xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision d0b73b48)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
55 
56 /* #define EXIT_DEBUG */
57 /* #define EXIT_DEBUG_SIMPLE */
58 /* #define EXIT_DEBUG_INT */
59 
60 /* Used to indicate that a guest page fault needs to be handled */
61 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
62 
63 /* Used as a "null" value for timebase values */
64 #define TB_NIL	(~(u64)0)
65 
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
68 
69 /*
70  * We use the vcpu_load/put functions to measure stolen time.
71  * Stolen time is counted as time when either the vcpu is able to
72  * run as part of a virtual core, but the task running the vcore
73  * is preempted or sleeping, or when the vcpu needs something done
74  * in the kernel by the task running the vcpu, but that task is
75  * preempted or sleeping.  Those two things have to be counted
76  * separately, since one of the vcpu tasks will take on the job
77  * of running the core, and the other vcpu tasks in the vcore will
78  * sleep waiting for it to do that, but that sleep shouldn't count
79  * as stolen time.
80  *
81  * Hence we accumulate stolen time when the vcpu can run as part of
82  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
83  * needs its task to do other things in the kernel (for example,
84  * service a page fault) in busy_stolen.  We don't accumulate
85  * stolen time for a vcore when it is inactive, or for a vcpu
86  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
87  * a misnomer; it means that the vcpu task is not executing in
88  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
89  * the kernel.  We don't have any way of dividing up that time
90  * between time that the vcpu is genuinely stopped, time that
91  * the task is actively working on behalf of the vcpu, and time
92  * that the task is preempted, so we don't count any of it as
93  * stolen.
94  *
95  * Updates to busy_stolen are protected by arch.tbacct_lock;
96  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
97  * of the vcpu that has taken responsibility for running the vcore
98  * (i.e. vc->runner).  The stolen times are measured in units of
99  * timebase ticks.  (Note that the != TB_NIL checks below are
100  * purely defensive; they should never fail.)
101  */
102 
103 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
104 {
105 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
106 
107 	spin_lock(&vcpu->arch.tbacct_lock);
108 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
109 	    vc->preempt_tb != TB_NIL) {
110 		vc->stolen_tb += mftb() - vc->preempt_tb;
111 		vc->preempt_tb = TB_NIL;
112 	}
113 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
114 	    vcpu->arch.busy_preempt != TB_NIL) {
115 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
116 		vcpu->arch.busy_preempt = TB_NIL;
117 	}
118 	spin_unlock(&vcpu->arch.tbacct_lock);
119 }
120 
121 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
122 {
123 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
124 
125 	spin_lock(&vcpu->arch.tbacct_lock);
126 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
127 		vc->preempt_tb = mftb();
128 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
129 		vcpu->arch.busy_preempt = mftb();
130 	spin_unlock(&vcpu->arch.tbacct_lock);
131 }
132 
133 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
134 {
135 	vcpu->arch.shregs.msr = msr;
136 	kvmppc_end_cede(vcpu);
137 }
138 
139 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
140 {
141 	vcpu->arch.pvr = pvr;
142 }
143 
144 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
145 {
146 	int r;
147 
148 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
149 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
150 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
151 	for (r = 0; r < 16; ++r)
152 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
153 		       r, kvmppc_get_gpr(vcpu, r),
154 		       r+16, kvmppc_get_gpr(vcpu, r+16));
155 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
156 	       vcpu->arch.ctr, vcpu->arch.lr);
157 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
158 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
159 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
160 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
161 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
162 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
163 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
164 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
165 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
166 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
167 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
168 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
169 	for (r = 0; r < vcpu->arch.slb_max; ++r)
170 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
171 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
172 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
173 	       vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
174 	       vcpu->arch.last_inst);
175 }
176 
177 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
178 {
179 	int r;
180 	struct kvm_vcpu *v, *ret = NULL;
181 
182 	mutex_lock(&kvm->lock);
183 	kvm_for_each_vcpu(r, v, kvm) {
184 		if (v->vcpu_id == id) {
185 			ret = v;
186 			break;
187 		}
188 	}
189 	mutex_unlock(&kvm->lock);
190 	return ret;
191 }
192 
193 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
194 {
195 	vpa->shared_proc = 1;
196 	vpa->yield_count = 1;
197 }
198 
199 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
200 		   unsigned long addr, unsigned long len)
201 {
202 	/* check address is cacheline aligned */
203 	if (addr & (L1_CACHE_BYTES - 1))
204 		return -EINVAL;
205 	spin_lock(&vcpu->arch.vpa_update_lock);
206 	if (v->next_gpa != addr || v->len != len) {
207 		v->next_gpa = addr;
208 		v->len = addr ? len : 0;
209 		v->update_pending = 1;
210 	}
211 	spin_unlock(&vcpu->arch.vpa_update_lock);
212 	return 0;
213 }
214 
215 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
216 struct reg_vpa {
217 	u32 dummy;
218 	union {
219 		u16 hword;
220 		u32 word;
221 	} length;
222 };
223 
224 static int vpa_is_registered(struct kvmppc_vpa *vpap)
225 {
226 	if (vpap->update_pending)
227 		return vpap->next_gpa != 0;
228 	return vpap->pinned_addr != NULL;
229 }
230 
231 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
232 				       unsigned long flags,
233 				       unsigned long vcpuid, unsigned long vpa)
234 {
235 	struct kvm *kvm = vcpu->kvm;
236 	unsigned long len, nb;
237 	void *va;
238 	struct kvm_vcpu *tvcpu;
239 	int err;
240 	int subfunc;
241 	struct kvmppc_vpa *vpap;
242 
243 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
244 	if (!tvcpu)
245 		return H_PARAMETER;
246 
247 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
248 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
249 	    subfunc == H_VPA_REG_SLB) {
250 		/* Registering new area - address must be cache-line aligned */
251 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
252 			return H_PARAMETER;
253 
254 		/* convert logical addr to kernel addr and read length */
255 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
256 		if (va == NULL)
257 			return H_PARAMETER;
258 		if (subfunc == H_VPA_REG_VPA)
259 			len = ((struct reg_vpa *)va)->length.hword;
260 		else
261 			len = ((struct reg_vpa *)va)->length.word;
262 		kvmppc_unpin_guest_page(kvm, va);
263 
264 		/* Check length */
265 		if (len > nb || len < sizeof(struct reg_vpa))
266 			return H_PARAMETER;
267 	} else {
268 		vpa = 0;
269 		len = 0;
270 	}
271 
272 	err = H_PARAMETER;
273 	vpap = NULL;
274 	spin_lock(&tvcpu->arch.vpa_update_lock);
275 
276 	switch (subfunc) {
277 	case H_VPA_REG_VPA:		/* register VPA */
278 		if (len < sizeof(struct lppaca))
279 			break;
280 		vpap = &tvcpu->arch.vpa;
281 		err = 0;
282 		break;
283 
284 	case H_VPA_REG_DTL:		/* register DTL */
285 		if (len < sizeof(struct dtl_entry))
286 			break;
287 		len -= len % sizeof(struct dtl_entry);
288 
289 		/* Check that they have previously registered a VPA */
290 		err = H_RESOURCE;
291 		if (!vpa_is_registered(&tvcpu->arch.vpa))
292 			break;
293 
294 		vpap = &tvcpu->arch.dtl;
295 		err = 0;
296 		break;
297 
298 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
299 		/* Check that they have previously registered a VPA */
300 		err = H_RESOURCE;
301 		if (!vpa_is_registered(&tvcpu->arch.vpa))
302 			break;
303 
304 		vpap = &tvcpu->arch.slb_shadow;
305 		err = 0;
306 		break;
307 
308 	case H_VPA_DEREG_VPA:		/* deregister VPA */
309 		/* Check they don't still have a DTL or SLB buf registered */
310 		err = H_RESOURCE;
311 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
312 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
313 			break;
314 
315 		vpap = &tvcpu->arch.vpa;
316 		err = 0;
317 		break;
318 
319 	case H_VPA_DEREG_DTL:		/* deregister DTL */
320 		vpap = &tvcpu->arch.dtl;
321 		err = 0;
322 		break;
323 
324 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
325 		vpap = &tvcpu->arch.slb_shadow;
326 		err = 0;
327 		break;
328 	}
329 
330 	if (vpap) {
331 		vpap->next_gpa = vpa;
332 		vpap->len = len;
333 		vpap->update_pending = 1;
334 	}
335 
336 	spin_unlock(&tvcpu->arch.vpa_update_lock);
337 
338 	return err;
339 }
340 
341 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
342 {
343 	struct kvm *kvm = vcpu->kvm;
344 	void *va;
345 	unsigned long nb;
346 	unsigned long gpa;
347 
348 	/*
349 	 * We need to pin the page pointed to by vpap->next_gpa,
350 	 * but we can't call kvmppc_pin_guest_page under the lock
351 	 * as it does get_user_pages() and down_read().  So we
352 	 * have to drop the lock, pin the page, then get the lock
353 	 * again and check that a new area didn't get registered
354 	 * in the meantime.
355 	 */
356 	for (;;) {
357 		gpa = vpap->next_gpa;
358 		spin_unlock(&vcpu->arch.vpa_update_lock);
359 		va = NULL;
360 		nb = 0;
361 		if (gpa)
362 			va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
363 		spin_lock(&vcpu->arch.vpa_update_lock);
364 		if (gpa == vpap->next_gpa)
365 			break;
366 		/* sigh... unpin that one and try again */
367 		if (va)
368 			kvmppc_unpin_guest_page(kvm, va);
369 	}
370 
371 	vpap->update_pending = 0;
372 	if (va && nb < vpap->len) {
373 		/*
374 		 * If it's now too short, it must be that userspace
375 		 * has changed the mappings underlying guest memory,
376 		 * so unregister the region.
377 		 */
378 		kvmppc_unpin_guest_page(kvm, va);
379 		va = NULL;
380 	}
381 	if (vpap->pinned_addr)
382 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
383 	vpap->pinned_addr = va;
384 	if (va)
385 		vpap->pinned_end = va + vpap->len;
386 }
387 
388 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
389 {
390 	if (!(vcpu->arch.vpa.update_pending ||
391 	      vcpu->arch.slb_shadow.update_pending ||
392 	      vcpu->arch.dtl.update_pending))
393 		return;
394 
395 	spin_lock(&vcpu->arch.vpa_update_lock);
396 	if (vcpu->arch.vpa.update_pending) {
397 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
398 		if (vcpu->arch.vpa.pinned_addr)
399 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
400 	}
401 	if (vcpu->arch.dtl.update_pending) {
402 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
403 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
404 		vcpu->arch.dtl_index = 0;
405 	}
406 	if (vcpu->arch.slb_shadow.update_pending)
407 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
408 	spin_unlock(&vcpu->arch.vpa_update_lock);
409 }
410 
411 /*
412  * Return the accumulated stolen time for the vcore up until `now'.
413  * The caller should hold the vcore lock.
414  */
415 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
416 {
417 	u64 p;
418 
419 	/*
420 	 * If we are the task running the vcore, then since we hold
421 	 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
422 	 * can't be updated, so we don't need the tbacct_lock.
423 	 * If the vcore is inactive, it can't become active (since we
424 	 * hold the vcore lock), so the vcpu load/put functions won't
425 	 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
426 	 */
427 	if (vc->vcore_state != VCORE_INACTIVE &&
428 	    vc->runner->arch.run_task != current) {
429 		spin_lock(&vc->runner->arch.tbacct_lock);
430 		p = vc->stolen_tb;
431 		if (vc->preempt_tb != TB_NIL)
432 			p += now - vc->preempt_tb;
433 		spin_unlock(&vc->runner->arch.tbacct_lock);
434 	} else {
435 		p = vc->stolen_tb;
436 	}
437 	return p;
438 }
439 
440 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
441 				    struct kvmppc_vcore *vc)
442 {
443 	struct dtl_entry *dt;
444 	struct lppaca *vpa;
445 	unsigned long stolen;
446 	unsigned long core_stolen;
447 	u64 now;
448 
449 	dt = vcpu->arch.dtl_ptr;
450 	vpa = vcpu->arch.vpa.pinned_addr;
451 	now = mftb();
452 	core_stolen = vcore_stolen_time(vc, now);
453 	stolen = core_stolen - vcpu->arch.stolen_logged;
454 	vcpu->arch.stolen_logged = core_stolen;
455 	spin_lock(&vcpu->arch.tbacct_lock);
456 	stolen += vcpu->arch.busy_stolen;
457 	vcpu->arch.busy_stolen = 0;
458 	spin_unlock(&vcpu->arch.tbacct_lock);
459 	if (!dt || !vpa)
460 		return;
461 	memset(dt, 0, sizeof(struct dtl_entry));
462 	dt->dispatch_reason = 7;
463 	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
464 	dt->timebase = now;
465 	dt->enqueue_to_dispatch_time = stolen;
466 	dt->srr0 = kvmppc_get_pc(vcpu);
467 	dt->srr1 = vcpu->arch.shregs.msr;
468 	++dt;
469 	if (dt == vcpu->arch.dtl.pinned_end)
470 		dt = vcpu->arch.dtl.pinned_addr;
471 	vcpu->arch.dtl_ptr = dt;
472 	/* order writing *dt vs. writing vpa->dtl_idx */
473 	smp_wmb();
474 	vpa->dtl_idx = ++vcpu->arch.dtl_index;
475 }
476 
477 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
478 {
479 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
480 	unsigned long target, ret = H_SUCCESS;
481 	struct kvm_vcpu *tvcpu;
482 	int idx;
483 
484 	switch (req) {
485 	case H_ENTER:
486 		idx = srcu_read_lock(&vcpu->kvm->srcu);
487 		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
488 					      kvmppc_get_gpr(vcpu, 5),
489 					      kvmppc_get_gpr(vcpu, 6),
490 					      kvmppc_get_gpr(vcpu, 7));
491 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
492 		break;
493 	case H_CEDE:
494 		break;
495 	case H_PROD:
496 		target = kvmppc_get_gpr(vcpu, 4);
497 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
498 		if (!tvcpu) {
499 			ret = H_PARAMETER;
500 			break;
501 		}
502 		tvcpu->arch.prodded = 1;
503 		smp_mb();
504 		if (vcpu->arch.ceded) {
505 			if (waitqueue_active(&vcpu->wq)) {
506 				wake_up_interruptible(&vcpu->wq);
507 				vcpu->stat.halt_wakeup++;
508 			}
509 		}
510 		break;
511 	case H_CONFER:
512 		break;
513 	case H_REGISTER_VPA:
514 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
515 					kvmppc_get_gpr(vcpu, 5),
516 					kvmppc_get_gpr(vcpu, 6));
517 		break;
518 	default:
519 		return RESUME_HOST;
520 	}
521 	kvmppc_set_gpr(vcpu, 3, ret);
522 	vcpu->arch.hcall_needed = 0;
523 	return RESUME_GUEST;
524 }
525 
526 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
527 			      struct task_struct *tsk)
528 {
529 	int r = RESUME_HOST;
530 
531 	vcpu->stat.sum_exits++;
532 
533 	run->exit_reason = KVM_EXIT_UNKNOWN;
534 	run->ready_for_interrupt_injection = 1;
535 	switch (vcpu->arch.trap) {
536 	/* We're good on these - the host merely wanted to get our attention */
537 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
538 		vcpu->stat.dec_exits++;
539 		r = RESUME_GUEST;
540 		break;
541 	case BOOK3S_INTERRUPT_EXTERNAL:
542 		vcpu->stat.ext_intr_exits++;
543 		r = RESUME_GUEST;
544 		break;
545 	case BOOK3S_INTERRUPT_PERFMON:
546 		r = RESUME_GUEST;
547 		break;
548 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
549 		/*
550 		 * Deliver a machine check interrupt to the guest.
551 		 * We have to do this, even if the host has handled the
552 		 * machine check, because machine checks use SRR0/1 and
553 		 * the interrupt might have trashed guest state in them.
554 		 */
555 		kvmppc_book3s_queue_irqprio(vcpu,
556 					    BOOK3S_INTERRUPT_MACHINE_CHECK);
557 		r = RESUME_GUEST;
558 		break;
559 	case BOOK3S_INTERRUPT_PROGRAM:
560 	{
561 		ulong flags;
562 		/*
563 		 * Normally program interrupts are delivered directly
564 		 * to the guest by the hardware, but we can get here
565 		 * as a result of a hypervisor emulation interrupt
566 		 * (e40) getting turned into a 700 by BML RTAS.
567 		 */
568 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
569 		kvmppc_core_queue_program(vcpu, flags);
570 		r = RESUME_GUEST;
571 		break;
572 	}
573 	case BOOK3S_INTERRUPT_SYSCALL:
574 	{
575 		/* hcall - punt to userspace */
576 		int i;
577 
578 		if (vcpu->arch.shregs.msr & MSR_PR) {
579 			/* sc 1 from userspace - reflect to guest syscall */
580 			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
581 			r = RESUME_GUEST;
582 			break;
583 		}
584 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
585 		for (i = 0; i < 9; ++i)
586 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
587 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
588 		vcpu->arch.hcall_needed = 1;
589 		r = RESUME_HOST;
590 		break;
591 	}
592 	/*
593 	 * We get these next two if the guest accesses a page which it thinks
594 	 * it has mapped but which is not actually present, either because
595 	 * it is for an emulated I/O device or because the corresonding
596 	 * host page has been paged out.  Any other HDSI/HISI interrupts
597 	 * have been handled already.
598 	 */
599 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
600 		r = RESUME_PAGE_FAULT;
601 		break;
602 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
603 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
604 		vcpu->arch.fault_dsisr = 0;
605 		r = RESUME_PAGE_FAULT;
606 		break;
607 	/*
608 	 * This occurs if the guest executes an illegal instruction.
609 	 * We just generate a program interrupt to the guest, since
610 	 * we don't emulate any guest instructions at this stage.
611 	 */
612 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
613 		kvmppc_core_queue_program(vcpu, 0x80000);
614 		r = RESUME_GUEST;
615 		break;
616 	default:
617 		kvmppc_dump_regs(vcpu);
618 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
619 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
620 			vcpu->arch.shregs.msr);
621 		r = RESUME_HOST;
622 		BUG();
623 		break;
624 	}
625 
626 	return r;
627 }
628 
629 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
630                                   struct kvm_sregs *sregs)
631 {
632 	int i;
633 
634 	sregs->pvr = vcpu->arch.pvr;
635 
636 	memset(sregs, 0, sizeof(struct kvm_sregs));
637 	for (i = 0; i < vcpu->arch.slb_max; i++) {
638 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
639 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
640 	}
641 
642 	return 0;
643 }
644 
645 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
646                                   struct kvm_sregs *sregs)
647 {
648 	int i, j;
649 
650 	kvmppc_set_pvr(vcpu, sregs->pvr);
651 
652 	j = 0;
653 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
654 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
655 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
656 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
657 			++j;
658 		}
659 	}
660 	vcpu->arch.slb_max = j;
661 
662 	return 0;
663 }
664 
665 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
666 {
667 	int r = 0;
668 	long int i;
669 
670 	switch (id) {
671 	case KVM_REG_PPC_HIOR:
672 		*val = get_reg_val(id, 0);
673 		break;
674 	case KVM_REG_PPC_DABR:
675 		*val = get_reg_val(id, vcpu->arch.dabr);
676 		break;
677 	case KVM_REG_PPC_DSCR:
678 		*val = get_reg_val(id, vcpu->arch.dscr);
679 		break;
680 	case KVM_REG_PPC_PURR:
681 		*val = get_reg_val(id, vcpu->arch.purr);
682 		break;
683 	case KVM_REG_PPC_SPURR:
684 		*val = get_reg_val(id, vcpu->arch.spurr);
685 		break;
686 	case KVM_REG_PPC_AMR:
687 		*val = get_reg_val(id, vcpu->arch.amr);
688 		break;
689 	case KVM_REG_PPC_UAMOR:
690 		*val = get_reg_val(id, vcpu->arch.uamor);
691 		break;
692 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
693 		i = id - KVM_REG_PPC_MMCR0;
694 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
695 		break;
696 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
697 		i = id - KVM_REG_PPC_PMC1;
698 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
699 		break;
700 #ifdef CONFIG_VSX
701 	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
702 		if (cpu_has_feature(CPU_FTR_VSX)) {
703 			/* VSX => FP reg i is stored in arch.vsr[2*i] */
704 			long int i = id - KVM_REG_PPC_FPR0;
705 			*val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
706 		} else {
707 			/* let generic code handle it */
708 			r = -EINVAL;
709 		}
710 		break;
711 	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
712 		if (cpu_has_feature(CPU_FTR_VSX)) {
713 			long int i = id - KVM_REG_PPC_VSR0;
714 			val->vsxval[0] = vcpu->arch.vsr[2 * i];
715 			val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
716 		} else {
717 			r = -ENXIO;
718 		}
719 		break;
720 #endif /* CONFIG_VSX */
721 	case KVM_REG_PPC_VPA_ADDR:
722 		spin_lock(&vcpu->arch.vpa_update_lock);
723 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
724 		spin_unlock(&vcpu->arch.vpa_update_lock);
725 		break;
726 	case KVM_REG_PPC_VPA_SLB:
727 		spin_lock(&vcpu->arch.vpa_update_lock);
728 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
729 		val->vpaval.length = vcpu->arch.slb_shadow.len;
730 		spin_unlock(&vcpu->arch.vpa_update_lock);
731 		break;
732 	case KVM_REG_PPC_VPA_DTL:
733 		spin_lock(&vcpu->arch.vpa_update_lock);
734 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
735 		val->vpaval.length = vcpu->arch.dtl.len;
736 		spin_unlock(&vcpu->arch.vpa_update_lock);
737 		break;
738 	default:
739 		r = -EINVAL;
740 		break;
741 	}
742 
743 	return r;
744 }
745 
746 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
747 {
748 	int r = 0;
749 	long int i;
750 	unsigned long addr, len;
751 
752 	switch (id) {
753 	case KVM_REG_PPC_HIOR:
754 		/* Only allow this to be set to zero */
755 		if (set_reg_val(id, *val))
756 			r = -EINVAL;
757 		break;
758 	case KVM_REG_PPC_DABR:
759 		vcpu->arch.dabr = set_reg_val(id, *val);
760 		break;
761 	case KVM_REG_PPC_DSCR:
762 		vcpu->arch.dscr = set_reg_val(id, *val);
763 		break;
764 	case KVM_REG_PPC_PURR:
765 		vcpu->arch.purr = set_reg_val(id, *val);
766 		break;
767 	case KVM_REG_PPC_SPURR:
768 		vcpu->arch.spurr = set_reg_val(id, *val);
769 		break;
770 	case KVM_REG_PPC_AMR:
771 		vcpu->arch.amr = set_reg_val(id, *val);
772 		break;
773 	case KVM_REG_PPC_UAMOR:
774 		vcpu->arch.uamor = set_reg_val(id, *val);
775 		break;
776 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
777 		i = id - KVM_REG_PPC_MMCR0;
778 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
779 		break;
780 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
781 		i = id - KVM_REG_PPC_PMC1;
782 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
783 		break;
784 #ifdef CONFIG_VSX
785 	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
786 		if (cpu_has_feature(CPU_FTR_VSX)) {
787 			/* VSX => FP reg i is stored in arch.vsr[2*i] */
788 			long int i = id - KVM_REG_PPC_FPR0;
789 			vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
790 		} else {
791 			/* let generic code handle it */
792 			r = -EINVAL;
793 		}
794 		break;
795 	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
796 		if (cpu_has_feature(CPU_FTR_VSX)) {
797 			long int i = id - KVM_REG_PPC_VSR0;
798 			vcpu->arch.vsr[2 * i] = val->vsxval[0];
799 			vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
800 		} else {
801 			r = -ENXIO;
802 		}
803 		break;
804 #endif /* CONFIG_VSX */
805 	case KVM_REG_PPC_VPA_ADDR:
806 		addr = set_reg_val(id, *val);
807 		r = -EINVAL;
808 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
809 			      vcpu->arch.dtl.next_gpa))
810 			break;
811 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
812 		break;
813 	case KVM_REG_PPC_VPA_SLB:
814 		addr = val->vpaval.addr;
815 		len = val->vpaval.length;
816 		r = -EINVAL;
817 		if (addr && !vcpu->arch.vpa.next_gpa)
818 			break;
819 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
820 		break;
821 	case KVM_REG_PPC_VPA_DTL:
822 		addr = val->vpaval.addr;
823 		len = val->vpaval.length;
824 		r = -EINVAL;
825 		if (addr && (len < sizeof(struct dtl_entry) ||
826 			     !vcpu->arch.vpa.next_gpa))
827 			break;
828 		len -= len % sizeof(struct dtl_entry);
829 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
830 		break;
831 	default:
832 		r = -EINVAL;
833 		break;
834 	}
835 
836 	return r;
837 }
838 
839 int kvmppc_core_check_processor_compat(void)
840 {
841 	if (cpu_has_feature(CPU_FTR_HVMODE))
842 		return 0;
843 	return -EIO;
844 }
845 
846 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
847 {
848 	struct kvm_vcpu *vcpu;
849 	int err = -EINVAL;
850 	int core;
851 	struct kvmppc_vcore *vcore;
852 
853 	core = id / threads_per_core;
854 	if (core >= KVM_MAX_VCORES)
855 		goto out;
856 
857 	err = -ENOMEM;
858 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
859 	if (!vcpu)
860 		goto out;
861 
862 	err = kvm_vcpu_init(vcpu, kvm, id);
863 	if (err)
864 		goto free_vcpu;
865 
866 	vcpu->arch.shared = &vcpu->arch.shregs;
867 	vcpu->arch.mmcr[0] = MMCR0_FC;
868 	vcpu->arch.ctrl = CTRL_RUNLATCH;
869 	/* default to host PVR, since we can't spoof it */
870 	vcpu->arch.pvr = mfspr(SPRN_PVR);
871 	kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
872 	spin_lock_init(&vcpu->arch.vpa_update_lock);
873 	spin_lock_init(&vcpu->arch.tbacct_lock);
874 	vcpu->arch.busy_preempt = TB_NIL;
875 
876 	kvmppc_mmu_book3s_hv_init(vcpu);
877 
878 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
879 
880 	init_waitqueue_head(&vcpu->arch.cpu_run);
881 
882 	mutex_lock(&kvm->lock);
883 	vcore = kvm->arch.vcores[core];
884 	if (!vcore) {
885 		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
886 		if (vcore) {
887 			INIT_LIST_HEAD(&vcore->runnable_threads);
888 			spin_lock_init(&vcore->lock);
889 			init_waitqueue_head(&vcore->wq);
890 			vcore->preempt_tb = TB_NIL;
891 		}
892 		kvm->arch.vcores[core] = vcore;
893 		kvm->arch.online_vcores++;
894 	}
895 	mutex_unlock(&kvm->lock);
896 
897 	if (!vcore)
898 		goto free_vcpu;
899 
900 	spin_lock(&vcore->lock);
901 	++vcore->num_threads;
902 	spin_unlock(&vcore->lock);
903 	vcpu->arch.vcore = vcore;
904 
905 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
906 	kvmppc_sanity_check(vcpu);
907 
908 	return vcpu;
909 
910 free_vcpu:
911 	kmem_cache_free(kvm_vcpu_cache, vcpu);
912 out:
913 	return ERR_PTR(err);
914 }
915 
916 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
917 {
918 	spin_lock(&vcpu->arch.vpa_update_lock);
919 	if (vcpu->arch.dtl.pinned_addr)
920 		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
921 	if (vcpu->arch.slb_shadow.pinned_addr)
922 		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
923 	if (vcpu->arch.vpa.pinned_addr)
924 		kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
925 	spin_unlock(&vcpu->arch.vpa_update_lock);
926 	kvm_vcpu_uninit(vcpu);
927 	kmem_cache_free(kvm_vcpu_cache, vcpu);
928 }
929 
930 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
931 {
932 	unsigned long dec_nsec, now;
933 
934 	now = get_tb();
935 	if (now > vcpu->arch.dec_expires) {
936 		/* decrementer has already gone negative */
937 		kvmppc_core_queue_dec(vcpu);
938 		kvmppc_core_prepare_to_enter(vcpu);
939 		return;
940 	}
941 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
942 		   / tb_ticks_per_sec;
943 	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
944 		      HRTIMER_MODE_REL);
945 	vcpu->arch.timer_running = 1;
946 }
947 
948 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
949 {
950 	vcpu->arch.ceded = 0;
951 	if (vcpu->arch.timer_running) {
952 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
953 		vcpu->arch.timer_running = 0;
954 	}
955 }
956 
957 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
958 extern void xics_wake_cpu(int cpu);
959 
960 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
961 				   struct kvm_vcpu *vcpu)
962 {
963 	u64 now;
964 
965 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
966 		return;
967 	spin_lock(&vcpu->arch.tbacct_lock);
968 	now = mftb();
969 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
970 		vcpu->arch.stolen_logged;
971 	vcpu->arch.busy_preempt = now;
972 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
973 	spin_unlock(&vcpu->arch.tbacct_lock);
974 	--vc->n_runnable;
975 	list_del(&vcpu->arch.run_list);
976 }
977 
978 static int kvmppc_grab_hwthread(int cpu)
979 {
980 	struct paca_struct *tpaca;
981 	long timeout = 1000;
982 
983 	tpaca = &paca[cpu];
984 
985 	/* Ensure the thread won't go into the kernel if it wakes */
986 	tpaca->kvm_hstate.hwthread_req = 1;
987 	tpaca->kvm_hstate.kvm_vcpu = NULL;
988 
989 	/*
990 	 * If the thread is already executing in the kernel (e.g. handling
991 	 * a stray interrupt), wait for it to get back to nap mode.
992 	 * The smp_mb() is to ensure that our setting of hwthread_req
993 	 * is visible before we look at hwthread_state, so if this
994 	 * races with the code at system_reset_pSeries and the thread
995 	 * misses our setting of hwthread_req, we are sure to see its
996 	 * setting of hwthread_state, and vice versa.
997 	 */
998 	smp_mb();
999 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1000 		if (--timeout <= 0) {
1001 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
1002 			return -EBUSY;
1003 		}
1004 		udelay(1);
1005 	}
1006 	return 0;
1007 }
1008 
1009 static void kvmppc_release_hwthread(int cpu)
1010 {
1011 	struct paca_struct *tpaca;
1012 
1013 	tpaca = &paca[cpu];
1014 	tpaca->kvm_hstate.hwthread_req = 0;
1015 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1016 }
1017 
1018 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1019 {
1020 	int cpu;
1021 	struct paca_struct *tpaca;
1022 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1023 
1024 	if (vcpu->arch.timer_running) {
1025 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1026 		vcpu->arch.timer_running = 0;
1027 	}
1028 	cpu = vc->pcpu + vcpu->arch.ptid;
1029 	tpaca = &paca[cpu];
1030 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1031 	tpaca->kvm_hstate.kvm_vcore = vc;
1032 	tpaca->kvm_hstate.napping = 0;
1033 	vcpu->cpu = vc->pcpu;
1034 	smp_wmb();
1035 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1036 	if (vcpu->arch.ptid) {
1037 		xics_wake_cpu(cpu);
1038 		++vc->n_woken;
1039 	}
1040 #endif
1041 }
1042 
1043 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1044 {
1045 	int i;
1046 
1047 	HMT_low();
1048 	i = 0;
1049 	while (vc->nap_count < vc->n_woken) {
1050 		if (++i >= 1000000) {
1051 			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1052 			       vc->nap_count, vc->n_woken);
1053 			break;
1054 		}
1055 		cpu_relax();
1056 	}
1057 	HMT_medium();
1058 }
1059 
1060 /*
1061  * Check that we are on thread 0 and that any other threads in
1062  * this core are off-line.  Then grab the threads so they can't
1063  * enter the kernel.
1064  */
1065 static int on_primary_thread(void)
1066 {
1067 	int cpu = smp_processor_id();
1068 	int thr = cpu_thread_in_core(cpu);
1069 
1070 	if (thr)
1071 		return 0;
1072 	while (++thr < threads_per_core)
1073 		if (cpu_online(cpu + thr))
1074 			return 0;
1075 
1076 	/* Grab all hw threads so they can't go into the kernel */
1077 	for (thr = 1; thr < threads_per_core; ++thr) {
1078 		if (kvmppc_grab_hwthread(cpu + thr)) {
1079 			/* Couldn't grab one; let the others go */
1080 			do {
1081 				kvmppc_release_hwthread(cpu + thr);
1082 			} while (--thr > 0);
1083 			return 0;
1084 		}
1085 	}
1086 	return 1;
1087 }
1088 
1089 /*
1090  * Run a set of guest threads on a physical core.
1091  * Called with vc->lock held.
1092  */
1093 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1094 {
1095 	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1096 	long ret;
1097 	u64 now;
1098 	int ptid, i, need_vpa_update;
1099 	int srcu_idx;
1100 	struct kvm_vcpu *vcpus_to_update[threads_per_core];
1101 
1102 	/* don't start if any threads have a signal pending */
1103 	need_vpa_update = 0;
1104 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1105 		if (signal_pending(vcpu->arch.run_task))
1106 			return;
1107 		if (vcpu->arch.vpa.update_pending ||
1108 		    vcpu->arch.slb_shadow.update_pending ||
1109 		    vcpu->arch.dtl.update_pending)
1110 			vcpus_to_update[need_vpa_update++] = vcpu;
1111 	}
1112 
1113 	/*
1114 	 * Initialize *vc, in particular vc->vcore_state, so we can
1115 	 * drop the vcore lock if necessary.
1116 	 */
1117 	vc->n_woken = 0;
1118 	vc->nap_count = 0;
1119 	vc->entry_exit_count = 0;
1120 	vc->vcore_state = VCORE_STARTING;
1121 	vc->in_guest = 0;
1122 	vc->napping_threads = 0;
1123 
1124 	/*
1125 	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1126 	 * which can't be called with any spinlocks held.
1127 	 */
1128 	if (need_vpa_update) {
1129 		spin_unlock(&vc->lock);
1130 		for (i = 0; i < need_vpa_update; ++i)
1131 			kvmppc_update_vpas(vcpus_to_update[i]);
1132 		spin_lock(&vc->lock);
1133 	}
1134 
1135 	/*
1136 	 * Assign physical thread IDs, first to non-ceded vcpus
1137 	 * and then to ceded ones.
1138 	 */
1139 	ptid = 0;
1140 	vcpu0 = NULL;
1141 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1142 		if (!vcpu->arch.ceded) {
1143 			if (!ptid)
1144 				vcpu0 = vcpu;
1145 			vcpu->arch.ptid = ptid++;
1146 		}
1147 	}
1148 	if (!vcpu0)
1149 		goto out;	/* nothing to run; should never happen */
1150 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1151 		if (vcpu->arch.ceded)
1152 			vcpu->arch.ptid = ptid++;
1153 
1154 	/*
1155 	 * Make sure we are running on thread 0, and that
1156 	 * secondary threads are offline.
1157 	 */
1158 	if (threads_per_core > 1 && !on_primary_thread()) {
1159 		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1160 			vcpu->arch.ret = -EBUSY;
1161 		goto out;
1162 	}
1163 
1164 	vc->pcpu = smp_processor_id();
1165 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1166 		kvmppc_start_thread(vcpu);
1167 		kvmppc_create_dtl_entry(vcpu, vc);
1168 	}
1169 
1170 	vc->vcore_state = VCORE_RUNNING;
1171 	preempt_disable();
1172 	spin_unlock(&vc->lock);
1173 
1174 	kvm_guest_enter();
1175 
1176 	srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1177 
1178 	__kvmppc_vcore_entry(NULL, vcpu0);
1179 
1180 	spin_lock(&vc->lock);
1181 	/* disable sending of IPIs on virtual external irqs */
1182 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1183 		vcpu->cpu = -1;
1184 	/* wait for secondary threads to finish writing their state to memory */
1185 	if (vc->nap_count < vc->n_woken)
1186 		kvmppc_wait_for_nap(vc);
1187 	for (i = 0; i < threads_per_core; ++i)
1188 		kvmppc_release_hwthread(vc->pcpu + i);
1189 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1190 	vc->vcore_state = VCORE_EXITING;
1191 	spin_unlock(&vc->lock);
1192 
1193 	srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1194 
1195 	/* make sure updates to secondary vcpu structs are visible now */
1196 	smp_mb();
1197 	kvm_guest_exit();
1198 
1199 	preempt_enable();
1200 	kvm_resched(vcpu);
1201 
1202 	spin_lock(&vc->lock);
1203 	now = get_tb();
1204 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1205 		/* cancel pending dec exception if dec is positive */
1206 		if (now < vcpu->arch.dec_expires &&
1207 		    kvmppc_core_pending_dec(vcpu))
1208 			kvmppc_core_dequeue_dec(vcpu);
1209 
1210 		ret = RESUME_GUEST;
1211 		if (vcpu->arch.trap)
1212 			ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
1213 						 vcpu->arch.run_task);
1214 
1215 		vcpu->arch.ret = ret;
1216 		vcpu->arch.trap = 0;
1217 
1218 		if (vcpu->arch.ceded) {
1219 			if (ret != RESUME_GUEST)
1220 				kvmppc_end_cede(vcpu);
1221 			else
1222 				kvmppc_set_timer(vcpu);
1223 		}
1224 	}
1225 
1226  out:
1227 	vc->vcore_state = VCORE_INACTIVE;
1228 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1229 				 arch.run_list) {
1230 		if (vcpu->arch.ret != RESUME_GUEST) {
1231 			kvmppc_remove_runnable(vc, vcpu);
1232 			wake_up(&vcpu->arch.cpu_run);
1233 		}
1234 	}
1235 }
1236 
1237 /*
1238  * Wait for some other vcpu thread to execute us, and
1239  * wake us up when we need to handle something in the host.
1240  */
1241 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1242 {
1243 	DEFINE_WAIT(wait);
1244 
1245 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1246 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1247 		schedule();
1248 	finish_wait(&vcpu->arch.cpu_run, &wait);
1249 }
1250 
1251 /*
1252  * All the vcpus in this vcore are idle, so wait for a decrementer
1253  * or external interrupt to one of the vcpus.  vc->lock is held.
1254  */
1255 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1256 {
1257 	DEFINE_WAIT(wait);
1258 
1259 	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1260 	vc->vcore_state = VCORE_SLEEPING;
1261 	spin_unlock(&vc->lock);
1262 	schedule();
1263 	finish_wait(&vc->wq, &wait);
1264 	spin_lock(&vc->lock);
1265 	vc->vcore_state = VCORE_INACTIVE;
1266 }
1267 
1268 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1269 {
1270 	int n_ceded;
1271 	struct kvmppc_vcore *vc;
1272 	struct kvm_vcpu *v, *vn;
1273 
1274 	kvm_run->exit_reason = 0;
1275 	vcpu->arch.ret = RESUME_GUEST;
1276 	vcpu->arch.trap = 0;
1277 	kvmppc_update_vpas(vcpu);
1278 
1279 	/*
1280 	 * Synchronize with other threads in this virtual core
1281 	 */
1282 	vc = vcpu->arch.vcore;
1283 	spin_lock(&vc->lock);
1284 	vcpu->arch.ceded = 0;
1285 	vcpu->arch.run_task = current;
1286 	vcpu->arch.kvm_run = kvm_run;
1287 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1288 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1289 	vcpu->arch.busy_preempt = TB_NIL;
1290 	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1291 	++vc->n_runnable;
1292 
1293 	/*
1294 	 * This happens the first time this is called for a vcpu.
1295 	 * If the vcore is already running, we may be able to start
1296 	 * this thread straight away and have it join in.
1297 	 */
1298 	if (!signal_pending(current)) {
1299 		if (vc->vcore_state == VCORE_RUNNING &&
1300 		    VCORE_EXIT_COUNT(vc) == 0) {
1301 			vcpu->arch.ptid = vc->n_runnable - 1;
1302 			kvmppc_create_dtl_entry(vcpu, vc);
1303 			kvmppc_start_thread(vcpu);
1304 		} else if (vc->vcore_state == VCORE_SLEEPING) {
1305 			wake_up(&vc->wq);
1306 		}
1307 
1308 	}
1309 
1310 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1311 	       !signal_pending(current)) {
1312 		if (vc->vcore_state != VCORE_INACTIVE) {
1313 			spin_unlock(&vc->lock);
1314 			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1315 			spin_lock(&vc->lock);
1316 			continue;
1317 		}
1318 		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1319 					 arch.run_list) {
1320 			kvmppc_core_prepare_to_enter(v);
1321 			if (signal_pending(v->arch.run_task)) {
1322 				kvmppc_remove_runnable(vc, v);
1323 				v->stat.signal_exits++;
1324 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1325 				v->arch.ret = -EINTR;
1326 				wake_up(&v->arch.cpu_run);
1327 			}
1328 		}
1329 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1330 			break;
1331 		vc->runner = vcpu;
1332 		n_ceded = 0;
1333 		list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
1334 			if (!v->arch.pending_exceptions)
1335 				n_ceded += v->arch.ceded;
1336 		if (n_ceded == vc->n_runnable)
1337 			kvmppc_vcore_blocked(vc);
1338 		else
1339 			kvmppc_run_core(vc);
1340 		vc->runner = NULL;
1341 	}
1342 
1343 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1344 	       (vc->vcore_state == VCORE_RUNNING ||
1345 		vc->vcore_state == VCORE_EXITING)) {
1346 		spin_unlock(&vc->lock);
1347 		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1348 		spin_lock(&vc->lock);
1349 	}
1350 
1351 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1352 		kvmppc_remove_runnable(vc, vcpu);
1353 		vcpu->stat.signal_exits++;
1354 		kvm_run->exit_reason = KVM_EXIT_INTR;
1355 		vcpu->arch.ret = -EINTR;
1356 	}
1357 
1358 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1359 		/* Wake up some vcpu to run the core */
1360 		v = list_first_entry(&vc->runnable_threads,
1361 				     struct kvm_vcpu, arch.run_list);
1362 		wake_up(&v->arch.cpu_run);
1363 	}
1364 
1365 	spin_unlock(&vc->lock);
1366 	return vcpu->arch.ret;
1367 }
1368 
1369 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1370 {
1371 	int r;
1372 	int srcu_idx;
1373 
1374 	if (!vcpu->arch.sane) {
1375 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1376 		return -EINVAL;
1377 	}
1378 
1379 	kvmppc_core_prepare_to_enter(vcpu);
1380 
1381 	/* No need to go into the guest when all we'll do is come back out */
1382 	if (signal_pending(current)) {
1383 		run->exit_reason = KVM_EXIT_INTR;
1384 		return -EINTR;
1385 	}
1386 
1387 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
1388 	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1389 	smp_mb();
1390 
1391 	/* On the first time here, set up HTAB and VRMA or RMA */
1392 	if (!vcpu->kvm->arch.rma_setup_done) {
1393 		r = kvmppc_hv_setup_htab_rma(vcpu);
1394 		if (r)
1395 			goto out;
1396 	}
1397 
1398 	flush_fp_to_thread(current);
1399 	flush_altivec_to_thread(current);
1400 	flush_vsx_to_thread(current);
1401 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1402 	vcpu->arch.pgdir = current->mm->pgd;
1403 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1404 
1405 	do {
1406 		r = kvmppc_run_vcpu(run, vcpu);
1407 
1408 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1409 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
1410 			r = kvmppc_pseries_do_hcall(vcpu);
1411 			kvmppc_core_prepare_to_enter(vcpu);
1412 		} else if (r == RESUME_PAGE_FAULT) {
1413 			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1414 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
1415 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1416 			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1417 		}
1418 	} while (r == RESUME_GUEST);
1419 
1420  out:
1421 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1422 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1423 	return r;
1424 }
1425 
1426 
1427 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1428    Assumes POWER7 or PPC970. */
1429 static inline int lpcr_rmls(unsigned long rma_size)
1430 {
1431 	switch (rma_size) {
1432 	case 32ul << 20:	/* 32 MB */
1433 		if (cpu_has_feature(CPU_FTR_ARCH_206))
1434 			return 8;	/* only supported on POWER7 */
1435 		return -1;
1436 	case 64ul << 20:	/* 64 MB */
1437 		return 3;
1438 	case 128ul << 20:	/* 128 MB */
1439 		return 7;
1440 	case 256ul << 20:	/* 256 MB */
1441 		return 4;
1442 	case 1ul << 30:		/* 1 GB */
1443 		return 2;
1444 	case 16ul << 30:	/* 16 GB */
1445 		return 1;
1446 	case 256ul << 30:	/* 256 GB */
1447 		return 0;
1448 	default:
1449 		return -1;
1450 	}
1451 }
1452 
1453 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1454 {
1455 	struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1456 	struct page *page;
1457 
1458 	if (vmf->pgoff >= ri->npages)
1459 		return VM_FAULT_SIGBUS;
1460 
1461 	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1462 	get_page(page);
1463 	vmf->page = page;
1464 	return 0;
1465 }
1466 
1467 static const struct vm_operations_struct kvm_rma_vm_ops = {
1468 	.fault = kvm_rma_fault,
1469 };
1470 
1471 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1472 {
1473 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1474 	vma->vm_ops = &kvm_rma_vm_ops;
1475 	return 0;
1476 }
1477 
1478 static int kvm_rma_release(struct inode *inode, struct file *filp)
1479 {
1480 	struct kvmppc_linear_info *ri = filp->private_data;
1481 
1482 	kvm_release_rma(ri);
1483 	return 0;
1484 }
1485 
1486 static struct file_operations kvm_rma_fops = {
1487 	.mmap           = kvm_rma_mmap,
1488 	.release	= kvm_rma_release,
1489 };
1490 
1491 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1492 {
1493 	struct kvmppc_linear_info *ri;
1494 	long fd;
1495 
1496 	ri = kvm_alloc_rma();
1497 	if (!ri)
1498 		return -ENOMEM;
1499 
1500 	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1501 	if (fd < 0)
1502 		kvm_release_rma(ri);
1503 
1504 	ret->rma_size = ri->npages << PAGE_SHIFT;
1505 	return fd;
1506 }
1507 
1508 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1509 				     int linux_psize)
1510 {
1511 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1512 
1513 	if (!def->shift)
1514 		return;
1515 	(*sps)->page_shift = def->shift;
1516 	(*sps)->slb_enc = def->sllp;
1517 	(*sps)->enc[0].page_shift = def->shift;
1518 	(*sps)->enc[0].pte_enc = def->penc;
1519 	(*sps)++;
1520 }
1521 
1522 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1523 {
1524 	struct kvm_ppc_one_seg_page_size *sps;
1525 
1526 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
1527 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1528 		info->flags |= KVM_PPC_1T_SEGMENTS;
1529 	info->slb_size = mmu_slb_size;
1530 
1531 	/* We only support these sizes for now, and no muti-size segments */
1532 	sps = &info->sps[0];
1533 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1534 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1535 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1536 
1537 	return 0;
1538 }
1539 
1540 /*
1541  * Get (and clear) the dirty memory log for a memory slot.
1542  */
1543 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1544 {
1545 	struct kvm_memory_slot *memslot;
1546 	int r;
1547 	unsigned long n;
1548 
1549 	mutex_lock(&kvm->slots_lock);
1550 
1551 	r = -EINVAL;
1552 	if (log->slot >= KVM_MEMORY_SLOTS)
1553 		goto out;
1554 
1555 	memslot = id_to_memslot(kvm->memslots, log->slot);
1556 	r = -ENOENT;
1557 	if (!memslot->dirty_bitmap)
1558 		goto out;
1559 
1560 	n = kvm_dirty_bitmap_bytes(memslot);
1561 	memset(memslot->dirty_bitmap, 0, n);
1562 
1563 	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1564 	if (r)
1565 		goto out;
1566 
1567 	r = -EFAULT;
1568 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1569 		goto out;
1570 
1571 	r = 0;
1572 out:
1573 	mutex_unlock(&kvm->slots_lock);
1574 	return r;
1575 }
1576 
1577 static void unpin_slot(struct kvm_memory_slot *memslot)
1578 {
1579 	unsigned long *physp;
1580 	unsigned long j, npages, pfn;
1581 	struct page *page;
1582 
1583 	physp = memslot->arch.slot_phys;
1584 	npages = memslot->npages;
1585 	if (!physp)
1586 		return;
1587 	for (j = 0; j < npages; j++) {
1588 		if (!(physp[j] & KVMPPC_GOT_PAGE))
1589 			continue;
1590 		pfn = physp[j] >> PAGE_SHIFT;
1591 		page = pfn_to_page(pfn);
1592 		SetPageDirty(page);
1593 		put_page(page);
1594 	}
1595 }
1596 
1597 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1598 			      struct kvm_memory_slot *dont)
1599 {
1600 	if (!dont || free->arch.rmap != dont->arch.rmap) {
1601 		vfree(free->arch.rmap);
1602 		free->arch.rmap = NULL;
1603 	}
1604 	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1605 		unpin_slot(free);
1606 		vfree(free->arch.slot_phys);
1607 		free->arch.slot_phys = NULL;
1608 	}
1609 }
1610 
1611 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1612 			       unsigned long npages)
1613 {
1614 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1615 	if (!slot->arch.rmap)
1616 		return -ENOMEM;
1617 	slot->arch.slot_phys = NULL;
1618 
1619 	return 0;
1620 }
1621 
1622 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1623 				      struct kvm_memory_slot *memslot,
1624 				      struct kvm_userspace_memory_region *mem)
1625 {
1626 	unsigned long *phys;
1627 
1628 	/* Allocate a slot_phys array if needed */
1629 	phys = memslot->arch.slot_phys;
1630 	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1631 		phys = vzalloc(memslot->npages * sizeof(unsigned long));
1632 		if (!phys)
1633 			return -ENOMEM;
1634 		memslot->arch.slot_phys = phys;
1635 	}
1636 
1637 	return 0;
1638 }
1639 
1640 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1641 				      struct kvm_userspace_memory_region *mem,
1642 				      struct kvm_memory_slot old)
1643 {
1644 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1645 	struct kvm_memory_slot *memslot;
1646 
1647 	if (npages && old.npages) {
1648 		/*
1649 		 * If modifying a memslot, reset all the rmap dirty bits.
1650 		 * If this is a new memslot, we don't need to do anything
1651 		 * since the rmap array starts out as all zeroes,
1652 		 * i.e. no pages are dirty.
1653 		 */
1654 		memslot = id_to_memslot(kvm->memslots, mem->slot);
1655 		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1656 	}
1657 }
1658 
1659 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1660 {
1661 	int err = 0;
1662 	struct kvm *kvm = vcpu->kvm;
1663 	struct kvmppc_linear_info *ri = NULL;
1664 	unsigned long hva;
1665 	struct kvm_memory_slot *memslot;
1666 	struct vm_area_struct *vma;
1667 	unsigned long lpcr, senc;
1668 	unsigned long psize, porder;
1669 	unsigned long rma_size;
1670 	unsigned long rmls;
1671 	unsigned long *physp;
1672 	unsigned long i, npages;
1673 	int srcu_idx;
1674 
1675 	mutex_lock(&kvm->lock);
1676 	if (kvm->arch.rma_setup_done)
1677 		goto out;	/* another vcpu beat us to it */
1678 
1679 	/* Allocate hashed page table (if not done already) and reset it */
1680 	if (!kvm->arch.hpt_virt) {
1681 		err = kvmppc_alloc_hpt(kvm, NULL);
1682 		if (err) {
1683 			pr_err("KVM: Couldn't alloc HPT\n");
1684 			goto out;
1685 		}
1686 	}
1687 
1688 	/* Look up the memslot for guest physical address 0 */
1689 	srcu_idx = srcu_read_lock(&kvm->srcu);
1690 	memslot = gfn_to_memslot(kvm, 0);
1691 
1692 	/* We must have some memory at 0 by now */
1693 	err = -EINVAL;
1694 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1695 		goto out_srcu;
1696 
1697 	/* Look up the VMA for the start of this memory slot */
1698 	hva = memslot->userspace_addr;
1699 	down_read(&current->mm->mmap_sem);
1700 	vma = find_vma(current->mm, hva);
1701 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1702 		goto up_out;
1703 
1704 	psize = vma_kernel_pagesize(vma);
1705 	porder = __ilog2(psize);
1706 
1707 	/* Is this one of our preallocated RMAs? */
1708 	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1709 	    hva == vma->vm_start)
1710 		ri = vma->vm_file->private_data;
1711 
1712 	up_read(&current->mm->mmap_sem);
1713 
1714 	if (!ri) {
1715 		/* On POWER7, use VRMA; on PPC970, give up */
1716 		err = -EPERM;
1717 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1718 			pr_err("KVM: CPU requires an RMO\n");
1719 			goto out_srcu;
1720 		}
1721 
1722 		/* We can handle 4k, 64k or 16M pages in the VRMA */
1723 		err = -EINVAL;
1724 		if (!(psize == 0x1000 || psize == 0x10000 ||
1725 		      psize == 0x1000000))
1726 			goto out_srcu;
1727 
1728 		/* Update VRMASD field in the LPCR */
1729 		senc = slb_pgsize_encoding(psize);
1730 		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1731 			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1732 		lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1733 		lpcr |= senc << (LPCR_VRMASD_SH - 4);
1734 		kvm->arch.lpcr = lpcr;
1735 
1736 		/* Create HPTEs in the hash page table for the VRMA */
1737 		kvmppc_map_vrma(vcpu, memslot, porder);
1738 
1739 	} else {
1740 		/* Set up to use an RMO region */
1741 		rma_size = ri->npages;
1742 		if (rma_size > memslot->npages)
1743 			rma_size = memslot->npages;
1744 		rma_size <<= PAGE_SHIFT;
1745 		rmls = lpcr_rmls(rma_size);
1746 		err = -EINVAL;
1747 		if (rmls < 0) {
1748 			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1749 			goto out_srcu;
1750 		}
1751 		atomic_inc(&ri->use_count);
1752 		kvm->arch.rma = ri;
1753 
1754 		/* Update LPCR and RMOR */
1755 		lpcr = kvm->arch.lpcr;
1756 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1757 			/* PPC970; insert RMLS value (split field) in HID4 */
1758 			lpcr &= ~((1ul << HID4_RMLS0_SH) |
1759 				  (3ul << HID4_RMLS2_SH));
1760 			lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1761 				((rmls & 3) << HID4_RMLS2_SH);
1762 			/* RMOR is also in HID4 */
1763 			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1764 				<< HID4_RMOR_SH;
1765 		} else {
1766 			/* POWER7 */
1767 			lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1768 			lpcr |= rmls << LPCR_RMLS_SH;
1769 			kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1770 		}
1771 		kvm->arch.lpcr = lpcr;
1772 		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1773 			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1774 
1775 		/* Initialize phys addrs of pages in RMO */
1776 		npages = ri->npages;
1777 		porder = __ilog2(npages);
1778 		physp = memslot->arch.slot_phys;
1779 		if (physp) {
1780 			if (npages > memslot->npages)
1781 				npages = memslot->npages;
1782 			spin_lock(&kvm->arch.slot_phys_lock);
1783 			for (i = 0; i < npages; ++i)
1784 				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1785 					porder;
1786 			spin_unlock(&kvm->arch.slot_phys_lock);
1787 		}
1788 	}
1789 
1790 	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1791 	smp_wmb();
1792 	kvm->arch.rma_setup_done = 1;
1793 	err = 0;
1794  out_srcu:
1795 	srcu_read_unlock(&kvm->srcu, srcu_idx);
1796  out:
1797 	mutex_unlock(&kvm->lock);
1798 	return err;
1799 
1800  up_out:
1801 	up_read(&current->mm->mmap_sem);
1802 	goto out;
1803 }
1804 
1805 int kvmppc_core_init_vm(struct kvm *kvm)
1806 {
1807 	unsigned long lpcr, lpid;
1808 
1809 	/* Allocate the guest's logical partition ID */
1810 
1811 	lpid = kvmppc_alloc_lpid();
1812 	if (lpid < 0)
1813 		return -ENOMEM;
1814 	kvm->arch.lpid = lpid;
1815 
1816 	/*
1817 	 * Since we don't flush the TLB when tearing down a VM,
1818 	 * and this lpid might have previously been used,
1819 	 * make sure we flush on each core before running the new VM.
1820 	 */
1821 	cpumask_setall(&kvm->arch.need_tlb_flush);
1822 
1823 	INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1824 
1825 	kvm->arch.rma = NULL;
1826 
1827 	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1828 
1829 	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1830 		/* PPC970; HID4 is effectively the LPCR */
1831 		kvm->arch.host_lpid = 0;
1832 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1833 		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1834 		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1835 			((lpid & 0xf) << HID4_LPID5_SH);
1836 	} else {
1837 		/* POWER7; init LPCR for virtual RMA mode */
1838 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
1839 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1840 		lpcr &= LPCR_PECE | LPCR_LPES;
1841 		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1842 			LPCR_VPM0 | LPCR_VPM1;
1843 		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1844 			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1845 	}
1846 	kvm->arch.lpcr = lpcr;
1847 
1848 	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1849 	spin_lock_init(&kvm->arch.slot_phys_lock);
1850 
1851 	/*
1852 	 * Don't allow secondary CPU threads to come online
1853 	 * while any KVM VMs exist.
1854 	 */
1855 	inhibit_secondary_onlining();
1856 
1857 	return 0;
1858 }
1859 
1860 void kvmppc_core_destroy_vm(struct kvm *kvm)
1861 {
1862 	uninhibit_secondary_onlining();
1863 
1864 	if (kvm->arch.rma) {
1865 		kvm_release_rma(kvm->arch.rma);
1866 		kvm->arch.rma = NULL;
1867 	}
1868 
1869 	kvmppc_free_hpt(kvm);
1870 	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1871 }
1872 
1873 /* These are stubs for now */
1874 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1875 {
1876 }
1877 
1878 /* We don't need to emulate any privileged instructions or dcbz */
1879 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1880                            unsigned int inst, int *advance)
1881 {
1882 	return EMULATE_FAIL;
1883 }
1884 
1885 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1886 {
1887 	return EMULATE_FAIL;
1888 }
1889 
1890 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1891 {
1892 	return EMULATE_FAIL;
1893 }
1894 
1895 static int kvmppc_book3s_hv_init(void)
1896 {
1897 	int r;
1898 
1899 	r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1900 
1901 	if (r)
1902 		return r;
1903 
1904 	r = kvmppc_mmu_hv_init();
1905 
1906 	return r;
1907 }
1908 
1909 static void kvmppc_book3s_hv_exit(void)
1910 {
1911 	kvm_exit();
1912 }
1913 
1914 module_init(kvmppc_book3s_hv_init);
1915 module_exit(kvmppc_book3s_hv_exit);
1916