xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision bb0eb050)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/stat.h>
27 #include <linux/delay.h>
28 #include <linux/export.h>
29 #include <linux/fs.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/spinlock.h>
34 #include <linux/page-flags.h>
35 #include <linux/srcu.h>
36 #include <linux/miscdevice.h>
37 #include <linux/debugfs.h>
38 #include <linux/gfp.h>
39 #include <linux/vmalloc.h>
40 #include <linux/highmem.h>
41 #include <linux/hugetlb.h>
42 #include <linux/kvm_irqfd.h>
43 #include <linux/irqbypass.h>
44 #include <linux/module.h>
45 #include <linux/compiler.h>
46 #include <linux/of.h>
47 
48 #include <asm/reg.h>
49 #include <asm/cputable.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlbflush.h>
52 #include <linux/uaccess.h>
53 #include <asm/io.h>
54 #include <asm/kvm_ppc.h>
55 #include <asm/kvm_book3s.h>
56 #include <asm/mmu_context.h>
57 #include <asm/lppaca.h>
58 #include <asm/processor.h>
59 #include <asm/cputhreads.h>
60 #include <asm/page.h>
61 #include <asm/hvcall.h>
62 #include <asm/switch_to.h>
63 #include <asm/smp.h>
64 #include <asm/dbell.h>
65 #include <asm/hmi.h>
66 #include <asm/pnv-pci.h>
67 #include <asm/mmu.h>
68 #include <asm/opal.h>
69 #include <asm/xics.h>
70 #include <asm/xive.h>
71 
72 #include "book3s.h"
73 
74 #define CREATE_TRACE_POINTS
75 #include "trace_hv.h"
76 
77 /* #define EXIT_DEBUG */
78 /* #define EXIT_DEBUG_SIMPLE */
79 /* #define EXIT_DEBUG_INT */
80 
81 /* Used to indicate that a guest page fault needs to be handled */
82 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
83 /* Used to indicate that a guest passthrough interrupt needs to be handled */
84 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
85 
86 /* Used as a "null" value for timebase values */
87 #define TB_NIL	(~(u64)0)
88 
89 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
90 
91 static int dynamic_mt_modes = 6;
92 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
94 static int target_smt_mode;
95 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
96 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
97 
98 #ifdef CONFIG_KVM_XICS
99 static struct kernel_param_ops module_param_ops = {
100 	.set = param_set_int,
101 	.get = param_get_int,
102 };
103 
104 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
105 							S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
107 
108 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
109 							S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
111 #endif
112 
113 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
114 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
115 
116 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
117 		int *ip)
118 {
119 	int i = *ip;
120 	struct kvm_vcpu *vcpu;
121 
122 	while (++i < MAX_SMT_THREADS) {
123 		vcpu = READ_ONCE(vc->runnable_threads[i]);
124 		if (vcpu) {
125 			*ip = i;
126 			return vcpu;
127 		}
128 	}
129 	return NULL;
130 }
131 
132 /* Used to traverse the list of runnable threads for a given vcore */
133 #define for_each_runnable_thread(i, vcpu, vc) \
134 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
135 
136 static bool kvmppc_ipi_thread(int cpu)
137 {
138 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
139 
140 	/* On POWER9 we can use msgsnd to IPI any cpu */
141 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
142 		msg |= get_hard_smp_processor_id(cpu);
143 		smp_mb();
144 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
145 		return true;
146 	}
147 
148 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
149 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
150 		preempt_disable();
151 		if (cpu_first_thread_sibling(cpu) ==
152 		    cpu_first_thread_sibling(smp_processor_id())) {
153 			msg |= cpu_thread_in_core(cpu);
154 			smp_mb();
155 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
156 			preempt_enable();
157 			return true;
158 		}
159 		preempt_enable();
160 	}
161 
162 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
163 	if (cpu >= 0 && cpu < nr_cpu_ids) {
164 		if (paca[cpu].kvm_hstate.xics_phys) {
165 			xics_wake_cpu(cpu);
166 			return true;
167 		}
168 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
169 		return true;
170 	}
171 #endif
172 
173 	return false;
174 }
175 
176 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
177 {
178 	int cpu;
179 	struct swait_queue_head *wqp;
180 
181 	wqp = kvm_arch_vcpu_wq(vcpu);
182 	if (swait_active(wqp)) {
183 		swake_up(wqp);
184 		++vcpu->stat.halt_wakeup;
185 	}
186 
187 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
188 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
189 		return;
190 
191 	/* CPU points to the first thread of the core */
192 	cpu = vcpu->cpu;
193 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
194 		smp_send_reschedule(cpu);
195 }
196 
197 /*
198  * We use the vcpu_load/put functions to measure stolen time.
199  * Stolen time is counted as time when either the vcpu is able to
200  * run as part of a virtual core, but the task running the vcore
201  * is preempted or sleeping, or when the vcpu needs something done
202  * in the kernel by the task running the vcpu, but that task is
203  * preempted or sleeping.  Those two things have to be counted
204  * separately, since one of the vcpu tasks will take on the job
205  * of running the core, and the other vcpu tasks in the vcore will
206  * sleep waiting for it to do that, but that sleep shouldn't count
207  * as stolen time.
208  *
209  * Hence we accumulate stolen time when the vcpu can run as part of
210  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
211  * needs its task to do other things in the kernel (for example,
212  * service a page fault) in busy_stolen.  We don't accumulate
213  * stolen time for a vcore when it is inactive, or for a vcpu
214  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
215  * a misnomer; it means that the vcpu task is not executing in
216  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
217  * the kernel.  We don't have any way of dividing up that time
218  * between time that the vcpu is genuinely stopped, time that
219  * the task is actively working on behalf of the vcpu, and time
220  * that the task is preempted, so we don't count any of it as
221  * stolen.
222  *
223  * Updates to busy_stolen are protected by arch.tbacct_lock;
224  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
225  * lock.  The stolen times are measured in units of timebase ticks.
226  * (Note that the != TB_NIL checks below are purely defensive;
227  * they should never fail.)
228  */
229 
230 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
231 {
232 	unsigned long flags;
233 
234 	spin_lock_irqsave(&vc->stoltb_lock, flags);
235 	vc->preempt_tb = mftb();
236 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
237 }
238 
239 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
240 {
241 	unsigned long flags;
242 
243 	spin_lock_irqsave(&vc->stoltb_lock, flags);
244 	if (vc->preempt_tb != TB_NIL) {
245 		vc->stolen_tb += mftb() - vc->preempt_tb;
246 		vc->preempt_tb = TB_NIL;
247 	}
248 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
249 }
250 
251 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
252 {
253 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
254 	unsigned long flags;
255 
256 	/*
257 	 * We can test vc->runner without taking the vcore lock,
258 	 * because only this task ever sets vc->runner to this
259 	 * vcpu, and once it is set to this vcpu, only this task
260 	 * ever sets it to NULL.
261 	 */
262 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
263 		kvmppc_core_end_stolen(vc);
264 
265 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
266 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
267 	    vcpu->arch.busy_preempt != TB_NIL) {
268 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
269 		vcpu->arch.busy_preempt = TB_NIL;
270 	}
271 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
272 }
273 
274 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
275 {
276 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
277 	unsigned long flags;
278 
279 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
280 		kvmppc_core_start_stolen(vc);
281 
282 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
283 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
284 		vcpu->arch.busy_preempt = mftb();
285 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
286 }
287 
288 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
289 {
290 	/*
291 	 * Check for illegal transactional state bit combination
292 	 * and if we find it, force the TS field to a safe state.
293 	 */
294 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
295 		msr &= ~MSR_TS_MASK;
296 	vcpu->arch.shregs.msr = msr;
297 	kvmppc_end_cede(vcpu);
298 }
299 
300 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
301 {
302 	vcpu->arch.pvr = pvr;
303 }
304 
305 /* Dummy value used in computing PCR value below */
306 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
307 
308 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
309 {
310 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
311 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
312 
313 	/* We can (emulate) our own architecture version and anything older */
314 	if (cpu_has_feature(CPU_FTR_ARCH_300))
315 		host_pcr_bit = PCR_ARCH_300;
316 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
317 		host_pcr_bit = PCR_ARCH_207;
318 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
319 		host_pcr_bit = PCR_ARCH_206;
320 	else
321 		host_pcr_bit = PCR_ARCH_205;
322 
323 	/* Determine lowest PCR bit needed to run guest in given PVR level */
324 	guest_pcr_bit = host_pcr_bit;
325 	if (arch_compat) {
326 		switch (arch_compat) {
327 		case PVR_ARCH_205:
328 			guest_pcr_bit = PCR_ARCH_205;
329 			break;
330 		case PVR_ARCH_206:
331 		case PVR_ARCH_206p:
332 			guest_pcr_bit = PCR_ARCH_206;
333 			break;
334 		case PVR_ARCH_207:
335 			guest_pcr_bit = PCR_ARCH_207;
336 			break;
337 		case PVR_ARCH_300:
338 			guest_pcr_bit = PCR_ARCH_300;
339 			break;
340 		default:
341 			return -EINVAL;
342 		}
343 	}
344 
345 	/* Check requested PCR bits don't exceed our capabilities */
346 	if (guest_pcr_bit > host_pcr_bit)
347 		return -EINVAL;
348 
349 	spin_lock(&vc->lock);
350 	vc->arch_compat = arch_compat;
351 	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
352 	vc->pcr = host_pcr_bit - guest_pcr_bit;
353 	spin_unlock(&vc->lock);
354 
355 	return 0;
356 }
357 
358 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
359 {
360 	int r;
361 
362 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
363 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
364 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
365 	for (r = 0; r < 16; ++r)
366 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
367 		       r, kvmppc_get_gpr(vcpu, r),
368 		       r+16, kvmppc_get_gpr(vcpu, r+16));
369 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
370 	       vcpu->arch.ctr, vcpu->arch.lr);
371 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
372 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
373 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
374 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
375 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
376 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
377 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
378 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
379 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
380 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
381 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
382 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
383 	for (r = 0; r < vcpu->arch.slb_max; ++r)
384 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
385 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
386 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
387 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
388 	       vcpu->arch.last_inst);
389 }
390 
391 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
392 {
393 	struct kvm_vcpu *ret;
394 
395 	mutex_lock(&kvm->lock);
396 	ret = kvm_get_vcpu_by_id(kvm, id);
397 	mutex_unlock(&kvm->lock);
398 	return ret;
399 }
400 
401 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
402 {
403 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
404 	vpa->yield_count = cpu_to_be32(1);
405 }
406 
407 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
408 		   unsigned long addr, unsigned long len)
409 {
410 	/* check address is cacheline aligned */
411 	if (addr & (L1_CACHE_BYTES - 1))
412 		return -EINVAL;
413 	spin_lock(&vcpu->arch.vpa_update_lock);
414 	if (v->next_gpa != addr || v->len != len) {
415 		v->next_gpa = addr;
416 		v->len = addr ? len : 0;
417 		v->update_pending = 1;
418 	}
419 	spin_unlock(&vcpu->arch.vpa_update_lock);
420 	return 0;
421 }
422 
423 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
424 struct reg_vpa {
425 	u32 dummy;
426 	union {
427 		__be16 hword;
428 		__be32 word;
429 	} length;
430 };
431 
432 static int vpa_is_registered(struct kvmppc_vpa *vpap)
433 {
434 	if (vpap->update_pending)
435 		return vpap->next_gpa != 0;
436 	return vpap->pinned_addr != NULL;
437 }
438 
439 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
440 				       unsigned long flags,
441 				       unsigned long vcpuid, unsigned long vpa)
442 {
443 	struct kvm *kvm = vcpu->kvm;
444 	unsigned long len, nb;
445 	void *va;
446 	struct kvm_vcpu *tvcpu;
447 	int err;
448 	int subfunc;
449 	struct kvmppc_vpa *vpap;
450 
451 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
452 	if (!tvcpu)
453 		return H_PARAMETER;
454 
455 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
456 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
457 	    subfunc == H_VPA_REG_SLB) {
458 		/* Registering new area - address must be cache-line aligned */
459 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
460 			return H_PARAMETER;
461 
462 		/* convert logical addr to kernel addr and read length */
463 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
464 		if (va == NULL)
465 			return H_PARAMETER;
466 		if (subfunc == H_VPA_REG_VPA)
467 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
468 		else
469 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
470 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
471 
472 		/* Check length */
473 		if (len > nb || len < sizeof(struct reg_vpa))
474 			return H_PARAMETER;
475 	} else {
476 		vpa = 0;
477 		len = 0;
478 	}
479 
480 	err = H_PARAMETER;
481 	vpap = NULL;
482 	spin_lock(&tvcpu->arch.vpa_update_lock);
483 
484 	switch (subfunc) {
485 	case H_VPA_REG_VPA:		/* register VPA */
486 		if (len < sizeof(struct lppaca))
487 			break;
488 		vpap = &tvcpu->arch.vpa;
489 		err = 0;
490 		break;
491 
492 	case H_VPA_REG_DTL:		/* register DTL */
493 		if (len < sizeof(struct dtl_entry))
494 			break;
495 		len -= len % sizeof(struct dtl_entry);
496 
497 		/* Check that they have previously registered a VPA */
498 		err = H_RESOURCE;
499 		if (!vpa_is_registered(&tvcpu->arch.vpa))
500 			break;
501 
502 		vpap = &tvcpu->arch.dtl;
503 		err = 0;
504 		break;
505 
506 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
507 		/* Check that they have previously registered a VPA */
508 		err = H_RESOURCE;
509 		if (!vpa_is_registered(&tvcpu->arch.vpa))
510 			break;
511 
512 		vpap = &tvcpu->arch.slb_shadow;
513 		err = 0;
514 		break;
515 
516 	case H_VPA_DEREG_VPA:		/* deregister VPA */
517 		/* Check they don't still have a DTL or SLB buf registered */
518 		err = H_RESOURCE;
519 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
520 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
521 			break;
522 
523 		vpap = &tvcpu->arch.vpa;
524 		err = 0;
525 		break;
526 
527 	case H_VPA_DEREG_DTL:		/* deregister DTL */
528 		vpap = &tvcpu->arch.dtl;
529 		err = 0;
530 		break;
531 
532 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
533 		vpap = &tvcpu->arch.slb_shadow;
534 		err = 0;
535 		break;
536 	}
537 
538 	if (vpap) {
539 		vpap->next_gpa = vpa;
540 		vpap->len = len;
541 		vpap->update_pending = 1;
542 	}
543 
544 	spin_unlock(&tvcpu->arch.vpa_update_lock);
545 
546 	return err;
547 }
548 
549 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
550 {
551 	struct kvm *kvm = vcpu->kvm;
552 	void *va;
553 	unsigned long nb;
554 	unsigned long gpa;
555 
556 	/*
557 	 * We need to pin the page pointed to by vpap->next_gpa,
558 	 * but we can't call kvmppc_pin_guest_page under the lock
559 	 * as it does get_user_pages() and down_read().  So we
560 	 * have to drop the lock, pin the page, then get the lock
561 	 * again and check that a new area didn't get registered
562 	 * in the meantime.
563 	 */
564 	for (;;) {
565 		gpa = vpap->next_gpa;
566 		spin_unlock(&vcpu->arch.vpa_update_lock);
567 		va = NULL;
568 		nb = 0;
569 		if (gpa)
570 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
571 		spin_lock(&vcpu->arch.vpa_update_lock);
572 		if (gpa == vpap->next_gpa)
573 			break;
574 		/* sigh... unpin that one and try again */
575 		if (va)
576 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
577 	}
578 
579 	vpap->update_pending = 0;
580 	if (va && nb < vpap->len) {
581 		/*
582 		 * If it's now too short, it must be that userspace
583 		 * has changed the mappings underlying guest memory,
584 		 * so unregister the region.
585 		 */
586 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
587 		va = NULL;
588 	}
589 	if (vpap->pinned_addr)
590 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
591 					vpap->dirty);
592 	vpap->gpa = gpa;
593 	vpap->pinned_addr = va;
594 	vpap->dirty = false;
595 	if (va)
596 		vpap->pinned_end = va + vpap->len;
597 }
598 
599 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
600 {
601 	if (!(vcpu->arch.vpa.update_pending ||
602 	      vcpu->arch.slb_shadow.update_pending ||
603 	      vcpu->arch.dtl.update_pending))
604 		return;
605 
606 	spin_lock(&vcpu->arch.vpa_update_lock);
607 	if (vcpu->arch.vpa.update_pending) {
608 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
609 		if (vcpu->arch.vpa.pinned_addr)
610 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
611 	}
612 	if (vcpu->arch.dtl.update_pending) {
613 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
614 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
615 		vcpu->arch.dtl_index = 0;
616 	}
617 	if (vcpu->arch.slb_shadow.update_pending)
618 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
619 	spin_unlock(&vcpu->arch.vpa_update_lock);
620 }
621 
622 /*
623  * Return the accumulated stolen time for the vcore up until `now'.
624  * The caller should hold the vcore lock.
625  */
626 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
627 {
628 	u64 p;
629 	unsigned long flags;
630 
631 	spin_lock_irqsave(&vc->stoltb_lock, flags);
632 	p = vc->stolen_tb;
633 	if (vc->vcore_state != VCORE_INACTIVE &&
634 	    vc->preempt_tb != TB_NIL)
635 		p += now - vc->preempt_tb;
636 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
637 	return p;
638 }
639 
640 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
641 				    struct kvmppc_vcore *vc)
642 {
643 	struct dtl_entry *dt;
644 	struct lppaca *vpa;
645 	unsigned long stolen;
646 	unsigned long core_stolen;
647 	u64 now;
648 
649 	dt = vcpu->arch.dtl_ptr;
650 	vpa = vcpu->arch.vpa.pinned_addr;
651 	now = mftb();
652 	core_stolen = vcore_stolen_time(vc, now);
653 	stolen = core_stolen - vcpu->arch.stolen_logged;
654 	vcpu->arch.stolen_logged = core_stolen;
655 	spin_lock_irq(&vcpu->arch.tbacct_lock);
656 	stolen += vcpu->arch.busy_stolen;
657 	vcpu->arch.busy_stolen = 0;
658 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
659 	if (!dt || !vpa)
660 		return;
661 	memset(dt, 0, sizeof(struct dtl_entry));
662 	dt->dispatch_reason = 7;
663 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
664 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
665 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
666 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
667 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
668 	++dt;
669 	if (dt == vcpu->arch.dtl.pinned_end)
670 		dt = vcpu->arch.dtl.pinned_addr;
671 	vcpu->arch.dtl_ptr = dt;
672 	/* order writing *dt vs. writing vpa->dtl_idx */
673 	smp_wmb();
674 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
675 	vcpu->arch.dtl.dirty = true;
676 }
677 
678 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
679 {
680 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
681 		return true;
682 	if ((!vcpu->arch.vcore->arch_compat) &&
683 	    cpu_has_feature(CPU_FTR_ARCH_207S))
684 		return true;
685 	return false;
686 }
687 
688 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
689 			     unsigned long resource, unsigned long value1,
690 			     unsigned long value2)
691 {
692 	switch (resource) {
693 	case H_SET_MODE_RESOURCE_SET_CIABR:
694 		if (!kvmppc_power8_compatible(vcpu))
695 			return H_P2;
696 		if (value2)
697 			return H_P4;
698 		if (mflags)
699 			return H_UNSUPPORTED_FLAG_START;
700 		/* Guests can't breakpoint the hypervisor */
701 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
702 			return H_P3;
703 		vcpu->arch.ciabr  = value1;
704 		return H_SUCCESS;
705 	case H_SET_MODE_RESOURCE_SET_DAWR:
706 		if (!kvmppc_power8_compatible(vcpu))
707 			return H_P2;
708 		if (mflags)
709 			return H_UNSUPPORTED_FLAG_START;
710 		if (value2 & DABRX_HYP)
711 			return H_P4;
712 		vcpu->arch.dawr  = value1;
713 		vcpu->arch.dawrx = value2;
714 		return H_SUCCESS;
715 	default:
716 		return H_TOO_HARD;
717 	}
718 }
719 
720 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
721 {
722 	struct kvmppc_vcore *vcore = target->arch.vcore;
723 
724 	/*
725 	 * We expect to have been called by the real mode handler
726 	 * (kvmppc_rm_h_confer()) which would have directly returned
727 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
728 	 * have useful work to do and should not confer) so we don't
729 	 * recheck that here.
730 	 */
731 
732 	spin_lock(&vcore->lock);
733 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
734 	    vcore->vcore_state != VCORE_INACTIVE &&
735 	    vcore->runner)
736 		target = vcore->runner;
737 	spin_unlock(&vcore->lock);
738 
739 	return kvm_vcpu_yield_to(target);
740 }
741 
742 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
743 {
744 	int yield_count = 0;
745 	struct lppaca *lppaca;
746 
747 	spin_lock(&vcpu->arch.vpa_update_lock);
748 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
749 	if (lppaca)
750 		yield_count = be32_to_cpu(lppaca->yield_count);
751 	spin_unlock(&vcpu->arch.vpa_update_lock);
752 	return yield_count;
753 }
754 
755 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
756 {
757 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
758 	unsigned long target, ret = H_SUCCESS;
759 	int yield_count;
760 	struct kvm_vcpu *tvcpu;
761 	int idx, rc;
762 
763 	if (req <= MAX_HCALL_OPCODE &&
764 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
765 		return RESUME_HOST;
766 
767 	switch (req) {
768 	case H_CEDE:
769 		break;
770 	case H_PROD:
771 		target = kvmppc_get_gpr(vcpu, 4);
772 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
773 		if (!tvcpu) {
774 			ret = H_PARAMETER;
775 			break;
776 		}
777 		tvcpu->arch.prodded = 1;
778 		smp_mb();
779 		if (tvcpu->arch.ceded)
780 			kvmppc_fast_vcpu_kick_hv(tvcpu);
781 		break;
782 	case H_CONFER:
783 		target = kvmppc_get_gpr(vcpu, 4);
784 		if (target == -1)
785 			break;
786 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
787 		if (!tvcpu) {
788 			ret = H_PARAMETER;
789 			break;
790 		}
791 		yield_count = kvmppc_get_gpr(vcpu, 5);
792 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
793 			break;
794 		kvm_arch_vcpu_yield_to(tvcpu);
795 		break;
796 	case H_REGISTER_VPA:
797 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
798 					kvmppc_get_gpr(vcpu, 5),
799 					kvmppc_get_gpr(vcpu, 6));
800 		break;
801 	case H_RTAS:
802 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
803 			return RESUME_HOST;
804 
805 		idx = srcu_read_lock(&vcpu->kvm->srcu);
806 		rc = kvmppc_rtas_hcall(vcpu);
807 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
808 
809 		if (rc == -ENOENT)
810 			return RESUME_HOST;
811 		else if (rc == 0)
812 			break;
813 
814 		/* Send the error out to userspace via KVM_RUN */
815 		return rc;
816 	case H_LOGICAL_CI_LOAD:
817 		ret = kvmppc_h_logical_ci_load(vcpu);
818 		if (ret == H_TOO_HARD)
819 			return RESUME_HOST;
820 		break;
821 	case H_LOGICAL_CI_STORE:
822 		ret = kvmppc_h_logical_ci_store(vcpu);
823 		if (ret == H_TOO_HARD)
824 			return RESUME_HOST;
825 		break;
826 	case H_SET_MODE:
827 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
828 					kvmppc_get_gpr(vcpu, 5),
829 					kvmppc_get_gpr(vcpu, 6),
830 					kvmppc_get_gpr(vcpu, 7));
831 		if (ret == H_TOO_HARD)
832 			return RESUME_HOST;
833 		break;
834 	case H_XIRR:
835 	case H_CPPR:
836 	case H_EOI:
837 	case H_IPI:
838 	case H_IPOLL:
839 	case H_XIRR_X:
840 		if (kvmppc_xics_enabled(vcpu)) {
841 			if (xive_enabled()) {
842 				ret = H_NOT_AVAILABLE;
843 				return RESUME_GUEST;
844 			}
845 			ret = kvmppc_xics_hcall(vcpu, req);
846 			break;
847 		}
848 		return RESUME_HOST;
849 	case H_PUT_TCE:
850 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
851 						kvmppc_get_gpr(vcpu, 5),
852 						kvmppc_get_gpr(vcpu, 6));
853 		if (ret == H_TOO_HARD)
854 			return RESUME_HOST;
855 		break;
856 	case H_PUT_TCE_INDIRECT:
857 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
858 						kvmppc_get_gpr(vcpu, 5),
859 						kvmppc_get_gpr(vcpu, 6),
860 						kvmppc_get_gpr(vcpu, 7));
861 		if (ret == H_TOO_HARD)
862 			return RESUME_HOST;
863 		break;
864 	case H_STUFF_TCE:
865 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
866 						kvmppc_get_gpr(vcpu, 5),
867 						kvmppc_get_gpr(vcpu, 6),
868 						kvmppc_get_gpr(vcpu, 7));
869 		if (ret == H_TOO_HARD)
870 			return RESUME_HOST;
871 		break;
872 	default:
873 		return RESUME_HOST;
874 	}
875 	kvmppc_set_gpr(vcpu, 3, ret);
876 	vcpu->arch.hcall_needed = 0;
877 	return RESUME_GUEST;
878 }
879 
880 static int kvmppc_hcall_impl_hv(unsigned long cmd)
881 {
882 	switch (cmd) {
883 	case H_CEDE:
884 	case H_PROD:
885 	case H_CONFER:
886 	case H_REGISTER_VPA:
887 	case H_SET_MODE:
888 	case H_LOGICAL_CI_LOAD:
889 	case H_LOGICAL_CI_STORE:
890 #ifdef CONFIG_KVM_XICS
891 	case H_XIRR:
892 	case H_CPPR:
893 	case H_EOI:
894 	case H_IPI:
895 	case H_IPOLL:
896 	case H_XIRR_X:
897 #endif
898 		return 1;
899 	}
900 
901 	/* See if it's in the real-mode table */
902 	return kvmppc_hcall_impl_hv_realmode(cmd);
903 }
904 
905 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
906 					struct kvm_vcpu *vcpu)
907 {
908 	u32 last_inst;
909 
910 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
911 					EMULATE_DONE) {
912 		/*
913 		 * Fetch failed, so return to guest and
914 		 * try executing it again.
915 		 */
916 		return RESUME_GUEST;
917 	}
918 
919 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
920 		run->exit_reason = KVM_EXIT_DEBUG;
921 		run->debug.arch.address = kvmppc_get_pc(vcpu);
922 		return RESUME_HOST;
923 	} else {
924 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
925 		return RESUME_GUEST;
926 	}
927 }
928 
929 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
930 				 struct task_struct *tsk)
931 {
932 	int r = RESUME_HOST;
933 
934 	vcpu->stat.sum_exits++;
935 
936 	/*
937 	 * This can happen if an interrupt occurs in the last stages
938 	 * of guest entry or the first stages of guest exit (i.e. after
939 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
940 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
941 	 * That can happen due to a bug, or due to a machine check
942 	 * occurring at just the wrong time.
943 	 */
944 	if (vcpu->arch.shregs.msr & MSR_HV) {
945 		printk(KERN_EMERG "KVM trap in HV mode!\n");
946 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
947 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
948 			vcpu->arch.shregs.msr);
949 		kvmppc_dump_regs(vcpu);
950 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
951 		run->hw.hardware_exit_reason = vcpu->arch.trap;
952 		return RESUME_HOST;
953 	}
954 	run->exit_reason = KVM_EXIT_UNKNOWN;
955 	run->ready_for_interrupt_injection = 1;
956 	switch (vcpu->arch.trap) {
957 	/* We're good on these - the host merely wanted to get our attention */
958 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
959 		vcpu->stat.dec_exits++;
960 		r = RESUME_GUEST;
961 		break;
962 	case BOOK3S_INTERRUPT_EXTERNAL:
963 	case BOOK3S_INTERRUPT_H_DOORBELL:
964 	case BOOK3S_INTERRUPT_H_VIRT:
965 		vcpu->stat.ext_intr_exits++;
966 		r = RESUME_GUEST;
967 		break;
968 	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
969 	case BOOK3S_INTERRUPT_HMI:
970 	case BOOK3S_INTERRUPT_PERFMON:
971 		r = RESUME_GUEST;
972 		break;
973 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
974 		/*
975 		 * Deliver a machine check interrupt to the guest.
976 		 * We have to do this, even if the host has handled the
977 		 * machine check, because machine checks use SRR0/1 and
978 		 * the interrupt might have trashed guest state in them.
979 		 */
980 		kvmppc_book3s_queue_irqprio(vcpu,
981 					    BOOK3S_INTERRUPT_MACHINE_CHECK);
982 		r = RESUME_GUEST;
983 		break;
984 	case BOOK3S_INTERRUPT_PROGRAM:
985 	{
986 		ulong flags;
987 		/*
988 		 * Normally program interrupts are delivered directly
989 		 * to the guest by the hardware, but we can get here
990 		 * as a result of a hypervisor emulation interrupt
991 		 * (e40) getting turned into a 700 by BML RTAS.
992 		 */
993 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
994 		kvmppc_core_queue_program(vcpu, flags);
995 		r = RESUME_GUEST;
996 		break;
997 	}
998 	case BOOK3S_INTERRUPT_SYSCALL:
999 	{
1000 		/* hcall - punt to userspace */
1001 		int i;
1002 
1003 		/* hypercall with MSR_PR has already been handled in rmode,
1004 		 * and never reaches here.
1005 		 */
1006 
1007 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1008 		for (i = 0; i < 9; ++i)
1009 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1010 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1011 		vcpu->arch.hcall_needed = 1;
1012 		r = RESUME_HOST;
1013 		break;
1014 	}
1015 	/*
1016 	 * We get these next two if the guest accesses a page which it thinks
1017 	 * it has mapped but which is not actually present, either because
1018 	 * it is for an emulated I/O device or because the corresonding
1019 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1020 	 * have been handled already.
1021 	 */
1022 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1023 		r = RESUME_PAGE_FAULT;
1024 		break;
1025 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1026 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1027 		vcpu->arch.fault_dsisr = 0;
1028 		r = RESUME_PAGE_FAULT;
1029 		break;
1030 	/*
1031 	 * This occurs if the guest executes an illegal instruction.
1032 	 * If the guest debug is disabled, generate a program interrupt
1033 	 * to the guest. If guest debug is enabled, we need to check
1034 	 * whether the instruction is a software breakpoint instruction.
1035 	 * Accordingly return to Guest or Host.
1036 	 */
1037 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1038 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1039 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1040 				swab32(vcpu->arch.emul_inst) :
1041 				vcpu->arch.emul_inst;
1042 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1043 			r = kvmppc_emulate_debug_inst(run, vcpu);
1044 		} else {
1045 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1046 			r = RESUME_GUEST;
1047 		}
1048 		break;
1049 	/*
1050 	 * This occurs if the guest (kernel or userspace), does something that
1051 	 * is prohibited by HFSCR.  We just generate a program interrupt to
1052 	 * the guest.
1053 	 */
1054 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1055 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1056 		r = RESUME_GUEST;
1057 		break;
1058 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1059 		r = RESUME_PASSTHROUGH;
1060 		break;
1061 	default:
1062 		kvmppc_dump_regs(vcpu);
1063 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1064 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1065 			vcpu->arch.shregs.msr);
1066 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1067 		r = RESUME_HOST;
1068 		break;
1069 	}
1070 
1071 	return r;
1072 }
1073 
1074 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1075 					    struct kvm_sregs *sregs)
1076 {
1077 	int i;
1078 
1079 	memset(sregs, 0, sizeof(struct kvm_sregs));
1080 	sregs->pvr = vcpu->arch.pvr;
1081 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1082 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1083 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1090 					    struct kvm_sregs *sregs)
1091 {
1092 	int i, j;
1093 
1094 	/* Only accept the same PVR as the host's, since we can't spoof it */
1095 	if (sregs->pvr != vcpu->arch.pvr)
1096 		return -EINVAL;
1097 
1098 	j = 0;
1099 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1100 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1101 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1102 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1103 			++j;
1104 		}
1105 	}
1106 	vcpu->arch.slb_max = j;
1107 
1108 	return 0;
1109 }
1110 
1111 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1112 		bool preserve_top32)
1113 {
1114 	struct kvm *kvm = vcpu->kvm;
1115 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1116 	u64 mask;
1117 
1118 	mutex_lock(&kvm->lock);
1119 	spin_lock(&vc->lock);
1120 	/*
1121 	 * If ILE (interrupt little-endian) has changed, update the
1122 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1123 	 */
1124 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1125 		struct kvm_vcpu *vcpu;
1126 		int i;
1127 
1128 		kvm_for_each_vcpu(i, vcpu, kvm) {
1129 			if (vcpu->arch.vcore != vc)
1130 				continue;
1131 			if (new_lpcr & LPCR_ILE)
1132 				vcpu->arch.intr_msr |= MSR_LE;
1133 			else
1134 				vcpu->arch.intr_msr &= ~MSR_LE;
1135 		}
1136 	}
1137 
1138 	/*
1139 	 * Userspace can only modify DPFD (default prefetch depth),
1140 	 * ILE (interrupt little-endian) and TC (translation control).
1141 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1142 	 */
1143 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1144 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1145 		mask |= LPCR_AIL;
1146 
1147 	/* Broken 32-bit version of LPCR must not clear top bits */
1148 	if (preserve_top32)
1149 		mask &= 0xFFFFFFFF;
1150 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1151 	spin_unlock(&vc->lock);
1152 	mutex_unlock(&kvm->lock);
1153 }
1154 
1155 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1156 				 union kvmppc_one_reg *val)
1157 {
1158 	int r = 0;
1159 	long int i;
1160 
1161 	switch (id) {
1162 	case KVM_REG_PPC_DEBUG_INST:
1163 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1164 		break;
1165 	case KVM_REG_PPC_HIOR:
1166 		*val = get_reg_val(id, 0);
1167 		break;
1168 	case KVM_REG_PPC_DABR:
1169 		*val = get_reg_val(id, vcpu->arch.dabr);
1170 		break;
1171 	case KVM_REG_PPC_DABRX:
1172 		*val = get_reg_val(id, vcpu->arch.dabrx);
1173 		break;
1174 	case KVM_REG_PPC_DSCR:
1175 		*val = get_reg_val(id, vcpu->arch.dscr);
1176 		break;
1177 	case KVM_REG_PPC_PURR:
1178 		*val = get_reg_val(id, vcpu->arch.purr);
1179 		break;
1180 	case KVM_REG_PPC_SPURR:
1181 		*val = get_reg_val(id, vcpu->arch.spurr);
1182 		break;
1183 	case KVM_REG_PPC_AMR:
1184 		*val = get_reg_val(id, vcpu->arch.amr);
1185 		break;
1186 	case KVM_REG_PPC_UAMOR:
1187 		*val = get_reg_val(id, vcpu->arch.uamor);
1188 		break;
1189 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1190 		i = id - KVM_REG_PPC_MMCR0;
1191 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1192 		break;
1193 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1194 		i = id - KVM_REG_PPC_PMC1;
1195 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1196 		break;
1197 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1198 		i = id - KVM_REG_PPC_SPMC1;
1199 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1200 		break;
1201 	case KVM_REG_PPC_SIAR:
1202 		*val = get_reg_val(id, vcpu->arch.siar);
1203 		break;
1204 	case KVM_REG_PPC_SDAR:
1205 		*val = get_reg_val(id, vcpu->arch.sdar);
1206 		break;
1207 	case KVM_REG_PPC_SIER:
1208 		*val = get_reg_val(id, vcpu->arch.sier);
1209 		break;
1210 	case KVM_REG_PPC_IAMR:
1211 		*val = get_reg_val(id, vcpu->arch.iamr);
1212 		break;
1213 	case KVM_REG_PPC_PSPB:
1214 		*val = get_reg_val(id, vcpu->arch.pspb);
1215 		break;
1216 	case KVM_REG_PPC_DPDES:
1217 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1218 		break;
1219 	case KVM_REG_PPC_VTB:
1220 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1221 		break;
1222 	case KVM_REG_PPC_DAWR:
1223 		*val = get_reg_val(id, vcpu->arch.dawr);
1224 		break;
1225 	case KVM_REG_PPC_DAWRX:
1226 		*val = get_reg_val(id, vcpu->arch.dawrx);
1227 		break;
1228 	case KVM_REG_PPC_CIABR:
1229 		*val = get_reg_val(id, vcpu->arch.ciabr);
1230 		break;
1231 	case KVM_REG_PPC_CSIGR:
1232 		*val = get_reg_val(id, vcpu->arch.csigr);
1233 		break;
1234 	case KVM_REG_PPC_TACR:
1235 		*val = get_reg_val(id, vcpu->arch.tacr);
1236 		break;
1237 	case KVM_REG_PPC_TCSCR:
1238 		*val = get_reg_val(id, vcpu->arch.tcscr);
1239 		break;
1240 	case KVM_REG_PPC_PID:
1241 		*val = get_reg_val(id, vcpu->arch.pid);
1242 		break;
1243 	case KVM_REG_PPC_ACOP:
1244 		*val = get_reg_val(id, vcpu->arch.acop);
1245 		break;
1246 	case KVM_REG_PPC_WORT:
1247 		*val = get_reg_val(id, vcpu->arch.wort);
1248 		break;
1249 	case KVM_REG_PPC_TIDR:
1250 		*val = get_reg_val(id, vcpu->arch.tid);
1251 		break;
1252 	case KVM_REG_PPC_PSSCR:
1253 		*val = get_reg_val(id, vcpu->arch.psscr);
1254 		break;
1255 	case KVM_REG_PPC_VPA_ADDR:
1256 		spin_lock(&vcpu->arch.vpa_update_lock);
1257 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1258 		spin_unlock(&vcpu->arch.vpa_update_lock);
1259 		break;
1260 	case KVM_REG_PPC_VPA_SLB:
1261 		spin_lock(&vcpu->arch.vpa_update_lock);
1262 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1263 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1264 		spin_unlock(&vcpu->arch.vpa_update_lock);
1265 		break;
1266 	case KVM_REG_PPC_VPA_DTL:
1267 		spin_lock(&vcpu->arch.vpa_update_lock);
1268 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1269 		val->vpaval.length = vcpu->arch.dtl.len;
1270 		spin_unlock(&vcpu->arch.vpa_update_lock);
1271 		break;
1272 	case KVM_REG_PPC_TB_OFFSET:
1273 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1274 		break;
1275 	case KVM_REG_PPC_LPCR:
1276 	case KVM_REG_PPC_LPCR_64:
1277 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1278 		break;
1279 	case KVM_REG_PPC_PPR:
1280 		*val = get_reg_val(id, vcpu->arch.ppr);
1281 		break;
1282 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1283 	case KVM_REG_PPC_TFHAR:
1284 		*val = get_reg_val(id, vcpu->arch.tfhar);
1285 		break;
1286 	case KVM_REG_PPC_TFIAR:
1287 		*val = get_reg_val(id, vcpu->arch.tfiar);
1288 		break;
1289 	case KVM_REG_PPC_TEXASR:
1290 		*val = get_reg_val(id, vcpu->arch.texasr);
1291 		break;
1292 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1293 		i = id - KVM_REG_PPC_TM_GPR0;
1294 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1295 		break;
1296 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1297 	{
1298 		int j;
1299 		i = id - KVM_REG_PPC_TM_VSR0;
1300 		if (i < 32)
1301 			for (j = 0; j < TS_FPRWIDTH; j++)
1302 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1303 		else {
1304 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1305 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1306 			else
1307 				r = -ENXIO;
1308 		}
1309 		break;
1310 	}
1311 	case KVM_REG_PPC_TM_CR:
1312 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1313 		break;
1314 	case KVM_REG_PPC_TM_XER:
1315 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1316 		break;
1317 	case KVM_REG_PPC_TM_LR:
1318 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1319 		break;
1320 	case KVM_REG_PPC_TM_CTR:
1321 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1322 		break;
1323 	case KVM_REG_PPC_TM_FPSCR:
1324 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1325 		break;
1326 	case KVM_REG_PPC_TM_AMR:
1327 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1328 		break;
1329 	case KVM_REG_PPC_TM_PPR:
1330 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1331 		break;
1332 	case KVM_REG_PPC_TM_VRSAVE:
1333 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1334 		break;
1335 	case KVM_REG_PPC_TM_VSCR:
1336 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1337 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1338 		else
1339 			r = -ENXIO;
1340 		break;
1341 	case KVM_REG_PPC_TM_DSCR:
1342 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1343 		break;
1344 	case KVM_REG_PPC_TM_TAR:
1345 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1346 		break;
1347 #endif
1348 	case KVM_REG_PPC_ARCH_COMPAT:
1349 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1350 		break;
1351 	default:
1352 		r = -EINVAL;
1353 		break;
1354 	}
1355 
1356 	return r;
1357 }
1358 
1359 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1360 				 union kvmppc_one_reg *val)
1361 {
1362 	int r = 0;
1363 	long int i;
1364 	unsigned long addr, len;
1365 
1366 	switch (id) {
1367 	case KVM_REG_PPC_HIOR:
1368 		/* Only allow this to be set to zero */
1369 		if (set_reg_val(id, *val))
1370 			r = -EINVAL;
1371 		break;
1372 	case KVM_REG_PPC_DABR:
1373 		vcpu->arch.dabr = set_reg_val(id, *val);
1374 		break;
1375 	case KVM_REG_PPC_DABRX:
1376 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1377 		break;
1378 	case KVM_REG_PPC_DSCR:
1379 		vcpu->arch.dscr = set_reg_val(id, *val);
1380 		break;
1381 	case KVM_REG_PPC_PURR:
1382 		vcpu->arch.purr = set_reg_val(id, *val);
1383 		break;
1384 	case KVM_REG_PPC_SPURR:
1385 		vcpu->arch.spurr = set_reg_val(id, *val);
1386 		break;
1387 	case KVM_REG_PPC_AMR:
1388 		vcpu->arch.amr = set_reg_val(id, *val);
1389 		break;
1390 	case KVM_REG_PPC_UAMOR:
1391 		vcpu->arch.uamor = set_reg_val(id, *val);
1392 		break;
1393 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1394 		i = id - KVM_REG_PPC_MMCR0;
1395 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1396 		break;
1397 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1398 		i = id - KVM_REG_PPC_PMC1;
1399 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1400 		break;
1401 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1402 		i = id - KVM_REG_PPC_SPMC1;
1403 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1404 		break;
1405 	case KVM_REG_PPC_SIAR:
1406 		vcpu->arch.siar = set_reg_val(id, *val);
1407 		break;
1408 	case KVM_REG_PPC_SDAR:
1409 		vcpu->arch.sdar = set_reg_val(id, *val);
1410 		break;
1411 	case KVM_REG_PPC_SIER:
1412 		vcpu->arch.sier = set_reg_val(id, *val);
1413 		break;
1414 	case KVM_REG_PPC_IAMR:
1415 		vcpu->arch.iamr = set_reg_val(id, *val);
1416 		break;
1417 	case KVM_REG_PPC_PSPB:
1418 		vcpu->arch.pspb = set_reg_val(id, *val);
1419 		break;
1420 	case KVM_REG_PPC_DPDES:
1421 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1422 		break;
1423 	case KVM_REG_PPC_VTB:
1424 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1425 		break;
1426 	case KVM_REG_PPC_DAWR:
1427 		vcpu->arch.dawr = set_reg_val(id, *val);
1428 		break;
1429 	case KVM_REG_PPC_DAWRX:
1430 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1431 		break;
1432 	case KVM_REG_PPC_CIABR:
1433 		vcpu->arch.ciabr = set_reg_val(id, *val);
1434 		/* Don't allow setting breakpoints in hypervisor code */
1435 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1436 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1437 		break;
1438 	case KVM_REG_PPC_CSIGR:
1439 		vcpu->arch.csigr = set_reg_val(id, *val);
1440 		break;
1441 	case KVM_REG_PPC_TACR:
1442 		vcpu->arch.tacr = set_reg_val(id, *val);
1443 		break;
1444 	case KVM_REG_PPC_TCSCR:
1445 		vcpu->arch.tcscr = set_reg_val(id, *val);
1446 		break;
1447 	case KVM_REG_PPC_PID:
1448 		vcpu->arch.pid = set_reg_val(id, *val);
1449 		break;
1450 	case KVM_REG_PPC_ACOP:
1451 		vcpu->arch.acop = set_reg_val(id, *val);
1452 		break;
1453 	case KVM_REG_PPC_WORT:
1454 		vcpu->arch.wort = set_reg_val(id, *val);
1455 		break;
1456 	case KVM_REG_PPC_TIDR:
1457 		vcpu->arch.tid = set_reg_val(id, *val);
1458 		break;
1459 	case KVM_REG_PPC_PSSCR:
1460 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1461 		break;
1462 	case KVM_REG_PPC_VPA_ADDR:
1463 		addr = set_reg_val(id, *val);
1464 		r = -EINVAL;
1465 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1466 			      vcpu->arch.dtl.next_gpa))
1467 			break;
1468 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1469 		break;
1470 	case KVM_REG_PPC_VPA_SLB:
1471 		addr = val->vpaval.addr;
1472 		len = val->vpaval.length;
1473 		r = -EINVAL;
1474 		if (addr && !vcpu->arch.vpa.next_gpa)
1475 			break;
1476 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1477 		break;
1478 	case KVM_REG_PPC_VPA_DTL:
1479 		addr = val->vpaval.addr;
1480 		len = val->vpaval.length;
1481 		r = -EINVAL;
1482 		if (addr && (len < sizeof(struct dtl_entry) ||
1483 			     !vcpu->arch.vpa.next_gpa))
1484 			break;
1485 		len -= len % sizeof(struct dtl_entry);
1486 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1487 		break;
1488 	case KVM_REG_PPC_TB_OFFSET:
1489 		/* round up to multiple of 2^24 */
1490 		vcpu->arch.vcore->tb_offset =
1491 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1492 		break;
1493 	case KVM_REG_PPC_LPCR:
1494 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1495 		break;
1496 	case KVM_REG_PPC_LPCR_64:
1497 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1498 		break;
1499 	case KVM_REG_PPC_PPR:
1500 		vcpu->arch.ppr = set_reg_val(id, *val);
1501 		break;
1502 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1503 	case KVM_REG_PPC_TFHAR:
1504 		vcpu->arch.tfhar = set_reg_val(id, *val);
1505 		break;
1506 	case KVM_REG_PPC_TFIAR:
1507 		vcpu->arch.tfiar = set_reg_val(id, *val);
1508 		break;
1509 	case KVM_REG_PPC_TEXASR:
1510 		vcpu->arch.texasr = set_reg_val(id, *val);
1511 		break;
1512 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1513 		i = id - KVM_REG_PPC_TM_GPR0;
1514 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1515 		break;
1516 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1517 	{
1518 		int j;
1519 		i = id - KVM_REG_PPC_TM_VSR0;
1520 		if (i < 32)
1521 			for (j = 0; j < TS_FPRWIDTH; j++)
1522 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1523 		else
1524 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1525 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1526 			else
1527 				r = -ENXIO;
1528 		break;
1529 	}
1530 	case KVM_REG_PPC_TM_CR:
1531 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1532 		break;
1533 	case KVM_REG_PPC_TM_XER:
1534 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1535 		break;
1536 	case KVM_REG_PPC_TM_LR:
1537 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1538 		break;
1539 	case KVM_REG_PPC_TM_CTR:
1540 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1541 		break;
1542 	case KVM_REG_PPC_TM_FPSCR:
1543 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1544 		break;
1545 	case KVM_REG_PPC_TM_AMR:
1546 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1547 		break;
1548 	case KVM_REG_PPC_TM_PPR:
1549 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1550 		break;
1551 	case KVM_REG_PPC_TM_VRSAVE:
1552 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1553 		break;
1554 	case KVM_REG_PPC_TM_VSCR:
1555 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1556 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1557 		else
1558 			r = - ENXIO;
1559 		break;
1560 	case KVM_REG_PPC_TM_DSCR:
1561 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1562 		break;
1563 	case KVM_REG_PPC_TM_TAR:
1564 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1565 		break;
1566 #endif
1567 	case KVM_REG_PPC_ARCH_COMPAT:
1568 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1569 		break;
1570 	default:
1571 		r = -EINVAL;
1572 		break;
1573 	}
1574 
1575 	return r;
1576 }
1577 
1578 /*
1579  * On POWER9, threads are independent and can be in different partitions.
1580  * Therefore we consider each thread to be a subcore.
1581  * There is a restriction that all threads have to be in the same
1582  * MMU mode (radix or HPT), unfortunately, but since we only support
1583  * HPT guests on a HPT host so far, that isn't an impediment yet.
1584  */
1585 static int threads_per_vcore(void)
1586 {
1587 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1588 		return 1;
1589 	return threads_per_subcore;
1590 }
1591 
1592 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1593 {
1594 	struct kvmppc_vcore *vcore;
1595 
1596 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1597 
1598 	if (vcore == NULL)
1599 		return NULL;
1600 
1601 	spin_lock_init(&vcore->lock);
1602 	spin_lock_init(&vcore->stoltb_lock);
1603 	init_swait_queue_head(&vcore->wq);
1604 	vcore->preempt_tb = TB_NIL;
1605 	vcore->lpcr = kvm->arch.lpcr;
1606 	vcore->first_vcpuid = core * threads_per_vcore();
1607 	vcore->kvm = kvm;
1608 	INIT_LIST_HEAD(&vcore->preempt_list);
1609 
1610 	return vcore;
1611 }
1612 
1613 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1614 static struct debugfs_timings_element {
1615 	const char *name;
1616 	size_t offset;
1617 } timings[] = {
1618 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
1619 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
1620 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
1621 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
1622 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
1623 };
1624 
1625 #define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))
1626 
1627 struct debugfs_timings_state {
1628 	struct kvm_vcpu	*vcpu;
1629 	unsigned int	buflen;
1630 	char		buf[N_TIMINGS * 100];
1631 };
1632 
1633 static int debugfs_timings_open(struct inode *inode, struct file *file)
1634 {
1635 	struct kvm_vcpu *vcpu = inode->i_private;
1636 	struct debugfs_timings_state *p;
1637 
1638 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1639 	if (!p)
1640 		return -ENOMEM;
1641 
1642 	kvm_get_kvm(vcpu->kvm);
1643 	p->vcpu = vcpu;
1644 	file->private_data = p;
1645 
1646 	return nonseekable_open(inode, file);
1647 }
1648 
1649 static int debugfs_timings_release(struct inode *inode, struct file *file)
1650 {
1651 	struct debugfs_timings_state *p = file->private_data;
1652 
1653 	kvm_put_kvm(p->vcpu->kvm);
1654 	kfree(p);
1655 	return 0;
1656 }
1657 
1658 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1659 				    size_t len, loff_t *ppos)
1660 {
1661 	struct debugfs_timings_state *p = file->private_data;
1662 	struct kvm_vcpu *vcpu = p->vcpu;
1663 	char *s, *buf_end;
1664 	struct kvmhv_tb_accumulator tb;
1665 	u64 count;
1666 	loff_t pos;
1667 	ssize_t n;
1668 	int i, loops;
1669 	bool ok;
1670 
1671 	if (!p->buflen) {
1672 		s = p->buf;
1673 		buf_end = s + sizeof(p->buf);
1674 		for (i = 0; i < N_TIMINGS; ++i) {
1675 			struct kvmhv_tb_accumulator *acc;
1676 
1677 			acc = (struct kvmhv_tb_accumulator *)
1678 				((unsigned long)vcpu + timings[i].offset);
1679 			ok = false;
1680 			for (loops = 0; loops < 1000; ++loops) {
1681 				count = acc->seqcount;
1682 				if (!(count & 1)) {
1683 					smp_rmb();
1684 					tb = *acc;
1685 					smp_rmb();
1686 					if (count == acc->seqcount) {
1687 						ok = true;
1688 						break;
1689 					}
1690 				}
1691 				udelay(1);
1692 			}
1693 			if (!ok)
1694 				snprintf(s, buf_end - s, "%s: stuck\n",
1695 					timings[i].name);
1696 			else
1697 				snprintf(s, buf_end - s,
1698 					"%s: %llu %llu %llu %llu\n",
1699 					timings[i].name, count / 2,
1700 					tb_to_ns(tb.tb_total),
1701 					tb_to_ns(tb.tb_min),
1702 					tb_to_ns(tb.tb_max));
1703 			s += strlen(s);
1704 		}
1705 		p->buflen = s - p->buf;
1706 	}
1707 
1708 	pos = *ppos;
1709 	if (pos >= p->buflen)
1710 		return 0;
1711 	if (len > p->buflen - pos)
1712 		len = p->buflen - pos;
1713 	n = copy_to_user(buf, p->buf + pos, len);
1714 	if (n) {
1715 		if (n == len)
1716 			return -EFAULT;
1717 		len -= n;
1718 	}
1719 	*ppos = pos + len;
1720 	return len;
1721 }
1722 
1723 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1724 				     size_t len, loff_t *ppos)
1725 {
1726 	return -EACCES;
1727 }
1728 
1729 static const struct file_operations debugfs_timings_ops = {
1730 	.owner	 = THIS_MODULE,
1731 	.open	 = debugfs_timings_open,
1732 	.release = debugfs_timings_release,
1733 	.read	 = debugfs_timings_read,
1734 	.write	 = debugfs_timings_write,
1735 	.llseek	 = generic_file_llseek,
1736 };
1737 
1738 /* Create a debugfs directory for the vcpu */
1739 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1740 {
1741 	char buf[16];
1742 	struct kvm *kvm = vcpu->kvm;
1743 
1744 	snprintf(buf, sizeof(buf), "vcpu%u", id);
1745 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1746 		return;
1747 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1748 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1749 		return;
1750 	vcpu->arch.debugfs_timings =
1751 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1752 				    vcpu, &debugfs_timings_ops);
1753 }
1754 
1755 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1756 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1757 {
1758 }
1759 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1760 
1761 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1762 						   unsigned int id)
1763 {
1764 	struct kvm_vcpu *vcpu;
1765 	int err = -EINVAL;
1766 	int core;
1767 	struct kvmppc_vcore *vcore;
1768 
1769 	core = id / threads_per_vcore();
1770 	if (core >= KVM_MAX_VCORES)
1771 		goto out;
1772 
1773 	err = -ENOMEM;
1774 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1775 	if (!vcpu)
1776 		goto out;
1777 
1778 	err = kvm_vcpu_init(vcpu, kvm, id);
1779 	if (err)
1780 		goto free_vcpu;
1781 
1782 	vcpu->arch.shared = &vcpu->arch.shregs;
1783 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1784 	/*
1785 	 * The shared struct is never shared on HV,
1786 	 * so we can always use host endianness
1787 	 */
1788 #ifdef __BIG_ENDIAN__
1789 	vcpu->arch.shared_big_endian = true;
1790 #else
1791 	vcpu->arch.shared_big_endian = false;
1792 #endif
1793 #endif
1794 	vcpu->arch.mmcr[0] = MMCR0_FC;
1795 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1796 	/* default to host PVR, since we can't spoof it */
1797 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1798 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1799 	spin_lock_init(&vcpu->arch.tbacct_lock);
1800 	vcpu->arch.busy_preempt = TB_NIL;
1801 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1802 
1803 	kvmppc_mmu_book3s_hv_init(vcpu);
1804 
1805 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1806 
1807 	init_waitqueue_head(&vcpu->arch.cpu_run);
1808 
1809 	mutex_lock(&kvm->lock);
1810 	vcore = kvm->arch.vcores[core];
1811 	if (!vcore) {
1812 		vcore = kvmppc_vcore_create(kvm, core);
1813 		kvm->arch.vcores[core] = vcore;
1814 		kvm->arch.online_vcores++;
1815 	}
1816 	mutex_unlock(&kvm->lock);
1817 
1818 	if (!vcore)
1819 		goto free_vcpu;
1820 
1821 	spin_lock(&vcore->lock);
1822 	++vcore->num_threads;
1823 	spin_unlock(&vcore->lock);
1824 	vcpu->arch.vcore = vcore;
1825 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1826 	vcpu->arch.thread_cpu = -1;
1827 	vcpu->arch.prev_cpu = -1;
1828 
1829 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
1830 	kvmppc_sanity_check(vcpu);
1831 
1832 	debugfs_vcpu_init(vcpu, id);
1833 
1834 	return vcpu;
1835 
1836 free_vcpu:
1837 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1838 out:
1839 	return ERR_PTR(err);
1840 }
1841 
1842 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1843 {
1844 	if (vpa->pinned_addr)
1845 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1846 					vpa->dirty);
1847 }
1848 
1849 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1850 {
1851 	spin_lock(&vcpu->arch.vpa_update_lock);
1852 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1853 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1854 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1855 	spin_unlock(&vcpu->arch.vpa_update_lock);
1856 	kvm_vcpu_uninit(vcpu);
1857 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1858 }
1859 
1860 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1861 {
1862 	/* Indicate we want to get back into the guest */
1863 	return 1;
1864 }
1865 
1866 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1867 {
1868 	unsigned long dec_nsec, now;
1869 
1870 	now = get_tb();
1871 	if (now > vcpu->arch.dec_expires) {
1872 		/* decrementer has already gone negative */
1873 		kvmppc_core_queue_dec(vcpu);
1874 		kvmppc_core_prepare_to_enter(vcpu);
1875 		return;
1876 	}
1877 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1878 		   / tb_ticks_per_sec;
1879 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
1880 	vcpu->arch.timer_running = 1;
1881 }
1882 
1883 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1884 {
1885 	vcpu->arch.ceded = 0;
1886 	if (vcpu->arch.timer_running) {
1887 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1888 		vcpu->arch.timer_running = 0;
1889 	}
1890 }
1891 
1892 extern void __kvmppc_vcore_entry(void);
1893 
1894 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1895 				   struct kvm_vcpu *vcpu)
1896 {
1897 	u64 now;
1898 
1899 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1900 		return;
1901 	spin_lock_irq(&vcpu->arch.tbacct_lock);
1902 	now = mftb();
1903 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1904 		vcpu->arch.stolen_logged;
1905 	vcpu->arch.busy_preempt = now;
1906 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1907 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1908 	--vc->n_runnable;
1909 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
1910 }
1911 
1912 static int kvmppc_grab_hwthread(int cpu)
1913 {
1914 	struct paca_struct *tpaca;
1915 	long timeout = 10000;
1916 
1917 	tpaca = &paca[cpu];
1918 
1919 	/* Ensure the thread won't go into the kernel if it wakes */
1920 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1921 	tpaca->kvm_hstate.kvm_vcore = NULL;
1922 	tpaca->kvm_hstate.napping = 0;
1923 	smp_wmb();
1924 	tpaca->kvm_hstate.hwthread_req = 1;
1925 
1926 	/*
1927 	 * If the thread is already executing in the kernel (e.g. handling
1928 	 * a stray interrupt), wait for it to get back to nap mode.
1929 	 * The smp_mb() is to ensure that our setting of hwthread_req
1930 	 * is visible before we look at hwthread_state, so if this
1931 	 * races with the code at system_reset_pSeries and the thread
1932 	 * misses our setting of hwthread_req, we are sure to see its
1933 	 * setting of hwthread_state, and vice versa.
1934 	 */
1935 	smp_mb();
1936 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1937 		if (--timeout <= 0) {
1938 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
1939 			return -EBUSY;
1940 		}
1941 		udelay(1);
1942 	}
1943 	return 0;
1944 }
1945 
1946 static void kvmppc_release_hwthread(int cpu)
1947 {
1948 	struct paca_struct *tpaca;
1949 
1950 	tpaca = &paca[cpu];
1951 	tpaca->kvm_hstate.hwthread_req = 0;
1952 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1953 	tpaca->kvm_hstate.kvm_vcore = NULL;
1954 	tpaca->kvm_hstate.kvm_split_mode = NULL;
1955 }
1956 
1957 static void do_nothing(void *x)
1958 {
1959 }
1960 
1961 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
1962 {
1963 	int i;
1964 
1965 	cpu = cpu_first_thread_sibling(cpu);
1966 	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
1967 	/*
1968 	 * Make sure setting of bit in need_tlb_flush precedes
1969 	 * testing of cpu_in_guest bits.  The matching barrier on
1970 	 * the other side is the first smp_mb() in kvmppc_run_core().
1971 	 */
1972 	smp_mb();
1973 	for (i = 0; i < threads_per_core; ++i)
1974 		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
1975 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
1976 }
1977 
1978 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1979 {
1980 	int cpu;
1981 	struct paca_struct *tpaca;
1982 	struct kvmppc_vcore *mvc = vc->master_vcore;
1983 	struct kvm *kvm = vc->kvm;
1984 
1985 	cpu = vc->pcpu;
1986 	if (vcpu) {
1987 		if (vcpu->arch.timer_running) {
1988 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1989 			vcpu->arch.timer_running = 0;
1990 		}
1991 		cpu += vcpu->arch.ptid;
1992 		vcpu->cpu = mvc->pcpu;
1993 		vcpu->arch.thread_cpu = cpu;
1994 
1995 		/*
1996 		 * With radix, the guest can do TLB invalidations itself,
1997 		 * and it could choose to use the local form (tlbiel) if
1998 		 * it is invalidating a translation that has only ever been
1999 		 * used on one vcpu.  However, that doesn't mean it has
2000 		 * only ever been used on one physical cpu, since vcpus
2001 		 * can move around between pcpus.  To cope with this, when
2002 		 * a vcpu moves from one pcpu to another, we need to tell
2003 		 * any vcpus running on the same core as this vcpu previously
2004 		 * ran to flush the TLB.  The TLB is shared between threads,
2005 		 * so we use a single bit in .need_tlb_flush for all 4 threads.
2006 		 */
2007 		if (kvm_is_radix(kvm) && vcpu->arch.prev_cpu != cpu) {
2008 			if (vcpu->arch.prev_cpu >= 0 &&
2009 			    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2010 			    cpu_first_thread_sibling(cpu))
2011 				radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2012 			vcpu->arch.prev_cpu = cpu;
2013 		}
2014 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2015 	}
2016 	tpaca = &paca[cpu];
2017 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2018 	tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
2019 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2020 	smp_wmb();
2021 	tpaca->kvm_hstate.kvm_vcore = mvc;
2022 	if (cpu != smp_processor_id())
2023 		kvmppc_ipi_thread(cpu);
2024 }
2025 
2026 static void kvmppc_wait_for_nap(void)
2027 {
2028 	int cpu = smp_processor_id();
2029 	int i, loops;
2030 	int n_threads = threads_per_vcore();
2031 
2032 	if (n_threads <= 1)
2033 		return;
2034 	for (loops = 0; loops < 1000000; ++loops) {
2035 		/*
2036 		 * Check if all threads are finished.
2037 		 * We set the vcore pointer when starting a thread
2038 		 * and the thread clears it when finished, so we look
2039 		 * for any threads that still have a non-NULL vcore ptr.
2040 		 */
2041 		for (i = 1; i < n_threads; ++i)
2042 			if (paca[cpu + i].kvm_hstate.kvm_vcore)
2043 				break;
2044 		if (i == n_threads) {
2045 			HMT_medium();
2046 			return;
2047 		}
2048 		HMT_low();
2049 	}
2050 	HMT_medium();
2051 	for (i = 1; i < n_threads; ++i)
2052 		if (paca[cpu + i].kvm_hstate.kvm_vcore)
2053 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2054 }
2055 
2056 /*
2057  * Check that we are on thread 0 and that any other threads in
2058  * this core are off-line.  Then grab the threads so they can't
2059  * enter the kernel.
2060  */
2061 static int on_primary_thread(void)
2062 {
2063 	int cpu = smp_processor_id();
2064 	int thr;
2065 
2066 	/* Are we on a primary subcore? */
2067 	if (cpu_thread_in_subcore(cpu))
2068 		return 0;
2069 
2070 	thr = 0;
2071 	while (++thr < threads_per_subcore)
2072 		if (cpu_online(cpu + thr))
2073 			return 0;
2074 
2075 	/* Grab all hw threads so they can't go into the kernel */
2076 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2077 		if (kvmppc_grab_hwthread(cpu + thr)) {
2078 			/* Couldn't grab one; let the others go */
2079 			do {
2080 				kvmppc_release_hwthread(cpu + thr);
2081 			} while (--thr > 0);
2082 			return 0;
2083 		}
2084 	}
2085 	return 1;
2086 }
2087 
2088 /*
2089  * A list of virtual cores for each physical CPU.
2090  * These are vcores that could run but their runner VCPU tasks are
2091  * (or may be) preempted.
2092  */
2093 struct preempted_vcore_list {
2094 	struct list_head	list;
2095 	spinlock_t		lock;
2096 };
2097 
2098 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2099 
2100 static void init_vcore_lists(void)
2101 {
2102 	int cpu;
2103 
2104 	for_each_possible_cpu(cpu) {
2105 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2106 		spin_lock_init(&lp->lock);
2107 		INIT_LIST_HEAD(&lp->list);
2108 	}
2109 }
2110 
2111 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2112 {
2113 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2114 
2115 	vc->vcore_state = VCORE_PREEMPT;
2116 	vc->pcpu = smp_processor_id();
2117 	if (vc->num_threads < threads_per_vcore()) {
2118 		spin_lock(&lp->lock);
2119 		list_add_tail(&vc->preempt_list, &lp->list);
2120 		spin_unlock(&lp->lock);
2121 	}
2122 
2123 	/* Start accumulating stolen time */
2124 	kvmppc_core_start_stolen(vc);
2125 }
2126 
2127 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2128 {
2129 	struct preempted_vcore_list *lp;
2130 
2131 	kvmppc_core_end_stolen(vc);
2132 	if (!list_empty(&vc->preempt_list)) {
2133 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2134 		spin_lock(&lp->lock);
2135 		list_del_init(&vc->preempt_list);
2136 		spin_unlock(&lp->lock);
2137 	}
2138 	vc->vcore_state = VCORE_INACTIVE;
2139 }
2140 
2141 /*
2142  * This stores information about the virtual cores currently
2143  * assigned to a physical core.
2144  */
2145 struct core_info {
2146 	int		n_subcores;
2147 	int		max_subcore_threads;
2148 	int		total_threads;
2149 	int		subcore_threads[MAX_SUBCORES];
2150 	struct kvm	*subcore_vm[MAX_SUBCORES];
2151 	struct list_head vcs[MAX_SUBCORES];
2152 };
2153 
2154 /*
2155  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2156  * respectively in 2-way micro-threading (split-core) mode.
2157  */
2158 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2159 
2160 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2161 {
2162 	int sub;
2163 
2164 	memset(cip, 0, sizeof(*cip));
2165 	cip->n_subcores = 1;
2166 	cip->max_subcore_threads = vc->num_threads;
2167 	cip->total_threads = vc->num_threads;
2168 	cip->subcore_threads[0] = vc->num_threads;
2169 	cip->subcore_vm[0] = vc->kvm;
2170 	for (sub = 0; sub < MAX_SUBCORES; ++sub)
2171 		INIT_LIST_HEAD(&cip->vcs[sub]);
2172 	list_add_tail(&vc->preempt_list, &cip->vcs[0]);
2173 }
2174 
2175 static bool subcore_config_ok(int n_subcores, int n_threads)
2176 {
2177 	/* Can only dynamically split if unsplit to begin with */
2178 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2179 		return false;
2180 	if (n_subcores > MAX_SUBCORES)
2181 		return false;
2182 	if (n_subcores > 1) {
2183 		if (!(dynamic_mt_modes & 2))
2184 			n_subcores = 4;
2185 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2186 			return false;
2187 	}
2188 
2189 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2190 }
2191 
2192 static void init_master_vcore(struct kvmppc_vcore *vc)
2193 {
2194 	vc->master_vcore = vc;
2195 	vc->entry_exit_map = 0;
2196 	vc->in_guest = 0;
2197 	vc->napping_threads = 0;
2198 	vc->conferring_threads = 0;
2199 }
2200 
2201 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2202 {
2203 	int n_threads = vc->num_threads;
2204 	int sub;
2205 
2206 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2207 		return false;
2208 
2209 	if (n_threads < cip->max_subcore_threads)
2210 		n_threads = cip->max_subcore_threads;
2211 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2212 		return false;
2213 	cip->max_subcore_threads = n_threads;
2214 
2215 	sub = cip->n_subcores;
2216 	++cip->n_subcores;
2217 	cip->total_threads += vc->num_threads;
2218 	cip->subcore_threads[sub] = vc->num_threads;
2219 	cip->subcore_vm[sub] = vc->kvm;
2220 	init_master_vcore(vc);
2221 	list_move_tail(&vc->preempt_list, &cip->vcs[sub]);
2222 
2223 	return true;
2224 }
2225 
2226 /*
2227  * Work out whether it is possible to piggyback the execution of
2228  * vcore *pvc onto the execution of the other vcores described in *cip.
2229  */
2230 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2231 			  int target_threads)
2232 {
2233 	if (cip->total_threads + pvc->num_threads > target_threads)
2234 		return false;
2235 
2236 	return can_dynamic_split(pvc, cip);
2237 }
2238 
2239 static void prepare_threads(struct kvmppc_vcore *vc)
2240 {
2241 	int i;
2242 	struct kvm_vcpu *vcpu;
2243 
2244 	for_each_runnable_thread(i, vcpu, vc) {
2245 		if (signal_pending(vcpu->arch.run_task))
2246 			vcpu->arch.ret = -EINTR;
2247 		else if (vcpu->arch.vpa.update_pending ||
2248 			 vcpu->arch.slb_shadow.update_pending ||
2249 			 vcpu->arch.dtl.update_pending)
2250 			vcpu->arch.ret = RESUME_GUEST;
2251 		else
2252 			continue;
2253 		kvmppc_remove_runnable(vc, vcpu);
2254 		wake_up(&vcpu->arch.cpu_run);
2255 	}
2256 }
2257 
2258 static void collect_piggybacks(struct core_info *cip, int target_threads)
2259 {
2260 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2261 	struct kvmppc_vcore *pvc, *vcnext;
2262 
2263 	spin_lock(&lp->lock);
2264 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2265 		if (!spin_trylock(&pvc->lock))
2266 			continue;
2267 		prepare_threads(pvc);
2268 		if (!pvc->n_runnable) {
2269 			list_del_init(&pvc->preempt_list);
2270 			if (pvc->runner == NULL) {
2271 				pvc->vcore_state = VCORE_INACTIVE;
2272 				kvmppc_core_end_stolen(pvc);
2273 			}
2274 			spin_unlock(&pvc->lock);
2275 			continue;
2276 		}
2277 		if (!can_piggyback(pvc, cip, target_threads)) {
2278 			spin_unlock(&pvc->lock);
2279 			continue;
2280 		}
2281 		kvmppc_core_end_stolen(pvc);
2282 		pvc->vcore_state = VCORE_PIGGYBACK;
2283 		if (cip->total_threads >= target_threads)
2284 			break;
2285 	}
2286 	spin_unlock(&lp->lock);
2287 }
2288 
2289 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2290 {
2291 	int still_running = 0, i;
2292 	u64 now;
2293 	long ret;
2294 	struct kvm_vcpu *vcpu;
2295 
2296 	spin_lock(&vc->lock);
2297 	now = get_tb();
2298 	for_each_runnable_thread(i, vcpu, vc) {
2299 		/* cancel pending dec exception if dec is positive */
2300 		if (now < vcpu->arch.dec_expires &&
2301 		    kvmppc_core_pending_dec(vcpu))
2302 			kvmppc_core_dequeue_dec(vcpu);
2303 
2304 		trace_kvm_guest_exit(vcpu);
2305 
2306 		ret = RESUME_GUEST;
2307 		if (vcpu->arch.trap)
2308 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2309 						    vcpu->arch.run_task);
2310 
2311 		vcpu->arch.ret = ret;
2312 		vcpu->arch.trap = 0;
2313 
2314 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2315 			if (vcpu->arch.pending_exceptions)
2316 				kvmppc_core_prepare_to_enter(vcpu);
2317 			if (vcpu->arch.ceded)
2318 				kvmppc_set_timer(vcpu);
2319 			else
2320 				++still_running;
2321 		} else {
2322 			kvmppc_remove_runnable(vc, vcpu);
2323 			wake_up(&vcpu->arch.cpu_run);
2324 		}
2325 	}
2326 	list_del_init(&vc->preempt_list);
2327 	if (!is_master) {
2328 		if (still_running > 0) {
2329 			kvmppc_vcore_preempt(vc);
2330 		} else if (vc->runner) {
2331 			vc->vcore_state = VCORE_PREEMPT;
2332 			kvmppc_core_start_stolen(vc);
2333 		} else {
2334 			vc->vcore_state = VCORE_INACTIVE;
2335 		}
2336 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2337 			/* make sure there's a candidate runner awake */
2338 			i = -1;
2339 			vcpu = next_runnable_thread(vc, &i);
2340 			wake_up(&vcpu->arch.cpu_run);
2341 		}
2342 	}
2343 	spin_unlock(&vc->lock);
2344 }
2345 
2346 /*
2347  * Clear core from the list of active host cores as we are about to
2348  * enter the guest. Only do this if it is the primary thread of the
2349  * core (not if a subcore) that is entering the guest.
2350  */
2351 static inline int kvmppc_clear_host_core(unsigned int cpu)
2352 {
2353 	int core;
2354 
2355 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2356 		return 0;
2357 	/*
2358 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2359 	 * later in kvmppc_start_thread and we need ensure that state is
2360 	 * visible to other CPUs only after we enter guest.
2361 	 */
2362 	core = cpu >> threads_shift;
2363 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2364 	return 0;
2365 }
2366 
2367 /*
2368  * Advertise this core as an active host core since we exited the guest
2369  * Only need to do this if it is the primary thread of the core that is
2370  * exiting.
2371  */
2372 static inline int kvmppc_set_host_core(unsigned int cpu)
2373 {
2374 	int core;
2375 
2376 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2377 		return 0;
2378 
2379 	/*
2380 	 * Memory barrier can be omitted here because we do a spin_unlock
2381 	 * immediately after this which provides the memory barrier.
2382 	 */
2383 	core = cpu >> threads_shift;
2384 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2385 	return 0;
2386 }
2387 
2388 /*
2389  * Run a set of guest threads on a physical core.
2390  * Called with vc->lock held.
2391  */
2392 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2393 {
2394 	struct kvm_vcpu *vcpu;
2395 	int i;
2396 	int srcu_idx;
2397 	struct core_info core_info;
2398 	struct kvmppc_vcore *pvc, *vcnext;
2399 	struct kvm_split_mode split_info, *sip;
2400 	int split, subcore_size, active;
2401 	int sub;
2402 	bool thr0_done;
2403 	unsigned long cmd_bit, stat_bit;
2404 	int pcpu, thr;
2405 	int target_threads;
2406 	int controlled_threads;
2407 
2408 	/*
2409 	 * Remove from the list any threads that have a signal pending
2410 	 * or need a VPA update done
2411 	 */
2412 	prepare_threads(vc);
2413 
2414 	/* if the runner is no longer runnable, let the caller pick a new one */
2415 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2416 		return;
2417 
2418 	/*
2419 	 * Initialize *vc.
2420 	 */
2421 	init_master_vcore(vc);
2422 	vc->preempt_tb = TB_NIL;
2423 
2424 	/*
2425 	 * Number of threads that we will be controlling: the same as
2426 	 * the number of threads per subcore, except on POWER9,
2427 	 * where it's 1 because the threads are (mostly) independent.
2428 	 */
2429 	controlled_threads = threads_per_vcore();
2430 
2431 	/*
2432 	 * Make sure we are running on primary threads, and that secondary
2433 	 * threads are offline.  Also check if the number of threads in this
2434 	 * guest are greater than the current system threads per guest.
2435 	 */
2436 	if ((controlled_threads > 1) &&
2437 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2438 		for_each_runnable_thread(i, vcpu, vc) {
2439 			vcpu->arch.ret = -EBUSY;
2440 			kvmppc_remove_runnable(vc, vcpu);
2441 			wake_up(&vcpu->arch.cpu_run);
2442 		}
2443 		goto out;
2444 	}
2445 
2446 	/*
2447 	 * See if we could run any other vcores on the physical core
2448 	 * along with this one.
2449 	 */
2450 	init_core_info(&core_info, vc);
2451 	pcpu = smp_processor_id();
2452 	target_threads = controlled_threads;
2453 	if (target_smt_mode && target_smt_mode < target_threads)
2454 		target_threads = target_smt_mode;
2455 	if (vc->num_threads < target_threads)
2456 		collect_piggybacks(&core_info, target_threads);
2457 
2458 	/* Decide on micro-threading (split-core) mode */
2459 	subcore_size = threads_per_subcore;
2460 	cmd_bit = stat_bit = 0;
2461 	split = core_info.n_subcores;
2462 	sip = NULL;
2463 	if (split > 1) {
2464 		/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2465 		if (split == 2 && (dynamic_mt_modes & 2)) {
2466 			cmd_bit = HID0_POWER8_1TO2LPAR;
2467 			stat_bit = HID0_POWER8_2LPARMODE;
2468 		} else {
2469 			split = 4;
2470 			cmd_bit = HID0_POWER8_1TO4LPAR;
2471 			stat_bit = HID0_POWER8_4LPARMODE;
2472 		}
2473 		subcore_size = MAX_SMT_THREADS / split;
2474 		sip = &split_info;
2475 		memset(&split_info, 0, sizeof(split_info));
2476 		split_info.rpr = mfspr(SPRN_RPR);
2477 		split_info.pmmar = mfspr(SPRN_PMMAR);
2478 		split_info.ldbar = mfspr(SPRN_LDBAR);
2479 		split_info.subcore_size = subcore_size;
2480 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2481 			split_info.master_vcs[sub] =
2482 				list_first_entry(&core_info.vcs[sub],
2483 					struct kvmppc_vcore, preempt_list);
2484 		/* order writes to split_info before kvm_split_mode pointer */
2485 		smp_wmb();
2486 	}
2487 	pcpu = smp_processor_id();
2488 	for (thr = 0; thr < controlled_threads; ++thr)
2489 		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2490 
2491 	/* Initiate micro-threading (split-core) if required */
2492 	if (cmd_bit) {
2493 		unsigned long hid0 = mfspr(SPRN_HID0);
2494 
2495 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2496 		mb();
2497 		mtspr(SPRN_HID0, hid0);
2498 		isync();
2499 		for (;;) {
2500 			hid0 = mfspr(SPRN_HID0);
2501 			if (hid0 & stat_bit)
2502 				break;
2503 			cpu_relax();
2504 		}
2505 	}
2506 
2507 	kvmppc_clear_host_core(pcpu);
2508 
2509 	/* Start all the threads */
2510 	active = 0;
2511 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2512 		thr = subcore_thread_map[sub];
2513 		thr0_done = false;
2514 		active |= 1 << thr;
2515 		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2516 			pvc->pcpu = pcpu + thr;
2517 			for_each_runnable_thread(i, vcpu, pvc) {
2518 				kvmppc_start_thread(vcpu, pvc);
2519 				kvmppc_create_dtl_entry(vcpu, pvc);
2520 				trace_kvm_guest_enter(vcpu);
2521 				if (!vcpu->arch.ptid)
2522 					thr0_done = true;
2523 				active |= 1 << (thr + vcpu->arch.ptid);
2524 			}
2525 			/*
2526 			 * We need to start the first thread of each subcore
2527 			 * even if it doesn't have a vcpu.
2528 			 */
2529 			if (pvc->master_vcore == pvc && !thr0_done)
2530 				kvmppc_start_thread(NULL, pvc);
2531 			thr += pvc->num_threads;
2532 		}
2533 	}
2534 
2535 	/*
2536 	 * Ensure that split_info.do_nap is set after setting
2537 	 * the vcore pointer in the PACA of the secondaries.
2538 	 */
2539 	smp_mb();
2540 	if (cmd_bit)
2541 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2542 
2543 	/*
2544 	 * When doing micro-threading, poke the inactive threads as well.
2545 	 * This gets them to the nap instruction after kvm_do_nap,
2546 	 * which reduces the time taken to unsplit later.
2547 	 */
2548 	if (split > 1)
2549 		for (thr = 1; thr < threads_per_subcore; ++thr)
2550 			if (!(active & (1 << thr)))
2551 				kvmppc_ipi_thread(pcpu + thr);
2552 
2553 	vc->vcore_state = VCORE_RUNNING;
2554 	preempt_disable();
2555 
2556 	trace_kvmppc_run_core(vc, 0);
2557 
2558 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2559 		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2560 			spin_unlock(&pvc->lock);
2561 
2562 	guest_enter();
2563 
2564 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2565 
2566 	__kvmppc_vcore_entry();
2567 
2568 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2569 
2570 	spin_lock(&vc->lock);
2571 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2572 	vc->vcore_state = VCORE_EXITING;
2573 
2574 	/* wait for secondary threads to finish writing their state to memory */
2575 	kvmppc_wait_for_nap();
2576 
2577 	/* Return to whole-core mode if we split the core earlier */
2578 	if (split > 1) {
2579 		unsigned long hid0 = mfspr(SPRN_HID0);
2580 		unsigned long loops = 0;
2581 
2582 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
2583 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2584 		mb();
2585 		mtspr(SPRN_HID0, hid0);
2586 		isync();
2587 		for (;;) {
2588 			hid0 = mfspr(SPRN_HID0);
2589 			if (!(hid0 & stat_bit))
2590 				break;
2591 			cpu_relax();
2592 			++loops;
2593 		}
2594 		split_info.do_nap = 0;
2595 	}
2596 
2597 	/* Let secondaries go back to the offline loop */
2598 	for (i = 0; i < controlled_threads; ++i) {
2599 		kvmppc_release_hwthread(pcpu + i);
2600 		if (sip && sip->napped[i])
2601 			kvmppc_ipi_thread(pcpu + i);
2602 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2603 	}
2604 
2605 	kvmppc_set_host_core(pcpu);
2606 
2607 	spin_unlock(&vc->lock);
2608 
2609 	/* make sure updates to secondary vcpu structs are visible now */
2610 	smp_mb();
2611 	guest_exit();
2612 
2613 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2614 		list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2615 					 preempt_list)
2616 			post_guest_process(pvc, pvc == vc);
2617 
2618 	spin_lock(&vc->lock);
2619 	preempt_enable();
2620 
2621  out:
2622 	vc->vcore_state = VCORE_INACTIVE;
2623 	trace_kvmppc_run_core(vc, 1);
2624 }
2625 
2626 /*
2627  * Wait for some other vcpu thread to execute us, and
2628  * wake us up when we need to handle something in the host.
2629  */
2630 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2631 				 struct kvm_vcpu *vcpu, int wait_state)
2632 {
2633 	DEFINE_WAIT(wait);
2634 
2635 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2636 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2637 		spin_unlock(&vc->lock);
2638 		schedule();
2639 		spin_lock(&vc->lock);
2640 	}
2641 	finish_wait(&vcpu->arch.cpu_run, &wait);
2642 }
2643 
2644 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2645 {
2646 	/* 10us base */
2647 	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2648 		vc->halt_poll_ns = 10000;
2649 	else
2650 		vc->halt_poll_ns *= halt_poll_ns_grow;
2651 }
2652 
2653 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2654 {
2655 	if (halt_poll_ns_shrink == 0)
2656 		vc->halt_poll_ns = 0;
2657 	else
2658 		vc->halt_poll_ns /= halt_poll_ns_shrink;
2659 }
2660 
2661 /*
2662  * Check to see if any of the runnable vcpus on the vcore have pending
2663  * exceptions or are no longer ceded
2664  */
2665 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
2666 {
2667 	struct kvm_vcpu *vcpu;
2668 	int i;
2669 
2670 	for_each_runnable_thread(i, vcpu, vc) {
2671 		if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded ||
2672 		    vcpu->arch.prodded)
2673 			return 1;
2674 	}
2675 
2676 	return 0;
2677 }
2678 
2679 /*
2680  * All the vcpus in this vcore are idle, so wait for a decrementer
2681  * or external interrupt to one of the vcpus.  vc->lock is held.
2682  */
2683 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2684 {
2685 	ktime_t cur, start_poll, start_wait;
2686 	int do_sleep = 1;
2687 	u64 block_ns;
2688 	DECLARE_SWAITQUEUE(wait);
2689 
2690 	/* Poll for pending exceptions and ceded state */
2691 	cur = start_poll = ktime_get();
2692 	if (vc->halt_poll_ns) {
2693 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
2694 		++vc->runner->stat.halt_attempted_poll;
2695 
2696 		vc->vcore_state = VCORE_POLLING;
2697 		spin_unlock(&vc->lock);
2698 
2699 		do {
2700 			if (kvmppc_vcore_check_block(vc)) {
2701 				do_sleep = 0;
2702 				break;
2703 			}
2704 			cur = ktime_get();
2705 		} while (single_task_running() && ktime_before(cur, stop));
2706 
2707 		spin_lock(&vc->lock);
2708 		vc->vcore_state = VCORE_INACTIVE;
2709 
2710 		if (!do_sleep) {
2711 			++vc->runner->stat.halt_successful_poll;
2712 			goto out;
2713 		}
2714 	}
2715 
2716 	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2717 
2718 	if (kvmppc_vcore_check_block(vc)) {
2719 		finish_swait(&vc->wq, &wait);
2720 		do_sleep = 0;
2721 		/* If we polled, count this as a successful poll */
2722 		if (vc->halt_poll_ns)
2723 			++vc->runner->stat.halt_successful_poll;
2724 		goto out;
2725 	}
2726 
2727 	start_wait = ktime_get();
2728 
2729 	vc->vcore_state = VCORE_SLEEPING;
2730 	trace_kvmppc_vcore_blocked(vc, 0);
2731 	spin_unlock(&vc->lock);
2732 	schedule();
2733 	finish_swait(&vc->wq, &wait);
2734 	spin_lock(&vc->lock);
2735 	vc->vcore_state = VCORE_INACTIVE;
2736 	trace_kvmppc_vcore_blocked(vc, 1);
2737 	++vc->runner->stat.halt_successful_wait;
2738 
2739 	cur = ktime_get();
2740 
2741 out:
2742 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
2743 
2744 	/* Attribute wait time */
2745 	if (do_sleep) {
2746 		vc->runner->stat.halt_wait_ns +=
2747 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
2748 		/* Attribute failed poll time */
2749 		if (vc->halt_poll_ns)
2750 			vc->runner->stat.halt_poll_fail_ns +=
2751 				ktime_to_ns(start_wait) -
2752 				ktime_to_ns(start_poll);
2753 	} else {
2754 		/* Attribute successful poll time */
2755 		if (vc->halt_poll_ns)
2756 			vc->runner->stat.halt_poll_success_ns +=
2757 				ktime_to_ns(cur) -
2758 				ktime_to_ns(start_poll);
2759 	}
2760 
2761 	/* Adjust poll time */
2762 	if (halt_poll_ns) {
2763 		if (block_ns <= vc->halt_poll_ns)
2764 			;
2765 		/* We slept and blocked for longer than the max halt time */
2766 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
2767 			shrink_halt_poll_ns(vc);
2768 		/* We slept and our poll time is too small */
2769 		else if (vc->halt_poll_ns < halt_poll_ns &&
2770 				block_ns < halt_poll_ns)
2771 			grow_halt_poll_ns(vc);
2772 		if (vc->halt_poll_ns > halt_poll_ns)
2773 			vc->halt_poll_ns = halt_poll_ns;
2774 	} else
2775 		vc->halt_poll_ns = 0;
2776 
2777 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
2778 }
2779 
2780 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2781 {
2782 	int n_ceded, i;
2783 	struct kvmppc_vcore *vc;
2784 	struct kvm_vcpu *v;
2785 
2786 	trace_kvmppc_run_vcpu_enter(vcpu);
2787 
2788 	kvm_run->exit_reason = 0;
2789 	vcpu->arch.ret = RESUME_GUEST;
2790 	vcpu->arch.trap = 0;
2791 	kvmppc_update_vpas(vcpu);
2792 
2793 	/*
2794 	 * Synchronize with other threads in this virtual core
2795 	 */
2796 	vc = vcpu->arch.vcore;
2797 	spin_lock(&vc->lock);
2798 	vcpu->arch.ceded = 0;
2799 	vcpu->arch.run_task = current;
2800 	vcpu->arch.kvm_run = kvm_run;
2801 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2802 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2803 	vcpu->arch.busy_preempt = TB_NIL;
2804 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
2805 	++vc->n_runnable;
2806 
2807 	/*
2808 	 * This happens the first time this is called for a vcpu.
2809 	 * If the vcore is already running, we may be able to start
2810 	 * this thread straight away and have it join in.
2811 	 */
2812 	if (!signal_pending(current)) {
2813 		if (vc->vcore_state == VCORE_PIGGYBACK) {
2814 			struct kvmppc_vcore *mvc = vc->master_vcore;
2815 			if (spin_trylock(&mvc->lock)) {
2816 				if (mvc->vcore_state == VCORE_RUNNING &&
2817 				    !VCORE_IS_EXITING(mvc)) {
2818 					kvmppc_create_dtl_entry(vcpu, vc);
2819 					kvmppc_start_thread(vcpu, vc);
2820 					trace_kvm_guest_enter(vcpu);
2821 				}
2822 				spin_unlock(&mvc->lock);
2823 			}
2824 		} else if (vc->vcore_state == VCORE_RUNNING &&
2825 			   !VCORE_IS_EXITING(vc)) {
2826 			kvmppc_create_dtl_entry(vcpu, vc);
2827 			kvmppc_start_thread(vcpu, vc);
2828 			trace_kvm_guest_enter(vcpu);
2829 		} else if (vc->vcore_state == VCORE_SLEEPING) {
2830 			swake_up(&vc->wq);
2831 		}
2832 
2833 	}
2834 
2835 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2836 	       !signal_pending(current)) {
2837 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2838 			kvmppc_vcore_end_preempt(vc);
2839 
2840 		if (vc->vcore_state != VCORE_INACTIVE) {
2841 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2842 			continue;
2843 		}
2844 		for_each_runnable_thread(i, v, vc) {
2845 			kvmppc_core_prepare_to_enter(v);
2846 			if (signal_pending(v->arch.run_task)) {
2847 				kvmppc_remove_runnable(vc, v);
2848 				v->stat.signal_exits++;
2849 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2850 				v->arch.ret = -EINTR;
2851 				wake_up(&v->arch.cpu_run);
2852 			}
2853 		}
2854 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2855 			break;
2856 		n_ceded = 0;
2857 		for_each_runnable_thread(i, v, vc) {
2858 			if (!v->arch.pending_exceptions && !v->arch.prodded)
2859 				n_ceded += v->arch.ceded;
2860 			else
2861 				v->arch.ceded = 0;
2862 		}
2863 		vc->runner = vcpu;
2864 		if (n_ceded == vc->n_runnable) {
2865 			kvmppc_vcore_blocked(vc);
2866 		} else if (need_resched()) {
2867 			kvmppc_vcore_preempt(vc);
2868 			/* Let something else run */
2869 			cond_resched_lock(&vc->lock);
2870 			if (vc->vcore_state == VCORE_PREEMPT)
2871 				kvmppc_vcore_end_preempt(vc);
2872 		} else {
2873 			kvmppc_run_core(vc);
2874 		}
2875 		vc->runner = NULL;
2876 	}
2877 
2878 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2879 	       (vc->vcore_state == VCORE_RUNNING ||
2880 		vc->vcore_state == VCORE_EXITING ||
2881 		vc->vcore_state == VCORE_PIGGYBACK))
2882 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2883 
2884 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2885 		kvmppc_vcore_end_preempt(vc);
2886 
2887 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2888 		kvmppc_remove_runnable(vc, vcpu);
2889 		vcpu->stat.signal_exits++;
2890 		kvm_run->exit_reason = KVM_EXIT_INTR;
2891 		vcpu->arch.ret = -EINTR;
2892 	}
2893 
2894 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2895 		/* Wake up some vcpu to run the core */
2896 		i = -1;
2897 		v = next_runnable_thread(vc, &i);
2898 		wake_up(&v->arch.cpu_run);
2899 	}
2900 
2901 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2902 	spin_unlock(&vc->lock);
2903 	return vcpu->arch.ret;
2904 }
2905 
2906 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2907 {
2908 	int r;
2909 	int srcu_idx;
2910 
2911 	if (!vcpu->arch.sane) {
2912 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2913 		return -EINVAL;
2914 	}
2915 
2916 	kvmppc_core_prepare_to_enter(vcpu);
2917 
2918 	/* No need to go into the guest when all we'll do is come back out */
2919 	if (signal_pending(current)) {
2920 		run->exit_reason = KVM_EXIT_INTR;
2921 		return -EINTR;
2922 	}
2923 
2924 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
2925 	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2926 	smp_mb();
2927 
2928 	/* On the first time here, set up HTAB and VRMA */
2929 	if (!kvm_is_radix(vcpu->kvm) && !vcpu->kvm->arch.hpte_setup_done) {
2930 		r = kvmppc_hv_setup_htab_rma(vcpu);
2931 		if (r)
2932 			goto out;
2933 	}
2934 
2935 	flush_all_to_thread(current);
2936 
2937 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2938 	vcpu->arch.pgdir = current->mm->pgd;
2939 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2940 
2941 	do {
2942 		r = kvmppc_run_vcpu(run, vcpu);
2943 
2944 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2945 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2946 			trace_kvm_hcall_enter(vcpu);
2947 			r = kvmppc_pseries_do_hcall(vcpu);
2948 			trace_kvm_hcall_exit(vcpu, r);
2949 			kvmppc_core_prepare_to_enter(vcpu);
2950 		} else if (r == RESUME_PAGE_FAULT) {
2951 			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2952 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
2953 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2954 			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2955 		} else if (r == RESUME_PASSTHROUGH) {
2956 			if (WARN_ON(xive_enabled()))
2957 				r = H_SUCCESS;
2958 			else
2959 				r = kvmppc_xics_rm_complete(vcpu, 0);
2960 		}
2961 	} while (is_kvmppc_resume_guest(r));
2962 
2963  out:
2964 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2965 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
2966 	return r;
2967 }
2968 
2969 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2970 				     int linux_psize)
2971 {
2972 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2973 
2974 	if (!def->shift)
2975 		return;
2976 	(*sps)->page_shift = def->shift;
2977 	(*sps)->slb_enc = def->sllp;
2978 	(*sps)->enc[0].page_shift = def->shift;
2979 	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2980 	/*
2981 	 * Add 16MB MPSS support if host supports it
2982 	 */
2983 	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2984 		(*sps)->enc[1].page_shift = 24;
2985 		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2986 	}
2987 	(*sps)++;
2988 }
2989 
2990 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2991 					 struct kvm_ppc_smmu_info *info)
2992 {
2993 	struct kvm_ppc_one_seg_page_size *sps;
2994 
2995 	/*
2996 	 * Since we don't yet support HPT guests on a radix host,
2997 	 * return an error if the host uses radix.
2998 	 */
2999 	if (radix_enabled())
3000 		return -EINVAL;
3001 
3002 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
3003 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
3004 		info->flags |= KVM_PPC_1T_SEGMENTS;
3005 	info->slb_size = mmu_slb_size;
3006 
3007 	/* We only support these sizes for now, and no muti-size segments */
3008 	sps = &info->sps[0];
3009 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
3010 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
3011 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
3012 
3013 	return 0;
3014 }
3015 
3016 /*
3017  * Get (and clear) the dirty memory log for a memory slot.
3018  */
3019 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3020 					 struct kvm_dirty_log *log)
3021 {
3022 	struct kvm_memslots *slots;
3023 	struct kvm_memory_slot *memslot;
3024 	int i, r;
3025 	unsigned long n;
3026 	unsigned long *buf;
3027 	struct kvm_vcpu *vcpu;
3028 
3029 	mutex_lock(&kvm->slots_lock);
3030 
3031 	r = -EINVAL;
3032 	if (log->slot >= KVM_USER_MEM_SLOTS)
3033 		goto out;
3034 
3035 	slots = kvm_memslots(kvm);
3036 	memslot = id_to_memslot(slots, log->slot);
3037 	r = -ENOENT;
3038 	if (!memslot->dirty_bitmap)
3039 		goto out;
3040 
3041 	/*
3042 	 * Use second half of bitmap area because radix accumulates
3043 	 * bits in the first half.
3044 	 */
3045 	n = kvm_dirty_bitmap_bytes(memslot);
3046 	buf = memslot->dirty_bitmap + n / sizeof(long);
3047 	memset(buf, 0, n);
3048 
3049 	if (kvm_is_radix(kvm))
3050 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3051 	else
3052 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3053 	if (r)
3054 		goto out;
3055 
3056 	/* Harvest dirty bits from VPA and DTL updates */
3057 	/* Note: we never modify the SLB shadow buffer areas */
3058 	kvm_for_each_vcpu(i, vcpu, kvm) {
3059 		spin_lock(&vcpu->arch.vpa_update_lock);
3060 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3061 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3062 		spin_unlock(&vcpu->arch.vpa_update_lock);
3063 	}
3064 
3065 	r = -EFAULT;
3066 	if (copy_to_user(log->dirty_bitmap, buf, n))
3067 		goto out;
3068 
3069 	r = 0;
3070 out:
3071 	mutex_unlock(&kvm->slots_lock);
3072 	return r;
3073 }
3074 
3075 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3076 					struct kvm_memory_slot *dont)
3077 {
3078 	if (!dont || free->arch.rmap != dont->arch.rmap) {
3079 		vfree(free->arch.rmap);
3080 		free->arch.rmap = NULL;
3081 	}
3082 }
3083 
3084 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3085 					 unsigned long npages)
3086 {
3087 	/*
3088 	 * For now, if radix_enabled() then we only support radix guests,
3089 	 * and in that case we don't need the rmap array.
3090 	 */
3091 	if (radix_enabled()) {
3092 		slot->arch.rmap = NULL;
3093 		return 0;
3094 	}
3095 
3096 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3097 	if (!slot->arch.rmap)
3098 		return -ENOMEM;
3099 
3100 	return 0;
3101 }
3102 
3103 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3104 					struct kvm_memory_slot *memslot,
3105 					const struct kvm_userspace_memory_region *mem)
3106 {
3107 	return 0;
3108 }
3109 
3110 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3111 				const struct kvm_userspace_memory_region *mem,
3112 				const struct kvm_memory_slot *old,
3113 				const struct kvm_memory_slot *new)
3114 {
3115 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3116 	struct kvm_memslots *slots;
3117 	struct kvm_memory_slot *memslot;
3118 
3119 	/*
3120 	 * If we are making a new memslot, it might make
3121 	 * some address that was previously cached as emulated
3122 	 * MMIO be no longer emulated MMIO, so invalidate
3123 	 * all the caches of emulated MMIO translations.
3124 	 */
3125 	if (npages)
3126 		atomic64_inc(&kvm->arch.mmio_update);
3127 
3128 	if (npages && old->npages && !kvm_is_radix(kvm)) {
3129 		/*
3130 		 * If modifying a memslot, reset all the rmap dirty bits.
3131 		 * If this is a new memslot, we don't need to do anything
3132 		 * since the rmap array starts out as all zeroes,
3133 		 * i.e. no pages are dirty.
3134 		 */
3135 		slots = kvm_memslots(kvm);
3136 		memslot = id_to_memslot(slots, mem->slot);
3137 		kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL);
3138 	}
3139 }
3140 
3141 /*
3142  * Update LPCR values in kvm->arch and in vcores.
3143  * Caller must hold kvm->lock.
3144  */
3145 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3146 {
3147 	long int i;
3148 	u32 cores_done = 0;
3149 
3150 	if ((kvm->arch.lpcr & mask) == lpcr)
3151 		return;
3152 
3153 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3154 
3155 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
3156 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3157 		if (!vc)
3158 			continue;
3159 		spin_lock(&vc->lock);
3160 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3161 		spin_unlock(&vc->lock);
3162 		if (++cores_done >= kvm->arch.online_vcores)
3163 			break;
3164 	}
3165 }
3166 
3167 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3168 {
3169 	return;
3170 }
3171 
3172 static void kvmppc_setup_partition_table(struct kvm *kvm)
3173 {
3174 	unsigned long dw0, dw1;
3175 
3176 	if (!kvm_is_radix(kvm)) {
3177 		/* PS field - page size for VRMA */
3178 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3179 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3180 		/* HTABSIZE and HTABORG fields */
3181 		dw0 |= kvm->arch.sdr1;
3182 
3183 		/* Second dword as set by userspace */
3184 		dw1 = kvm->arch.process_table;
3185 	} else {
3186 		dw0 = PATB_HR | radix__get_tree_size() |
3187 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3188 		dw1 = PATB_GR | kvm->arch.process_table;
3189 	}
3190 
3191 	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3192 }
3193 
3194 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3195 {
3196 	int err = 0;
3197 	struct kvm *kvm = vcpu->kvm;
3198 	unsigned long hva;
3199 	struct kvm_memory_slot *memslot;
3200 	struct vm_area_struct *vma;
3201 	unsigned long lpcr = 0, senc;
3202 	unsigned long psize, porder;
3203 	int srcu_idx;
3204 
3205 	mutex_lock(&kvm->lock);
3206 	if (kvm->arch.hpte_setup_done)
3207 		goto out;	/* another vcpu beat us to it */
3208 
3209 	/* Allocate hashed page table (if not done already) and reset it */
3210 	if (!kvm->arch.hpt.virt) {
3211 		int order = KVM_DEFAULT_HPT_ORDER;
3212 		struct kvm_hpt_info info;
3213 
3214 		err = kvmppc_allocate_hpt(&info, order);
3215 		/* If we get here, it means userspace didn't specify a
3216 		 * size explicitly.  So, try successively smaller
3217 		 * sizes if the default failed. */
3218 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3219 			err  = kvmppc_allocate_hpt(&info, order);
3220 
3221 		if (err < 0) {
3222 			pr_err("KVM: Couldn't alloc HPT\n");
3223 			goto out;
3224 		}
3225 
3226 		kvmppc_set_hpt(kvm, &info);
3227 	}
3228 
3229 	/* Look up the memslot for guest physical address 0 */
3230 	srcu_idx = srcu_read_lock(&kvm->srcu);
3231 	memslot = gfn_to_memslot(kvm, 0);
3232 
3233 	/* We must have some memory at 0 by now */
3234 	err = -EINVAL;
3235 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3236 		goto out_srcu;
3237 
3238 	/* Look up the VMA for the start of this memory slot */
3239 	hva = memslot->userspace_addr;
3240 	down_read(&current->mm->mmap_sem);
3241 	vma = find_vma(current->mm, hva);
3242 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3243 		goto up_out;
3244 
3245 	psize = vma_kernel_pagesize(vma);
3246 	porder = __ilog2(psize);
3247 
3248 	up_read(&current->mm->mmap_sem);
3249 
3250 	/* We can handle 4k, 64k or 16M pages in the VRMA */
3251 	err = -EINVAL;
3252 	if (!(psize == 0x1000 || psize == 0x10000 ||
3253 	      psize == 0x1000000))
3254 		goto out_srcu;
3255 
3256 	senc = slb_pgsize_encoding(psize);
3257 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3258 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3259 	/* Create HPTEs in the hash page table for the VRMA */
3260 	kvmppc_map_vrma(vcpu, memslot, porder);
3261 
3262 	/* Update VRMASD field in the LPCR */
3263 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3264 		/* the -4 is to account for senc values starting at 0x10 */
3265 		lpcr = senc << (LPCR_VRMASD_SH - 4);
3266 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3267 	} else {
3268 		kvmppc_setup_partition_table(kvm);
3269 	}
3270 
3271 	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3272 	smp_wmb();
3273 	kvm->arch.hpte_setup_done = 1;
3274 	err = 0;
3275  out_srcu:
3276 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3277  out:
3278 	mutex_unlock(&kvm->lock);
3279 	return err;
3280 
3281  up_out:
3282 	up_read(&current->mm->mmap_sem);
3283 	goto out_srcu;
3284 }
3285 
3286 #ifdef CONFIG_KVM_XICS
3287 /*
3288  * Allocate a per-core structure for managing state about which cores are
3289  * running in the host versus the guest and for exchanging data between
3290  * real mode KVM and CPU running in the host.
3291  * This is only done for the first VM.
3292  * The allocated structure stays even if all VMs have stopped.
3293  * It is only freed when the kvm-hv module is unloaded.
3294  * It's OK for this routine to fail, we just don't support host
3295  * core operations like redirecting H_IPI wakeups.
3296  */
3297 void kvmppc_alloc_host_rm_ops(void)
3298 {
3299 	struct kvmppc_host_rm_ops *ops;
3300 	unsigned long l_ops;
3301 	int cpu, core;
3302 	int size;
3303 
3304 	/* Not the first time here ? */
3305 	if (kvmppc_host_rm_ops_hv != NULL)
3306 		return;
3307 
3308 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3309 	if (!ops)
3310 		return;
3311 
3312 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3313 	ops->rm_core = kzalloc(size, GFP_KERNEL);
3314 
3315 	if (!ops->rm_core) {
3316 		kfree(ops);
3317 		return;
3318 	}
3319 
3320 	get_online_cpus();
3321 
3322 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3323 		if (!cpu_online(cpu))
3324 			continue;
3325 
3326 		core = cpu >> threads_shift;
3327 		ops->rm_core[core].rm_state.in_host = 1;
3328 	}
3329 
3330 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3331 
3332 	/*
3333 	 * Make the contents of the kvmppc_host_rm_ops structure visible
3334 	 * to other CPUs before we assign it to the global variable.
3335 	 * Do an atomic assignment (no locks used here), but if someone
3336 	 * beats us to it, just free our copy and return.
3337 	 */
3338 	smp_wmb();
3339 	l_ops = (unsigned long) ops;
3340 
3341 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3342 		put_online_cpus();
3343 		kfree(ops->rm_core);
3344 		kfree(ops);
3345 		return;
3346 	}
3347 
3348 	cpuhp_setup_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3349 				  "ppc/kvm_book3s:prepare",
3350 				  kvmppc_set_host_core,
3351 				  kvmppc_clear_host_core);
3352 	put_online_cpus();
3353 }
3354 
3355 void kvmppc_free_host_rm_ops(void)
3356 {
3357 	if (kvmppc_host_rm_ops_hv) {
3358 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3359 		kfree(kvmppc_host_rm_ops_hv->rm_core);
3360 		kfree(kvmppc_host_rm_ops_hv);
3361 		kvmppc_host_rm_ops_hv = NULL;
3362 	}
3363 }
3364 #endif
3365 
3366 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3367 {
3368 	unsigned long lpcr, lpid;
3369 	char buf[32];
3370 	int ret;
3371 
3372 	/* Allocate the guest's logical partition ID */
3373 
3374 	lpid = kvmppc_alloc_lpid();
3375 	if ((long)lpid < 0)
3376 		return -ENOMEM;
3377 	kvm->arch.lpid = lpid;
3378 
3379 	kvmppc_alloc_host_rm_ops();
3380 
3381 	/*
3382 	 * Since we don't flush the TLB when tearing down a VM,
3383 	 * and this lpid might have previously been used,
3384 	 * make sure we flush on each core before running the new VM.
3385 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3386 	 * does this flush for us.
3387 	 */
3388 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3389 		cpumask_setall(&kvm->arch.need_tlb_flush);
3390 
3391 	/* Start out with the default set of hcalls enabled */
3392 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3393 	       sizeof(kvm->arch.enabled_hcalls));
3394 
3395 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3396 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3397 
3398 	/* Init LPCR for virtual RMA mode */
3399 	kvm->arch.host_lpid = mfspr(SPRN_LPID);
3400 	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3401 	lpcr &= LPCR_PECE | LPCR_LPES;
3402 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3403 		LPCR_VPM0 | LPCR_VPM1;
3404 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3405 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3406 	/* On POWER8 turn on online bit to enable PURR/SPURR */
3407 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
3408 		lpcr |= LPCR_ONL;
3409 	/*
3410 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3411 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3412 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3413 	 * be unnecessary but better safe than sorry in case we re-enable
3414 	 * EE in HV mode with this LPCR still set)
3415 	 */
3416 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3417 		lpcr &= ~LPCR_VPM0;
3418 		lpcr |= LPCR_HVICE | LPCR_HEIC;
3419 
3420 		/*
3421 		 * If xive is enabled, we route 0x500 interrupts directly
3422 		 * to the guest.
3423 		 */
3424 		if (xive_enabled())
3425 			lpcr |= LPCR_LPES;
3426 	}
3427 
3428 	/*
3429 	 * For now, if the host uses radix, the guest must be radix.
3430 	 */
3431 	if (radix_enabled()) {
3432 		kvm->arch.radix = 1;
3433 		lpcr &= ~LPCR_VPM1;
3434 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3435 		ret = kvmppc_init_vm_radix(kvm);
3436 		if (ret) {
3437 			kvmppc_free_lpid(kvm->arch.lpid);
3438 			return ret;
3439 		}
3440 		kvmppc_setup_partition_table(kvm);
3441 	}
3442 
3443 	kvm->arch.lpcr = lpcr;
3444 
3445 	/* Initialization for future HPT resizes */
3446 	kvm->arch.resize_hpt = NULL;
3447 
3448 	/*
3449 	 * Work out how many sets the TLB has, for the use of
3450 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3451 	 */
3452 	if (kvm_is_radix(kvm))
3453 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
3454 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
3455 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
3456 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3457 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
3458 	else
3459 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
3460 
3461 	/*
3462 	 * Track that we now have a HV mode VM active. This blocks secondary
3463 	 * CPU threads from coming online.
3464 	 * On POWER9, we only need to do this for HPT guests on a radix
3465 	 * host, which is not yet supported.
3466 	 */
3467 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3468 		kvm_hv_vm_activated();
3469 
3470 	/*
3471 	 * Create a debugfs directory for the VM
3472 	 */
3473 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
3474 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3475 	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3476 		kvmppc_mmu_debugfs_init(kvm);
3477 
3478 	return 0;
3479 }
3480 
3481 static void kvmppc_free_vcores(struct kvm *kvm)
3482 {
3483 	long int i;
3484 
3485 	for (i = 0; i < KVM_MAX_VCORES; ++i)
3486 		kfree(kvm->arch.vcores[i]);
3487 	kvm->arch.online_vcores = 0;
3488 }
3489 
3490 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3491 {
3492 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
3493 
3494 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3495 		kvm_hv_vm_deactivated();
3496 
3497 	kvmppc_free_vcores(kvm);
3498 
3499 	kvmppc_free_lpid(kvm->arch.lpid);
3500 
3501 	if (kvm_is_radix(kvm))
3502 		kvmppc_free_radix(kvm);
3503 	else
3504 		kvmppc_free_hpt(&kvm->arch.hpt);
3505 
3506 	kvmppc_free_pimap(kvm);
3507 }
3508 
3509 /* We don't need to emulate any privileged instructions or dcbz */
3510 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3511 				     unsigned int inst, int *advance)
3512 {
3513 	return EMULATE_FAIL;
3514 }
3515 
3516 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3517 					ulong spr_val)
3518 {
3519 	return EMULATE_FAIL;
3520 }
3521 
3522 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3523 					ulong *spr_val)
3524 {
3525 	return EMULATE_FAIL;
3526 }
3527 
3528 static int kvmppc_core_check_processor_compat_hv(void)
3529 {
3530 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3531 	    !cpu_has_feature(CPU_FTR_ARCH_206))
3532 		return -EIO;
3533 
3534 	return 0;
3535 }
3536 
3537 #ifdef CONFIG_KVM_XICS
3538 
3539 void kvmppc_free_pimap(struct kvm *kvm)
3540 {
3541 	kfree(kvm->arch.pimap);
3542 }
3543 
3544 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3545 {
3546 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3547 }
3548 
3549 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3550 {
3551 	struct irq_desc *desc;
3552 	struct kvmppc_irq_map *irq_map;
3553 	struct kvmppc_passthru_irqmap *pimap;
3554 	struct irq_chip *chip;
3555 	int i, rc = 0;
3556 
3557 	if (!kvm_irq_bypass)
3558 		return 1;
3559 
3560 	desc = irq_to_desc(host_irq);
3561 	if (!desc)
3562 		return -EIO;
3563 
3564 	mutex_lock(&kvm->lock);
3565 
3566 	pimap = kvm->arch.pimap;
3567 	if (pimap == NULL) {
3568 		/* First call, allocate structure to hold IRQ map */
3569 		pimap = kvmppc_alloc_pimap();
3570 		if (pimap == NULL) {
3571 			mutex_unlock(&kvm->lock);
3572 			return -ENOMEM;
3573 		}
3574 		kvm->arch.pimap = pimap;
3575 	}
3576 
3577 	/*
3578 	 * For now, we only support interrupts for which the EOI operation
3579 	 * is an OPAL call followed by a write to XIRR, since that's
3580 	 * what our real-mode EOI code does, or a XIVE interrupt
3581 	 */
3582 	chip = irq_data_get_irq_chip(&desc->irq_data);
3583 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
3584 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
3585 			host_irq, guest_gsi);
3586 		mutex_unlock(&kvm->lock);
3587 		return -ENOENT;
3588 	}
3589 
3590 	/*
3591 	 * See if we already have an entry for this guest IRQ number.
3592 	 * If it's mapped to a hardware IRQ number, that's an error,
3593 	 * otherwise re-use this entry.
3594 	 */
3595 	for (i = 0; i < pimap->n_mapped; i++) {
3596 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
3597 			if (pimap->mapped[i].r_hwirq) {
3598 				mutex_unlock(&kvm->lock);
3599 				return -EINVAL;
3600 			}
3601 			break;
3602 		}
3603 	}
3604 
3605 	if (i == KVMPPC_PIRQ_MAPPED) {
3606 		mutex_unlock(&kvm->lock);
3607 		return -EAGAIN;		/* table is full */
3608 	}
3609 
3610 	irq_map = &pimap->mapped[i];
3611 
3612 	irq_map->v_hwirq = guest_gsi;
3613 	irq_map->desc = desc;
3614 
3615 	/*
3616 	 * Order the above two stores before the next to serialize with
3617 	 * the KVM real mode handler.
3618 	 */
3619 	smp_wmb();
3620 	irq_map->r_hwirq = desc->irq_data.hwirq;
3621 
3622 	if (i == pimap->n_mapped)
3623 		pimap->n_mapped++;
3624 
3625 	if (xive_enabled())
3626 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
3627 	else
3628 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
3629 	if (rc)
3630 		irq_map->r_hwirq = 0;
3631 
3632 	mutex_unlock(&kvm->lock);
3633 
3634 	return 0;
3635 }
3636 
3637 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3638 {
3639 	struct irq_desc *desc;
3640 	struct kvmppc_passthru_irqmap *pimap;
3641 	int i, rc = 0;
3642 
3643 	if (!kvm_irq_bypass)
3644 		return 0;
3645 
3646 	desc = irq_to_desc(host_irq);
3647 	if (!desc)
3648 		return -EIO;
3649 
3650 	mutex_lock(&kvm->lock);
3651 	if (!kvm->arch.pimap)
3652 		goto unlock;
3653 
3654 	pimap = kvm->arch.pimap;
3655 
3656 	for (i = 0; i < pimap->n_mapped; i++) {
3657 		if (guest_gsi == pimap->mapped[i].v_hwirq)
3658 			break;
3659 	}
3660 
3661 	if (i == pimap->n_mapped) {
3662 		mutex_unlock(&kvm->lock);
3663 		return -ENODEV;
3664 	}
3665 
3666 	if (xive_enabled())
3667 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
3668 	else
3669 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
3670 
3671 	/* invalidate the entry (what do do on error from the above ?) */
3672 	pimap->mapped[i].r_hwirq = 0;
3673 
3674 	/*
3675 	 * We don't free this structure even when the count goes to
3676 	 * zero. The structure is freed when we destroy the VM.
3677 	 */
3678  unlock:
3679 	mutex_unlock(&kvm->lock);
3680 	return rc;
3681 }
3682 
3683 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
3684 					     struct irq_bypass_producer *prod)
3685 {
3686 	int ret = 0;
3687 	struct kvm_kernel_irqfd *irqfd =
3688 		container_of(cons, struct kvm_kernel_irqfd, consumer);
3689 
3690 	irqfd->producer = prod;
3691 
3692 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3693 	if (ret)
3694 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
3695 			prod->irq, irqfd->gsi, ret);
3696 
3697 	return ret;
3698 }
3699 
3700 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
3701 					      struct irq_bypass_producer *prod)
3702 {
3703 	int ret;
3704 	struct kvm_kernel_irqfd *irqfd =
3705 		container_of(cons, struct kvm_kernel_irqfd, consumer);
3706 
3707 	irqfd->producer = NULL;
3708 
3709 	/*
3710 	 * When producer of consumer is unregistered, we change back to
3711 	 * default external interrupt handling mode - KVM real mode
3712 	 * will switch back to host.
3713 	 */
3714 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
3715 	if (ret)
3716 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
3717 			prod->irq, irqfd->gsi, ret);
3718 }
3719 #endif
3720 
3721 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3722 				 unsigned int ioctl, unsigned long arg)
3723 {
3724 	struct kvm *kvm __maybe_unused = filp->private_data;
3725 	void __user *argp = (void __user *)arg;
3726 	long r;
3727 
3728 	switch (ioctl) {
3729 
3730 	case KVM_PPC_ALLOCATE_HTAB: {
3731 		u32 htab_order;
3732 
3733 		r = -EFAULT;
3734 		if (get_user(htab_order, (u32 __user *)argp))
3735 			break;
3736 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
3737 		if (r)
3738 			break;
3739 		r = 0;
3740 		break;
3741 	}
3742 
3743 	case KVM_PPC_GET_HTAB_FD: {
3744 		struct kvm_get_htab_fd ghf;
3745 
3746 		r = -EFAULT;
3747 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
3748 			break;
3749 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3750 		break;
3751 	}
3752 
3753 	case KVM_PPC_RESIZE_HPT_PREPARE: {
3754 		struct kvm_ppc_resize_hpt rhpt;
3755 
3756 		r = -EFAULT;
3757 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
3758 			break;
3759 
3760 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
3761 		break;
3762 	}
3763 
3764 	case KVM_PPC_RESIZE_HPT_COMMIT: {
3765 		struct kvm_ppc_resize_hpt rhpt;
3766 
3767 		r = -EFAULT;
3768 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
3769 			break;
3770 
3771 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
3772 		break;
3773 	}
3774 
3775 	default:
3776 		r = -ENOTTY;
3777 	}
3778 
3779 	return r;
3780 }
3781 
3782 /*
3783  * List of hcall numbers to enable by default.
3784  * For compatibility with old userspace, we enable by default
3785  * all hcalls that were implemented before the hcall-enabling
3786  * facility was added.  Note this list should not include H_RTAS.
3787  */
3788 static unsigned int default_hcall_list[] = {
3789 	H_REMOVE,
3790 	H_ENTER,
3791 	H_READ,
3792 	H_PROTECT,
3793 	H_BULK_REMOVE,
3794 	H_GET_TCE,
3795 	H_PUT_TCE,
3796 	H_SET_DABR,
3797 	H_SET_XDABR,
3798 	H_CEDE,
3799 	H_PROD,
3800 	H_CONFER,
3801 	H_REGISTER_VPA,
3802 #ifdef CONFIG_KVM_XICS
3803 	H_EOI,
3804 	H_CPPR,
3805 	H_IPI,
3806 	H_IPOLL,
3807 	H_XIRR,
3808 	H_XIRR_X,
3809 #endif
3810 	0
3811 };
3812 
3813 static void init_default_hcalls(void)
3814 {
3815 	int i;
3816 	unsigned int hcall;
3817 
3818 	for (i = 0; default_hcall_list[i]; ++i) {
3819 		hcall = default_hcall_list[i];
3820 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3821 		__set_bit(hcall / 4, default_enabled_hcalls);
3822 	}
3823 }
3824 
3825 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
3826 {
3827 	unsigned long lpcr;
3828 	int radix;
3829 
3830 	/* If not on a POWER9, reject it */
3831 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3832 		return -ENODEV;
3833 
3834 	/* If any unknown flags set, reject it */
3835 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
3836 		return -EINVAL;
3837 
3838 	/* We can't change a guest to/from radix yet */
3839 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
3840 	if (radix != kvm_is_radix(kvm))
3841 		return -EINVAL;
3842 
3843 	/* GR (guest radix) bit in process_table field must match */
3844 	if (!!(cfg->process_table & PATB_GR) != radix)
3845 		return -EINVAL;
3846 
3847 	/* Process table size field must be reasonable, i.e. <= 24 */
3848 	if ((cfg->process_table & PRTS_MASK) > 24)
3849 		return -EINVAL;
3850 
3851 	kvm->arch.process_table = cfg->process_table;
3852 	kvmppc_setup_partition_table(kvm);
3853 
3854 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
3855 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
3856 
3857 	return 0;
3858 }
3859 
3860 static struct kvmppc_ops kvm_ops_hv = {
3861 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3862 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3863 	.get_one_reg = kvmppc_get_one_reg_hv,
3864 	.set_one_reg = kvmppc_set_one_reg_hv,
3865 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
3866 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
3867 	.set_msr     = kvmppc_set_msr_hv,
3868 	.vcpu_run    = kvmppc_vcpu_run_hv,
3869 	.vcpu_create = kvmppc_core_vcpu_create_hv,
3870 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
3871 	.check_requests = kvmppc_core_check_requests_hv,
3872 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
3873 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
3874 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3875 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
3876 	.unmap_hva = kvm_unmap_hva_hv,
3877 	.unmap_hva_range = kvm_unmap_hva_range_hv,
3878 	.age_hva  = kvm_age_hva_hv,
3879 	.test_age_hva = kvm_test_age_hva_hv,
3880 	.set_spte_hva = kvm_set_spte_hva_hv,
3881 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
3882 	.free_memslot = kvmppc_core_free_memslot_hv,
3883 	.create_memslot = kvmppc_core_create_memslot_hv,
3884 	.init_vm =  kvmppc_core_init_vm_hv,
3885 	.destroy_vm = kvmppc_core_destroy_vm_hv,
3886 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3887 	.emulate_op = kvmppc_core_emulate_op_hv,
3888 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3889 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3890 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3891 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
3892 	.hcall_implemented = kvmppc_hcall_impl_hv,
3893 #ifdef CONFIG_KVM_XICS
3894 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
3895 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
3896 #endif
3897 	.configure_mmu = kvmhv_configure_mmu,
3898 	.get_rmmu_info = kvmhv_get_rmmu_info,
3899 };
3900 
3901 static int kvm_init_subcore_bitmap(void)
3902 {
3903 	int i, j;
3904 	int nr_cores = cpu_nr_cores();
3905 	struct sibling_subcore_state *sibling_subcore_state;
3906 
3907 	for (i = 0; i < nr_cores; i++) {
3908 		int first_cpu = i * threads_per_core;
3909 		int node = cpu_to_node(first_cpu);
3910 
3911 		/* Ignore if it is already allocated. */
3912 		if (paca[first_cpu].sibling_subcore_state)
3913 			continue;
3914 
3915 		sibling_subcore_state =
3916 			kmalloc_node(sizeof(struct sibling_subcore_state),
3917 							GFP_KERNEL, node);
3918 		if (!sibling_subcore_state)
3919 			return -ENOMEM;
3920 
3921 		memset(sibling_subcore_state, 0,
3922 				sizeof(struct sibling_subcore_state));
3923 
3924 		for (j = 0; j < threads_per_core; j++) {
3925 			int cpu = first_cpu + j;
3926 
3927 			paca[cpu].sibling_subcore_state = sibling_subcore_state;
3928 		}
3929 	}
3930 	return 0;
3931 }
3932 
3933 static int kvmppc_radix_possible(void)
3934 {
3935 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
3936 }
3937 
3938 static int kvmppc_book3s_init_hv(void)
3939 {
3940 	int r;
3941 	/*
3942 	 * FIXME!! Do we need to check on all cpus ?
3943 	 */
3944 	r = kvmppc_core_check_processor_compat_hv();
3945 	if (r < 0)
3946 		return -ENODEV;
3947 
3948 	r = kvm_init_subcore_bitmap();
3949 	if (r)
3950 		return r;
3951 
3952 	/*
3953 	 * We need a way of accessing the XICS interrupt controller,
3954 	 * either directly, via paca[cpu].kvm_hstate.xics_phys, or
3955 	 * indirectly, via OPAL.
3956 	 */
3957 #ifdef CONFIG_SMP
3958 	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
3959 		struct device_node *np;
3960 
3961 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
3962 		if (!np) {
3963 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
3964 			return -ENODEV;
3965 		}
3966 	}
3967 #endif
3968 
3969 	kvm_ops_hv.owner = THIS_MODULE;
3970 	kvmppc_hv_ops = &kvm_ops_hv;
3971 
3972 	init_default_hcalls();
3973 
3974 	init_vcore_lists();
3975 
3976 	r = kvmppc_mmu_hv_init();
3977 	if (r)
3978 		return r;
3979 
3980 	if (kvmppc_radix_possible())
3981 		r = kvmppc_radix_init();
3982 	return r;
3983 }
3984 
3985 static void kvmppc_book3s_exit_hv(void)
3986 {
3987 	kvmppc_free_host_rm_ops();
3988 	if (kvmppc_radix_possible())
3989 		kvmppc_radix_exit();
3990 	kvmppc_hv_ops = NULL;
3991 }
3992 
3993 module_init(kvmppc_book3s_init_hv);
3994 module_exit(kvmppc_book3s_exit_hv);
3995 MODULE_LICENSE("GPL");
3996 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3997 MODULE_ALIAS("devname:kvm");
3998 
3999