xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision c4ee0af3)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
55 #include <linux/module.h>
56 
57 #include "book3s.h"
58 
59 /* #define EXIT_DEBUG */
60 /* #define EXIT_DEBUG_SIMPLE */
61 /* #define EXIT_DEBUG_INT */
62 
63 /* Used to indicate that a guest page fault needs to be handled */
64 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
65 
66 /* Used as a "null" value for timebase values */
67 #define TB_NIL	(~(u64)0)
68 
69 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
70 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
71 
72 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
73 {
74 	int me;
75 	int cpu = vcpu->cpu;
76 	wait_queue_head_t *wqp;
77 
78 	wqp = kvm_arch_vcpu_wq(vcpu);
79 	if (waitqueue_active(wqp)) {
80 		wake_up_interruptible(wqp);
81 		++vcpu->stat.halt_wakeup;
82 	}
83 
84 	me = get_cpu();
85 
86 	/* CPU points to the first thread of the core */
87 	if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
88 		int real_cpu = cpu + vcpu->arch.ptid;
89 		if (paca[real_cpu].kvm_hstate.xics_phys)
90 			xics_wake_cpu(real_cpu);
91 		else if (cpu_online(cpu))
92 			smp_send_reschedule(cpu);
93 	}
94 	put_cpu();
95 }
96 
97 /*
98  * We use the vcpu_load/put functions to measure stolen time.
99  * Stolen time is counted as time when either the vcpu is able to
100  * run as part of a virtual core, but the task running the vcore
101  * is preempted or sleeping, or when the vcpu needs something done
102  * in the kernel by the task running the vcpu, but that task is
103  * preempted or sleeping.  Those two things have to be counted
104  * separately, since one of the vcpu tasks will take on the job
105  * of running the core, and the other vcpu tasks in the vcore will
106  * sleep waiting for it to do that, but that sleep shouldn't count
107  * as stolen time.
108  *
109  * Hence we accumulate stolen time when the vcpu can run as part of
110  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
111  * needs its task to do other things in the kernel (for example,
112  * service a page fault) in busy_stolen.  We don't accumulate
113  * stolen time for a vcore when it is inactive, or for a vcpu
114  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
115  * a misnomer; it means that the vcpu task is not executing in
116  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
117  * the kernel.  We don't have any way of dividing up that time
118  * between time that the vcpu is genuinely stopped, time that
119  * the task is actively working on behalf of the vcpu, and time
120  * that the task is preempted, so we don't count any of it as
121  * stolen.
122  *
123  * Updates to busy_stolen are protected by arch.tbacct_lock;
124  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
125  * of the vcpu that has taken responsibility for running the vcore
126  * (i.e. vc->runner).  The stolen times are measured in units of
127  * timebase ticks.  (Note that the != TB_NIL checks below are
128  * purely defensive; they should never fail.)
129  */
130 
131 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
132 {
133 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
134 	unsigned long flags;
135 
136 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
137 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
138 	    vc->preempt_tb != TB_NIL) {
139 		vc->stolen_tb += mftb() - vc->preempt_tb;
140 		vc->preempt_tb = TB_NIL;
141 	}
142 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
143 	    vcpu->arch.busy_preempt != TB_NIL) {
144 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
145 		vcpu->arch.busy_preempt = TB_NIL;
146 	}
147 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
148 }
149 
150 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
151 {
152 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
153 	unsigned long flags;
154 
155 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
156 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
157 		vc->preempt_tb = mftb();
158 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
159 		vcpu->arch.busy_preempt = mftb();
160 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
161 }
162 
163 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
164 {
165 	vcpu->arch.shregs.msr = msr;
166 	kvmppc_end_cede(vcpu);
167 }
168 
169 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
170 {
171 	vcpu->arch.pvr = pvr;
172 }
173 
174 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
175 {
176 	unsigned long pcr = 0;
177 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
178 
179 	if (arch_compat) {
180 		if (!cpu_has_feature(CPU_FTR_ARCH_206))
181 			return -EINVAL;	/* 970 has no compat mode support */
182 
183 		switch (arch_compat) {
184 		case PVR_ARCH_205:
185 			pcr = PCR_ARCH_205;
186 			break;
187 		case PVR_ARCH_206:
188 		case PVR_ARCH_206p:
189 			break;
190 		default:
191 			return -EINVAL;
192 		}
193 	}
194 
195 	spin_lock(&vc->lock);
196 	vc->arch_compat = arch_compat;
197 	vc->pcr = pcr;
198 	spin_unlock(&vc->lock);
199 
200 	return 0;
201 }
202 
203 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
204 {
205 	int r;
206 
207 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
208 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
209 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
210 	for (r = 0; r < 16; ++r)
211 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
212 		       r, kvmppc_get_gpr(vcpu, r),
213 		       r+16, kvmppc_get_gpr(vcpu, r+16));
214 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
215 	       vcpu->arch.ctr, vcpu->arch.lr);
216 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
217 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
218 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
219 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
220 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
221 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
222 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
223 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
224 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
225 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
226 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
227 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
228 	for (r = 0; r < vcpu->arch.slb_max; ++r)
229 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
230 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
231 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
232 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
233 	       vcpu->arch.last_inst);
234 }
235 
236 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
237 {
238 	int r;
239 	struct kvm_vcpu *v, *ret = NULL;
240 
241 	mutex_lock(&kvm->lock);
242 	kvm_for_each_vcpu(r, v, kvm) {
243 		if (v->vcpu_id == id) {
244 			ret = v;
245 			break;
246 		}
247 	}
248 	mutex_unlock(&kvm->lock);
249 	return ret;
250 }
251 
252 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
253 {
254 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
255 	vpa->yield_count = 1;
256 }
257 
258 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
259 		   unsigned long addr, unsigned long len)
260 {
261 	/* check address is cacheline aligned */
262 	if (addr & (L1_CACHE_BYTES - 1))
263 		return -EINVAL;
264 	spin_lock(&vcpu->arch.vpa_update_lock);
265 	if (v->next_gpa != addr || v->len != len) {
266 		v->next_gpa = addr;
267 		v->len = addr ? len : 0;
268 		v->update_pending = 1;
269 	}
270 	spin_unlock(&vcpu->arch.vpa_update_lock);
271 	return 0;
272 }
273 
274 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
275 struct reg_vpa {
276 	u32 dummy;
277 	union {
278 		u16 hword;
279 		u32 word;
280 	} length;
281 };
282 
283 static int vpa_is_registered(struct kvmppc_vpa *vpap)
284 {
285 	if (vpap->update_pending)
286 		return vpap->next_gpa != 0;
287 	return vpap->pinned_addr != NULL;
288 }
289 
290 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
291 				       unsigned long flags,
292 				       unsigned long vcpuid, unsigned long vpa)
293 {
294 	struct kvm *kvm = vcpu->kvm;
295 	unsigned long len, nb;
296 	void *va;
297 	struct kvm_vcpu *tvcpu;
298 	int err;
299 	int subfunc;
300 	struct kvmppc_vpa *vpap;
301 
302 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
303 	if (!tvcpu)
304 		return H_PARAMETER;
305 
306 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
307 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
308 	    subfunc == H_VPA_REG_SLB) {
309 		/* Registering new area - address must be cache-line aligned */
310 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
311 			return H_PARAMETER;
312 
313 		/* convert logical addr to kernel addr and read length */
314 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
315 		if (va == NULL)
316 			return H_PARAMETER;
317 		if (subfunc == H_VPA_REG_VPA)
318 			len = ((struct reg_vpa *)va)->length.hword;
319 		else
320 			len = ((struct reg_vpa *)va)->length.word;
321 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
322 
323 		/* Check length */
324 		if (len > nb || len < sizeof(struct reg_vpa))
325 			return H_PARAMETER;
326 	} else {
327 		vpa = 0;
328 		len = 0;
329 	}
330 
331 	err = H_PARAMETER;
332 	vpap = NULL;
333 	spin_lock(&tvcpu->arch.vpa_update_lock);
334 
335 	switch (subfunc) {
336 	case H_VPA_REG_VPA:		/* register VPA */
337 		if (len < sizeof(struct lppaca))
338 			break;
339 		vpap = &tvcpu->arch.vpa;
340 		err = 0;
341 		break;
342 
343 	case H_VPA_REG_DTL:		/* register DTL */
344 		if (len < sizeof(struct dtl_entry))
345 			break;
346 		len -= len % sizeof(struct dtl_entry);
347 
348 		/* Check that they have previously registered a VPA */
349 		err = H_RESOURCE;
350 		if (!vpa_is_registered(&tvcpu->arch.vpa))
351 			break;
352 
353 		vpap = &tvcpu->arch.dtl;
354 		err = 0;
355 		break;
356 
357 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
358 		/* Check that they have previously registered a VPA */
359 		err = H_RESOURCE;
360 		if (!vpa_is_registered(&tvcpu->arch.vpa))
361 			break;
362 
363 		vpap = &tvcpu->arch.slb_shadow;
364 		err = 0;
365 		break;
366 
367 	case H_VPA_DEREG_VPA:		/* deregister VPA */
368 		/* Check they don't still have a DTL or SLB buf registered */
369 		err = H_RESOURCE;
370 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
371 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
372 			break;
373 
374 		vpap = &tvcpu->arch.vpa;
375 		err = 0;
376 		break;
377 
378 	case H_VPA_DEREG_DTL:		/* deregister DTL */
379 		vpap = &tvcpu->arch.dtl;
380 		err = 0;
381 		break;
382 
383 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
384 		vpap = &tvcpu->arch.slb_shadow;
385 		err = 0;
386 		break;
387 	}
388 
389 	if (vpap) {
390 		vpap->next_gpa = vpa;
391 		vpap->len = len;
392 		vpap->update_pending = 1;
393 	}
394 
395 	spin_unlock(&tvcpu->arch.vpa_update_lock);
396 
397 	return err;
398 }
399 
400 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
401 {
402 	struct kvm *kvm = vcpu->kvm;
403 	void *va;
404 	unsigned long nb;
405 	unsigned long gpa;
406 
407 	/*
408 	 * We need to pin the page pointed to by vpap->next_gpa,
409 	 * but we can't call kvmppc_pin_guest_page under the lock
410 	 * as it does get_user_pages() and down_read().  So we
411 	 * have to drop the lock, pin the page, then get the lock
412 	 * again and check that a new area didn't get registered
413 	 * in the meantime.
414 	 */
415 	for (;;) {
416 		gpa = vpap->next_gpa;
417 		spin_unlock(&vcpu->arch.vpa_update_lock);
418 		va = NULL;
419 		nb = 0;
420 		if (gpa)
421 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
422 		spin_lock(&vcpu->arch.vpa_update_lock);
423 		if (gpa == vpap->next_gpa)
424 			break;
425 		/* sigh... unpin that one and try again */
426 		if (va)
427 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
428 	}
429 
430 	vpap->update_pending = 0;
431 	if (va && nb < vpap->len) {
432 		/*
433 		 * If it's now too short, it must be that userspace
434 		 * has changed the mappings underlying guest memory,
435 		 * so unregister the region.
436 		 */
437 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
438 		va = NULL;
439 	}
440 	if (vpap->pinned_addr)
441 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
442 					vpap->dirty);
443 	vpap->gpa = gpa;
444 	vpap->pinned_addr = va;
445 	vpap->dirty = false;
446 	if (va)
447 		vpap->pinned_end = va + vpap->len;
448 }
449 
450 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
451 {
452 	if (!(vcpu->arch.vpa.update_pending ||
453 	      vcpu->arch.slb_shadow.update_pending ||
454 	      vcpu->arch.dtl.update_pending))
455 		return;
456 
457 	spin_lock(&vcpu->arch.vpa_update_lock);
458 	if (vcpu->arch.vpa.update_pending) {
459 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
460 		if (vcpu->arch.vpa.pinned_addr)
461 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
462 	}
463 	if (vcpu->arch.dtl.update_pending) {
464 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
465 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
466 		vcpu->arch.dtl_index = 0;
467 	}
468 	if (vcpu->arch.slb_shadow.update_pending)
469 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
470 	spin_unlock(&vcpu->arch.vpa_update_lock);
471 }
472 
473 /*
474  * Return the accumulated stolen time for the vcore up until `now'.
475  * The caller should hold the vcore lock.
476  */
477 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
478 {
479 	u64 p;
480 
481 	/*
482 	 * If we are the task running the vcore, then since we hold
483 	 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
484 	 * can't be updated, so we don't need the tbacct_lock.
485 	 * If the vcore is inactive, it can't become active (since we
486 	 * hold the vcore lock), so the vcpu load/put functions won't
487 	 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
488 	 */
489 	if (vc->vcore_state != VCORE_INACTIVE &&
490 	    vc->runner->arch.run_task != current) {
491 		spin_lock_irq(&vc->runner->arch.tbacct_lock);
492 		p = vc->stolen_tb;
493 		if (vc->preempt_tb != TB_NIL)
494 			p += now - vc->preempt_tb;
495 		spin_unlock_irq(&vc->runner->arch.tbacct_lock);
496 	} else {
497 		p = vc->stolen_tb;
498 	}
499 	return p;
500 }
501 
502 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
503 				    struct kvmppc_vcore *vc)
504 {
505 	struct dtl_entry *dt;
506 	struct lppaca *vpa;
507 	unsigned long stolen;
508 	unsigned long core_stolen;
509 	u64 now;
510 
511 	dt = vcpu->arch.dtl_ptr;
512 	vpa = vcpu->arch.vpa.pinned_addr;
513 	now = mftb();
514 	core_stolen = vcore_stolen_time(vc, now);
515 	stolen = core_stolen - vcpu->arch.stolen_logged;
516 	vcpu->arch.stolen_logged = core_stolen;
517 	spin_lock_irq(&vcpu->arch.tbacct_lock);
518 	stolen += vcpu->arch.busy_stolen;
519 	vcpu->arch.busy_stolen = 0;
520 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
521 	if (!dt || !vpa)
522 		return;
523 	memset(dt, 0, sizeof(struct dtl_entry));
524 	dt->dispatch_reason = 7;
525 	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
526 	dt->timebase = now + vc->tb_offset;
527 	dt->enqueue_to_dispatch_time = stolen;
528 	dt->srr0 = kvmppc_get_pc(vcpu);
529 	dt->srr1 = vcpu->arch.shregs.msr;
530 	++dt;
531 	if (dt == vcpu->arch.dtl.pinned_end)
532 		dt = vcpu->arch.dtl.pinned_addr;
533 	vcpu->arch.dtl_ptr = dt;
534 	/* order writing *dt vs. writing vpa->dtl_idx */
535 	smp_wmb();
536 	vpa->dtl_idx = ++vcpu->arch.dtl_index;
537 	vcpu->arch.dtl.dirty = true;
538 }
539 
540 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
541 {
542 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
543 	unsigned long target, ret = H_SUCCESS;
544 	struct kvm_vcpu *tvcpu;
545 	int idx, rc;
546 
547 	switch (req) {
548 	case H_ENTER:
549 		idx = srcu_read_lock(&vcpu->kvm->srcu);
550 		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
551 					      kvmppc_get_gpr(vcpu, 5),
552 					      kvmppc_get_gpr(vcpu, 6),
553 					      kvmppc_get_gpr(vcpu, 7));
554 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
555 		break;
556 	case H_CEDE:
557 		break;
558 	case H_PROD:
559 		target = kvmppc_get_gpr(vcpu, 4);
560 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
561 		if (!tvcpu) {
562 			ret = H_PARAMETER;
563 			break;
564 		}
565 		tvcpu->arch.prodded = 1;
566 		smp_mb();
567 		if (vcpu->arch.ceded) {
568 			if (waitqueue_active(&vcpu->wq)) {
569 				wake_up_interruptible(&vcpu->wq);
570 				vcpu->stat.halt_wakeup++;
571 			}
572 		}
573 		break;
574 	case H_CONFER:
575 		target = kvmppc_get_gpr(vcpu, 4);
576 		if (target == -1)
577 			break;
578 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
579 		if (!tvcpu) {
580 			ret = H_PARAMETER;
581 			break;
582 		}
583 		kvm_vcpu_yield_to(tvcpu);
584 		break;
585 	case H_REGISTER_VPA:
586 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
587 					kvmppc_get_gpr(vcpu, 5),
588 					kvmppc_get_gpr(vcpu, 6));
589 		break;
590 	case H_RTAS:
591 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
592 			return RESUME_HOST;
593 
594 		idx = srcu_read_lock(&vcpu->kvm->srcu);
595 		rc = kvmppc_rtas_hcall(vcpu);
596 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
597 
598 		if (rc == -ENOENT)
599 			return RESUME_HOST;
600 		else if (rc == 0)
601 			break;
602 
603 		/* Send the error out to userspace via KVM_RUN */
604 		return rc;
605 
606 	case H_XIRR:
607 	case H_CPPR:
608 	case H_EOI:
609 	case H_IPI:
610 	case H_IPOLL:
611 	case H_XIRR_X:
612 		if (kvmppc_xics_enabled(vcpu)) {
613 			ret = kvmppc_xics_hcall(vcpu, req);
614 			break;
615 		} /* fallthrough */
616 	default:
617 		return RESUME_HOST;
618 	}
619 	kvmppc_set_gpr(vcpu, 3, ret);
620 	vcpu->arch.hcall_needed = 0;
621 	return RESUME_GUEST;
622 }
623 
624 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
625 				 struct task_struct *tsk)
626 {
627 	int r = RESUME_HOST;
628 
629 	vcpu->stat.sum_exits++;
630 
631 	run->exit_reason = KVM_EXIT_UNKNOWN;
632 	run->ready_for_interrupt_injection = 1;
633 	switch (vcpu->arch.trap) {
634 	/* We're good on these - the host merely wanted to get our attention */
635 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
636 		vcpu->stat.dec_exits++;
637 		r = RESUME_GUEST;
638 		break;
639 	case BOOK3S_INTERRUPT_EXTERNAL:
640 		vcpu->stat.ext_intr_exits++;
641 		r = RESUME_GUEST;
642 		break;
643 	case BOOK3S_INTERRUPT_PERFMON:
644 		r = RESUME_GUEST;
645 		break;
646 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
647 		/*
648 		 * Deliver a machine check interrupt to the guest.
649 		 * We have to do this, even if the host has handled the
650 		 * machine check, because machine checks use SRR0/1 and
651 		 * the interrupt might have trashed guest state in them.
652 		 */
653 		kvmppc_book3s_queue_irqprio(vcpu,
654 					    BOOK3S_INTERRUPT_MACHINE_CHECK);
655 		r = RESUME_GUEST;
656 		break;
657 	case BOOK3S_INTERRUPT_PROGRAM:
658 	{
659 		ulong flags;
660 		/*
661 		 * Normally program interrupts are delivered directly
662 		 * to the guest by the hardware, but we can get here
663 		 * as a result of a hypervisor emulation interrupt
664 		 * (e40) getting turned into a 700 by BML RTAS.
665 		 */
666 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
667 		kvmppc_core_queue_program(vcpu, flags);
668 		r = RESUME_GUEST;
669 		break;
670 	}
671 	case BOOK3S_INTERRUPT_SYSCALL:
672 	{
673 		/* hcall - punt to userspace */
674 		int i;
675 
676 		if (vcpu->arch.shregs.msr & MSR_PR) {
677 			/* sc 1 from userspace - reflect to guest syscall */
678 			kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
679 			r = RESUME_GUEST;
680 			break;
681 		}
682 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
683 		for (i = 0; i < 9; ++i)
684 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
685 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
686 		vcpu->arch.hcall_needed = 1;
687 		r = RESUME_HOST;
688 		break;
689 	}
690 	/*
691 	 * We get these next two if the guest accesses a page which it thinks
692 	 * it has mapped but which is not actually present, either because
693 	 * it is for an emulated I/O device or because the corresonding
694 	 * host page has been paged out.  Any other HDSI/HISI interrupts
695 	 * have been handled already.
696 	 */
697 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
698 		r = RESUME_PAGE_FAULT;
699 		break;
700 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
701 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
702 		vcpu->arch.fault_dsisr = 0;
703 		r = RESUME_PAGE_FAULT;
704 		break;
705 	/*
706 	 * This occurs if the guest executes an illegal instruction.
707 	 * We just generate a program interrupt to the guest, since
708 	 * we don't emulate any guest instructions at this stage.
709 	 */
710 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
711 		kvmppc_core_queue_program(vcpu, 0x80000);
712 		r = RESUME_GUEST;
713 		break;
714 	default:
715 		kvmppc_dump_regs(vcpu);
716 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
717 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
718 			vcpu->arch.shregs.msr);
719 		run->hw.hardware_exit_reason = vcpu->arch.trap;
720 		r = RESUME_HOST;
721 		break;
722 	}
723 
724 	return r;
725 }
726 
727 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
728 					    struct kvm_sregs *sregs)
729 {
730 	int i;
731 
732 	memset(sregs, 0, sizeof(struct kvm_sregs));
733 	sregs->pvr = vcpu->arch.pvr;
734 	for (i = 0; i < vcpu->arch.slb_max; i++) {
735 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
736 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
737 	}
738 
739 	return 0;
740 }
741 
742 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
743 					    struct kvm_sregs *sregs)
744 {
745 	int i, j;
746 
747 	kvmppc_set_pvr_hv(vcpu, sregs->pvr);
748 
749 	j = 0;
750 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
751 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
752 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
753 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
754 			++j;
755 		}
756 	}
757 	vcpu->arch.slb_max = j;
758 
759 	return 0;
760 }
761 
762 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr)
763 {
764 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
765 	u64 mask;
766 
767 	spin_lock(&vc->lock);
768 	/*
769 	 * Userspace can only modify DPFD (default prefetch depth),
770 	 * ILE (interrupt little-endian) and TC (translation control).
771 	 */
772 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
773 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
774 	spin_unlock(&vc->lock);
775 }
776 
777 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
778 				 union kvmppc_one_reg *val)
779 {
780 	int r = 0;
781 	long int i;
782 
783 	switch (id) {
784 	case KVM_REG_PPC_HIOR:
785 		*val = get_reg_val(id, 0);
786 		break;
787 	case KVM_REG_PPC_DABR:
788 		*val = get_reg_val(id, vcpu->arch.dabr);
789 		break;
790 	case KVM_REG_PPC_DSCR:
791 		*val = get_reg_val(id, vcpu->arch.dscr);
792 		break;
793 	case KVM_REG_PPC_PURR:
794 		*val = get_reg_val(id, vcpu->arch.purr);
795 		break;
796 	case KVM_REG_PPC_SPURR:
797 		*val = get_reg_val(id, vcpu->arch.spurr);
798 		break;
799 	case KVM_REG_PPC_AMR:
800 		*val = get_reg_val(id, vcpu->arch.amr);
801 		break;
802 	case KVM_REG_PPC_UAMOR:
803 		*val = get_reg_val(id, vcpu->arch.uamor);
804 		break;
805 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
806 		i = id - KVM_REG_PPC_MMCR0;
807 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
808 		break;
809 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
810 		i = id - KVM_REG_PPC_PMC1;
811 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
812 		break;
813 	case KVM_REG_PPC_SIAR:
814 		*val = get_reg_val(id, vcpu->arch.siar);
815 		break;
816 	case KVM_REG_PPC_SDAR:
817 		*val = get_reg_val(id, vcpu->arch.sdar);
818 		break;
819 #ifdef CONFIG_VSX
820 	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
821 		if (cpu_has_feature(CPU_FTR_VSX)) {
822 			/* VSX => FP reg i is stored in arch.vsr[2*i] */
823 			long int i = id - KVM_REG_PPC_FPR0;
824 			*val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
825 		} else {
826 			/* let generic code handle it */
827 			r = -EINVAL;
828 		}
829 		break;
830 	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
831 		if (cpu_has_feature(CPU_FTR_VSX)) {
832 			long int i = id - KVM_REG_PPC_VSR0;
833 			val->vsxval[0] = vcpu->arch.vsr[2 * i];
834 			val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
835 		} else {
836 			r = -ENXIO;
837 		}
838 		break;
839 #endif /* CONFIG_VSX */
840 	case KVM_REG_PPC_VPA_ADDR:
841 		spin_lock(&vcpu->arch.vpa_update_lock);
842 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
843 		spin_unlock(&vcpu->arch.vpa_update_lock);
844 		break;
845 	case KVM_REG_PPC_VPA_SLB:
846 		spin_lock(&vcpu->arch.vpa_update_lock);
847 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
848 		val->vpaval.length = vcpu->arch.slb_shadow.len;
849 		spin_unlock(&vcpu->arch.vpa_update_lock);
850 		break;
851 	case KVM_REG_PPC_VPA_DTL:
852 		spin_lock(&vcpu->arch.vpa_update_lock);
853 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
854 		val->vpaval.length = vcpu->arch.dtl.len;
855 		spin_unlock(&vcpu->arch.vpa_update_lock);
856 		break;
857 	case KVM_REG_PPC_TB_OFFSET:
858 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
859 		break;
860 	case KVM_REG_PPC_LPCR:
861 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
862 		break;
863 	case KVM_REG_PPC_PPR:
864 		*val = get_reg_val(id, vcpu->arch.ppr);
865 		break;
866 	case KVM_REG_PPC_ARCH_COMPAT:
867 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
868 		break;
869 	default:
870 		r = -EINVAL;
871 		break;
872 	}
873 
874 	return r;
875 }
876 
877 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
878 				 union kvmppc_one_reg *val)
879 {
880 	int r = 0;
881 	long int i;
882 	unsigned long addr, len;
883 
884 	switch (id) {
885 	case KVM_REG_PPC_HIOR:
886 		/* Only allow this to be set to zero */
887 		if (set_reg_val(id, *val))
888 			r = -EINVAL;
889 		break;
890 	case KVM_REG_PPC_DABR:
891 		vcpu->arch.dabr = set_reg_val(id, *val);
892 		break;
893 	case KVM_REG_PPC_DSCR:
894 		vcpu->arch.dscr = set_reg_val(id, *val);
895 		break;
896 	case KVM_REG_PPC_PURR:
897 		vcpu->arch.purr = set_reg_val(id, *val);
898 		break;
899 	case KVM_REG_PPC_SPURR:
900 		vcpu->arch.spurr = set_reg_val(id, *val);
901 		break;
902 	case KVM_REG_PPC_AMR:
903 		vcpu->arch.amr = set_reg_val(id, *val);
904 		break;
905 	case KVM_REG_PPC_UAMOR:
906 		vcpu->arch.uamor = set_reg_val(id, *val);
907 		break;
908 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
909 		i = id - KVM_REG_PPC_MMCR0;
910 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
911 		break;
912 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
913 		i = id - KVM_REG_PPC_PMC1;
914 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
915 		break;
916 	case KVM_REG_PPC_SIAR:
917 		vcpu->arch.siar = set_reg_val(id, *val);
918 		break;
919 	case KVM_REG_PPC_SDAR:
920 		vcpu->arch.sdar = set_reg_val(id, *val);
921 		break;
922 #ifdef CONFIG_VSX
923 	case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
924 		if (cpu_has_feature(CPU_FTR_VSX)) {
925 			/* VSX => FP reg i is stored in arch.vsr[2*i] */
926 			long int i = id - KVM_REG_PPC_FPR0;
927 			vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
928 		} else {
929 			/* let generic code handle it */
930 			r = -EINVAL;
931 		}
932 		break;
933 	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
934 		if (cpu_has_feature(CPU_FTR_VSX)) {
935 			long int i = id - KVM_REG_PPC_VSR0;
936 			vcpu->arch.vsr[2 * i] = val->vsxval[0];
937 			vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
938 		} else {
939 			r = -ENXIO;
940 		}
941 		break;
942 #endif /* CONFIG_VSX */
943 	case KVM_REG_PPC_VPA_ADDR:
944 		addr = set_reg_val(id, *val);
945 		r = -EINVAL;
946 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
947 			      vcpu->arch.dtl.next_gpa))
948 			break;
949 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
950 		break;
951 	case KVM_REG_PPC_VPA_SLB:
952 		addr = val->vpaval.addr;
953 		len = val->vpaval.length;
954 		r = -EINVAL;
955 		if (addr && !vcpu->arch.vpa.next_gpa)
956 			break;
957 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
958 		break;
959 	case KVM_REG_PPC_VPA_DTL:
960 		addr = val->vpaval.addr;
961 		len = val->vpaval.length;
962 		r = -EINVAL;
963 		if (addr && (len < sizeof(struct dtl_entry) ||
964 			     !vcpu->arch.vpa.next_gpa))
965 			break;
966 		len -= len % sizeof(struct dtl_entry);
967 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
968 		break;
969 	case KVM_REG_PPC_TB_OFFSET:
970 		/* round up to multiple of 2^24 */
971 		vcpu->arch.vcore->tb_offset =
972 			ALIGN(set_reg_val(id, *val), 1UL << 24);
973 		break;
974 	case KVM_REG_PPC_LPCR:
975 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val));
976 		break;
977 	case KVM_REG_PPC_PPR:
978 		vcpu->arch.ppr = set_reg_val(id, *val);
979 		break;
980 	case KVM_REG_PPC_ARCH_COMPAT:
981 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
982 		break;
983 	default:
984 		r = -EINVAL;
985 		break;
986 	}
987 
988 	return r;
989 }
990 
991 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
992 						   unsigned int id)
993 {
994 	struct kvm_vcpu *vcpu;
995 	int err = -EINVAL;
996 	int core;
997 	struct kvmppc_vcore *vcore;
998 
999 	core = id / threads_per_core;
1000 	if (core >= KVM_MAX_VCORES)
1001 		goto out;
1002 
1003 	err = -ENOMEM;
1004 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1005 	if (!vcpu)
1006 		goto out;
1007 
1008 	err = kvm_vcpu_init(vcpu, kvm, id);
1009 	if (err)
1010 		goto free_vcpu;
1011 
1012 	vcpu->arch.shared = &vcpu->arch.shregs;
1013 	vcpu->arch.mmcr[0] = MMCR0_FC;
1014 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1015 	/* default to host PVR, since we can't spoof it */
1016 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1017 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1018 	spin_lock_init(&vcpu->arch.tbacct_lock);
1019 	vcpu->arch.busy_preempt = TB_NIL;
1020 
1021 	kvmppc_mmu_book3s_hv_init(vcpu);
1022 
1023 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1024 
1025 	init_waitqueue_head(&vcpu->arch.cpu_run);
1026 
1027 	mutex_lock(&kvm->lock);
1028 	vcore = kvm->arch.vcores[core];
1029 	if (!vcore) {
1030 		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1031 		if (vcore) {
1032 			INIT_LIST_HEAD(&vcore->runnable_threads);
1033 			spin_lock_init(&vcore->lock);
1034 			init_waitqueue_head(&vcore->wq);
1035 			vcore->preempt_tb = TB_NIL;
1036 			vcore->lpcr = kvm->arch.lpcr;
1037 		}
1038 		kvm->arch.vcores[core] = vcore;
1039 		kvm->arch.online_vcores++;
1040 	}
1041 	mutex_unlock(&kvm->lock);
1042 
1043 	if (!vcore)
1044 		goto free_vcpu;
1045 
1046 	spin_lock(&vcore->lock);
1047 	++vcore->num_threads;
1048 	spin_unlock(&vcore->lock);
1049 	vcpu->arch.vcore = vcore;
1050 
1051 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
1052 	kvmppc_sanity_check(vcpu);
1053 
1054 	return vcpu;
1055 
1056 free_vcpu:
1057 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1058 out:
1059 	return ERR_PTR(err);
1060 }
1061 
1062 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1063 {
1064 	if (vpa->pinned_addr)
1065 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1066 					vpa->dirty);
1067 }
1068 
1069 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1070 {
1071 	spin_lock(&vcpu->arch.vpa_update_lock);
1072 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1073 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1074 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1075 	spin_unlock(&vcpu->arch.vpa_update_lock);
1076 	kvm_vcpu_uninit(vcpu);
1077 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1078 }
1079 
1080 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1081 {
1082 	/* Indicate we want to get back into the guest */
1083 	return 1;
1084 }
1085 
1086 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1087 {
1088 	unsigned long dec_nsec, now;
1089 
1090 	now = get_tb();
1091 	if (now > vcpu->arch.dec_expires) {
1092 		/* decrementer has already gone negative */
1093 		kvmppc_core_queue_dec(vcpu);
1094 		kvmppc_core_prepare_to_enter(vcpu);
1095 		return;
1096 	}
1097 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1098 		   / tb_ticks_per_sec;
1099 	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1100 		      HRTIMER_MODE_REL);
1101 	vcpu->arch.timer_running = 1;
1102 }
1103 
1104 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1105 {
1106 	vcpu->arch.ceded = 0;
1107 	if (vcpu->arch.timer_running) {
1108 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1109 		vcpu->arch.timer_running = 0;
1110 	}
1111 }
1112 
1113 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
1114 
1115 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1116 				   struct kvm_vcpu *vcpu)
1117 {
1118 	u64 now;
1119 
1120 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1121 		return;
1122 	spin_lock_irq(&vcpu->arch.tbacct_lock);
1123 	now = mftb();
1124 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1125 		vcpu->arch.stolen_logged;
1126 	vcpu->arch.busy_preempt = now;
1127 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1128 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1129 	--vc->n_runnable;
1130 	list_del(&vcpu->arch.run_list);
1131 }
1132 
1133 static int kvmppc_grab_hwthread(int cpu)
1134 {
1135 	struct paca_struct *tpaca;
1136 	long timeout = 1000;
1137 
1138 	tpaca = &paca[cpu];
1139 
1140 	/* Ensure the thread won't go into the kernel if it wakes */
1141 	tpaca->kvm_hstate.hwthread_req = 1;
1142 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1143 
1144 	/*
1145 	 * If the thread is already executing in the kernel (e.g. handling
1146 	 * a stray interrupt), wait for it to get back to nap mode.
1147 	 * The smp_mb() is to ensure that our setting of hwthread_req
1148 	 * is visible before we look at hwthread_state, so if this
1149 	 * races with the code at system_reset_pSeries and the thread
1150 	 * misses our setting of hwthread_req, we are sure to see its
1151 	 * setting of hwthread_state, and vice versa.
1152 	 */
1153 	smp_mb();
1154 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1155 		if (--timeout <= 0) {
1156 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
1157 			return -EBUSY;
1158 		}
1159 		udelay(1);
1160 	}
1161 	return 0;
1162 }
1163 
1164 static void kvmppc_release_hwthread(int cpu)
1165 {
1166 	struct paca_struct *tpaca;
1167 
1168 	tpaca = &paca[cpu];
1169 	tpaca->kvm_hstate.hwthread_req = 0;
1170 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1171 }
1172 
1173 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1174 {
1175 	int cpu;
1176 	struct paca_struct *tpaca;
1177 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1178 
1179 	if (vcpu->arch.timer_running) {
1180 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1181 		vcpu->arch.timer_running = 0;
1182 	}
1183 	cpu = vc->pcpu + vcpu->arch.ptid;
1184 	tpaca = &paca[cpu];
1185 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1186 	tpaca->kvm_hstate.kvm_vcore = vc;
1187 	tpaca->kvm_hstate.napping = 0;
1188 	vcpu->cpu = vc->pcpu;
1189 	smp_wmb();
1190 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1191 	if (vcpu->arch.ptid) {
1192 		xics_wake_cpu(cpu);
1193 		++vc->n_woken;
1194 	}
1195 #endif
1196 }
1197 
1198 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1199 {
1200 	int i;
1201 
1202 	HMT_low();
1203 	i = 0;
1204 	while (vc->nap_count < vc->n_woken) {
1205 		if (++i >= 1000000) {
1206 			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1207 			       vc->nap_count, vc->n_woken);
1208 			break;
1209 		}
1210 		cpu_relax();
1211 	}
1212 	HMT_medium();
1213 }
1214 
1215 /*
1216  * Check that we are on thread 0 and that any other threads in
1217  * this core are off-line.  Then grab the threads so they can't
1218  * enter the kernel.
1219  */
1220 static int on_primary_thread(void)
1221 {
1222 	int cpu = smp_processor_id();
1223 	int thr = cpu_thread_in_core(cpu);
1224 
1225 	if (thr)
1226 		return 0;
1227 	while (++thr < threads_per_core)
1228 		if (cpu_online(cpu + thr))
1229 			return 0;
1230 
1231 	/* Grab all hw threads so they can't go into the kernel */
1232 	for (thr = 1; thr < threads_per_core; ++thr) {
1233 		if (kvmppc_grab_hwthread(cpu + thr)) {
1234 			/* Couldn't grab one; let the others go */
1235 			do {
1236 				kvmppc_release_hwthread(cpu + thr);
1237 			} while (--thr > 0);
1238 			return 0;
1239 		}
1240 	}
1241 	return 1;
1242 }
1243 
1244 /*
1245  * Run a set of guest threads on a physical core.
1246  * Called with vc->lock held.
1247  */
1248 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1249 {
1250 	struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1251 	long ret;
1252 	u64 now;
1253 	int ptid, i, need_vpa_update;
1254 	int srcu_idx;
1255 	struct kvm_vcpu *vcpus_to_update[threads_per_core];
1256 
1257 	/* don't start if any threads have a signal pending */
1258 	need_vpa_update = 0;
1259 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1260 		if (signal_pending(vcpu->arch.run_task))
1261 			return;
1262 		if (vcpu->arch.vpa.update_pending ||
1263 		    vcpu->arch.slb_shadow.update_pending ||
1264 		    vcpu->arch.dtl.update_pending)
1265 			vcpus_to_update[need_vpa_update++] = vcpu;
1266 	}
1267 
1268 	/*
1269 	 * Initialize *vc, in particular vc->vcore_state, so we can
1270 	 * drop the vcore lock if necessary.
1271 	 */
1272 	vc->n_woken = 0;
1273 	vc->nap_count = 0;
1274 	vc->entry_exit_count = 0;
1275 	vc->vcore_state = VCORE_STARTING;
1276 	vc->in_guest = 0;
1277 	vc->napping_threads = 0;
1278 
1279 	/*
1280 	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1281 	 * which can't be called with any spinlocks held.
1282 	 */
1283 	if (need_vpa_update) {
1284 		spin_unlock(&vc->lock);
1285 		for (i = 0; i < need_vpa_update; ++i)
1286 			kvmppc_update_vpas(vcpus_to_update[i]);
1287 		spin_lock(&vc->lock);
1288 	}
1289 
1290 	/*
1291 	 * Assign physical thread IDs, first to non-ceded vcpus
1292 	 * and then to ceded ones.
1293 	 */
1294 	ptid = 0;
1295 	vcpu0 = NULL;
1296 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1297 		if (!vcpu->arch.ceded) {
1298 			if (!ptid)
1299 				vcpu0 = vcpu;
1300 			vcpu->arch.ptid = ptid++;
1301 		}
1302 	}
1303 	if (!vcpu0)
1304 		goto out;	/* nothing to run; should never happen */
1305 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1306 		if (vcpu->arch.ceded)
1307 			vcpu->arch.ptid = ptid++;
1308 
1309 	/*
1310 	 * Make sure we are running on thread 0, and that
1311 	 * secondary threads are offline.
1312 	 */
1313 	if (threads_per_core > 1 && !on_primary_thread()) {
1314 		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1315 			vcpu->arch.ret = -EBUSY;
1316 		goto out;
1317 	}
1318 
1319 	vc->pcpu = smp_processor_id();
1320 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1321 		kvmppc_start_thread(vcpu);
1322 		kvmppc_create_dtl_entry(vcpu, vc);
1323 	}
1324 
1325 	vc->vcore_state = VCORE_RUNNING;
1326 	preempt_disable();
1327 	spin_unlock(&vc->lock);
1328 
1329 	kvm_guest_enter();
1330 
1331 	srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1332 
1333 	__kvmppc_vcore_entry(NULL, vcpu0);
1334 
1335 	spin_lock(&vc->lock);
1336 	/* disable sending of IPIs on virtual external irqs */
1337 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1338 		vcpu->cpu = -1;
1339 	/* wait for secondary threads to finish writing their state to memory */
1340 	if (vc->nap_count < vc->n_woken)
1341 		kvmppc_wait_for_nap(vc);
1342 	for (i = 0; i < threads_per_core; ++i)
1343 		kvmppc_release_hwthread(vc->pcpu + i);
1344 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1345 	vc->vcore_state = VCORE_EXITING;
1346 	spin_unlock(&vc->lock);
1347 
1348 	srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1349 
1350 	/* make sure updates to secondary vcpu structs are visible now */
1351 	smp_mb();
1352 	kvm_guest_exit();
1353 
1354 	preempt_enable();
1355 	kvm_resched(vcpu);
1356 
1357 	spin_lock(&vc->lock);
1358 	now = get_tb();
1359 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1360 		/* cancel pending dec exception if dec is positive */
1361 		if (now < vcpu->arch.dec_expires &&
1362 		    kvmppc_core_pending_dec(vcpu))
1363 			kvmppc_core_dequeue_dec(vcpu);
1364 
1365 		ret = RESUME_GUEST;
1366 		if (vcpu->arch.trap)
1367 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
1368 						    vcpu->arch.run_task);
1369 
1370 		vcpu->arch.ret = ret;
1371 		vcpu->arch.trap = 0;
1372 
1373 		if (vcpu->arch.ceded) {
1374 			if (ret != RESUME_GUEST)
1375 				kvmppc_end_cede(vcpu);
1376 			else
1377 				kvmppc_set_timer(vcpu);
1378 		}
1379 	}
1380 
1381  out:
1382 	vc->vcore_state = VCORE_INACTIVE;
1383 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1384 				 arch.run_list) {
1385 		if (vcpu->arch.ret != RESUME_GUEST) {
1386 			kvmppc_remove_runnable(vc, vcpu);
1387 			wake_up(&vcpu->arch.cpu_run);
1388 		}
1389 	}
1390 }
1391 
1392 /*
1393  * Wait for some other vcpu thread to execute us, and
1394  * wake us up when we need to handle something in the host.
1395  */
1396 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1397 {
1398 	DEFINE_WAIT(wait);
1399 
1400 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1401 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1402 		schedule();
1403 	finish_wait(&vcpu->arch.cpu_run, &wait);
1404 }
1405 
1406 /*
1407  * All the vcpus in this vcore are idle, so wait for a decrementer
1408  * or external interrupt to one of the vcpus.  vc->lock is held.
1409  */
1410 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1411 {
1412 	DEFINE_WAIT(wait);
1413 
1414 	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1415 	vc->vcore_state = VCORE_SLEEPING;
1416 	spin_unlock(&vc->lock);
1417 	schedule();
1418 	finish_wait(&vc->wq, &wait);
1419 	spin_lock(&vc->lock);
1420 	vc->vcore_state = VCORE_INACTIVE;
1421 }
1422 
1423 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1424 {
1425 	int n_ceded;
1426 	struct kvmppc_vcore *vc;
1427 	struct kvm_vcpu *v, *vn;
1428 
1429 	kvm_run->exit_reason = 0;
1430 	vcpu->arch.ret = RESUME_GUEST;
1431 	vcpu->arch.trap = 0;
1432 	kvmppc_update_vpas(vcpu);
1433 
1434 	/*
1435 	 * Synchronize with other threads in this virtual core
1436 	 */
1437 	vc = vcpu->arch.vcore;
1438 	spin_lock(&vc->lock);
1439 	vcpu->arch.ceded = 0;
1440 	vcpu->arch.run_task = current;
1441 	vcpu->arch.kvm_run = kvm_run;
1442 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1443 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1444 	vcpu->arch.busy_preempt = TB_NIL;
1445 	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1446 	++vc->n_runnable;
1447 
1448 	/*
1449 	 * This happens the first time this is called for a vcpu.
1450 	 * If the vcore is already running, we may be able to start
1451 	 * this thread straight away and have it join in.
1452 	 */
1453 	if (!signal_pending(current)) {
1454 		if (vc->vcore_state == VCORE_RUNNING &&
1455 		    VCORE_EXIT_COUNT(vc) == 0) {
1456 			vcpu->arch.ptid = vc->n_runnable - 1;
1457 			kvmppc_create_dtl_entry(vcpu, vc);
1458 			kvmppc_start_thread(vcpu);
1459 		} else if (vc->vcore_state == VCORE_SLEEPING) {
1460 			wake_up(&vc->wq);
1461 		}
1462 
1463 	}
1464 
1465 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1466 	       !signal_pending(current)) {
1467 		if (vc->vcore_state != VCORE_INACTIVE) {
1468 			spin_unlock(&vc->lock);
1469 			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1470 			spin_lock(&vc->lock);
1471 			continue;
1472 		}
1473 		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1474 					 arch.run_list) {
1475 			kvmppc_core_prepare_to_enter(v);
1476 			if (signal_pending(v->arch.run_task)) {
1477 				kvmppc_remove_runnable(vc, v);
1478 				v->stat.signal_exits++;
1479 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1480 				v->arch.ret = -EINTR;
1481 				wake_up(&v->arch.cpu_run);
1482 			}
1483 		}
1484 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1485 			break;
1486 		vc->runner = vcpu;
1487 		n_ceded = 0;
1488 		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1489 			if (!v->arch.pending_exceptions)
1490 				n_ceded += v->arch.ceded;
1491 			else
1492 				v->arch.ceded = 0;
1493 		}
1494 		if (n_ceded == vc->n_runnable)
1495 			kvmppc_vcore_blocked(vc);
1496 		else
1497 			kvmppc_run_core(vc);
1498 		vc->runner = NULL;
1499 	}
1500 
1501 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1502 	       (vc->vcore_state == VCORE_RUNNING ||
1503 		vc->vcore_state == VCORE_EXITING)) {
1504 		spin_unlock(&vc->lock);
1505 		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1506 		spin_lock(&vc->lock);
1507 	}
1508 
1509 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1510 		kvmppc_remove_runnable(vc, vcpu);
1511 		vcpu->stat.signal_exits++;
1512 		kvm_run->exit_reason = KVM_EXIT_INTR;
1513 		vcpu->arch.ret = -EINTR;
1514 	}
1515 
1516 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1517 		/* Wake up some vcpu to run the core */
1518 		v = list_first_entry(&vc->runnable_threads,
1519 				     struct kvm_vcpu, arch.run_list);
1520 		wake_up(&v->arch.cpu_run);
1521 	}
1522 
1523 	spin_unlock(&vc->lock);
1524 	return vcpu->arch.ret;
1525 }
1526 
1527 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
1528 {
1529 	int r;
1530 	int srcu_idx;
1531 
1532 	if (!vcpu->arch.sane) {
1533 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1534 		return -EINVAL;
1535 	}
1536 
1537 	kvmppc_core_prepare_to_enter(vcpu);
1538 
1539 	/* No need to go into the guest when all we'll do is come back out */
1540 	if (signal_pending(current)) {
1541 		run->exit_reason = KVM_EXIT_INTR;
1542 		return -EINTR;
1543 	}
1544 
1545 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
1546 	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1547 	smp_mb();
1548 
1549 	/* On the first time here, set up HTAB and VRMA or RMA */
1550 	if (!vcpu->kvm->arch.rma_setup_done) {
1551 		r = kvmppc_hv_setup_htab_rma(vcpu);
1552 		if (r)
1553 			goto out;
1554 	}
1555 
1556 	flush_fp_to_thread(current);
1557 	flush_altivec_to_thread(current);
1558 	flush_vsx_to_thread(current);
1559 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1560 	vcpu->arch.pgdir = current->mm->pgd;
1561 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1562 
1563 	do {
1564 		r = kvmppc_run_vcpu(run, vcpu);
1565 
1566 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1567 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
1568 			r = kvmppc_pseries_do_hcall(vcpu);
1569 			kvmppc_core_prepare_to_enter(vcpu);
1570 		} else if (r == RESUME_PAGE_FAULT) {
1571 			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1572 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
1573 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1574 			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1575 		}
1576 	} while (r == RESUME_GUEST);
1577 
1578  out:
1579 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1580 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1581 	return r;
1582 }
1583 
1584 
1585 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1586    Assumes POWER7 or PPC970. */
1587 static inline int lpcr_rmls(unsigned long rma_size)
1588 {
1589 	switch (rma_size) {
1590 	case 32ul << 20:	/* 32 MB */
1591 		if (cpu_has_feature(CPU_FTR_ARCH_206))
1592 			return 8;	/* only supported on POWER7 */
1593 		return -1;
1594 	case 64ul << 20:	/* 64 MB */
1595 		return 3;
1596 	case 128ul << 20:	/* 128 MB */
1597 		return 7;
1598 	case 256ul << 20:	/* 256 MB */
1599 		return 4;
1600 	case 1ul << 30:		/* 1 GB */
1601 		return 2;
1602 	case 16ul << 30:	/* 16 GB */
1603 		return 1;
1604 	case 256ul << 30:	/* 256 GB */
1605 		return 0;
1606 	default:
1607 		return -1;
1608 	}
1609 }
1610 
1611 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1612 {
1613 	struct page *page;
1614 	struct kvm_rma_info *ri = vma->vm_file->private_data;
1615 
1616 	if (vmf->pgoff >= kvm_rma_pages)
1617 		return VM_FAULT_SIGBUS;
1618 
1619 	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1620 	get_page(page);
1621 	vmf->page = page;
1622 	return 0;
1623 }
1624 
1625 static const struct vm_operations_struct kvm_rma_vm_ops = {
1626 	.fault = kvm_rma_fault,
1627 };
1628 
1629 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1630 {
1631 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1632 	vma->vm_ops = &kvm_rma_vm_ops;
1633 	return 0;
1634 }
1635 
1636 static int kvm_rma_release(struct inode *inode, struct file *filp)
1637 {
1638 	struct kvm_rma_info *ri = filp->private_data;
1639 
1640 	kvm_release_rma(ri);
1641 	return 0;
1642 }
1643 
1644 static const struct file_operations kvm_rma_fops = {
1645 	.mmap           = kvm_rma_mmap,
1646 	.release	= kvm_rma_release,
1647 };
1648 
1649 static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
1650 				      struct kvm_allocate_rma *ret)
1651 {
1652 	long fd;
1653 	struct kvm_rma_info *ri;
1654 	/*
1655 	 * Only do this on PPC970 in HV mode
1656 	 */
1657 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
1658 	    !cpu_has_feature(CPU_FTR_ARCH_201))
1659 		return -EINVAL;
1660 
1661 	if (!kvm_rma_pages)
1662 		return -EINVAL;
1663 
1664 	ri = kvm_alloc_rma();
1665 	if (!ri)
1666 		return -ENOMEM;
1667 
1668 	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
1669 	if (fd < 0)
1670 		kvm_release_rma(ri);
1671 
1672 	ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
1673 	return fd;
1674 }
1675 
1676 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1677 				     int linux_psize)
1678 {
1679 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1680 
1681 	if (!def->shift)
1682 		return;
1683 	(*sps)->page_shift = def->shift;
1684 	(*sps)->slb_enc = def->sllp;
1685 	(*sps)->enc[0].page_shift = def->shift;
1686 	/*
1687 	 * Only return base page encoding. We don't want to return
1688 	 * all the supporting pte_enc, because our H_ENTER doesn't
1689 	 * support MPSS yet. Once they do, we can start passing all
1690 	 * support pte_enc here
1691 	 */
1692 	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
1693 	(*sps)++;
1694 }
1695 
1696 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
1697 					 struct kvm_ppc_smmu_info *info)
1698 {
1699 	struct kvm_ppc_one_seg_page_size *sps;
1700 
1701 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
1702 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1703 		info->flags |= KVM_PPC_1T_SEGMENTS;
1704 	info->slb_size = mmu_slb_size;
1705 
1706 	/* We only support these sizes for now, and no muti-size segments */
1707 	sps = &info->sps[0];
1708 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1709 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1710 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1711 
1712 	return 0;
1713 }
1714 
1715 /*
1716  * Get (and clear) the dirty memory log for a memory slot.
1717  */
1718 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
1719 					 struct kvm_dirty_log *log)
1720 {
1721 	struct kvm_memory_slot *memslot;
1722 	int r;
1723 	unsigned long n;
1724 
1725 	mutex_lock(&kvm->slots_lock);
1726 
1727 	r = -EINVAL;
1728 	if (log->slot >= KVM_USER_MEM_SLOTS)
1729 		goto out;
1730 
1731 	memslot = id_to_memslot(kvm->memslots, log->slot);
1732 	r = -ENOENT;
1733 	if (!memslot->dirty_bitmap)
1734 		goto out;
1735 
1736 	n = kvm_dirty_bitmap_bytes(memslot);
1737 	memset(memslot->dirty_bitmap, 0, n);
1738 
1739 	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1740 	if (r)
1741 		goto out;
1742 
1743 	r = -EFAULT;
1744 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1745 		goto out;
1746 
1747 	r = 0;
1748 out:
1749 	mutex_unlock(&kvm->slots_lock);
1750 	return r;
1751 }
1752 
1753 static void unpin_slot(struct kvm_memory_slot *memslot)
1754 {
1755 	unsigned long *physp;
1756 	unsigned long j, npages, pfn;
1757 	struct page *page;
1758 
1759 	physp = memslot->arch.slot_phys;
1760 	npages = memslot->npages;
1761 	if (!physp)
1762 		return;
1763 	for (j = 0; j < npages; j++) {
1764 		if (!(physp[j] & KVMPPC_GOT_PAGE))
1765 			continue;
1766 		pfn = physp[j] >> PAGE_SHIFT;
1767 		page = pfn_to_page(pfn);
1768 		SetPageDirty(page);
1769 		put_page(page);
1770 	}
1771 }
1772 
1773 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
1774 					struct kvm_memory_slot *dont)
1775 {
1776 	if (!dont || free->arch.rmap != dont->arch.rmap) {
1777 		vfree(free->arch.rmap);
1778 		free->arch.rmap = NULL;
1779 	}
1780 	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1781 		unpin_slot(free);
1782 		vfree(free->arch.slot_phys);
1783 		free->arch.slot_phys = NULL;
1784 	}
1785 }
1786 
1787 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
1788 					 unsigned long npages)
1789 {
1790 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1791 	if (!slot->arch.rmap)
1792 		return -ENOMEM;
1793 	slot->arch.slot_phys = NULL;
1794 
1795 	return 0;
1796 }
1797 
1798 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
1799 					struct kvm_memory_slot *memslot,
1800 					struct kvm_userspace_memory_region *mem)
1801 {
1802 	unsigned long *phys;
1803 
1804 	/* Allocate a slot_phys array if needed */
1805 	phys = memslot->arch.slot_phys;
1806 	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1807 		phys = vzalloc(memslot->npages * sizeof(unsigned long));
1808 		if (!phys)
1809 			return -ENOMEM;
1810 		memslot->arch.slot_phys = phys;
1811 	}
1812 
1813 	return 0;
1814 }
1815 
1816 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
1817 				struct kvm_userspace_memory_region *mem,
1818 				const struct kvm_memory_slot *old)
1819 {
1820 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1821 	struct kvm_memory_slot *memslot;
1822 
1823 	if (npages && old->npages) {
1824 		/*
1825 		 * If modifying a memslot, reset all the rmap dirty bits.
1826 		 * If this is a new memslot, we don't need to do anything
1827 		 * since the rmap array starts out as all zeroes,
1828 		 * i.e. no pages are dirty.
1829 		 */
1830 		memslot = id_to_memslot(kvm->memslots, mem->slot);
1831 		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1832 	}
1833 }
1834 
1835 /*
1836  * Update LPCR values in kvm->arch and in vcores.
1837  * Caller must hold kvm->lock.
1838  */
1839 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
1840 {
1841 	long int i;
1842 	u32 cores_done = 0;
1843 
1844 	if ((kvm->arch.lpcr & mask) == lpcr)
1845 		return;
1846 
1847 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
1848 
1849 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
1850 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
1851 		if (!vc)
1852 			continue;
1853 		spin_lock(&vc->lock);
1854 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
1855 		spin_unlock(&vc->lock);
1856 		if (++cores_done >= kvm->arch.online_vcores)
1857 			break;
1858 	}
1859 }
1860 
1861 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
1862 {
1863 	return;
1864 }
1865 
1866 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1867 {
1868 	int err = 0;
1869 	struct kvm *kvm = vcpu->kvm;
1870 	struct kvm_rma_info *ri = NULL;
1871 	unsigned long hva;
1872 	struct kvm_memory_slot *memslot;
1873 	struct vm_area_struct *vma;
1874 	unsigned long lpcr = 0, senc;
1875 	unsigned long lpcr_mask = 0;
1876 	unsigned long psize, porder;
1877 	unsigned long rma_size;
1878 	unsigned long rmls;
1879 	unsigned long *physp;
1880 	unsigned long i, npages;
1881 	int srcu_idx;
1882 
1883 	mutex_lock(&kvm->lock);
1884 	if (kvm->arch.rma_setup_done)
1885 		goto out;	/* another vcpu beat us to it */
1886 
1887 	/* Allocate hashed page table (if not done already) and reset it */
1888 	if (!kvm->arch.hpt_virt) {
1889 		err = kvmppc_alloc_hpt(kvm, NULL);
1890 		if (err) {
1891 			pr_err("KVM: Couldn't alloc HPT\n");
1892 			goto out;
1893 		}
1894 	}
1895 
1896 	/* Look up the memslot for guest physical address 0 */
1897 	srcu_idx = srcu_read_lock(&kvm->srcu);
1898 	memslot = gfn_to_memslot(kvm, 0);
1899 
1900 	/* We must have some memory at 0 by now */
1901 	err = -EINVAL;
1902 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1903 		goto out_srcu;
1904 
1905 	/* Look up the VMA for the start of this memory slot */
1906 	hva = memslot->userspace_addr;
1907 	down_read(&current->mm->mmap_sem);
1908 	vma = find_vma(current->mm, hva);
1909 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1910 		goto up_out;
1911 
1912 	psize = vma_kernel_pagesize(vma);
1913 	porder = __ilog2(psize);
1914 
1915 	/* Is this one of our preallocated RMAs? */
1916 	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1917 	    hva == vma->vm_start)
1918 		ri = vma->vm_file->private_data;
1919 
1920 	up_read(&current->mm->mmap_sem);
1921 
1922 	if (!ri) {
1923 		/* On POWER7, use VRMA; on PPC970, give up */
1924 		err = -EPERM;
1925 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1926 			pr_err("KVM: CPU requires an RMO\n");
1927 			goto out_srcu;
1928 		}
1929 
1930 		/* We can handle 4k, 64k or 16M pages in the VRMA */
1931 		err = -EINVAL;
1932 		if (!(psize == 0x1000 || psize == 0x10000 ||
1933 		      psize == 0x1000000))
1934 			goto out_srcu;
1935 
1936 		/* Update VRMASD field in the LPCR */
1937 		senc = slb_pgsize_encoding(psize);
1938 		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1939 			(VRMA_VSID << SLB_VSID_SHIFT_1T);
1940 		lpcr_mask = LPCR_VRMASD;
1941 		/* the -4 is to account for senc values starting at 0x10 */
1942 		lpcr = senc << (LPCR_VRMASD_SH - 4);
1943 
1944 		/* Create HPTEs in the hash page table for the VRMA */
1945 		kvmppc_map_vrma(vcpu, memslot, porder);
1946 
1947 	} else {
1948 		/* Set up to use an RMO region */
1949 		rma_size = kvm_rma_pages;
1950 		if (rma_size > memslot->npages)
1951 			rma_size = memslot->npages;
1952 		rma_size <<= PAGE_SHIFT;
1953 		rmls = lpcr_rmls(rma_size);
1954 		err = -EINVAL;
1955 		if ((long)rmls < 0) {
1956 			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1957 			goto out_srcu;
1958 		}
1959 		atomic_inc(&ri->use_count);
1960 		kvm->arch.rma = ri;
1961 
1962 		/* Update LPCR and RMOR */
1963 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1964 			/* PPC970; insert RMLS value (split field) in HID4 */
1965 			lpcr_mask = (1ul << HID4_RMLS0_SH) |
1966 				(3ul << HID4_RMLS2_SH) | HID4_RMOR;
1967 			lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
1968 				((rmls & 3) << HID4_RMLS2_SH);
1969 			/* RMOR is also in HID4 */
1970 			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1971 				<< HID4_RMOR_SH;
1972 		} else {
1973 			/* POWER7 */
1974 			lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
1975 			lpcr = rmls << LPCR_RMLS_SH;
1976 			kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
1977 		}
1978 		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1979 			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1980 
1981 		/* Initialize phys addrs of pages in RMO */
1982 		npages = kvm_rma_pages;
1983 		porder = __ilog2(npages);
1984 		physp = memslot->arch.slot_phys;
1985 		if (physp) {
1986 			if (npages > memslot->npages)
1987 				npages = memslot->npages;
1988 			spin_lock(&kvm->arch.slot_phys_lock);
1989 			for (i = 0; i < npages; ++i)
1990 				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1991 					porder;
1992 			spin_unlock(&kvm->arch.slot_phys_lock);
1993 		}
1994 	}
1995 
1996 	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
1997 
1998 	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1999 	smp_wmb();
2000 	kvm->arch.rma_setup_done = 1;
2001 	err = 0;
2002  out_srcu:
2003 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2004  out:
2005 	mutex_unlock(&kvm->lock);
2006 	return err;
2007 
2008  up_out:
2009 	up_read(&current->mm->mmap_sem);
2010 	goto out_srcu;
2011 }
2012 
2013 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2014 {
2015 	unsigned long lpcr, lpid;
2016 
2017 	/* Allocate the guest's logical partition ID */
2018 
2019 	lpid = kvmppc_alloc_lpid();
2020 	if ((long)lpid < 0)
2021 		return -ENOMEM;
2022 	kvm->arch.lpid = lpid;
2023 
2024 	/*
2025 	 * Since we don't flush the TLB when tearing down a VM,
2026 	 * and this lpid might have previously been used,
2027 	 * make sure we flush on each core before running the new VM.
2028 	 */
2029 	cpumask_setall(&kvm->arch.need_tlb_flush);
2030 
2031 	kvm->arch.rma = NULL;
2032 
2033 	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2034 
2035 	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2036 		/* PPC970; HID4 is effectively the LPCR */
2037 		kvm->arch.host_lpid = 0;
2038 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
2039 		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
2040 		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
2041 			((lpid & 0xf) << HID4_LPID5_SH);
2042 	} else {
2043 		/* POWER7; init LPCR for virtual RMA mode */
2044 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
2045 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
2046 		lpcr &= LPCR_PECE | LPCR_LPES;
2047 		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2048 			LPCR_VPM0 | LPCR_VPM1;
2049 		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
2050 			(VRMA_VSID << SLB_VSID_SHIFT_1T);
2051 	}
2052 	kvm->arch.lpcr = lpcr;
2053 
2054 	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
2055 	spin_lock_init(&kvm->arch.slot_phys_lock);
2056 
2057 	/*
2058 	 * Don't allow secondary CPU threads to come online
2059 	 * while any KVM VMs exist.
2060 	 */
2061 	inhibit_secondary_onlining();
2062 
2063 	return 0;
2064 }
2065 
2066 static void kvmppc_free_vcores(struct kvm *kvm)
2067 {
2068 	long int i;
2069 
2070 	for (i = 0; i < KVM_MAX_VCORES; ++i)
2071 		kfree(kvm->arch.vcores[i]);
2072 	kvm->arch.online_vcores = 0;
2073 }
2074 
2075 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2076 {
2077 	uninhibit_secondary_onlining();
2078 
2079 	kvmppc_free_vcores(kvm);
2080 	if (kvm->arch.rma) {
2081 		kvm_release_rma(kvm->arch.rma);
2082 		kvm->arch.rma = NULL;
2083 	}
2084 
2085 	kvmppc_free_hpt(kvm);
2086 }
2087 
2088 /* We don't need to emulate any privileged instructions or dcbz */
2089 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
2090 				     unsigned int inst, int *advance)
2091 {
2092 	return EMULATE_FAIL;
2093 }
2094 
2095 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
2096 					ulong spr_val)
2097 {
2098 	return EMULATE_FAIL;
2099 }
2100 
2101 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
2102 					ulong *spr_val)
2103 {
2104 	return EMULATE_FAIL;
2105 }
2106 
2107 static int kvmppc_core_check_processor_compat_hv(void)
2108 {
2109 	if (!cpu_has_feature(CPU_FTR_HVMODE))
2110 		return -EIO;
2111 	return 0;
2112 }
2113 
2114 static long kvm_arch_vm_ioctl_hv(struct file *filp,
2115 				 unsigned int ioctl, unsigned long arg)
2116 {
2117 	struct kvm *kvm __maybe_unused = filp->private_data;
2118 	void __user *argp = (void __user *)arg;
2119 	long r;
2120 
2121 	switch (ioctl) {
2122 
2123 	case KVM_ALLOCATE_RMA: {
2124 		struct kvm_allocate_rma rma;
2125 		struct kvm *kvm = filp->private_data;
2126 
2127 		r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
2128 		if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
2129 			r = -EFAULT;
2130 		break;
2131 	}
2132 
2133 	case KVM_PPC_ALLOCATE_HTAB: {
2134 		u32 htab_order;
2135 
2136 		r = -EFAULT;
2137 		if (get_user(htab_order, (u32 __user *)argp))
2138 			break;
2139 		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
2140 		if (r)
2141 			break;
2142 		r = -EFAULT;
2143 		if (put_user(htab_order, (u32 __user *)argp))
2144 			break;
2145 		r = 0;
2146 		break;
2147 	}
2148 
2149 	case KVM_PPC_GET_HTAB_FD: {
2150 		struct kvm_get_htab_fd ghf;
2151 
2152 		r = -EFAULT;
2153 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
2154 			break;
2155 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
2156 		break;
2157 	}
2158 
2159 	default:
2160 		r = -ENOTTY;
2161 	}
2162 
2163 	return r;
2164 }
2165 
2166 static struct kvmppc_ops kvm_ops_hv = {
2167 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
2168 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
2169 	.get_one_reg = kvmppc_get_one_reg_hv,
2170 	.set_one_reg = kvmppc_set_one_reg_hv,
2171 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
2172 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
2173 	.set_msr     = kvmppc_set_msr_hv,
2174 	.vcpu_run    = kvmppc_vcpu_run_hv,
2175 	.vcpu_create = kvmppc_core_vcpu_create_hv,
2176 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
2177 	.check_requests = kvmppc_core_check_requests_hv,
2178 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
2179 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
2180 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
2181 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
2182 	.unmap_hva = kvm_unmap_hva_hv,
2183 	.unmap_hva_range = kvm_unmap_hva_range_hv,
2184 	.age_hva  = kvm_age_hva_hv,
2185 	.test_age_hva = kvm_test_age_hva_hv,
2186 	.set_spte_hva = kvm_set_spte_hva_hv,
2187 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
2188 	.free_memslot = kvmppc_core_free_memslot_hv,
2189 	.create_memslot = kvmppc_core_create_memslot_hv,
2190 	.init_vm =  kvmppc_core_init_vm_hv,
2191 	.destroy_vm = kvmppc_core_destroy_vm_hv,
2192 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
2193 	.emulate_op = kvmppc_core_emulate_op_hv,
2194 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
2195 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
2196 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
2197 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2198 };
2199 
2200 static int kvmppc_book3s_init_hv(void)
2201 {
2202 	int r;
2203 	/*
2204 	 * FIXME!! Do we need to check on all cpus ?
2205 	 */
2206 	r = kvmppc_core_check_processor_compat_hv();
2207 	if (r < 0)
2208 		return r;
2209 
2210 	kvm_ops_hv.owner = THIS_MODULE;
2211 	kvmppc_hv_ops = &kvm_ops_hv;
2212 
2213 	r = kvmppc_mmu_hv_init();
2214 	return r;
2215 }
2216 
2217 static void kvmppc_book3s_exit_hv(void)
2218 {
2219 	kvmppc_hv_ops = NULL;
2220 }
2221 
2222 module_init(kvmppc_book3s_init_hv);
2223 module_exit(kvmppc_book3s_exit_hv);
2224 MODULE_LICENSE("GPL");
2225