1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/stat.h> 27 #include <linux/delay.h> 28 #include <linux/export.h> 29 #include <linux/fs.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/cpu.h> 32 #include <linux/cpumask.h> 33 #include <linux/spinlock.h> 34 #include <linux/page-flags.h> 35 #include <linux/srcu.h> 36 #include <linux/miscdevice.h> 37 #include <linux/debugfs.h> 38 #include <linux/gfp.h> 39 #include <linux/vmalloc.h> 40 #include <linux/highmem.h> 41 #include <linux/hugetlb.h> 42 #include <linux/kvm_irqfd.h> 43 #include <linux/irqbypass.h> 44 #include <linux/module.h> 45 #include <linux/compiler.h> 46 #include <linux/of.h> 47 48 #include <asm/reg.h> 49 #include <asm/cputable.h> 50 #include <asm/cacheflush.h> 51 #include <asm/tlbflush.h> 52 #include <linux/uaccess.h> 53 #include <asm/io.h> 54 #include <asm/kvm_ppc.h> 55 #include <asm/kvm_book3s.h> 56 #include <asm/mmu_context.h> 57 #include <asm/lppaca.h> 58 #include <asm/processor.h> 59 #include <asm/cputhreads.h> 60 #include <asm/page.h> 61 #include <asm/hvcall.h> 62 #include <asm/switch_to.h> 63 #include <asm/smp.h> 64 #include <asm/dbell.h> 65 #include <asm/hmi.h> 66 #include <asm/pnv-pci.h> 67 #include <asm/mmu.h> 68 #include <asm/opal.h> 69 #include <asm/xics.h> 70 #include <asm/xive.h> 71 72 #include "book3s.h" 73 74 #define CREATE_TRACE_POINTS 75 #include "trace_hv.h" 76 77 /* #define EXIT_DEBUG */ 78 /* #define EXIT_DEBUG_SIMPLE */ 79 /* #define EXIT_DEBUG_INT */ 80 81 /* Used to indicate that a guest page fault needs to be handled */ 82 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 83 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 84 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 85 86 /* Used as a "null" value for timebase values */ 87 #define TB_NIL (~(u64)0) 88 89 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 90 91 static int dynamic_mt_modes = 6; 92 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR); 93 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 94 static int target_smt_mode; 95 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR); 96 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 97 98 #ifdef CONFIG_KVM_XICS 99 static struct kernel_param_ops module_param_ops = { 100 .set = param_set_int, 101 .get = param_get_int, 102 }; 103 104 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 105 S_IRUGO | S_IWUSR); 106 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 107 108 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 109 S_IRUGO | S_IWUSR); 110 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 111 #endif 112 113 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 114 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 115 116 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 117 int *ip) 118 { 119 int i = *ip; 120 struct kvm_vcpu *vcpu; 121 122 while (++i < MAX_SMT_THREADS) { 123 vcpu = READ_ONCE(vc->runnable_threads[i]); 124 if (vcpu) { 125 *ip = i; 126 return vcpu; 127 } 128 } 129 return NULL; 130 } 131 132 /* Used to traverse the list of runnable threads for a given vcore */ 133 #define for_each_runnable_thread(i, vcpu, vc) \ 134 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 135 136 static bool kvmppc_ipi_thread(int cpu) 137 { 138 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 139 140 /* On POWER9 we can use msgsnd to IPI any cpu */ 141 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 142 msg |= get_hard_smp_processor_id(cpu); 143 smp_mb(); 144 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 145 return true; 146 } 147 148 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 149 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 150 preempt_disable(); 151 if (cpu_first_thread_sibling(cpu) == 152 cpu_first_thread_sibling(smp_processor_id())) { 153 msg |= cpu_thread_in_core(cpu); 154 smp_mb(); 155 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 156 preempt_enable(); 157 return true; 158 } 159 preempt_enable(); 160 } 161 162 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 163 if (cpu >= 0 && cpu < nr_cpu_ids) { 164 if (paca[cpu].kvm_hstate.xics_phys) { 165 xics_wake_cpu(cpu); 166 return true; 167 } 168 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 169 return true; 170 } 171 #endif 172 173 return false; 174 } 175 176 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 177 { 178 int cpu; 179 struct swait_queue_head *wqp; 180 181 wqp = kvm_arch_vcpu_wq(vcpu); 182 if (swait_active(wqp)) { 183 swake_up(wqp); 184 ++vcpu->stat.halt_wakeup; 185 } 186 187 cpu = READ_ONCE(vcpu->arch.thread_cpu); 188 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 189 return; 190 191 /* CPU points to the first thread of the core */ 192 cpu = vcpu->cpu; 193 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 194 smp_send_reschedule(cpu); 195 } 196 197 /* 198 * We use the vcpu_load/put functions to measure stolen time. 199 * Stolen time is counted as time when either the vcpu is able to 200 * run as part of a virtual core, but the task running the vcore 201 * is preempted or sleeping, or when the vcpu needs something done 202 * in the kernel by the task running the vcpu, but that task is 203 * preempted or sleeping. Those two things have to be counted 204 * separately, since one of the vcpu tasks will take on the job 205 * of running the core, and the other vcpu tasks in the vcore will 206 * sleep waiting for it to do that, but that sleep shouldn't count 207 * as stolen time. 208 * 209 * Hence we accumulate stolen time when the vcpu can run as part of 210 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 211 * needs its task to do other things in the kernel (for example, 212 * service a page fault) in busy_stolen. We don't accumulate 213 * stolen time for a vcore when it is inactive, or for a vcpu 214 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 215 * a misnomer; it means that the vcpu task is not executing in 216 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 217 * the kernel. We don't have any way of dividing up that time 218 * between time that the vcpu is genuinely stopped, time that 219 * the task is actively working on behalf of the vcpu, and time 220 * that the task is preempted, so we don't count any of it as 221 * stolen. 222 * 223 * Updates to busy_stolen are protected by arch.tbacct_lock; 224 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 225 * lock. The stolen times are measured in units of timebase ticks. 226 * (Note that the != TB_NIL checks below are purely defensive; 227 * they should never fail.) 228 */ 229 230 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 231 { 232 unsigned long flags; 233 234 spin_lock_irqsave(&vc->stoltb_lock, flags); 235 vc->preempt_tb = mftb(); 236 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 237 } 238 239 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 240 { 241 unsigned long flags; 242 243 spin_lock_irqsave(&vc->stoltb_lock, flags); 244 if (vc->preempt_tb != TB_NIL) { 245 vc->stolen_tb += mftb() - vc->preempt_tb; 246 vc->preempt_tb = TB_NIL; 247 } 248 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 249 } 250 251 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 252 { 253 struct kvmppc_vcore *vc = vcpu->arch.vcore; 254 unsigned long flags; 255 256 /* 257 * We can test vc->runner without taking the vcore lock, 258 * because only this task ever sets vc->runner to this 259 * vcpu, and once it is set to this vcpu, only this task 260 * ever sets it to NULL. 261 */ 262 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 263 kvmppc_core_end_stolen(vc); 264 265 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 266 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 267 vcpu->arch.busy_preempt != TB_NIL) { 268 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 269 vcpu->arch.busy_preempt = TB_NIL; 270 } 271 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 272 } 273 274 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 275 { 276 struct kvmppc_vcore *vc = vcpu->arch.vcore; 277 unsigned long flags; 278 279 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 280 kvmppc_core_start_stolen(vc); 281 282 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 283 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 284 vcpu->arch.busy_preempt = mftb(); 285 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 286 } 287 288 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 289 { 290 /* 291 * Check for illegal transactional state bit combination 292 * and if we find it, force the TS field to a safe state. 293 */ 294 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 295 msr &= ~MSR_TS_MASK; 296 vcpu->arch.shregs.msr = msr; 297 kvmppc_end_cede(vcpu); 298 } 299 300 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 301 { 302 vcpu->arch.pvr = pvr; 303 } 304 305 /* Dummy value used in computing PCR value below */ 306 #define PCR_ARCH_300 (PCR_ARCH_207 << 1) 307 308 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 309 { 310 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 311 struct kvmppc_vcore *vc = vcpu->arch.vcore; 312 313 /* We can (emulate) our own architecture version and anything older */ 314 if (cpu_has_feature(CPU_FTR_ARCH_300)) 315 host_pcr_bit = PCR_ARCH_300; 316 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 317 host_pcr_bit = PCR_ARCH_207; 318 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 319 host_pcr_bit = PCR_ARCH_206; 320 else 321 host_pcr_bit = PCR_ARCH_205; 322 323 /* Determine lowest PCR bit needed to run guest in given PVR level */ 324 guest_pcr_bit = host_pcr_bit; 325 if (arch_compat) { 326 switch (arch_compat) { 327 case PVR_ARCH_205: 328 guest_pcr_bit = PCR_ARCH_205; 329 break; 330 case PVR_ARCH_206: 331 case PVR_ARCH_206p: 332 guest_pcr_bit = PCR_ARCH_206; 333 break; 334 case PVR_ARCH_207: 335 guest_pcr_bit = PCR_ARCH_207; 336 break; 337 case PVR_ARCH_300: 338 guest_pcr_bit = PCR_ARCH_300; 339 break; 340 default: 341 return -EINVAL; 342 } 343 } 344 345 /* Check requested PCR bits don't exceed our capabilities */ 346 if (guest_pcr_bit > host_pcr_bit) 347 return -EINVAL; 348 349 spin_lock(&vc->lock); 350 vc->arch_compat = arch_compat; 351 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */ 352 vc->pcr = host_pcr_bit - guest_pcr_bit; 353 spin_unlock(&vc->lock); 354 355 return 0; 356 } 357 358 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 359 { 360 int r; 361 362 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 363 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 364 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 365 for (r = 0; r < 16; ++r) 366 pr_err("r%2d = %.16lx r%d = %.16lx\n", 367 r, kvmppc_get_gpr(vcpu, r), 368 r+16, kvmppc_get_gpr(vcpu, r+16)); 369 pr_err("ctr = %.16lx lr = %.16lx\n", 370 vcpu->arch.ctr, vcpu->arch.lr); 371 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 372 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 373 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 374 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 375 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 376 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 377 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 378 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 379 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 380 pr_err("fault dar = %.16lx dsisr = %.8x\n", 381 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 382 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 383 for (r = 0; r < vcpu->arch.slb_max; ++r) 384 pr_err(" ESID = %.16llx VSID = %.16llx\n", 385 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 386 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 387 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 388 vcpu->arch.last_inst); 389 } 390 391 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 392 { 393 struct kvm_vcpu *ret; 394 395 mutex_lock(&kvm->lock); 396 ret = kvm_get_vcpu_by_id(kvm, id); 397 mutex_unlock(&kvm->lock); 398 return ret; 399 } 400 401 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 402 { 403 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 404 vpa->yield_count = cpu_to_be32(1); 405 } 406 407 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 408 unsigned long addr, unsigned long len) 409 { 410 /* check address is cacheline aligned */ 411 if (addr & (L1_CACHE_BYTES - 1)) 412 return -EINVAL; 413 spin_lock(&vcpu->arch.vpa_update_lock); 414 if (v->next_gpa != addr || v->len != len) { 415 v->next_gpa = addr; 416 v->len = addr ? len : 0; 417 v->update_pending = 1; 418 } 419 spin_unlock(&vcpu->arch.vpa_update_lock); 420 return 0; 421 } 422 423 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 424 struct reg_vpa { 425 u32 dummy; 426 union { 427 __be16 hword; 428 __be32 word; 429 } length; 430 }; 431 432 static int vpa_is_registered(struct kvmppc_vpa *vpap) 433 { 434 if (vpap->update_pending) 435 return vpap->next_gpa != 0; 436 return vpap->pinned_addr != NULL; 437 } 438 439 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 440 unsigned long flags, 441 unsigned long vcpuid, unsigned long vpa) 442 { 443 struct kvm *kvm = vcpu->kvm; 444 unsigned long len, nb; 445 void *va; 446 struct kvm_vcpu *tvcpu; 447 int err; 448 int subfunc; 449 struct kvmppc_vpa *vpap; 450 451 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 452 if (!tvcpu) 453 return H_PARAMETER; 454 455 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 456 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 457 subfunc == H_VPA_REG_SLB) { 458 /* Registering new area - address must be cache-line aligned */ 459 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 460 return H_PARAMETER; 461 462 /* convert logical addr to kernel addr and read length */ 463 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 464 if (va == NULL) 465 return H_PARAMETER; 466 if (subfunc == H_VPA_REG_VPA) 467 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 468 else 469 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 470 kvmppc_unpin_guest_page(kvm, va, vpa, false); 471 472 /* Check length */ 473 if (len > nb || len < sizeof(struct reg_vpa)) 474 return H_PARAMETER; 475 } else { 476 vpa = 0; 477 len = 0; 478 } 479 480 err = H_PARAMETER; 481 vpap = NULL; 482 spin_lock(&tvcpu->arch.vpa_update_lock); 483 484 switch (subfunc) { 485 case H_VPA_REG_VPA: /* register VPA */ 486 if (len < sizeof(struct lppaca)) 487 break; 488 vpap = &tvcpu->arch.vpa; 489 err = 0; 490 break; 491 492 case H_VPA_REG_DTL: /* register DTL */ 493 if (len < sizeof(struct dtl_entry)) 494 break; 495 len -= len % sizeof(struct dtl_entry); 496 497 /* Check that they have previously registered a VPA */ 498 err = H_RESOURCE; 499 if (!vpa_is_registered(&tvcpu->arch.vpa)) 500 break; 501 502 vpap = &tvcpu->arch.dtl; 503 err = 0; 504 break; 505 506 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 507 /* Check that they have previously registered a VPA */ 508 err = H_RESOURCE; 509 if (!vpa_is_registered(&tvcpu->arch.vpa)) 510 break; 511 512 vpap = &tvcpu->arch.slb_shadow; 513 err = 0; 514 break; 515 516 case H_VPA_DEREG_VPA: /* deregister VPA */ 517 /* Check they don't still have a DTL or SLB buf registered */ 518 err = H_RESOURCE; 519 if (vpa_is_registered(&tvcpu->arch.dtl) || 520 vpa_is_registered(&tvcpu->arch.slb_shadow)) 521 break; 522 523 vpap = &tvcpu->arch.vpa; 524 err = 0; 525 break; 526 527 case H_VPA_DEREG_DTL: /* deregister DTL */ 528 vpap = &tvcpu->arch.dtl; 529 err = 0; 530 break; 531 532 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 533 vpap = &tvcpu->arch.slb_shadow; 534 err = 0; 535 break; 536 } 537 538 if (vpap) { 539 vpap->next_gpa = vpa; 540 vpap->len = len; 541 vpap->update_pending = 1; 542 } 543 544 spin_unlock(&tvcpu->arch.vpa_update_lock); 545 546 return err; 547 } 548 549 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 550 { 551 struct kvm *kvm = vcpu->kvm; 552 void *va; 553 unsigned long nb; 554 unsigned long gpa; 555 556 /* 557 * We need to pin the page pointed to by vpap->next_gpa, 558 * but we can't call kvmppc_pin_guest_page under the lock 559 * as it does get_user_pages() and down_read(). So we 560 * have to drop the lock, pin the page, then get the lock 561 * again and check that a new area didn't get registered 562 * in the meantime. 563 */ 564 for (;;) { 565 gpa = vpap->next_gpa; 566 spin_unlock(&vcpu->arch.vpa_update_lock); 567 va = NULL; 568 nb = 0; 569 if (gpa) 570 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 571 spin_lock(&vcpu->arch.vpa_update_lock); 572 if (gpa == vpap->next_gpa) 573 break; 574 /* sigh... unpin that one and try again */ 575 if (va) 576 kvmppc_unpin_guest_page(kvm, va, gpa, false); 577 } 578 579 vpap->update_pending = 0; 580 if (va && nb < vpap->len) { 581 /* 582 * If it's now too short, it must be that userspace 583 * has changed the mappings underlying guest memory, 584 * so unregister the region. 585 */ 586 kvmppc_unpin_guest_page(kvm, va, gpa, false); 587 va = NULL; 588 } 589 if (vpap->pinned_addr) 590 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 591 vpap->dirty); 592 vpap->gpa = gpa; 593 vpap->pinned_addr = va; 594 vpap->dirty = false; 595 if (va) 596 vpap->pinned_end = va + vpap->len; 597 } 598 599 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 600 { 601 if (!(vcpu->arch.vpa.update_pending || 602 vcpu->arch.slb_shadow.update_pending || 603 vcpu->arch.dtl.update_pending)) 604 return; 605 606 spin_lock(&vcpu->arch.vpa_update_lock); 607 if (vcpu->arch.vpa.update_pending) { 608 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 609 if (vcpu->arch.vpa.pinned_addr) 610 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 611 } 612 if (vcpu->arch.dtl.update_pending) { 613 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 614 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 615 vcpu->arch.dtl_index = 0; 616 } 617 if (vcpu->arch.slb_shadow.update_pending) 618 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 619 spin_unlock(&vcpu->arch.vpa_update_lock); 620 } 621 622 /* 623 * Return the accumulated stolen time for the vcore up until `now'. 624 * The caller should hold the vcore lock. 625 */ 626 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 627 { 628 u64 p; 629 unsigned long flags; 630 631 spin_lock_irqsave(&vc->stoltb_lock, flags); 632 p = vc->stolen_tb; 633 if (vc->vcore_state != VCORE_INACTIVE && 634 vc->preempt_tb != TB_NIL) 635 p += now - vc->preempt_tb; 636 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 637 return p; 638 } 639 640 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 641 struct kvmppc_vcore *vc) 642 { 643 struct dtl_entry *dt; 644 struct lppaca *vpa; 645 unsigned long stolen; 646 unsigned long core_stolen; 647 u64 now; 648 649 dt = vcpu->arch.dtl_ptr; 650 vpa = vcpu->arch.vpa.pinned_addr; 651 now = mftb(); 652 core_stolen = vcore_stolen_time(vc, now); 653 stolen = core_stolen - vcpu->arch.stolen_logged; 654 vcpu->arch.stolen_logged = core_stolen; 655 spin_lock_irq(&vcpu->arch.tbacct_lock); 656 stolen += vcpu->arch.busy_stolen; 657 vcpu->arch.busy_stolen = 0; 658 spin_unlock_irq(&vcpu->arch.tbacct_lock); 659 if (!dt || !vpa) 660 return; 661 memset(dt, 0, sizeof(struct dtl_entry)); 662 dt->dispatch_reason = 7; 663 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 664 dt->timebase = cpu_to_be64(now + vc->tb_offset); 665 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 666 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 667 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 668 ++dt; 669 if (dt == vcpu->arch.dtl.pinned_end) 670 dt = vcpu->arch.dtl.pinned_addr; 671 vcpu->arch.dtl_ptr = dt; 672 /* order writing *dt vs. writing vpa->dtl_idx */ 673 smp_wmb(); 674 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 675 vcpu->arch.dtl.dirty = true; 676 } 677 678 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 679 { 680 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 681 return true; 682 if ((!vcpu->arch.vcore->arch_compat) && 683 cpu_has_feature(CPU_FTR_ARCH_207S)) 684 return true; 685 return false; 686 } 687 688 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 689 unsigned long resource, unsigned long value1, 690 unsigned long value2) 691 { 692 switch (resource) { 693 case H_SET_MODE_RESOURCE_SET_CIABR: 694 if (!kvmppc_power8_compatible(vcpu)) 695 return H_P2; 696 if (value2) 697 return H_P4; 698 if (mflags) 699 return H_UNSUPPORTED_FLAG_START; 700 /* Guests can't breakpoint the hypervisor */ 701 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 702 return H_P3; 703 vcpu->arch.ciabr = value1; 704 return H_SUCCESS; 705 case H_SET_MODE_RESOURCE_SET_DAWR: 706 if (!kvmppc_power8_compatible(vcpu)) 707 return H_P2; 708 if (mflags) 709 return H_UNSUPPORTED_FLAG_START; 710 if (value2 & DABRX_HYP) 711 return H_P4; 712 vcpu->arch.dawr = value1; 713 vcpu->arch.dawrx = value2; 714 return H_SUCCESS; 715 default: 716 return H_TOO_HARD; 717 } 718 } 719 720 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 721 { 722 struct kvmppc_vcore *vcore = target->arch.vcore; 723 724 /* 725 * We expect to have been called by the real mode handler 726 * (kvmppc_rm_h_confer()) which would have directly returned 727 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 728 * have useful work to do and should not confer) so we don't 729 * recheck that here. 730 */ 731 732 spin_lock(&vcore->lock); 733 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 734 vcore->vcore_state != VCORE_INACTIVE && 735 vcore->runner) 736 target = vcore->runner; 737 spin_unlock(&vcore->lock); 738 739 return kvm_vcpu_yield_to(target); 740 } 741 742 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 743 { 744 int yield_count = 0; 745 struct lppaca *lppaca; 746 747 spin_lock(&vcpu->arch.vpa_update_lock); 748 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 749 if (lppaca) 750 yield_count = be32_to_cpu(lppaca->yield_count); 751 spin_unlock(&vcpu->arch.vpa_update_lock); 752 return yield_count; 753 } 754 755 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 756 { 757 unsigned long req = kvmppc_get_gpr(vcpu, 3); 758 unsigned long target, ret = H_SUCCESS; 759 int yield_count; 760 struct kvm_vcpu *tvcpu; 761 int idx, rc; 762 763 if (req <= MAX_HCALL_OPCODE && 764 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 765 return RESUME_HOST; 766 767 switch (req) { 768 case H_CEDE: 769 break; 770 case H_PROD: 771 target = kvmppc_get_gpr(vcpu, 4); 772 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 773 if (!tvcpu) { 774 ret = H_PARAMETER; 775 break; 776 } 777 tvcpu->arch.prodded = 1; 778 smp_mb(); 779 if (tvcpu->arch.ceded) 780 kvmppc_fast_vcpu_kick_hv(tvcpu); 781 break; 782 case H_CONFER: 783 target = kvmppc_get_gpr(vcpu, 4); 784 if (target == -1) 785 break; 786 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 787 if (!tvcpu) { 788 ret = H_PARAMETER; 789 break; 790 } 791 yield_count = kvmppc_get_gpr(vcpu, 5); 792 if (kvmppc_get_yield_count(tvcpu) != yield_count) 793 break; 794 kvm_arch_vcpu_yield_to(tvcpu); 795 break; 796 case H_REGISTER_VPA: 797 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 798 kvmppc_get_gpr(vcpu, 5), 799 kvmppc_get_gpr(vcpu, 6)); 800 break; 801 case H_RTAS: 802 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 803 return RESUME_HOST; 804 805 idx = srcu_read_lock(&vcpu->kvm->srcu); 806 rc = kvmppc_rtas_hcall(vcpu); 807 srcu_read_unlock(&vcpu->kvm->srcu, idx); 808 809 if (rc == -ENOENT) 810 return RESUME_HOST; 811 else if (rc == 0) 812 break; 813 814 /* Send the error out to userspace via KVM_RUN */ 815 return rc; 816 case H_LOGICAL_CI_LOAD: 817 ret = kvmppc_h_logical_ci_load(vcpu); 818 if (ret == H_TOO_HARD) 819 return RESUME_HOST; 820 break; 821 case H_LOGICAL_CI_STORE: 822 ret = kvmppc_h_logical_ci_store(vcpu); 823 if (ret == H_TOO_HARD) 824 return RESUME_HOST; 825 break; 826 case H_SET_MODE: 827 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 828 kvmppc_get_gpr(vcpu, 5), 829 kvmppc_get_gpr(vcpu, 6), 830 kvmppc_get_gpr(vcpu, 7)); 831 if (ret == H_TOO_HARD) 832 return RESUME_HOST; 833 break; 834 case H_XIRR: 835 case H_CPPR: 836 case H_EOI: 837 case H_IPI: 838 case H_IPOLL: 839 case H_XIRR_X: 840 if (kvmppc_xics_enabled(vcpu)) { 841 if (xive_enabled()) { 842 ret = H_NOT_AVAILABLE; 843 return RESUME_GUEST; 844 } 845 ret = kvmppc_xics_hcall(vcpu, req); 846 break; 847 } 848 return RESUME_HOST; 849 case H_PUT_TCE: 850 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 851 kvmppc_get_gpr(vcpu, 5), 852 kvmppc_get_gpr(vcpu, 6)); 853 if (ret == H_TOO_HARD) 854 return RESUME_HOST; 855 break; 856 case H_PUT_TCE_INDIRECT: 857 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 858 kvmppc_get_gpr(vcpu, 5), 859 kvmppc_get_gpr(vcpu, 6), 860 kvmppc_get_gpr(vcpu, 7)); 861 if (ret == H_TOO_HARD) 862 return RESUME_HOST; 863 break; 864 case H_STUFF_TCE: 865 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 866 kvmppc_get_gpr(vcpu, 5), 867 kvmppc_get_gpr(vcpu, 6), 868 kvmppc_get_gpr(vcpu, 7)); 869 if (ret == H_TOO_HARD) 870 return RESUME_HOST; 871 break; 872 default: 873 return RESUME_HOST; 874 } 875 kvmppc_set_gpr(vcpu, 3, ret); 876 vcpu->arch.hcall_needed = 0; 877 return RESUME_GUEST; 878 } 879 880 static int kvmppc_hcall_impl_hv(unsigned long cmd) 881 { 882 switch (cmd) { 883 case H_CEDE: 884 case H_PROD: 885 case H_CONFER: 886 case H_REGISTER_VPA: 887 case H_SET_MODE: 888 case H_LOGICAL_CI_LOAD: 889 case H_LOGICAL_CI_STORE: 890 #ifdef CONFIG_KVM_XICS 891 case H_XIRR: 892 case H_CPPR: 893 case H_EOI: 894 case H_IPI: 895 case H_IPOLL: 896 case H_XIRR_X: 897 #endif 898 return 1; 899 } 900 901 /* See if it's in the real-mode table */ 902 return kvmppc_hcall_impl_hv_realmode(cmd); 903 } 904 905 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 906 struct kvm_vcpu *vcpu) 907 { 908 u32 last_inst; 909 910 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 911 EMULATE_DONE) { 912 /* 913 * Fetch failed, so return to guest and 914 * try executing it again. 915 */ 916 return RESUME_GUEST; 917 } 918 919 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 920 run->exit_reason = KVM_EXIT_DEBUG; 921 run->debug.arch.address = kvmppc_get_pc(vcpu); 922 return RESUME_HOST; 923 } else { 924 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 925 return RESUME_GUEST; 926 } 927 } 928 929 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 930 struct task_struct *tsk) 931 { 932 int r = RESUME_HOST; 933 934 vcpu->stat.sum_exits++; 935 936 /* 937 * This can happen if an interrupt occurs in the last stages 938 * of guest entry or the first stages of guest exit (i.e. after 939 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 940 * and before setting it to KVM_GUEST_MODE_HOST_HV). 941 * That can happen due to a bug, or due to a machine check 942 * occurring at just the wrong time. 943 */ 944 if (vcpu->arch.shregs.msr & MSR_HV) { 945 printk(KERN_EMERG "KVM trap in HV mode!\n"); 946 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 947 vcpu->arch.trap, kvmppc_get_pc(vcpu), 948 vcpu->arch.shregs.msr); 949 kvmppc_dump_regs(vcpu); 950 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 951 run->hw.hardware_exit_reason = vcpu->arch.trap; 952 return RESUME_HOST; 953 } 954 run->exit_reason = KVM_EXIT_UNKNOWN; 955 run->ready_for_interrupt_injection = 1; 956 switch (vcpu->arch.trap) { 957 /* We're good on these - the host merely wanted to get our attention */ 958 case BOOK3S_INTERRUPT_HV_DECREMENTER: 959 vcpu->stat.dec_exits++; 960 r = RESUME_GUEST; 961 break; 962 case BOOK3S_INTERRUPT_EXTERNAL: 963 case BOOK3S_INTERRUPT_H_DOORBELL: 964 case BOOK3S_INTERRUPT_H_VIRT: 965 vcpu->stat.ext_intr_exits++; 966 r = RESUME_GUEST; 967 break; 968 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/ 969 case BOOK3S_INTERRUPT_HMI: 970 case BOOK3S_INTERRUPT_PERFMON: 971 r = RESUME_GUEST; 972 break; 973 case BOOK3S_INTERRUPT_MACHINE_CHECK: 974 /* 975 * Deliver a machine check interrupt to the guest. 976 * We have to do this, even if the host has handled the 977 * machine check, because machine checks use SRR0/1 and 978 * the interrupt might have trashed guest state in them. 979 */ 980 kvmppc_book3s_queue_irqprio(vcpu, 981 BOOK3S_INTERRUPT_MACHINE_CHECK); 982 r = RESUME_GUEST; 983 break; 984 case BOOK3S_INTERRUPT_PROGRAM: 985 { 986 ulong flags; 987 /* 988 * Normally program interrupts are delivered directly 989 * to the guest by the hardware, but we can get here 990 * as a result of a hypervisor emulation interrupt 991 * (e40) getting turned into a 700 by BML RTAS. 992 */ 993 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 994 kvmppc_core_queue_program(vcpu, flags); 995 r = RESUME_GUEST; 996 break; 997 } 998 case BOOK3S_INTERRUPT_SYSCALL: 999 { 1000 /* hcall - punt to userspace */ 1001 int i; 1002 1003 /* hypercall with MSR_PR has already been handled in rmode, 1004 * and never reaches here. 1005 */ 1006 1007 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1008 for (i = 0; i < 9; ++i) 1009 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1010 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1011 vcpu->arch.hcall_needed = 1; 1012 r = RESUME_HOST; 1013 break; 1014 } 1015 /* 1016 * We get these next two if the guest accesses a page which it thinks 1017 * it has mapped but which is not actually present, either because 1018 * it is for an emulated I/O device or because the corresonding 1019 * host page has been paged out. Any other HDSI/HISI interrupts 1020 * have been handled already. 1021 */ 1022 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1023 r = RESUME_PAGE_FAULT; 1024 break; 1025 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1026 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1027 vcpu->arch.fault_dsisr = 0; 1028 r = RESUME_PAGE_FAULT; 1029 break; 1030 /* 1031 * This occurs if the guest executes an illegal instruction. 1032 * If the guest debug is disabled, generate a program interrupt 1033 * to the guest. If guest debug is enabled, we need to check 1034 * whether the instruction is a software breakpoint instruction. 1035 * Accordingly return to Guest or Host. 1036 */ 1037 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1038 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1039 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1040 swab32(vcpu->arch.emul_inst) : 1041 vcpu->arch.emul_inst; 1042 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1043 r = kvmppc_emulate_debug_inst(run, vcpu); 1044 } else { 1045 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1046 r = RESUME_GUEST; 1047 } 1048 break; 1049 /* 1050 * This occurs if the guest (kernel or userspace), does something that 1051 * is prohibited by HFSCR. We just generate a program interrupt to 1052 * the guest. 1053 */ 1054 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1055 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1056 r = RESUME_GUEST; 1057 break; 1058 case BOOK3S_INTERRUPT_HV_RM_HARD: 1059 r = RESUME_PASSTHROUGH; 1060 break; 1061 default: 1062 kvmppc_dump_regs(vcpu); 1063 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1064 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1065 vcpu->arch.shregs.msr); 1066 run->hw.hardware_exit_reason = vcpu->arch.trap; 1067 r = RESUME_HOST; 1068 break; 1069 } 1070 1071 return r; 1072 } 1073 1074 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1075 struct kvm_sregs *sregs) 1076 { 1077 int i; 1078 1079 memset(sregs, 0, sizeof(struct kvm_sregs)); 1080 sregs->pvr = vcpu->arch.pvr; 1081 for (i = 0; i < vcpu->arch.slb_max; i++) { 1082 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1083 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1084 } 1085 1086 return 0; 1087 } 1088 1089 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1090 struct kvm_sregs *sregs) 1091 { 1092 int i, j; 1093 1094 /* Only accept the same PVR as the host's, since we can't spoof it */ 1095 if (sregs->pvr != vcpu->arch.pvr) 1096 return -EINVAL; 1097 1098 j = 0; 1099 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1100 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1101 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1102 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1103 ++j; 1104 } 1105 } 1106 vcpu->arch.slb_max = j; 1107 1108 return 0; 1109 } 1110 1111 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1112 bool preserve_top32) 1113 { 1114 struct kvm *kvm = vcpu->kvm; 1115 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1116 u64 mask; 1117 1118 mutex_lock(&kvm->lock); 1119 spin_lock(&vc->lock); 1120 /* 1121 * If ILE (interrupt little-endian) has changed, update the 1122 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1123 */ 1124 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1125 struct kvm_vcpu *vcpu; 1126 int i; 1127 1128 kvm_for_each_vcpu(i, vcpu, kvm) { 1129 if (vcpu->arch.vcore != vc) 1130 continue; 1131 if (new_lpcr & LPCR_ILE) 1132 vcpu->arch.intr_msr |= MSR_LE; 1133 else 1134 vcpu->arch.intr_msr &= ~MSR_LE; 1135 } 1136 } 1137 1138 /* 1139 * Userspace can only modify DPFD (default prefetch depth), 1140 * ILE (interrupt little-endian) and TC (translation control). 1141 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1142 */ 1143 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1144 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1145 mask |= LPCR_AIL; 1146 1147 /* Broken 32-bit version of LPCR must not clear top bits */ 1148 if (preserve_top32) 1149 mask &= 0xFFFFFFFF; 1150 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1151 spin_unlock(&vc->lock); 1152 mutex_unlock(&kvm->lock); 1153 } 1154 1155 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1156 union kvmppc_one_reg *val) 1157 { 1158 int r = 0; 1159 long int i; 1160 1161 switch (id) { 1162 case KVM_REG_PPC_DEBUG_INST: 1163 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1164 break; 1165 case KVM_REG_PPC_HIOR: 1166 *val = get_reg_val(id, 0); 1167 break; 1168 case KVM_REG_PPC_DABR: 1169 *val = get_reg_val(id, vcpu->arch.dabr); 1170 break; 1171 case KVM_REG_PPC_DABRX: 1172 *val = get_reg_val(id, vcpu->arch.dabrx); 1173 break; 1174 case KVM_REG_PPC_DSCR: 1175 *val = get_reg_val(id, vcpu->arch.dscr); 1176 break; 1177 case KVM_REG_PPC_PURR: 1178 *val = get_reg_val(id, vcpu->arch.purr); 1179 break; 1180 case KVM_REG_PPC_SPURR: 1181 *val = get_reg_val(id, vcpu->arch.spurr); 1182 break; 1183 case KVM_REG_PPC_AMR: 1184 *val = get_reg_val(id, vcpu->arch.amr); 1185 break; 1186 case KVM_REG_PPC_UAMOR: 1187 *val = get_reg_val(id, vcpu->arch.uamor); 1188 break; 1189 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1190 i = id - KVM_REG_PPC_MMCR0; 1191 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1192 break; 1193 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1194 i = id - KVM_REG_PPC_PMC1; 1195 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1196 break; 1197 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1198 i = id - KVM_REG_PPC_SPMC1; 1199 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1200 break; 1201 case KVM_REG_PPC_SIAR: 1202 *val = get_reg_val(id, vcpu->arch.siar); 1203 break; 1204 case KVM_REG_PPC_SDAR: 1205 *val = get_reg_val(id, vcpu->arch.sdar); 1206 break; 1207 case KVM_REG_PPC_SIER: 1208 *val = get_reg_val(id, vcpu->arch.sier); 1209 break; 1210 case KVM_REG_PPC_IAMR: 1211 *val = get_reg_val(id, vcpu->arch.iamr); 1212 break; 1213 case KVM_REG_PPC_PSPB: 1214 *val = get_reg_val(id, vcpu->arch.pspb); 1215 break; 1216 case KVM_REG_PPC_DPDES: 1217 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1218 break; 1219 case KVM_REG_PPC_VTB: 1220 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1221 break; 1222 case KVM_REG_PPC_DAWR: 1223 *val = get_reg_val(id, vcpu->arch.dawr); 1224 break; 1225 case KVM_REG_PPC_DAWRX: 1226 *val = get_reg_val(id, vcpu->arch.dawrx); 1227 break; 1228 case KVM_REG_PPC_CIABR: 1229 *val = get_reg_val(id, vcpu->arch.ciabr); 1230 break; 1231 case KVM_REG_PPC_CSIGR: 1232 *val = get_reg_val(id, vcpu->arch.csigr); 1233 break; 1234 case KVM_REG_PPC_TACR: 1235 *val = get_reg_val(id, vcpu->arch.tacr); 1236 break; 1237 case KVM_REG_PPC_TCSCR: 1238 *val = get_reg_val(id, vcpu->arch.tcscr); 1239 break; 1240 case KVM_REG_PPC_PID: 1241 *val = get_reg_val(id, vcpu->arch.pid); 1242 break; 1243 case KVM_REG_PPC_ACOP: 1244 *val = get_reg_val(id, vcpu->arch.acop); 1245 break; 1246 case KVM_REG_PPC_WORT: 1247 *val = get_reg_val(id, vcpu->arch.wort); 1248 break; 1249 case KVM_REG_PPC_TIDR: 1250 *val = get_reg_val(id, vcpu->arch.tid); 1251 break; 1252 case KVM_REG_PPC_PSSCR: 1253 *val = get_reg_val(id, vcpu->arch.psscr); 1254 break; 1255 case KVM_REG_PPC_VPA_ADDR: 1256 spin_lock(&vcpu->arch.vpa_update_lock); 1257 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1258 spin_unlock(&vcpu->arch.vpa_update_lock); 1259 break; 1260 case KVM_REG_PPC_VPA_SLB: 1261 spin_lock(&vcpu->arch.vpa_update_lock); 1262 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1263 val->vpaval.length = vcpu->arch.slb_shadow.len; 1264 spin_unlock(&vcpu->arch.vpa_update_lock); 1265 break; 1266 case KVM_REG_PPC_VPA_DTL: 1267 spin_lock(&vcpu->arch.vpa_update_lock); 1268 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1269 val->vpaval.length = vcpu->arch.dtl.len; 1270 spin_unlock(&vcpu->arch.vpa_update_lock); 1271 break; 1272 case KVM_REG_PPC_TB_OFFSET: 1273 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1274 break; 1275 case KVM_REG_PPC_LPCR: 1276 case KVM_REG_PPC_LPCR_64: 1277 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1278 break; 1279 case KVM_REG_PPC_PPR: 1280 *val = get_reg_val(id, vcpu->arch.ppr); 1281 break; 1282 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1283 case KVM_REG_PPC_TFHAR: 1284 *val = get_reg_val(id, vcpu->arch.tfhar); 1285 break; 1286 case KVM_REG_PPC_TFIAR: 1287 *val = get_reg_val(id, vcpu->arch.tfiar); 1288 break; 1289 case KVM_REG_PPC_TEXASR: 1290 *val = get_reg_val(id, vcpu->arch.texasr); 1291 break; 1292 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1293 i = id - KVM_REG_PPC_TM_GPR0; 1294 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1295 break; 1296 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1297 { 1298 int j; 1299 i = id - KVM_REG_PPC_TM_VSR0; 1300 if (i < 32) 1301 for (j = 0; j < TS_FPRWIDTH; j++) 1302 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1303 else { 1304 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1305 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1306 else 1307 r = -ENXIO; 1308 } 1309 break; 1310 } 1311 case KVM_REG_PPC_TM_CR: 1312 *val = get_reg_val(id, vcpu->arch.cr_tm); 1313 break; 1314 case KVM_REG_PPC_TM_XER: 1315 *val = get_reg_val(id, vcpu->arch.xer_tm); 1316 break; 1317 case KVM_REG_PPC_TM_LR: 1318 *val = get_reg_val(id, vcpu->arch.lr_tm); 1319 break; 1320 case KVM_REG_PPC_TM_CTR: 1321 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1322 break; 1323 case KVM_REG_PPC_TM_FPSCR: 1324 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1325 break; 1326 case KVM_REG_PPC_TM_AMR: 1327 *val = get_reg_val(id, vcpu->arch.amr_tm); 1328 break; 1329 case KVM_REG_PPC_TM_PPR: 1330 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1331 break; 1332 case KVM_REG_PPC_TM_VRSAVE: 1333 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1334 break; 1335 case KVM_REG_PPC_TM_VSCR: 1336 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1337 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1338 else 1339 r = -ENXIO; 1340 break; 1341 case KVM_REG_PPC_TM_DSCR: 1342 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1343 break; 1344 case KVM_REG_PPC_TM_TAR: 1345 *val = get_reg_val(id, vcpu->arch.tar_tm); 1346 break; 1347 #endif 1348 case KVM_REG_PPC_ARCH_COMPAT: 1349 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1350 break; 1351 default: 1352 r = -EINVAL; 1353 break; 1354 } 1355 1356 return r; 1357 } 1358 1359 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1360 union kvmppc_one_reg *val) 1361 { 1362 int r = 0; 1363 long int i; 1364 unsigned long addr, len; 1365 1366 switch (id) { 1367 case KVM_REG_PPC_HIOR: 1368 /* Only allow this to be set to zero */ 1369 if (set_reg_val(id, *val)) 1370 r = -EINVAL; 1371 break; 1372 case KVM_REG_PPC_DABR: 1373 vcpu->arch.dabr = set_reg_val(id, *val); 1374 break; 1375 case KVM_REG_PPC_DABRX: 1376 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1377 break; 1378 case KVM_REG_PPC_DSCR: 1379 vcpu->arch.dscr = set_reg_val(id, *val); 1380 break; 1381 case KVM_REG_PPC_PURR: 1382 vcpu->arch.purr = set_reg_val(id, *val); 1383 break; 1384 case KVM_REG_PPC_SPURR: 1385 vcpu->arch.spurr = set_reg_val(id, *val); 1386 break; 1387 case KVM_REG_PPC_AMR: 1388 vcpu->arch.amr = set_reg_val(id, *val); 1389 break; 1390 case KVM_REG_PPC_UAMOR: 1391 vcpu->arch.uamor = set_reg_val(id, *val); 1392 break; 1393 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1394 i = id - KVM_REG_PPC_MMCR0; 1395 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1396 break; 1397 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1398 i = id - KVM_REG_PPC_PMC1; 1399 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1400 break; 1401 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1402 i = id - KVM_REG_PPC_SPMC1; 1403 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1404 break; 1405 case KVM_REG_PPC_SIAR: 1406 vcpu->arch.siar = set_reg_val(id, *val); 1407 break; 1408 case KVM_REG_PPC_SDAR: 1409 vcpu->arch.sdar = set_reg_val(id, *val); 1410 break; 1411 case KVM_REG_PPC_SIER: 1412 vcpu->arch.sier = set_reg_val(id, *val); 1413 break; 1414 case KVM_REG_PPC_IAMR: 1415 vcpu->arch.iamr = set_reg_val(id, *val); 1416 break; 1417 case KVM_REG_PPC_PSPB: 1418 vcpu->arch.pspb = set_reg_val(id, *val); 1419 break; 1420 case KVM_REG_PPC_DPDES: 1421 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1422 break; 1423 case KVM_REG_PPC_VTB: 1424 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1425 break; 1426 case KVM_REG_PPC_DAWR: 1427 vcpu->arch.dawr = set_reg_val(id, *val); 1428 break; 1429 case KVM_REG_PPC_DAWRX: 1430 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1431 break; 1432 case KVM_REG_PPC_CIABR: 1433 vcpu->arch.ciabr = set_reg_val(id, *val); 1434 /* Don't allow setting breakpoints in hypervisor code */ 1435 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1436 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1437 break; 1438 case KVM_REG_PPC_CSIGR: 1439 vcpu->arch.csigr = set_reg_val(id, *val); 1440 break; 1441 case KVM_REG_PPC_TACR: 1442 vcpu->arch.tacr = set_reg_val(id, *val); 1443 break; 1444 case KVM_REG_PPC_TCSCR: 1445 vcpu->arch.tcscr = set_reg_val(id, *val); 1446 break; 1447 case KVM_REG_PPC_PID: 1448 vcpu->arch.pid = set_reg_val(id, *val); 1449 break; 1450 case KVM_REG_PPC_ACOP: 1451 vcpu->arch.acop = set_reg_val(id, *val); 1452 break; 1453 case KVM_REG_PPC_WORT: 1454 vcpu->arch.wort = set_reg_val(id, *val); 1455 break; 1456 case KVM_REG_PPC_TIDR: 1457 vcpu->arch.tid = set_reg_val(id, *val); 1458 break; 1459 case KVM_REG_PPC_PSSCR: 1460 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1461 break; 1462 case KVM_REG_PPC_VPA_ADDR: 1463 addr = set_reg_val(id, *val); 1464 r = -EINVAL; 1465 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1466 vcpu->arch.dtl.next_gpa)) 1467 break; 1468 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1469 break; 1470 case KVM_REG_PPC_VPA_SLB: 1471 addr = val->vpaval.addr; 1472 len = val->vpaval.length; 1473 r = -EINVAL; 1474 if (addr && !vcpu->arch.vpa.next_gpa) 1475 break; 1476 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1477 break; 1478 case KVM_REG_PPC_VPA_DTL: 1479 addr = val->vpaval.addr; 1480 len = val->vpaval.length; 1481 r = -EINVAL; 1482 if (addr && (len < sizeof(struct dtl_entry) || 1483 !vcpu->arch.vpa.next_gpa)) 1484 break; 1485 len -= len % sizeof(struct dtl_entry); 1486 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1487 break; 1488 case KVM_REG_PPC_TB_OFFSET: 1489 /* round up to multiple of 2^24 */ 1490 vcpu->arch.vcore->tb_offset = 1491 ALIGN(set_reg_val(id, *val), 1UL << 24); 1492 break; 1493 case KVM_REG_PPC_LPCR: 1494 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1495 break; 1496 case KVM_REG_PPC_LPCR_64: 1497 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1498 break; 1499 case KVM_REG_PPC_PPR: 1500 vcpu->arch.ppr = set_reg_val(id, *val); 1501 break; 1502 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1503 case KVM_REG_PPC_TFHAR: 1504 vcpu->arch.tfhar = set_reg_val(id, *val); 1505 break; 1506 case KVM_REG_PPC_TFIAR: 1507 vcpu->arch.tfiar = set_reg_val(id, *val); 1508 break; 1509 case KVM_REG_PPC_TEXASR: 1510 vcpu->arch.texasr = set_reg_val(id, *val); 1511 break; 1512 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1513 i = id - KVM_REG_PPC_TM_GPR0; 1514 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1515 break; 1516 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1517 { 1518 int j; 1519 i = id - KVM_REG_PPC_TM_VSR0; 1520 if (i < 32) 1521 for (j = 0; j < TS_FPRWIDTH; j++) 1522 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1523 else 1524 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1525 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1526 else 1527 r = -ENXIO; 1528 break; 1529 } 1530 case KVM_REG_PPC_TM_CR: 1531 vcpu->arch.cr_tm = set_reg_val(id, *val); 1532 break; 1533 case KVM_REG_PPC_TM_XER: 1534 vcpu->arch.xer_tm = set_reg_val(id, *val); 1535 break; 1536 case KVM_REG_PPC_TM_LR: 1537 vcpu->arch.lr_tm = set_reg_val(id, *val); 1538 break; 1539 case KVM_REG_PPC_TM_CTR: 1540 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1541 break; 1542 case KVM_REG_PPC_TM_FPSCR: 1543 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1544 break; 1545 case KVM_REG_PPC_TM_AMR: 1546 vcpu->arch.amr_tm = set_reg_val(id, *val); 1547 break; 1548 case KVM_REG_PPC_TM_PPR: 1549 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1550 break; 1551 case KVM_REG_PPC_TM_VRSAVE: 1552 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1553 break; 1554 case KVM_REG_PPC_TM_VSCR: 1555 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1556 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1557 else 1558 r = - ENXIO; 1559 break; 1560 case KVM_REG_PPC_TM_DSCR: 1561 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1562 break; 1563 case KVM_REG_PPC_TM_TAR: 1564 vcpu->arch.tar_tm = set_reg_val(id, *val); 1565 break; 1566 #endif 1567 case KVM_REG_PPC_ARCH_COMPAT: 1568 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1569 break; 1570 default: 1571 r = -EINVAL; 1572 break; 1573 } 1574 1575 return r; 1576 } 1577 1578 /* 1579 * On POWER9, threads are independent and can be in different partitions. 1580 * Therefore we consider each thread to be a subcore. 1581 * There is a restriction that all threads have to be in the same 1582 * MMU mode (radix or HPT), unfortunately, but since we only support 1583 * HPT guests on a HPT host so far, that isn't an impediment yet. 1584 */ 1585 static int threads_per_vcore(void) 1586 { 1587 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1588 return 1; 1589 return threads_per_subcore; 1590 } 1591 1592 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) 1593 { 1594 struct kvmppc_vcore *vcore; 1595 1596 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1597 1598 if (vcore == NULL) 1599 return NULL; 1600 1601 spin_lock_init(&vcore->lock); 1602 spin_lock_init(&vcore->stoltb_lock); 1603 init_swait_queue_head(&vcore->wq); 1604 vcore->preempt_tb = TB_NIL; 1605 vcore->lpcr = kvm->arch.lpcr; 1606 vcore->first_vcpuid = core * threads_per_vcore(); 1607 vcore->kvm = kvm; 1608 INIT_LIST_HEAD(&vcore->preempt_list); 1609 1610 return vcore; 1611 } 1612 1613 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 1614 static struct debugfs_timings_element { 1615 const char *name; 1616 size_t offset; 1617 } timings[] = { 1618 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 1619 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 1620 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 1621 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 1622 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 1623 }; 1624 1625 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0])) 1626 1627 struct debugfs_timings_state { 1628 struct kvm_vcpu *vcpu; 1629 unsigned int buflen; 1630 char buf[N_TIMINGS * 100]; 1631 }; 1632 1633 static int debugfs_timings_open(struct inode *inode, struct file *file) 1634 { 1635 struct kvm_vcpu *vcpu = inode->i_private; 1636 struct debugfs_timings_state *p; 1637 1638 p = kzalloc(sizeof(*p), GFP_KERNEL); 1639 if (!p) 1640 return -ENOMEM; 1641 1642 kvm_get_kvm(vcpu->kvm); 1643 p->vcpu = vcpu; 1644 file->private_data = p; 1645 1646 return nonseekable_open(inode, file); 1647 } 1648 1649 static int debugfs_timings_release(struct inode *inode, struct file *file) 1650 { 1651 struct debugfs_timings_state *p = file->private_data; 1652 1653 kvm_put_kvm(p->vcpu->kvm); 1654 kfree(p); 1655 return 0; 1656 } 1657 1658 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 1659 size_t len, loff_t *ppos) 1660 { 1661 struct debugfs_timings_state *p = file->private_data; 1662 struct kvm_vcpu *vcpu = p->vcpu; 1663 char *s, *buf_end; 1664 struct kvmhv_tb_accumulator tb; 1665 u64 count; 1666 loff_t pos; 1667 ssize_t n; 1668 int i, loops; 1669 bool ok; 1670 1671 if (!p->buflen) { 1672 s = p->buf; 1673 buf_end = s + sizeof(p->buf); 1674 for (i = 0; i < N_TIMINGS; ++i) { 1675 struct kvmhv_tb_accumulator *acc; 1676 1677 acc = (struct kvmhv_tb_accumulator *) 1678 ((unsigned long)vcpu + timings[i].offset); 1679 ok = false; 1680 for (loops = 0; loops < 1000; ++loops) { 1681 count = acc->seqcount; 1682 if (!(count & 1)) { 1683 smp_rmb(); 1684 tb = *acc; 1685 smp_rmb(); 1686 if (count == acc->seqcount) { 1687 ok = true; 1688 break; 1689 } 1690 } 1691 udelay(1); 1692 } 1693 if (!ok) 1694 snprintf(s, buf_end - s, "%s: stuck\n", 1695 timings[i].name); 1696 else 1697 snprintf(s, buf_end - s, 1698 "%s: %llu %llu %llu %llu\n", 1699 timings[i].name, count / 2, 1700 tb_to_ns(tb.tb_total), 1701 tb_to_ns(tb.tb_min), 1702 tb_to_ns(tb.tb_max)); 1703 s += strlen(s); 1704 } 1705 p->buflen = s - p->buf; 1706 } 1707 1708 pos = *ppos; 1709 if (pos >= p->buflen) 1710 return 0; 1711 if (len > p->buflen - pos) 1712 len = p->buflen - pos; 1713 n = copy_to_user(buf, p->buf + pos, len); 1714 if (n) { 1715 if (n == len) 1716 return -EFAULT; 1717 len -= n; 1718 } 1719 *ppos = pos + len; 1720 return len; 1721 } 1722 1723 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 1724 size_t len, loff_t *ppos) 1725 { 1726 return -EACCES; 1727 } 1728 1729 static const struct file_operations debugfs_timings_ops = { 1730 .owner = THIS_MODULE, 1731 .open = debugfs_timings_open, 1732 .release = debugfs_timings_release, 1733 .read = debugfs_timings_read, 1734 .write = debugfs_timings_write, 1735 .llseek = generic_file_llseek, 1736 }; 1737 1738 /* Create a debugfs directory for the vcpu */ 1739 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1740 { 1741 char buf[16]; 1742 struct kvm *kvm = vcpu->kvm; 1743 1744 snprintf(buf, sizeof(buf), "vcpu%u", id); 1745 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 1746 return; 1747 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 1748 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 1749 return; 1750 vcpu->arch.debugfs_timings = 1751 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 1752 vcpu, &debugfs_timings_ops); 1753 } 1754 1755 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1756 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1757 { 1758 } 1759 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1760 1761 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1762 unsigned int id) 1763 { 1764 struct kvm_vcpu *vcpu; 1765 int err = -EINVAL; 1766 int core; 1767 struct kvmppc_vcore *vcore; 1768 1769 core = id / threads_per_vcore(); 1770 if (core >= KVM_MAX_VCORES) 1771 goto out; 1772 1773 err = -ENOMEM; 1774 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1775 if (!vcpu) 1776 goto out; 1777 1778 err = kvm_vcpu_init(vcpu, kvm, id); 1779 if (err) 1780 goto free_vcpu; 1781 1782 vcpu->arch.shared = &vcpu->arch.shregs; 1783 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1784 /* 1785 * The shared struct is never shared on HV, 1786 * so we can always use host endianness 1787 */ 1788 #ifdef __BIG_ENDIAN__ 1789 vcpu->arch.shared_big_endian = true; 1790 #else 1791 vcpu->arch.shared_big_endian = false; 1792 #endif 1793 #endif 1794 vcpu->arch.mmcr[0] = MMCR0_FC; 1795 vcpu->arch.ctrl = CTRL_RUNLATCH; 1796 /* default to host PVR, since we can't spoof it */ 1797 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1798 spin_lock_init(&vcpu->arch.vpa_update_lock); 1799 spin_lock_init(&vcpu->arch.tbacct_lock); 1800 vcpu->arch.busy_preempt = TB_NIL; 1801 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1802 1803 kvmppc_mmu_book3s_hv_init(vcpu); 1804 1805 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1806 1807 init_waitqueue_head(&vcpu->arch.cpu_run); 1808 1809 mutex_lock(&kvm->lock); 1810 vcore = kvm->arch.vcores[core]; 1811 if (!vcore) { 1812 vcore = kvmppc_vcore_create(kvm, core); 1813 kvm->arch.vcores[core] = vcore; 1814 kvm->arch.online_vcores++; 1815 } 1816 mutex_unlock(&kvm->lock); 1817 1818 if (!vcore) 1819 goto free_vcpu; 1820 1821 spin_lock(&vcore->lock); 1822 ++vcore->num_threads; 1823 spin_unlock(&vcore->lock); 1824 vcpu->arch.vcore = vcore; 1825 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 1826 vcpu->arch.thread_cpu = -1; 1827 vcpu->arch.prev_cpu = -1; 1828 1829 vcpu->arch.cpu_type = KVM_CPU_3S_64; 1830 kvmppc_sanity_check(vcpu); 1831 1832 debugfs_vcpu_init(vcpu, id); 1833 1834 return vcpu; 1835 1836 free_vcpu: 1837 kmem_cache_free(kvm_vcpu_cache, vcpu); 1838 out: 1839 return ERR_PTR(err); 1840 } 1841 1842 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 1843 { 1844 if (vpa->pinned_addr) 1845 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 1846 vpa->dirty); 1847 } 1848 1849 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 1850 { 1851 spin_lock(&vcpu->arch.vpa_update_lock); 1852 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 1853 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 1854 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 1855 spin_unlock(&vcpu->arch.vpa_update_lock); 1856 kvm_vcpu_uninit(vcpu); 1857 kmem_cache_free(kvm_vcpu_cache, vcpu); 1858 } 1859 1860 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 1861 { 1862 /* Indicate we want to get back into the guest */ 1863 return 1; 1864 } 1865 1866 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 1867 { 1868 unsigned long dec_nsec, now; 1869 1870 now = get_tb(); 1871 if (now > vcpu->arch.dec_expires) { 1872 /* decrementer has already gone negative */ 1873 kvmppc_core_queue_dec(vcpu); 1874 kvmppc_core_prepare_to_enter(vcpu); 1875 return; 1876 } 1877 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 1878 / tb_ticks_per_sec; 1879 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 1880 vcpu->arch.timer_running = 1; 1881 } 1882 1883 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1884 { 1885 vcpu->arch.ceded = 0; 1886 if (vcpu->arch.timer_running) { 1887 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1888 vcpu->arch.timer_running = 0; 1889 } 1890 } 1891 1892 extern void __kvmppc_vcore_entry(void); 1893 1894 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1895 struct kvm_vcpu *vcpu) 1896 { 1897 u64 now; 1898 1899 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1900 return; 1901 spin_lock_irq(&vcpu->arch.tbacct_lock); 1902 now = mftb(); 1903 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1904 vcpu->arch.stolen_logged; 1905 vcpu->arch.busy_preempt = now; 1906 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1907 spin_unlock_irq(&vcpu->arch.tbacct_lock); 1908 --vc->n_runnable; 1909 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 1910 } 1911 1912 static int kvmppc_grab_hwthread(int cpu) 1913 { 1914 struct paca_struct *tpaca; 1915 long timeout = 10000; 1916 1917 tpaca = &paca[cpu]; 1918 1919 /* Ensure the thread won't go into the kernel if it wakes */ 1920 tpaca->kvm_hstate.kvm_vcpu = NULL; 1921 tpaca->kvm_hstate.kvm_vcore = NULL; 1922 tpaca->kvm_hstate.napping = 0; 1923 smp_wmb(); 1924 tpaca->kvm_hstate.hwthread_req = 1; 1925 1926 /* 1927 * If the thread is already executing in the kernel (e.g. handling 1928 * a stray interrupt), wait for it to get back to nap mode. 1929 * The smp_mb() is to ensure that our setting of hwthread_req 1930 * is visible before we look at hwthread_state, so if this 1931 * races with the code at system_reset_pSeries and the thread 1932 * misses our setting of hwthread_req, we are sure to see its 1933 * setting of hwthread_state, and vice versa. 1934 */ 1935 smp_mb(); 1936 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1937 if (--timeout <= 0) { 1938 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1939 return -EBUSY; 1940 } 1941 udelay(1); 1942 } 1943 return 0; 1944 } 1945 1946 static void kvmppc_release_hwthread(int cpu) 1947 { 1948 struct paca_struct *tpaca; 1949 1950 tpaca = &paca[cpu]; 1951 tpaca->kvm_hstate.hwthread_req = 0; 1952 tpaca->kvm_hstate.kvm_vcpu = NULL; 1953 tpaca->kvm_hstate.kvm_vcore = NULL; 1954 tpaca->kvm_hstate.kvm_split_mode = NULL; 1955 } 1956 1957 static void do_nothing(void *x) 1958 { 1959 } 1960 1961 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 1962 { 1963 int i; 1964 1965 cpu = cpu_first_thread_sibling(cpu); 1966 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 1967 /* 1968 * Make sure setting of bit in need_tlb_flush precedes 1969 * testing of cpu_in_guest bits. The matching barrier on 1970 * the other side is the first smp_mb() in kvmppc_run_core(). 1971 */ 1972 smp_mb(); 1973 for (i = 0; i < threads_per_core; ++i) 1974 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest)) 1975 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 1976 } 1977 1978 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 1979 { 1980 int cpu; 1981 struct paca_struct *tpaca; 1982 struct kvmppc_vcore *mvc = vc->master_vcore; 1983 struct kvm *kvm = vc->kvm; 1984 1985 cpu = vc->pcpu; 1986 if (vcpu) { 1987 if (vcpu->arch.timer_running) { 1988 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1989 vcpu->arch.timer_running = 0; 1990 } 1991 cpu += vcpu->arch.ptid; 1992 vcpu->cpu = mvc->pcpu; 1993 vcpu->arch.thread_cpu = cpu; 1994 1995 /* 1996 * With radix, the guest can do TLB invalidations itself, 1997 * and it could choose to use the local form (tlbiel) if 1998 * it is invalidating a translation that has only ever been 1999 * used on one vcpu. However, that doesn't mean it has 2000 * only ever been used on one physical cpu, since vcpus 2001 * can move around between pcpus. To cope with this, when 2002 * a vcpu moves from one pcpu to another, we need to tell 2003 * any vcpus running on the same core as this vcpu previously 2004 * ran to flush the TLB. The TLB is shared between threads, 2005 * so we use a single bit in .need_tlb_flush for all 4 threads. 2006 */ 2007 if (kvm_is_radix(kvm) && vcpu->arch.prev_cpu != cpu) { 2008 if (vcpu->arch.prev_cpu >= 0 && 2009 cpu_first_thread_sibling(vcpu->arch.prev_cpu) != 2010 cpu_first_thread_sibling(cpu)) 2011 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu); 2012 vcpu->arch.prev_cpu = cpu; 2013 } 2014 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2015 } 2016 tpaca = &paca[cpu]; 2017 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2018 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu; 2019 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2020 smp_wmb(); 2021 tpaca->kvm_hstate.kvm_vcore = mvc; 2022 if (cpu != smp_processor_id()) 2023 kvmppc_ipi_thread(cpu); 2024 } 2025 2026 static void kvmppc_wait_for_nap(void) 2027 { 2028 int cpu = smp_processor_id(); 2029 int i, loops; 2030 int n_threads = threads_per_vcore(); 2031 2032 if (n_threads <= 1) 2033 return; 2034 for (loops = 0; loops < 1000000; ++loops) { 2035 /* 2036 * Check if all threads are finished. 2037 * We set the vcore pointer when starting a thread 2038 * and the thread clears it when finished, so we look 2039 * for any threads that still have a non-NULL vcore ptr. 2040 */ 2041 for (i = 1; i < n_threads; ++i) 2042 if (paca[cpu + i].kvm_hstate.kvm_vcore) 2043 break; 2044 if (i == n_threads) { 2045 HMT_medium(); 2046 return; 2047 } 2048 HMT_low(); 2049 } 2050 HMT_medium(); 2051 for (i = 1; i < n_threads; ++i) 2052 if (paca[cpu + i].kvm_hstate.kvm_vcore) 2053 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2054 } 2055 2056 /* 2057 * Check that we are on thread 0 and that any other threads in 2058 * this core are off-line. Then grab the threads so they can't 2059 * enter the kernel. 2060 */ 2061 static int on_primary_thread(void) 2062 { 2063 int cpu = smp_processor_id(); 2064 int thr; 2065 2066 /* Are we on a primary subcore? */ 2067 if (cpu_thread_in_subcore(cpu)) 2068 return 0; 2069 2070 thr = 0; 2071 while (++thr < threads_per_subcore) 2072 if (cpu_online(cpu + thr)) 2073 return 0; 2074 2075 /* Grab all hw threads so they can't go into the kernel */ 2076 for (thr = 1; thr < threads_per_subcore; ++thr) { 2077 if (kvmppc_grab_hwthread(cpu + thr)) { 2078 /* Couldn't grab one; let the others go */ 2079 do { 2080 kvmppc_release_hwthread(cpu + thr); 2081 } while (--thr > 0); 2082 return 0; 2083 } 2084 } 2085 return 1; 2086 } 2087 2088 /* 2089 * A list of virtual cores for each physical CPU. 2090 * These are vcores that could run but their runner VCPU tasks are 2091 * (or may be) preempted. 2092 */ 2093 struct preempted_vcore_list { 2094 struct list_head list; 2095 spinlock_t lock; 2096 }; 2097 2098 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2099 2100 static void init_vcore_lists(void) 2101 { 2102 int cpu; 2103 2104 for_each_possible_cpu(cpu) { 2105 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2106 spin_lock_init(&lp->lock); 2107 INIT_LIST_HEAD(&lp->list); 2108 } 2109 } 2110 2111 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2112 { 2113 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2114 2115 vc->vcore_state = VCORE_PREEMPT; 2116 vc->pcpu = smp_processor_id(); 2117 if (vc->num_threads < threads_per_vcore()) { 2118 spin_lock(&lp->lock); 2119 list_add_tail(&vc->preempt_list, &lp->list); 2120 spin_unlock(&lp->lock); 2121 } 2122 2123 /* Start accumulating stolen time */ 2124 kvmppc_core_start_stolen(vc); 2125 } 2126 2127 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2128 { 2129 struct preempted_vcore_list *lp; 2130 2131 kvmppc_core_end_stolen(vc); 2132 if (!list_empty(&vc->preempt_list)) { 2133 lp = &per_cpu(preempted_vcores, vc->pcpu); 2134 spin_lock(&lp->lock); 2135 list_del_init(&vc->preempt_list); 2136 spin_unlock(&lp->lock); 2137 } 2138 vc->vcore_state = VCORE_INACTIVE; 2139 } 2140 2141 /* 2142 * This stores information about the virtual cores currently 2143 * assigned to a physical core. 2144 */ 2145 struct core_info { 2146 int n_subcores; 2147 int max_subcore_threads; 2148 int total_threads; 2149 int subcore_threads[MAX_SUBCORES]; 2150 struct kvm *subcore_vm[MAX_SUBCORES]; 2151 struct list_head vcs[MAX_SUBCORES]; 2152 }; 2153 2154 /* 2155 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2156 * respectively in 2-way micro-threading (split-core) mode. 2157 */ 2158 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2159 2160 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2161 { 2162 int sub; 2163 2164 memset(cip, 0, sizeof(*cip)); 2165 cip->n_subcores = 1; 2166 cip->max_subcore_threads = vc->num_threads; 2167 cip->total_threads = vc->num_threads; 2168 cip->subcore_threads[0] = vc->num_threads; 2169 cip->subcore_vm[0] = vc->kvm; 2170 for (sub = 0; sub < MAX_SUBCORES; ++sub) 2171 INIT_LIST_HEAD(&cip->vcs[sub]); 2172 list_add_tail(&vc->preempt_list, &cip->vcs[0]); 2173 } 2174 2175 static bool subcore_config_ok(int n_subcores, int n_threads) 2176 { 2177 /* Can only dynamically split if unsplit to begin with */ 2178 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2179 return false; 2180 if (n_subcores > MAX_SUBCORES) 2181 return false; 2182 if (n_subcores > 1) { 2183 if (!(dynamic_mt_modes & 2)) 2184 n_subcores = 4; 2185 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2186 return false; 2187 } 2188 2189 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2190 } 2191 2192 static void init_master_vcore(struct kvmppc_vcore *vc) 2193 { 2194 vc->master_vcore = vc; 2195 vc->entry_exit_map = 0; 2196 vc->in_guest = 0; 2197 vc->napping_threads = 0; 2198 vc->conferring_threads = 0; 2199 } 2200 2201 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2202 { 2203 int n_threads = vc->num_threads; 2204 int sub; 2205 2206 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2207 return false; 2208 2209 if (n_threads < cip->max_subcore_threads) 2210 n_threads = cip->max_subcore_threads; 2211 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2212 return false; 2213 cip->max_subcore_threads = n_threads; 2214 2215 sub = cip->n_subcores; 2216 ++cip->n_subcores; 2217 cip->total_threads += vc->num_threads; 2218 cip->subcore_threads[sub] = vc->num_threads; 2219 cip->subcore_vm[sub] = vc->kvm; 2220 init_master_vcore(vc); 2221 list_move_tail(&vc->preempt_list, &cip->vcs[sub]); 2222 2223 return true; 2224 } 2225 2226 /* 2227 * Work out whether it is possible to piggyback the execution of 2228 * vcore *pvc onto the execution of the other vcores described in *cip. 2229 */ 2230 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2231 int target_threads) 2232 { 2233 if (cip->total_threads + pvc->num_threads > target_threads) 2234 return false; 2235 2236 return can_dynamic_split(pvc, cip); 2237 } 2238 2239 static void prepare_threads(struct kvmppc_vcore *vc) 2240 { 2241 int i; 2242 struct kvm_vcpu *vcpu; 2243 2244 for_each_runnable_thread(i, vcpu, vc) { 2245 if (signal_pending(vcpu->arch.run_task)) 2246 vcpu->arch.ret = -EINTR; 2247 else if (vcpu->arch.vpa.update_pending || 2248 vcpu->arch.slb_shadow.update_pending || 2249 vcpu->arch.dtl.update_pending) 2250 vcpu->arch.ret = RESUME_GUEST; 2251 else 2252 continue; 2253 kvmppc_remove_runnable(vc, vcpu); 2254 wake_up(&vcpu->arch.cpu_run); 2255 } 2256 } 2257 2258 static void collect_piggybacks(struct core_info *cip, int target_threads) 2259 { 2260 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2261 struct kvmppc_vcore *pvc, *vcnext; 2262 2263 spin_lock(&lp->lock); 2264 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2265 if (!spin_trylock(&pvc->lock)) 2266 continue; 2267 prepare_threads(pvc); 2268 if (!pvc->n_runnable) { 2269 list_del_init(&pvc->preempt_list); 2270 if (pvc->runner == NULL) { 2271 pvc->vcore_state = VCORE_INACTIVE; 2272 kvmppc_core_end_stolen(pvc); 2273 } 2274 spin_unlock(&pvc->lock); 2275 continue; 2276 } 2277 if (!can_piggyback(pvc, cip, target_threads)) { 2278 spin_unlock(&pvc->lock); 2279 continue; 2280 } 2281 kvmppc_core_end_stolen(pvc); 2282 pvc->vcore_state = VCORE_PIGGYBACK; 2283 if (cip->total_threads >= target_threads) 2284 break; 2285 } 2286 spin_unlock(&lp->lock); 2287 } 2288 2289 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2290 { 2291 int still_running = 0, i; 2292 u64 now; 2293 long ret; 2294 struct kvm_vcpu *vcpu; 2295 2296 spin_lock(&vc->lock); 2297 now = get_tb(); 2298 for_each_runnable_thread(i, vcpu, vc) { 2299 /* cancel pending dec exception if dec is positive */ 2300 if (now < vcpu->arch.dec_expires && 2301 kvmppc_core_pending_dec(vcpu)) 2302 kvmppc_core_dequeue_dec(vcpu); 2303 2304 trace_kvm_guest_exit(vcpu); 2305 2306 ret = RESUME_GUEST; 2307 if (vcpu->arch.trap) 2308 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2309 vcpu->arch.run_task); 2310 2311 vcpu->arch.ret = ret; 2312 vcpu->arch.trap = 0; 2313 2314 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2315 if (vcpu->arch.pending_exceptions) 2316 kvmppc_core_prepare_to_enter(vcpu); 2317 if (vcpu->arch.ceded) 2318 kvmppc_set_timer(vcpu); 2319 else 2320 ++still_running; 2321 } else { 2322 kvmppc_remove_runnable(vc, vcpu); 2323 wake_up(&vcpu->arch.cpu_run); 2324 } 2325 } 2326 list_del_init(&vc->preempt_list); 2327 if (!is_master) { 2328 if (still_running > 0) { 2329 kvmppc_vcore_preempt(vc); 2330 } else if (vc->runner) { 2331 vc->vcore_state = VCORE_PREEMPT; 2332 kvmppc_core_start_stolen(vc); 2333 } else { 2334 vc->vcore_state = VCORE_INACTIVE; 2335 } 2336 if (vc->n_runnable > 0 && vc->runner == NULL) { 2337 /* make sure there's a candidate runner awake */ 2338 i = -1; 2339 vcpu = next_runnable_thread(vc, &i); 2340 wake_up(&vcpu->arch.cpu_run); 2341 } 2342 } 2343 spin_unlock(&vc->lock); 2344 } 2345 2346 /* 2347 * Clear core from the list of active host cores as we are about to 2348 * enter the guest. Only do this if it is the primary thread of the 2349 * core (not if a subcore) that is entering the guest. 2350 */ 2351 static inline int kvmppc_clear_host_core(unsigned int cpu) 2352 { 2353 int core; 2354 2355 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2356 return 0; 2357 /* 2358 * Memory barrier can be omitted here as we will do a smp_wmb() 2359 * later in kvmppc_start_thread and we need ensure that state is 2360 * visible to other CPUs only after we enter guest. 2361 */ 2362 core = cpu >> threads_shift; 2363 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2364 return 0; 2365 } 2366 2367 /* 2368 * Advertise this core as an active host core since we exited the guest 2369 * Only need to do this if it is the primary thread of the core that is 2370 * exiting. 2371 */ 2372 static inline int kvmppc_set_host_core(unsigned int cpu) 2373 { 2374 int core; 2375 2376 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2377 return 0; 2378 2379 /* 2380 * Memory barrier can be omitted here because we do a spin_unlock 2381 * immediately after this which provides the memory barrier. 2382 */ 2383 core = cpu >> threads_shift; 2384 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 2385 return 0; 2386 } 2387 2388 /* 2389 * Run a set of guest threads on a physical core. 2390 * Called with vc->lock held. 2391 */ 2392 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 2393 { 2394 struct kvm_vcpu *vcpu; 2395 int i; 2396 int srcu_idx; 2397 struct core_info core_info; 2398 struct kvmppc_vcore *pvc, *vcnext; 2399 struct kvm_split_mode split_info, *sip; 2400 int split, subcore_size, active; 2401 int sub; 2402 bool thr0_done; 2403 unsigned long cmd_bit, stat_bit; 2404 int pcpu, thr; 2405 int target_threads; 2406 int controlled_threads; 2407 2408 /* 2409 * Remove from the list any threads that have a signal pending 2410 * or need a VPA update done 2411 */ 2412 prepare_threads(vc); 2413 2414 /* if the runner is no longer runnable, let the caller pick a new one */ 2415 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 2416 return; 2417 2418 /* 2419 * Initialize *vc. 2420 */ 2421 init_master_vcore(vc); 2422 vc->preempt_tb = TB_NIL; 2423 2424 /* 2425 * Number of threads that we will be controlling: the same as 2426 * the number of threads per subcore, except on POWER9, 2427 * where it's 1 because the threads are (mostly) independent. 2428 */ 2429 controlled_threads = threads_per_vcore(); 2430 2431 /* 2432 * Make sure we are running on primary threads, and that secondary 2433 * threads are offline. Also check if the number of threads in this 2434 * guest are greater than the current system threads per guest. 2435 */ 2436 if ((controlled_threads > 1) && 2437 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 2438 for_each_runnable_thread(i, vcpu, vc) { 2439 vcpu->arch.ret = -EBUSY; 2440 kvmppc_remove_runnable(vc, vcpu); 2441 wake_up(&vcpu->arch.cpu_run); 2442 } 2443 goto out; 2444 } 2445 2446 /* 2447 * See if we could run any other vcores on the physical core 2448 * along with this one. 2449 */ 2450 init_core_info(&core_info, vc); 2451 pcpu = smp_processor_id(); 2452 target_threads = controlled_threads; 2453 if (target_smt_mode && target_smt_mode < target_threads) 2454 target_threads = target_smt_mode; 2455 if (vc->num_threads < target_threads) 2456 collect_piggybacks(&core_info, target_threads); 2457 2458 /* Decide on micro-threading (split-core) mode */ 2459 subcore_size = threads_per_subcore; 2460 cmd_bit = stat_bit = 0; 2461 split = core_info.n_subcores; 2462 sip = NULL; 2463 if (split > 1) { 2464 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */ 2465 if (split == 2 && (dynamic_mt_modes & 2)) { 2466 cmd_bit = HID0_POWER8_1TO2LPAR; 2467 stat_bit = HID0_POWER8_2LPARMODE; 2468 } else { 2469 split = 4; 2470 cmd_bit = HID0_POWER8_1TO4LPAR; 2471 stat_bit = HID0_POWER8_4LPARMODE; 2472 } 2473 subcore_size = MAX_SMT_THREADS / split; 2474 sip = &split_info; 2475 memset(&split_info, 0, sizeof(split_info)); 2476 split_info.rpr = mfspr(SPRN_RPR); 2477 split_info.pmmar = mfspr(SPRN_PMMAR); 2478 split_info.ldbar = mfspr(SPRN_LDBAR); 2479 split_info.subcore_size = subcore_size; 2480 for (sub = 0; sub < core_info.n_subcores; ++sub) 2481 split_info.master_vcs[sub] = 2482 list_first_entry(&core_info.vcs[sub], 2483 struct kvmppc_vcore, preempt_list); 2484 /* order writes to split_info before kvm_split_mode pointer */ 2485 smp_wmb(); 2486 } 2487 pcpu = smp_processor_id(); 2488 for (thr = 0; thr < controlled_threads; ++thr) 2489 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip; 2490 2491 /* Initiate micro-threading (split-core) if required */ 2492 if (cmd_bit) { 2493 unsigned long hid0 = mfspr(SPRN_HID0); 2494 2495 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 2496 mb(); 2497 mtspr(SPRN_HID0, hid0); 2498 isync(); 2499 for (;;) { 2500 hid0 = mfspr(SPRN_HID0); 2501 if (hid0 & stat_bit) 2502 break; 2503 cpu_relax(); 2504 } 2505 } 2506 2507 kvmppc_clear_host_core(pcpu); 2508 2509 /* Start all the threads */ 2510 active = 0; 2511 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2512 thr = subcore_thread_map[sub]; 2513 thr0_done = false; 2514 active |= 1 << thr; 2515 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) { 2516 pvc->pcpu = pcpu + thr; 2517 for_each_runnable_thread(i, vcpu, pvc) { 2518 kvmppc_start_thread(vcpu, pvc); 2519 kvmppc_create_dtl_entry(vcpu, pvc); 2520 trace_kvm_guest_enter(vcpu); 2521 if (!vcpu->arch.ptid) 2522 thr0_done = true; 2523 active |= 1 << (thr + vcpu->arch.ptid); 2524 } 2525 /* 2526 * We need to start the first thread of each subcore 2527 * even if it doesn't have a vcpu. 2528 */ 2529 if (pvc->master_vcore == pvc && !thr0_done) 2530 kvmppc_start_thread(NULL, pvc); 2531 thr += pvc->num_threads; 2532 } 2533 } 2534 2535 /* 2536 * Ensure that split_info.do_nap is set after setting 2537 * the vcore pointer in the PACA of the secondaries. 2538 */ 2539 smp_mb(); 2540 if (cmd_bit) 2541 split_info.do_nap = 1; /* ask secondaries to nap when done */ 2542 2543 /* 2544 * When doing micro-threading, poke the inactive threads as well. 2545 * This gets them to the nap instruction after kvm_do_nap, 2546 * which reduces the time taken to unsplit later. 2547 */ 2548 if (split > 1) 2549 for (thr = 1; thr < threads_per_subcore; ++thr) 2550 if (!(active & (1 << thr))) 2551 kvmppc_ipi_thread(pcpu + thr); 2552 2553 vc->vcore_state = VCORE_RUNNING; 2554 preempt_disable(); 2555 2556 trace_kvmppc_run_core(vc, 0); 2557 2558 for (sub = 0; sub < core_info.n_subcores; ++sub) 2559 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) 2560 spin_unlock(&pvc->lock); 2561 2562 guest_enter(); 2563 2564 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 2565 2566 __kvmppc_vcore_entry(); 2567 2568 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 2569 2570 spin_lock(&vc->lock); 2571 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 2572 vc->vcore_state = VCORE_EXITING; 2573 2574 /* wait for secondary threads to finish writing their state to memory */ 2575 kvmppc_wait_for_nap(); 2576 2577 /* Return to whole-core mode if we split the core earlier */ 2578 if (split > 1) { 2579 unsigned long hid0 = mfspr(SPRN_HID0); 2580 unsigned long loops = 0; 2581 2582 hid0 &= ~HID0_POWER8_DYNLPARDIS; 2583 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 2584 mb(); 2585 mtspr(SPRN_HID0, hid0); 2586 isync(); 2587 for (;;) { 2588 hid0 = mfspr(SPRN_HID0); 2589 if (!(hid0 & stat_bit)) 2590 break; 2591 cpu_relax(); 2592 ++loops; 2593 } 2594 split_info.do_nap = 0; 2595 } 2596 2597 /* Let secondaries go back to the offline loop */ 2598 for (i = 0; i < controlled_threads; ++i) { 2599 kvmppc_release_hwthread(pcpu + i); 2600 if (sip && sip->napped[i]) 2601 kvmppc_ipi_thread(pcpu + i); 2602 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 2603 } 2604 2605 kvmppc_set_host_core(pcpu); 2606 2607 spin_unlock(&vc->lock); 2608 2609 /* make sure updates to secondary vcpu structs are visible now */ 2610 smp_mb(); 2611 guest_exit(); 2612 2613 for (sub = 0; sub < core_info.n_subcores; ++sub) 2614 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub], 2615 preempt_list) 2616 post_guest_process(pvc, pvc == vc); 2617 2618 spin_lock(&vc->lock); 2619 preempt_enable(); 2620 2621 out: 2622 vc->vcore_state = VCORE_INACTIVE; 2623 trace_kvmppc_run_core(vc, 1); 2624 } 2625 2626 /* 2627 * Wait for some other vcpu thread to execute us, and 2628 * wake us up when we need to handle something in the host. 2629 */ 2630 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 2631 struct kvm_vcpu *vcpu, int wait_state) 2632 { 2633 DEFINE_WAIT(wait); 2634 2635 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 2636 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2637 spin_unlock(&vc->lock); 2638 schedule(); 2639 spin_lock(&vc->lock); 2640 } 2641 finish_wait(&vcpu->arch.cpu_run, &wait); 2642 } 2643 2644 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 2645 { 2646 /* 10us base */ 2647 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow) 2648 vc->halt_poll_ns = 10000; 2649 else 2650 vc->halt_poll_ns *= halt_poll_ns_grow; 2651 } 2652 2653 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 2654 { 2655 if (halt_poll_ns_shrink == 0) 2656 vc->halt_poll_ns = 0; 2657 else 2658 vc->halt_poll_ns /= halt_poll_ns_shrink; 2659 } 2660 2661 /* 2662 * Check to see if any of the runnable vcpus on the vcore have pending 2663 * exceptions or are no longer ceded 2664 */ 2665 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 2666 { 2667 struct kvm_vcpu *vcpu; 2668 int i; 2669 2670 for_each_runnable_thread(i, vcpu, vc) { 2671 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded || 2672 vcpu->arch.prodded) 2673 return 1; 2674 } 2675 2676 return 0; 2677 } 2678 2679 /* 2680 * All the vcpus in this vcore are idle, so wait for a decrementer 2681 * or external interrupt to one of the vcpus. vc->lock is held. 2682 */ 2683 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 2684 { 2685 ktime_t cur, start_poll, start_wait; 2686 int do_sleep = 1; 2687 u64 block_ns; 2688 DECLARE_SWAITQUEUE(wait); 2689 2690 /* Poll for pending exceptions and ceded state */ 2691 cur = start_poll = ktime_get(); 2692 if (vc->halt_poll_ns) { 2693 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 2694 ++vc->runner->stat.halt_attempted_poll; 2695 2696 vc->vcore_state = VCORE_POLLING; 2697 spin_unlock(&vc->lock); 2698 2699 do { 2700 if (kvmppc_vcore_check_block(vc)) { 2701 do_sleep = 0; 2702 break; 2703 } 2704 cur = ktime_get(); 2705 } while (single_task_running() && ktime_before(cur, stop)); 2706 2707 spin_lock(&vc->lock); 2708 vc->vcore_state = VCORE_INACTIVE; 2709 2710 if (!do_sleep) { 2711 ++vc->runner->stat.halt_successful_poll; 2712 goto out; 2713 } 2714 } 2715 2716 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 2717 2718 if (kvmppc_vcore_check_block(vc)) { 2719 finish_swait(&vc->wq, &wait); 2720 do_sleep = 0; 2721 /* If we polled, count this as a successful poll */ 2722 if (vc->halt_poll_ns) 2723 ++vc->runner->stat.halt_successful_poll; 2724 goto out; 2725 } 2726 2727 start_wait = ktime_get(); 2728 2729 vc->vcore_state = VCORE_SLEEPING; 2730 trace_kvmppc_vcore_blocked(vc, 0); 2731 spin_unlock(&vc->lock); 2732 schedule(); 2733 finish_swait(&vc->wq, &wait); 2734 spin_lock(&vc->lock); 2735 vc->vcore_state = VCORE_INACTIVE; 2736 trace_kvmppc_vcore_blocked(vc, 1); 2737 ++vc->runner->stat.halt_successful_wait; 2738 2739 cur = ktime_get(); 2740 2741 out: 2742 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 2743 2744 /* Attribute wait time */ 2745 if (do_sleep) { 2746 vc->runner->stat.halt_wait_ns += 2747 ktime_to_ns(cur) - ktime_to_ns(start_wait); 2748 /* Attribute failed poll time */ 2749 if (vc->halt_poll_ns) 2750 vc->runner->stat.halt_poll_fail_ns += 2751 ktime_to_ns(start_wait) - 2752 ktime_to_ns(start_poll); 2753 } else { 2754 /* Attribute successful poll time */ 2755 if (vc->halt_poll_ns) 2756 vc->runner->stat.halt_poll_success_ns += 2757 ktime_to_ns(cur) - 2758 ktime_to_ns(start_poll); 2759 } 2760 2761 /* Adjust poll time */ 2762 if (halt_poll_ns) { 2763 if (block_ns <= vc->halt_poll_ns) 2764 ; 2765 /* We slept and blocked for longer than the max halt time */ 2766 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 2767 shrink_halt_poll_ns(vc); 2768 /* We slept and our poll time is too small */ 2769 else if (vc->halt_poll_ns < halt_poll_ns && 2770 block_ns < halt_poll_ns) 2771 grow_halt_poll_ns(vc); 2772 if (vc->halt_poll_ns > halt_poll_ns) 2773 vc->halt_poll_ns = halt_poll_ns; 2774 } else 2775 vc->halt_poll_ns = 0; 2776 2777 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 2778 } 2779 2780 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 2781 { 2782 int n_ceded, i; 2783 struct kvmppc_vcore *vc; 2784 struct kvm_vcpu *v; 2785 2786 trace_kvmppc_run_vcpu_enter(vcpu); 2787 2788 kvm_run->exit_reason = 0; 2789 vcpu->arch.ret = RESUME_GUEST; 2790 vcpu->arch.trap = 0; 2791 kvmppc_update_vpas(vcpu); 2792 2793 /* 2794 * Synchronize with other threads in this virtual core 2795 */ 2796 vc = vcpu->arch.vcore; 2797 spin_lock(&vc->lock); 2798 vcpu->arch.ceded = 0; 2799 vcpu->arch.run_task = current; 2800 vcpu->arch.kvm_run = kvm_run; 2801 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 2802 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 2803 vcpu->arch.busy_preempt = TB_NIL; 2804 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 2805 ++vc->n_runnable; 2806 2807 /* 2808 * This happens the first time this is called for a vcpu. 2809 * If the vcore is already running, we may be able to start 2810 * this thread straight away and have it join in. 2811 */ 2812 if (!signal_pending(current)) { 2813 if (vc->vcore_state == VCORE_PIGGYBACK) { 2814 struct kvmppc_vcore *mvc = vc->master_vcore; 2815 if (spin_trylock(&mvc->lock)) { 2816 if (mvc->vcore_state == VCORE_RUNNING && 2817 !VCORE_IS_EXITING(mvc)) { 2818 kvmppc_create_dtl_entry(vcpu, vc); 2819 kvmppc_start_thread(vcpu, vc); 2820 trace_kvm_guest_enter(vcpu); 2821 } 2822 spin_unlock(&mvc->lock); 2823 } 2824 } else if (vc->vcore_state == VCORE_RUNNING && 2825 !VCORE_IS_EXITING(vc)) { 2826 kvmppc_create_dtl_entry(vcpu, vc); 2827 kvmppc_start_thread(vcpu, vc); 2828 trace_kvm_guest_enter(vcpu); 2829 } else if (vc->vcore_state == VCORE_SLEEPING) { 2830 swake_up(&vc->wq); 2831 } 2832 2833 } 2834 2835 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2836 !signal_pending(current)) { 2837 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 2838 kvmppc_vcore_end_preempt(vc); 2839 2840 if (vc->vcore_state != VCORE_INACTIVE) { 2841 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 2842 continue; 2843 } 2844 for_each_runnable_thread(i, v, vc) { 2845 kvmppc_core_prepare_to_enter(v); 2846 if (signal_pending(v->arch.run_task)) { 2847 kvmppc_remove_runnable(vc, v); 2848 v->stat.signal_exits++; 2849 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 2850 v->arch.ret = -EINTR; 2851 wake_up(&v->arch.cpu_run); 2852 } 2853 } 2854 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2855 break; 2856 n_ceded = 0; 2857 for_each_runnable_thread(i, v, vc) { 2858 if (!v->arch.pending_exceptions && !v->arch.prodded) 2859 n_ceded += v->arch.ceded; 2860 else 2861 v->arch.ceded = 0; 2862 } 2863 vc->runner = vcpu; 2864 if (n_ceded == vc->n_runnable) { 2865 kvmppc_vcore_blocked(vc); 2866 } else if (need_resched()) { 2867 kvmppc_vcore_preempt(vc); 2868 /* Let something else run */ 2869 cond_resched_lock(&vc->lock); 2870 if (vc->vcore_state == VCORE_PREEMPT) 2871 kvmppc_vcore_end_preempt(vc); 2872 } else { 2873 kvmppc_run_core(vc); 2874 } 2875 vc->runner = NULL; 2876 } 2877 2878 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2879 (vc->vcore_state == VCORE_RUNNING || 2880 vc->vcore_state == VCORE_EXITING || 2881 vc->vcore_state == VCORE_PIGGYBACK)) 2882 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 2883 2884 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 2885 kvmppc_vcore_end_preempt(vc); 2886 2887 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2888 kvmppc_remove_runnable(vc, vcpu); 2889 vcpu->stat.signal_exits++; 2890 kvm_run->exit_reason = KVM_EXIT_INTR; 2891 vcpu->arch.ret = -EINTR; 2892 } 2893 2894 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 2895 /* Wake up some vcpu to run the core */ 2896 i = -1; 2897 v = next_runnable_thread(vc, &i); 2898 wake_up(&v->arch.cpu_run); 2899 } 2900 2901 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 2902 spin_unlock(&vc->lock); 2903 return vcpu->arch.ret; 2904 } 2905 2906 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 2907 { 2908 int r; 2909 int srcu_idx; 2910 2911 if (!vcpu->arch.sane) { 2912 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2913 return -EINVAL; 2914 } 2915 2916 kvmppc_core_prepare_to_enter(vcpu); 2917 2918 /* No need to go into the guest when all we'll do is come back out */ 2919 if (signal_pending(current)) { 2920 run->exit_reason = KVM_EXIT_INTR; 2921 return -EINTR; 2922 } 2923 2924 atomic_inc(&vcpu->kvm->arch.vcpus_running); 2925 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */ 2926 smp_mb(); 2927 2928 /* On the first time here, set up HTAB and VRMA */ 2929 if (!kvm_is_radix(vcpu->kvm) && !vcpu->kvm->arch.hpte_setup_done) { 2930 r = kvmppc_hv_setup_htab_rma(vcpu); 2931 if (r) 2932 goto out; 2933 } 2934 2935 flush_all_to_thread(current); 2936 2937 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 2938 vcpu->arch.pgdir = current->mm->pgd; 2939 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2940 2941 do { 2942 r = kvmppc_run_vcpu(run, vcpu); 2943 2944 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 2945 !(vcpu->arch.shregs.msr & MSR_PR)) { 2946 trace_kvm_hcall_enter(vcpu); 2947 r = kvmppc_pseries_do_hcall(vcpu); 2948 trace_kvm_hcall_exit(vcpu, r); 2949 kvmppc_core_prepare_to_enter(vcpu); 2950 } else if (r == RESUME_PAGE_FAULT) { 2951 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2952 r = kvmppc_book3s_hv_page_fault(run, vcpu, 2953 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 2954 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2955 } else if (r == RESUME_PASSTHROUGH) { 2956 if (WARN_ON(xive_enabled())) 2957 r = H_SUCCESS; 2958 else 2959 r = kvmppc_xics_rm_complete(vcpu, 0); 2960 } 2961 } while (is_kvmppc_resume_guest(r)); 2962 2963 out: 2964 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2965 atomic_dec(&vcpu->kvm->arch.vcpus_running); 2966 return r; 2967 } 2968 2969 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 2970 int linux_psize) 2971 { 2972 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 2973 2974 if (!def->shift) 2975 return; 2976 (*sps)->page_shift = def->shift; 2977 (*sps)->slb_enc = def->sllp; 2978 (*sps)->enc[0].page_shift = def->shift; 2979 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 2980 /* 2981 * Add 16MB MPSS support if host supports it 2982 */ 2983 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) { 2984 (*sps)->enc[1].page_shift = 24; 2985 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M]; 2986 } 2987 (*sps)++; 2988 } 2989 2990 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 2991 struct kvm_ppc_smmu_info *info) 2992 { 2993 struct kvm_ppc_one_seg_page_size *sps; 2994 2995 /* 2996 * Since we don't yet support HPT guests on a radix host, 2997 * return an error if the host uses radix. 2998 */ 2999 if (radix_enabled()) 3000 return -EINVAL; 3001 3002 info->flags = KVM_PPC_PAGE_SIZES_REAL; 3003 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 3004 info->flags |= KVM_PPC_1T_SEGMENTS; 3005 info->slb_size = mmu_slb_size; 3006 3007 /* We only support these sizes for now, and no muti-size segments */ 3008 sps = &info->sps[0]; 3009 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 3010 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 3011 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 3012 3013 return 0; 3014 } 3015 3016 /* 3017 * Get (and clear) the dirty memory log for a memory slot. 3018 */ 3019 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 3020 struct kvm_dirty_log *log) 3021 { 3022 struct kvm_memslots *slots; 3023 struct kvm_memory_slot *memslot; 3024 int i, r; 3025 unsigned long n; 3026 unsigned long *buf; 3027 struct kvm_vcpu *vcpu; 3028 3029 mutex_lock(&kvm->slots_lock); 3030 3031 r = -EINVAL; 3032 if (log->slot >= KVM_USER_MEM_SLOTS) 3033 goto out; 3034 3035 slots = kvm_memslots(kvm); 3036 memslot = id_to_memslot(slots, log->slot); 3037 r = -ENOENT; 3038 if (!memslot->dirty_bitmap) 3039 goto out; 3040 3041 /* 3042 * Use second half of bitmap area because radix accumulates 3043 * bits in the first half. 3044 */ 3045 n = kvm_dirty_bitmap_bytes(memslot); 3046 buf = memslot->dirty_bitmap + n / sizeof(long); 3047 memset(buf, 0, n); 3048 3049 if (kvm_is_radix(kvm)) 3050 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 3051 else 3052 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 3053 if (r) 3054 goto out; 3055 3056 /* Harvest dirty bits from VPA and DTL updates */ 3057 /* Note: we never modify the SLB shadow buffer areas */ 3058 kvm_for_each_vcpu(i, vcpu, kvm) { 3059 spin_lock(&vcpu->arch.vpa_update_lock); 3060 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 3061 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 3062 spin_unlock(&vcpu->arch.vpa_update_lock); 3063 } 3064 3065 r = -EFAULT; 3066 if (copy_to_user(log->dirty_bitmap, buf, n)) 3067 goto out; 3068 3069 r = 0; 3070 out: 3071 mutex_unlock(&kvm->slots_lock); 3072 return r; 3073 } 3074 3075 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 3076 struct kvm_memory_slot *dont) 3077 { 3078 if (!dont || free->arch.rmap != dont->arch.rmap) { 3079 vfree(free->arch.rmap); 3080 free->arch.rmap = NULL; 3081 } 3082 } 3083 3084 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 3085 unsigned long npages) 3086 { 3087 /* 3088 * For now, if radix_enabled() then we only support radix guests, 3089 * and in that case we don't need the rmap array. 3090 */ 3091 if (radix_enabled()) { 3092 slot->arch.rmap = NULL; 3093 return 0; 3094 } 3095 3096 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 3097 if (!slot->arch.rmap) 3098 return -ENOMEM; 3099 3100 return 0; 3101 } 3102 3103 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 3104 struct kvm_memory_slot *memslot, 3105 const struct kvm_userspace_memory_region *mem) 3106 { 3107 return 0; 3108 } 3109 3110 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 3111 const struct kvm_userspace_memory_region *mem, 3112 const struct kvm_memory_slot *old, 3113 const struct kvm_memory_slot *new) 3114 { 3115 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 3116 struct kvm_memslots *slots; 3117 struct kvm_memory_slot *memslot; 3118 3119 /* 3120 * If we are making a new memslot, it might make 3121 * some address that was previously cached as emulated 3122 * MMIO be no longer emulated MMIO, so invalidate 3123 * all the caches of emulated MMIO translations. 3124 */ 3125 if (npages) 3126 atomic64_inc(&kvm->arch.mmio_update); 3127 3128 if (npages && old->npages && !kvm_is_radix(kvm)) { 3129 /* 3130 * If modifying a memslot, reset all the rmap dirty bits. 3131 * If this is a new memslot, we don't need to do anything 3132 * since the rmap array starts out as all zeroes, 3133 * i.e. no pages are dirty. 3134 */ 3135 slots = kvm_memslots(kvm); 3136 memslot = id_to_memslot(slots, mem->slot); 3137 kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL); 3138 } 3139 } 3140 3141 /* 3142 * Update LPCR values in kvm->arch and in vcores. 3143 * Caller must hold kvm->lock. 3144 */ 3145 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 3146 { 3147 long int i; 3148 u32 cores_done = 0; 3149 3150 if ((kvm->arch.lpcr & mask) == lpcr) 3151 return; 3152 3153 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 3154 3155 for (i = 0; i < KVM_MAX_VCORES; ++i) { 3156 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 3157 if (!vc) 3158 continue; 3159 spin_lock(&vc->lock); 3160 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 3161 spin_unlock(&vc->lock); 3162 if (++cores_done >= kvm->arch.online_vcores) 3163 break; 3164 } 3165 } 3166 3167 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 3168 { 3169 return; 3170 } 3171 3172 static void kvmppc_setup_partition_table(struct kvm *kvm) 3173 { 3174 unsigned long dw0, dw1; 3175 3176 if (!kvm_is_radix(kvm)) { 3177 /* PS field - page size for VRMA */ 3178 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 3179 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 3180 /* HTABSIZE and HTABORG fields */ 3181 dw0 |= kvm->arch.sdr1; 3182 3183 /* Second dword as set by userspace */ 3184 dw1 = kvm->arch.process_table; 3185 } else { 3186 dw0 = PATB_HR | radix__get_tree_size() | 3187 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 3188 dw1 = PATB_GR | kvm->arch.process_table; 3189 } 3190 3191 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1); 3192 } 3193 3194 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 3195 { 3196 int err = 0; 3197 struct kvm *kvm = vcpu->kvm; 3198 unsigned long hva; 3199 struct kvm_memory_slot *memslot; 3200 struct vm_area_struct *vma; 3201 unsigned long lpcr = 0, senc; 3202 unsigned long psize, porder; 3203 int srcu_idx; 3204 3205 mutex_lock(&kvm->lock); 3206 if (kvm->arch.hpte_setup_done) 3207 goto out; /* another vcpu beat us to it */ 3208 3209 /* Allocate hashed page table (if not done already) and reset it */ 3210 if (!kvm->arch.hpt.virt) { 3211 int order = KVM_DEFAULT_HPT_ORDER; 3212 struct kvm_hpt_info info; 3213 3214 err = kvmppc_allocate_hpt(&info, order); 3215 /* If we get here, it means userspace didn't specify a 3216 * size explicitly. So, try successively smaller 3217 * sizes if the default failed. */ 3218 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 3219 err = kvmppc_allocate_hpt(&info, order); 3220 3221 if (err < 0) { 3222 pr_err("KVM: Couldn't alloc HPT\n"); 3223 goto out; 3224 } 3225 3226 kvmppc_set_hpt(kvm, &info); 3227 } 3228 3229 /* Look up the memslot for guest physical address 0 */ 3230 srcu_idx = srcu_read_lock(&kvm->srcu); 3231 memslot = gfn_to_memslot(kvm, 0); 3232 3233 /* We must have some memory at 0 by now */ 3234 err = -EINVAL; 3235 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 3236 goto out_srcu; 3237 3238 /* Look up the VMA for the start of this memory slot */ 3239 hva = memslot->userspace_addr; 3240 down_read(¤t->mm->mmap_sem); 3241 vma = find_vma(current->mm, hva); 3242 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 3243 goto up_out; 3244 3245 psize = vma_kernel_pagesize(vma); 3246 porder = __ilog2(psize); 3247 3248 up_read(¤t->mm->mmap_sem); 3249 3250 /* We can handle 4k, 64k or 16M pages in the VRMA */ 3251 err = -EINVAL; 3252 if (!(psize == 0x1000 || psize == 0x10000 || 3253 psize == 0x1000000)) 3254 goto out_srcu; 3255 3256 senc = slb_pgsize_encoding(psize); 3257 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 3258 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3259 /* Create HPTEs in the hash page table for the VRMA */ 3260 kvmppc_map_vrma(vcpu, memslot, porder); 3261 3262 /* Update VRMASD field in the LPCR */ 3263 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 3264 /* the -4 is to account for senc values starting at 0x10 */ 3265 lpcr = senc << (LPCR_VRMASD_SH - 4); 3266 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 3267 } else { 3268 kvmppc_setup_partition_table(kvm); 3269 } 3270 3271 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */ 3272 smp_wmb(); 3273 kvm->arch.hpte_setup_done = 1; 3274 err = 0; 3275 out_srcu: 3276 srcu_read_unlock(&kvm->srcu, srcu_idx); 3277 out: 3278 mutex_unlock(&kvm->lock); 3279 return err; 3280 3281 up_out: 3282 up_read(¤t->mm->mmap_sem); 3283 goto out_srcu; 3284 } 3285 3286 #ifdef CONFIG_KVM_XICS 3287 /* 3288 * Allocate a per-core structure for managing state about which cores are 3289 * running in the host versus the guest and for exchanging data between 3290 * real mode KVM and CPU running in the host. 3291 * This is only done for the first VM. 3292 * The allocated structure stays even if all VMs have stopped. 3293 * It is only freed when the kvm-hv module is unloaded. 3294 * It's OK for this routine to fail, we just don't support host 3295 * core operations like redirecting H_IPI wakeups. 3296 */ 3297 void kvmppc_alloc_host_rm_ops(void) 3298 { 3299 struct kvmppc_host_rm_ops *ops; 3300 unsigned long l_ops; 3301 int cpu, core; 3302 int size; 3303 3304 /* Not the first time here ? */ 3305 if (kvmppc_host_rm_ops_hv != NULL) 3306 return; 3307 3308 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 3309 if (!ops) 3310 return; 3311 3312 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 3313 ops->rm_core = kzalloc(size, GFP_KERNEL); 3314 3315 if (!ops->rm_core) { 3316 kfree(ops); 3317 return; 3318 } 3319 3320 get_online_cpus(); 3321 3322 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 3323 if (!cpu_online(cpu)) 3324 continue; 3325 3326 core = cpu >> threads_shift; 3327 ops->rm_core[core].rm_state.in_host = 1; 3328 } 3329 3330 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 3331 3332 /* 3333 * Make the contents of the kvmppc_host_rm_ops structure visible 3334 * to other CPUs before we assign it to the global variable. 3335 * Do an atomic assignment (no locks used here), but if someone 3336 * beats us to it, just free our copy and return. 3337 */ 3338 smp_wmb(); 3339 l_ops = (unsigned long) ops; 3340 3341 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 3342 put_online_cpus(); 3343 kfree(ops->rm_core); 3344 kfree(ops); 3345 return; 3346 } 3347 3348 cpuhp_setup_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE, 3349 "ppc/kvm_book3s:prepare", 3350 kvmppc_set_host_core, 3351 kvmppc_clear_host_core); 3352 put_online_cpus(); 3353 } 3354 3355 void kvmppc_free_host_rm_ops(void) 3356 { 3357 if (kvmppc_host_rm_ops_hv) { 3358 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 3359 kfree(kvmppc_host_rm_ops_hv->rm_core); 3360 kfree(kvmppc_host_rm_ops_hv); 3361 kvmppc_host_rm_ops_hv = NULL; 3362 } 3363 } 3364 #endif 3365 3366 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 3367 { 3368 unsigned long lpcr, lpid; 3369 char buf[32]; 3370 int ret; 3371 3372 /* Allocate the guest's logical partition ID */ 3373 3374 lpid = kvmppc_alloc_lpid(); 3375 if ((long)lpid < 0) 3376 return -ENOMEM; 3377 kvm->arch.lpid = lpid; 3378 3379 kvmppc_alloc_host_rm_ops(); 3380 3381 /* 3382 * Since we don't flush the TLB when tearing down a VM, 3383 * and this lpid might have previously been used, 3384 * make sure we flush on each core before running the new VM. 3385 * On POWER9, the tlbie in mmu_partition_table_set_entry() 3386 * does this flush for us. 3387 */ 3388 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3389 cpumask_setall(&kvm->arch.need_tlb_flush); 3390 3391 /* Start out with the default set of hcalls enabled */ 3392 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 3393 sizeof(kvm->arch.enabled_hcalls)); 3394 3395 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3396 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 3397 3398 /* Init LPCR for virtual RMA mode */ 3399 kvm->arch.host_lpid = mfspr(SPRN_LPID); 3400 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 3401 lpcr &= LPCR_PECE | LPCR_LPES; 3402 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 3403 LPCR_VPM0 | LPCR_VPM1; 3404 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 3405 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3406 /* On POWER8 turn on online bit to enable PURR/SPURR */ 3407 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3408 lpcr |= LPCR_ONL; 3409 /* 3410 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 3411 * Set HVICE bit to enable hypervisor virtualization interrupts. 3412 * Set HEIC to prevent OS interrupts to go to hypervisor (should 3413 * be unnecessary but better safe than sorry in case we re-enable 3414 * EE in HV mode with this LPCR still set) 3415 */ 3416 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 3417 lpcr &= ~LPCR_VPM0; 3418 lpcr |= LPCR_HVICE | LPCR_HEIC; 3419 3420 /* 3421 * If xive is enabled, we route 0x500 interrupts directly 3422 * to the guest. 3423 */ 3424 if (xive_enabled()) 3425 lpcr |= LPCR_LPES; 3426 } 3427 3428 /* 3429 * For now, if the host uses radix, the guest must be radix. 3430 */ 3431 if (radix_enabled()) { 3432 kvm->arch.radix = 1; 3433 lpcr &= ~LPCR_VPM1; 3434 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 3435 ret = kvmppc_init_vm_radix(kvm); 3436 if (ret) { 3437 kvmppc_free_lpid(kvm->arch.lpid); 3438 return ret; 3439 } 3440 kvmppc_setup_partition_table(kvm); 3441 } 3442 3443 kvm->arch.lpcr = lpcr; 3444 3445 /* Initialization for future HPT resizes */ 3446 kvm->arch.resize_hpt = NULL; 3447 3448 /* 3449 * Work out how many sets the TLB has, for the use of 3450 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 3451 */ 3452 if (kvm_is_radix(kvm)) 3453 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 3454 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 3455 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 3456 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3457 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 3458 else 3459 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 3460 3461 /* 3462 * Track that we now have a HV mode VM active. This blocks secondary 3463 * CPU threads from coming online. 3464 * On POWER9, we only need to do this for HPT guests on a radix 3465 * host, which is not yet supported. 3466 */ 3467 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3468 kvm_hv_vm_activated(); 3469 3470 /* 3471 * Create a debugfs directory for the VM 3472 */ 3473 snprintf(buf, sizeof(buf), "vm%d", current->pid); 3474 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 3475 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 3476 kvmppc_mmu_debugfs_init(kvm); 3477 3478 return 0; 3479 } 3480 3481 static void kvmppc_free_vcores(struct kvm *kvm) 3482 { 3483 long int i; 3484 3485 for (i = 0; i < KVM_MAX_VCORES; ++i) 3486 kfree(kvm->arch.vcores[i]); 3487 kvm->arch.online_vcores = 0; 3488 } 3489 3490 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 3491 { 3492 debugfs_remove_recursive(kvm->arch.debugfs_dir); 3493 3494 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3495 kvm_hv_vm_deactivated(); 3496 3497 kvmppc_free_vcores(kvm); 3498 3499 kvmppc_free_lpid(kvm->arch.lpid); 3500 3501 if (kvm_is_radix(kvm)) 3502 kvmppc_free_radix(kvm); 3503 else 3504 kvmppc_free_hpt(&kvm->arch.hpt); 3505 3506 kvmppc_free_pimap(kvm); 3507 } 3508 3509 /* We don't need to emulate any privileged instructions or dcbz */ 3510 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 3511 unsigned int inst, int *advance) 3512 { 3513 return EMULATE_FAIL; 3514 } 3515 3516 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 3517 ulong spr_val) 3518 { 3519 return EMULATE_FAIL; 3520 } 3521 3522 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 3523 ulong *spr_val) 3524 { 3525 return EMULATE_FAIL; 3526 } 3527 3528 static int kvmppc_core_check_processor_compat_hv(void) 3529 { 3530 if (!cpu_has_feature(CPU_FTR_HVMODE) || 3531 !cpu_has_feature(CPU_FTR_ARCH_206)) 3532 return -EIO; 3533 3534 return 0; 3535 } 3536 3537 #ifdef CONFIG_KVM_XICS 3538 3539 void kvmppc_free_pimap(struct kvm *kvm) 3540 { 3541 kfree(kvm->arch.pimap); 3542 } 3543 3544 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 3545 { 3546 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 3547 } 3548 3549 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 3550 { 3551 struct irq_desc *desc; 3552 struct kvmppc_irq_map *irq_map; 3553 struct kvmppc_passthru_irqmap *pimap; 3554 struct irq_chip *chip; 3555 int i, rc = 0; 3556 3557 if (!kvm_irq_bypass) 3558 return 1; 3559 3560 desc = irq_to_desc(host_irq); 3561 if (!desc) 3562 return -EIO; 3563 3564 mutex_lock(&kvm->lock); 3565 3566 pimap = kvm->arch.pimap; 3567 if (pimap == NULL) { 3568 /* First call, allocate structure to hold IRQ map */ 3569 pimap = kvmppc_alloc_pimap(); 3570 if (pimap == NULL) { 3571 mutex_unlock(&kvm->lock); 3572 return -ENOMEM; 3573 } 3574 kvm->arch.pimap = pimap; 3575 } 3576 3577 /* 3578 * For now, we only support interrupts for which the EOI operation 3579 * is an OPAL call followed by a write to XIRR, since that's 3580 * what our real-mode EOI code does, or a XIVE interrupt 3581 */ 3582 chip = irq_data_get_irq_chip(&desc->irq_data); 3583 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 3584 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 3585 host_irq, guest_gsi); 3586 mutex_unlock(&kvm->lock); 3587 return -ENOENT; 3588 } 3589 3590 /* 3591 * See if we already have an entry for this guest IRQ number. 3592 * If it's mapped to a hardware IRQ number, that's an error, 3593 * otherwise re-use this entry. 3594 */ 3595 for (i = 0; i < pimap->n_mapped; i++) { 3596 if (guest_gsi == pimap->mapped[i].v_hwirq) { 3597 if (pimap->mapped[i].r_hwirq) { 3598 mutex_unlock(&kvm->lock); 3599 return -EINVAL; 3600 } 3601 break; 3602 } 3603 } 3604 3605 if (i == KVMPPC_PIRQ_MAPPED) { 3606 mutex_unlock(&kvm->lock); 3607 return -EAGAIN; /* table is full */ 3608 } 3609 3610 irq_map = &pimap->mapped[i]; 3611 3612 irq_map->v_hwirq = guest_gsi; 3613 irq_map->desc = desc; 3614 3615 /* 3616 * Order the above two stores before the next to serialize with 3617 * the KVM real mode handler. 3618 */ 3619 smp_wmb(); 3620 irq_map->r_hwirq = desc->irq_data.hwirq; 3621 3622 if (i == pimap->n_mapped) 3623 pimap->n_mapped++; 3624 3625 if (xive_enabled()) 3626 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 3627 else 3628 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 3629 if (rc) 3630 irq_map->r_hwirq = 0; 3631 3632 mutex_unlock(&kvm->lock); 3633 3634 return 0; 3635 } 3636 3637 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 3638 { 3639 struct irq_desc *desc; 3640 struct kvmppc_passthru_irqmap *pimap; 3641 int i, rc = 0; 3642 3643 if (!kvm_irq_bypass) 3644 return 0; 3645 3646 desc = irq_to_desc(host_irq); 3647 if (!desc) 3648 return -EIO; 3649 3650 mutex_lock(&kvm->lock); 3651 if (!kvm->arch.pimap) 3652 goto unlock; 3653 3654 pimap = kvm->arch.pimap; 3655 3656 for (i = 0; i < pimap->n_mapped; i++) { 3657 if (guest_gsi == pimap->mapped[i].v_hwirq) 3658 break; 3659 } 3660 3661 if (i == pimap->n_mapped) { 3662 mutex_unlock(&kvm->lock); 3663 return -ENODEV; 3664 } 3665 3666 if (xive_enabled()) 3667 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 3668 else 3669 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 3670 3671 /* invalidate the entry (what do do on error from the above ?) */ 3672 pimap->mapped[i].r_hwirq = 0; 3673 3674 /* 3675 * We don't free this structure even when the count goes to 3676 * zero. The structure is freed when we destroy the VM. 3677 */ 3678 unlock: 3679 mutex_unlock(&kvm->lock); 3680 return rc; 3681 } 3682 3683 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 3684 struct irq_bypass_producer *prod) 3685 { 3686 int ret = 0; 3687 struct kvm_kernel_irqfd *irqfd = 3688 container_of(cons, struct kvm_kernel_irqfd, consumer); 3689 3690 irqfd->producer = prod; 3691 3692 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 3693 if (ret) 3694 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 3695 prod->irq, irqfd->gsi, ret); 3696 3697 return ret; 3698 } 3699 3700 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 3701 struct irq_bypass_producer *prod) 3702 { 3703 int ret; 3704 struct kvm_kernel_irqfd *irqfd = 3705 container_of(cons, struct kvm_kernel_irqfd, consumer); 3706 3707 irqfd->producer = NULL; 3708 3709 /* 3710 * When producer of consumer is unregistered, we change back to 3711 * default external interrupt handling mode - KVM real mode 3712 * will switch back to host. 3713 */ 3714 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 3715 if (ret) 3716 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 3717 prod->irq, irqfd->gsi, ret); 3718 } 3719 #endif 3720 3721 static long kvm_arch_vm_ioctl_hv(struct file *filp, 3722 unsigned int ioctl, unsigned long arg) 3723 { 3724 struct kvm *kvm __maybe_unused = filp->private_data; 3725 void __user *argp = (void __user *)arg; 3726 long r; 3727 3728 switch (ioctl) { 3729 3730 case KVM_PPC_ALLOCATE_HTAB: { 3731 u32 htab_order; 3732 3733 r = -EFAULT; 3734 if (get_user(htab_order, (u32 __user *)argp)) 3735 break; 3736 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 3737 if (r) 3738 break; 3739 r = 0; 3740 break; 3741 } 3742 3743 case KVM_PPC_GET_HTAB_FD: { 3744 struct kvm_get_htab_fd ghf; 3745 3746 r = -EFAULT; 3747 if (copy_from_user(&ghf, argp, sizeof(ghf))) 3748 break; 3749 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 3750 break; 3751 } 3752 3753 case KVM_PPC_RESIZE_HPT_PREPARE: { 3754 struct kvm_ppc_resize_hpt rhpt; 3755 3756 r = -EFAULT; 3757 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 3758 break; 3759 3760 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 3761 break; 3762 } 3763 3764 case KVM_PPC_RESIZE_HPT_COMMIT: { 3765 struct kvm_ppc_resize_hpt rhpt; 3766 3767 r = -EFAULT; 3768 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 3769 break; 3770 3771 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 3772 break; 3773 } 3774 3775 default: 3776 r = -ENOTTY; 3777 } 3778 3779 return r; 3780 } 3781 3782 /* 3783 * List of hcall numbers to enable by default. 3784 * For compatibility with old userspace, we enable by default 3785 * all hcalls that were implemented before the hcall-enabling 3786 * facility was added. Note this list should not include H_RTAS. 3787 */ 3788 static unsigned int default_hcall_list[] = { 3789 H_REMOVE, 3790 H_ENTER, 3791 H_READ, 3792 H_PROTECT, 3793 H_BULK_REMOVE, 3794 H_GET_TCE, 3795 H_PUT_TCE, 3796 H_SET_DABR, 3797 H_SET_XDABR, 3798 H_CEDE, 3799 H_PROD, 3800 H_CONFER, 3801 H_REGISTER_VPA, 3802 #ifdef CONFIG_KVM_XICS 3803 H_EOI, 3804 H_CPPR, 3805 H_IPI, 3806 H_IPOLL, 3807 H_XIRR, 3808 H_XIRR_X, 3809 #endif 3810 0 3811 }; 3812 3813 static void init_default_hcalls(void) 3814 { 3815 int i; 3816 unsigned int hcall; 3817 3818 for (i = 0; default_hcall_list[i]; ++i) { 3819 hcall = default_hcall_list[i]; 3820 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 3821 __set_bit(hcall / 4, default_enabled_hcalls); 3822 } 3823 } 3824 3825 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 3826 { 3827 unsigned long lpcr; 3828 int radix; 3829 3830 /* If not on a POWER9, reject it */ 3831 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3832 return -ENODEV; 3833 3834 /* If any unknown flags set, reject it */ 3835 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 3836 return -EINVAL; 3837 3838 /* We can't change a guest to/from radix yet */ 3839 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 3840 if (radix != kvm_is_radix(kvm)) 3841 return -EINVAL; 3842 3843 /* GR (guest radix) bit in process_table field must match */ 3844 if (!!(cfg->process_table & PATB_GR) != radix) 3845 return -EINVAL; 3846 3847 /* Process table size field must be reasonable, i.e. <= 24 */ 3848 if ((cfg->process_table & PRTS_MASK) > 24) 3849 return -EINVAL; 3850 3851 kvm->arch.process_table = cfg->process_table; 3852 kvmppc_setup_partition_table(kvm); 3853 3854 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 3855 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 3856 3857 return 0; 3858 } 3859 3860 static struct kvmppc_ops kvm_ops_hv = { 3861 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 3862 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 3863 .get_one_reg = kvmppc_get_one_reg_hv, 3864 .set_one_reg = kvmppc_set_one_reg_hv, 3865 .vcpu_load = kvmppc_core_vcpu_load_hv, 3866 .vcpu_put = kvmppc_core_vcpu_put_hv, 3867 .set_msr = kvmppc_set_msr_hv, 3868 .vcpu_run = kvmppc_vcpu_run_hv, 3869 .vcpu_create = kvmppc_core_vcpu_create_hv, 3870 .vcpu_free = kvmppc_core_vcpu_free_hv, 3871 .check_requests = kvmppc_core_check_requests_hv, 3872 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 3873 .flush_memslot = kvmppc_core_flush_memslot_hv, 3874 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 3875 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 3876 .unmap_hva = kvm_unmap_hva_hv, 3877 .unmap_hva_range = kvm_unmap_hva_range_hv, 3878 .age_hva = kvm_age_hva_hv, 3879 .test_age_hva = kvm_test_age_hva_hv, 3880 .set_spte_hva = kvm_set_spte_hva_hv, 3881 .mmu_destroy = kvmppc_mmu_destroy_hv, 3882 .free_memslot = kvmppc_core_free_memslot_hv, 3883 .create_memslot = kvmppc_core_create_memslot_hv, 3884 .init_vm = kvmppc_core_init_vm_hv, 3885 .destroy_vm = kvmppc_core_destroy_vm_hv, 3886 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 3887 .emulate_op = kvmppc_core_emulate_op_hv, 3888 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 3889 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 3890 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 3891 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 3892 .hcall_implemented = kvmppc_hcall_impl_hv, 3893 #ifdef CONFIG_KVM_XICS 3894 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 3895 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 3896 #endif 3897 .configure_mmu = kvmhv_configure_mmu, 3898 .get_rmmu_info = kvmhv_get_rmmu_info, 3899 }; 3900 3901 static int kvm_init_subcore_bitmap(void) 3902 { 3903 int i, j; 3904 int nr_cores = cpu_nr_cores(); 3905 struct sibling_subcore_state *sibling_subcore_state; 3906 3907 for (i = 0; i < nr_cores; i++) { 3908 int first_cpu = i * threads_per_core; 3909 int node = cpu_to_node(first_cpu); 3910 3911 /* Ignore if it is already allocated. */ 3912 if (paca[first_cpu].sibling_subcore_state) 3913 continue; 3914 3915 sibling_subcore_state = 3916 kmalloc_node(sizeof(struct sibling_subcore_state), 3917 GFP_KERNEL, node); 3918 if (!sibling_subcore_state) 3919 return -ENOMEM; 3920 3921 memset(sibling_subcore_state, 0, 3922 sizeof(struct sibling_subcore_state)); 3923 3924 for (j = 0; j < threads_per_core; j++) { 3925 int cpu = first_cpu + j; 3926 3927 paca[cpu].sibling_subcore_state = sibling_subcore_state; 3928 } 3929 } 3930 return 0; 3931 } 3932 3933 static int kvmppc_radix_possible(void) 3934 { 3935 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 3936 } 3937 3938 static int kvmppc_book3s_init_hv(void) 3939 { 3940 int r; 3941 /* 3942 * FIXME!! Do we need to check on all cpus ? 3943 */ 3944 r = kvmppc_core_check_processor_compat_hv(); 3945 if (r < 0) 3946 return -ENODEV; 3947 3948 r = kvm_init_subcore_bitmap(); 3949 if (r) 3950 return r; 3951 3952 /* 3953 * We need a way of accessing the XICS interrupt controller, 3954 * either directly, via paca[cpu].kvm_hstate.xics_phys, or 3955 * indirectly, via OPAL. 3956 */ 3957 #ifdef CONFIG_SMP 3958 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) { 3959 struct device_node *np; 3960 3961 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 3962 if (!np) { 3963 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 3964 return -ENODEV; 3965 } 3966 } 3967 #endif 3968 3969 kvm_ops_hv.owner = THIS_MODULE; 3970 kvmppc_hv_ops = &kvm_ops_hv; 3971 3972 init_default_hcalls(); 3973 3974 init_vcore_lists(); 3975 3976 r = kvmppc_mmu_hv_init(); 3977 if (r) 3978 return r; 3979 3980 if (kvmppc_radix_possible()) 3981 r = kvmppc_radix_init(); 3982 return r; 3983 } 3984 3985 static void kvmppc_book3s_exit_hv(void) 3986 { 3987 kvmppc_free_host_rm_ops(); 3988 if (kvmppc_radix_possible()) 3989 kvmppc_radix_exit(); 3990 kvmppc_hv_ops = NULL; 3991 } 3992 3993 module_init(kvmppc_book3s_init_hv); 3994 module_exit(kvmppc_book3s_exit_hv); 3995 MODULE_LICENSE("GPL"); 3996 MODULE_ALIAS_MISCDEV(KVM_MINOR); 3997 MODULE_ALIAS("devname:kvm"); 3998 3999