * CPU threads from coming online. 2551 */ 2552 kvm_hv_vm_activated(); 2553 2554 /* 2555 * Create a debugfs directory for the VM 2556 */ 2557 snprintf(buf, sizeof(buf), "vm%d", current->pid); 2558 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 2559 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 2560 kvmppc_mmu_debugfs_init(kvm); 2561 2562 return 0; 2563 } 2564 2565 static void kvmppc_free_vcores(struct kvm *kvm) 2566 { 2567 long int i; 2568 2569 for (i = 0; i < KVM_MAX_VCORES; ++i) { 2570 if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) { 2571 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 2572 free_pages((unsigned long)vc->mpp_buffer, 2573 MPP_BUFFER_ORDER); 2574 } 2575 kfree(kvm->arch.vcores[i]); 2576 } 2577 kvm->arch.online_vcores = 0; 2578 } 2579 2580 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 2581 { 2582 debugfs_remove_recursive(kvm->arch.debugfs_dir); 2583 2584 kvm_hv_vm_deactivated(); 2585 2586 kvmppc_free_vcores(kvm); 2587 2588 kvmppc_free_hpt(kvm); 2589 } 2590 2591 /* We don't need to emulate any privileged instructions or dcbz */ 2592 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 2593 unsigned int inst, int *advance) 2594 { 2595 return EMULATE_FAIL; 2596 } 2597 2598 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 2599 ulong spr_val) 2600 { 2601 return EMULATE_FAIL; 2602 } 2603 2604 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 2605 ulong *spr_val) 2606 { 2607 return EMULATE_FAIL; 2608 } 2609 2610 static int kvmppc_core_check_processor_compat_hv(void) 2611 { 2612 if (!cpu_has_feature(CPU_FTR_HVMODE) || 2613 !cpu_has_feature(CPU_FTR_ARCH_206)) 2614 return -EIO; 2615 return 0; 2616 } 2617 2618 static long kvm_arch_vm_ioctl_hv(struct file *filp, 2619 unsigned int ioctl, unsigned long arg) 2620 { 2621 struct kvm *kvm __maybe_unused = filp->private_data; 2622 void __user *argp = (void __user *)arg; 2623 long r; 2624 2625 switch (ioctl) { 2626 2627 case KVM_PPC_ALLOCATE_HTAB: { 2628 u32 htab_order; 2629 2630 r = -EFAULT; 2631 if (get_user(htab_order, (u32 __user *)argp)) 2632 break; 2633 r = kvmppc_alloc_reset_hpt(kvm, &htab_order); 2634 if (r) 2635 break; 2636 r = -EFAULT; 2637 if (put_user(htab_order, (u32 __user *)argp)) 2638 break; 2639 r = 0; 2640 break; 2641 } 2642 2643 case KVM_PPC_GET_HTAB_FD: { 2644 struct kvm_get_htab_fd ghf; 2645 2646 r = -EFAULT; 2647 if (copy_from_user(&ghf, argp, sizeof(ghf))) 2648 break; 2649 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 2650 break; 2651 } 2652 2653 default: 2654 r = -ENOTTY; 2655 } 2656 2657 return r; 2658 } 2659 2660 /* 2661 * List of hcall numbers to enable by default. 2662 * For compatibility with old userspace, we enable by default 2663 * all hcalls that were implemented before the hcall-enabling 2664 * facility was added. Note this list should not include H_RTAS. 2665 */ 2666 static unsigned int default_hcall_list[] = { 2667 H_REMOVE, 2668 H_ENTER, 2669 H_READ, 2670 H_PROTECT, 2671 H_BULK_REMOVE, 2672 H_GET_TCE, 2673 H_PUT_TCE, 2674 H_SET_DABR, 2675 H_SET_XDABR, 2676 H_CEDE, 2677 H_PROD, 2678 H_CONFER, 2679 H_REGISTER_VPA, 2680 #ifdef CONFIG_KVM_XICS 2681 H_EOI, 2682 H_CPPR, 2683 H_IPI, 2684 H_IPOLL, 2685 H_XIRR, 2686 H_XIRR_X, 2687 #endif 2688 0 2689 }; 2690 2691 static void init_default_hcalls(void) 2692 { 2693 int i; 2694 unsigned int hcall; 2695 2696 for (i = 0; default_hcall_list[i]; ++i) { 2697 hcall = default_hcall_list[i]; 2698 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 2699 __set_bit(hcall / 4, default_enabled_hcalls); 2700 } 2701 } 2702 2703 static struct kvmppc_ops kvm_ops_hv = { 2704 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 2705 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 2706 .get_one_reg = kvmppc_get_one_reg_hv, 2707 .set_one_reg = kvmppc_set_one_reg_hv, 2708 .vcpu_load = kvmppc_core_vcpu_load_hv, 2709 .vcpu_put = kvmppc_core_vcpu_put_hv, 2710 .set_msr = kvmppc_set_msr_hv, 2711 .vcpu_run = kvmppc_vcpu_run_hv, 2712 .vcpu_create = kvmppc_core_vcpu_create_hv, 2713 .vcpu_free = kvmppc_core_vcpu_free_hv, 2714 .check_requests = kvmppc_core_check_requests_hv, 2715 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 2716 .flush_memslot = kvmppc_core_flush_memslot_hv, 2717 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 2718 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 2719 .unmap_hva = kvm_unmap_hva_hv, 2720 .unmap_hva_range = kvm_unmap_hva_range_hv, 2721 .age_hva = kvm_age_hva_hv, 2722 .test_age_hva = kvm_test_age_hva_hv, 2723 .set_spte_hva = kvm_set_spte_hva_hv, 2724 .mmu_destroy = kvmppc_mmu_destroy_hv, 2725 .free_memslot = kvmppc_core_free_memslot_hv, 2726 .create_memslot = kvmppc_core_create_memslot_hv, 2727 .init_vm = kvmppc_core_init_vm_hv, 2728 .destroy_vm = kvmppc_core_destroy_vm_hv, 2729 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 2730 .emulate_op = kvmppc_core_emulate_op_hv, 2731 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 2732 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 2733 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 2734 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 2735 .hcall_implemented = kvmppc_hcall_impl_hv, 2736 }; 2737 2738 static int kvmppc_book3s_init_hv(void) 2739 { 2740 int r; 2741 /* 2742 * FIXME!! Do we need to check on all cpus ? 2743 */ 2744 r = kvmppc_core_check_processor_compat_hv(); 2745 if (r < 0) 2746 return -ENODEV; 2747 2748 kvm_ops_hv.owner = THIS_MODULE; 2749 kvmppc_hv_ops = &kvm_ops_hv; 2750 2751 init_default_hcalls(); 2752 2753 r = kvmppc_mmu_hv_init(); 2754 return r; 2755 } 2756 2757 static void kvmppc_book3s_exit_hv(void) 2758 { 2759 kvmppc_hv_ops = NULL; 2760 } 2761 2762 module_init(kvmppc_book3s_init_hv); 2763 module_exit(kvmppc_book3s_exit_hv); 2764 MODULE_LICENSE("GPL"); 2765 MODULE_ALIAS_MISCDEV(KVM_MINOR); 2766 MODULE_ALIAS("devname:kvm"); 2767