xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision c2a5a45c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/interrupt.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75 #include <asm/hw_breakpoint.h>
76 #include <asm/kvm_book3s_uvmem.h>
77 #include <asm/ultravisor.h>
78 #include <asm/dtl.h>
79 
80 #include "book3s.h"
81 
82 #define CREATE_TRACE_POINTS
83 #include "trace_hv.h"
84 
85 /* #define EXIT_DEBUG */
86 /* #define EXIT_DEBUG_SIMPLE */
87 /* #define EXIT_DEBUG_INT */
88 
89 /* Used to indicate that a guest page fault needs to be handled */
90 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
91 /* Used to indicate that a guest passthrough interrupt needs to be handled */
92 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
93 
94 /* Used as a "null" value for timebase values */
95 #define TB_NIL	(~(u64)0)
96 
97 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
98 
99 static int dynamic_mt_modes = 6;
100 module_param(dynamic_mt_modes, int, 0644);
101 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
102 static int target_smt_mode;
103 module_param(target_smt_mode, int, 0644);
104 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
105 
106 static bool indep_threads_mode = true;
107 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
109 
110 static bool one_vm_per_core;
111 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
113 
114 #ifdef CONFIG_KVM_XICS
115 static const struct kernel_param_ops module_param_ops = {
116 	.set = param_set_int,
117 	.get = param_get_int,
118 };
119 
120 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
121 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
122 
123 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
124 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
125 #endif
126 
127 /* If set, guests are allowed to create and control nested guests */
128 static bool nested = true;
129 module_param(nested, bool, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
131 
132 static inline bool nesting_enabled(struct kvm *kvm)
133 {
134 	return kvm->arch.nested_enable && kvm_is_radix(kvm);
135 }
136 
137 /* If set, the threads on each CPU core have to be in the same MMU mode */
138 static bool no_mixing_hpt_and_radix __read_mostly;
139 
140 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
141 
142 /*
143  * RWMR values for POWER8.  These control the rate at which PURR
144  * and SPURR count and should be set according to the number of
145  * online threads in the vcore being run.
146  */
147 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
148 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
149 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
150 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
151 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
152 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
153 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
154 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
155 
156 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
157 	RWMR_RPA_P8_1THREAD,
158 	RWMR_RPA_P8_1THREAD,
159 	RWMR_RPA_P8_2THREAD,
160 	RWMR_RPA_P8_3THREAD,
161 	RWMR_RPA_P8_4THREAD,
162 	RWMR_RPA_P8_5THREAD,
163 	RWMR_RPA_P8_6THREAD,
164 	RWMR_RPA_P8_7THREAD,
165 	RWMR_RPA_P8_8THREAD,
166 };
167 
168 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
169 		int *ip)
170 {
171 	int i = *ip;
172 	struct kvm_vcpu *vcpu;
173 
174 	while (++i < MAX_SMT_THREADS) {
175 		vcpu = READ_ONCE(vc->runnable_threads[i]);
176 		if (vcpu) {
177 			*ip = i;
178 			return vcpu;
179 		}
180 	}
181 	return NULL;
182 }
183 
184 /* Used to traverse the list of runnable threads for a given vcore */
185 #define for_each_runnable_thread(i, vcpu, vc) \
186 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
187 
188 static bool kvmppc_ipi_thread(int cpu)
189 {
190 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
191 
192 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
193 	if (kvmhv_on_pseries())
194 		return false;
195 
196 	/* On POWER9 we can use msgsnd to IPI any cpu */
197 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
198 		msg |= get_hard_smp_processor_id(cpu);
199 		smp_mb();
200 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
201 		return true;
202 	}
203 
204 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
205 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
206 		preempt_disable();
207 		if (cpu_first_thread_sibling(cpu) ==
208 		    cpu_first_thread_sibling(smp_processor_id())) {
209 			msg |= cpu_thread_in_core(cpu);
210 			smp_mb();
211 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
212 			preempt_enable();
213 			return true;
214 		}
215 		preempt_enable();
216 	}
217 
218 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
219 	if (cpu >= 0 && cpu < nr_cpu_ids) {
220 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
221 			xics_wake_cpu(cpu);
222 			return true;
223 		}
224 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
225 		return true;
226 	}
227 #endif
228 
229 	return false;
230 }
231 
232 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
233 {
234 	int cpu;
235 	struct rcuwait *waitp;
236 
237 	waitp = kvm_arch_vcpu_get_wait(vcpu);
238 	if (rcuwait_wake_up(waitp))
239 		++vcpu->stat.halt_wakeup;
240 
241 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
242 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
243 		return;
244 
245 	/* CPU points to the first thread of the core */
246 	cpu = vcpu->cpu;
247 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
248 		smp_send_reschedule(cpu);
249 }
250 
251 /*
252  * We use the vcpu_load/put functions to measure stolen time.
253  * Stolen time is counted as time when either the vcpu is able to
254  * run as part of a virtual core, but the task running the vcore
255  * is preempted or sleeping, or when the vcpu needs something done
256  * in the kernel by the task running the vcpu, but that task is
257  * preempted or sleeping.  Those two things have to be counted
258  * separately, since one of the vcpu tasks will take on the job
259  * of running the core, and the other vcpu tasks in the vcore will
260  * sleep waiting for it to do that, but that sleep shouldn't count
261  * as stolen time.
262  *
263  * Hence we accumulate stolen time when the vcpu can run as part of
264  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
265  * needs its task to do other things in the kernel (for example,
266  * service a page fault) in busy_stolen.  We don't accumulate
267  * stolen time for a vcore when it is inactive, or for a vcpu
268  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
269  * a misnomer; it means that the vcpu task is not executing in
270  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
271  * the kernel.  We don't have any way of dividing up that time
272  * between time that the vcpu is genuinely stopped, time that
273  * the task is actively working on behalf of the vcpu, and time
274  * that the task is preempted, so we don't count any of it as
275  * stolen.
276  *
277  * Updates to busy_stolen are protected by arch.tbacct_lock;
278  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
279  * lock.  The stolen times are measured in units of timebase ticks.
280  * (Note that the != TB_NIL checks below are purely defensive;
281  * they should never fail.)
282  */
283 
284 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
285 {
286 	unsigned long flags;
287 
288 	spin_lock_irqsave(&vc->stoltb_lock, flags);
289 	vc->preempt_tb = mftb();
290 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
291 }
292 
293 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
294 {
295 	unsigned long flags;
296 
297 	spin_lock_irqsave(&vc->stoltb_lock, flags);
298 	if (vc->preempt_tb != TB_NIL) {
299 		vc->stolen_tb += mftb() - vc->preempt_tb;
300 		vc->preempt_tb = TB_NIL;
301 	}
302 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
303 }
304 
305 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
306 {
307 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
308 	unsigned long flags;
309 
310 	/*
311 	 * We can test vc->runner without taking the vcore lock,
312 	 * because only this task ever sets vc->runner to this
313 	 * vcpu, and once it is set to this vcpu, only this task
314 	 * ever sets it to NULL.
315 	 */
316 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
317 		kvmppc_core_end_stolen(vc);
318 
319 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
320 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
321 	    vcpu->arch.busy_preempt != TB_NIL) {
322 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
323 		vcpu->arch.busy_preempt = TB_NIL;
324 	}
325 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
326 }
327 
328 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
329 {
330 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
331 	unsigned long flags;
332 
333 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
334 		kvmppc_core_start_stolen(vc);
335 
336 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
337 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
338 		vcpu->arch.busy_preempt = mftb();
339 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
340 }
341 
342 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
343 {
344 	vcpu->arch.pvr = pvr;
345 }
346 
347 /* Dummy value used in computing PCR value below */
348 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
349 
350 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
351 {
352 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
353 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
354 
355 	/* We can (emulate) our own architecture version and anything older */
356 	if (cpu_has_feature(CPU_FTR_ARCH_31))
357 		host_pcr_bit = PCR_ARCH_31;
358 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
359 		host_pcr_bit = PCR_ARCH_300;
360 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
361 		host_pcr_bit = PCR_ARCH_207;
362 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
363 		host_pcr_bit = PCR_ARCH_206;
364 	else
365 		host_pcr_bit = PCR_ARCH_205;
366 
367 	/* Determine lowest PCR bit needed to run guest in given PVR level */
368 	guest_pcr_bit = host_pcr_bit;
369 	if (arch_compat) {
370 		switch (arch_compat) {
371 		case PVR_ARCH_205:
372 			guest_pcr_bit = PCR_ARCH_205;
373 			break;
374 		case PVR_ARCH_206:
375 		case PVR_ARCH_206p:
376 			guest_pcr_bit = PCR_ARCH_206;
377 			break;
378 		case PVR_ARCH_207:
379 			guest_pcr_bit = PCR_ARCH_207;
380 			break;
381 		case PVR_ARCH_300:
382 			guest_pcr_bit = PCR_ARCH_300;
383 			break;
384 		case PVR_ARCH_31:
385 			guest_pcr_bit = PCR_ARCH_31;
386 			break;
387 		default:
388 			return -EINVAL;
389 		}
390 	}
391 
392 	/* Check requested PCR bits don't exceed our capabilities */
393 	if (guest_pcr_bit > host_pcr_bit)
394 		return -EINVAL;
395 
396 	spin_lock(&vc->lock);
397 	vc->arch_compat = arch_compat;
398 	/*
399 	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
400 	 * Also set all reserved PCR bits
401 	 */
402 	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
403 	spin_unlock(&vc->lock);
404 
405 	return 0;
406 }
407 
408 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
409 {
410 	int r;
411 
412 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
413 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
414 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
415 	for (r = 0; r < 16; ++r)
416 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
417 		       r, kvmppc_get_gpr(vcpu, r),
418 		       r+16, kvmppc_get_gpr(vcpu, r+16));
419 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
420 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
421 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
422 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
423 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
424 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
425 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
426 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
427 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
428 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
429 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
430 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
431 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
432 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
433 	for (r = 0; r < vcpu->arch.slb_max; ++r)
434 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
435 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
436 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
437 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
438 	       vcpu->arch.last_inst);
439 }
440 
441 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
442 {
443 	return kvm_get_vcpu_by_id(kvm, id);
444 }
445 
446 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
447 {
448 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
449 	vpa->yield_count = cpu_to_be32(1);
450 }
451 
452 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
453 		   unsigned long addr, unsigned long len)
454 {
455 	/* check address is cacheline aligned */
456 	if (addr & (L1_CACHE_BYTES - 1))
457 		return -EINVAL;
458 	spin_lock(&vcpu->arch.vpa_update_lock);
459 	if (v->next_gpa != addr || v->len != len) {
460 		v->next_gpa = addr;
461 		v->len = addr ? len : 0;
462 		v->update_pending = 1;
463 	}
464 	spin_unlock(&vcpu->arch.vpa_update_lock);
465 	return 0;
466 }
467 
468 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
469 struct reg_vpa {
470 	u32 dummy;
471 	union {
472 		__be16 hword;
473 		__be32 word;
474 	} length;
475 };
476 
477 static int vpa_is_registered(struct kvmppc_vpa *vpap)
478 {
479 	if (vpap->update_pending)
480 		return vpap->next_gpa != 0;
481 	return vpap->pinned_addr != NULL;
482 }
483 
484 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
485 				       unsigned long flags,
486 				       unsigned long vcpuid, unsigned long vpa)
487 {
488 	struct kvm *kvm = vcpu->kvm;
489 	unsigned long len, nb;
490 	void *va;
491 	struct kvm_vcpu *tvcpu;
492 	int err;
493 	int subfunc;
494 	struct kvmppc_vpa *vpap;
495 
496 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
497 	if (!tvcpu)
498 		return H_PARAMETER;
499 
500 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
501 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
502 	    subfunc == H_VPA_REG_SLB) {
503 		/* Registering new area - address must be cache-line aligned */
504 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
505 			return H_PARAMETER;
506 
507 		/* convert logical addr to kernel addr and read length */
508 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
509 		if (va == NULL)
510 			return H_PARAMETER;
511 		if (subfunc == H_VPA_REG_VPA)
512 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
513 		else
514 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
515 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
516 
517 		/* Check length */
518 		if (len > nb || len < sizeof(struct reg_vpa))
519 			return H_PARAMETER;
520 	} else {
521 		vpa = 0;
522 		len = 0;
523 	}
524 
525 	err = H_PARAMETER;
526 	vpap = NULL;
527 	spin_lock(&tvcpu->arch.vpa_update_lock);
528 
529 	switch (subfunc) {
530 	case H_VPA_REG_VPA:		/* register VPA */
531 		/*
532 		 * The size of our lppaca is 1kB because of the way we align
533 		 * it for the guest to avoid crossing a 4kB boundary. We only
534 		 * use 640 bytes of the structure though, so we should accept
535 		 * clients that set a size of 640.
536 		 */
537 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
538 		if (len < sizeof(struct lppaca))
539 			break;
540 		vpap = &tvcpu->arch.vpa;
541 		err = 0;
542 		break;
543 
544 	case H_VPA_REG_DTL:		/* register DTL */
545 		if (len < sizeof(struct dtl_entry))
546 			break;
547 		len -= len % sizeof(struct dtl_entry);
548 
549 		/* Check that they have previously registered a VPA */
550 		err = H_RESOURCE;
551 		if (!vpa_is_registered(&tvcpu->arch.vpa))
552 			break;
553 
554 		vpap = &tvcpu->arch.dtl;
555 		err = 0;
556 		break;
557 
558 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
559 		/* Check that they have previously registered a VPA */
560 		err = H_RESOURCE;
561 		if (!vpa_is_registered(&tvcpu->arch.vpa))
562 			break;
563 
564 		vpap = &tvcpu->arch.slb_shadow;
565 		err = 0;
566 		break;
567 
568 	case H_VPA_DEREG_VPA:		/* deregister VPA */
569 		/* Check they don't still have a DTL or SLB buf registered */
570 		err = H_RESOURCE;
571 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
572 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
573 			break;
574 
575 		vpap = &tvcpu->arch.vpa;
576 		err = 0;
577 		break;
578 
579 	case H_VPA_DEREG_DTL:		/* deregister DTL */
580 		vpap = &tvcpu->arch.dtl;
581 		err = 0;
582 		break;
583 
584 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
585 		vpap = &tvcpu->arch.slb_shadow;
586 		err = 0;
587 		break;
588 	}
589 
590 	if (vpap) {
591 		vpap->next_gpa = vpa;
592 		vpap->len = len;
593 		vpap->update_pending = 1;
594 	}
595 
596 	spin_unlock(&tvcpu->arch.vpa_update_lock);
597 
598 	return err;
599 }
600 
601 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
602 {
603 	struct kvm *kvm = vcpu->kvm;
604 	void *va;
605 	unsigned long nb;
606 	unsigned long gpa;
607 
608 	/*
609 	 * We need to pin the page pointed to by vpap->next_gpa,
610 	 * but we can't call kvmppc_pin_guest_page under the lock
611 	 * as it does get_user_pages() and down_read().  So we
612 	 * have to drop the lock, pin the page, then get the lock
613 	 * again and check that a new area didn't get registered
614 	 * in the meantime.
615 	 */
616 	for (;;) {
617 		gpa = vpap->next_gpa;
618 		spin_unlock(&vcpu->arch.vpa_update_lock);
619 		va = NULL;
620 		nb = 0;
621 		if (gpa)
622 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
623 		spin_lock(&vcpu->arch.vpa_update_lock);
624 		if (gpa == vpap->next_gpa)
625 			break;
626 		/* sigh... unpin that one and try again */
627 		if (va)
628 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
629 	}
630 
631 	vpap->update_pending = 0;
632 	if (va && nb < vpap->len) {
633 		/*
634 		 * If it's now too short, it must be that userspace
635 		 * has changed the mappings underlying guest memory,
636 		 * so unregister the region.
637 		 */
638 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
639 		va = NULL;
640 	}
641 	if (vpap->pinned_addr)
642 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
643 					vpap->dirty);
644 	vpap->gpa = gpa;
645 	vpap->pinned_addr = va;
646 	vpap->dirty = false;
647 	if (va)
648 		vpap->pinned_end = va + vpap->len;
649 }
650 
651 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
652 {
653 	if (!(vcpu->arch.vpa.update_pending ||
654 	      vcpu->arch.slb_shadow.update_pending ||
655 	      vcpu->arch.dtl.update_pending))
656 		return;
657 
658 	spin_lock(&vcpu->arch.vpa_update_lock);
659 	if (vcpu->arch.vpa.update_pending) {
660 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
661 		if (vcpu->arch.vpa.pinned_addr)
662 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
663 	}
664 	if (vcpu->arch.dtl.update_pending) {
665 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
666 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
667 		vcpu->arch.dtl_index = 0;
668 	}
669 	if (vcpu->arch.slb_shadow.update_pending)
670 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
671 	spin_unlock(&vcpu->arch.vpa_update_lock);
672 }
673 
674 /*
675  * Return the accumulated stolen time for the vcore up until `now'.
676  * The caller should hold the vcore lock.
677  */
678 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
679 {
680 	u64 p;
681 	unsigned long flags;
682 
683 	spin_lock_irqsave(&vc->stoltb_lock, flags);
684 	p = vc->stolen_tb;
685 	if (vc->vcore_state != VCORE_INACTIVE &&
686 	    vc->preempt_tb != TB_NIL)
687 		p += now - vc->preempt_tb;
688 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
689 	return p;
690 }
691 
692 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
693 				    struct kvmppc_vcore *vc)
694 {
695 	struct dtl_entry *dt;
696 	struct lppaca *vpa;
697 	unsigned long stolen;
698 	unsigned long core_stolen;
699 	u64 now;
700 	unsigned long flags;
701 
702 	dt = vcpu->arch.dtl_ptr;
703 	vpa = vcpu->arch.vpa.pinned_addr;
704 	now = mftb();
705 	core_stolen = vcore_stolen_time(vc, now);
706 	stolen = core_stolen - vcpu->arch.stolen_logged;
707 	vcpu->arch.stolen_logged = core_stolen;
708 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
709 	stolen += vcpu->arch.busy_stolen;
710 	vcpu->arch.busy_stolen = 0;
711 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
712 	if (!dt || !vpa)
713 		return;
714 	memset(dt, 0, sizeof(struct dtl_entry));
715 	dt->dispatch_reason = 7;
716 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
717 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
718 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
719 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
720 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
721 	++dt;
722 	if (dt == vcpu->arch.dtl.pinned_end)
723 		dt = vcpu->arch.dtl.pinned_addr;
724 	vcpu->arch.dtl_ptr = dt;
725 	/* order writing *dt vs. writing vpa->dtl_idx */
726 	smp_wmb();
727 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
728 	vcpu->arch.dtl.dirty = true;
729 }
730 
731 /* See if there is a doorbell interrupt pending for a vcpu */
732 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
733 {
734 	int thr;
735 	struct kvmppc_vcore *vc;
736 
737 	if (vcpu->arch.doorbell_request)
738 		return true;
739 	/*
740 	 * Ensure that the read of vcore->dpdes comes after the read
741 	 * of vcpu->doorbell_request.  This barrier matches the
742 	 * smp_wmb() in kvmppc_guest_entry_inject().
743 	 */
744 	smp_rmb();
745 	vc = vcpu->arch.vcore;
746 	thr = vcpu->vcpu_id - vc->first_vcpuid;
747 	return !!(vc->dpdes & (1 << thr));
748 }
749 
750 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
751 {
752 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
753 		return true;
754 	if ((!vcpu->arch.vcore->arch_compat) &&
755 	    cpu_has_feature(CPU_FTR_ARCH_207S))
756 		return true;
757 	return false;
758 }
759 
760 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
761 			     unsigned long resource, unsigned long value1,
762 			     unsigned long value2)
763 {
764 	switch (resource) {
765 	case H_SET_MODE_RESOURCE_SET_CIABR:
766 		if (!kvmppc_power8_compatible(vcpu))
767 			return H_P2;
768 		if (value2)
769 			return H_P4;
770 		if (mflags)
771 			return H_UNSUPPORTED_FLAG_START;
772 		/* Guests can't breakpoint the hypervisor */
773 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
774 			return H_P3;
775 		vcpu->arch.ciabr  = value1;
776 		return H_SUCCESS;
777 	case H_SET_MODE_RESOURCE_SET_DAWR0:
778 		if (!kvmppc_power8_compatible(vcpu))
779 			return H_P2;
780 		if (!ppc_breakpoint_available())
781 			return H_P2;
782 		if (mflags)
783 			return H_UNSUPPORTED_FLAG_START;
784 		if (value2 & DABRX_HYP)
785 			return H_P4;
786 		vcpu->arch.dawr0  = value1;
787 		vcpu->arch.dawrx0 = value2;
788 		return H_SUCCESS;
789 	case H_SET_MODE_RESOURCE_SET_DAWR1:
790 		if (!kvmppc_power8_compatible(vcpu))
791 			return H_P2;
792 		if (!ppc_breakpoint_available())
793 			return H_P2;
794 		if (!cpu_has_feature(CPU_FTR_DAWR1))
795 			return H_P2;
796 		if (!vcpu->kvm->arch.dawr1_enabled)
797 			return H_FUNCTION;
798 		if (mflags)
799 			return H_UNSUPPORTED_FLAG_START;
800 		if (value2 & DABRX_HYP)
801 			return H_P4;
802 		vcpu->arch.dawr1  = value1;
803 		vcpu->arch.dawrx1 = value2;
804 		return H_SUCCESS;
805 	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
806 		/* KVM does not support mflags=2 (AIL=2) */
807 		if (mflags != 0 && mflags != 3)
808 			return H_UNSUPPORTED_FLAG_START;
809 		return H_TOO_HARD;
810 	default:
811 		return H_TOO_HARD;
812 	}
813 }
814 
815 /* Copy guest memory in place - must reside within a single memslot */
816 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
817 				  unsigned long len)
818 {
819 	struct kvm_memory_slot *to_memslot = NULL;
820 	struct kvm_memory_slot *from_memslot = NULL;
821 	unsigned long to_addr, from_addr;
822 	int r;
823 
824 	/* Get HPA for from address */
825 	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
826 	if (!from_memslot)
827 		return -EFAULT;
828 	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
829 			     << PAGE_SHIFT))
830 		return -EINVAL;
831 	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
832 	if (kvm_is_error_hva(from_addr))
833 		return -EFAULT;
834 	from_addr |= (from & (PAGE_SIZE - 1));
835 
836 	/* Get HPA for to address */
837 	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
838 	if (!to_memslot)
839 		return -EFAULT;
840 	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
841 			   << PAGE_SHIFT))
842 		return -EINVAL;
843 	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
844 	if (kvm_is_error_hva(to_addr))
845 		return -EFAULT;
846 	to_addr |= (to & (PAGE_SIZE - 1));
847 
848 	/* Perform copy */
849 	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
850 			     len);
851 	if (r)
852 		return -EFAULT;
853 	mark_page_dirty(kvm, to >> PAGE_SHIFT);
854 	return 0;
855 }
856 
857 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
858 			       unsigned long dest, unsigned long src)
859 {
860 	u64 pg_sz = SZ_4K;		/* 4K page size */
861 	u64 pg_mask = SZ_4K - 1;
862 	int ret;
863 
864 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
865 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
866 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
867 		return H_PARAMETER;
868 
869 	/* dest (and src if copy_page flag set) must be page aligned */
870 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
871 		return H_PARAMETER;
872 
873 	/* zero and/or copy the page as determined by the flags */
874 	if (flags & H_COPY_PAGE) {
875 		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
876 		if (ret < 0)
877 			return H_PARAMETER;
878 	} else if (flags & H_ZERO_PAGE) {
879 		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
880 		if (ret < 0)
881 			return H_PARAMETER;
882 	}
883 
884 	/* We can ignore the remaining flags */
885 
886 	return H_SUCCESS;
887 }
888 
889 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
890 {
891 	struct kvmppc_vcore *vcore = target->arch.vcore;
892 
893 	/*
894 	 * We expect to have been called by the real mode handler
895 	 * (kvmppc_rm_h_confer()) which would have directly returned
896 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
897 	 * have useful work to do and should not confer) so we don't
898 	 * recheck that here.
899 	 */
900 
901 	spin_lock(&vcore->lock);
902 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
903 	    vcore->vcore_state != VCORE_INACTIVE &&
904 	    vcore->runner)
905 		target = vcore->runner;
906 	spin_unlock(&vcore->lock);
907 
908 	return kvm_vcpu_yield_to(target);
909 }
910 
911 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
912 {
913 	int yield_count = 0;
914 	struct lppaca *lppaca;
915 
916 	spin_lock(&vcpu->arch.vpa_update_lock);
917 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
918 	if (lppaca)
919 		yield_count = be32_to_cpu(lppaca->yield_count);
920 	spin_unlock(&vcpu->arch.vpa_update_lock);
921 	return yield_count;
922 }
923 
924 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
925 {
926 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
927 	unsigned long target, ret = H_SUCCESS;
928 	int yield_count;
929 	struct kvm_vcpu *tvcpu;
930 	int idx, rc;
931 
932 	if (req <= MAX_HCALL_OPCODE &&
933 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
934 		return RESUME_HOST;
935 
936 	switch (req) {
937 	case H_CEDE:
938 		break;
939 	case H_PROD:
940 		target = kvmppc_get_gpr(vcpu, 4);
941 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
942 		if (!tvcpu) {
943 			ret = H_PARAMETER;
944 			break;
945 		}
946 		tvcpu->arch.prodded = 1;
947 		smp_mb();
948 		if (tvcpu->arch.ceded)
949 			kvmppc_fast_vcpu_kick_hv(tvcpu);
950 		break;
951 	case H_CONFER:
952 		target = kvmppc_get_gpr(vcpu, 4);
953 		if (target == -1)
954 			break;
955 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
956 		if (!tvcpu) {
957 			ret = H_PARAMETER;
958 			break;
959 		}
960 		yield_count = kvmppc_get_gpr(vcpu, 5);
961 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
962 			break;
963 		kvm_arch_vcpu_yield_to(tvcpu);
964 		break;
965 	case H_REGISTER_VPA:
966 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
967 					kvmppc_get_gpr(vcpu, 5),
968 					kvmppc_get_gpr(vcpu, 6));
969 		break;
970 	case H_RTAS:
971 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
972 			return RESUME_HOST;
973 
974 		idx = srcu_read_lock(&vcpu->kvm->srcu);
975 		rc = kvmppc_rtas_hcall(vcpu);
976 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
977 
978 		if (rc == -ENOENT)
979 			return RESUME_HOST;
980 		else if (rc == 0)
981 			break;
982 
983 		/* Send the error out to userspace via KVM_RUN */
984 		return rc;
985 	case H_LOGICAL_CI_LOAD:
986 		ret = kvmppc_h_logical_ci_load(vcpu);
987 		if (ret == H_TOO_HARD)
988 			return RESUME_HOST;
989 		break;
990 	case H_LOGICAL_CI_STORE:
991 		ret = kvmppc_h_logical_ci_store(vcpu);
992 		if (ret == H_TOO_HARD)
993 			return RESUME_HOST;
994 		break;
995 	case H_SET_MODE:
996 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
997 					kvmppc_get_gpr(vcpu, 5),
998 					kvmppc_get_gpr(vcpu, 6),
999 					kvmppc_get_gpr(vcpu, 7));
1000 		if (ret == H_TOO_HARD)
1001 			return RESUME_HOST;
1002 		break;
1003 	case H_XIRR:
1004 	case H_CPPR:
1005 	case H_EOI:
1006 	case H_IPI:
1007 	case H_IPOLL:
1008 	case H_XIRR_X:
1009 		if (kvmppc_xics_enabled(vcpu)) {
1010 			if (xics_on_xive()) {
1011 				ret = H_NOT_AVAILABLE;
1012 				return RESUME_GUEST;
1013 			}
1014 			ret = kvmppc_xics_hcall(vcpu, req);
1015 			break;
1016 		}
1017 		return RESUME_HOST;
1018 	case H_SET_DABR:
1019 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1020 		break;
1021 	case H_SET_XDABR:
1022 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1023 						kvmppc_get_gpr(vcpu, 5));
1024 		break;
1025 #ifdef CONFIG_SPAPR_TCE_IOMMU
1026 	case H_GET_TCE:
1027 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1028 						kvmppc_get_gpr(vcpu, 5));
1029 		if (ret == H_TOO_HARD)
1030 			return RESUME_HOST;
1031 		break;
1032 	case H_PUT_TCE:
1033 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1034 						kvmppc_get_gpr(vcpu, 5),
1035 						kvmppc_get_gpr(vcpu, 6));
1036 		if (ret == H_TOO_HARD)
1037 			return RESUME_HOST;
1038 		break;
1039 	case H_PUT_TCE_INDIRECT:
1040 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1041 						kvmppc_get_gpr(vcpu, 5),
1042 						kvmppc_get_gpr(vcpu, 6),
1043 						kvmppc_get_gpr(vcpu, 7));
1044 		if (ret == H_TOO_HARD)
1045 			return RESUME_HOST;
1046 		break;
1047 	case H_STUFF_TCE:
1048 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1049 						kvmppc_get_gpr(vcpu, 5),
1050 						kvmppc_get_gpr(vcpu, 6),
1051 						kvmppc_get_gpr(vcpu, 7));
1052 		if (ret == H_TOO_HARD)
1053 			return RESUME_HOST;
1054 		break;
1055 #endif
1056 	case H_RANDOM:
1057 		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1058 			ret = H_HARDWARE;
1059 		break;
1060 
1061 	case H_SET_PARTITION_TABLE:
1062 		ret = H_FUNCTION;
1063 		if (nesting_enabled(vcpu->kvm))
1064 			ret = kvmhv_set_partition_table(vcpu);
1065 		break;
1066 	case H_ENTER_NESTED:
1067 		ret = H_FUNCTION;
1068 		if (!nesting_enabled(vcpu->kvm))
1069 			break;
1070 		ret = kvmhv_enter_nested_guest(vcpu);
1071 		if (ret == H_INTERRUPT) {
1072 			kvmppc_set_gpr(vcpu, 3, 0);
1073 			vcpu->arch.hcall_needed = 0;
1074 			return -EINTR;
1075 		} else if (ret == H_TOO_HARD) {
1076 			kvmppc_set_gpr(vcpu, 3, 0);
1077 			vcpu->arch.hcall_needed = 0;
1078 			return RESUME_HOST;
1079 		}
1080 		break;
1081 	case H_TLB_INVALIDATE:
1082 		ret = H_FUNCTION;
1083 		if (nesting_enabled(vcpu->kvm))
1084 			ret = kvmhv_do_nested_tlbie(vcpu);
1085 		break;
1086 	case H_COPY_TOFROM_GUEST:
1087 		ret = H_FUNCTION;
1088 		if (nesting_enabled(vcpu->kvm))
1089 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1090 		break;
1091 	case H_PAGE_INIT:
1092 		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1093 					 kvmppc_get_gpr(vcpu, 5),
1094 					 kvmppc_get_gpr(vcpu, 6));
1095 		break;
1096 	case H_SVM_PAGE_IN:
1097 		ret = H_UNSUPPORTED;
1098 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1099 			ret = kvmppc_h_svm_page_in(vcpu->kvm,
1100 						   kvmppc_get_gpr(vcpu, 4),
1101 						   kvmppc_get_gpr(vcpu, 5),
1102 						   kvmppc_get_gpr(vcpu, 6));
1103 		break;
1104 	case H_SVM_PAGE_OUT:
1105 		ret = H_UNSUPPORTED;
1106 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1107 			ret = kvmppc_h_svm_page_out(vcpu->kvm,
1108 						    kvmppc_get_gpr(vcpu, 4),
1109 						    kvmppc_get_gpr(vcpu, 5),
1110 						    kvmppc_get_gpr(vcpu, 6));
1111 		break;
1112 	case H_SVM_INIT_START:
1113 		ret = H_UNSUPPORTED;
1114 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1115 			ret = kvmppc_h_svm_init_start(vcpu->kvm);
1116 		break;
1117 	case H_SVM_INIT_DONE:
1118 		ret = H_UNSUPPORTED;
1119 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1120 			ret = kvmppc_h_svm_init_done(vcpu->kvm);
1121 		break;
1122 	case H_SVM_INIT_ABORT:
1123 		/*
1124 		 * Even if that call is made by the Ultravisor, the SSR1 value
1125 		 * is the guest context one, with the secure bit clear as it has
1126 		 * not yet been secured. So we can't check it here.
1127 		 * Instead the kvm->arch.secure_guest flag is checked inside
1128 		 * kvmppc_h_svm_init_abort().
1129 		 */
1130 		ret = kvmppc_h_svm_init_abort(vcpu->kvm);
1131 		break;
1132 
1133 	default:
1134 		return RESUME_HOST;
1135 	}
1136 	kvmppc_set_gpr(vcpu, 3, ret);
1137 	vcpu->arch.hcall_needed = 0;
1138 	return RESUME_GUEST;
1139 }
1140 
1141 /*
1142  * Handle H_CEDE in the nested virtualization case where we haven't
1143  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1144  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1145  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1146  */
1147 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1148 {
1149 	vcpu->arch.shregs.msr |= MSR_EE;
1150 	vcpu->arch.ceded = 1;
1151 	smp_mb();
1152 	if (vcpu->arch.prodded) {
1153 		vcpu->arch.prodded = 0;
1154 		smp_mb();
1155 		vcpu->arch.ceded = 0;
1156 	}
1157 }
1158 
1159 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1160 {
1161 	switch (cmd) {
1162 	case H_CEDE:
1163 	case H_PROD:
1164 	case H_CONFER:
1165 	case H_REGISTER_VPA:
1166 	case H_SET_MODE:
1167 	case H_LOGICAL_CI_LOAD:
1168 	case H_LOGICAL_CI_STORE:
1169 #ifdef CONFIG_KVM_XICS
1170 	case H_XIRR:
1171 	case H_CPPR:
1172 	case H_EOI:
1173 	case H_IPI:
1174 	case H_IPOLL:
1175 	case H_XIRR_X:
1176 #endif
1177 	case H_PAGE_INIT:
1178 		return 1;
1179 	}
1180 
1181 	/* See if it's in the real-mode table */
1182 	return kvmppc_hcall_impl_hv_realmode(cmd);
1183 }
1184 
1185 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1186 {
1187 	u32 last_inst;
1188 
1189 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1190 					EMULATE_DONE) {
1191 		/*
1192 		 * Fetch failed, so return to guest and
1193 		 * try executing it again.
1194 		 */
1195 		return RESUME_GUEST;
1196 	}
1197 
1198 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1199 		vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1200 		vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1201 		return RESUME_HOST;
1202 	} else {
1203 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1204 		return RESUME_GUEST;
1205 	}
1206 }
1207 
1208 static void do_nothing(void *x)
1209 {
1210 }
1211 
1212 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1213 {
1214 	int thr, cpu, pcpu, nthreads;
1215 	struct kvm_vcpu *v;
1216 	unsigned long dpdes;
1217 
1218 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1219 	dpdes = 0;
1220 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1221 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1222 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1223 		if (!v)
1224 			continue;
1225 		/*
1226 		 * If the vcpu is currently running on a physical cpu thread,
1227 		 * interrupt it in order to pull it out of the guest briefly,
1228 		 * which will update its vcore->dpdes value.
1229 		 */
1230 		pcpu = READ_ONCE(v->cpu);
1231 		if (pcpu >= 0)
1232 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1233 		if (kvmppc_doorbell_pending(v))
1234 			dpdes |= 1 << thr;
1235 	}
1236 	return dpdes;
1237 }
1238 
1239 /*
1240  * On POWER9, emulate doorbell-related instructions in order to
1241  * give the guest the illusion of running on a multi-threaded core.
1242  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1243  * and mfspr DPDES.
1244  */
1245 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1246 {
1247 	u32 inst, rb, thr;
1248 	unsigned long arg;
1249 	struct kvm *kvm = vcpu->kvm;
1250 	struct kvm_vcpu *tvcpu;
1251 
1252 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1253 		return RESUME_GUEST;
1254 	if (get_op(inst) != 31)
1255 		return EMULATE_FAIL;
1256 	rb = get_rb(inst);
1257 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1258 	switch (get_xop(inst)) {
1259 	case OP_31_XOP_MSGSNDP:
1260 		arg = kvmppc_get_gpr(vcpu, rb);
1261 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1262 			break;
1263 		arg &= 0x7f;
1264 		if (arg >= kvm->arch.emul_smt_mode)
1265 			break;
1266 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1267 		if (!tvcpu)
1268 			break;
1269 		if (!tvcpu->arch.doorbell_request) {
1270 			tvcpu->arch.doorbell_request = 1;
1271 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1272 		}
1273 		break;
1274 	case OP_31_XOP_MSGCLRP:
1275 		arg = kvmppc_get_gpr(vcpu, rb);
1276 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1277 			break;
1278 		vcpu->arch.vcore->dpdes = 0;
1279 		vcpu->arch.doorbell_request = 0;
1280 		break;
1281 	case OP_31_XOP_MFSPR:
1282 		switch (get_sprn(inst)) {
1283 		case SPRN_TIR:
1284 			arg = thr;
1285 			break;
1286 		case SPRN_DPDES:
1287 			arg = kvmppc_read_dpdes(vcpu);
1288 			break;
1289 		default:
1290 			return EMULATE_FAIL;
1291 		}
1292 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1293 		break;
1294 	default:
1295 		return EMULATE_FAIL;
1296 	}
1297 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1298 	return RESUME_GUEST;
1299 }
1300 
1301 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1302 				 struct task_struct *tsk)
1303 {
1304 	struct kvm_run *run = vcpu->run;
1305 	int r = RESUME_HOST;
1306 
1307 	vcpu->stat.sum_exits++;
1308 
1309 	/*
1310 	 * This can happen if an interrupt occurs in the last stages
1311 	 * of guest entry or the first stages of guest exit (i.e. after
1312 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1313 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1314 	 * That can happen due to a bug, or due to a machine check
1315 	 * occurring at just the wrong time.
1316 	 */
1317 	if (vcpu->arch.shregs.msr & MSR_HV) {
1318 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1319 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1320 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1321 			vcpu->arch.shregs.msr);
1322 		kvmppc_dump_regs(vcpu);
1323 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1324 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1325 		return RESUME_HOST;
1326 	}
1327 	run->exit_reason = KVM_EXIT_UNKNOWN;
1328 	run->ready_for_interrupt_injection = 1;
1329 	switch (vcpu->arch.trap) {
1330 	/* We're good on these - the host merely wanted to get our attention */
1331 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1332 		vcpu->stat.dec_exits++;
1333 		r = RESUME_GUEST;
1334 		break;
1335 	case BOOK3S_INTERRUPT_EXTERNAL:
1336 	case BOOK3S_INTERRUPT_H_DOORBELL:
1337 	case BOOK3S_INTERRUPT_H_VIRT:
1338 		vcpu->stat.ext_intr_exits++;
1339 		r = RESUME_GUEST;
1340 		break;
1341 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1342 	case BOOK3S_INTERRUPT_HMI:
1343 	case BOOK3S_INTERRUPT_PERFMON:
1344 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1345 		r = RESUME_GUEST;
1346 		break;
1347 	case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1348 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1349 					      DEFAULT_RATELIMIT_BURST);
1350 		/*
1351 		 * Print the MCE event to host console. Ratelimit so the guest
1352 		 * can't flood the host log.
1353 		 */
1354 		if (__ratelimit(&rs))
1355 			machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1356 
1357 		/*
1358 		 * If the guest can do FWNMI, exit to userspace so it can
1359 		 * deliver a FWNMI to the guest.
1360 		 * Otherwise we synthesize a machine check for the guest
1361 		 * so that it knows that the machine check occurred.
1362 		 */
1363 		if (!vcpu->kvm->arch.fwnmi_enabled) {
1364 			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1365 			kvmppc_core_queue_machine_check(vcpu, flags);
1366 			r = RESUME_GUEST;
1367 			break;
1368 		}
1369 
1370 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1371 		run->exit_reason = KVM_EXIT_NMI;
1372 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1373 		/* Clear out the old NMI status from run->flags */
1374 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1375 		/* Now set the NMI status */
1376 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1377 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1378 		else
1379 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1380 
1381 		r = RESUME_HOST;
1382 		break;
1383 	}
1384 	case BOOK3S_INTERRUPT_PROGRAM:
1385 	{
1386 		ulong flags;
1387 		/*
1388 		 * Normally program interrupts are delivered directly
1389 		 * to the guest by the hardware, but we can get here
1390 		 * as a result of a hypervisor emulation interrupt
1391 		 * (e40) getting turned into a 700 by BML RTAS.
1392 		 */
1393 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1394 		kvmppc_core_queue_program(vcpu, flags);
1395 		r = RESUME_GUEST;
1396 		break;
1397 	}
1398 	case BOOK3S_INTERRUPT_SYSCALL:
1399 	{
1400 		/* hcall - punt to userspace */
1401 		int i;
1402 
1403 		/* hypercall with MSR_PR has already been handled in rmode,
1404 		 * and never reaches here.
1405 		 */
1406 
1407 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1408 		for (i = 0; i < 9; ++i)
1409 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1410 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1411 		vcpu->arch.hcall_needed = 1;
1412 		r = RESUME_HOST;
1413 		break;
1414 	}
1415 	/*
1416 	 * We get these next two if the guest accesses a page which it thinks
1417 	 * it has mapped but which is not actually present, either because
1418 	 * it is for an emulated I/O device or because the corresonding
1419 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1420 	 * have been handled already.
1421 	 */
1422 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1423 		r = RESUME_PAGE_FAULT;
1424 		break;
1425 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1426 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1427 		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1428 			DSISR_SRR1_MATCH_64S;
1429 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1430 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1431 		r = RESUME_PAGE_FAULT;
1432 		break;
1433 	/*
1434 	 * This occurs if the guest executes an illegal instruction.
1435 	 * If the guest debug is disabled, generate a program interrupt
1436 	 * to the guest. If guest debug is enabled, we need to check
1437 	 * whether the instruction is a software breakpoint instruction.
1438 	 * Accordingly return to Guest or Host.
1439 	 */
1440 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1441 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1442 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1443 				swab32(vcpu->arch.emul_inst) :
1444 				vcpu->arch.emul_inst;
1445 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1446 			r = kvmppc_emulate_debug_inst(vcpu);
1447 		} else {
1448 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1449 			r = RESUME_GUEST;
1450 		}
1451 		break;
1452 	/*
1453 	 * This occurs if the guest (kernel or userspace), does something that
1454 	 * is prohibited by HFSCR.
1455 	 * On POWER9, this could be a doorbell instruction that we need
1456 	 * to emulate.
1457 	 * Otherwise, we just generate a program interrupt to the guest.
1458 	 */
1459 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1460 		r = EMULATE_FAIL;
1461 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1462 		    cpu_has_feature(CPU_FTR_ARCH_300))
1463 			r = kvmppc_emulate_doorbell_instr(vcpu);
1464 		if (r == EMULATE_FAIL) {
1465 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1466 			r = RESUME_GUEST;
1467 		}
1468 		break;
1469 
1470 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1471 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1472 		/*
1473 		 * This occurs for various TM-related instructions that
1474 		 * we need to emulate on POWER9 DD2.2.  We have already
1475 		 * handled the cases where the guest was in real-suspend
1476 		 * mode and was transitioning to transactional state.
1477 		 */
1478 		r = kvmhv_p9_tm_emulation(vcpu);
1479 		break;
1480 #endif
1481 
1482 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1483 		r = RESUME_PASSTHROUGH;
1484 		break;
1485 	default:
1486 		kvmppc_dump_regs(vcpu);
1487 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1488 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1489 			vcpu->arch.shregs.msr);
1490 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1491 		r = RESUME_HOST;
1492 		break;
1493 	}
1494 
1495 	return r;
1496 }
1497 
1498 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1499 {
1500 	int r;
1501 	int srcu_idx;
1502 
1503 	vcpu->stat.sum_exits++;
1504 
1505 	/*
1506 	 * This can happen if an interrupt occurs in the last stages
1507 	 * of guest entry or the first stages of guest exit (i.e. after
1508 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1509 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1510 	 * That can happen due to a bug, or due to a machine check
1511 	 * occurring at just the wrong time.
1512 	 */
1513 	if (vcpu->arch.shregs.msr & MSR_HV) {
1514 		pr_emerg("KVM trap in HV mode while nested!\n");
1515 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1516 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1517 			 vcpu->arch.shregs.msr);
1518 		kvmppc_dump_regs(vcpu);
1519 		return RESUME_HOST;
1520 	}
1521 	switch (vcpu->arch.trap) {
1522 	/* We're good on these - the host merely wanted to get our attention */
1523 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1524 		vcpu->stat.dec_exits++;
1525 		r = RESUME_GUEST;
1526 		break;
1527 	case BOOK3S_INTERRUPT_EXTERNAL:
1528 		vcpu->stat.ext_intr_exits++;
1529 		r = RESUME_HOST;
1530 		break;
1531 	case BOOK3S_INTERRUPT_H_DOORBELL:
1532 	case BOOK3S_INTERRUPT_H_VIRT:
1533 		vcpu->stat.ext_intr_exits++;
1534 		r = RESUME_GUEST;
1535 		break;
1536 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1537 	case BOOK3S_INTERRUPT_HMI:
1538 	case BOOK3S_INTERRUPT_PERFMON:
1539 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1540 		r = RESUME_GUEST;
1541 		break;
1542 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1543 	{
1544 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1545 					      DEFAULT_RATELIMIT_BURST);
1546 		/* Pass the machine check to the L1 guest */
1547 		r = RESUME_HOST;
1548 		/* Print the MCE event to host console. */
1549 		if (__ratelimit(&rs))
1550 			machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1551 		break;
1552 	}
1553 	/*
1554 	 * We get these next two if the guest accesses a page which it thinks
1555 	 * it has mapped but which is not actually present, either because
1556 	 * it is for an emulated I/O device or because the corresonding
1557 	 * host page has been paged out.
1558 	 */
1559 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1560 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1561 		r = kvmhv_nested_page_fault(vcpu);
1562 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1563 		break;
1564 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1565 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1566 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1567 					 DSISR_SRR1_MATCH_64S;
1568 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1569 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1570 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1571 		r = kvmhv_nested_page_fault(vcpu);
1572 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1573 		break;
1574 
1575 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1576 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1577 		/*
1578 		 * This occurs for various TM-related instructions that
1579 		 * we need to emulate on POWER9 DD2.2.  We have already
1580 		 * handled the cases where the guest was in real-suspend
1581 		 * mode and was transitioning to transactional state.
1582 		 */
1583 		r = kvmhv_p9_tm_emulation(vcpu);
1584 		break;
1585 #endif
1586 
1587 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1588 		vcpu->arch.trap = 0;
1589 		r = RESUME_GUEST;
1590 		if (!xics_on_xive())
1591 			kvmppc_xics_rm_complete(vcpu, 0);
1592 		break;
1593 	default:
1594 		r = RESUME_HOST;
1595 		break;
1596 	}
1597 
1598 	return r;
1599 }
1600 
1601 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1602 					    struct kvm_sregs *sregs)
1603 {
1604 	int i;
1605 
1606 	memset(sregs, 0, sizeof(struct kvm_sregs));
1607 	sregs->pvr = vcpu->arch.pvr;
1608 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1609 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1610 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1611 	}
1612 
1613 	return 0;
1614 }
1615 
1616 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1617 					    struct kvm_sregs *sregs)
1618 {
1619 	int i, j;
1620 
1621 	/* Only accept the same PVR as the host's, since we can't spoof it */
1622 	if (sregs->pvr != vcpu->arch.pvr)
1623 		return -EINVAL;
1624 
1625 	j = 0;
1626 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1627 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1628 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1629 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1630 			++j;
1631 		}
1632 	}
1633 	vcpu->arch.slb_max = j;
1634 
1635 	return 0;
1636 }
1637 
1638 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1639 		bool preserve_top32)
1640 {
1641 	struct kvm *kvm = vcpu->kvm;
1642 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1643 	u64 mask;
1644 
1645 	spin_lock(&vc->lock);
1646 	/*
1647 	 * If ILE (interrupt little-endian) has changed, update the
1648 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1649 	 */
1650 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1651 		struct kvm_vcpu *vcpu;
1652 		int i;
1653 
1654 		kvm_for_each_vcpu(i, vcpu, kvm) {
1655 			if (vcpu->arch.vcore != vc)
1656 				continue;
1657 			if (new_lpcr & LPCR_ILE)
1658 				vcpu->arch.intr_msr |= MSR_LE;
1659 			else
1660 				vcpu->arch.intr_msr &= ~MSR_LE;
1661 		}
1662 	}
1663 
1664 	/*
1665 	 * Userspace can only modify DPFD (default prefetch depth),
1666 	 * ILE (interrupt little-endian) and TC (translation control).
1667 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1668 	 */
1669 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1670 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1671 		mask |= LPCR_AIL;
1672 	/*
1673 	 * On POWER9, allow userspace to enable large decrementer for the
1674 	 * guest, whether or not the host has it enabled.
1675 	 */
1676 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1677 		mask |= LPCR_LD;
1678 
1679 	/* Broken 32-bit version of LPCR must not clear top bits */
1680 	if (preserve_top32)
1681 		mask &= 0xFFFFFFFF;
1682 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1683 	spin_unlock(&vc->lock);
1684 }
1685 
1686 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1687 				 union kvmppc_one_reg *val)
1688 {
1689 	int r = 0;
1690 	long int i;
1691 
1692 	switch (id) {
1693 	case KVM_REG_PPC_DEBUG_INST:
1694 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1695 		break;
1696 	case KVM_REG_PPC_HIOR:
1697 		*val = get_reg_val(id, 0);
1698 		break;
1699 	case KVM_REG_PPC_DABR:
1700 		*val = get_reg_val(id, vcpu->arch.dabr);
1701 		break;
1702 	case KVM_REG_PPC_DABRX:
1703 		*val = get_reg_val(id, vcpu->arch.dabrx);
1704 		break;
1705 	case KVM_REG_PPC_DSCR:
1706 		*val = get_reg_val(id, vcpu->arch.dscr);
1707 		break;
1708 	case KVM_REG_PPC_PURR:
1709 		*val = get_reg_val(id, vcpu->arch.purr);
1710 		break;
1711 	case KVM_REG_PPC_SPURR:
1712 		*val = get_reg_val(id, vcpu->arch.spurr);
1713 		break;
1714 	case KVM_REG_PPC_AMR:
1715 		*val = get_reg_val(id, vcpu->arch.amr);
1716 		break;
1717 	case KVM_REG_PPC_UAMOR:
1718 		*val = get_reg_val(id, vcpu->arch.uamor);
1719 		break;
1720 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1721 		i = id - KVM_REG_PPC_MMCR0;
1722 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1723 		break;
1724 	case KVM_REG_PPC_MMCR2:
1725 		*val = get_reg_val(id, vcpu->arch.mmcr[2]);
1726 		break;
1727 	case KVM_REG_PPC_MMCRA:
1728 		*val = get_reg_val(id, vcpu->arch.mmcra);
1729 		break;
1730 	case KVM_REG_PPC_MMCRS:
1731 		*val = get_reg_val(id, vcpu->arch.mmcrs);
1732 		break;
1733 	case KVM_REG_PPC_MMCR3:
1734 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
1735 		break;
1736 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1737 		i = id - KVM_REG_PPC_PMC1;
1738 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1739 		break;
1740 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1741 		i = id - KVM_REG_PPC_SPMC1;
1742 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1743 		break;
1744 	case KVM_REG_PPC_SIAR:
1745 		*val = get_reg_val(id, vcpu->arch.siar);
1746 		break;
1747 	case KVM_REG_PPC_SDAR:
1748 		*val = get_reg_val(id, vcpu->arch.sdar);
1749 		break;
1750 	case KVM_REG_PPC_SIER:
1751 		*val = get_reg_val(id, vcpu->arch.sier[0]);
1752 		break;
1753 	case KVM_REG_PPC_SIER2:
1754 		*val = get_reg_val(id, vcpu->arch.sier[1]);
1755 		break;
1756 	case KVM_REG_PPC_SIER3:
1757 		*val = get_reg_val(id, vcpu->arch.sier[2]);
1758 		break;
1759 	case KVM_REG_PPC_IAMR:
1760 		*val = get_reg_val(id, vcpu->arch.iamr);
1761 		break;
1762 	case KVM_REG_PPC_PSPB:
1763 		*val = get_reg_val(id, vcpu->arch.pspb);
1764 		break;
1765 	case KVM_REG_PPC_DPDES:
1766 		/*
1767 		 * On POWER9, where we are emulating msgsndp etc.,
1768 		 * we return 1 bit for each vcpu, which can come from
1769 		 * either vcore->dpdes or doorbell_request.
1770 		 * On POWER8, doorbell_request is 0.
1771 		 */
1772 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1773 				   vcpu->arch.doorbell_request);
1774 		break;
1775 	case KVM_REG_PPC_VTB:
1776 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1777 		break;
1778 	case KVM_REG_PPC_DAWR:
1779 		*val = get_reg_val(id, vcpu->arch.dawr0);
1780 		break;
1781 	case KVM_REG_PPC_DAWRX:
1782 		*val = get_reg_val(id, vcpu->arch.dawrx0);
1783 		break;
1784 	case KVM_REG_PPC_DAWR1:
1785 		*val = get_reg_val(id, vcpu->arch.dawr1);
1786 		break;
1787 	case KVM_REG_PPC_DAWRX1:
1788 		*val = get_reg_val(id, vcpu->arch.dawrx1);
1789 		break;
1790 	case KVM_REG_PPC_CIABR:
1791 		*val = get_reg_val(id, vcpu->arch.ciabr);
1792 		break;
1793 	case KVM_REG_PPC_CSIGR:
1794 		*val = get_reg_val(id, vcpu->arch.csigr);
1795 		break;
1796 	case KVM_REG_PPC_TACR:
1797 		*val = get_reg_val(id, vcpu->arch.tacr);
1798 		break;
1799 	case KVM_REG_PPC_TCSCR:
1800 		*val = get_reg_val(id, vcpu->arch.tcscr);
1801 		break;
1802 	case KVM_REG_PPC_PID:
1803 		*val = get_reg_val(id, vcpu->arch.pid);
1804 		break;
1805 	case KVM_REG_PPC_ACOP:
1806 		*val = get_reg_val(id, vcpu->arch.acop);
1807 		break;
1808 	case KVM_REG_PPC_WORT:
1809 		*val = get_reg_val(id, vcpu->arch.wort);
1810 		break;
1811 	case KVM_REG_PPC_TIDR:
1812 		*val = get_reg_val(id, vcpu->arch.tid);
1813 		break;
1814 	case KVM_REG_PPC_PSSCR:
1815 		*val = get_reg_val(id, vcpu->arch.psscr);
1816 		break;
1817 	case KVM_REG_PPC_VPA_ADDR:
1818 		spin_lock(&vcpu->arch.vpa_update_lock);
1819 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1820 		spin_unlock(&vcpu->arch.vpa_update_lock);
1821 		break;
1822 	case KVM_REG_PPC_VPA_SLB:
1823 		spin_lock(&vcpu->arch.vpa_update_lock);
1824 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1825 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1826 		spin_unlock(&vcpu->arch.vpa_update_lock);
1827 		break;
1828 	case KVM_REG_PPC_VPA_DTL:
1829 		spin_lock(&vcpu->arch.vpa_update_lock);
1830 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1831 		val->vpaval.length = vcpu->arch.dtl.len;
1832 		spin_unlock(&vcpu->arch.vpa_update_lock);
1833 		break;
1834 	case KVM_REG_PPC_TB_OFFSET:
1835 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1836 		break;
1837 	case KVM_REG_PPC_LPCR:
1838 	case KVM_REG_PPC_LPCR_64:
1839 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1840 		break;
1841 	case KVM_REG_PPC_PPR:
1842 		*val = get_reg_val(id, vcpu->arch.ppr);
1843 		break;
1844 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1845 	case KVM_REG_PPC_TFHAR:
1846 		*val = get_reg_val(id, vcpu->arch.tfhar);
1847 		break;
1848 	case KVM_REG_PPC_TFIAR:
1849 		*val = get_reg_val(id, vcpu->arch.tfiar);
1850 		break;
1851 	case KVM_REG_PPC_TEXASR:
1852 		*val = get_reg_val(id, vcpu->arch.texasr);
1853 		break;
1854 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1855 		i = id - KVM_REG_PPC_TM_GPR0;
1856 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1857 		break;
1858 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1859 	{
1860 		int j;
1861 		i = id - KVM_REG_PPC_TM_VSR0;
1862 		if (i < 32)
1863 			for (j = 0; j < TS_FPRWIDTH; j++)
1864 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1865 		else {
1866 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1867 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1868 			else
1869 				r = -ENXIO;
1870 		}
1871 		break;
1872 	}
1873 	case KVM_REG_PPC_TM_CR:
1874 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1875 		break;
1876 	case KVM_REG_PPC_TM_XER:
1877 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1878 		break;
1879 	case KVM_REG_PPC_TM_LR:
1880 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1881 		break;
1882 	case KVM_REG_PPC_TM_CTR:
1883 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1884 		break;
1885 	case KVM_REG_PPC_TM_FPSCR:
1886 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1887 		break;
1888 	case KVM_REG_PPC_TM_AMR:
1889 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1890 		break;
1891 	case KVM_REG_PPC_TM_PPR:
1892 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1893 		break;
1894 	case KVM_REG_PPC_TM_VRSAVE:
1895 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1896 		break;
1897 	case KVM_REG_PPC_TM_VSCR:
1898 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1899 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1900 		else
1901 			r = -ENXIO;
1902 		break;
1903 	case KVM_REG_PPC_TM_DSCR:
1904 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1905 		break;
1906 	case KVM_REG_PPC_TM_TAR:
1907 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1908 		break;
1909 #endif
1910 	case KVM_REG_PPC_ARCH_COMPAT:
1911 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1912 		break;
1913 	case KVM_REG_PPC_DEC_EXPIRY:
1914 		*val = get_reg_val(id, vcpu->arch.dec_expires +
1915 				   vcpu->arch.vcore->tb_offset);
1916 		break;
1917 	case KVM_REG_PPC_ONLINE:
1918 		*val = get_reg_val(id, vcpu->arch.online);
1919 		break;
1920 	case KVM_REG_PPC_PTCR:
1921 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1922 		break;
1923 	default:
1924 		r = -EINVAL;
1925 		break;
1926 	}
1927 
1928 	return r;
1929 }
1930 
1931 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1932 				 union kvmppc_one_reg *val)
1933 {
1934 	int r = 0;
1935 	long int i;
1936 	unsigned long addr, len;
1937 
1938 	switch (id) {
1939 	case KVM_REG_PPC_HIOR:
1940 		/* Only allow this to be set to zero */
1941 		if (set_reg_val(id, *val))
1942 			r = -EINVAL;
1943 		break;
1944 	case KVM_REG_PPC_DABR:
1945 		vcpu->arch.dabr = set_reg_val(id, *val);
1946 		break;
1947 	case KVM_REG_PPC_DABRX:
1948 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1949 		break;
1950 	case KVM_REG_PPC_DSCR:
1951 		vcpu->arch.dscr = set_reg_val(id, *val);
1952 		break;
1953 	case KVM_REG_PPC_PURR:
1954 		vcpu->arch.purr = set_reg_val(id, *val);
1955 		break;
1956 	case KVM_REG_PPC_SPURR:
1957 		vcpu->arch.spurr = set_reg_val(id, *val);
1958 		break;
1959 	case KVM_REG_PPC_AMR:
1960 		vcpu->arch.amr = set_reg_val(id, *val);
1961 		break;
1962 	case KVM_REG_PPC_UAMOR:
1963 		vcpu->arch.uamor = set_reg_val(id, *val);
1964 		break;
1965 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1966 		i = id - KVM_REG_PPC_MMCR0;
1967 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1968 		break;
1969 	case KVM_REG_PPC_MMCR2:
1970 		vcpu->arch.mmcr[2] = set_reg_val(id, *val);
1971 		break;
1972 	case KVM_REG_PPC_MMCRA:
1973 		vcpu->arch.mmcra = set_reg_val(id, *val);
1974 		break;
1975 	case KVM_REG_PPC_MMCRS:
1976 		vcpu->arch.mmcrs = set_reg_val(id, *val);
1977 		break;
1978 	case KVM_REG_PPC_MMCR3:
1979 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
1980 		break;
1981 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1982 		i = id - KVM_REG_PPC_PMC1;
1983 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1984 		break;
1985 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1986 		i = id - KVM_REG_PPC_SPMC1;
1987 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1988 		break;
1989 	case KVM_REG_PPC_SIAR:
1990 		vcpu->arch.siar = set_reg_val(id, *val);
1991 		break;
1992 	case KVM_REG_PPC_SDAR:
1993 		vcpu->arch.sdar = set_reg_val(id, *val);
1994 		break;
1995 	case KVM_REG_PPC_SIER:
1996 		vcpu->arch.sier[0] = set_reg_val(id, *val);
1997 		break;
1998 	case KVM_REG_PPC_SIER2:
1999 		vcpu->arch.sier[1] = set_reg_val(id, *val);
2000 		break;
2001 	case KVM_REG_PPC_SIER3:
2002 		vcpu->arch.sier[2] = set_reg_val(id, *val);
2003 		break;
2004 	case KVM_REG_PPC_IAMR:
2005 		vcpu->arch.iamr = set_reg_val(id, *val);
2006 		break;
2007 	case KVM_REG_PPC_PSPB:
2008 		vcpu->arch.pspb = set_reg_val(id, *val);
2009 		break;
2010 	case KVM_REG_PPC_DPDES:
2011 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2012 		break;
2013 	case KVM_REG_PPC_VTB:
2014 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2015 		break;
2016 	case KVM_REG_PPC_DAWR:
2017 		vcpu->arch.dawr0 = set_reg_val(id, *val);
2018 		break;
2019 	case KVM_REG_PPC_DAWRX:
2020 		vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2021 		break;
2022 	case KVM_REG_PPC_DAWR1:
2023 		vcpu->arch.dawr1 = set_reg_val(id, *val);
2024 		break;
2025 	case KVM_REG_PPC_DAWRX1:
2026 		vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2027 		break;
2028 	case KVM_REG_PPC_CIABR:
2029 		vcpu->arch.ciabr = set_reg_val(id, *val);
2030 		/* Don't allow setting breakpoints in hypervisor code */
2031 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2032 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
2033 		break;
2034 	case KVM_REG_PPC_CSIGR:
2035 		vcpu->arch.csigr = set_reg_val(id, *val);
2036 		break;
2037 	case KVM_REG_PPC_TACR:
2038 		vcpu->arch.tacr = set_reg_val(id, *val);
2039 		break;
2040 	case KVM_REG_PPC_TCSCR:
2041 		vcpu->arch.tcscr = set_reg_val(id, *val);
2042 		break;
2043 	case KVM_REG_PPC_PID:
2044 		vcpu->arch.pid = set_reg_val(id, *val);
2045 		break;
2046 	case KVM_REG_PPC_ACOP:
2047 		vcpu->arch.acop = set_reg_val(id, *val);
2048 		break;
2049 	case KVM_REG_PPC_WORT:
2050 		vcpu->arch.wort = set_reg_val(id, *val);
2051 		break;
2052 	case KVM_REG_PPC_TIDR:
2053 		vcpu->arch.tid = set_reg_val(id, *val);
2054 		break;
2055 	case KVM_REG_PPC_PSSCR:
2056 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2057 		break;
2058 	case KVM_REG_PPC_VPA_ADDR:
2059 		addr = set_reg_val(id, *val);
2060 		r = -EINVAL;
2061 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2062 			      vcpu->arch.dtl.next_gpa))
2063 			break;
2064 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2065 		break;
2066 	case KVM_REG_PPC_VPA_SLB:
2067 		addr = val->vpaval.addr;
2068 		len = val->vpaval.length;
2069 		r = -EINVAL;
2070 		if (addr && !vcpu->arch.vpa.next_gpa)
2071 			break;
2072 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2073 		break;
2074 	case KVM_REG_PPC_VPA_DTL:
2075 		addr = val->vpaval.addr;
2076 		len = val->vpaval.length;
2077 		r = -EINVAL;
2078 		if (addr && (len < sizeof(struct dtl_entry) ||
2079 			     !vcpu->arch.vpa.next_gpa))
2080 			break;
2081 		len -= len % sizeof(struct dtl_entry);
2082 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2083 		break;
2084 	case KVM_REG_PPC_TB_OFFSET:
2085 		/* round up to multiple of 2^24 */
2086 		vcpu->arch.vcore->tb_offset =
2087 			ALIGN(set_reg_val(id, *val), 1UL << 24);
2088 		break;
2089 	case KVM_REG_PPC_LPCR:
2090 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2091 		break;
2092 	case KVM_REG_PPC_LPCR_64:
2093 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2094 		break;
2095 	case KVM_REG_PPC_PPR:
2096 		vcpu->arch.ppr = set_reg_val(id, *val);
2097 		break;
2098 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2099 	case KVM_REG_PPC_TFHAR:
2100 		vcpu->arch.tfhar = set_reg_val(id, *val);
2101 		break;
2102 	case KVM_REG_PPC_TFIAR:
2103 		vcpu->arch.tfiar = set_reg_val(id, *val);
2104 		break;
2105 	case KVM_REG_PPC_TEXASR:
2106 		vcpu->arch.texasr = set_reg_val(id, *val);
2107 		break;
2108 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2109 		i = id - KVM_REG_PPC_TM_GPR0;
2110 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2111 		break;
2112 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2113 	{
2114 		int j;
2115 		i = id - KVM_REG_PPC_TM_VSR0;
2116 		if (i < 32)
2117 			for (j = 0; j < TS_FPRWIDTH; j++)
2118 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2119 		else
2120 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2121 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2122 			else
2123 				r = -ENXIO;
2124 		break;
2125 	}
2126 	case KVM_REG_PPC_TM_CR:
2127 		vcpu->arch.cr_tm = set_reg_val(id, *val);
2128 		break;
2129 	case KVM_REG_PPC_TM_XER:
2130 		vcpu->arch.xer_tm = set_reg_val(id, *val);
2131 		break;
2132 	case KVM_REG_PPC_TM_LR:
2133 		vcpu->arch.lr_tm = set_reg_val(id, *val);
2134 		break;
2135 	case KVM_REG_PPC_TM_CTR:
2136 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2137 		break;
2138 	case KVM_REG_PPC_TM_FPSCR:
2139 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2140 		break;
2141 	case KVM_REG_PPC_TM_AMR:
2142 		vcpu->arch.amr_tm = set_reg_val(id, *val);
2143 		break;
2144 	case KVM_REG_PPC_TM_PPR:
2145 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2146 		break;
2147 	case KVM_REG_PPC_TM_VRSAVE:
2148 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2149 		break;
2150 	case KVM_REG_PPC_TM_VSCR:
2151 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2152 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2153 		else
2154 			r = - ENXIO;
2155 		break;
2156 	case KVM_REG_PPC_TM_DSCR:
2157 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2158 		break;
2159 	case KVM_REG_PPC_TM_TAR:
2160 		vcpu->arch.tar_tm = set_reg_val(id, *val);
2161 		break;
2162 #endif
2163 	case KVM_REG_PPC_ARCH_COMPAT:
2164 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2165 		break;
2166 	case KVM_REG_PPC_DEC_EXPIRY:
2167 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
2168 			vcpu->arch.vcore->tb_offset;
2169 		break;
2170 	case KVM_REG_PPC_ONLINE:
2171 		i = set_reg_val(id, *val);
2172 		if (i && !vcpu->arch.online)
2173 			atomic_inc(&vcpu->arch.vcore->online_count);
2174 		else if (!i && vcpu->arch.online)
2175 			atomic_dec(&vcpu->arch.vcore->online_count);
2176 		vcpu->arch.online = i;
2177 		break;
2178 	case KVM_REG_PPC_PTCR:
2179 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2180 		break;
2181 	default:
2182 		r = -EINVAL;
2183 		break;
2184 	}
2185 
2186 	return r;
2187 }
2188 
2189 /*
2190  * On POWER9, threads are independent and can be in different partitions.
2191  * Therefore we consider each thread to be a subcore.
2192  * There is a restriction that all threads have to be in the same
2193  * MMU mode (radix or HPT), unfortunately, but since we only support
2194  * HPT guests on a HPT host so far, that isn't an impediment yet.
2195  */
2196 static int threads_per_vcore(struct kvm *kvm)
2197 {
2198 	if (kvm->arch.threads_indep)
2199 		return 1;
2200 	return threads_per_subcore;
2201 }
2202 
2203 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2204 {
2205 	struct kvmppc_vcore *vcore;
2206 
2207 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2208 
2209 	if (vcore == NULL)
2210 		return NULL;
2211 
2212 	spin_lock_init(&vcore->lock);
2213 	spin_lock_init(&vcore->stoltb_lock);
2214 	rcuwait_init(&vcore->wait);
2215 	vcore->preempt_tb = TB_NIL;
2216 	vcore->lpcr = kvm->arch.lpcr;
2217 	vcore->first_vcpuid = id;
2218 	vcore->kvm = kvm;
2219 	INIT_LIST_HEAD(&vcore->preempt_list);
2220 
2221 	return vcore;
2222 }
2223 
2224 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2225 static struct debugfs_timings_element {
2226 	const char *name;
2227 	size_t offset;
2228 } timings[] = {
2229 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2230 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2231 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2232 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2233 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2234 };
2235 
2236 #define N_TIMINGS	(ARRAY_SIZE(timings))
2237 
2238 struct debugfs_timings_state {
2239 	struct kvm_vcpu	*vcpu;
2240 	unsigned int	buflen;
2241 	char		buf[N_TIMINGS * 100];
2242 };
2243 
2244 static int debugfs_timings_open(struct inode *inode, struct file *file)
2245 {
2246 	struct kvm_vcpu *vcpu = inode->i_private;
2247 	struct debugfs_timings_state *p;
2248 
2249 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2250 	if (!p)
2251 		return -ENOMEM;
2252 
2253 	kvm_get_kvm(vcpu->kvm);
2254 	p->vcpu = vcpu;
2255 	file->private_data = p;
2256 
2257 	return nonseekable_open(inode, file);
2258 }
2259 
2260 static int debugfs_timings_release(struct inode *inode, struct file *file)
2261 {
2262 	struct debugfs_timings_state *p = file->private_data;
2263 
2264 	kvm_put_kvm(p->vcpu->kvm);
2265 	kfree(p);
2266 	return 0;
2267 }
2268 
2269 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2270 				    size_t len, loff_t *ppos)
2271 {
2272 	struct debugfs_timings_state *p = file->private_data;
2273 	struct kvm_vcpu *vcpu = p->vcpu;
2274 	char *s, *buf_end;
2275 	struct kvmhv_tb_accumulator tb;
2276 	u64 count;
2277 	loff_t pos;
2278 	ssize_t n;
2279 	int i, loops;
2280 	bool ok;
2281 
2282 	if (!p->buflen) {
2283 		s = p->buf;
2284 		buf_end = s + sizeof(p->buf);
2285 		for (i = 0; i < N_TIMINGS; ++i) {
2286 			struct kvmhv_tb_accumulator *acc;
2287 
2288 			acc = (struct kvmhv_tb_accumulator *)
2289 				((unsigned long)vcpu + timings[i].offset);
2290 			ok = false;
2291 			for (loops = 0; loops < 1000; ++loops) {
2292 				count = acc->seqcount;
2293 				if (!(count & 1)) {
2294 					smp_rmb();
2295 					tb = *acc;
2296 					smp_rmb();
2297 					if (count == acc->seqcount) {
2298 						ok = true;
2299 						break;
2300 					}
2301 				}
2302 				udelay(1);
2303 			}
2304 			if (!ok)
2305 				snprintf(s, buf_end - s, "%s: stuck\n",
2306 					timings[i].name);
2307 			else
2308 				snprintf(s, buf_end - s,
2309 					"%s: %llu %llu %llu %llu\n",
2310 					timings[i].name, count / 2,
2311 					tb_to_ns(tb.tb_total),
2312 					tb_to_ns(tb.tb_min),
2313 					tb_to_ns(tb.tb_max));
2314 			s += strlen(s);
2315 		}
2316 		p->buflen = s - p->buf;
2317 	}
2318 
2319 	pos = *ppos;
2320 	if (pos >= p->buflen)
2321 		return 0;
2322 	if (len > p->buflen - pos)
2323 		len = p->buflen - pos;
2324 	n = copy_to_user(buf, p->buf + pos, len);
2325 	if (n) {
2326 		if (n == len)
2327 			return -EFAULT;
2328 		len -= n;
2329 	}
2330 	*ppos = pos + len;
2331 	return len;
2332 }
2333 
2334 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2335 				     size_t len, loff_t *ppos)
2336 {
2337 	return -EACCES;
2338 }
2339 
2340 static const struct file_operations debugfs_timings_ops = {
2341 	.owner	 = THIS_MODULE,
2342 	.open	 = debugfs_timings_open,
2343 	.release = debugfs_timings_release,
2344 	.read	 = debugfs_timings_read,
2345 	.write	 = debugfs_timings_write,
2346 	.llseek	 = generic_file_llseek,
2347 };
2348 
2349 /* Create a debugfs directory for the vcpu */
2350 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2351 {
2352 	char buf[16];
2353 	struct kvm *kvm = vcpu->kvm;
2354 
2355 	snprintf(buf, sizeof(buf), "vcpu%u", id);
2356 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2357 	debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2358 			    &debugfs_timings_ops);
2359 }
2360 
2361 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2362 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2363 {
2364 }
2365 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2366 
2367 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2368 {
2369 	int err;
2370 	int core;
2371 	struct kvmppc_vcore *vcore;
2372 	struct kvm *kvm;
2373 	unsigned int id;
2374 
2375 	kvm = vcpu->kvm;
2376 	id = vcpu->vcpu_id;
2377 
2378 	vcpu->arch.shared = &vcpu->arch.shregs;
2379 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2380 	/*
2381 	 * The shared struct is never shared on HV,
2382 	 * so we can always use host endianness
2383 	 */
2384 #ifdef __BIG_ENDIAN__
2385 	vcpu->arch.shared_big_endian = true;
2386 #else
2387 	vcpu->arch.shared_big_endian = false;
2388 #endif
2389 #endif
2390 	vcpu->arch.mmcr[0] = MMCR0_FC;
2391 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2392 	/* default to host PVR, since we can't spoof it */
2393 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2394 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2395 	spin_lock_init(&vcpu->arch.tbacct_lock);
2396 	vcpu->arch.busy_preempt = TB_NIL;
2397 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2398 
2399 	/*
2400 	 * Set the default HFSCR for the guest from the host value.
2401 	 * This value is only used on POWER9.
2402 	 * On POWER9, we want to virtualize the doorbell facility, so we
2403 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2404 	 * to trap and then we emulate them.
2405 	 */
2406 	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2407 		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2408 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2409 		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2410 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2411 			vcpu->arch.hfscr |= HFSCR_TM;
2412 	}
2413 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2414 		vcpu->arch.hfscr |= HFSCR_TM;
2415 
2416 	kvmppc_mmu_book3s_hv_init(vcpu);
2417 
2418 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2419 
2420 	init_waitqueue_head(&vcpu->arch.cpu_run);
2421 
2422 	mutex_lock(&kvm->lock);
2423 	vcore = NULL;
2424 	err = -EINVAL;
2425 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2426 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2427 			pr_devel("KVM: VCPU ID too high\n");
2428 			core = KVM_MAX_VCORES;
2429 		} else {
2430 			BUG_ON(kvm->arch.smt_mode != 1);
2431 			core = kvmppc_pack_vcpu_id(kvm, id);
2432 		}
2433 	} else {
2434 		core = id / kvm->arch.smt_mode;
2435 	}
2436 	if (core < KVM_MAX_VCORES) {
2437 		vcore = kvm->arch.vcores[core];
2438 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2439 			pr_devel("KVM: collision on id %u", id);
2440 			vcore = NULL;
2441 		} else if (!vcore) {
2442 			/*
2443 			 * Take mmu_setup_lock for mutual exclusion
2444 			 * with kvmppc_update_lpcr().
2445 			 */
2446 			err = -ENOMEM;
2447 			vcore = kvmppc_vcore_create(kvm,
2448 					id & ~(kvm->arch.smt_mode - 1));
2449 			mutex_lock(&kvm->arch.mmu_setup_lock);
2450 			kvm->arch.vcores[core] = vcore;
2451 			kvm->arch.online_vcores++;
2452 			mutex_unlock(&kvm->arch.mmu_setup_lock);
2453 		}
2454 	}
2455 	mutex_unlock(&kvm->lock);
2456 
2457 	if (!vcore)
2458 		return err;
2459 
2460 	spin_lock(&vcore->lock);
2461 	++vcore->num_threads;
2462 	spin_unlock(&vcore->lock);
2463 	vcpu->arch.vcore = vcore;
2464 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2465 	vcpu->arch.thread_cpu = -1;
2466 	vcpu->arch.prev_cpu = -1;
2467 
2468 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2469 	kvmppc_sanity_check(vcpu);
2470 
2471 	debugfs_vcpu_init(vcpu, id);
2472 
2473 	return 0;
2474 }
2475 
2476 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2477 			      unsigned long flags)
2478 {
2479 	int err;
2480 	int esmt = 0;
2481 
2482 	if (flags)
2483 		return -EINVAL;
2484 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2485 		return -EINVAL;
2486 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2487 		/*
2488 		 * On POWER8 (or POWER7), the threading mode is "strict",
2489 		 * so we pack smt_mode vcpus per vcore.
2490 		 */
2491 		if (smt_mode > threads_per_subcore)
2492 			return -EINVAL;
2493 	} else {
2494 		/*
2495 		 * On POWER9, the threading mode is "loose",
2496 		 * so each vcpu gets its own vcore.
2497 		 */
2498 		esmt = smt_mode;
2499 		smt_mode = 1;
2500 	}
2501 	mutex_lock(&kvm->lock);
2502 	err = -EBUSY;
2503 	if (!kvm->arch.online_vcores) {
2504 		kvm->arch.smt_mode = smt_mode;
2505 		kvm->arch.emul_smt_mode = esmt;
2506 		err = 0;
2507 	}
2508 	mutex_unlock(&kvm->lock);
2509 
2510 	return err;
2511 }
2512 
2513 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2514 {
2515 	if (vpa->pinned_addr)
2516 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2517 					vpa->dirty);
2518 }
2519 
2520 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2521 {
2522 	spin_lock(&vcpu->arch.vpa_update_lock);
2523 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2524 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2525 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2526 	spin_unlock(&vcpu->arch.vpa_update_lock);
2527 }
2528 
2529 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2530 {
2531 	/* Indicate we want to get back into the guest */
2532 	return 1;
2533 }
2534 
2535 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2536 {
2537 	unsigned long dec_nsec, now;
2538 
2539 	now = get_tb();
2540 	if (now > vcpu->arch.dec_expires) {
2541 		/* decrementer has already gone negative */
2542 		kvmppc_core_queue_dec(vcpu);
2543 		kvmppc_core_prepare_to_enter(vcpu);
2544 		return;
2545 	}
2546 	dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2547 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2548 	vcpu->arch.timer_running = 1;
2549 }
2550 
2551 extern int __kvmppc_vcore_entry(void);
2552 
2553 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2554 				   struct kvm_vcpu *vcpu)
2555 {
2556 	u64 now;
2557 
2558 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2559 		return;
2560 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2561 	now = mftb();
2562 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2563 		vcpu->arch.stolen_logged;
2564 	vcpu->arch.busy_preempt = now;
2565 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2566 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2567 	--vc->n_runnable;
2568 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2569 }
2570 
2571 static int kvmppc_grab_hwthread(int cpu)
2572 {
2573 	struct paca_struct *tpaca;
2574 	long timeout = 10000;
2575 
2576 	tpaca = paca_ptrs[cpu];
2577 
2578 	/* Ensure the thread won't go into the kernel if it wakes */
2579 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2580 	tpaca->kvm_hstate.kvm_vcore = NULL;
2581 	tpaca->kvm_hstate.napping = 0;
2582 	smp_wmb();
2583 	tpaca->kvm_hstate.hwthread_req = 1;
2584 
2585 	/*
2586 	 * If the thread is already executing in the kernel (e.g. handling
2587 	 * a stray interrupt), wait for it to get back to nap mode.
2588 	 * The smp_mb() is to ensure that our setting of hwthread_req
2589 	 * is visible before we look at hwthread_state, so if this
2590 	 * races with the code at system_reset_pSeries and the thread
2591 	 * misses our setting of hwthread_req, we are sure to see its
2592 	 * setting of hwthread_state, and vice versa.
2593 	 */
2594 	smp_mb();
2595 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2596 		if (--timeout <= 0) {
2597 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2598 			return -EBUSY;
2599 		}
2600 		udelay(1);
2601 	}
2602 	return 0;
2603 }
2604 
2605 static void kvmppc_release_hwthread(int cpu)
2606 {
2607 	struct paca_struct *tpaca;
2608 
2609 	tpaca = paca_ptrs[cpu];
2610 	tpaca->kvm_hstate.hwthread_req = 0;
2611 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2612 	tpaca->kvm_hstate.kvm_vcore = NULL;
2613 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2614 }
2615 
2616 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2617 {
2618 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2619 	cpumask_t *cpu_in_guest;
2620 	int i;
2621 
2622 	cpu = cpu_first_thread_sibling(cpu);
2623 	if (nested) {
2624 		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2625 		cpu_in_guest = &nested->cpu_in_guest;
2626 	} else {
2627 		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2628 		cpu_in_guest = &kvm->arch.cpu_in_guest;
2629 	}
2630 	/*
2631 	 * Make sure setting of bit in need_tlb_flush precedes
2632 	 * testing of cpu_in_guest bits.  The matching barrier on
2633 	 * the other side is the first smp_mb() in kvmppc_run_core().
2634 	 */
2635 	smp_mb();
2636 	for (i = 0; i < threads_per_core; ++i)
2637 		if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2638 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2639 }
2640 
2641 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2642 {
2643 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2644 	struct kvm *kvm = vcpu->kvm;
2645 	int prev_cpu;
2646 
2647 	if (!cpu_has_feature(CPU_FTR_HVMODE))
2648 		return;
2649 
2650 	if (nested)
2651 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2652 	else
2653 		prev_cpu = vcpu->arch.prev_cpu;
2654 
2655 	/*
2656 	 * With radix, the guest can do TLB invalidations itself,
2657 	 * and it could choose to use the local form (tlbiel) if
2658 	 * it is invalidating a translation that has only ever been
2659 	 * used on one vcpu.  However, that doesn't mean it has
2660 	 * only ever been used on one physical cpu, since vcpus
2661 	 * can move around between pcpus.  To cope with this, when
2662 	 * a vcpu moves from one pcpu to another, we need to tell
2663 	 * any vcpus running on the same core as this vcpu previously
2664 	 * ran to flush the TLB.  The TLB is shared between threads,
2665 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2666 	 */
2667 	if (prev_cpu != pcpu) {
2668 		if (prev_cpu >= 0 &&
2669 		    cpu_first_thread_sibling(prev_cpu) !=
2670 		    cpu_first_thread_sibling(pcpu))
2671 			radix_flush_cpu(kvm, prev_cpu, vcpu);
2672 		if (nested)
2673 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2674 		else
2675 			vcpu->arch.prev_cpu = pcpu;
2676 	}
2677 }
2678 
2679 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2680 {
2681 	int cpu;
2682 	struct paca_struct *tpaca;
2683 	struct kvm *kvm = vc->kvm;
2684 
2685 	cpu = vc->pcpu;
2686 	if (vcpu) {
2687 		if (vcpu->arch.timer_running) {
2688 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2689 			vcpu->arch.timer_running = 0;
2690 		}
2691 		cpu += vcpu->arch.ptid;
2692 		vcpu->cpu = vc->pcpu;
2693 		vcpu->arch.thread_cpu = cpu;
2694 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2695 	}
2696 	tpaca = paca_ptrs[cpu];
2697 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2698 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2699 	tpaca->kvm_hstate.fake_suspend = 0;
2700 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2701 	smp_wmb();
2702 	tpaca->kvm_hstate.kvm_vcore = vc;
2703 	if (cpu != smp_processor_id())
2704 		kvmppc_ipi_thread(cpu);
2705 }
2706 
2707 static void kvmppc_wait_for_nap(int n_threads)
2708 {
2709 	int cpu = smp_processor_id();
2710 	int i, loops;
2711 
2712 	if (n_threads <= 1)
2713 		return;
2714 	for (loops = 0; loops < 1000000; ++loops) {
2715 		/*
2716 		 * Check if all threads are finished.
2717 		 * We set the vcore pointer when starting a thread
2718 		 * and the thread clears it when finished, so we look
2719 		 * for any threads that still have a non-NULL vcore ptr.
2720 		 */
2721 		for (i = 1; i < n_threads; ++i)
2722 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2723 				break;
2724 		if (i == n_threads) {
2725 			HMT_medium();
2726 			return;
2727 		}
2728 		HMT_low();
2729 	}
2730 	HMT_medium();
2731 	for (i = 1; i < n_threads; ++i)
2732 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2733 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2734 }
2735 
2736 /*
2737  * Check that we are on thread 0 and that any other threads in
2738  * this core are off-line.  Then grab the threads so they can't
2739  * enter the kernel.
2740  */
2741 static int on_primary_thread(void)
2742 {
2743 	int cpu = smp_processor_id();
2744 	int thr;
2745 
2746 	/* Are we on a primary subcore? */
2747 	if (cpu_thread_in_subcore(cpu))
2748 		return 0;
2749 
2750 	thr = 0;
2751 	while (++thr < threads_per_subcore)
2752 		if (cpu_online(cpu + thr))
2753 			return 0;
2754 
2755 	/* Grab all hw threads so they can't go into the kernel */
2756 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2757 		if (kvmppc_grab_hwthread(cpu + thr)) {
2758 			/* Couldn't grab one; let the others go */
2759 			do {
2760 				kvmppc_release_hwthread(cpu + thr);
2761 			} while (--thr > 0);
2762 			return 0;
2763 		}
2764 	}
2765 	return 1;
2766 }
2767 
2768 /*
2769  * A list of virtual cores for each physical CPU.
2770  * These are vcores that could run but their runner VCPU tasks are
2771  * (or may be) preempted.
2772  */
2773 struct preempted_vcore_list {
2774 	struct list_head	list;
2775 	spinlock_t		lock;
2776 };
2777 
2778 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2779 
2780 static void init_vcore_lists(void)
2781 {
2782 	int cpu;
2783 
2784 	for_each_possible_cpu(cpu) {
2785 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2786 		spin_lock_init(&lp->lock);
2787 		INIT_LIST_HEAD(&lp->list);
2788 	}
2789 }
2790 
2791 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2792 {
2793 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2794 
2795 	vc->vcore_state = VCORE_PREEMPT;
2796 	vc->pcpu = smp_processor_id();
2797 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2798 		spin_lock(&lp->lock);
2799 		list_add_tail(&vc->preempt_list, &lp->list);
2800 		spin_unlock(&lp->lock);
2801 	}
2802 
2803 	/* Start accumulating stolen time */
2804 	kvmppc_core_start_stolen(vc);
2805 }
2806 
2807 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2808 {
2809 	struct preempted_vcore_list *lp;
2810 
2811 	kvmppc_core_end_stolen(vc);
2812 	if (!list_empty(&vc->preempt_list)) {
2813 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2814 		spin_lock(&lp->lock);
2815 		list_del_init(&vc->preempt_list);
2816 		spin_unlock(&lp->lock);
2817 	}
2818 	vc->vcore_state = VCORE_INACTIVE;
2819 }
2820 
2821 /*
2822  * This stores information about the virtual cores currently
2823  * assigned to a physical core.
2824  */
2825 struct core_info {
2826 	int		n_subcores;
2827 	int		max_subcore_threads;
2828 	int		total_threads;
2829 	int		subcore_threads[MAX_SUBCORES];
2830 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2831 };
2832 
2833 /*
2834  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2835  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2836  */
2837 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2838 
2839 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2840 {
2841 	memset(cip, 0, sizeof(*cip));
2842 	cip->n_subcores = 1;
2843 	cip->max_subcore_threads = vc->num_threads;
2844 	cip->total_threads = vc->num_threads;
2845 	cip->subcore_threads[0] = vc->num_threads;
2846 	cip->vc[0] = vc;
2847 }
2848 
2849 static bool subcore_config_ok(int n_subcores, int n_threads)
2850 {
2851 	/*
2852 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2853 	 * split-core mode, with one thread per subcore.
2854 	 */
2855 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2856 		return n_subcores <= 4 && n_threads == 1;
2857 
2858 	/* On POWER8, can only dynamically split if unsplit to begin with */
2859 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2860 		return false;
2861 	if (n_subcores > MAX_SUBCORES)
2862 		return false;
2863 	if (n_subcores > 1) {
2864 		if (!(dynamic_mt_modes & 2))
2865 			n_subcores = 4;
2866 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2867 			return false;
2868 	}
2869 
2870 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2871 }
2872 
2873 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2874 {
2875 	vc->entry_exit_map = 0;
2876 	vc->in_guest = 0;
2877 	vc->napping_threads = 0;
2878 	vc->conferring_threads = 0;
2879 	vc->tb_offset_applied = 0;
2880 }
2881 
2882 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2883 {
2884 	int n_threads = vc->num_threads;
2885 	int sub;
2886 
2887 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2888 		return false;
2889 
2890 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
2891 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2892 		return false;
2893 
2894 	if (n_threads < cip->max_subcore_threads)
2895 		n_threads = cip->max_subcore_threads;
2896 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2897 		return false;
2898 	cip->max_subcore_threads = n_threads;
2899 
2900 	sub = cip->n_subcores;
2901 	++cip->n_subcores;
2902 	cip->total_threads += vc->num_threads;
2903 	cip->subcore_threads[sub] = vc->num_threads;
2904 	cip->vc[sub] = vc;
2905 	init_vcore_to_run(vc);
2906 	list_del_init(&vc->preempt_list);
2907 
2908 	return true;
2909 }
2910 
2911 /*
2912  * Work out whether it is possible to piggyback the execution of
2913  * vcore *pvc onto the execution of the other vcores described in *cip.
2914  */
2915 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2916 			  int target_threads)
2917 {
2918 	if (cip->total_threads + pvc->num_threads > target_threads)
2919 		return false;
2920 
2921 	return can_dynamic_split(pvc, cip);
2922 }
2923 
2924 static void prepare_threads(struct kvmppc_vcore *vc)
2925 {
2926 	int i;
2927 	struct kvm_vcpu *vcpu;
2928 
2929 	for_each_runnable_thread(i, vcpu, vc) {
2930 		if (signal_pending(vcpu->arch.run_task))
2931 			vcpu->arch.ret = -EINTR;
2932 		else if (no_mixing_hpt_and_radix &&
2933 			 kvm_is_radix(vc->kvm) != radix_enabled())
2934 			vcpu->arch.ret = -EINVAL;
2935 		else if (vcpu->arch.vpa.update_pending ||
2936 			 vcpu->arch.slb_shadow.update_pending ||
2937 			 vcpu->arch.dtl.update_pending)
2938 			vcpu->arch.ret = RESUME_GUEST;
2939 		else
2940 			continue;
2941 		kvmppc_remove_runnable(vc, vcpu);
2942 		wake_up(&vcpu->arch.cpu_run);
2943 	}
2944 }
2945 
2946 static void collect_piggybacks(struct core_info *cip, int target_threads)
2947 {
2948 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2949 	struct kvmppc_vcore *pvc, *vcnext;
2950 
2951 	spin_lock(&lp->lock);
2952 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2953 		if (!spin_trylock(&pvc->lock))
2954 			continue;
2955 		prepare_threads(pvc);
2956 		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2957 			list_del_init(&pvc->preempt_list);
2958 			if (pvc->runner == NULL) {
2959 				pvc->vcore_state = VCORE_INACTIVE;
2960 				kvmppc_core_end_stolen(pvc);
2961 			}
2962 			spin_unlock(&pvc->lock);
2963 			continue;
2964 		}
2965 		if (!can_piggyback(pvc, cip, target_threads)) {
2966 			spin_unlock(&pvc->lock);
2967 			continue;
2968 		}
2969 		kvmppc_core_end_stolen(pvc);
2970 		pvc->vcore_state = VCORE_PIGGYBACK;
2971 		if (cip->total_threads >= target_threads)
2972 			break;
2973 	}
2974 	spin_unlock(&lp->lock);
2975 }
2976 
2977 static bool recheck_signals_and_mmu(struct core_info *cip)
2978 {
2979 	int sub, i;
2980 	struct kvm_vcpu *vcpu;
2981 	struct kvmppc_vcore *vc;
2982 
2983 	for (sub = 0; sub < cip->n_subcores; ++sub) {
2984 		vc = cip->vc[sub];
2985 		if (!vc->kvm->arch.mmu_ready)
2986 			return true;
2987 		for_each_runnable_thread(i, vcpu, vc)
2988 			if (signal_pending(vcpu->arch.run_task))
2989 				return true;
2990 	}
2991 	return false;
2992 }
2993 
2994 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2995 {
2996 	int still_running = 0, i;
2997 	u64 now;
2998 	long ret;
2999 	struct kvm_vcpu *vcpu;
3000 
3001 	spin_lock(&vc->lock);
3002 	now = get_tb();
3003 	for_each_runnable_thread(i, vcpu, vc) {
3004 		/*
3005 		 * It's safe to unlock the vcore in the loop here, because
3006 		 * for_each_runnable_thread() is safe against removal of
3007 		 * the vcpu, and the vcore state is VCORE_EXITING here,
3008 		 * so any vcpus becoming runnable will have their arch.trap
3009 		 * set to zero and can't actually run in the guest.
3010 		 */
3011 		spin_unlock(&vc->lock);
3012 		/* cancel pending dec exception if dec is positive */
3013 		if (now < vcpu->arch.dec_expires &&
3014 		    kvmppc_core_pending_dec(vcpu))
3015 			kvmppc_core_dequeue_dec(vcpu);
3016 
3017 		trace_kvm_guest_exit(vcpu);
3018 
3019 		ret = RESUME_GUEST;
3020 		if (vcpu->arch.trap)
3021 			ret = kvmppc_handle_exit_hv(vcpu,
3022 						    vcpu->arch.run_task);
3023 
3024 		vcpu->arch.ret = ret;
3025 		vcpu->arch.trap = 0;
3026 
3027 		spin_lock(&vc->lock);
3028 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3029 			if (vcpu->arch.pending_exceptions)
3030 				kvmppc_core_prepare_to_enter(vcpu);
3031 			if (vcpu->arch.ceded)
3032 				kvmppc_set_timer(vcpu);
3033 			else
3034 				++still_running;
3035 		} else {
3036 			kvmppc_remove_runnable(vc, vcpu);
3037 			wake_up(&vcpu->arch.cpu_run);
3038 		}
3039 	}
3040 	if (!is_master) {
3041 		if (still_running > 0) {
3042 			kvmppc_vcore_preempt(vc);
3043 		} else if (vc->runner) {
3044 			vc->vcore_state = VCORE_PREEMPT;
3045 			kvmppc_core_start_stolen(vc);
3046 		} else {
3047 			vc->vcore_state = VCORE_INACTIVE;
3048 		}
3049 		if (vc->n_runnable > 0 && vc->runner == NULL) {
3050 			/* make sure there's a candidate runner awake */
3051 			i = -1;
3052 			vcpu = next_runnable_thread(vc, &i);
3053 			wake_up(&vcpu->arch.cpu_run);
3054 		}
3055 	}
3056 	spin_unlock(&vc->lock);
3057 }
3058 
3059 /*
3060  * Clear core from the list of active host cores as we are about to
3061  * enter the guest. Only do this if it is the primary thread of the
3062  * core (not if a subcore) that is entering the guest.
3063  */
3064 static inline int kvmppc_clear_host_core(unsigned int cpu)
3065 {
3066 	int core;
3067 
3068 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3069 		return 0;
3070 	/*
3071 	 * Memory barrier can be omitted here as we will do a smp_wmb()
3072 	 * later in kvmppc_start_thread and we need ensure that state is
3073 	 * visible to other CPUs only after we enter guest.
3074 	 */
3075 	core = cpu >> threads_shift;
3076 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3077 	return 0;
3078 }
3079 
3080 /*
3081  * Advertise this core as an active host core since we exited the guest
3082  * Only need to do this if it is the primary thread of the core that is
3083  * exiting.
3084  */
3085 static inline int kvmppc_set_host_core(unsigned int cpu)
3086 {
3087 	int core;
3088 
3089 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3090 		return 0;
3091 
3092 	/*
3093 	 * Memory barrier can be omitted here because we do a spin_unlock
3094 	 * immediately after this which provides the memory barrier.
3095 	 */
3096 	core = cpu >> threads_shift;
3097 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3098 	return 0;
3099 }
3100 
3101 static void set_irq_happened(int trap)
3102 {
3103 	switch (trap) {
3104 	case BOOK3S_INTERRUPT_EXTERNAL:
3105 		local_paca->irq_happened |= PACA_IRQ_EE;
3106 		break;
3107 	case BOOK3S_INTERRUPT_H_DOORBELL:
3108 		local_paca->irq_happened |= PACA_IRQ_DBELL;
3109 		break;
3110 	case BOOK3S_INTERRUPT_HMI:
3111 		local_paca->irq_happened |= PACA_IRQ_HMI;
3112 		break;
3113 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3114 		replay_system_reset();
3115 		break;
3116 	}
3117 }
3118 
3119 /*
3120  * Run a set of guest threads on a physical core.
3121  * Called with vc->lock held.
3122  */
3123 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3124 {
3125 	struct kvm_vcpu *vcpu;
3126 	int i;
3127 	int srcu_idx;
3128 	struct core_info core_info;
3129 	struct kvmppc_vcore *pvc;
3130 	struct kvm_split_mode split_info, *sip;
3131 	int split, subcore_size, active;
3132 	int sub;
3133 	bool thr0_done;
3134 	unsigned long cmd_bit, stat_bit;
3135 	int pcpu, thr;
3136 	int target_threads;
3137 	int controlled_threads;
3138 	int trap;
3139 	bool is_power8;
3140 
3141 	/*
3142 	 * Remove from the list any threads that have a signal pending
3143 	 * or need a VPA update done
3144 	 */
3145 	prepare_threads(vc);
3146 
3147 	/* if the runner is no longer runnable, let the caller pick a new one */
3148 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3149 		return;
3150 
3151 	/*
3152 	 * Initialize *vc.
3153 	 */
3154 	init_vcore_to_run(vc);
3155 	vc->preempt_tb = TB_NIL;
3156 
3157 	/*
3158 	 * Number of threads that we will be controlling: the same as
3159 	 * the number of threads per subcore, except on POWER9,
3160 	 * where it's 1 because the threads are (mostly) independent.
3161 	 */
3162 	controlled_threads = threads_per_vcore(vc->kvm);
3163 
3164 	/*
3165 	 * Make sure we are running on primary threads, and that secondary
3166 	 * threads are offline.  Also check if the number of threads in this
3167 	 * guest are greater than the current system threads per guest.
3168 	 * On POWER9, we need to be not in independent-threads mode if
3169 	 * this is a HPT guest on a radix host machine where the
3170 	 * CPU threads may not be in different MMU modes.
3171 	 */
3172 	if ((controlled_threads > 1) &&
3173 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3174 		for_each_runnable_thread(i, vcpu, vc) {
3175 			vcpu->arch.ret = -EBUSY;
3176 			kvmppc_remove_runnable(vc, vcpu);
3177 			wake_up(&vcpu->arch.cpu_run);
3178 		}
3179 		goto out;
3180 	}
3181 
3182 	/*
3183 	 * See if we could run any other vcores on the physical core
3184 	 * along with this one.
3185 	 */
3186 	init_core_info(&core_info, vc);
3187 	pcpu = smp_processor_id();
3188 	target_threads = controlled_threads;
3189 	if (target_smt_mode && target_smt_mode < target_threads)
3190 		target_threads = target_smt_mode;
3191 	if (vc->num_threads < target_threads)
3192 		collect_piggybacks(&core_info, target_threads);
3193 
3194 	/*
3195 	 * On radix, arrange for TLB flushing if necessary.
3196 	 * This has to be done before disabling interrupts since
3197 	 * it uses smp_call_function().
3198 	 */
3199 	pcpu = smp_processor_id();
3200 	if (kvm_is_radix(vc->kvm)) {
3201 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3202 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3203 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3204 	}
3205 
3206 	/*
3207 	 * Hard-disable interrupts, and check resched flag and signals.
3208 	 * If we need to reschedule or deliver a signal, clean up
3209 	 * and return without going into the guest(s).
3210 	 * If the mmu_ready flag has been cleared, don't go into the
3211 	 * guest because that means a HPT resize operation is in progress.
3212 	 */
3213 	local_irq_disable();
3214 	hard_irq_disable();
3215 	if (lazy_irq_pending() || need_resched() ||
3216 	    recheck_signals_and_mmu(&core_info)) {
3217 		local_irq_enable();
3218 		vc->vcore_state = VCORE_INACTIVE;
3219 		/* Unlock all except the primary vcore */
3220 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3221 			pvc = core_info.vc[sub];
3222 			/* Put back on to the preempted vcores list */
3223 			kvmppc_vcore_preempt(pvc);
3224 			spin_unlock(&pvc->lock);
3225 		}
3226 		for (i = 0; i < controlled_threads; ++i)
3227 			kvmppc_release_hwthread(pcpu + i);
3228 		return;
3229 	}
3230 
3231 	kvmppc_clear_host_core(pcpu);
3232 
3233 	/* Decide on micro-threading (split-core) mode */
3234 	subcore_size = threads_per_subcore;
3235 	cmd_bit = stat_bit = 0;
3236 	split = core_info.n_subcores;
3237 	sip = NULL;
3238 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3239 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
3240 
3241 	if (split > 1) {
3242 		sip = &split_info;
3243 		memset(&split_info, 0, sizeof(split_info));
3244 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3245 			split_info.vc[sub] = core_info.vc[sub];
3246 
3247 		if (is_power8) {
3248 			if (split == 2 && (dynamic_mt_modes & 2)) {
3249 				cmd_bit = HID0_POWER8_1TO2LPAR;
3250 				stat_bit = HID0_POWER8_2LPARMODE;
3251 			} else {
3252 				split = 4;
3253 				cmd_bit = HID0_POWER8_1TO4LPAR;
3254 				stat_bit = HID0_POWER8_4LPARMODE;
3255 			}
3256 			subcore_size = MAX_SMT_THREADS / split;
3257 			split_info.rpr = mfspr(SPRN_RPR);
3258 			split_info.pmmar = mfspr(SPRN_PMMAR);
3259 			split_info.ldbar = mfspr(SPRN_LDBAR);
3260 			split_info.subcore_size = subcore_size;
3261 		} else {
3262 			split_info.subcore_size = 1;
3263 		}
3264 
3265 		/* order writes to split_info before kvm_split_mode pointer */
3266 		smp_wmb();
3267 	}
3268 
3269 	for (thr = 0; thr < controlled_threads; ++thr) {
3270 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3271 
3272 		paca->kvm_hstate.napping = 0;
3273 		paca->kvm_hstate.kvm_split_mode = sip;
3274 	}
3275 
3276 	/* Initiate micro-threading (split-core) on POWER8 if required */
3277 	if (cmd_bit) {
3278 		unsigned long hid0 = mfspr(SPRN_HID0);
3279 
3280 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3281 		mb();
3282 		mtspr(SPRN_HID0, hid0);
3283 		isync();
3284 		for (;;) {
3285 			hid0 = mfspr(SPRN_HID0);
3286 			if (hid0 & stat_bit)
3287 				break;
3288 			cpu_relax();
3289 		}
3290 	}
3291 
3292 	/*
3293 	 * On POWER8, set RWMR register.
3294 	 * Since it only affects PURR and SPURR, it doesn't affect
3295 	 * the host, so we don't save/restore the host value.
3296 	 */
3297 	if (is_power8) {
3298 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3299 		int n_online = atomic_read(&vc->online_count);
3300 
3301 		/*
3302 		 * Use the 8-thread value if we're doing split-core
3303 		 * or if the vcore's online count looks bogus.
3304 		 */
3305 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3306 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3307 			rwmr_val = p8_rwmr_values[n_online];
3308 		mtspr(SPRN_RWMR, rwmr_val);
3309 	}
3310 
3311 	/* Start all the threads */
3312 	active = 0;
3313 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3314 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3315 		thr0_done = false;
3316 		active |= 1 << thr;
3317 		pvc = core_info.vc[sub];
3318 		pvc->pcpu = pcpu + thr;
3319 		for_each_runnable_thread(i, vcpu, pvc) {
3320 			kvmppc_start_thread(vcpu, pvc);
3321 			kvmppc_create_dtl_entry(vcpu, pvc);
3322 			trace_kvm_guest_enter(vcpu);
3323 			if (!vcpu->arch.ptid)
3324 				thr0_done = true;
3325 			active |= 1 << (thr + vcpu->arch.ptid);
3326 		}
3327 		/*
3328 		 * We need to start the first thread of each subcore
3329 		 * even if it doesn't have a vcpu.
3330 		 */
3331 		if (!thr0_done)
3332 			kvmppc_start_thread(NULL, pvc);
3333 	}
3334 
3335 	/*
3336 	 * Ensure that split_info.do_nap is set after setting
3337 	 * the vcore pointer in the PACA of the secondaries.
3338 	 */
3339 	smp_mb();
3340 
3341 	/*
3342 	 * When doing micro-threading, poke the inactive threads as well.
3343 	 * This gets them to the nap instruction after kvm_do_nap,
3344 	 * which reduces the time taken to unsplit later.
3345 	 */
3346 	if (cmd_bit) {
3347 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3348 		for (thr = 1; thr < threads_per_subcore; ++thr)
3349 			if (!(active & (1 << thr)))
3350 				kvmppc_ipi_thread(pcpu + thr);
3351 	}
3352 
3353 	vc->vcore_state = VCORE_RUNNING;
3354 	preempt_disable();
3355 
3356 	trace_kvmppc_run_core(vc, 0);
3357 
3358 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3359 		spin_unlock(&core_info.vc[sub]->lock);
3360 
3361 	guest_enter_irqoff();
3362 
3363 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3364 
3365 	this_cpu_disable_ftrace();
3366 
3367 	/*
3368 	 * Interrupts will be enabled once we get into the guest,
3369 	 * so tell lockdep that we're about to enable interrupts.
3370 	 */
3371 	trace_hardirqs_on();
3372 
3373 	trap = __kvmppc_vcore_entry();
3374 
3375 	trace_hardirqs_off();
3376 
3377 	this_cpu_enable_ftrace();
3378 
3379 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3380 
3381 	set_irq_happened(trap);
3382 
3383 	spin_lock(&vc->lock);
3384 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3385 	vc->vcore_state = VCORE_EXITING;
3386 
3387 	/* wait for secondary threads to finish writing their state to memory */
3388 	kvmppc_wait_for_nap(controlled_threads);
3389 
3390 	/* Return to whole-core mode if we split the core earlier */
3391 	if (cmd_bit) {
3392 		unsigned long hid0 = mfspr(SPRN_HID0);
3393 		unsigned long loops = 0;
3394 
3395 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3396 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3397 		mb();
3398 		mtspr(SPRN_HID0, hid0);
3399 		isync();
3400 		for (;;) {
3401 			hid0 = mfspr(SPRN_HID0);
3402 			if (!(hid0 & stat_bit))
3403 				break;
3404 			cpu_relax();
3405 			++loops;
3406 		}
3407 		split_info.do_nap = 0;
3408 	}
3409 
3410 	kvmppc_set_host_core(pcpu);
3411 
3412 	guest_exit_irqoff();
3413 
3414 	local_irq_enable();
3415 
3416 	/* Let secondaries go back to the offline loop */
3417 	for (i = 0; i < controlled_threads; ++i) {
3418 		kvmppc_release_hwthread(pcpu + i);
3419 		if (sip && sip->napped[i])
3420 			kvmppc_ipi_thread(pcpu + i);
3421 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3422 	}
3423 
3424 	spin_unlock(&vc->lock);
3425 
3426 	/* make sure updates to secondary vcpu structs are visible now */
3427 	smp_mb();
3428 
3429 	preempt_enable();
3430 
3431 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3432 		pvc = core_info.vc[sub];
3433 		post_guest_process(pvc, pvc == vc);
3434 	}
3435 
3436 	spin_lock(&vc->lock);
3437 
3438  out:
3439 	vc->vcore_state = VCORE_INACTIVE;
3440 	trace_kvmppc_run_core(vc, 1);
3441 }
3442 
3443 /*
3444  * Load up hypervisor-mode registers on P9.
3445  */
3446 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3447 				     unsigned long lpcr)
3448 {
3449 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3450 	s64 hdec;
3451 	u64 tb, purr, spurr;
3452 	int trap;
3453 	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3454 	unsigned long host_ciabr = mfspr(SPRN_CIABR);
3455 	unsigned long host_dawr0 = mfspr(SPRN_DAWR0);
3456 	unsigned long host_dawrx0 = mfspr(SPRN_DAWRX0);
3457 	unsigned long host_psscr = mfspr(SPRN_PSSCR);
3458 	unsigned long host_pidr = mfspr(SPRN_PID);
3459 	unsigned long host_dawr1 = 0;
3460 	unsigned long host_dawrx1 = 0;
3461 
3462 	if (cpu_has_feature(CPU_FTR_DAWR1)) {
3463 		host_dawr1 = mfspr(SPRN_DAWR1);
3464 		host_dawrx1 = mfspr(SPRN_DAWRX1);
3465 	}
3466 
3467 	/*
3468 	 * P8 and P9 suppress the HDEC exception when LPCR[HDICE] = 0,
3469 	 * so set HDICE before writing HDEC.
3470 	 */
3471 	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr | LPCR_HDICE);
3472 	isync();
3473 
3474 	hdec = time_limit - mftb();
3475 	if (hdec < 0) {
3476 		mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3477 		isync();
3478 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3479 	}
3480 	mtspr(SPRN_HDEC, hdec);
3481 
3482 	if (vc->tb_offset) {
3483 		u64 new_tb = mftb() + vc->tb_offset;
3484 		mtspr(SPRN_TBU40, new_tb);
3485 		tb = mftb();
3486 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3487 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3488 		vc->tb_offset_applied = vc->tb_offset;
3489 	}
3490 
3491 	if (vc->pcr)
3492 		mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3493 	mtspr(SPRN_DPDES, vc->dpdes);
3494 	mtspr(SPRN_VTB, vc->vtb);
3495 
3496 	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3497 	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3498 	mtspr(SPRN_PURR, vcpu->arch.purr);
3499 	mtspr(SPRN_SPURR, vcpu->arch.spurr);
3500 
3501 	if (dawr_enabled()) {
3502 		mtspr(SPRN_DAWR0, vcpu->arch.dawr0);
3503 		mtspr(SPRN_DAWRX0, vcpu->arch.dawrx0);
3504 		if (cpu_has_feature(CPU_FTR_DAWR1)) {
3505 			mtspr(SPRN_DAWR1, vcpu->arch.dawr1);
3506 			mtspr(SPRN_DAWRX1, vcpu->arch.dawrx1);
3507 		}
3508 	}
3509 	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3510 	mtspr(SPRN_IC, vcpu->arch.ic);
3511 	mtspr(SPRN_PID, vcpu->arch.pid);
3512 
3513 	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3514 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3515 
3516 	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3517 
3518 	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3519 	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3520 	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3521 	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3522 
3523 	mtspr(SPRN_AMOR, ~0UL);
3524 
3525 	mtspr(SPRN_LPCR, lpcr);
3526 	isync();
3527 
3528 	kvmppc_xive_push_vcpu(vcpu);
3529 
3530 	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3531 	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3532 
3533 	trap = __kvmhv_vcpu_entry_p9(vcpu);
3534 
3535 	/* Advance host PURR/SPURR by the amount used by guest */
3536 	purr = mfspr(SPRN_PURR);
3537 	spurr = mfspr(SPRN_SPURR);
3538 	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3539 	      purr - vcpu->arch.purr);
3540 	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3541 	      spurr - vcpu->arch.spurr);
3542 	vcpu->arch.purr = purr;
3543 	vcpu->arch.spurr = spurr;
3544 
3545 	vcpu->arch.ic = mfspr(SPRN_IC);
3546 	vcpu->arch.pid = mfspr(SPRN_PID);
3547 	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3548 
3549 	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3550 	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3551 	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3552 	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3553 
3554 	/* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3555 	mtspr(SPRN_PSSCR, host_psscr |
3556 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3557 	mtspr(SPRN_HFSCR, host_hfscr);
3558 	mtspr(SPRN_CIABR, host_ciabr);
3559 	mtspr(SPRN_DAWR0, host_dawr0);
3560 	mtspr(SPRN_DAWRX0, host_dawrx0);
3561 	if (cpu_has_feature(CPU_FTR_DAWR1)) {
3562 		mtspr(SPRN_DAWR1, host_dawr1);
3563 		mtspr(SPRN_DAWRX1, host_dawrx1);
3564 	}
3565 	mtspr(SPRN_PID, host_pidr);
3566 
3567 	/*
3568 	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3569 	 * case we interrupted the guest between a tlbie and a ptesync.
3570 	 */
3571 	asm volatile("eieio; tlbsync; ptesync");
3572 
3573 	/*
3574 	 * cp_abort is required if the processor supports local copy-paste
3575 	 * to clear the copy buffer that was under control of the guest.
3576 	 */
3577 	if (cpu_has_feature(CPU_FTR_ARCH_31))
3578 		asm volatile(PPC_CP_ABORT);
3579 
3580 	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
3581 	isync();
3582 
3583 	vc->dpdes = mfspr(SPRN_DPDES);
3584 	vc->vtb = mfspr(SPRN_VTB);
3585 	mtspr(SPRN_DPDES, 0);
3586 	if (vc->pcr)
3587 		mtspr(SPRN_PCR, PCR_MASK);
3588 
3589 	if (vc->tb_offset_applied) {
3590 		u64 new_tb = mftb() - vc->tb_offset_applied;
3591 		mtspr(SPRN_TBU40, new_tb);
3592 		tb = mftb();
3593 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3594 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3595 		vc->tb_offset_applied = 0;
3596 	}
3597 
3598 	mtspr(SPRN_HDEC, 0x7fffffff);
3599 	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3600 
3601 	return trap;
3602 }
3603 
3604 /*
3605  * Virtual-mode guest entry for POWER9 and later when the host and
3606  * guest are both using the radix MMU.  The LPIDR has already been set.
3607  */
3608 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3609 			 unsigned long lpcr)
3610 {
3611 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3612 	unsigned long host_dscr = mfspr(SPRN_DSCR);
3613 	unsigned long host_tidr = mfspr(SPRN_TIDR);
3614 	unsigned long host_iamr = mfspr(SPRN_IAMR);
3615 	unsigned long host_amr = mfspr(SPRN_AMR);
3616 	unsigned long host_fscr = mfspr(SPRN_FSCR);
3617 	s64 dec;
3618 	u64 tb;
3619 	int trap, save_pmu;
3620 
3621 	dec = mfspr(SPRN_DEC);
3622 	tb = mftb();
3623 	if (dec < 0)
3624 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3625 	local_paca->kvm_hstate.dec_expires = dec + tb;
3626 	if (local_paca->kvm_hstate.dec_expires < time_limit)
3627 		time_limit = local_paca->kvm_hstate.dec_expires;
3628 
3629 	vcpu->arch.ceded = 0;
3630 
3631 	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */
3632 
3633 	kvmppc_subcore_enter_guest();
3634 
3635 	vc->entry_exit_map = 1;
3636 	vc->in_guest = 1;
3637 
3638 	if (vcpu->arch.vpa.pinned_addr) {
3639 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3640 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3641 		lp->yield_count = cpu_to_be32(yield_count);
3642 		vcpu->arch.vpa.dirty = 1;
3643 	}
3644 
3645 	if (cpu_has_feature(CPU_FTR_TM) ||
3646 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3647 		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3648 
3649 	kvmhv_load_guest_pmu(vcpu);
3650 
3651 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3652 	load_fp_state(&vcpu->arch.fp);
3653 #ifdef CONFIG_ALTIVEC
3654 	load_vr_state(&vcpu->arch.vr);
3655 #endif
3656 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3657 
3658 	mtspr(SPRN_DSCR, vcpu->arch.dscr);
3659 	mtspr(SPRN_IAMR, vcpu->arch.iamr);
3660 	mtspr(SPRN_PSPB, vcpu->arch.pspb);
3661 	mtspr(SPRN_FSCR, vcpu->arch.fscr);
3662 	mtspr(SPRN_TAR, vcpu->arch.tar);
3663 	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3664 	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3665 	mtspr(SPRN_BESCR, vcpu->arch.bescr);
3666 	mtspr(SPRN_WORT, vcpu->arch.wort);
3667 	mtspr(SPRN_TIDR, vcpu->arch.tid);
3668 	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3669 	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3670 	mtspr(SPRN_AMR, vcpu->arch.amr);
3671 	mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3672 
3673 	if (!(vcpu->arch.ctrl & 1))
3674 		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3675 
3676 	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3677 
3678 	if (kvmhv_on_pseries()) {
3679 		/*
3680 		 * We need to save and restore the guest visible part of the
3681 		 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3682 		 * doesn't do this for us. Note only required if pseries since
3683 		 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3684 		 */
3685 		unsigned long host_psscr;
3686 		/* call our hypervisor to load up HV regs and go */
3687 		struct hv_guest_state hvregs;
3688 
3689 		host_psscr = mfspr(SPRN_PSSCR_PR);
3690 		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3691 		kvmhv_save_hv_regs(vcpu, &hvregs);
3692 		hvregs.lpcr = lpcr;
3693 		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3694 		hvregs.version = HV_GUEST_STATE_VERSION;
3695 		if (vcpu->arch.nested) {
3696 			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3697 			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3698 		} else {
3699 			hvregs.lpid = vcpu->kvm->arch.lpid;
3700 			hvregs.vcpu_token = vcpu->vcpu_id;
3701 		}
3702 		hvregs.hdec_expiry = time_limit;
3703 		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3704 					  __pa(&vcpu->arch.regs));
3705 		kvmhv_restore_hv_return_state(vcpu, &hvregs);
3706 		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3707 		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3708 		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3709 		vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3710 		mtspr(SPRN_PSSCR_PR, host_psscr);
3711 
3712 		/* H_CEDE has to be handled now, not later */
3713 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3714 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3715 			kvmppc_nested_cede(vcpu);
3716 			kvmppc_set_gpr(vcpu, 3, 0);
3717 			trap = 0;
3718 		}
3719 	} else {
3720 		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3721 	}
3722 
3723 	vcpu->arch.slb_max = 0;
3724 	dec = mfspr(SPRN_DEC);
3725 	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3726 		dec = (s32) dec;
3727 	tb = mftb();
3728 	vcpu->arch.dec_expires = dec + tb;
3729 	vcpu->cpu = -1;
3730 	vcpu->arch.thread_cpu = -1;
3731 	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3732 
3733 	vcpu->arch.iamr = mfspr(SPRN_IAMR);
3734 	vcpu->arch.pspb = mfspr(SPRN_PSPB);
3735 	vcpu->arch.fscr = mfspr(SPRN_FSCR);
3736 	vcpu->arch.tar = mfspr(SPRN_TAR);
3737 	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3738 	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3739 	vcpu->arch.bescr = mfspr(SPRN_BESCR);
3740 	vcpu->arch.wort = mfspr(SPRN_WORT);
3741 	vcpu->arch.tid = mfspr(SPRN_TIDR);
3742 	vcpu->arch.amr = mfspr(SPRN_AMR);
3743 	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3744 	vcpu->arch.dscr = mfspr(SPRN_DSCR);
3745 
3746 	mtspr(SPRN_PSPB, 0);
3747 	mtspr(SPRN_WORT, 0);
3748 	mtspr(SPRN_UAMOR, 0);
3749 	mtspr(SPRN_DSCR, host_dscr);
3750 	mtspr(SPRN_TIDR, host_tidr);
3751 	mtspr(SPRN_IAMR, host_iamr);
3752 	mtspr(SPRN_PSPB, 0);
3753 
3754 	if (host_amr != vcpu->arch.amr)
3755 		mtspr(SPRN_AMR, host_amr);
3756 
3757 	if (host_fscr != vcpu->arch.fscr)
3758 		mtspr(SPRN_FSCR, host_fscr);
3759 
3760 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3761 	store_fp_state(&vcpu->arch.fp);
3762 #ifdef CONFIG_ALTIVEC
3763 	store_vr_state(&vcpu->arch.vr);
3764 #endif
3765 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3766 
3767 	if (cpu_has_feature(CPU_FTR_TM) ||
3768 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3769 		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3770 
3771 	save_pmu = 1;
3772 	if (vcpu->arch.vpa.pinned_addr) {
3773 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3774 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3775 		lp->yield_count = cpu_to_be32(yield_count);
3776 		vcpu->arch.vpa.dirty = 1;
3777 		save_pmu = lp->pmcregs_in_use;
3778 	}
3779 	/* Must save pmu if this guest is capable of running nested guests */
3780 	save_pmu |= nesting_enabled(vcpu->kvm);
3781 
3782 	kvmhv_save_guest_pmu(vcpu, save_pmu);
3783 
3784 	vc->entry_exit_map = 0x101;
3785 	vc->in_guest = 0;
3786 
3787 	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3788 	mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3789 
3790 	kvmhv_load_host_pmu();
3791 
3792 	kvmppc_subcore_exit_guest();
3793 
3794 	return trap;
3795 }
3796 
3797 /*
3798  * Wait for some other vcpu thread to execute us, and
3799  * wake us up when we need to handle something in the host.
3800  */
3801 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3802 				 struct kvm_vcpu *vcpu, int wait_state)
3803 {
3804 	DEFINE_WAIT(wait);
3805 
3806 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3807 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3808 		spin_unlock(&vc->lock);
3809 		schedule();
3810 		spin_lock(&vc->lock);
3811 	}
3812 	finish_wait(&vcpu->arch.cpu_run, &wait);
3813 }
3814 
3815 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3816 {
3817 	if (!halt_poll_ns_grow)
3818 		return;
3819 
3820 	vc->halt_poll_ns *= halt_poll_ns_grow;
3821 	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3822 		vc->halt_poll_ns = halt_poll_ns_grow_start;
3823 }
3824 
3825 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3826 {
3827 	if (halt_poll_ns_shrink == 0)
3828 		vc->halt_poll_ns = 0;
3829 	else
3830 		vc->halt_poll_ns /= halt_poll_ns_shrink;
3831 }
3832 
3833 #ifdef CONFIG_KVM_XICS
3834 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3835 {
3836 	if (!xics_on_xive())
3837 		return false;
3838 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3839 		vcpu->arch.xive_saved_state.cppr;
3840 }
3841 #else
3842 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3843 {
3844 	return false;
3845 }
3846 #endif /* CONFIG_KVM_XICS */
3847 
3848 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3849 {
3850 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3851 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3852 		return true;
3853 
3854 	return false;
3855 }
3856 
3857 /*
3858  * Check to see if any of the runnable vcpus on the vcore have pending
3859  * exceptions or are no longer ceded
3860  */
3861 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3862 {
3863 	struct kvm_vcpu *vcpu;
3864 	int i;
3865 
3866 	for_each_runnable_thread(i, vcpu, vc) {
3867 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3868 			return 1;
3869 	}
3870 
3871 	return 0;
3872 }
3873 
3874 /*
3875  * All the vcpus in this vcore are idle, so wait for a decrementer
3876  * or external interrupt to one of the vcpus.  vc->lock is held.
3877  */
3878 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3879 {
3880 	ktime_t cur, start_poll, start_wait;
3881 	int do_sleep = 1;
3882 	u64 block_ns;
3883 
3884 	/* Poll for pending exceptions and ceded state */
3885 	cur = start_poll = ktime_get();
3886 	if (vc->halt_poll_ns) {
3887 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3888 		++vc->runner->stat.halt_attempted_poll;
3889 
3890 		vc->vcore_state = VCORE_POLLING;
3891 		spin_unlock(&vc->lock);
3892 
3893 		do {
3894 			if (kvmppc_vcore_check_block(vc)) {
3895 				do_sleep = 0;
3896 				break;
3897 			}
3898 			cur = ktime_get();
3899 		} while (single_task_running() && ktime_before(cur, stop));
3900 
3901 		spin_lock(&vc->lock);
3902 		vc->vcore_state = VCORE_INACTIVE;
3903 
3904 		if (!do_sleep) {
3905 			++vc->runner->stat.halt_successful_poll;
3906 			goto out;
3907 		}
3908 	}
3909 
3910 	prepare_to_rcuwait(&vc->wait);
3911 	set_current_state(TASK_INTERRUPTIBLE);
3912 	if (kvmppc_vcore_check_block(vc)) {
3913 		finish_rcuwait(&vc->wait);
3914 		do_sleep = 0;
3915 		/* If we polled, count this as a successful poll */
3916 		if (vc->halt_poll_ns)
3917 			++vc->runner->stat.halt_successful_poll;
3918 		goto out;
3919 	}
3920 
3921 	start_wait = ktime_get();
3922 
3923 	vc->vcore_state = VCORE_SLEEPING;
3924 	trace_kvmppc_vcore_blocked(vc, 0);
3925 	spin_unlock(&vc->lock);
3926 	schedule();
3927 	finish_rcuwait(&vc->wait);
3928 	spin_lock(&vc->lock);
3929 	vc->vcore_state = VCORE_INACTIVE;
3930 	trace_kvmppc_vcore_blocked(vc, 1);
3931 	++vc->runner->stat.halt_successful_wait;
3932 
3933 	cur = ktime_get();
3934 
3935 out:
3936 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3937 
3938 	/* Attribute wait time */
3939 	if (do_sleep) {
3940 		vc->runner->stat.halt_wait_ns +=
3941 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3942 		/* Attribute failed poll time */
3943 		if (vc->halt_poll_ns)
3944 			vc->runner->stat.halt_poll_fail_ns +=
3945 				ktime_to_ns(start_wait) -
3946 				ktime_to_ns(start_poll);
3947 	} else {
3948 		/* Attribute successful poll time */
3949 		if (vc->halt_poll_ns)
3950 			vc->runner->stat.halt_poll_success_ns +=
3951 				ktime_to_ns(cur) -
3952 				ktime_to_ns(start_poll);
3953 	}
3954 
3955 	/* Adjust poll time */
3956 	if (halt_poll_ns) {
3957 		if (block_ns <= vc->halt_poll_ns)
3958 			;
3959 		/* We slept and blocked for longer than the max halt time */
3960 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3961 			shrink_halt_poll_ns(vc);
3962 		/* We slept and our poll time is too small */
3963 		else if (vc->halt_poll_ns < halt_poll_ns &&
3964 				block_ns < halt_poll_ns)
3965 			grow_halt_poll_ns(vc);
3966 		if (vc->halt_poll_ns > halt_poll_ns)
3967 			vc->halt_poll_ns = halt_poll_ns;
3968 	} else
3969 		vc->halt_poll_ns = 0;
3970 
3971 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3972 }
3973 
3974 /*
3975  * This never fails for a radix guest, as none of the operations it does
3976  * for a radix guest can fail or have a way to report failure.
3977  * kvmhv_run_single_vcpu() relies on this fact.
3978  */
3979 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3980 {
3981 	int r = 0;
3982 	struct kvm *kvm = vcpu->kvm;
3983 
3984 	mutex_lock(&kvm->arch.mmu_setup_lock);
3985 	if (!kvm->arch.mmu_ready) {
3986 		if (!kvm_is_radix(kvm))
3987 			r = kvmppc_hv_setup_htab_rma(vcpu);
3988 		if (!r) {
3989 			if (cpu_has_feature(CPU_FTR_ARCH_300))
3990 				kvmppc_setup_partition_table(kvm);
3991 			kvm->arch.mmu_ready = 1;
3992 		}
3993 	}
3994 	mutex_unlock(&kvm->arch.mmu_setup_lock);
3995 	return r;
3996 }
3997 
3998 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
3999 {
4000 	struct kvm_run *run = vcpu->run;
4001 	int n_ceded, i, r;
4002 	struct kvmppc_vcore *vc;
4003 	struct kvm_vcpu *v;
4004 
4005 	trace_kvmppc_run_vcpu_enter(vcpu);
4006 
4007 	run->exit_reason = 0;
4008 	vcpu->arch.ret = RESUME_GUEST;
4009 	vcpu->arch.trap = 0;
4010 	kvmppc_update_vpas(vcpu);
4011 
4012 	/*
4013 	 * Synchronize with other threads in this virtual core
4014 	 */
4015 	vc = vcpu->arch.vcore;
4016 	spin_lock(&vc->lock);
4017 	vcpu->arch.ceded = 0;
4018 	vcpu->arch.run_task = current;
4019 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4020 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4021 	vcpu->arch.busy_preempt = TB_NIL;
4022 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4023 	++vc->n_runnable;
4024 
4025 	/*
4026 	 * This happens the first time this is called for a vcpu.
4027 	 * If the vcore is already running, we may be able to start
4028 	 * this thread straight away and have it join in.
4029 	 */
4030 	if (!signal_pending(current)) {
4031 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
4032 		     vc->vcore_state == VCORE_RUNNING) &&
4033 			   !VCORE_IS_EXITING(vc)) {
4034 			kvmppc_create_dtl_entry(vcpu, vc);
4035 			kvmppc_start_thread(vcpu, vc);
4036 			trace_kvm_guest_enter(vcpu);
4037 		} else if (vc->vcore_state == VCORE_SLEEPING) {
4038 		        rcuwait_wake_up(&vc->wait);
4039 		}
4040 
4041 	}
4042 
4043 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4044 	       !signal_pending(current)) {
4045 		/* See if the MMU is ready to go */
4046 		if (!vcpu->kvm->arch.mmu_ready) {
4047 			spin_unlock(&vc->lock);
4048 			r = kvmhv_setup_mmu(vcpu);
4049 			spin_lock(&vc->lock);
4050 			if (r) {
4051 				run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4052 				run->fail_entry.
4053 					hardware_entry_failure_reason = 0;
4054 				vcpu->arch.ret = r;
4055 				break;
4056 			}
4057 		}
4058 
4059 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4060 			kvmppc_vcore_end_preempt(vc);
4061 
4062 		if (vc->vcore_state != VCORE_INACTIVE) {
4063 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4064 			continue;
4065 		}
4066 		for_each_runnable_thread(i, v, vc) {
4067 			kvmppc_core_prepare_to_enter(v);
4068 			if (signal_pending(v->arch.run_task)) {
4069 				kvmppc_remove_runnable(vc, v);
4070 				v->stat.signal_exits++;
4071 				v->run->exit_reason = KVM_EXIT_INTR;
4072 				v->arch.ret = -EINTR;
4073 				wake_up(&v->arch.cpu_run);
4074 			}
4075 		}
4076 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4077 			break;
4078 		n_ceded = 0;
4079 		for_each_runnable_thread(i, v, vc) {
4080 			if (!kvmppc_vcpu_woken(v))
4081 				n_ceded += v->arch.ceded;
4082 			else
4083 				v->arch.ceded = 0;
4084 		}
4085 		vc->runner = vcpu;
4086 		if (n_ceded == vc->n_runnable) {
4087 			kvmppc_vcore_blocked(vc);
4088 		} else if (need_resched()) {
4089 			kvmppc_vcore_preempt(vc);
4090 			/* Let something else run */
4091 			cond_resched_lock(&vc->lock);
4092 			if (vc->vcore_state == VCORE_PREEMPT)
4093 				kvmppc_vcore_end_preempt(vc);
4094 		} else {
4095 			kvmppc_run_core(vc);
4096 		}
4097 		vc->runner = NULL;
4098 	}
4099 
4100 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4101 	       (vc->vcore_state == VCORE_RUNNING ||
4102 		vc->vcore_state == VCORE_EXITING ||
4103 		vc->vcore_state == VCORE_PIGGYBACK))
4104 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4105 
4106 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4107 		kvmppc_vcore_end_preempt(vc);
4108 
4109 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4110 		kvmppc_remove_runnable(vc, vcpu);
4111 		vcpu->stat.signal_exits++;
4112 		run->exit_reason = KVM_EXIT_INTR;
4113 		vcpu->arch.ret = -EINTR;
4114 	}
4115 
4116 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4117 		/* Wake up some vcpu to run the core */
4118 		i = -1;
4119 		v = next_runnable_thread(vc, &i);
4120 		wake_up(&v->arch.cpu_run);
4121 	}
4122 
4123 	trace_kvmppc_run_vcpu_exit(vcpu);
4124 	spin_unlock(&vc->lock);
4125 	return vcpu->arch.ret;
4126 }
4127 
4128 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4129 			  unsigned long lpcr)
4130 {
4131 	struct kvm_run *run = vcpu->run;
4132 	int trap, r, pcpu;
4133 	int srcu_idx, lpid;
4134 	struct kvmppc_vcore *vc;
4135 	struct kvm *kvm = vcpu->kvm;
4136 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4137 
4138 	trace_kvmppc_run_vcpu_enter(vcpu);
4139 
4140 	run->exit_reason = 0;
4141 	vcpu->arch.ret = RESUME_GUEST;
4142 	vcpu->arch.trap = 0;
4143 
4144 	vc = vcpu->arch.vcore;
4145 	vcpu->arch.ceded = 0;
4146 	vcpu->arch.run_task = current;
4147 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4148 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4149 	vcpu->arch.busy_preempt = TB_NIL;
4150 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4151 	vc->runnable_threads[0] = vcpu;
4152 	vc->n_runnable = 1;
4153 	vc->runner = vcpu;
4154 
4155 	/* See if the MMU is ready to go */
4156 	if (!kvm->arch.mmu_ready)
4157 		kvmhv_setup_mmu(vcpu);
4158 
4159 	if (need_resched())
4160 		cond_resched();
4161 
4162 	kvmppc_update_vpas(vcpu);
4163 
4164 	init_vcore_to_run(vc);
4165 	vc->preempt_tb = TB_NIL;
4166 
4167 	preempt_disable();
4168 	pcpu = smp_processor_id();
4169 	vc->pcpu = pcpu;
4170 	kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4171 
4172 	local_irq_disable();
4173 	hard_irq_disable();
4174 	if (signal_pending(current))
4175 		goto sigpend;
4176 	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4177 		goto out;
4178 
4179 	if (!nested) {
4180 		kvmppc_core_prepare_to_enter(vcpu);
4181 		if (vcpu->arch.doorbell_request) {
4182 			vc->dpdes = 1;
4183 			smp_wmb();
4184 			vcpu->arch.doorbell_request = 0;
4185 		}
4186 		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4187 			     &vcpu->arch.pending_exceptions))
4188 			lpcr |= LPCR_MER;
4189 	} else if (vcpu->arch.pending_exceptions ||
4190 		   vcpu->arch.doorbell_request ||
4191 		   xive_interrupt_pending(vcpu)) {
4192 		vcpu->arch.ret = RESUME_HOST;
4193 		goto out;
4194 	}
4195 
4196 	kvmppc_clear_host_core(pcpu);
4197 
4198 	local_paca->kvm_hstate.napping = 0;
4199 	local_paca->kvm_hstate.kvm_split_mode = NULL;
4200 	kvmppc_start_thread(vcpu, vc);
4201 	kvmppc_create_dtl_entry(vcpu, vc);
4202 	trace_kvm_guest_enter(vcpu);
4203 
4204 	vc->vcore_state = VCORE_RUNNING;
4205 	trace_kvmppc_run_core(vc, 0);
4206 
4207 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4208 		lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4209 		mtspr(SPRN_LPID, lpid);
4210 		isync();
4211 		kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4212 	}
4213 
4214 	guest_enter_irqoff();
4215 
4216 	srcu_idx = srcu_read_lock(&kvm->srcu);
4217 
4218 	this_cpu_disable_ftrace();
4219 
4220 	/* Tell lockdep that we're about to enable interrupts */
4221 	trace_hardirqs_on();
4222 
4223 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4224 	vcpu->arch.trap = trap;
4225 
4226 	trace_hardirqs_off();
4227 
4228 	this_cpu_enable_ftrace();
4229 
4230 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4231 
4232 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4233 		mtspr(SPRN_LPID, kvm->arch.host_lpid);
4234 		isync();
4235 	}
4236 
4237 	set_irq_happened(trap);
4238 
4239 	kvmppc_set_host_core(pcpu);
4240 
4241 	guest_exit_irqoff();
4242 
4243 	local_irq_enable();
4244 
4245 	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4246 
4247 	preempt_enable();
4248 
4249 	/*
4250 	 * cancel pending decrementer exception if DEC is now positive, or if
4251 	 * entering a nested guest in which case the decrementer is now owned
4252 	 * by L2 and the L1 decrementer is provided in hdec_expires
4253 	 */
4254 	if (kvmppc_core_pending_dec(vcpu) &&
4255 			((get_tb() < vcpu->arch.dec_expires) ||
4256 			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4257 			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4258 		kvmppc_core_dequeue_dec(vcpu);
4259 
4260 	trace_kvm_guest_exit(vcpu);
4261 	r = RESUME_GUEST;
4262 	if (trap) {
4263 		if (!nested)
4264 			r = kvmppc_handle_exit_hv(vcpu, current);
4265 		else
4266 			r = kvmppc_handle_nested_exit(vcpu);
4267 	}
4268 	vcpu->arch.ret = r;
4269 
4270 	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4271 	    !kvmppc_vcpu_woken(vcpu)) {
4272 		kvmppc_set_timer(vcpu);
4273 		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4274 			if (signal_pending(current)) {
4275 				vcpu->stat.signal_exits++;
4276 				run->exit_reason = KVM_EXIT_INTR;
4277 				vcpu->arch.ret = -EINTR;
4278 				break;
4279 			}
4280 			spin_lock(&vc->lock);
4281 			kvmppc_vcore_blocked(vc);
4282 			spin_unlock(&vc->lock);
4283 		}
4284 	}
4285 	vcpu->arch.ceded = 0;
4286 
4287 	vc->vcore_state = VCORE_INACTIVE;
4288 	trace_kvmppc_run_core(vc, 1);
4289 
4290  done:
4291 	kvmppc_remove_runnable(vc, vcpu);
4292 	trace_kvmppc_run_vcpu_exit(vcpu);
4293 
4294 	return vcpu->arch.ret;
4295 
4296  sigpend:
4297 	vcpu->stat.signal_exits++;
4298 	run->exit_reason = KVM_EXIT_INTR;
4299 	vcpu->arch.ret = -EINTR;
4300  out:
4301 	local_irq_enable();
4302 	preempt_enable();
4303 	goto done;
4304 }
4305 
4306 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4307 {
4308 	struct kvm_run *run = vcpu->run;
4309 	int r;
4310 	int srcu_idx;
4311 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4312 	unsigned long user_tar = 0;
4313 	unsigned int user_vrsave;
4314 	struct kvm *kvm;
4315 
4316 	if (!vcpu->arch.sane) {
4317 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4318 		return -EINVAL;
4319 	}
4320 
4321 	/*
4322 	 * Don't allow entry with a suspended transaction, because
4323 	 * the guest entry/exit code will lose it.
4324 	 * If the guest has TM enabled, save away their TM-related SPRs
4325 	 * (they will get restored by the TM unavailable interrupt).
4326 	 */
4327 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4328 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4329 	    (current->thread.regs->msr & MSR_TM)) {
4330 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4331 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4332 			run->fail_entry.hardware_entry_failure_reason = 0;
4333 			return -EINVAL;
4334 		}
4335 		/* Enable TM so we can read the TM SPRs */
4336 		mtmsr(mfmsr() | MSR_TM);
4337 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4338 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4339 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4340 		current->thread.regs->msr &= ~MSR_TM;
4341 	}
4342 #endif
4343 
4344 	/*
4345 	 * Force online to 1 for the sake of old userspace which doesn't
4346 	 * set it.
4347 	 */
4348 	if (!vcpu->arch.online) {
4349 		atomic_inc(&vcpu->arch.vcore->online_count);
4350 		vcpu->arch.online = 1;
4351 	}
4352 
4353 	kvmppc_core_prepare_to_enter(vcpu);
4354 
4355 	/* No need to go into the guest when all we'll do is come back out */
4356 	if (signal_pending(current)) {
4357 		run->exit_reason = KVM_EXIT_INTR;
4358 		return -EINTR;
4359 	}
4360 
4361 	kvm = vcpu->kvm;
4362 	atomic_inc(&kvm->arch.vcpus_running);
4363 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4364 	smp_mb();
4365 
4366 	flush_all_to_thread(current);
4367 
4368 	/* Save userspace EBB and other register values */
4369 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4370 		ebb_regs[0] = mfspr(SPRN_EBBHR);
4371 		ebb_regs[1] = mfspr(SPRN_EBBRR);
4372 		ebb_regs[2] = mfspr(SPRN_BESCR);
4373 		user_tar = mfspr(SPRN_TAR);
4374 	}
4375 	user_vrsave = mfspr(SPRN_VRSAVE);
4376 
4377 	vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4378 	vcpu->arch.pgdir = kvm->mm->pgd;
4379 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4380 
4381 	do {
4382 		/*
4383 		 * The TLB prefetch bug fixup is only in the kvmppc_run_vcpu
4384 		 * path, which also handles hash and dependent threads mode.
4385 		 */
4386 		if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4387 		    !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
4388 			r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4389 						  vcpu->arch.vcore->lpcr);
4390 		else
4391 			r = kvmppc_run_vcpu(vcpu);
4392 
4393 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4394 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4395 			trace_kvm_hcall_enter(vcpu);
4396 			r = kvmppc_pseries_do_hcall(vcpu);
4397 			trace_kvm_hcall_exit(vcpu, r);
4398 			kvmppc_core_prepare_to_enter(vcpu);
4399 		} else if (r == RESUME_PAGE_FAULT) {
4400 			srcu_idx = srcu_read_lock(&kvm->srcu);
4401 			r = kvmppc_book3s_hv_page_fault(vcpu,
4402 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4403 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4404 		} else if (r == RESUME_PASSTHROUGH) {
4405 			if (WARN_ON(xics_on_xive()))
4406 				r = H_SUCCESS;
4407 			else
4408 				r = kvmppc_xics_rm_complete(vcpu, 0);
4409 		}
4410 	} while (is_kvmppc_resume_guest(r));
4411 
4412 	/* Restore userspace EBB and other register values */
4413 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4414 		mtspr(SPRN_EBBHR, ebb_regs[0]);
4415 		mtspr(SPRN_EBBRR, ebb_regs[1]);
4416 		mtspr(SPRN_BESCR, ebb_regs[2]);
4417 		mtspr(SPRN_TAR, user_tar);
4418 		mtspr(SPRN_FSCR, current->thread.fscr);
4419 	}
4420 	mtspr(SPRN_VRSAVE, user_vrsave);
4421 
4422 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4423 	atomic_dec(&kvm->arch.vcpus_running);
4424 	return r;
4425 }
4426 
4427 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4428 				     int shift, int sllp)
4429 {
4430 	(*sps)->page_shift = shift;
4431 	(*sps)->slb_enc = sllp;
4432 	(*sps)->enc[0].page_shift = shift;
4433 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4434 	/*
4435 	 * Add 16MB MPSS support (may get filtered out by userspace)
4436 	 */
4437 	if (shift != 24) {
4438 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4439 		if (penc != -1) {
4440 			(*sps)->enc[1].page_shift = 24;
4441 			(*sps)->enc[1].pte_enc = penc;
4442 		}
4443 	}
4444 	(*sps)++;
4445 }
4446 
4447 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4448 					 struct kvm_ppc_smmu_info *info)
4449 {
4450 	struct kvm_ppc_one_seg_page_size *sps;
4451 
4452 	/*
4453 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4454 	 * POWER7 doesn't support keys for instruction accesses,
4455 	 * POWER8 and POWER9 do.
4456 	 */
4457 	info->data_keys = 32;
4458 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4459 
4460 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4461 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4462 	info->slb_size = 32;
4463 
4464 	/* We only support these sizes for now, and no muti-size segments */
4465 	sps = &info->sps[0];
4466 	kvmppc_add_seg_page_size(&sps, 12, 0);
4467 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4468 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4469 
4470 	/* If running as a nested hypervisor, we don't support HPT guests */
4471 	if (kvmhv_on_pseries())
4472 		info->flags |= KVM_PPC_NO_HASH;
4473 
4474 	return 0;
4475 }
4476 
4477 /*
4478  * Get (and clear) the dirty memory log for a memory slot.
4479  */
4480 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4481 					 struct kvm_dirty_log *log)
4482 {
4483 	struct kvm_memslots *slots;
4484 	struct kvm_memory_slot *memslot;
4485 	int i, r;
4486 	unsigned long n;
4487 	unsigned long *buf, *p;
4488 	struct kvm_vcpu *vcpu;
4489 
4490 	mutex_lock(&kvm->slots_lock);
4491 
4492 	r = -EINVAL;
4493 	if (log->slot >= KVM_USER_MEM_SLOTS)
4494 		goto out;
4495 
4496 	slots = kvm_memslots(kvm);
4497 	memslot = id_to_memslot(slots, log->slot);
4498 	r = -ENOENT;
4499 	if (!memslot || !memslot->dirty_bitmap)
4500 		goto out;
4501 
4502 	/*
4503 	 * Use second half of bitmap area because both HPT and radix
4504 	 * accumulate bits in the first half.
4505 	 */
4506 	n = kvm_dirty_bitmap_bytes(memslot);
4507 	buf = memslot->dirty_bitmap + n / sizeof(long);
4508 	memset(buf, 0, n);
4509 
4510 	if (kvm_is_radix(kvm))
4511 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4512 	else
4513 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4514 	if (r)
4515 		goto out;
4516 
4517 	/*
4518 	 * We accumulate dirty bits in the first half of the
4519 	 * memslot's dirty_bitmap area, for when pages are paged
4520 	 * out or modified by the host directly.  Pick up these
4521 	 * bits and add them to the map.
4522 	 */
4523 	p = memslot->dirty_bitmap;
4524 	for (i = 0; i < n / sizeof(long); ++i)
4525 		buf[i] |= xchg(&p[i], 0);
4526 
4527 	/* Harvest dirty bits from VPA and DTL updates */
4528 	/* Note: we never modify the SLB shadow buffer areas */
4529 	kvm_for_each_vcpu(i, vcpu, kvm) {
4530 		spin_lock(&vcpu->arch.vpa_update_lock);
4531 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4532 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4533 		spin_unlock(&vcpu->arch.vpa_update_lock);
4534 	}
4535 
4536 	r = -EFAULT;
4537 	if (copy_to_user(log->dirty_bitmap, buf, n))
4538 		goto out;
4539 
4540 	r = 0;
4541 out:
4542 	mutex_unlock(&kvm->slots_lock);
4543 	return r;
4544 }
4545 
4546 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4547 {
4548 	vfree(slot->arch.rmap);
4549 	slot->arch.rmap = NULL;
4550 }
4551 
4552 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4553 					struct kvm_memory_slot *slot,
4554 					const struct kvm_userspace_memory_region *mem,
4555 					enum kvm_mr_change change)
4556 {
4557 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4558 
4559 	if (change == KVM_MR_CREATE) {
4560 		slot->arch.rmap = vzalloc(array_size(npages,
4561 					  sizeof(*slot->arch.rmap)));
4562 		if (!slot->arch.rmap)
4563 			return -ENOMEM;
4564 	}
4565 
4566 	return 0;
4567 }
4568 
4569 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4570 				const struct kvm_userspace_memory_region *mem,
4571 				const struct kvm_memory_slot *old,
4572 				const struct kvm_memory_slot *new,
4573 				enum kvm_mr_change change)
4574 {
4575 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4576 
4577 	/*
4578 	 * If we are making a new memslot, it might make
4579 	 * some address that was previously cached as emulated
4580 	 * MMIO be no longer emulated MMIO, so invalidate
4581 	 * all the caches of emulated MMIO translations.
4582 	 */
4583 	if (npages)
4584 		atomic64_inc(&kvm->arch.mmio_update);
4585 
4586 	/*
4587 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4588 	 * have already called kvm_arch_flush_shadow_memslot() to
4589 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
4590 	 * previous mappings.  So the only case to handle is
4591 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4592 	 * has been changed.
4593 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4594 	 * to get rid of any THP PTEs in the partition-scoped page tables
4595 	 * so we can track dirtiness at the page level; we flush when
4596 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4597 	 * using THP PTEs.
4598 	 */
4599 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4600 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4601 		kvmppc_radix_flush_memslot(kvm, old);
4602 	/*
4603 	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4604 	 */
4605 	if (!kvm->arch.secure_guest)
4606 		return;
4607 
4608 	switch (change) {
4609 	case KVM_MR_CREATE:
4610 		/*
4611 		 * @TODO kvmppc_uvmem_memslot_create() can fail and
4612 		 * return error. Fix this.
4613 		 */
4614 		kvmppc_uvmem_memslot_create(kvm, new);
4615 		break;
4616 	case KVM_MR_DELETE:
4617 		kvmppc_uvmem_memslot_delete(kvm, old);
4618 		break;
4619 	default:
4620 		/* TODO: Handle KVM_MR_MOVE */
4621 		break;
4622 	}
4623 }
4624 
4625 /*
4626  * Update LPCR values in kvm->arch and in vcores.
4627  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4628  * of kvm->arch.lpcr update).
4629  */
4630 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4631 {
4632 	long int i;
4633 	u32 cores_done = 0;
4634 
4635 	if ((kvm->arch.lpcr & mask) == lpcr)
4636 		return;
4637 
4638 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4639 
4640 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
4641 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4642 		if (!vc)
4643 			continue;
4644 		spin_lock(&vc->lock);
4645 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4646 		spin_unlock(&vc->lock);
4647 		if (++cores_done >= kvm->arch.online_vcores)
4648 			break;
4649 	}
4650 }
4651 
4652 void kvmppc_setup_partition_table(struct kvm *kvm)
4653 {
4654 	unsigned long dw0, dw1;
4655 
4656 	if (!kvm_is_radix(kvm)) {
4657 		/* PS field - page size for VRMA */
4658 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4659 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4660 		/* HTABSIZE and HTABORG fields */
4661 		dw0 |= kvm->arch.sdr1;
4662 
4663 		/* Second dword as set by userspace */
4664 		dw1 = kvm->arch.process_table;
4665 	} else {
4666 		dw0 = PATB_HR | radix__get_tree_size() |
4667 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4668 		dw1 = PATB_GR | kvm->arch.process_table;
4669 	}
4670 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4671 }
4672 
4673 /*
4674  * Set up HPT (hashed page table) and RMA (real-mode area).
4675  * Must be called with kvm->arch.mmu_setup_lock held.
4676  */
4677 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4678 {
4679 	int err = 0;
4680 	struct kvm *kvm = vcpu->kvm;
4681 	unsigned long hva;
4682 	struct kvm_memory_slot *memslot;
4683 	struct vm_area_struct *vma;
4684 	unsigned long lpcr = 0, senc;
4685 	unsigned long psize, porder;
4686 	int srcu_idx;
4687 
4688 	/* Allocate hashed page table (if not done already) and reset it */
4689 	if (!kvm->arch.hpt.virt) {
4690 		int order = KVM_DEFAULT_HPT_ORDER;
4691 		struct kvm_hpt_info info;
4692 
4693 		err = kvmppc_allocate_hpt(&info, order);
4694 		/* If we get here, it means userspace didn't specify a
4695 		 * size explicitly.  So, try successively smaller
4696 		 * sizes if the default failed. */
4697 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4698 			err  = kvmppc_allocate_hpt(&info, order);
4699 
4700 		if (err < 0) {
4701 			pr_err("KVM: Couldn't alloc HPT\n");
4702 			goto out;
4703 		}
4704 
4705 		kvmppc_set_hpt(kvm, &info);
4706 	}
4707 
4708 	/* Look up the memslot for guest physical address 0 */
4709 	srcu_idx = srcu_read_lock(&kvm->srcu);
4710 	memslot = gfn_to_memslot(kvm, 0);
4711 
4712 	/* We must have some memory at 0 by now */
4713 	err = -EINVAL;
4714 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4715 		goto out_srcu;
4716 
4717 	/* Look up the VMA for the start of this memory slot */
4718 	hva = memslot->userspace_addr;
4719 	mmap_read_lock(kvm->mm);
4720 	vma = find_vma(kvm->mm, hva);
4721 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4722 		goto up_out;
4723 
4724 	psize = vma_kernel_pagesize(vma);
4725 
4726 	mmap_read_unlock(kvm->mm);
4727 
4728 	/* We can handle 4k, 64k or 16M pages in the VRMA */
4729 	if (psize >= 0x1000000)
4730 		psize = 0x1000000;
4731 	else if (psize >= 0x10000)
4732 		psize = 0x10000;
4733 	else
4734 		psize = 0x1000;
4735 	porder = __ilog2(psize);
4736 
4737 	senc = slb_pgsize_encoding(psize);
4738 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4739 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4740 	/* Create HPTEs in the hash page table for the VRMA */
4741 	kvmppc_map_vrma(vcpu, memslot, porder);
4742 
4743 	/* Update VRMASD field in the LPCR */
4744 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4745 		/* the -4 is to account for senc values starting at 0x10 */
4746 		lpcr = senc << (LPCR_VRMASD_SH - 4);
4747 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4748 	}
4749 
4750 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4751 	smp_wmb();
4752 	err = 0;
4753  out_srcu:
4754 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4755  out:
4756 	return err;
4757 
4758  up_out:
4759 	mmap_read_unlock(kvm->mm);
4760 	goto out_srcu;
4761 }
4762 
4763 /*
4764  * Must be called with kvm->arch.mmu_setup_lock held and
4765  * mmu_ready = 0 and no vcpus running.
4766  */
4767 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4768 {
4769 	if (nesting_enabled(kvm))
4770 		kvmhv_release_all_nested(kvm);
4771 	kvmppc_rmap_reset(kvm);
4772 	kvm->arch.process_table = 0;
4773 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4774 	spin_lock(&kvm->mmu_lock);
4775 	kvm->arch.radix = 0;
4776 	spin_unlock(&kvm->mmu_lock);
4777 	kvmppc_free_radix(kvm);
4778 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
4779 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4780 	return 0;
4781 }
4782 
4783 /*
4784  * Must be called with kvm->arch.mmu_setup_lock held and
4785  * mmu_ready = 0 and no vcpus running.
4786  */
4787 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4788 {
4789 	int err;
4790 
4791 	err = kvmppc_init_vm_radix(kvm);
4792 	if (err)
4793 		return err;
4794 	kvmppc_rmap_reset(kvm);
4795 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4796 	spin_lock(&kvm->mmu_lock);
4797 	kvm->arch.radix = 1;
4798 	spin_unlock(&kvm->mmu_lock);
4799 	kvmppc_free_hpt(&kvm->arch.hpt);
4800 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4801 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4802 	return 0;
4803 }
4804 
4805 #ifdef CONFIG_KVM_XICS
4806 /*
4807  * Allocate a per-core structure for managing state about which cores are
4808  * running in the host versus the guest and for exchanging data between
4809  * real mode KVM and CPU running in the host.
4810  * This is only done for the first VM.
4811  * The allocated structure stays even if all VMs have stopped.
4812  * It is only freed when the kvm-hv module is unloaded.
4813  * It's OK for this routine to fail, we just don't support host
4814  * core operations like redirecting H_IPI wakeups.
4815  */
4816 void kvmppc_alloc_host_rm_ops(void)
4817 {
4818 	struct kvmppc_host_rm_ops *ops;
4819 	unsigned long l_ops;
4820 	int cpu, core;
4821 	int size;
4822 
4823 	/* Not the first time here ? */
4824 	if (kvmppc_host_rm_ops_hv != NULL)
4825 		return;
4826 
4827 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4828 	if (!ops)
4829 		return;
4830 
4831 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4832 	ops->rm_core = kzalloc(size, GFP_KERNEL);
4833 
4834 	if (!ops->rm_core) {
4835 		kfree(ops);
4836 		return;
4837 	}
4838 
4839 	cpus_read_lock();
4840 
4841 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4842 		if (!cpu_online(cpu))
4843 			continue;
4844 
4845 		core = cpu >> threads_shift;
4846 		ops->rm_core[core].rm_state.in_host = 1;
4847 	}
4848 
4849 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4850 
4851 	/*
4852 	 * Make the contents of the kvmppc_host_rm_ops structure visible
4853 	 * to other CPUs before we assign it to the global variable.
4854 	 * Do an atomic assignment (no locks used here), but if someone
4855 	 * beats us to it, just free our copy and return.
4856 	 */
4857 	smp_wmb();
4858 	l_ops = (unsigned long) ops;
4859 
4860 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4861 		cpus_read_unlock();
4862 		kfree(ops->rm_core);
4863 		kfree(ops);
4864 		return;
4865 	}
4866 
4867 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4868 					     "ppc/kvm_book3s:prepare",
4869 					     kvmppc_set_host_core,
4870 					     kvmppc_clear_host_core);
4871 	cpus_read_unlock();
4872 }
4873 
4874 void kvmppc_free_host_rm_ops(void)
4875 {
4876 	if (kvmppc_host_rm_ops_hv) {
4877 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4878 		kfree(kvmppc_host_rm_ops_hv->rm_core);
4879 		kfree(kvmppc_host_rm_ops_hv);
4880 		kvmppc_host_rm_ops_hv = NULL;
4881 	}
4882 }
4883 #endif
4884 
4885 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4886 {
4887 	unsigned long lpcr, lpid;
4888 	char buf[32];
4889 	int ret;
4890 
4891 	mutex_init(&kvm->arch.uvmem_lock);
4892 	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4893 	mutex_init(&kvm->arch.mmu_setup_lock);
4894 
4895 	/* Allocate the guest's logical partition ID */
4896 
4897 	lpid = kvmppc_alloc_lpid();
4898 	if ((long)lpid < 0)
4899 		return -ENOMEM;
4900 	kvm->arch.lpid = lpid;
4901 
4902 	kvmppc_alloc_host_rm_ops();
4903 
4904 	kvmhv_vm_nested_init(kvm);
4905 
4906 	/*
4907 	 * Since we don't flush the TLB when tearing down a VM,
4908 	 * and this lpid might have previously been used,
4909 	 * make sure we flush on each core before running the new VM.
4910 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4911 	 * does this flush for us.
4912 	 */
4913 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4914 		cpumask_setall(&kvm->arch.need_tlb_flush);
4915 
4916 	/* Start out with the default set of hcalls enabled */
4917 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4918 	       sizeof(kvm->arch.enabled_hcalls));
4919 
4920 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4921 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4922 
4923 	/* Init LPCR for virtual RMA mode */
4924 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4925 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
4926 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4927 		lpcr &= LPCR_PECE | LPCR_LPES;
4928 	} else {
4929 		lpcr = 0;
4930 	}
4931 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4932 		LPCR_VPM0 | LPCR_VPM1;
4933 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4934 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4935 	/* On POWER8 turn on online bit to enable PURR/SPURR */
4936 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
4937 		lpcr |= LPCR_ONL;
4938 	/*
4939 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4940 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4941 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4942 	 * be unnecessary but better safe than sorry in case we re-enable
4943 	 * EE in HV mode with this LPCR still set)
4944 	 */
4945 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4946 		lpcr &= ~LPCR_VPM0;
4947 		lpcr |= LPCR_HVICE | LPCR_HEIC;
4948 
4949 		/*
4950 		 * If xive is enabled, we route 0x500 interrupts directly
4951 		 * to the guest.
4952 		 */
4953 		if (xics_on_xive())
4954 			lpcr |= LPCR_LPES;
4955 	}
4956 
4957 	/*
4958 	 * If the host uses radix, the guest starts out as radix.
4959 	 */
4960 	if (radix_enabled()) {
4961 		kvm->arch.radix = 1;
4962 		kvm->arch.mmu_ready = 1;
4963 		lpcr &= ~LPCR_VPM1;
4964 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4965 		ret = kvmppc_init_vm_radix(kvm);
4966 		if (ret) {
4967 			kvmppc_free_lpid(kvm->arch.lpid);
4968 			return ret;
4969 		}
4970 		kvmppc_setup_partition_table(kvm);
4971 	}
4972 
4973 	kvm->arch.lpcr = lpcr;
4974 
4975 	/* Initialization for future HPT resizes */
4976 	kvm->arch.resize_hpt = NULL;
4977 
4978 	/*
4979 	 * Work out how many sets the TLB has, for the use of
4980 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4981 	 */
4982 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
4983 		/*
4984 		 * P10 will flush all the congruence class with a single tlbiel
4985 		 */
4986 		kvm->arch.tlb_sets = 1;
4987 	} else if (radix_enabled())
4988 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
4989 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4990 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
4991 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4992 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
4993 	else
4994 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
4995 
4996 	/*
4997 	 * Track that we now have a HV mode VM active. This blocks secondary
4998 	 * CPU threads from coming online.
4999 	 * On POWER9, we only need to do this if the "indep_threads_mode"
5000 	 * module parameter has been set to N.
5001 	 */
5002 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5003 		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
5004 			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
5005 			kvm->arch.threads_indep = true;
5006 		} else {
5007 			kvm->arch.threads_indep = indep_threads_mode;
5008 		}
5009 	}
5010 	if (!kvm->arch.threads_indep)
5011 		kvm_hv_vm_activated();
5012 
5013 	/*
5014 	 * Initialize smt_mode depending on processor.
5015 	 * POWER8 and earlier have to use "strict" threading, where
5016 	 * all vCPUs in a vcore have to run on the same (sub)core,
5017 	 * whereas on POWER9 the threads can each run a different
5018 	 * guest.
5019 	 */
5020 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5021 		kvm->arch.smt_mode = threads_per_subcore;
5022 	else
5023 		kvm->arch.smt_mode = 1;
5024 	kvm->arch.emul_smt_mode = 1;
5025 
5026 	/*
5027 	 * Create a debugfs directory for the VM
5028 	 */
5029 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
5030 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
5031 	kvmppc_mmu_debugfs_init(kvm);
5032 	if (radix_enabled())
5033 		kvmhv_radix_debugfs_init(kvm);
5034 
5035 	return 0;
5036 }
5037 
5038 static void kvmppc_free_vcores(struct kvm *kvm)
5039 {
5040 	long int i;
5041 
5042 	for (i = 0; i < KVM_MAX_VCORES; ++i)
5043 		kfree(kvm->arch.vcores[i]);
5044 	kvm->arch.online_vcores = 0;
5045 }
5046 
5047 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5048 {
5049 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
5050 
5051 	if (!kvm->arch.threads_indep)
5052 		kvm_hv_vm_deactivated();
5053 
5054 	kvmppc_free_vcores(kvm);
5055 
5056 
5057 	if (kvm_is_radix(kvm))
5058 		kvmppc_free_radix(kvm);
5059 	else
5060 		kvmppc_free_hpt(&kvm->arch.hpt);
5061 
5062 	/* Perform global invalidation and return lpid to the pool */
5063 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5064 		if (nesting_enabled(kvm))
5065 			kvmhv_release_all_nested(kvm);
5066 		kvm->arch.process_table = 0;
5067 		if (kvm->arch.secure_guest)
5068 			uv_svm_terminate(kvm->arch.lpid);
5069 		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5070 	}
5071 
5072 	kvmppc_free_lpid(kvm->arch.lpid);
5073 
5074 	kvmppc_free_pimap(kvm);
5075 }
5076 
5077 /* We don't need to emulate any privileged instructions or dcbz */
5078 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5079 				     unsigned int inst, int *advance)
5080 {
5081 	return EMULATE_FAIL;
5082 }
5083 
5084 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5085 					ulong spr_val)
5086 {
5087 	return EMULATE_FAIL;
5088 }
5089 
5090 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5091 					ulong *spr_val)
5092 {
5093 	return EMULATE_FAIL;
5094 }
5095 
5096 static int kvmppc_core_check_processor_compat_hv(void)
5097 {
5098 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
5099 	    cpu_has_feature(CPU_FTR_ARCH_206))
5100 		return 0;
5101 
5102 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
5103 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5104 		return 0;
5105 
5106 	return -EIO;
5107 }
5108 
5109 #ifdef CONFIG_KVM_XICS
5110 
5111 void kvmppc_free_pimap(struct kvm *kvm)
5112 {
5113 	kfree(kvm->arch.pimap);
5114 }
5115 
5116 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5117 {
5118 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5119 }
5120 
5121 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5122 {
5123 	struct irq_desc *desc;
5124 	struct kvmppc_irq_map *irq_map;
5125 	struct kvmppc_passthru_irqmap *pimap;
5126 	struct irq_chip *chip;
5127 	int i, rc = 0;
5128 
5129 	if (!kvm_irq_bypass)
5130 		return 1;
5131 
5132 	desc = irq_to_desc(host_irq);
5133 	if (!desc)
5134 		return -EIO;
5135 
5136 	mutex_lock(&kvm->lock);
5137 
5138 	pimap = kvm->arch.pimap;
5139 	if (pimap == NULL) {
5140 		/* First call, allocate structure to hold IRQ map */
5141 		pimap = kvmppc_alloc_pimap();
5142 		if (pimap == NULL) {
5143 			mutex_unlock(&kvm->lock);
5144 			return -ENOMEM;
5145 		}
5146 		kvm->arch.pimap = pimap;
5147 	}
5148 
5149 	/*
5150 	 * For now, we only support interrupts for which the EOI operation
5151 	 * is an OPAL call followed by a write to XIRR, since that's
5152 	 * what our real-mode EOI code does, or a XIVE interrupt
5153 	 */
5154 	chip = irq_data_get_irq_chip(&desc->irq_data);
5155 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5156 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5157 			host_irq, guest_gsi);
5158 		mutex_unlock(&kvm->lock);
5159 		return -ENOENT;
5160 	}
5161 
5162 	/*
5163 	 * See if we already have an entry for this guest IRQ number.
5164 	 * If it's mapped to a hardware IRQ number, that's an error,
5165 	 * otherwise re-use this entry.
5166 	 */
5167 	for (i = 0; i < pimap->n_mapped; i++) {
5168 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5169 			if (pimap->mapped[i].r_hwirq) {
5170 				mutex_unlock(&kvm->lock);
5171 				return -EINVAL;
5172 			}
5173 			break;
5174 		}
5175 	}
5176 
5177 	if (i == KVMPPC_PIRQ_MAPPED) {
5178 		mutex_unlock(&kvm->lock);
5179 		return -EAGAIN;		/* table is full */
5180 	}
5181 
5182 	irq_map = &pimap->mapped[i];
5183 
5184 	irq_map->v_hwirq = guest_gsi;
5185 	irq_map->desc = desc;
5186 
5187 	/*
5188 	 * Order the above two stores before the next to serialize with
5189 	 * the KVM real mode handler.
5190 	 */
5191 	smp_wmb();
5192 	irq_map->r_hwirq = desc->irq_data.hwirq;
5193 
5194 	if (i == pimap->n_mapped)
5195 		pimap->n_mapped++;
5196 
5197 	if (xics_on_xive())
5198 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5199 	else
5200 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5201 	if (rc)
5202 		irq_map->r_hwirq = 0;
5203 
5204 	mutex_unlock(&kvm->lock);
5205 
5206 	return 0;
5207 }
5208 
5209 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5210 {
5211 	struct irq_desc *desc;
5212 	struct kvmppc_passthru_irqmap *pimap;
5213 	int i, rc = 0;
5214 
5215 	if (!kvm_irq_bypass)
5216 		return 0;
5217 
5218 	desc = irq_to_desc(host_irq);
5219 	if (!desc)
5220 		return -EIO;
5221 
5222 	mutex_lock(&kvm->lock);
5223 	if (!kvm->arch.pimap)
5224 		goto unlock;
5225 
5226 	pimap = kvm->arch.pimap;
5227 
5228 	for (i = 0; i < pimap->n_mapped; i++) {
5229 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5230 			break;
5231 	}
5232 
5233 	if (i == pimap->n_mapped) {
5234 		mutex_unlock(&kvm->lock);
5235 		return -ENODEV;
5236 	}
5237 
5238 	if (xics_on_xive())
5239 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5240 	else
5241 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5242 
5243 	/* invalidate the entry (what do do on error from the above ?) */
5244 	pimap->mapped[i].r_hwirq = 0;
5245 
5246 	/*
5247 	 * We don't free this structure even when the count goes to
5248 	 * zero. The structure is freed when we destroy the VM.
5249 	 */
5250  unlock:
5251 	mutex_unlock(&kvm->lock);
5252 	return rc;
5253 }
5254 
5255 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5256 					     struct irq_bypass_producer *prod)
5257 {
5258 	int ret = 0;
5259 	struct kvm_kernel_irqfd *irqfd =
5260 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5261 
5262 	irqfd->producer = prod;
5263 
5264 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5265 	if (ret)
5266 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5267 			prod->irq, irqfd->gsi, ret);
5268 
5269 	return ret;
5270 }
5271 
5272 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5273 					      struct irq_bypass_producer *prod)
5274 {
5275 	int ret;
5276 	struct kvm_kernel_irqfd *irqfd =
5277 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5278 
5279 	irqfd->producer = NULL;
5280 
5281 	/*
5282 	 * When producer of consumer is unregistered, we change back to
5283 	 * default external interrupt handling mode - KVM real mode
5284 	 * will switch back to host.
5285 	 */
5286 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5287 	if (ret)
5288 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5289 			prod->irq, irqfd->gsi, ret);
5290 }
5291 #endif
5292 
5293 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5294 				 unsigned int ioctl, unsigned long arg)
5295 {
5296 	struct kvm *kvm __maybe_unused = filp->private_data;
5297 	void __user *argp = (void __user *)arg;
5298 	long r;
5299 
5300 	switch (ioctl) {
5301 
5302 	case KVM_PPC_ALLOCATE_HTAB: {
5303 		u32 htab_order;
5304 
5305 		/* If we're a nested hypervisor, we currently only support radix */
5306 		if (kvmhv_on_pseries()) {
5307 			r = -EOPNOTSUPP;
5308 			break;
5309 		}
5310 
5311 		r = -EFAULT;
5312 		if (get_user(htab_order, (u32 __user *)argp))
5313 			break;
5314 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5315 		if (r)
5316 			break;
5317 		r = 0;
5318 		break;
5319 	}
5320 
5321 	case KVM_PPC_GET_HTAB_FD: {
5322 		struct kvm_get_htab_fd ghf;
5323 
5324 		r = -EFAULT;
5325 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5326 			break;
5327 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5328 		break;
5329 	}
5330 
5331 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5332 		struct kvm_ppc_resize_hpt rhpt;
5333 
5334 		r = -EFAULT;
5335 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5336 			break;
5337 
5338 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5339 		break;
5340 	}
5341 
5342 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5343 		struct kvm_ppc_resize_hpt rhpt;
5344 
5345 		r = -EFAULT;
5346 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5347 			break;
5348 
5349 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5350 		break;
5351 	}
5352 
5353 	default:
5354 		r = -ENOTTY;
5355 	}
5356 
5357 	return r;
5358 }
5359 
5360 /*
5361  * List of hcall numbers to enable by default.
5362  * For compatibility with old userspace, we enable by default
5363  * all hcalls that were implemented before the hcall-enabling
5364  * facility was added.  Note this list should not include H_RTAS.
5365  */
5366 static unsigned int default_hcall_list[] = {
5367 	H_REMOVE,
5368 	H_ENTER,
5369 	H_READ,
5370 	H_PROTECT,
5371 	H_BULK_REMOVE,
5372 	H_GET_TCE,
5373 	H_PUT_TCE,
5374 	H_SET_DABR,
5375 	H_SET_XDABR,
5376 	H_CEDE,
5377 	H_PROD,
5378 	H_CONFER,
5379 	H_REGISTER_VPA,
5380 #ifdef CONFIG_KVM_XICS
5381 	H_EOI,
5382 	H_CPPR,
5383 	H_IPI,
5384 	H_IPOLL,
5385 	H_XIRR,
5386 	H_XIRR_X,
5387 #endif
5388 	0
5389 };
5390 
5391 static void init_default_hcalls(void)
5392 {
5393 	int i;
5394 	unsigned int hcall;
5395 
5396 	for (i = 0; default_hcall_list[i]; ++i) {
5397 		hcall = default_hcall_list[i];
5398 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5399 		__set_bit(hcall / 4, default_enabled_hcalls);
5400 	}
5401 }
5402 
5403 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5404 {
5405 	unsigned long lpcr;
5406 	int radix;
5407 	int err;
5408 
5409 	/* If not on a POWER9, reject it */
5410 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5411 		return -ENODEV;
5412 
5413 	/* If any unknown flags set, reject it */
5414 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5415 		return -EINVAL;
5416 
5417 	/* GR (guest radix) bit in process_table field must match */
5418 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5419 	if (!!(cfg->process_table & PATB_GR) != radix)
5420 		return -EINVAL;
5421 
5422 	/* Process table size field must be reasonable, i.e. <= 24 */
5423 	if ((cfg->process_table & PRTS_MASK) > 24)
5424 		return -EINVAL;
5425 
5426 	/* We can change a guest to/from radix now, if the host is radix */
5427 	if (radix && !radix_enabled())
5428 		return -EINVAL;
5429 
5430 	/* If we're a nested hypervisor, we currently only support radix */
5431 	if (kvmhv_on_pseries() && !radix)
5432 		return -EINVAL;
5433 
5434 	mutex_lock(&kvm->arch.mmu_setup_lock);
5435 	if (radix != kvm_is_radix(kvm)) {
5436 		if (kvm->arch.mmu_ready) {
5437 			kvm->arch.mmu_ready = 0;
5438 			/* order mmu_ready vs. vcpus_running */
5439 			smp_mb();
5440 			if (atomic_read(&kvm->arch.vcpus_running)) {
5441 				kvm->arch.mmu_ready = 1;
5442 				err = -EBUSY;
5443 				goto out_unlock;
5444 			}
5445 		}
5446 		if (radix)
5447 			err = kvmppc_switch_mmu_to_radix(kvm);
5448 		else
5449 			err = kvmppc_switch_mmu_to_hpt(kvm);
5450 		if (err)
5451 			goto out_unlock;
5452 	}
5453 
5454 	kvm->arch.process_table = cfg->process_table;
5455 	kvmppc_setup_partition_table(kvm);
5456 
5457 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5458 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5459 	err = 0;
5460 
5461  out_unlock:
5462 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5463 	return err;
5464 }
5465 
5466 static int kvmhv_enable_nested(struct kvm *kvm)
5467 {
5468 	if (!nested)
5469 		return -EPERM;
5470 	if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5471 		return -ENODEV;
5472 
5473 	/* kvm == NULL means the caller is testing if the capability exists */
5474 	if (kvm)
5475 		kvm->arch.nested_enable = true;
5476 	return 0;
5477 }
5478 
5479 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5480 				 int size)
5481 {
5482 	int rc = -EINVAL;
5483 
5484 	if (kvmhv_vcpu_is_radix(vcpu)) {
5485 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5486 
5487 		if (rc > 0)
5488 			rc = -EINVAL;
5489 	}
5490 
5491 	/* For now quadrants are the only way to access nested guest memory */
5492 	if (rc && vcpu->arch.nested)
5493 		rc = -EAGAIN;
5494 
5495 	return rc;
5496 }
5497 
5498 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5499 				int size)
5500 {
5501 	int rc = -EINVAL;
5502 
5503 	if (kvmhv_vcpu_is_radix(vcpu)) {
5504 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5505 
5506 		if (rc > 0)
5507 			rc = -EINVAL;
5508 	}
5509 
5510 	/* For now quadrants are the only way to access nested guest memory */
5511 	if (rc && vcpu->arch.nested)
5512 		rc = -EAGAIN;
5513 
5514 	return rc;
5515 }
5516 
5517 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5518 {
5519 	unpin_vpa(kvm, vpa);
5520 	vpa->gpa = 0;
5521 	vpa->pinned_addr = NULL;
5522 	vpa->dirty = false;
5523 	vpa->update_pending = 0;
5524 }
5525 
5526 /*
5527  * Enable a guest to become a secure VM, or test whether
5528  * that could be enabled.
5529  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5530  * tested (kvm == NULL) or enabled (kvm != NULL).
5531  */
5532 static int kvmhv_enable_svm(struct kvm *kvm)
5533 {
5534 	if (!kvmppc_uvmem_available())
5535 		return -EINVAL;
5536 	if (kvm)
5537 		kvm->arch.svm_enabled = 1;
5538 	return 0;
5539 }
5540 
5541 /*
5542  *  IOCTL handler to turn off secure mode of guest
5543  *
5544  * - Release all device pages
5545  * - Issue ucall to terminate the guest on the UV side
5546  * - Unpin the VPA pages.
5547  * - Reinit the partition scoped page tables
5548  */
5549 static int kvmhv_svm_off(struct kvm *kvm)
5550 {
5551 	struct kvm_vcpu *vcpu;
5552 	int mmu_was_ready;
5553 	int srcu_idx;
5554 	int ret = 0;
5555 	int i;
5556 
5557 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5558 		return ret;
5559 
5560 	mutex_lock(&kvm->arch.mmu_setup_lock);
5561 	mmu_was_ready = kvm->arch.mmu_ready;
5562 	if (kvm->arch.mmu_ready) {
5563 		kvm->arch.mmu_ready = 0;
5564 		/* order mmu_ready vs. vcpus_running */
5565 		smp_mb();
5566 		if (atomic_read(&kvm->arch.vcpus_running)) {
5567 			kvm->arch.mmu_ready = 1;
5568 			ret = -EBUSY;
5569 			goto out;
5570 		}
5571 	}
5572 
5573 	srcu_idx = srcu_read_lock(&kvm->srcu);
5574 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5575 		struct kvm_memory_slot *memslot;
5576 		struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5577 
5578 		if (!slots)
5579 			continue;
5580 
5581 		kvm_for_each_memslot(memslot, slots) {
5582 			kvmppc_uvmem_drop_pages(memslot, kvm, true);
5583 			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5584 		}
5585 	}
5586 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5587 
5588 	ret = uv_svm_terminate(kvm->arch.lpid);
5589 	if (ret != U_SUCCESS) {
5590 		ret = -EINVAL;
5591 		goto out;
5592 	}
5593 
5594 	/*
5595 	 * When secure guest is reset, all the guest pages are sent
5596 	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5597 	 * chance to run and unpin their VPA pages. Unpinning of all
5598 	 * VPA pages is done here explicitly so that VPA pages
5599 	 * can be migrated to the secure side.
5600 	 *
5601 	 * This is required to for the secure SMP guest to reboot
5602 	 * correctly.
5603 	 */
5604 	kvm_for_each_vcpu(i, vcpu, kvm) {
5605 		spin_lock(&vcpu->arch.vpa_update_lock);
5606 		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5607 		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5608 		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5609 		spin_unlock(&vcpu->arch.vpa_update_lock);
5610 	}
5611 
5612 	kvmppc_setup_partition_table(kvm);
5613 	kvm->arch.secure_guest = 0;
5614 	kvm->arch.mmu_ready = mmu_was_ready;
5615 out:
5616 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5617 	return ret;
5618 }
5619 
5620 static int kvmhv_enable_dawr1(struct kvm *kvm)
5621 {
5622 	if (!cpu_has_feature(CPU_FTR_DAWR1))
5623 		return -ENODEV;
5624 
5625 	/* kvm == NULL means the caller is testing if the capability exists */
5626 	if (kvm)
5627 		kvm->arch.dawr1_enabled = true;
5628 	return 0;
5629 }
5630 
5631 static bool kvmppc_hash_v3_possible(void)
5632 {
5633 	if (radix_enabled() && no_mixing_hpt_and_radix)
5634 		return false;
5635 
5636 	return cpu_has_feature(CPU_FTR_ARCH_300) &&
5637 		cpu_has_feature(CPU_FTR_HVMODE);
5638 }
5639 
5640 static struct kvmppc_ops kvm_ops_hv = {
5641 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5642 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5643 	.get_one_reg = kvmppc_get_one_reg_hv,
5644 	.set_one_reg = kvmppc_set_one_reg_hv,
5645 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
5646 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
5647 	.inject_interrupt = kvmppc_inject_interrupt_hv,
5648 	.set_msr     = kvmppc_set_msr_hv,
5649 	.vcpu_run    = kvmppc_vcpu_run_hv,
5650 	.vcpu_create = kvmppc_core_vcpu_create_hv,
5651 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
5652 	.check_requests = kvmppc_core_check_requests_hv,
5653 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5654 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
5655 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5656 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5657 	.unmap_hva_range = kvm_unmap_hva_range_hv,
5658 	.age_hva  = kvm_age_hva_hv,
5659 	.test_age_hva = kvm_test_age_hva_hv,
5660 	.set_spte_hva = kvm_set_spte_hva_hv,
5661 	.free_memslot = kvmppc_core_free_memslot_hv,
5662 	.init_vm =  kvmppc_core_init_vm_hv,
5663 	.destroy_vm = kvmppc_core_destroy_vm_hv,
5664 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5665 	.emulate_op = kvmppc_core_emulate_op_hv,
5666 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5667 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5668 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5669 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5670 	.hcall_implemented = kvmppc_hcall_impl_hv,
5671 #ifdef CONFIG_KVM_XICS
5672 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5673 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5674 #endif
5675 	.configure_mmu = kvmhv_configure_mmu,
5676 	.get_rmmu_info = kvmhv_get_rmmu_info,
5677 	.set_smt_mode = kvmhv_set_smt_mode,
5678 	.enable_nested = kvmhv_enable_nested,
5679 	.load_from_eaddr = kvmhv_load_from_eaddr,
5680 	.store_to_eaddr = kvmhv_store_to_eaddr,
5681 	.enable_svm = kvmhv_enable_svm,
5682 	.svm_off = kvmhv_svm_off,
5683 	.enable_dawr1 = kvmhv_enable_dawr1,
5684 	.hash_v3_possible = kvmppc_hash_v3_possible,
5685 };
5686 
5687 static int kvm_init_subcore_bitmap(void)
5688 {
5689 	int i, j;
5690 	int nr_cores = cpu_nr_cores();
5691 	struct sibling_subcore_state *sibling_subcore_state;
5692 
5693 	for (i = 0; i < nr_cores; i++) {
5694 		int first_cpu = i * threads_per_core;
5695 		int node = cpu_to_node(first_cpu);
5696 
5697 		/* Ignore if it is already allocated. */
5698 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5699 			continue;
5700 
5701 		sibling_subcore_state =
5702 			kzalloc_node(sizeof(struct sibling_subcore_state),
5703 							GFP_KERNEL, node);
5704 		if (!sibling_subcore_state)
5705 			return -ENOMEM;
5706 
5707 
5708 		for (j = 0; j < threads_per_core; j++) {
5709 			int cpu = first_cpu + j;
5710 
5711 			paca_ptrs[cpu]->sibling_subcore_state =
5712 						sibling_subcore_state;
5713 		}
5714 	}
5715 	return 0;
5716 }
5717 
5718 static int kvmppc_radix_possible(void)
5719 {
5720 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5721 }
5722 
5723 static int kvmppc_book3s_init_hv(void)
5724 {
5725 	int r;
5726 
5727 	if (!tlbie_capable) {
5728 		pr_err("KVM-HV: Host does not support TLBIE\n");
5729 		return -ENODEV;
5730 	}
5731 
5732 	/*
5733 	 * FIXME!! Do we need to check on all cpus ?
5734 	 */
5735 	r = kvmppc_core_check_processor_compat_hv();
5736 	if (r < 0)
5737 		return -ENODEV;
5738 
5739 	r = kvmhv_nested_init();
5740 	if (r)
5741 		return r;
5742 
5743 	r = kvm_init_subcore_bitmap();
5744 	if (r)
5745 		return r;
5746 
5747 	/*
5748 	 * We need a way of accessing the XICS interrupt controller,
5749 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5750 	 * indirectly, via OPAL.
5751 	 */
5752 #ifdef CONFIG_SMP
5753 	if (!xics_on_xive() && !kvmhv_on_pseries() &&
5754 	    !local_paca->kvm_hstate.xics_phys) {
5755 		struct device_node *np;
5756 
5757 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5758 		if (!np) {
5759 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5760 			return -ENODEV;
5761 		}
5762 		/* presence of intc confirmed - node can be dropped again */
5763 		of_node_put(np);
5764 	}
5765 #endif
5766 
5767 	kvm_ops_hv.owner = THIS_MODULE;
5768 	kvmppc_hv_ops = &kvm_ops_hv;
5769 
5770 	init_default_hcalls();
5771 
5772 	init_vcore_lists();
5773 
5774 	r = kvmppc_mmu_hv_init();
5775 	if (r)
5776 		return r;
5777 
5778 	if (kvmppc_radix_possible())
5779 		r = kvmppc_radix_init();
5780 
5781 	/*
5782 	 * POWER9 chips before version 2.02 can't have some threads in
5783 	 * HPT mode and some in radix mode on the same core.
5784 	 */
5785 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5786 		unsigned int pvr = mfspr(SPRN_PVR);
5787 		if ((pvr >> 16) == PVR_POWER9 &&
5788 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5789 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5790 			no_mixing_hpt_and_radix = true;
5791 	}
5792 
5793 	r = kvmppc_uvmem_init();
5794 	if (r < 0)
5795 		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5796 
5797 	return r;
5798 }
5799 
5800 static void kvmppc_book3s_exit_hv(void)
5801 {
5802 	kvmppc_uvmem_free();
5803 	kvmppc_free_host_rm_ops();
5804 	if (kvmppc_radix_possible())
5805 		kvmppc_radix_exit();
5806 	kvmppc_hv_ops = NULL;
5807 	kvmhv_nested_exit();
5808 }
5809 
5810 module_init(kvmppc_book3s_init_hv);
5811 module_exit(kvmppc_book3s_exit_hv);
5812 MODULE_LICENSE("GPL");
5813 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5814 MODULE_ALIAS("devname:kvm");
5815