xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48 
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75 
76 #include "book3s.h"
77 
78 #define CREATE_TRACE_POINTS
79 #include "trace_hv.h"
80 
81 /* #define EXIT_DEBUG */
82 /* #define EXIT_DEBUG_SIMPLE */
83 /* #define EXIT_DEBUG_INT */
84 
85 /* Used to indicate that a guest page fault needs to be handled */
86 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
87 /* Used to indicate that a guest passthrough interrupt needs to be handled */
88 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
89 
90 /* Used as a "null" value for timebase values */
91 #define TB_NIL	(~(u64)0)
92 
93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94 
95 static int dynamic_mt_modes = 6;
96 module_param(dynamic_mt_modes, int, 0644);
97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 static int target_smt_mode;
99 module_param(target_smt_mode, int, 0644);
100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101 
102 static bool indep_threads_mode = true;
103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105 
106 #ifdef CONFIG_KVM_XICS
107 static struct kernel_param_ops module_param_ops = {
108 	.set = param_set_int,
109 	.get = param_get_int,
110 };
111 
112 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
113 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
114 
115 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
116 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
117 #endif
118 
119 /* If set, the threads on each CPU core have to be in the same MMU mode */
120 static bool no_mixing_hpt_and_radix;
121 
122 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
123 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
124 
125 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
126 		int *ip)
127 {
128 	int i = *ip;
129 	struct kvm_vcpu *vcpu;
130 
131 	while (++i < MAX_SMT_THREADS) {
132 		vcpu = READ_ONCE(vc->runnable_threads[i]);
133 		if (vcpu) {
134 			*ip = i;
135 			return vcpu;
136 		}
137 	}
138 	return NULL;
139 }
140 
141 /* Used to traverse the list of runnable threads for a given vcore */
142 #define for_each_runnable_thread(i, vcpu, vc) \
143 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
144 
145 static bool kvmppc_ipi_thread(int cpu)
146 {
147 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
148 
149 	/* On POWER9 we can use msgsnd to IPI any cpu */
150 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
151 		msg |= get_hard_smp_processor_id(cpu);
152 		smp_mb();
153 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
154 		return true;
155 	}
156 
157 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
158 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
159 		preempt_disable();
160 		if (cpu_first_thread_sibling(cpu) ==
161 		    cpu_first_thread_sibling(smp_processor_id())) {
162 			msg |= cpu_thread_in_core(cpu);
163 			smp_mb();
164 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
165 			preempt_enable();
166 			return true;
167 		}
168 		preempt_enable();
169 	}
170 
171 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
172 	if (cpu >= 0 && cpu < nr_cpu_ids) {
173 		if (paca[cpu].kvm_hstate.xics_phys) {
174 			xics_wake_cpu(cpu);
175 			return true;
176 		}
177 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
178 		return true;
179 	}
180 #endif
181 
182 	return false;
183 }
184 
185 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
186 {
187 	int cpu;
188 	struct swait_queue_head *wqp;
189 
190 	wqp = kvm_arch_vcpu_wq(vcpu);
191 	if (swq_has_sleeper(wqp)) {
192 		swake_up(wqp);
193 		++vcpu->stat.halt_wakeup;
194 	}
195 
196 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
197 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
198 		return;
199 
200 	/* CPU points to the first thread of the core */
201 	cpu = vcpu->cpu;
202 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
203 		smp_send_reschedule(cpu);
204 }
205 
206 /*
207  * We use the vcpu_load/put functions to measure stolen time.
208  * Stolen time is counted as time when either the vcpu is able to
209  * run as part of a virtual core, but the task running the vcore
210  * is preempted or sleeping, or when the vcpu needs something done
211  * in the kernel by the task running the vcpu, but that task is
212  * preempted or sleeping.  Those two things have to be counted
213  * separately, since one of the vcpu tasks will take on the job
214  * of running the core, and the other vcpu tasks in the vcore will
215  * sleep waiting for it to do that, but that sleep shouldn't count
216  * as stolen time.
217  *
218  * Hence we accumulate stolen time when the vcpu can run as part of
219  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
220  * needs its task to do other things in the kernel (for example,
221  * service a page fault) in busy_stolen.  We don't accumulate
222  * stolen time for a vcore when it is inactive, or for a vcpu
223  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
224  * a misnomer; it means that the vcpu task is not executing in
225  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
226  * the kernel.  We don't have any way of dividing up that time
227  * between time that the vcpu is genuinely stopped, time that
228  * the task is actively working on behalf of the vcpu, and time
229  * that the task is preempted, so we don't count any of it as
230  * stolen.
231  *
232  * Updates to busy_stolen are protected by arch.tbacct_lock;
233  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
234  * lock.  The stolen times are measured in units of timebase ticks.
235  * (Note that the != TB_NIL checks below are purely defensive;
236  * they should never fail.)
237  */
238 
239 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
240 {
241 	unsigned long flags;
242 
243 	spin_lock_irqsave(&vc->stoltb_lock, flags);
244 	vc->preempt_tb = mftb();
245 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
246 }
247 
248 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
249 {
250 	unsigned long flags;
251 
252 	spin_lock_irqsave(&vc->stoltb_lock, flags);
253 	if (vc->preempt_tb != TB_NIL) {
254 		vc->stolen_tb += mftb() - vc->preempt_tb;
255 		vc->preempt_tb = TB_NIL;
256 	}
257 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
258 }
259 
260 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
261 {
262 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
263 	unsigned long flags;
264 
265 	/*
266 	 * We can test vc->runner without taking the vcore lock,
267 	 * because only this task ever sets vc->runner to this
268 	 * vcpu, and once it is set to this vcpu, only this task
269 	 * ever sets it to NULL.
270 	 */
271 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
272 		kvmppc_core_end_stolen(vc);
273 
274 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
275 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
276 	    vcpu->arch.busy_preempt != TB_NIL) {
277 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
278 		vcpu->arch.busy_preempt = TB_NIL;
279 	}
280 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
281 }
282 
283 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
284 {
285 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
286 	unsigned long flags;
287 
288 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
289 		kvmppc_core_start_stolen(vc);
290 
291 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
292 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
293 		vcpu->arch.busy_preempt = mftb();
294 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
295 }
296 
297 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
298 {
299 	/*
300 	 * Check for illegal transactional state bit combination
301 	 * and if we find it, force the TS field to a safe state.
302 	 */
303 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
304 		msr &= ~MSR_TS_MASK;
305 	vcpu->arch.shregs.msr = msr;
306 	kvmppc_end_cede(vcpu);
307 }
308 
309 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
310 {
311 	vcpu->arch.pvr = pvr;
312 }
313 
314 /* Dummy value used in computing PCR value below */
315 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
316 
317 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
318 {
319 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
320 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
321 
322 	/* We can (emulate) our own architecture version and anything older */
323 	if (cpu_has_feature(CPU_FTR_ARCH_300))
324 		host_pcr_bit = PCR_ARCH_300;
325 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
326 		host_pcr_bit = PCR_ARCH_207;
327 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
328 		host_pcr_bit = PCR_ARCH_206;
329 	else
330 		host_pcr_bit = PCR_ARCH_205;
331 
332 	/* Determine lowest PCR bit needed to run guest in given PVR level */
333 	guest_pcr_bit = host_pcr_bit;
334 	if (arch_compat) {
335 		switch (arch_compat) {
336 		case PVR_ARCH_205:
337 			guest_pcr_bit = PCR_ARCH_205;
338 			break;
339 		case PVR_ARCH_206:
340 		case PVR_ARCH_206p:
341 			guest_pcr_bit = PCR_ARCH_206;
342 			break;
343 		case PVR_ARCH_207:
344 			guest_pcr_bit = PCR_ARCH_207;
345 			break;
346 		case PVR_ARCH_300:
347 			guest_pcr_bit = PCR_ARCH_300;
348 			break;
349 		default:
350 			return -EINVAL;
351 		}
352 	}
353 
354 	/* Check requested PCR bits don't exceed our capabilities */
355 	if (guest_pcr_bit > host_pcr_bit)
356 		return -EINVAL;
357 
358 	spin_lock(&vc->lock);
359 	vc->arch_compat = arch_compat;
360 	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
361 	vc->pcr = host_pcr_bit - guest_pcr_bit;
362 	spin_unlock(&vc->lock);
363 
364 	return 0;
365 }
366 
367 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
368 {
369 	int r;
370 
371 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
372 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
373 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
374 	for (r = 0; r < 16; ++r)
375 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
376 		       r, kvmppc_get_gpr(vcpu, r),
377 		       r+16, kvmppc_get_gpr(vcpu, r+16));
378 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
379 	       vcpu->arch.ctr, vcpu->arch.lr);
380 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
381 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
382 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
383 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
384 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
385 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
386 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
387 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
388 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
389 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
390 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
391 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
392 	for (r = 0; r < vcpu->arch.slb_max; ++r)
393 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
394 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
395 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
396 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
397 	       vcpu->arch.last_inst);
398 }
399 
400 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
401 {
402 	struct kvm_vcpu *ret;
403 
404 	mutex_lock(&kvm->lock);
405 	ret = kvm_get_vcpu_by_id(kvm, id);
406 	mutex_unlock(&kvm->lock);
407 	return ret;
408 }
409 
410 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
411 {
412 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
413 	vpa->yield_count = cpu_to_be32(1);
414 }
415 
416 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
417 		   unsigned long addr, unsigned long len)
418 {
419 	/* check address is cacheline aligned */
420 	if (addr & (L1_CACHE_BYTES - 1))
421 		return -EINVAL;
422 	spin_lock(&vcpu->arch.vpa_update_lock);
423 	if (v->next_gpa != addr || v->len != len) {
424 		v->next_gpa = addr;
425 		v->len = addr ? len : 0;
426 		v->update_pending = 1;
427 	}
428 	spin_unlock(&vcpu->arch.vpa_update_lock);
429 	return 0;
430 }
431 
432 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
433 struct reg_vpa {
434 	u32 dummy;
435 	union {
436 		__be16 hword;
437 		__be32 word;
438 	} length;
439 };
440 
441 static int vpa_is_registered(struct kvmppc_vpa *vpap)
442 {
443 	if (vpap->update_pending)
444 		return vpap->next_gpa != 0;
445 	return vpap->pinned_addr != NULL;
446 }
447 
448 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
449 				       unsigned long flags,
450 				       unsigned long vcpuid, unsigned long vpa)
451 {
452 	struct kvm *kvm = vcpu->kvm;
453 	unsigned long len, nb;
454 	void *va;
455 	struct kvm_vcpu *tvcpu;
456 	int err;
457 	int subfunc;
458 	struct kvmppc_vpa *vpap;
459 
460 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
461 	if (!tvcpu)
462 		return H_PARAMETER;
463 
464 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
465 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
466 	    subfunc == H_VPA_REG_SLB) {
467 		/* Registering new area - address must be cache-line aligned */
468 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
469 			return H_PARAMETER;
470 
471 		/* convert logical addr to kernel addr and read length */
472 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
473 		if (va == NULL)
474 			return H_PARAMETER;
475 		if (subfunc == H_VPA_REG_VPA)
476 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
477 		else
478 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
479 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
480 
481 		/* Check length */
482 		if (len > nb || len < sizeof(struct reg_vpa))
483 			return H_PARAMETER;
484 	} else {
485 		vpa = 0;
486 		len = 0;
487 	}
488 
489 	err = H_PARAMETER;
490 	vpap = NULL;
491 	spin_lock(&tvcpu->arch.vpa_update_lock);
492 
493 	switch (subfunc) {
494 	case H_VPA_REG_VPA:		/* register VPA */
495 		/*
496 		 * The size of our lppaca is 1kB because of the way we align
497 		 * it for the guest to avoid crossing a 4kB boundary. We only
498 		 * use 640 bytes of the structure though, so we should accept
499 		 * clients that set a size of 640.
500 		 */
501 		if (len < 640)
502 			break;
503 		vpap = &tvcpu->arch.vpa;
504 		err = 0;
505 		break;
506 
507 	case H_VPA_REG_DTL:		/* register DTL */
508 		if (len < sizeof(struct dtl_entry))
509 			break;
510 		len -= len % sizeof(struct dtl_entry);
511 
512 		/* Check that they have previously registered a VPA */
513 		err = H_RESOURCE;
514 		if (!vpa_is_registered(&tvcpu->arch.vpa))
515 			break;
516 
517 		vpap = &tvcpu->arch.dtl;
518 		err = 0;
519 		break;
520 
521 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
522 		/* Check that they have previously registered a VPA */
523 		err = H_RESOURCE;
524 		if (!vpa_is_registered(&tvcpu->arch.vpa))
525 			break;
526 
527 		vpap = &tvcpu->arch.slb_shadow;
528 		err = 0;
529 		break;
530 
531 	case H_VPA_DEREG_VPA:		/* deregister VPA */
532 		/* Check they don't still have a DTL or SLB buf registered */
533 		err = H_RESOURCE;
534 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
535 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
536 			break;
537 
538 		vpap = &tvcpu->arch.vpa;
539 		err = 0;
540 		break;
541 
542 	case H_VPA_DEREG_DTL:		/* deregister DTL */
543 		vpap = &tvcpu->arch.dtl;
544 		err = 0;
545 		break;
546 
547 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
548 		vpap = &tvcpu->arch.slb_shadow;
549 		err = 0;
550 		break;
551 	}
552 
553 	if (vpap) {
554 		vpap->next_gpa = vpa;
555 		vpap->len = len;
556 		vpap->update_pending = 1;
557 	}
558 
559 	spin_unlock(&tvcpu->arch.vpa_update_lock);
560 
561 	return err;
562 }
563 
564 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
565 {
566 	struct kvm *kvm = vcpu->kvm;
567 	void *va;
568 	unsigned long nb;
569 	unsigned long gpa;
570 
571 	/*
572 	 * We need to pin the page pointed to by vpap->next_gpa,
573 	 * but we can't call kvmppc_pin_guest_page under the lock
574 	 * as it does get_user_pages() and down_read().  So we
575 	 * have to drop the lock, pin the page, then get the lock
576 	 * again and check that a new area didn't get registered
577 	 * in the meantime.
578 	 */
579 	for (;;) {
580 		gpa = vpap->next_gpa;
581 		spin_unlock(&vcpu->arch.vpa_update_lock);
582 		va = NULL;
583 		nb = 0;
584 		if (gpa)
585 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
586 		spin_lock(&vcpu->arch.vpa_update_lock);
587 		if (gpa == vpap->next_gpa)
588 			break;
589 		/* sigh... unpin that one and try again */
590 		if (va)
591 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
592 	}
593 
594 	vpap->update_pending = 0;
595 	if (va && nb < vpap->len) {
596 		/*
597 		 * If it's now too short, it must be that userspace
598 		 * has changed the mappings underlying guest memory,
599 		 * so unregister the region.
600 		 */
601 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
602 		va = NULL;
603 	}
604 	if (vpap->pinned_addr)
605 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
606 					vpap->dirty);
607 	vpap->gpa = gpa;
608 	vpap->pinned_addr = va;
609 	vpap->dirty = false;
610 	if (va)
611 		vpap->pinned_end = va + vpap->len;
612 }
613 
614 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
615 {
616 	if (!(vcpu->arch.vpa.update_pending ||
617 	      vcpu->arch.slb_shadow.update_pending ||
618 	      vcpu->arch.dtl.update_pending))
619 		return;
620 
621 	spin_lock(&vcpu->arch.vpa_update_lock);
622 	if (vcpu->arch.vpa.update_pending) {
623 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
624 		if (vcpu->arch.vpa.pinned_addr)
625 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
626 	}
627 	if (vcpu->arch.dtl.update_pending) {
628 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
629 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
630 		vcpu->arch.dtl_index = 0;
631 	}
632 	if (vcpu->arch.slb_shadow.update_pending)
633 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
634 	spin_unlock(&vcpu->arch.vpa_update_lock);
635 }
636 
637 /*
638  * Return the accumulated stolen time for the vcore up until `now'.
639  * The caller should hold the vcore lock.
640  */
641 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
642 {
643 	u64 p;
644 	unsigned long flags;
645 
646 	spin_lock_irqsave(&vc->stoltb_lock, flags);
647 	p = vc->stolen_tb;
648 	if (vc->vcore_state != VCORE_INACTIVE &&
649 	    vc->preempt_tb != TB_NIL)
650 		p += now - vc->preempt_tb;
651 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
652 	return p;
653 }
654 
655 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
656 				    struct kvmppc_vcore *vc)
657 {
658 	struct dtl_entry *dt;
659 	struct lppaca *vpa;
660 	unsigned long stolen;
661 	unsigned long core_stolen;
662 	u64 now;
663 	unsigned long flags;
664 
665 	dt = vcpu->arch.dtl_ptr;
666 	vpa = vcpu->arch.vpa.pinned_addr;
667 	now = mftb();
668 	core_stolen = vcore_stolen_time(vc, now);
669 	stolen = core_stolen - vcpu->arch.stolen_logged;
670 	vcpu->arch.stolen_logged = core_stolen;
671 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
672 	stolen += vcpu->arch.busy_stolen;
673 	vcpu->arch.busy_stolen = 0;
674 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
675 	if (!dt || !vpa)
676 		return;
677 	memset(dt, 0, sizeof(struct dtl_entry));
678 	dt->dispatch_reason = 7;
679 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
680 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
681 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
682 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
683 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
684 	++dt;
685 	if (dt == vcpu->arch.dtl.pinned_end)
686 		dt = vcpu->arch.dtl.pinned_addr;
687 	vcpu->arch.dtl_ptr = dt;
688 	/* order writing *dt vs. writing vpa->dtl_idx */
689 	smp_wmb();
690 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
691 	vcpu->arch.dtl.dirty = true;
692 }
693 
694 /* See if there is a doorbell interrupt pending for a vcpu */
695 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
696 {
697 	int thr;
698 	struct kvmppc_vcore *vc;
699 
700 	if (vcpu->arch.doorbell_request)
701 		return true;
702 	/*
703 	 * Ensure that the read of vcore->dpdes comes after the read
704 	 * of vcpu->doorbell_request.  This barrier matches the
705 	 * lwsync in book3s_hv_rmhandlers.S just before the
706 	 * fast_guest_return label.
707 	 */
708 	smp_rmb();
709 	vc = vcpu->arch.vcore;
710 	thr = vcpu->vcpu_id - vc->first_vcpuid;
711 	return !!(vc->dpdes & (1 << thr));
712 }
713 
714 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
715 {
716 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
717 		return true;
718 	if ((!vcpu->arch.vcore->arch_compat) &&
719 	    cpu_has_feature(CPU_FTR_ARCH_207S))
720 		return true;
721 	return false;
722 }
723 
724 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
725 			     unsigned long resource, unsigned long value1,
726 			     unsigned long value2)
727 {
728 	switch (resource) {
729 	case H_SET_MODE_RESOURCE_SET_CIABR:
730 		if (!kvmppc_power8_compatible(vcpu))
731 			return H_P2;
732 		if (value2)
733 			return H_P4;
734 		if (mflags)
735 			return H_UNSUPPORTED_FLAG_START;
736 		/* Guests can't breakpoint the hypervisor */
737 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
738 			return H_P3;
739 		vcpu->arch.ciabr  = value1;
740 		return H_SUCCESS;
741 	case H_SET_MODE_RESOURCE_SET_DAWR:
742 		if (!kvmppc_power8_compatible(vcpu))
743 			return H_P2;
744 		if (mflags)
745 			return H_UNSUPPORTED_FLAG_START;
746 		if (value2 & DABRX_HYP)
747 			return H_P4;
748 		vcpu->arch.dawr  = value1;
749 		vcpu->arch.dawrx = value2;
750 		return H_SUCCESS;
751 	default:
752 		return H_TOO_HARD;
753 	}
754 }
755 
756 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
757 {
758 	struct kvmppc_vcore *vcore = target->arch.vcore;
759 
760 	/*
761 	 * We expect to have been called by the real mode handler
762 	 * (kvmppc_rm_h_confer()) which would have directly returned
763 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
764 	 * have useful work to do and should not confer) so we don't
765 	 * recheck that here.
766 	 */
767 
768 	spin_lock(&vcore->lock);
769 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
770 	    vcore->vcore_state != VCORE_INACTIVE &&
771 	    vcore->runner)
772 		target = vcore->runner;
773 	spin_unlock(&vcore->lock);
774 
775 	return kvm_vcpu_yield_to(target);
776 }
777 
778 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
779 {
780 	int yield_count = 0;
781 	struct lppaca *lppaca;
782 
783 	spin_lock(&vcpu->arch.vpa_update_lock);
784 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
785 	if (lppaca)
786 		yield_count = be32_to_cpu(lppaca->yield_count);
787 	spin_unlock(&vcpu->arch.vpa_update_lock);
788 	return yield_count;
789 }
790 
791 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
792 {
793 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
794 	unsigned long target, ret = H_SUCCESS;
795 	int yield_count;
796 	struct kvm_vcpu *tvcpu;
797 	int idx, rc;
798 
799 	if (req <= MAX_HCALL_OPCODE &&
800 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
801 		return RESUME_HOST;
802 
803 	switch (req) {
804 	case H_CEDE:
805 		break;
806 	case H_PROD:
807 		target = kvmppc_get_gpr(vcpu, 4);
808 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
809 		if (!tvcpu) {
810 			ret = H_PARAMETER;
811 			break;
812 		}
813 		tvcpu->arch.prodded = 1;
814 		smp_mb();
815 		if (tvcpu->arch.ceded)
816 			kvmppc_fast_vcpu_kick_hv(tvcpu);
817 		break;
818 	case H_CONFER:
819 		target = kvmppc_get_gpr(vcpu, 4);
820 		if (target == -1)
821 			break;
822 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
823 		if (!tvcpu) {
824 			ret = H_PARAMETER;
825 			break;
826 		}
827 		yield_count = kvmppc_get_gpr(vcpu, 5);
828 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
829 			break;
830 		kvm_arch_vcpu_yield_to(tvcpu);
831 		break;
832 	case H_REGISTER_VPA:
833 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
834 					kvmppc_get_gpr(vcpu, 5),
835 					kvmppc_get_gpr(vcpu, 6));
836 		break;
837 	case H_RTAS:
838 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
839 			return RESUME_HOST;
840 
841 		idx = srcu_read_lock(&vcpu->kvm->srcu);
842 		rc = kvmppc_rtas_hcall(vcpu);
843 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
844 
845 		if (rc == -ENOENT)
846 			return RESUME_HOST;
847 		else if (rc == 0)
848 			break;
849 
850 		/* Send the error out to userspace via KVM_RUN */
851 		return rc;
852 	case H_LOGICAL_CI_LOAD:
853 		ret = kvmppc_h_logical_ci_load(vcpu);
854 		if (ret == H_TOO_HARD)
855 			return RESUME_HOST;
856 		break;
857 	case H_LOGICAL_CI_STORE:
858 		ret = kvmppc_h_logical_ci_store(vcpu);
859 		if (ret == H_TOO_HARD)
860 			return RESUME_HOST;
861 		break;
862 	case H_SET_MODE:
863 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
864 					kvmppc_get_gpr(vcpu, 5),
865 					kvmppc_get_gpr(vcpu, 6),
866 					kvmppc_get_gpr(vcpu, 7));
867 		if (ret == H_TOO_HARD)
868 			return RESUME_HOST;
869 		break;
870 	case H_XIRR:
871 	case H_CPPR:
872 	case H_EOI:
873 	case H_IPI:
874 	case H_IPOLL:
875 	case H_XIRR_X:
876 		if (kvmppc_xics_enabled(vcpu)) {
877 			if (xive_enabled()) {
878 				ret = H_NOT_AVAILABLE;
879 				return RESUME_GUEST;
880 			}
881 			ret = kvmppc_xics_hcall(vcpu, req);
882 			break;
883 		}
884 		return RESUME_HOST;
885 	case H_PUT_TCE:
886 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
887 						kvmppc_get_gpr(vcpu, 5),
888 						kvmppc_get_gpr(vcpu, 6));
889 		if (ret == H_TOO_HARD)
890 			return RESUME_HOST;
891 		break;
892 	case H_PUT_TCE_INDIRECT:
893 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
894 						kvmppc_get_gpr(vcpu, 5),
895 						kvmppc_get_gpr(vcpu, 6),
896 						kvmppc_get_gpr(vcpu, 7));
897 		if (ret == H_TOO_HARD)
898 			return RESUME_HOST;
899 		break;
900 	case H_STUFF_TCE:
901 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
902 						kvmppc_get_gpr(vcpu, 5),
903 						kvmppc_get_gpr(vcpu, 6),
904 						kvmppc_get_gpr(vcpu, 7));
905 		if (ret == H_TOO_HARD)
906 			return RESUME_HOST;
907 		break;
908 	default:
909 		return RESUME_HOST;
910 	}
911 	kvmppc_set_gpr(vcpu, 3, ret);
912 	vcpu->arch.hcall_needed = 0;
913 	return RESUME_GUEST;
914 }
915 
916 static int kvmppc_hcall_impl_hv(unsigned long cmd)
917 {
918 	switch (cmd) {
919 	case H_CEDE:
920 	case H_PROD:
921 	case H_CONFER:
922 	case H_REGISTER_VPA:
923 	case H_SET_MODE:
924 	case H_LOGICAL_CI_LOAD:
925 	case H_LOGICAL_CI_STORE:
926 #ifdef CONFIG_KVM_XICS
927 	case H_XIRR:
928 	case H_CPPR:
929 	case H_EOI:
930 	case H_IPI:
931 	case H_IPOLL:
932 	case H_XIRR_X:
933 #endif
934 		return 1;
935 	}
936 
937 	/* See if it's in the real-mode table */
938 	return kvmppc_hcall_impl_hv_realmode(cmd);
939 }
940 
941 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
942 					struct kvm_vcpu *vcpu)
943 {
944 	u32 last_inst;
945 
946 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
947 					EMULATE_DONE) {
948 		/*
949 		 * Fetch failed, so return to guest and
950 		 * try executing it again.
951 		 */
952 		return RESUME_GUEST;
953 	}
954 
955 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
956 		run->exit_reason = KVM_EXIT_DEBUG;
957 		run->debug.arch.address = kvmppc_get_pc(vcpu);
958 		return RESUME_HOST;
959 	} else {
960 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
961 		return RESUME_GUEST;
962 	}
963 }
964 
965 static void do_nothing(void *x)
966 {
967 }
968 
969 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
970 {
971 	int thr, cpu, pcpu, nthreads;
972 	struct kvm_vcpu *v;
973 	unsigned long dpdes;
974 
975 	nthreads = vcpu->kvm->arch.emul_smt_mode;
976 	dpdes = 0;
977 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
978 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
979 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
980 		if (!v)
981 			continue;
982 		/*
983 		 * If the vcpu is currently running on a physical cpu thread,
984 		 * interrupt it in order to pull it out of the guest briefly,
985 		 * which will update its vcore->dpdes value.
986 		 */
987 		pcpu = READ_ONCE(v->cpu);
988 		if (pcpu >= 0)
989 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
990 		if (kvmppc_doorbell_pending(v))
991 			dpdes |= 1 << thr;
992 	}
993 	return dpdes;
994 }
995 
996 /*
997  * On POWER9, emulate doorbell-related instructions in order to
998  * give the guest the illusion of running on a multi-threaded core.
999  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1000  * and mfspr DPDES.
1001  */
1002 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1003 {
1004 	u32 inst, rb, thr;
1005 	unsigned long arg;
1006 	struct kvm *kvm = vcpu->kvm;
1007 	struct kvm_vcpu *tvcpu;
1008 
1009 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1010 		return RESUME_GUEST;
1011 	if (get_op(inst) != 31)
1012 		return EMULATE_FAIL;
1013 	rb = get_rb(inst);
1014 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1015 	switch (get_xop(inst)) {
1016 	case OP_31_XOP_MSGSNDP:
1017 		arg = kvmppc_get_gpr(vcpu, rb);
1018 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1019 			break;
1020 		arg &= 0x3f;
1021 		if (arg >= kvm->arch.emul_smt_mode)
1022 			break;
1023 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1024 		if (!tvcpu)
1025 			break;
1026 		if (!tvcpu->arch.doorbell_request) {
1027 			tvcpu->arch.doorbell_request = 1;
1028 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1029 		}
1030 		break;
1031 	case OP_31_XOP_MSGCLRP:
1032 		arg = kvmppc_get_gpr(vcpu, rb);
1033 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1034 			break;
1035 		vcpu->arch.vcore->dpdes = 0;
1036 		vcpu->arch.doorbell_request = 0;
1037 		break;
1038 	case OP_31_XOP_MFSPR:
1039 		switch (get_sprn(inst)) {
1040 		case SPRN_TIR:
1041 			arg = thr;
1042 			break;
1043 		case SPRN_DPDES:
1044 			arg = kvmppc_read_dpdes(vcpu);
1045 			break;
1046 		default:
1047 			return EMULATE_FAIL;
1048 		}
1049 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1050 		break;
1051 	default:
1052 		return EMULATE_FAIL;
1053 	}
1054 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1055 	return RESUME_GUEST;
1056 }
1057 
1058 /* Called with vcpu->arch.vcore->lock held */
1059 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1060 				 struct task_struct *tsk)
1061 {
1062 	int r = RESUME_HOST;
1063 
1064 	vcpu->stat.sum_exits++;
1065 
1066 	/*
1067 	 * This can happen if an interrupt occurs in the last stages
1068 	 * of guest entry or the first stages of guest exit (i.e. after
1069 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1070 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1071 	 * That can happen due to a bug, or due to a machine check
1072 	 * occurring at just the wrong time.
1073 	 */
1074 	if (vcpu->arch.shregs.msr & MSR_HV) {
1075 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1076 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1077 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1078 			vcpu->arch.shregs.msr);
1079 		kvmppc_dump_regs(vcpu);
1080 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1081 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1082 		return RESUME_HOST;
1083 	}
1084 	run->exit_reason = KVM_EXIT_UNKNOWN;
1085 	run->ready_for_interrupt_injection = 1;
1086 	switch (vcpu->arch.trap) {
1087 	/* We're good on these - the host merely wanted to get our attention */
1088 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1089 		vcpu->stat.dec_exits++;
1090 		r = RESUME_GUEST;
1091 		break;
1092 	case BOOK3S_INTERRUPT_EXTERNAL:
1093 	case BOOK3S_INTERRUPT_H_DOORBELL:
1094 	case BOOK3S_INTERRUPT_H_VIRT:
1095 		vcpu->stat.ext_intr_exits++;
1096 		r = RESUME_GUEST;
1097 		break;
1098 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1099 	case BOOK3S_INTERRUPT_HMI:
1100 	case BOOK3S_INTERRUPT_PERFMON:
1101 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1102 		r = RESUME_GUEST;
1103 		break;
1104 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1105 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1106 		run->exit_reason = KVM_EXIT_NMI;
1107 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1108 		/* Clear out the old NMI status from run->flags */
1109 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1110 		/* Now set the NMI status */
1111 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1112 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1113 		else
1114 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1115 
1116 		r = RESUME_HOST;
1117 		/* Print the MCE event to host console. */
1118 		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1119 		break;
1120 	case BOOK3S_INTERRUPT_PROGRAM:
1121 	{
1122 		ulong flags;
1123 		/*
1124 		 * Normally program interrupts are delivered directly
1125 		 * to the guest by the hardware, but we can get here
1126 		 * as a result of a hypervisor emulation interrupt
1127 		 * (e40) getting turned into a 700 by BML RTAS.
1128 		 */
1129 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1130 		kvmppc_core_queue_program(vcpu, flags);
1131 		r = RESUME_GUEST;
1132 		break;
1133 	}
1134 	case BOOK3S_INTERRUPT_SYSCALL:
1135 	{
1136 		/* hcall - punt to userspace */
1137 		int i;
1138 
1139 		/* hypercall with MSR_PR has already been handled in rmode,
1140 		 * and never reaches here.
1141 		 */
1142 
1143 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1144 		for (i = 0; i < 9; ++i)
1145 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1146 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1147 		vcpu->arch.hcall_needed = 1;
1148 		r = RESUME_HOST;
1149 		break;
1150 	}
1151 	/*
1152 	 * We get these next two if the guest accesses a page which it thinks
1153 	 * it has mapped but which is not actually present, either because
1154 	 * it is for an emulated I/O device or because the corresonding
1155 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1156 	 * have been handled already.
1157 	 */
1158 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1159 		r = RESUME_PAGE_FAULT;
1160 		break;
1161 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1162 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1163 		vcpu->arch.fault_dsisr = 0;
1164 		r = RESUME_PAGE_FAULT;
1165 		break;
1166 	/*
1167 	 * This occurs if the guest executes an illegal instruction.
1168 	 * If the guest debug is disabled, generate a program interrupt
1169 	 * to the guest. If guest debug is enabled, we need to check
1170 	 * whether the instruction is a software breakpoint instruction.
1171 	 * Accordingly return to Guest or Host.
1172 	 */
1173 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1174 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1175 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1176 				swab32(vcpu->arch.emul_inst) :
1177 				vcpu->arch.emul_inst;
1178 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1179 			/* Need vcore unlocked to call kvmppc_get_last_inst */
1180 			spin_unlock(&vcpu->arch.vcore->lock);
1181 			r = kvmppc_emulate_debug_inst(run, vcpu);
1182 			spin_lock(&vcpu->arch.vcore->lock);
1183 		} else {
1184 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1185 			r = RESUME_GUEST;
1186 		}
1187 		break;
1188 	/*
1189 	 * This occurs if the guest (kernel or userspace), does something that
1190 	 * is prohibited by HFSCR.
1191 	 * On POWER9, this could be a doorbell instruction that we need
1192 	 * to emulate.
1193 	 * Otherwise, we just generate a program interrupt to the guest.
1194 	 */
1195 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1196 		r = EMULATE_FAIL;
1197 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1198 		    cpu_has_feature(CPU_FTR_ARCH_300)) {
1199 			/* Need vcore unlocked to call kvmppc_get_last_inst */
1200 			spin_unlock(&vcpu->arch.vcore->lock);
1201 			r = kvmppc_emulate_doorbell_instr(vcpu);
1202 			spin_lock(&vcpu->arch.vcore->lock);
1203 		}
1204 		if (r == EMULATE_FAIL) {
1205 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1206 			r = RESUME_GUEST;
1207 		}
1208 		break;
1209 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1210 		r = RESUME_PASSTHROUGH;
1211 		break;
1212 	default:
1213 		kvmppc_dump_regs(vcpu);
1214 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1215 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1216 			vcpu->arch.shregs.msr);
1217 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1218 		r = RESUME_HOST;
1219 		break;
1220 	}
1221 
1222 	return r;
1223 }
1224 
1225 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1226 					    struct kvm_sregs *sregs)
1227 {
1228 	int i;
1229 
1230 	memset(sregs, 0, sizeof(struct kvm_sregs));
1231 	sregs->pvr = vcpu->arch.pvr;
1232 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1233 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1234 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1235 	}
1236 
1237 	return 0;
1238 }
1239 
1240 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1241 					    struct kvm_sregs *sregs)
1242 {
1243 	int i, j;
1244 
1245 	/* Only accept the same PVR as the host's, since we can't spoof it */
1246 	if (sregs->pvr != vcpu->arch.pvr)
1247 		return -EINVAL;
1248 
1249 	j = 0;
1250 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1251 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1252 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1253 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1254 			++j;
1255 		}
1256 	}
1257 	vcpu->arch.slb_max = j;
1258 
1259 	return 0;
1260 }
1261 
1262 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1263 		bool preserve_top32)
1264 {
1265 	struct kvm *kvm = vcpu->kvm;
1266 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1267 	u64 mask;
1268 
1269 	mutex_lock(&kvm->lock);
1270 	spin_lock(&vc->lock);
1271 	/*
1272 	 * If ILE (interrupt little-endian) has changed, update the
1273 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1274 	 */
1275 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1276 		struct kvm_vcpu *vcpu;
1277 		int i;
1278 
1279 		kvm_for_each_vcpu(i, vcpu, kvm) {
1280 			if (vcpu->arch.vcore != vc)
1281 				continue;
1282 			if (new_lpcr & LPCR_ILE)
1283 				vcpu->arch.intr_msr |= MSR_LE;
1284 			else
1285 				vcpu->arch.intr_msr &= ~MSR_LE;
1286 		}
1287 	}
1288 
1289 	/*
1290 	 * Userspace can only modify DPFD (default prefetch depth),
1291 	 * ILE (interrupt little-endian) and TC (translation control).
1292 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1293 	 */
1294 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1295 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1296 		mask |= LPCR_AIL;
1297 	/*
1298 	 * On POWER9, allow userspace to enable large decrementer for the
1299 	 * guest, whether or not the host has it enabled.
1300 	 */
1301 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1302 		mask |= LPCR_LD;
1303 
1304 	/* Broken 32-bit version of LPCR must not clear top bits */
1305 	if (preserve_top32)
1306 		mask &= 0xFFFFFFFF;
1307 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1308 	spin_unlock(&vc->lock);
1309 	mutex_unlock(&kvm->lock);
1310 }
1311 
1312 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1313 				 union kvmppc_one_reg *val)
1314 {
1315 	int r = 0;
1316 	long int i;
1317 
1318 	switch (id) {
1319 	case KVM_REG_PPC_DEBUG_INST:
1320 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1321 		break;
1322 	case KVM_REG_PPC_HIOR:
1323 		*val = get_reg_val(id, 0);
1324 		break;
1325 	case KVM_REG_PPC_DABR:
1326 		*val = get_reg_val(id, vcpu->arch.dabr);
1327 		break;
1328 	case KVM_REG_PPC_DABRX:
1329 		*val = get_reg_val(id, vcpu->arch.dabrx);
1330 		break;
1331 	case KVM_REG_PPC_DSCR:
1332 		*val = get_reg_val(id, vcpu->arch.dscr);
1333 		break;
1334 	case KVM_REG_PPC_PURR:
1335 		*val = get_reg_val(id, vcpu->arch.purr);
1336 		break;
1337 	case KVM_REG_PPC_SPURR:
1338 		*val = get_reg_val(id, vcpu->arch.spurr);
1339 		break;
1340 	case KVM_REG_PPC_AMR:
1341 		*val = get_reg_val(id, vcpu->arch.amr);
1342 		break;
1343 	case KVM_REG_PPC_UAMOR:
1344 		*val = get_reg_val(id, vcpu->arch.uamor);
1345 		break;
1346 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1347 		i = id - KVM_REG_PPC_MMCR0;
1348 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1349 		break;
1350 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1351 		i = id - KVM_REG_PPC_PMC1;
1352 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1353 		break;
1354 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1355 		i = id - KVM_REG_PPC_SPMC1;
1356 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1357 		break;
1358 	case KVM_REG_PPC_SIAR:
1359 		*val = get_reg_val(id, vcpu->arch.siar);
1360 		break;
1361 	case KVM_REG_PPC_SDAR:
1362 		*val = get_reg_val(id, vcpu->arch.sdar);
1363 		break;
1364 	case KVM_REG_PPC_SIER:
1365 		*val = get_reg_val(id, vcpu->arch.sier);
1366 		break;
1367 	case KVM_REG_PPC_IAMR:
1368 		*val = get_reg_val(id, vcpu->arch.iamr);
1369 		break;
1370 	case KVM_REG_PPC_PSPB:
1371 		*val = get_reg_val(id, vcpu->arch.pspb);
1372 		break;
1373 	case KVM_REG_PPC_DPDES:
1374 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1375 		break;
1376 	case KVM_REG_PPC_VTB:
1377 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1378 		break;
1379 	case KVM_REG_PPC_DAWR:
1380 		*val = get_reg_val(id, vcpu->arch.dawr);
1381 		break;
1382 	case KVM_REG_PPC_DAWRX:
1383 		*val = get_reg_val(id, vcpu->arch.dawrx);
1384 		break;
1385 	case KVM_REG_PPC_CIABR:
1386 		*val = get_reg_val(id, vcpu->arch.ciabr);
1387 		break;
1388 	case KVM_REG_PPC_CSIGR:
1389 		*val = get_reg_val(id, vcpu->arch.csigr);
1390 		break;
1391 	case KVM_REG_PPC_TACR:
1392 		*val = get_reg_val(id, vcpu->arch.tacr);
1393 		break;
1394 	case KVM_REG_PPC_TCSCR:
1395 		*val = get_reg_val(id, vcpu->arch.tcscr);
1396 		break;
1397 	case KVM_REG_PPC_PID:
1398 		*val = get_reg_val(id, vcpu->arch.pid);
1399 		break;
1400 	case KVM_REG_PPC_ACOP:
1401 		*val = get_reg_val(id, vcpu->arch.acop);
1402 		break;
1403 	case KVM_REG_PPC_WORT:
1404 		*val = get_reg_val(id, vcpu->arch.wort);
1405 		break;
1406 	case KVM_REG_PPC_TIDR:
1407 		*val = get_reg_val(id, vcpu->arch.tid);
1408 		break;
1409 	case KVM_REG_PPC_PSSCR:
1410 		*val = get_reg_val(id, vcpu->arch.psscr);
1411 		break;
1412 	case KVM_REG_PPC_VPA_ADDR:
1413 		spin_lock(&vcpu->arch.vpa_update_lock);
1414 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1415 		spin_unlock(&vcpu->arch.vpa_update_lock);
1416 		break;
1417 	case KVM_REG_PPC_VPA_SLB:
1418 		spin_lock(&vcpu->arch.vpa_update_lock);
1419 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1420 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1421 		spin_unlock(&vcpu->arch.vpa_update_lock);
1422 		break;
1423 	case KVM_REG_PPC_VPA_DTL:
1424 		spin_lock(&vcpu->arch.vpa_update_lock);
1425 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1426 		val->vpaval.length = vcpu->arch.dtl.len;
1427 		spin_unlock(&vcpu->arch.vpa_update_lock);
1428 		break;
1429 	case KVM_REG_PPC_TB_OFFSET:
1430 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1431 		break;
1432 	case KVM_REG_PPC_LPCR:
1433 	case KVM_REG_PPC_LPCR_64:
1434 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1435 		break;
1436 	case KVM_REG_PPC_PPR:
1437 		*val = get_reg_val(id, vcpu->arch.ppr);
1438 		break;
1439 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1440 	case KVM_REG_PPC_TFHAR:
1441 		*val = get_reg_val(id, vcpu->arch.tfhar);
1442 		break;
1443 	case KVM_REG_PPC_TFIAR:
1444 		*val = get_reg_val(id, vcpu->arch.tfiar);
1445 		break;
1446 	case KVM_REG_PPC_TEXASR:
1447 		*val = get_reg_val(id, vcpu->arch.texasr);
1448 		break;
1449 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1450 		i = id - KVM_REG_PPC_TM_GPR0;
1451 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1452 		break;
1453 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1454 	{
1455 		int j;
1456 		i = id - KVM_REG_PPC_TM_VSR0;
1457 		if (i < 32)
1458 			for (j = 0; j < TS_FPRWIDTH; j++)
1459 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1460 		else {
1461 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1462 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1463 			else
1464 				r = -ENXIO;
1465 		}
1466 		break;
1467 	}
1468 	case KVM_REG_PPC_TM_CR:
1469 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1470 		break;
1471 	case KVM_REG_PPC_TM_XER:
1472 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1473 		break;
1474 	case KVM_REG_PPC_TM_LR:
1475 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1476 		break;
1477 	case KVM_REG_PPC_TM_CTR:
1478 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1479 		break;
1480 	case KVM_REG_PPC_TM_FPSCR:
1481 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1482 		break;
1483 	case KVM_REG_PPC_TM_AMR:
1484 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1485 		break;
1486 	case KVM_REG_PPC_TM_PPR:
1487 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1488 		break;
1489 	case KVM_REG_PPC_TM_VRSAVE:
1490 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1491 		break;
1492 	case KVM_REG_PPC_TM_VSCR:
1493 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1494 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1495 		else
1496 			r = -ENXIO;
1497 		break;
1498 	case KVM_REG_PPC_TM_DSCR:
1499 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1500 		break;
1501 	case KVM_REG_PPC_TM_TAR:
1502 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1503 		break;
1504 #endif
1505 	case KVM_REG_PPC_ARCH_COMPAT:
1506 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1507 		break;
1508 	case KVM_REG_PPC_DEC_EXPIRY:
1509 		*val = get_reg_val(id, vcpu->arch.dec_expires +
1510 				   vcpu->arch.vcore->tb_offset);
1511 		break;
1512 	default:
1513 		r = -EINVAL;
1514 		break;
1515 	}
1516 
1517 	return r;
1518 }
1519 
1520 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1521 				 union kvmppc_one_reg *val)
1522 {
1523 	int r = 0;
1524 	long int i;
1525 	unsigned long addr, len;
1526 
1527 	switch (id) {
1528 	case KVM_REG_PPC_HIOR:
1529 		/* Only allow this to be set to zero */
1530 		if (set_reg_val(id, *val))
1531 			r = -EINVAL;
1532 		break;
1533 	case KVM_REG_PPC_DABR:
1534 		vcpu->arch.dabr = set_reg_val(id, *val);
1535 		break;
1536 	case KVM_REG_PPC_DABRX:
1537 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1538 		break;
1539 	case KVM_REG_PPC_DSCR:
1540 		vcpu->arch.dscr = set_reg_val(id, *val);
1541 		break;
1542 	case KVM_REG_PPC_PURR:
1543 		vcpu->arch.purr = set_reg_val(id, *val);
1544 		break;
1545 	case KVM_REG_PPC_SPURR:
1546 		vcpu->arch.spurr = set_reg_val(id, *val);
1547 		break;
1548 	case KVM_REG_PPC_AMR:
1549 		vcpu->arch.amr = set_reg_val(id, *val);
1550 		break;
1551 	case KVM_REG_PPC_UAMOR:
1552 		vcpu->arch.uamor = set_reg_val(id, *val);
1553 		break;
1554 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1555 		i = id - KVM_REG_PPC_MMCR0;
1556 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1557 		break;
1558 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1559 		i = id - KVM_REG_PPC_PMC1;
1560 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1561 		break;
1562 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1563 		i = id - KVM_REG_PPC_SPMC1;
1564 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1565 		break;
1566 	case KVM_REG_PPC_SIAR:
1567 		vcpu->arch.siar = set_reg_val(id, *val);
1568 		break;
1569 	case KVM_REG_PPC_SDAR:
1570 		vcpu->arch.sdar = set_reg_val(id, *val);
1571 		break;
1572 	case KVM_REG_PPC_SIER:
1573 		vcpu->arch.sier = set_reg_val(id, *val);
1574 		break;
1575 	case KVM_REG_PPC_IAMR:
1576 		vcpu->arch.iamr = set_reg_val(id, *val);
1577 		break;
1578 	case KVM_REG_PPC_PSPB:
1579 		vcpu->arch.pspb = set_reg_val(id, *val);
1580 		break;
1581 	case KVM_REG_PPC_DPDES:
1582 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1583 		break;
1584 	case KVM_REG_PPC_VTB:
1585 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1586 		break;
1587 	case KVM_REG_PPC_DAWR:
1588 		vcpu->arch.dawr = set_reg_val(id, *val);
1589 		break;
1590 	case KVM_REG_PPC_DAWRX:
1591 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1592 		break;
1593 	case KVM_REG_PPC_CIABR:
1594 		vcpu->arch.ciabr = set_reg_val(id, *val);
1595 		/* Don't allow setting breakpoints in hypervisor code */
1596 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1597 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1598 		break;
1599 	case KVM_REG_PPC_CSIGR:
1600 		vcpu->arch.csigr = set_reg_val(id, *val);
1601 		break;
1602 	case KVM_REG_PPC_TACR:
1603 		vcpu->arch.tacr = set_reg_val(id, *val);
1604 		break;
1605 	case KVM_REG_PPC_TCSCR:
1606 		vcpu->arch.tcscr = set_reg_val(id, *val);
1607 		break;
1608 	case KVM_REG_PPC_PID:
1609 		vcpu->arch.pid = set_reg_val(id, *val);
1610 		break;
1611 	case KVM_REG_PPC_ACOP:
1612 		vcpu->arch.acop = set_reg_val(id, *val);
1613 		break;
1614 	case KVM_REG_PPC_WORT:
1615 		vcpu->arch.wort = set_reg_val(id, *val);
1616 		break;
1617 	case KVM_REG_PPC_TIDR:
1618 		vcpu->arch.tid = set_reg_val(id, *val);
1619 		break;
1620 	case KVM_REG_PPC_PSSCR:
1621 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1622 		break;
1623 	case KVM_REG_PPC_VPA_ADDR:
1624 		addr = set_reg_val(id, *val);
1625 		r = -EINVAL;
1626 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1627 			      vcpu->arch.dtl.next_gpa))
1628 			break;
1629 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1630 		break;
1631 	case KVM_REG_PPC_VPA_SLB:
1632 		addr = val->vpaval.addr;
1633 		len = val->vpaval.length;
1634 		r = -EINVAL;
1635 		if (addr && !vcpu->arch.vpa.next_gpa)
1636 			break;
1637 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1638 		break;
1639 	case KVM_REG_PPC_VPA_DTL:
1640 		addr = val->vpaval.addr;
1641 		len = val->vpaval.length;
1642 		r = -EINVAL;
1643 		if (addr && (len < sizeof(struct dtl_entry) ||
1644 			     !vcpu->arch.vpa.next_gpa))
1645 			break;
1646 		len -= len % sizeof(struct dtl_entry);
1647 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1648 		break;
1649 	case KVM_REG_PPC_TB_OFFSET:
1650 		/*
1651 		 * POWER9 DD1 has an erratum where writing TBU40 causes
1652 		 * the timebase to lose ticks.  So we don't let the
1653 		 * timebase offset be changed on P9 DD1.  (It is
1654 		 * initialized to zero.)
1655 		 */
1656 		if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1657 			break;
1658 		/* round up to multiple of 2^24 */
1659 		vcpu->arch.vcore->tb_offset =
1660 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1661 		break;
1662 	case KVM_REG_PPC_LPCR:
1663 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1664 		break;
1665 	case KVM_REG_PPC_LPCR_64:
1666 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1667 		break;
1668 	case KVM_REG_PPC_PPR:
1669 		vcpu->arch.ppr = set_reg_val(id, *val);
1670 		break;
1671 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1672 	case KVM_REG_PPC_TFHAR:
1673 		vcpu->arch.tfhar = set_reg_val(id, *val);
1674 		break;
1675 	case KVM_REG_PPC_TFIAR:
1676 		vcpu->arch.tfiar = set_reg_val(id, *val);
1677 		break;
1678 	case KVM_REG_PPC_TEXASR:
1679 		vcpu->arch.texasr = set_reg_val(id, *val);
1680 		break;
1681 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1682 		i = id - KVM_REG_PPC_TM_GPR0;
1683 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1684 		break;
1685 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1686 	{
1687 		int j;
1688 		i = id - KVM_REG_PPC_TM_VSR0;
1689 		if (i < 32)
1690 			for (j = 0; j < TS_FPRWIDTH; j++)
1691 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1692 		else
1693 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1694 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1695 			else
1696 				r = -ENXIO;
1697 		break;
1698 	}
1699 	case KVM_REG_PPC_TM_CR:
1700 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1701 		break;
1702 	case KVM_REG_PPC_TM_XER:
1703 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1704 		break;
1705 	case KVM_REG_PPC_TM_LR:
1706 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1707 		break;
1708 	case KVM_REG_PPC_TM_CTR:
1709 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1710 		break;
1711 	case KVM_REG_PPC_TM_FPSCR:
1712 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1713 		break;
1714 	case KVM_REG_PPC_TM_AMR:
1715 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1716 		break;
1717 	case KVM_REG_PPC_TM_PPR:
1718 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1719 		break;
1720 	case KVM_REG_PPC_TM_VRSAVE:
1721 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1722 		break;
1723 	case KVM_REG_PPC_TM_VSCR:
1724 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1725 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1726 		else
1727 			r = - ENXIO;
1728 		break;
1729 	case KVM_REG_PPC_TM_DSCR:
1730 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1731 		break;
1732 	case KVM_REG_PPC_TM_TAR:
1733 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1734 		break;
1735 #endif
1736 	case KVM_REG_PPC_ARCH_COMPAT:
1737 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1738 		break;
1739 	case KVM_REG_PPC_DEC_EXPIRY:
1740 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
1741 			vcpu->arch.vcore->tb_offset;
1742 		break;
1743 	default:
1744 		r = -EINVAL;
1745 		break;
1746 	}
1747 
1748 	return r;
1749 }
1750 
1751 /*
1752  * On POWER9, threads are independent and can be in different partitions.
1753  * Therefore we consider each thread to be a subcore.
1754  * There is a restriction that all threads have to be in the same
1755  * MMU mode (radix or HPT), unfortunately, but since we only support
1756  * HPT guests on a HPT host so far, that isn't an impediment yet.
1757  */
1758 static int threads_per_vcore(struct kvm *kvm)
1759 {
1760 	if (kvm->arch.threads_indep)
1761 		return 1;
1762 	return threads_per_subcore;
1763 }
1764 
1765 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1766 {
1767 	struct kvmppc_vcore *vcore;
1768 
1769 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1770 
1771 	if (vcore == NULL)
1772 		return NULL;
1773 
1774 	spin_lock_init(&vcore->lock);
1775 	spin_lock_init(&vcore->stoltb_lock);
1776 	init_swait_queue_head(&vcore->wq);
1777 	vcore->preempt_tb = TB_NIL;
1778 	vcore->lpcr = kvm->arch.lpcr;
1779 	vcore->first_vcpuid = core * kvm->arch.smt_mode;
1780 	vcore->kvm = kvm;
1781 	INIT_LIST_HEAD(&vcore->preempt_list);
1782 
1783 	return vcore;
1784 }
1785 
1786 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1787 static struct debugfs_timings_element {
1788 	const char *name;
1789 	size_t offset;
1790 } timings[] = {
1791 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
1792 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
1793 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
1794 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
1795 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
1796 };
1797 
1798 #define N_TIMINGS	(ARRAY_SIZE(timings))
1799 
1800 struct debugfs_timings_state {
1801 	struct kvm_vcpu	*vcpu;
1802 	unsigned int	buflen;
1803 	char		buf[N_TIMINGS * 100];
1804 };
1805 
1806 static int debugfs_timings_open(struct inode *inode, struct file *file)
1807 {
1808 	struct kvm_vcpu *vcpu = inode->i_private;
1809 	struct debugfs_timings_state *p;
1810 
1811 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1812 	if (!p)
1813 		return -ENOMEM;
1814 
1815 	kvm_get_kvm(vcpu->kvm);
1816 	p->vcpu = vcpu;
1817 	file->private_data = p;
1818 
1819 	return nonseekable_open(inode, file);
1820 }
1821 
1822 static int debugfs_timings_release(struct inode *inode, struct file *file)
1823 {
1824 	struct debugfs_timings_state *p = file->private_data;
1825 
1826 	kvm_put_kvm(p->vcpu->kvm);
1827 	kfree(p);
1828 	return 0;
1829 }
1830 
1831 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1832 				    size_t len, loff_t *ppos)
1833 {
1834 	struct debugfs_timings_state *p = file->private_data;
1835 	struct kvm_vcpu *vcpu = p->vcpu;
1836 	char *s, *buf_end;
1837 	struct kvmhv_tb_accumulator tb;
1838 	u64 count;
1839 	loff_t pos;
1840 	ssize_t n;
1841 	int i, loops;
1842 	bool ok;
1843 
1844 	if (!p->buflen) {
1845 		s = p->buf;
1846 		buf_end = s + sizeof(p->buf);
1847 		for (i = 0; i < N_TIMINGS; ++i) {
1848 			struct kvmhv_tb_accumulator *acc;
1849 
1850 			acc = (struct kvmhv_tb_accumulator *)
1851 				((unsigned long)vcpu + timings[i].offset);
1852 			ok = false;
1853 			for (loops = 0; loops < 1000; ++loops) {
1854 				count = acc->seqcount;
1855 				if (!(count & 1)) {
1856 					smp_rmb();
1857 					tb = *acc;
1858 					smp_rmb();
1859 					if (count == acc->seqcount) {
1860 						ok = true;
1861 						break;
1862 					}
1863 				}
1864 				udelay(1);
1865 			}
1866 			if (!ok)
1867 				snprintf(s, buf_end - s, "%s: stuck\n",
1868 					timings[i].name);
1869 			else
1870 				snprintf(s, buf_end - s,
1871 					"%s: %llu %llu %llu %llu\n",
1872 					timings[i].name, count / 2,
1873 					tb_to_ns(tb.tb_total),
1874 					tb_to_ns(tb.tb_min),
1875 					tb_to_ns(tb.tb_max));
1876 			s += strlen(s);
1877 		}
1878 		p->buflen = s - p->buf;
1879 	}
1880 
1881 	pos = *ppos;
1882 	if (pos >= p->buflen)
1883 		return 0;
1884 	if (len > p->buflen - pos)
1885 		len = p->buflen - pos;
1886 	n = copy_to_user(buf, p->buf + pos, len);
1887 	if (n) {
1888 		if (n == len)
1889 			return -EFAULT;
1890 		len -= n;
1891 	}
1892 	*ppos = pos + len;
1893 	return len;
1894 }
1895 
1896 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1897 				     size_t len, loff_t *ppos)
1898 {
1899 	return -EACCES;
1900 }
1901 
1902 static const struct file_operations debugfs_timings_ops = {
1903 	.owner	 = THIS_MODULE,
1904 	.open	 = debugfs_timings_open,
1905 	.release = debugfs_timings_release,
1906 	.read	 = debugfs_timings_read,
1907 	.write	 = debugfs_timings_write,
1908 	.llseek	 = generic_file_llseek,
1909 };
1910 
1911 /* Create a debugfs directory for the vcpu */
1912 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1913 {
1914 	char buf[16];
1915 	struct kvm *kvm = vcpu->kvm;
1916 
1917 	snprintf(buf, sizeof(buf), "vcpu%u", id);
1918 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1919 		return;
1920 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1921 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1922 		return;
1923 	vcpu->arch.debugfs_timings =
1924 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1925 				    vcpu, &debugfs_timings_ops);
1926 }
1927 
1928 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1929 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1930 {
1931 }
1932 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1933 
1934 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1935 						   unsigned int id)
1936 {
1937 	struct kvm_vcpu *vcpu;
1938 	int err;
1939 	int core;
1940 	struct kvmppc_vcore *vcore;
1941 
1942 	err = -ENOMEM;
1943 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1944 	if (!vcpu)
1945 		goto out;
1946 
1947 	err = kvm_vcpu_init(vcpu, kvm, id);
1948 	if (err)
1949 		goto free_vcpu;
1950 
1951 	vcpu->arch.shared = &vcpu->arch.shregs;
1952 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1953 	/*
1954 	 * The shared struct is never shared on HV,
1955 	 * so we can always use host endianness
1956 	 */
1957 #ifdef __BIG_ENDIAN__
1958 	vcpu->arch.shared_big_endian = true;
1959 #else
1960 	vcpu->arch.shared_big_endian = false;
1961 #endif
1962 #endif
1963 	vcpu->arch.mmcr[0] = MMCR0_FC;
1964 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1965 	/* default to host PVR, since we can't spoof it */
1966 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1967 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1968 	spin_lock_init(&vcpu->arch.tbacct_lock);
1969 	vcpu->arch.busy_preempt = TB_NIL;
1970 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1971 
1972 	/*
1973 	 * Set the default HFSCR for the guest from the host value.
1974 	 * This value is only used on POWER9.
1975 	 * On POWER9 DD1, TM doesn't work, so we make sure to
1976 	 * prevent the guest from using it.
1977 	 * On POWER9, we want to virtualize the doorbell facility, so we
1978 	 * turn off the HFSCR bit, which causes those instructions to trap.
1979 	 */
1980 	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1981 	if (!cpu_has_feature(CPU_FTR_TM))
1982 		vcpu->arch.hfscr &= ~HFSCR_TM;
1983 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1984 		vcpu->arch.hfscr &= ~HFSCR_MSGP;
1985 
1986 	kvmppc_mmu_book3s_hv_init(vcpu);
1987 
1988 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1989 
1990 	init_waitqueue_head(&vcpu->arch.cpu_run);
1991 
1992 	mutex_lock(&kvm->lock);
1993 	vcore = NULL;
1994 	err = -EINVAL;
1995 	core = id / kvm->arch.smt_mode;
1996 	if (core < KVM_MAX_VCORES) {
1997 		vcore = kvm->arch.vcores[core];
1998 		if (!vcore) {
1999 			err = -ENOMEM;
2000 			vcore = kvmppc_vcore_create(kvm, core);
2001 			kvm->arch.vcores[core] = vcore;
2002 			kvm->arch.online_vcores++;
2003 		}
2004 	}
2005 	mutex_unlock(&kvm->lock);
2006 
2007 	if (!vcore)
2008 		goto free_vcpu;
2009 
2010 	spin_lock(&vcore->lock);
2011 	++vcore->num_threads;
2012 	spin_unlock(&vcore->lock);
2013 	vcpu->arch.vcore = vcore;
2014 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2015 	vcpu->arch.thread_cpu = -1;
2016 	vcpu->arch.prev_cpu = -1;
2017 
2018 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2019 	kvmppc_sanity_check(vcpu);
2020 
2021 	debugfs_vcpu_init(vcpu, id);
2022 
2023 	return vcpu;
2024 
2025 free_vcpu:
2026 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2027 out:
2028 	return ERR_PTR(err);
2029 }
2030 
2031 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2032 			      unsigned long flags)
2033 {
2034 	int err;
2035 	int esmt = 0;
2036 
2037 	if (flags)
2038 		return -EINVAL;
2039 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2040 		return -EINVAL;
2041 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2042 		/*
2043 		 * On POWER8 (or POWER7), the threading mode is "strict",
2044 		 * so we pack smt_mode vcpus per vcore.
2045 		 */
2046 		if (smt_mode > threads_per_subcore)
2047 			return -EINVAL;
2048 	} else {
2049 		/*
2050 		 * On POWER9, the threading mode is "loose",
2051 		 * so each vcpu gets its own vcore.
2052 		 */
2053 		esmt = smt_mode;
2054 		smt_mode = 1;
2055 	}
2056 	mutex_lock(&kvm->lock);
2057 	err = -EBUSY;
2058 	if (!kvm->arch.online_vcores) {
2059 		kvm->arch.smt_mode = smt_mode;
2060 		kvm->arch.emul_smt_mode = esmt;
2061 		err = 0;
2062 	}
2063 	mutex_unlock(&kvm->lock);
2064 
2065 	return err;
2066 }
2067 
2068 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2069 {
2070 	if (vpa->pinned_addr)
2071 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2072 					vpa->dirty);
2073 }
2074 
2075 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2076 {
2077 	spin_lock(&vcpu->arch.vpa_update_lock);
2078 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2079 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2080 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2081 	spin_unlock(&vcpu->arch.vpa_update_lock);
2082 	kvm_vcpu_uninit(vcpu);
2083 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2084 }
2085 
2086 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2087 {
2088 	/* Indicate we want to get back into the guest */
2089 	return 1;
2090 }
2091 
2092 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2093 {
2094 	unsigned long dec_nsec, now;
2095 
2096 	now = get_tb();
2097 	if (now > vcpu->arch.dec_expires) {
2098 		/* decrementer has already gone negative */
2099 		kvmppc_core_queue_dec(vcpu);
2100 		kvmppc_core_prepare_to_enter(vcpu);
2101 		return;
2102 	}
2103 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2104 		   / tb_ticks_per_sec;
2105 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2106 	vcpu->arch.timer_running = 1;
2107 }
2108 
2109 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2110 {
2111 	vcpu->arch.ceded = 0;
2112 	if (vcpu->arch.timer_running) {
2113 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2114 		vcpu->arch.timer_running = 0;
2115 	}
2116 }
2117 
2118 extern int __kvmppc_vcore_entry(void);
2119 
2120 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2121 				   struct kvm_vcpu *vcpu)
2122 {
2123 	u64 now;
2124 
2125 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2126 		return;
2127 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2128 	now = mftb();
2129 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2130 		vcpu->arch.stolen_logged;
2131 	vcpu->arch.busy_preempt = now;
2132 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2133 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2134 	--vc->n_runnable;
2135 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2136 }
2137 
2138 static int kvmppc_grab_hwthread(int cpu)
2139 {
2140 	struct paca_struct *tpaca;
2141 	long timeout = 10000;
2142 
2143 	tpaca = &paca[cpu];
2144 
2145 	/* Ensure the thread won't go into the kernel if it wakes */
2146 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2147 	tpaca->kvm_hstate.kvm_vcore = NULL;
2148 	tpaca->kvm_hstate.napping = 0;
2149 	smp_wmb();
2150 	tpaca->kvm_hstate.hwthread_req = 1;
2151 
2152 	/*
2153 	 * If the thread is already executing in the kernel (e.g. handling
2154 	 * a stray interrupt), wait for it to get back to nap mode.
2155 	 * The smp_mb() is to ensure that our setting of hwthread_req
2156 	 * is visible before we look at hwthread_state, so if this
2157 	 * races with the code at system_reset_pSeries and the thread
2158 	 * misses our setting of hwthread_req, we are sure to see its
2159 	 * setting of hwthread_state, and vice versa.
2160 	 */
2161 	smp_mb();
2162 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2163 		if (--timeout <= 0) {
2164 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2165 			return -EBUSY;
2166 		}
2167 		udelay(1);
2168 	}
2169 	return 0;
2170 }
2171 
2172 static void kvmppc_release_hwthread(int cpu)
2173 {
2174 	struct paca_struct *tpaca;
2175 
2176 	tpaca = &paca[cpu];
2177 	tpaca->kvm_hstate.hwthread_req = 0;
2178 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2179 	tpaca->kvm_hstate.kvm_vcore = NULL;
2180 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2181 }
2182 
2183 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2184 {
2185 	int i;
2186 
2187 	cpu = cpu_first_thread_sibling(cpu);
2188 	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2189 	/*
2190 	 * Make sure setting of bit in need_tlb_flush precedes
2191 	 * testing of cpu_in_guest bits.  The matching barrier on
2192 	 * the other side is the first smp_mb() in kvmppc_run_core().
2193 	 */
2194 	smp_mb();
2195 	for (i = 0; i < threads_per_core; ++i)
2196 		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2197 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2198 }
2199 
2200 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2201 {
2202 	struct kvm *kvm = vcpu->kvm;
2203 
2204 	/*
2205 	 * With radix, the guest can do TLB invalidations itself,
2206 	 * and it could choose to use the local form (tlbiel) if
2207 	 * it is invalidating a translation that has only ever been
2208 	 * used on one vcpu.  However, that doesn't mean it has
2209 	 * only ever been used on one physical cpu, since vcpus
2210 	 * can move around between pcpus.  To cope with this, when
2211 	 * a vcpu moves from one pcpu to another, we need to tell
2212 	 * any vcpus running on the same core as this vcpu previously
2213 	 * ran to flush the TLB.  The TLB is shared between threads,
2214 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2215 	 */
2216 	if (vcpu->arch.prev_cpu != pcpu) {
2217 		if (vcpu->arch.prev_cpu >= 0 &&
2218 		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2219 		    cpu_first_thread_sibling(pcpu))
2220 			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2221 		vcpu->arch.prev_cpu = pcpu;
2222 	}
2223 }
2224 
2225 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2226 {
2227 	int cpu;
2228 	struct paca_struct *tpaca;
2229 	struct kvm *kvm = vc->kvm;
2230 
2231 	cpu = vc->pcpu;
2232 	if (vcpu) {
2233 		if (vcpu->arch.timer_running) {
2234 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2235 			vcpu->arch.timer_running = 0;
2236 		}
2237 		cpu += vcpu->arch.ptid;
2238 		vcpu->cpu = vc->pcpu;
2239 		vcpu->arch.thread_cpu = cpu;
2240 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2241 	}
2242 	tpaca = &paca[cpu];
2243 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2244 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2245 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2246 	smp_wmb();
2247 	tpaca->kvm_hstate.kvm_vcore = vc;
2248 	if (cpu != smp_processor_id())
2249 		kvmppc_ipi_thread(cpu);
2250 }
2251 
2252 static void kvmppc_wait_for_nap(int n_threads)
2253 {
2254 	int cpu = smp_processor_id();
2255 	int i, loops;
2256 
2257 	if (n_threads <= 1)
2258 		return;
2259 	for (loops = 0; loops < 1000000; ++loops) {
2260 		/*
2261 		 * Check if all threads are finished.
2262 		 * We set the vcore pointer when starting a thread
2263 		 * and the thread clears it when finished, so we look
2264 		 * for any threads that still have a non-NULL vcore ptr.
2265 		 */
2266 		for (i = 1; i < n_threads; ++i)
2267 			if (paca[cpu + i].kvm_hstate.kvm_vcore)
2268 				break;
2269 		if (i == n_threads) {
2270 			HMT_medium();
2271 			return;
2272 		}
2273 		HMT_low();
2274 	}
2275 	HMT_medium();
2276 	for (i = 1; i < n_threads; ++i)
2277 		if (paca[cpu + i].kvm_hstate.kvm_vcore)
2278 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2279 }
2280 
2281 /*
2282  * Check that we are on thread 0 and that any other threads in
2283  * this core are off-line.  Then grab the threads so they can't
2284  * enter the kernel.
2285  */
2286 static int on_primary_thread(void)
2287 {
2288 	int cpu = smp_processor_id();
2289 	int thr;
2290 
2291 	/* Are we on a primary subcore? */
2292 	if (cpu_thread_in_subcore(cpu))
2293 		return 0;
2294 
2295 	thr = 0;
2296 	while (++thr < threads_per_subcore)
2297 		if (cpu_online(cpu + thr))
2298 			return 0;
2299 
2300 	/* Grab all hw threads so they can't go into the kernel */
2301 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2302 		if (kvmppc_grab_hwthread(cpu + thr)) {
2303 			/* Couldn't grab one; let the others go */
2304 			do {
2305 				kvmppc_release_hwthread(cpu + thr);
2306 			} while (--thr > 0);
2307 			return 0;
2308 		}
2309 	}
2310 	return 1;
2311 }
2312 
2313 /*
2314  * A list of virtual cores for each physical CPU.
2315  * These are vcores that could run but their runner VCPU tasks are
2316  * (or may be) preempted.
2317  */
2318 struct preempted_vcore_list {
2319 	struct list_head	list;
2320 	spinlock_t		lock;
2321 };
2322 
2323 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2324 
2325 static void init_vcore_lists(void)
2326 {
2327 	int cpu;
2328 
2329 	for_each_possible_cpu(cpu) {
2330 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2331 		spin_lock_init(&lp->lock);
2332 		INIT_LIST_HEAD(&lp->list);
2333 	}
2334 }
2335 
2336 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2337 {
2338 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2339 
2340 	vc->vcore_state = VCORE_PREEMPT;
2341 	vc->pcpu = smp_processor_id();
2342 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2343 		spin_lock(&lp->lock);
2344 		list_add_tail(&vc->preempt_list, &lp->list);
2345 		spin_unlock(&lp->lock);
2346 	}
2347 
2348 	/* Start accumulating stolen time */
2349 	kvmppc_core_start_stolen(vc);
2350 }
2351 
2352 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2353 {
2354 	struct preempted_vcore_list *lp;
2355 
2356 	kvmppc_core_end_stolen(vc);
2357 	if (!list_empty(&vc->preempt_list)) {
2358 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2359 		spin_lock(&lp->lock);
2360 		list_del_init(&vc->preempt_list);
2361 		spin_unlock(&lp->lock);
2362 	}
2363 	vc->vcore_state = VCORE_INACTIVE;
2364 }
2365 
2366 /*
2367  * This stores information about the virtual cores currently
2368  * assigned to a physical core.
2369  */
2370 struct core_info {
2371 	int		n_subcores;
2372 	int		max_subcore_threads;
2373 	int		total_threads;
2374 	int		subcore_threads[MAX_SUBCORES];
2375 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2376 };
2377 
2378 /*
2379  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2380  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2381  */
2382 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2383 
2384 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2385 {
2386 	memset(cip, 0, sizeof(*cip));
2387 	cip->n_subcores = 1;
2388 	cip->max_subcore_threads = vc->num_threads;
2389 	cip->total_threads = vc->num_threads;
2390 	cip->subcore_threads[0] = vc->num_threads;
2391 	cip->vc[0] = vc;
2392 }
2393 
2394 static bool subcore_config_ok(int n_subcores, int n_threads)
2395 {
2396 	/*
2397 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2398 	 * split-core mode, with one thread per subcore.
2399 	 */
2400 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2401 		return n_subcores <= 4 && n_threads == 1;
2402 
2403 	/* On POWER8, can only dynamically split if unsplit to begin with */
2404 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2405 		return false;
2406 	if (n_subcores > MAX_SUBCORES)
2407 		return false;
2408 	if (n_subcores > 1) {
2409 		if (!(dynamic_mt_modes & 2))
2410 			n_subcores = 4;
2411 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2412 			return false;
2413 	}
2414 
2415 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2416 }
2417 
2418 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2419 {
2420 	vc->entry_exit_map = 0;
2421 	vc->in_guest = 0;
2422 	vc->napping_threads = 0;
2423 	vc->conferring_threads = 0;
2424 }
2425 
2426 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2427 {
2428 	int n_threads = vc->num_threads;
2429 	int sub;
2430 
2431 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2432 		return false;
2433 
2434 	/* Some POWER9 chips require all threads to be in the same MMU mode */
2435 	if (no_mixing_hpt_and_radix &&
2436 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2437 		return false;
2438 
2439 	if (n_threads < cip->max_subcore_threads)
2440 		n_threads = cip->max_subcore_threads;
2441 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2442 		return false;
2443 	cip->max_subcore_threads = n_threads;
2444 
2445 	sub = cip->n_subcores;
2446 	++cip->n_subcores;
2447 	cip->total_threads += vc->num_threads;
2448 	cip->subcore_threads[sub] = vc->num_threads;
2449 	cip->vc[sub] = vc;
2450 	init_vcore_to_run(vc);
2451 	list_del_init(&vc->preempt_list);
2452 
2453 	return true;
2454 }
2455 
2456 /*
2457  * Work out whether it is possible to piggyback the execution of
2458  * vcore *pvc onto the execution of the other vcores described in *cip.
2459  */
2460 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2461 			  int target_threads)
2462 {
2463 	if (cip->total_threads + pvc->num_threads > target_threads)
2464 		return false;
2465 
2466 	return can_dynamic_split(pvc, cip);
2467 }
2468 
2469 static void prepare_threads(struct kvmppc_vcore *vc)
2470 {
2471 	int i;
2472 	struct kvm_vcpu *vcpu;
2473 
2474 	for_each_runnable_thread(i, vcpu, vc) {
2475 		if (signal_pending(vcpu->arch.run_task))
2476 			vcpu->arch.ret = -EINTR;
2477 		else if (vcpu->arch.vpa.update_pending ||
2478 			 vcpu->arch.slb_shadow.update_pending ||
2479 			 vcpu->arch.dtl.update_pending)
2480 			vcpu->arch.ret = RESUME_GUEST;
2481 		else
2482 			continue;
2483 		kvmppc_remove_runnable(vc, vcpu);
2484 		wake_up(&vcpu->arch.cpu_run);
2485 	}
2486 }
2487 
2488 static void collect_piggybacks(struct core_info *cip, int target_threads)
2489 {
2490 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2491 	struct kvmppc_vcore *pvc, *vcnext;
2492 
2493 	spin_lock(&lp->lock);
2494 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2495 		if (!spin_trylock(&pvc->lock))
2496 			continue;
2497 		prepare_threads(pvc);
2498 		if (!pvc->n_runnable) {
2499 			list_del_init(&pvc->preempt_list);
2500 			if (pvc->runner == NULL) {
2501 				pvc->vcore_state = VCORE_INACTIVE;
2502 				kvmppc_core_end_stolen(pvc);
2503 			}
2504 			spin_unlock(&pvc->lock);
2505 			continue;
2506 		}
2507 		if (!can_piggyback(pvc, cip, target_threads)) {
2508 			spin_unlock(&pvc->lock);
2509 			continue;
2510 		}
2511 		kvmppc_core_end_stolen(pvc);
2512 		pvc->vcore_state = VCORE_PIGGYBACK;
2513 		if (cip->total_threads >= target_threads)
2514 			break;
2515 	}
2516 	spin_unlock(&lp->lock);
2517 }
2518 
2519 static bool recheck_signals(struct core_info *cip)
2520 {
2521 	int sub, i;
2522 	struct kvm_vcpu *vcpu;
2523 
2524 	for (sub = 0; sub < cip->n_subcores; ++sub)
2525 		for_each_runnable_thread(i, vcpu, cip->vc[sub])
2526 			if (signal_pending(vcpu->arch.run_task))
2527 				return true;
2528 	return false;
2529 }
2530 
2531 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2532 {
2533 	int still_running = 0, i;
2534 	u64 now;
2535 	long ret;
2536 	struct kvm_vcpu *vcpu;
2537 
2538 	spin_lock(&vc->lock);
2539 	now = get_tb();
2540 	for_each_runnable_thread(i, vcpu, vc) {
2541 		/* cancel pending dec exception if dec is positive */
2542 		if (now < vcpu->arch.dec_expires &&
2543 		    kvmppc_core_pending_dec(vcpu))
2544 			kvmppc_core_dequeue_dec(vcpu);
2545 
2546 		trace_kvm_guest_exit(vcpu);
2547 
2548 		ret = RESUME_GUEST;
2549 		if (vcpu->arch.trap)
2550 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2551 						    vcpu->arch.run_task);
2552 
2553 		vcpu->arch.ret = ret;
2554 		vcpu->arch.trap = 0;
2555 
2556 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2557 			if (vcpu->arch.pending_exceptions)
2558 				kvmppc_core_prepare_to_enter(vcpu);
2559 			if (vcpu->arch.ceded)
2560 				kvmppc_set_timer(vcpu);
2561 			else
2562 				++still_running;
2563 		} else {
2564 			kvmppc_remove_runnable(vc, vcpu);
2565 			wake_up(&vcpu->arch.cpu_run);
2566 		}
2567 	}
2568 	if (!is_master) {
2569 		if (still_running > 0) {
2570 			kvmppc_vcore_preempt(vc);
2571 		} else if (vc->runner) {
2572 			vc->vcore_state = VCORE_PREEMPT;
2573 			kvmppc_core_start_stolen(vc);
2574 		} else {
2575 			vc->vcore_state = VCORE_INACTIVE;
2576 		}
2577 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2578 			/* make sure there's a candidate runner awake */
2579 			i = -1;
2580 			vcpu = next_runnable_thread(vc, &i);
2581 			wake_up(&vcpu->arch.cpu_run);
2582 		}
2583 	}
2584 	spin_unlock(&vc->lock);
2585 }
2586 
2587 /*
2588  * Clear core from the list of active host cores as we are about to
2589  * enter the guest. Only do this if it is the primary thread of the
2590  * core (not if a subcore) that is entering the guest.
2591  */
2592 static inline int kvmppc_clear_host_core(unsigned int cpu)
2593 {
2594 	int core;
2595 
2596 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2597 		return 0;
2598 	/*
2599 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2600 	 * later in kvmppc_start_thread and we need ensure that state is
2601 	 * visible to other CPUs only after we enter guest.
2602 	 */
2603 	core = cpu >> threads_shift;
2604 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2605 	return 0;
2606 }
2607 
2608 /*
2609  * Advertise this core as an active host core since we exited the guest
2610  * Only need to do this if it is the primary thread of the core that is
2611  * exiting.
2612  */
2613 static inline int kvmppc_set_host_core(unsigned int cpu)
2614 {
2615 	int core;
2616 
2617 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2618 		return 0;
2619 
2620 	/*
2621 	 * Memory barrier can be omitted here because we do a spin_unlock
2622 	 * immediately after this which provides the memory barrier.
2623 	 */
2624 	core = cpu >> threads_shift;
2625 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2626 	return 0;
2627 }
2628 
2629 static void set_irq_happened(int trap)
2630 {
2631 	switch (trap) {
2632 	case BOOK3S_INTERRUPT_EXTERNAL:
2633 		local_paca->irq_happened |= PACA_IRQ_EE;
2634 		break;
2635 	case BOOK3S_INTERRUPT_H_DOORBELL:
2636 		local_paca->irq_happened |= PACA_IRQ_DBELL;
2637 		break;
2638 	case BOOK3S_INTERRUPT_HMI:
2639 		local_paca->irq_happened |= PACA_IRQ_HMI;
2640 		break;
2641 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
2642 		replay_system_reset();
2643 		break;
2644 	}
2645 }
2646 
2647 /*
2648  * Run a set of guest threads on a physical core.
2649  * Called with vc->lock held.
2650  */
2651 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2652 {
2653 	struct kvm_vcpu *vcpu;
2654 	int i;
2655 	int srcu_idx;
2656 	struct core_info core_info;
2657 	struct kvmppc_vcore *pvc;
2658 	struct kvm_split_mode split_info, *sip;
2659 	int split, subcore_size, active;
2660 	int sub;
2661 	bool thr0_done;
2662 	unsigned long cmd_bit, stat_bit;
2663 	int pcpu, thr;
2664 	int target_threads;
2665 	int controlled_threads;
2666 	int trap;
2667 	bool is_power8;
2668 	bool hpt_on_radix;
2669 
2670 	/*
2671 	 * Remove from the list any threads that have a signal pending
2672 	 * or need a VPA update done
2673 	 */
2674 	prepare_threads(vc);
2675 
2676 	/* if the runner is no longer runnable, let the caller pick a new one */
2677 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2678 		return;
2679 
2680 	/*
2681 	 * Initialize *vc.
2682 	 */
2683 	init_vcore_to_run(vc);
2684 	vc->preempt_tb = TB_NIL;
2685 
2686 	/*
2687 	 * Number of threads that we will be controlling: the same as
2688 	 * the number of threads per subcore, except on POWER9,
2689 	 * where it's 1 because the threads are (mostly) independent.
2690 	 */
2691 	controlled_threads = threads_per_vcore(vc->kvm);
2692 
2693 	/*
2694 	 * Make sure we are running on primary threads, and that secondary
2695 	 * threads are offline.  Also check if the number of threads in this
2696 	 * guest are greater than the current system threads per guest.
2697 	 * On POWER9, we need to be not in independent-threads mode if
2698 	 * this is a HPT guest on a radix host machine where the
2699 	 * CPU threads may not be in different MMU modes.
2700 	 */
2701 	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2702 		!kvm_is_radix(vc->kvm);
2703 	if (((controlled_threads > 1) &&
2704 	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2705 	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2706 		for_each_runnable_thread(i, vcpu, vc) {
2707 			vcpu->arch.ret = -EBUSY;
2708 			kvmppc_remove_runnable(vc, vcpu);
2709 			wake_up(&vcpu->arch.cpu_run);
2710 		}
2711 		goto out;
2712 	}
2713 
2714 	/*
2715 	 * See if we could run any other vcores on the physical core
2716 	 * along with this one.
2717 	 */
2718 	init_core_info(&core_info, vc);
2719 	pcpu = smp_processor_id();
2720 	target_threads = controlled_threads;
2721 	if (target_smt_mode && target_smt_mode < target_threads)
2722 		target_threads = target_smt_mode;
2723 	if (vc->num_threads < target_threads)
2724 		collect_piggybacks(&core_info, target_threads);
2725 
2726 	/*
2727 	 * On radix, arrange for TLB flushing if necessary.
2728 	 * This has to be done before disabling interrupts since
2729 	 * it uses smp_call_function().
2730 	 */
2731 	pcpu = smp_processor_id();
2732 	if (kvm_is_radix(vc->kvm)) {
2733 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2734 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2735 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2736 	}
2737 
2738 	/*
2739 	 * Hard-disable interrupts, and check resched flag and signals.
2740 	 * If we need to reschedule or deliver a signal, clean up
2741 	 * and return without going into the guest(s).
2742 	 * If the mmu_ready flag has been cleared, don't go into the
2743 	 * guest because that means a HPT resize operation is in progress.
2744 	 */
2745 	local_irq_disable();
2746 	hard_irq_disable();
2747 	if (lazy_irq_pending() || need_resched() ||
2748 	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2749 		local_irq_enable();
2750 		vc->vcore_state = VCORE_INACTIVE;
2751 		/* Unlock all except the primary vcore */
2752 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
2753 			pvc = core_info.vc[sub];
2754 			/* Put back on to the preempted vcores list */
2755 			kvmppc_vcore_preempt(pvc);
2756 			spin_unlock(&pvc->lock);
2757 		}
2758 		for (i = 0; i < controlled_threads; ++i)
2759 			kvmppc_release_hwthread(pcpu + i);
2760 		return;
2761 	}
2762 
2763 	kvmppc_clear_host_core(pcpu);
2764 
2765 	/* Decide on micro-threading (split-core) mode */
2766 	subcore_size = threads_per_subcore;
2767 	cmd_bit = stat_bit = 0;
2768 	split = core_info.n_subcores;
2769 	sip = NULL;
2770 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2771 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
2772 
2773 	if (split > 1 || hpt_on_radix) {
2774 		sip = &split_info;
2775 		memset(&split_info, 0, sizeof(split_info));
2776 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2777 			split_info.vc[sub] = core_info.vc[sub];
2778 
2779 		if (is_power8) {
2780 			if (split == 2 && (dynamic_mt_modes & 2)) {
2781 				cmd_bit = HID0_POWER8_1TO2LPAR;
2782 				stat_bit = HID0_POWER8_2LPARMODE;
2783 			} else {
2784 				split = 4;
2785 				cmd_bit = HID0_POWER8_1TO4LPAR;
2786 				stat_bit = HID0_POWER8_4LPARMODE;
2787 			}
2788 			subcore_size = MAX_SMT_THREADS / split;
2789 			split_info.rpr = mfspr(SPRN_RPR);
2790 			split_info.pmmar = mfspr(SPRN_PMMAR);
2791 			split_info.ldbar = mfspr(SPRN_LDBAR);
2792 			split_info.subcore_size = subcore_size;
2793 		} else {
2794 			split_info.subcore_size = 1;
2795 			if (hpt_on_radix) {
2796 				/* Use the split_info for LPCR/LPIDR changes */
2797 				split_info.lpcr_req = vc->lpcr;
2798 				split_info.lpidr_req = vc->kvm->arch.lpid;
2799 				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2800 				split_info.do_set = 1;
2801 			}
2802 		}
2803 
2804 		/* order writes to split_info before kvm_split_mode pointer */
2805 		smp_wmb();
2806 	}
2807 
2808 	for (thr = 0; thr < controlled_threads; ++thr) {
2809 		paca[pcpu + thr].kvm_hstate.tid = thr;
2810 		paca[pcpu + thr].kvm_hstate.napping = 0;
2811 		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2812 	}
2813 
2814 	/* Initiate micro-threading (split-core) on POWER8 if required */
2815 	if (cmd_bit) {
2816 		unsigned long hid0 = mfspr(SPRN_HID0);
2817 
2818 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2819 		mb();
2820 		mtspr(SPRN_HID0, hid0);
2821 		isync();
2822 		for (;;) {
2823 			hid0 = mfspr(SPRN_HID0);
2824 			if (hid0 & stat_bit)
2825 				break;
2826 			cpu_relax();
2827 		}
2828 	}
2829 
2830 	/* Start all the threads */
2831 	active = 0;
2832 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2833 		thr = is_power8 ? subcore_thread_map[sub] : sub;
2834 		thr0_done = false;
2835 		active |= 1 << thr;
2836 		pvc = core_info.vc[sub];
2837 		pvc->pcpu = pcpu + thr;
2838 		for_each_runnable_thread(i, vcpu, pvc) {
2839 			kvmppc_start_thread(vcpu, pvc);
2840 			kvmppc_create_dtl_entry(vcpu, pvc);
2841 			trace_kvm_guest_enter(vcpu);
2842 			if (!vcpu->arch.ptid)
2843 				thr0_done = true;
2844 			active |= 1 << (thr + vcpu->arch.ptid);
2845 		}
2846 		/*
2847 		 * We need to start the first thread of each subcore
2848 		 * even if it doesn't have a vcpu.
2849 		 */
2850 		if (!thr0_done)
2851 			kvmppc_start_thread(NULL, pvc);
2852 	}
2853 
2854 	/*
2855 	 * Ensure that split_info.do_nap is set after setting
2856 	 * the vcore pointer in the PACA of the secondaries.
2857 	 */
2858 	smp_mb();
2859 
2860 	/*
2861 	 * When doing micro-threading, poke the inactive threads as well.
2862 	 * This gets them to the nap instruction after kvm_do_nap,
2863 	 * which reduces the time taken to unsplit later.
2864 	 * For POWER9 HPT guest on radix host, we need all the secondary
2865 	 * threads woken up so they can do the LPCR/LPIDR change.
2866 	 */
2867 	if (cmd_bit || hpt_on_radix) {
2868 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2869 		for (thr = 1; thr < threads_per_subcore; ++thr)
2870 			if (!(active & (1 << thr)))
2871 				kvmppc_ipi_thread(pcpu + thr);
2872 	}
2873 
2874 	vc->vcore_state = VCORE_RUNNING;
2875 	preempt_disable();
2876 
2877 	trace_kvmppc_run_core(vc, 0);
2878 
2879 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2880 		spin_unlock(&core_info.vc[sub]->lock);
2881 
2882 	/*
2883 	 * Interrupts will be enabled once we get into the guest,
2884 	 * so tell lockdep that we're about to enable interrupts.
2885 	 */
2886 	trace_hardirqs_on();
2887 
2888 	guest_enter();
2889 
2890 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2891 
2892 	trap = __kvmppc_vcore_entry();
2893 
2894 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2895 
2896 	guest_exit();
2897 
2898 	trace_hardirqs_off();
2899 	set_irq_happened(trap);
2900 
2901 	spin_lock(&vc->lock);
2902 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2903 	vc->vcore_state = VCORE_EXITING;
2904 
2905 	/* wait for secondary threads to finish writing their state to memory */
2906 	kvmppc_wait_for_nap(controlled_threads);
2907 
2908 	/* Return to whole-core mode if we split the core earlier */
2909 	if (cmd_bit) {
2910 		unsigned long hid0 = mfspr(SPRN_HID0);
2911 		unsigned long loops = 0;
2912 
2913 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
2914 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2915 		mb();
2916 		mtspr(SPRN_HID0, hid0);
2917 		isync();
2918 		for (;;) {
2919 			hid0 = mfspr(SPRN_HID0);
2920 			if (!(hid0 & stat_bit))
2921 				break;
2922 			cpu_relax();
2923 			++loops;
2924 		}
2925 	} else if (hpt_on_radix) {
2926 		/* Wait for all threads to have seen final sync */
2927 		for (thr = 1; thr < controlled_threads; ++thr) {
2928 			while (paca[pcpu + thr].kvm_hstate.kvm_split_mode) {
2929 				HMT_low();
2930 				barrier();
2931 			}
2932 			HMT_medium();
2933 		}
2934 	}
2935 	split_info.do_nap = 0;
2936 
2937 	kvmppc_set_host_core(pcpu);
2938 
2939 	local_irq_enable();
2940 
2941 	/* Let secondaries go back to the offline loop */
2942 	for (i = 0; i < controlled_threads; ++i) {
2943 		kvmppc_release_hwthread(pcpu + i);
2944 		if (sip && sip->napped[i])
2945 			kvmppc_ipi_thread(pcpu + i);
2946 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2947 	}
2948 
2949 	spin_unlock(&vc->lock);
2950 
2951 	/* make sure updates to secondary vcpu structs are visible now */
2952 	smp_mb();
2953 
2954 	preempt_enable();
2955 
2956 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2957 		pvc = core_info.vc[sub];
2958 		post_guest_process(pvc, pvc == vc);
2959 	}
2960 
2961 	spin_lock(&vc->lock);
2962 
2963  out:
2964 	vc->vcore_state = VCORE_INACTIVE;
2965 	trace_kvmppc_run_core(vc, 1);
2966 }
2967 
2968 /*
2969  * Wait for some other vcpu thread to execute us, and
2970  * wake us up when we need to handle something in the host.
2971  */
2972 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2973 				 struct kvm_vcpu *vcpu, int wait_state)
2974 {
2975 	DEFINE_WAIT(wait);
2976 
2977 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2978 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2979 		spin_unlock(&vc->lock);
2980 		schedule();
2981 		spin_lock(&vc->lock);
2982 	}
2983 	finish_wait(&vcpu->arch.cpu_run, &wait);
2984 }
2985 
2986 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2987 {
2988 	/* 10us base */
2989 	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2990 		vc->halt_poll_ns = 10000;
2991 	else
2992 		vc->halt_poll_ns *= halt_poll_ns_grow;
2993 }
2994 
2995 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2996 {
2997 	if (halt_poll_ns_shrink == 0)
2998 		vc->halt_poll_ns = 0;
2999 	else
3000 		vc->halt_poll_ns /= halt_poll_ns_shrink;
3001 }
3002 
3003 #ifdef CONFIG_KVM_XICS
3004 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3005 {
3006 	if (!xive_enabled())
3007 		return false;
3008 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3009 		vcpu->arch.xive_saved_state.cppr;
3010 }
3011 #else
3012 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3013 {
3014 	return false;
3015 }
3016 #endif /* CONFIG_KVM_XICS */
3017 
3018 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3019 {
3020 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3021 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3022 		return true;
3023 
3024 	return false;
3025 }
3026 
3027 /*
3028  * Check to see if any of the runnable vcpus on the vcore have pending
3029  * exceptions or are no longer ceded
3030  */
3031 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3032 {
3033 	struct kvm_vcpu *vcpu;
3034 	int i;
3035 
3036 	for_each_runnable_thread(i, vcpu, vc) {
3037 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3038 			return 1;
3039 	}
3040 
3041 	return 0;
3042 }
3043 
3044 /*
3045  * All the vcpus in this vcore are idle, so wait for a decrementer
3046  * or external interrupt to one of the vcpus.  vc->lock is held.
3047  */
3048 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3049 {
3050 	ktime_t cur, start_poll, start_wait;
3051 	int do_sleep = 1;
3052 	u64 block_ns;
3053 	DECLARE_SWAITQUEUE(wait);
3054 
3055 	/* Poll for pending exceptions and ceded state */
3056 	cur = start_poll = ktime_get();
3057 	if (vc->halt_poll_ns) {
3058 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3059 		++vc->runner->stat.halt_attempted_poll;
3060 
3061 		vc->vcore_state = VCORE_POLLING;
3062 		spin_unlock(&vc->lock);
3063 
3064 		do {
3065 			if (kvmppc_vcore_check_block(vc)) {
3066 				do_sleep = 0;
3067 				break;
3068 			}
3069 			cur = ktime_get();
3070 		} while (single_task_running() && ktime_before(cur, stop));
3071 
3072 		spin_lock(&vc->lock);
3073 		vc->vcore_state = VCORE_INACTIVE;
3074 
3075 		if (!do_sleep) {
3076 			++vc->runner->stat.halt_successful_poll;
3077 			goto out;
3078 		}
3079 	}
3080 
3081 	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3082 
3083 	if (kvmppc_vcore_check_block(vc)) {
3084 		finish_swait(&vc->wq, &wait);
3085 		do_sleep = 0;
3086 		/* If we polled, count this as a successful poll */
3087 		if (vc->halt_poll_ns)
3088 			++vc->runner->stat.halt_successful_poll;
3089 		goto out;
3090 	}
3091 
3092 	start_wait = ktime_get();
3093 
3094 	vc->vcore_state = VCORE_SLEEPING;
3095 	trace_kvmppc_vcore_blocked(vc, 0);
3096 	spin_unlock(&vc->lock);
3097 	schedule();
3098 	finish_swait(&vc->wq, &wait);
3099 	spin_lock(&vc->lock);
3100 	vc->vcore_state = VCORE_INACTIVE;
3101 	trace_kvmppc_vcore_blocked(vc, 1);
3102 	++vc->runner->stat.halt_successful_wait;
3103 
3104 	cur = ktime_get();
3105 
3106 out:
3107 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3108 
3109 	/* Attribute wait time */
3110 	if (do_sleep) {
3111 		vc->runner->stat.halt_wait_ns +=
3112 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3113 		/* Attribute failed poll time */
3114 		if (vc->halt_poll_ns)
3115 			vc->runner->stat.halt_poll_fail_ns +=
3116 				ktime_to_ns(start_wait) -
3117 				ktime_to_ns(start_poll);
3118 	} else {
3119 		/* Attribute successful poll time */
3120 		if (vc->halt_poll_ns)
3121 			vc->runner->stat.halt_poll_success_ns +=
3122 				ktime_to_ns(cur) -
3123 				ktime_to_ns(start_poll);
3124 	}
3125 
3126 	/* Adjust poll time */
3127 	if (halt_poll_ns) {
3128 		if (block_ns <= vc->halt_poll_ns)
3129 			;
3130 		/* We slept and blocked for longer than the max halt time */
3131 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3132 			shrink_halt_poll_ns(vc);
3133 		/* We slept and our poll time is too small */
3134 		else if (vc->halt_poll_ns < halt_poll_ns &&
3135 				block_ns < halt_poll_ns)
3136 			grow_halt_poll_ns(vc);
3137 		if (vc->halt_poll_ns > halt_poll_ns)
3138 			vc->halt_poll_ns = halt_poll_ns;
3139 	} else
3140 		vc->halt_poll_ns = 0;
3141 
3142 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3143 }
3144 
3145 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3146 {
3147 	int r = 0;
3148 	struct kvm *kvm = vcpu->kvm;
3149 
3150 	mutex_lock(&kvm->lock);
3151 	if (!kvm->arch.mmu_ready) {
3152 		if (!kvm_is_radix(kvm))
3153 			r = kvmppc_hv_setup_htab_rma(vcpu);
3154 		if (!r) {
3155 			if (cpu_has_feature(CPU_FTR_ARCH_300))
3156 				kvmppc_setup_partition_table(kvm);
3157 			kvm->arch.mmu_ready = 1;
3158 		}
3159 	}
3160 	mutex_unlock(&kvm->lock);
3161 	return r;
3162 }
3163 
3164 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3165 {
3166 	int n_ceded, i, r;
3167 	struct kvmppc_vcore *vc;
3168 	struct kvm_vcpu *v;
3169 
3170 	trace_kvmppc_run_vcpu_enter(vcpu);
3171 
3172 	kvm_run->exit_reason = 0;
3173 	vcpu->arch.ret = RESUME_GUEST;
3174 	vcpu->arch.trap = 0;
3175 	kvmppc_update_vpas(vcpu);
3176 
3177 	/*
3178 	 * Synchronize with other threads in this virtual core
3179 	 */
3180 	vc = vcpu->arch.vcore;
3181 	spin_lock(&vc->lock);
3182 	vcpu->arch.ceded = 0;
3183 	vcpu->arch.run_task = current;
3184 	vcpu->arch.kvm_run = kvm_run;
3185 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3186 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3187 	vcpu->arch.busy_preempt = TB_NIL;
3188 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3189 	++vc->n_runnable;
3190 
3191 	/*
3192 	 * This happens the first time this is called for a vcpu.
3193 	 * If the vcore is already running, we may be able to start
3194 	 * this thread straight away and have it join in.
3195 	 */
3196 	if (!signal_pending(current)) {
3197 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
3198 		     vc->vcore_state == VCORE_RUNNING) &&
3199 			   !VCORE_IS_EXITING(vc)) {
3200 			kvmppc_create_dtl_entry(vcpu, vc);
3201 			kvmppc_start_thread(vcpu, vc);
3202 			trace_kvm_guest_enter(vcpu);
3203 		} else if (vc->vcore_state == VCORE_SLEEPING) {
3204 			swake_up(&vc->wq);
3205 		}
3206 
3207 	}
3208 
3209 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3210 	       !signal_pending(current)) {
3211 		/* See if the MMU is ready to go */
3212 		if (!vcpu->kvm->arch.mmu_ready) {
3213 			spin_unlock(&vc->lock);
3214 			r = kvmhv_setup_mmu(vcpu);
3215 			spin_lock(&vc->lock);
3216 			if (r) {
3217 				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3218 				kvm_run->fail_entry.
3219 					hardware_entry_failure_reason = 0;
3220 				vcpu->arch.ret = r;
3221 				break;
3222 			}
3223 		}
3224 
3225 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3226 			kvmppc_vcore_end_preempt(vc);
3227 
3228 		if (vc->vcore_state != VCORE_INACTIVE) {
3229 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3230 			continue;
3231 		}
3232 		for_each_runnable_thread(i, v, vc) {
3233 			kvmppc_core_prepare_to_enter(v);
3234 			if (signal_pending(v->arch.run_task)) {
3235 				kvmppc_remove_runnable(vc, v);
3236 				v->stat.signal_exits++;
3237 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3238 				v->arch.ret = -EINTR;
3239 				wake_up(&v->arch.cpu_run);
3240 			}
3241 		}
3242 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3243 			break;
3244 		n_ceded = 0;
3245 		for_each_runnable_thread(i, v, vc) {
3246 			if (!kvmppc_vcpu_woken(v))
3247 				n_ceded += v->arch.ceded;
3248 			else
3249 				v->arch.ceded = 0;
3250 		}
3251 		vc->runner = vcpu;
3252 		if (n_ceded == vc->n_runnable) {
3253 			kvmppc_vcore_blocked(vc);
3254 		} else if (need_resched()) {
3255 			kvmppc_vcore_preempt(vc);
3256 			/* Let something else run */
3257 			cond_resched_lock(&vc->lock);
3258 			if (vc->vcore_state == VCORE_PREEMPT)
3259 				kvmppc_vcore_end_preempt(vc);
3260 		} else {
3261 			kvmppc_run_core(vc);
3262 		}
3263 		vc->runner = NULL;
3264 	}
3265 
3266 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3267 	       (vc->vcore_state == VCORE_RUNNING ||
3268 		vc->vcore_state == VCORE_EXITING ||
3269 		vc->vcore_state == VCORE_PIGGYBACK))
3270 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3271 
3272 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3273 		kvmppc_vcore_end_preempt(vc);
3274 
3275 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3276 		kvmppc_remove_runnable(vc, vcpu);
3277 		vcpu->stat.signal_exits++;
3278 		kvm_run->exit_reason = KVM_EXIT_INTR;
3279 		vcpu->arch.ret = -EINTR;
3280 	}
3281 
3282 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3283 		/* Wake up some vcpu to run the core */
3284 		i = -1;
3285 		v = next_runnable_thread(vc, &i);
3286 		wake_up(&v->arch.cpu_run);
3287 	}
3288 
3289 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3290 	spin_unlock(&vc->lock);
3291 	return vcpu->arch.ret;
3292 }
3293 
3294 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3295 {
3296 	int r;
3297 	int srcu_idx;
3298 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
3299 	unsigned long user_tar = 0;
3300 	unsigned int user_vrsave;
3301 	struct kvm *kvm;
3302 
3303 	if (!vcpu->arch.sane) {
3304 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3305 		return -EINVAL;
3306 	}
3307 
3308 	/*
3309 	 * Don't allow entry with a suspended transaction, because
3310 	 * the guest entry/exit code will lose it.
3311 	 * If the guest has TM enabled, save away their TM-related SPRs
3312 	 * (they will get restored by the TM unavailable interrupt).
3313 	 */
3314 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3315 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3316 	    (current->thread.regs->msr & MSR_TM)) {
3317 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3318 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3319 			run->fail_entry.hardware_entry_failure_reason = 0;
3320 			return -EINVAL;
3321 		}
3322 		/* Enable TM so we can read the TM SPRs */
3323 		mtmsr(mfmsr() | MSR_TM);
3324 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3325 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3326 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3327 		current->thread.regs->msr &= ~MSR_TM;
3328 	}
3329 #endif
3330 
3331 	kvmppc_core_prepare_to_enter(vcpu);
3332 
3333 	/* No need to go into the guest when all we'll do is come back out */
3334 	if (signal_pending(current)) {
3335 		run->exit_reason = KVM_EXIT_INTR;
3336 		return -EINTR;
3337 	}
3338 
3339 	kvm = vcpu->kvm;
3340 	atomic_inc(&kvm->arch.vcpus_running);
3341 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3342 	smp_mb();
3343 
3344 	flush_all_to_thread(current);
3345 
3346 	/* Save userspace EBB and other register values */
3347 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3348 		ebb_regs[0] = mfspr(SPRN_EBBHR);
3349 		ebb_regs[1] = mfspr(SPRN_EBBRR);
3350 		ebb_regs[2] = mfspr(SPRN_BESCR);
3351 		user_tar = mfspr(SPRN_TAR);
3352 	}
3353 	user_vrsave = mfspr(SPRN_VRSAVE);
3354 
3355 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3356 	vcpu->arch.pgdir = current->mm->pgd;
3357 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3358 
3359 	do {
3360 		r = kvmppc_run_vcpu(run, vcpu);
3361 
3362 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3363 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3364 			trace_kvm_hcall_enter(vcpu);
3365 			r = kvmppc_pseries_do_hcall(vcpu);
3366 			trace_kvm_hcall_exit(vcpu, r);
3367 			kvmppc_core_prepare_to_enter(vcpu);
3368 		} else if (r == RESUME_PAGE_FAULT) {
3369 			srcu_idx = srcu_read_lock(&kvm->srcu);
3370 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
3371 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3372 			srcu_read_unlock(&kvm->srcu, srcu_idx);
3373 		} else if (r == RESUME_PASSTHROUGH) {
3374 			if (WARN_ON(xive_enabled()))
3375 				r = H_SUCCESS;
3376 			else
3377 				r = kvmppc_xics_rm_complete(vcpu, 0);
3378 		}
3379 	} while (is_kvmppc_resume_guest(r));
3380 
3381 	/* Restore userspace EBB and other register values */
3382 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3383 		mtspr(SPRN_EBBHR, ebb_regs[0]);
3384 		mtspr(SPRN_EBBRR, ebb_regs[1]);
3385 		mtspr(SPRN_BESCR, ebb_regs[2]);
3386 		mtspr(SPRN_TAR, user_tar);
3387 		mtspr(SPRN_FSCR, current->thread.fscr);
3388 	}
3389 	mtspr(SPRN_VRSAVE, user_vrsave);
3390 
3391 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3392 	atomic_dec(&kvm->arch.vcpus_running);
3393 	return r;
3394 }
3395 
3396 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3397 				     int shift, int sllp)
3398 {
3399 	(*sps)->page_shift = shift;
3400 	(*sps)->slb_enc = sllp;
3401 	(*sps)->enc[0].page_shift = shift;
3402 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3403 	/*
3404 	 * Add 16MB MPSS support (may get filtered out by userspace)
3405 	 */
3406 	if (shift != 24) {
3407 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3408 		if (penc != -1) {
3409 			(*sps)->enc[1].page_shift = 24;
3410 			(*sps)->enc[1].pte_enc = penc;
3411 		}
3412 	}
3413 	(*sps)++;
3414 }
3415 
3416 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3417 					 struct kvm_ppc_smmu_info *info)
3418 {
3419 	struct kvm_ppc_one_seg_page_size *sps;
3420 
3421 	/*
3422 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3423 	 * POWER7 doesn't support keys for instruction accesses,
3424 	 * POWER8 and POWER9 do.
3425 	 */
3426 	info->data_keys = 32;
3427 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3428 
3429 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3430 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3431 	info->slb_size = 32;
3432 
3433 	/* We only support these sizes for now, and no muti-size segments */
3434 	sps = &info->sps[0];
3435 	kvmppc_add_seg_page_size(&sps, 12, 0);
3436 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3437 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3438 
3439 	return 0;
3440 }
3441 
3442 /*
3443  * Get (and clear) the dirty memory log for a memory slot.
3444  */
3445 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3446 					 struct kvm_dirty_log *log)
3447 {
3448 	struct kvm_memslots *slots;
3449 	struct kvm_memory_slot *memslot;
3450 	int i, r;
3451 	unsigned long n;
3452 	unsigned long *buf, *p;
3453 	struct kvm_vcpu *vcpu;
3454 
3455 	mutex_lock(&kvm->slots_lock);
3456 
3457 	r = -EINVAL;
3458 	if (log->slot >= KVM_USER_MEM_SLOTS)
3459 		goto out;
3460 
3461 	slots = kvm_memslots(kvm);
3462 	memslot = id_to_memslot(slots, log->slot);
3463 	r = -ENOENT;
3464 	if (!memslot->dirty_bitmap)
3465 		goto out;
3466 
3467 	/*
3468 	 * Use second half of bitmap area because both HPT and radix
3469 	 * accumulate bits in the first half.
3470 	 */
3471 	n = kvm_dirty_bitmap_bytes(memslot);
3472 	buf = memslot->dirty_bitmap + n / sizeof(long);
3473 	memset(buf, 0, n);
3474 
3475 	if (kvm_is_radix(kvm))
3476 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3477 	else
3478 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3479 	if (r)
3480 		goto out;
3481 
3482 	/*
3483 	 * We accumulate dirty bits in the first half of the
3484 	 * memslot's dirty_bitmap area, for when pages are paged
3485 	 * out or modified by the host directly.  Pick up these
3486 	 * bits and add them to the map.
3487 	 */
3488 	p = memslot->dirty_bitmap;
3489 	for (i = 0; i < n / sizeof(long); ++i)
3490 		buf[i] |= xchg(&p[i], 0);
3491 
3492 	/* Harvest dirty bits from VPA and DTL updates */
3493 	/* Note: we never modify the SLB shadow buffer areas */
3494 	kvm_for_each_vcpu(i, vcpu, kvm) {
3495 		spin_lock(&vcpu->arch.vpa_update_lock);
3496 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3497 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3498 		spin_unlock(&vcpu->arch.vpa_update_lock);
3499 	}
3500 
3501 	r = -EFAULT;
3502 	if (copy_to_user(log->dirty_bitmap, buf, n))
3503 		goto out;
3504 
3505 	r = 0;
3506 out:
3507 	mutex_unlock(&kvm->slots_lock);
3508 	return r;
3509 }
3510 
3511 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3512 					struct kvm_memory_slot *dont)
3513 {
3514 	if (!dont || free->arch.rmap != dont->arch.rmap) {
3515 		vfree(free->arch.rmap);
3516 		free->arch.rmap = NULL;
3517 	}
3518 }
3519 
3520 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3521 					 unsigned long npages)
3522 {
3523 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3524 	if (!slot->arch.rmap)
3525 		return -ENOMEM;
3526 
3527 	return 0;
3528 }
3529 
3530 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3531 					struct kvm_memory_slot *memslot,
3532 					const struct kvm_userspace_memory_region *mem)
3533 {
3534 	return 0;
3535 }
3536 
3537 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3538 				const struct kvm_userspace_memory_region *mem,
3539 				const struct kvm_memory_slot *old,
3540 				const struct kvm_memory_slot *new)
3541 {
3542 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3543 
3544 	/*
3545 	 * If we are making a new memslot, it might make
3546 	 * some address that was previously cached as emulated
3547 	 * MMIO be no longer emulated MMIO, so invalidate
3548 	 * all the caches of emulated MMIO translations.
3549 	 */
3550 	if (npages)
3551 		atomic64_inc(&kvm->arch.mmio_update);
3552 }
3553 
3554 /*
3555  * Update LPCR values in kvm->arch and in vcores.
3556  * Caller must hold kvm->lock.
3557  */
3558 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3559 {
3560 	long int i;
3561 	u32 cores_done = 0;
3562 
3563 	if ((kvm->arch.lpcr & mask) == lpcr)
3564 		return;
3565 
3566 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3567 
3568 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
3569 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3570 		if (!vc)
3571 			continue;
3572 		spin_lock(&vc->lock);
3573 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3574 		spin_unlock(&vc->lock);
3575 		if (++cores_done >= kvm->arch.online_vcores)
3576 			break;
3577 	}
3578 }
3579 
3580 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3581 {
3582 	return;
3583 }
3584 
3585 void kvmppc_setup_partition_table(struct kvm *kvm)
3586 {
3587 	unsigned long dw0, dw1;
3588 
3589 	if (!kvm_is_radix(kvm)) {
3590 		/* PS field - page size for VRMA */
3591 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3592 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3593 		/* HTABSIZE and HTABORG fields */
3594 		dw0 |= kvm->arch.sdr1;
3595 
3596 		/* Second dword as set by userspace */
3597 		dw1 = kvm->arch.process_table;
3598 	} else {
3599 		dw0 = PATB_HR | radix__get_tree_size() |
3600 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3601 		dw1 = PATB_GR | kvm->arch.process_table;
3602 	}
3603 
3604 	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3605 }
3606 
3607 /*
3608  * Set up HPT (hashed page table) and RMA (real-mode area).
3609  * Must be called with kvm->lock held.
3610  */
3611 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3612 {
3613 	int err = 0;
3614 	struct kvm *kvm = vcpu->kvm;
3615 	unsigned long hva;
3616 	struct kvm_memory_slot *memslot;
3617 	struct vm_area_struct *vma;
3618 	unsigned long lpcr = 0, senc;
3619 	unsigned long psize, porder;
3620 	int srcu_idx;
3621 
3622 	/* Allocate hashed page table (if not done already) and reset it */
3623 	if (!kvm->arch.hpt.virt) {
3624 		int order = KVM_DEFAULT_HPT_ORDER;
3625 		struct kvm_hpt_info info;
3626 
3627 		err = kvmppc_allocate_hpt(&info, order);
3628 		/* If we get here, it means userspace didn't specify a
3629 		 * size explicitly.  So, try successively smaller
3630 		 * sizes if the default failed. */
3631 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3632 			err  = kvmppc_allocate_hpt(&info, order);
3633 
3634 		if (err < 0) {
3635 			pr_err("KVM: Couldn't alloc HPT\n");
3636 			goto out;
3637 		}
3638 
3639 		kvmppc_set_hpt(kvm, &info);
3640 	}
3641 
3642 	/* Look up the memslot for guest physical address 0 */
3643 	srcu_idx = srcu_read_lock(&kvm->srcu);
3644 	memslot = gfn_to_memslot(kvm, 0);
3645 
3646 	/* We must have some memory at 0 by now */
3647 	err = -EINVAL;
3648 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3649 		goto out_srcu;
3650 
3651 	/* Look up the VMA for the start of this memory slot */
3652 	hva = memslot->userspace_addr;
3653 	down_read(&current->mm->mmap_sem);
3654 	vma = find_vma(current->mm, hva);
3655 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3656 		goto up_out;
3657 
3658 	psize = vma_kernel_pagesize(vma);
3659 	porder = __ilog2(psize);
3660 
3661 	up_read(&current->mm->mmap_sem);
3662 
3663 	/* We can handle 4k, 64k or 16M pages in the VRMA */
3664 	err = -EINVAL;
3665 	if (!(psize == 0x1000 || psize == 0x10000 ||
3666 	      psize == 0x1000000))
3667 		goto out_srcu;
3668 
3669 	senc = slb_pgsize_encoding(psize);
3670 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3671 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3672 	/* Create HPTEs in the hash page table for the VRMA */
3673 	kvmppc_map_vrma(vcpu, memslot, porder);
3674 
3675 	/* Update VRMASD field in the LPCR */
3676 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3677 		/* the -4 is to account for senc values starting at 0x10 */
3678 		lpcr = senc << (LPCR_VRMASD_SH - 4);
3679 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3680 	}
3681 
3682 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3683 	smp_wmb();
3684 	err = 0;
3685  out_srcu:
3686 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3687  out:
3688 	return err;
3689 
3690  up_out:
3691 	up_read(&current->mm->mmap_sem);
3692 	goto out_srcu;
3693 }
3694 
3695 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3696 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3697 {
3698 	kvmppc_free_radix(kvm);
3699 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
3700 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3701 	kvmppc_rmap_reset(kvm);
3702 	kvm->arch.radix = 0;
3703 	kvm->arch.process_table = 0;
3704 	return 0;
3705 }
3706 
3707 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3708 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3709 {
3710 	int err;
3711 
3712 	err = kvmppc_init_vm_radix(kvm);
3713 	if (err)
3714 		return err;
3715 
3716 	kvmppc_free_hpt(&kvm->arch.hpt);
3717 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3718 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3719 	kvm->arch.radix = 1;
3720 	return 0;
3721 }
3722 
3723 #ifdef CONFIG_KVM_XICS
3724 /*
3725  * Allocate a per-core structure for managing state about which cores are
3726  * running in the host versus the guest and for exchanging data between
3727  * real mode KVM and CPU running in the host.
3728  * This is only done for the first VM.
3729  * The allocated structure stays even if all VMs have stopped.
3730  * It is only freed when the kvm-hv module is unloaded.
3731  * It's OK for this routine to fail, we just don't support host
3732  * core operations like redirecting H_IPI wakeups.
3733  */
3734 void kvmppc_alloc_host_rm_ops(void)
3735 {
3736 	struct kvmppc_host_rm_ops *ops;
3737 	unsigned long l_ops;
3738 	int cpu, core;
3739 	int size;
3740 
3741 	/* Not the first time here ? */
3742 	if (kvmppc_host_rm_ops_hv != NULL)
3743 		return;
3744 
3745 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3746 	if (!ops)
3747 		return;
3748 
3749 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3750 	ops->rm_core = kzalloc(size, GFP_KERNEL);
3751 
3752 	if (!ops->rm_core) {
3753 		kfree(ops);
3754 		return;
3755 	}
3756 
3757 	cpus_read_lock();
3758 
3759 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3760 		if (!cpu_online(cpu))
3761 			continue;
3762 
3763 		core = cpu >> threads_shift;
3764 		ops->rm_core[core].rm_state.in_host = 1;
3765 	}
3766 
3767 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3768 
3769 	/*
3770 	 * Make the contents of the kvmppc_host_rm_ops structure visible
3771 	 * to other CPUs before we assign it to the global variable.
3772 	 * Do an atomic assignment (no locks used here), but if someone
3773 	 * beats us to it, just free our copy and return.
3774 	 */
3775 	smp_wmb();
3776 	l_ops = (unsigned long) ops;
3777 
3778 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3779 		cpus_read_unlock();
3780 		kfree(ops->rm_core);
3781 		kfree(ops);
3782 		return;
3783 	}
3784 
3785 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3786 					     "ppc/kvm_book3s:prepare",
3787 					     kvmppc_set_host_core,
3788 					     kvmppc_clear_host_core);
3789 	cpus_read_unlock();
3790 }
3791 
3792 void kvmppc_free_host_rm_ops(void)
3793 {
3794 	if (kvmppc_host_rm_ops_hv) {
3795 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3796 		kfree(kvmppc_host_rm_ops_hv->rm_core);
3797 		kfree(kvmppc_host_rm_ops_hv);
3798 		kvmppc_host_rm_ops_hv = NULL;
3799 	}
3800 }
3801 #endif
3802 
3803 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3804 {
3805 	unsigned long lpcr, lpid;
3806 	char buf[32];
3807 	int ret;
3808 
3809 	/* Allocate the guest's logical partition ID */
3810 
3811 	lpid = kvmppc_alloc_lpid();
3812 	if ((long)lpid < 0)
3813 		return -ENOMEM;
3814 	kvm->arch.lpid = lpid;
3815 
3816 	kvmppc_alloc_host_rm_ops();
3817 
3818 	/*
3819 	 * Since we don't flush the TLB when tearing down a VM,
3820 	 * and this lpid might have previously been used,
3821 	 * make sure we flush on each core before running the new VM.
3822 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3823 	 * does this flush for us.
3824 	 */
3825 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3826 		cpumask_setall(&kvm->arch.need_tlb_flush);
3827 
3828 	/* Start out with the default set of hcalls enabled */
3829 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3830 	       sizeof(kvm->arch.enabled_hcalls));
3831 
3832 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3833 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3834 
3835 	/* Init LPCR for virtual RMA mode */
3836 	kvm->arch.host_lpid = mfspr(SPRN_LPID);
3837 	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3838 	lpcr &= LPCR_PECE | LPCR_LPES;
3839 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3840 		LPCR_VPM0 | LPCR_VPM1;
3841 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3842 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3843 	/* On POWER8 turn on online bit to enable PURR/SPURR */
3844 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
3845 		lpcr |= LPCR_ONL;
3846 	/*
3847 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3848 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3849 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3850 	 * be unnecessary but better safe than sorry in case we re-enable
3851 	 * EE in HV mode with this LPCR still set)
3852 	 */
3853 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3854 		lpcr &= ~LPCR_VPM0;
3855 		lpcr |= LPCR_HVICE | LPCR_HEIC;
3856 
3857 		/*
3858 		 * If xive is enabled, we route 0x500 interrupts directly
3859 		 * to the guest.
3860 		 */
3861 		if (xive_enabled())
3862 			lpcr |= LPCR_LPES;
3863 	}
3864 
3865 	/*
3866 	 * If the host uses radix, the guest starts out as radix.
3867 	 */
3868 	if (radix_enabled()) {
3869 		kvm->arch.radix = 1;
3870 		kvm->arch.mmu_ready = 1;
3871 		lpcr &= ~LPCR_VPM1;
3872 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3873 		ret = kvmppc_init_vm_radix(kvm);
3874 		if (ret) {
3875 			kvmppc_free_lpid(kvm->arch.lpid);
3876 			return ret;
3877 		}
3878 		kvmppc_setup_partition_table(kvm);
3879 	}
3880 
3881 	kvm->arch.lpcr = lpcr;
3882 
3883 	/* Initialization for future HPT resizes */
3884 	kvm->arch.resize_hpt = NULL;
3885 
3886 	/*
3887 	 * Work out how many sets the TLB has, for the use of
3888 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3889 	 */
3890 	if (radix_enabled())
3891 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
3892 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
3893 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
3894 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3895 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
3896 	else
3897 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
3898 
3899 	/*
3900 	 * Track that we now have a HV mode VM active. This blocks secondary
3901 	 * CPU threads from coming online.
3902 	 * On POWER9, we only need to do this if the "indep_threads_mode"
3903 	 * module parameter has been set to N.
3904 	 */
3905 	if (cpu_has_feature(CPU_FTR_ARCH_300))
3906 		kvm->arch.threads_indep = indep_threads_mode;
3907 	if (!kvm->arch.threads_indep)
3908 		kvm_hv_vm_activated();
3909 
3910 	/*
3911 	 * Initialize smt_mode depending on processor.
3912 	 * POWER8 and earlier have to use "strict" threading, where
3913 	 * all vCPUs in a vcore have to run on the same (sub)core,
3914 	 * whereas on POWER9 the threads can each run a different
3915 	 * guest.
3916 	 */
3917 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3918 		kvm->arch.smt_mode = threads_per_subcore;
3919 	else
3920 		kvm->arch.smt_mode = 1;
3921 	kvm->arch.emul_smt_mode = 1;
3922 
3923 	/*
3924 	 * Create a debugfs directory for the VM
3925 	 */
3926 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
3927 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3928 	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3929 		kvmppc_mmu_debugfs_init(kvm);
3930 
3931 	return 0;
3932 }
3933 
3934 static void kvmppc_free_vcores(struct kvm *kvm)
3935 {
3936 	long int i;
3937 
3938 	for (i = 0; i < KVM_MAX_VCORES; ++i)
3939 		kfree(kvm->arch.vcores[i]);
3940 	kvm->arch.online_vcores = 0;
3941 }
3942 
3943 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3944 {
3945 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
3946 
3947 	if (!kvm->arch.threads_indep)
3948 		kvm_hv_vm_deactivated();
3949 
3950 	kvmppc_free_vcores(kvm);
3951 
3952 	kvmppc_free_lpid(kvm->arch.lpid);
3953 
3954 	if (kvm_is_radix(kvm))
3955 		kvmppc_free_radix(kvm);
3956 	else
3957 		kvmppc_free_hpt(&kvm->arch.hpt);
3958 
3959 	kvmppc_free_pimap(kvm);
3960 }
3961 
3962 /* We don't need to emulate any privileged instructions or dcbz */
3963 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3964 				     unsigned int inst, int *advance)
3965 {
3966 	return EMULATE_FAIL;
3967 }
3968 
3969 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3970 					ulong spr_val)
3971 {
3972 	return EMULATE_FAIL;
3973 }
3974 
3975 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3976 					ulong *spr_val)
3977 {
3978 	return EMULATE_FAIL;
3979 }
3980 
3981 static int kvmppc_core_check_processor_compat_hv(void)
3982 {
3983 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3984 	    !cpu_has_feature(CPU_FTR_ARCH_206))
3985 		return -EIO;
3986 
3987 	return 0;
3988 }
3989 
3990 #ifdef CONFIG_KVM_XICS
3991 
3992 void kvmppc_free_pimap(struct kvm *kvm)
3993 {
3994 	kfree(kvm->arch.pimap);
3995 }
3996 
3997 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3998 {
3999 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4000 }
4001 
4002 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4003 {
4004 	struct irq_desc *desc;
4005 	struct kvmppc_irq_map *irq_map;
4006 	struct kvmppc_passthru_irqmap *pimap;
4007 	struct irq_chip *chip;
4008 	int i, rc = 0;
4009 
4010 	if (!kvm_irq_bypass)
4011 		return 1;
4012 
4013 	desc = irq_to_desc(host_irq);
4014 	if (!desc)
4015 		return -EIO;
4016 
4017 	mutex_lock(&kvm->lock);
4018 
4019 	pimap = kvm->arch.pimap;
4020 	if (pimap == NULL) {
4021 		/* First call, allocate structure to hold IRQ map */
4022 		pimap = kvmppc_alloc_pimap();
4023 		if (pimap == NULL) {
4024 			mutex_unlock(&kvm->lock);
4025 			return -ENOMEM;
4026 		}
4027 		kvm->arch.pimap = pimap;
4028 	}
4029 
4030 	/*
4031 	 * For now, we only support interrupts for which the EOI operation
4032 	 * is an OPAL call followed by a write to XIRR, since that's
4033 	 * what our real-mode EOI code does, or a XIVE interrupt
4034 	 */
4035 	chip = irq_data_get_irq_chip(&desc->irq_data);
4036 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4037 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4038 			host_irq, guest_gsi);
4039 		mutex_unlock(&kvm->lock);
4040 		return -ENOENT;
4041 	}
4042 
4043 	/*
4044 	 * See if we already have an entry for this guest IRQ number.
4045 	 * If it's mapped to a hardware IRQ number, that's an error,
4046 	 * otherwise re-use this entry.
4047 	 */
4048 	for (i = 0; i < pimap->n_mapped; i++) {
4049 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
4050 			if (pimap->mapped[i].r_hwirq) {
4051 				mutex_unlock(&kvm->lock);
4052 				return -EINVAL;
4053 			}
4054 			break;
4055 		}
4056 	}
4057 
4058 	if (i == KVMPPC_PIRQ_MAPPED) {
4059 		mutex_unlock(&kvm->lock);
4060 		return -EAGAIN;		/* table is full */
4061 	}
4062 
4063 	irq_map = &pimap->mapped[i];
4064 
4065 	irq_map->v_hwirq = guest_gsi;
4066 	irq_map->desc = desc;
4067 
4068 	/*
4069 	 * Order the above two stores before the next to serialize with
4070 	 * the KVM real mode handler.
4071 	 */
4072 	smp_wmb();
4073 	irq_map->r_hwirq = desc->irq_data.hwirq;
4074 
4075 	if (i == pimap->n_mapped)
4076 		pimap->n_mapped++;
4077 
4078 	if (xive_enabled())
4079 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4080 	else
4081 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4082 	if (rc)
4083 		irq_map->r_hwirq = 0;
4084 
4085 	mutex_unlock(&kvm->lock);
4086 
4087 	return 0;
4088 }
4089 
4090 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4091 {
4092 	struct irq_desc *desc;
4093 	struct kvmppc_passthru_irqmap *pimap;
4094 	int i, rc = 0;
4095 
4096 	if (!kvm_irq_bypass)
4097 		return 0;
4098 
4099 	desc = irq_to_desc(host_irq);
4100 	if (!desc)
4101 		return -EIO;
4102 
4103 	mutex_lock(&kvm->lock);
4104 	if (!kvm->arch.pimap)
4105 		goto unlock;
4106 
4107 	pimap = kvm->arch.pimap;
4108 
4109 	for (i = 0; i < pimap->n_mapped; i++) {
4110 		if (guest_gsi == pimap->mapped[i].v_hwirq)
4111 			break;
4112 	}
4113 
4114 	if (i == pimap->n_mapped) {
4115 		mutex_unlock(&kvm->lock);
4116 		return -ENODEV;
4117 	}
4118 
4119 	if (xive_enabled())
4120 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4121 	else
4122 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4123 
4124 	/* invalidate the entry (what do do on error from the above ?) */
4125 	pimap->mapped[i].r_hwirq = 0;
4126 
4127 	/*
4128 	 * We don't free this structure even when the count goes to
4129 	 * zero. The structure is freed when we destroy the VM.
4130 	 */
4131  unlock:
4132 	mutex_unlock(&kvm->lock);
4133 	return rc;
4134 }
4135 
4136 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4137 					     struct irq_bypass_producer *prod)
4138 {
4139 	int ret = 0;
4140 	struct kvm_kernel_irqfd *irqfd =
4141 		container_of(cons, struct kvm_kernel_irqfd, consumer);
4142 
4143 	irqfd->producer = prod;
4144 
4145 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4146 	if (ret)
4147 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4148 			prod->irq, irqfd->gsi, ret);
4149 
4150 	return ret;
4151 }
4152 
4153 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4154 					      struct irq_bypass_producer *prod)
4155 {
4156 	int ret;
4157 	struct kvm_kernel_irqfd *irqfd =
4158 		container_of(cons, struct kvm_kernel_irqfd, consumer);
4159 
4160 	irqfd->producer = NULL;
4161 
4162 	/*
4163 	 * When producer of consumer is unregistered, we change back to
4164 	 * default external interrupt handling mode - KVM real mode
4165 	 * will switch back to host.
4166 	 */
4167 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4168 	if (ret)
4169 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4170 			prod->irq, irqfd->gsi, ret);
4171 }
4172 #endif
4173 
4174 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4175 				 unsigned int ioctl, unsigned long arg)
4176 {
4177 	struct kvm *kvm __maybe_unused = filp->private_data;
4178 	void __user *argp = (void __user *)arg;
4179 	long r;
4180 
4181 	switch (ioctl) {
4182 
4183 	case KVM_PPC_ALLOCATE_HTAB: {
4184 		u32 htab_order;
4185 
4186 		r = -EFAULT;
4187 		if (get_user(htab_order, (u32 __user *)argp))
4188 			break;
4189 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4190 		if (r)
4191 			break;
4192 		r = 0;
4193 		break;
4194 	}
4195 
4196 	case KVM_PPC_GET_HTAB_FD: {
4197 		struct kvm_get_htab_fd ghf;
4198 
4199 		r = -EFAULT;
4200 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
4201 			break;
4202 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4203 		break;
4204 	}
4205 
4206 	case KVM_PPC_RESIZE_HPT_PREPARE: {
4207 		struct kvm_ppc_resize_hpt rhpt;
4208 
4209 		r = -EFAULT;
4210 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4211 			break;
4212 
4213 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4214 		break;
4215 	}
4216 
4217 	case KVM_PPC_RESIZE_HPT_COMMIT: {
4218 		struct kvm_ppc_resize_hpt rhpt;
4219 
4220 		r = -EFAULT;
4221 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4222 			break;
4223 
4224 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4225 		break;
4226 	}
4227 
4228 	default:
4229 		r = -ENOTTY;
4230 	}
4231 
4232 	return r;
4233 }
4234 
4235 /*
4236  * List of hcall numbers to enable by default.
4237  * For compatibility with old userspace, we enable by default
4238  * all hcalls that were implemented before the hcall-enabling
4239  * facility was added.  Note this list should not include H_RTAS.
4240  */
4241 static unsigned int default_hcall_list[] = {
4242 	H_REMOVE,
4243 	H_ENTER,
4244 	H_READ,
4245 	H_PROTECT,
4246 	H_BULK_REMOVE,
4247 	H_GET_TCE,
4248 	H_PUT_TCE,
4249 	H_SET_DABR,
4250 	H_SET_XDABR,
4251 	H_CEDE,
4252 	H_PROD,
4253 	H_CONFER,
4254 	H_REGISTER_VPA,
4255 #ifdef CONFIG_KVM_XICS
4256 	H_EOI,
4257 	H_CPPR,
4258 	H_IPI,
4259 	H_IPOLL,
4260 	H_XIRR,
4261 	H_XIRR_X,
4262 #endif
4263 	0
4264 };
4265 
4266 static void init_default_hcalls(void)
4267 {
4268 	int i;
4269 	unsigned int hcall;
4270 
4271 	for (i = 0; default_hcall_list[i]; ++i) {
4272 		hcall = default_hcall_list[i];
4273 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4274 		__set_bit(hcall / 4, default_enabled_hcalls);
4275 	}
4276 }
4277 
4278 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4279 {
4280 	unsigned long lpcr;
4281 	int radix;
4282 	int err;
4283 
4284 	/* If not on a POWER9, reject it */
4285 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4286 		return -ENODEV;
4287 
4288 	/* If any unknown flags set, reject it */
4289 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4290 		return -EINVAL;
4291 
4292 	/* GR (guest radix) bit in process_table field must match */
4293 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4294 	if (!!(cfg->process_table & PATB_GR) != radix)
4295 		return -EINVAL;
4296 
4297 	/* Process table size field must be reasonable, i.e. <= 24 */
4298 	if ((cfg->process_table & PRTS_MASK) > 24)
4299 		return -EINVAL;
4300 
4301 	/* We can change a guest to/from radix now, if the host is radix */
4302 	if (radix && !radix_enabled())
4303 		return -EINVAL;
4304 
4305 	mutex_lock(&kvm->lock);
4306 	if (radix != kvm_is_radix(kvm)) {
4307 		if (kvm->arch.mmu_ready) {
4308 			kvm->arch.mmu_ready = 0;
4309 			/* order mmu_ready vs. vcpus_running */
4310 			smp_mb();
4311 			if (atomic_read(&kvm->arch.vcpus_running)) {
4312 				kvm->arch.mmu_ready = 1;
4313 				err = -EBUSY;
4314 				goto out_unlock;
4315 			}
4316 		}
4317 		if (radix)
4318 			err = kvmppc_switch_mmu_to_radix(kvm);
4319 		else
4320 			err = kvmppc_switch_mmu_to_hpt(kvm);
4321 		if (err)
4322 			goto out_unlock;
4323 	}
4324 
4325 	kvm->arch.process_table = cfg->process_table;
4326 	kvmppc_setup_partition_table(kvm);
4327 
4328 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4329 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4330 	err = 0;
4331 
4332  out_unlock:
4333 	mutex_unlock(&kvm->lock);
4334 	return err;
4335 }
4336 
4337 static struct kvmppc_ops kvm_ops_hv = {
4338 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4339 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4340 	.get_one_reg = kvmppc_get_one_reg_hv,
4341 	.set_one_reg = kvmppc_set_one_reg_hv,
4342 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
4343 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
4344 	.set_msr     = kvmppc_set_msr_hv,
4345 	.vcpu_run    = kvmppc_vcpu_run_hv,
4346 	.vcpu_create = kvmppc_core_vcpu_create_hv,
4347 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
4348 	.check_requests = kvmppc_core_check_requests_hv,
4349 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4350 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
4351 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4352 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4353 	.unmap_hva = kvm_unmap_hva_hv,
4354 	.unmap_hva_range = kvm_unmap_hva_range_hv,
4355 	.age_hva  = kvm_age_hva_hv,
4356 	.test_age_hva = kvm_test_age_hva_hv,
4357 	.set_spte_hva = kvm_set_spte_hva_hv,
4358 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
4359 	.free_memslot = kvmppc_core_free_memslot_hv,
4360 	.create_memslot = kvmppc_core_create_memslot_hv,
4361 	.init_vm =  kvmppc_core_init_vm_hv,
4362 	.destroy_vm = kvmppc_core_destroy_vm_hv,
4363 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4364 	.emulate_op = kvmppc_core_emulate_op_hv,
4365 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4366 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4367 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4368 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4369 	.hcall_implemented = kvmppc_hcall_impl_hv,
4370 #ifdef CONFIG_KVM_XICS
4371 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4372 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4373 #endif
4374 	.configure_mmu = kvmhv_configure_mmu,
4375 	.get_rmmu_info = kvmhv_get_rmmu_info,
4376 	.set_smt_mode = kvmhv_set_smt_mode,
4377 };
4378 
4379 static int kvm_init_subcore_bitmap(void)
4380 {
4381 	int i, j;
4382 	int nr_cores = cpu_nr_cores();
4383 	struct sibling_subcore_state *sibling_subcore_state;
4384 
4385 	for (i = 0; i < nr_cores; i++) {
4386 		int first_cpu = i * threads_per_core;
4387 		int node = cpu_to_node(first_cpu);
4388 
4389 		/* Ignore if it is already allocated. */
4390 		if (paca[first_cpu].sibling_subcore_state)
4391 			continue;
4392 
4393 		sibling_subcore_state =
4394 			kmalloc_node(sizeof(struct sibling_subcore_state),
4395 							GFP_KERNEL, node);
4396 		if (!sibling_subcore_state)
4397 			return -ENOMEM;
4398 
4399 		memset(sibling_subcore_state, 0,
4400 				sizeof(struct sibling_subcore_state));
4401 
4402 		for (j = 0; j < threads_per_core; j++) {
4403 			int cpu = first_cpu + j;
4404 
4405 			paca[cpu].sibling_subcore_state = sibling_subcore_state;
4406 		}
4407 	}
4408 	return 0;
4409 }
4410 
4411 static int kvmppc_radix_possible(void)
4412 {
4413 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4414 }
4415 
4416 static int kvmppc_book3s_init_hv(void)
4417 {
4418 	int r;
4419 	/*
4420 	 * FIXME!! Do we need to check on all cpus ?
4421 	 */
4422 	r = kvmppc_core_check_processor_compat_hv();
4423 	if (r < 0)
4424 		return -ENODEV;
4425 
4426 	r = kvm_init_subcore_bitmap();
4427 	if (r)
4428 		return r;
4429 
4430 	/*
4431 	 * We need a way of accessing the XICS interrupt controller,
4432 	 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4433 	 * indirectly, via OPAL.
4434 	 */
4435 #ifdef CONFIG_SMP
4436 	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4437 		struct device_node *np;
4438 
4439 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4440 		if (!np) {
4441 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4442 			return -ENODEV;
4443 		}
4444 	}
4445 #endif
4446 
4447 	kvm_ops_hv.owner = THIS_MODULE;
4448 	kvmppc_hv_ops = &kvm_ops_hv;
4449 
4450 	init_default_hcalls();
4451 
4452 	init_vcore_lists();
4453 
4454 	r = kvmppc_mmu_hv_init();
4455 	if (r)
4456 		return r;
4457 
4458 	if (kvmppc_radix_possible())
4459 		r = kvmppc_radix_init();
4460 
4461 	/*
4462 	 * POWER9 chips before version 2.02 can't have some threads in
4463 	 * HPT mode and some in radix mode on the same core.
4464 	 */
4465 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4466 		unsigned int pvr = mfspr(SPRN_PVR);
4467 		if ((pvr >> 16) == PVR_POWER9 &&
4468 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
4469 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
4470 			no_mixing_hpt_and_radix = true;
4471 	}
4472 
4473 	return r;
4474 }
4475 
4476 static void kvmppc_book3s_exit_hv(void)
4477 {
4478 	kvmppc_free_host_rm_ops();
4479 	if (kvmppc_radix_possible())
4480 		kvmppc_radix_exit();
4481 	kvmppc_hv_ops = NULL;
4482 }
4483 
4484 module_init(kvmppc_book3s_init_hv);
4485 module_exit(kvmppc_book3s_exit_hv);
4486 MODULE_LICENSE("GPL");
4487 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4488 MODULE_ALIAS("devname:kvm");
4489