1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 34 #include <asm/reg.h> 35 #include <asm/cputable.h> 36 #include <asm/cacheflush.h> 37 #include <asm/tlbflush.h> 38 #include <asm/uaccess.h> 39 #include <asm/io.h> 40 #include <asm/kvm_ppc.h> 41 #include <asm/kvm_book3s.h> 42 #include <asm/mmu_context.h> 43 #include <asm/lppaca.h> 44 #include <asm/processor.h> 45 #include <asm/cputhreads.h> 46 #include <asm/page.h> 47 #include <asm/hvcall.h> 48 #include <asm/switch_to.h> 49 #include <linux/gfp.h> 50 #include <linux/vmalloc.h> 51 #include <linux/highmem.h> 52 #include <linux/hugetlb.h> 53 54 /* #define EXIT_DEBUG */ 55 /* #define EXIT_DEBUG_SIMPLE */ 56 /* #define EXIT_DEBUG_INT */ 57 58 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 59 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 60 61 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 62 { 63 struct kvmppc_vcore *vc = vcpu->arch.vcore; 64 65 local_paca->kvm_hstate.kvm_vcpu = vcpu; 66 local_paca->kvm_hstate.kvm_vcore = vc; 67 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) 68 vc->stolen_tb += mftb() - vc->preempt_tb; 69 } 70 71 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu) 72 { 73 struct kvmppc_vcore *vc = vcpu->arch.vcore; 74 75 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) 76 vc->preempt_tb = mftb(); 77 } 78 79 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr) 80 { 81 vcpu->arch.shregs.msr = msr; 82 kvmppc_end_cede(vcpu); 83 } 84 85 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr) 86 { 87 vcpu->arch.pvr = pvr; 88 } 89 90 void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 91 { 92 int r; 93 94 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 95 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 96 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 97 for (r = 0; r < 16; ++r) 98 pr_err("r%2d = %.16lx r%d = %.16lx\n", 99 r, kvmppc_get_gpr(vcpu, r), 100 r+16, kvmppc_get_gpr(vcpu, r+16)); 101 pr_err("ctr = %.16lx lr = %.16lx\n", 102 vcpu->arch.ctr, vcpu->arch.lr); 103 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 104 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 105 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 106 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 107 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 108 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 109 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 110 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 111 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 112 pr_err("fault dar = %.16lx dsisr = %.8x\n", 113 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 114 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 115 for (r = 0; r < vcpu->arch.slb_max; ++r) 116 pr_err(" ESID = %.16llx VSID = %.16llx\n", 117 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 118 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 119 vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1, 120 vcpu->arch.last_inst); 121 } 122 123 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 124 { 125 int r; 126 struct kvm_vcpu *v, *ret = NULL; 127 128 mutex_lock(&kvm->lock); 129 kvm_for_each_vcpu(r, v, kvm) { 130 if (v->vcpu_id == id) { 131 ret = v; 132 break; 133 } 134 } 135 mutex_unlock(&kvm->lock); 136 return ret; 137 } 138 139 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 140 { 141 vpa->shared_proc = 1; 142 vpa->yield_count = 1; 143 } 144 145 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 146 struct reg_vpa { 147 u32 dummy; 148 union { 149 u16 hword; 150 u32 word; 151 } length; 152 }; 153 154 static int vpa_is_registered(struct kvmppc_vpa *vpap) 155 { 156 if (vpap->update_pending) 157 return vpap->next_gpa != 0; 158 return vpap->pinned_addr != NULL; 159 } 160 161 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 162 unsigned long flags, 163 unsigned long vcpuid, unsigned long vpa) 164 { 165 struct kvm *kvm = vcpu->kvm; 166 unsigned long len, nb; 167 void *va; 168 struct kvm_vcpu *tvcpu; 169 int err; 170 int subfunc; 171 struct kvmppc_vpa *vpap; 172 173 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 174 if (!tvcpu) 175 return H_PARAMETER; 176 177 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 178 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 179 subfunc == H_VPA_REG_SLB) { 180 /* Registering new area - address must be cache-line aligned */ 181 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 182 return H_PARAMETER; 183 184 /* convert logical addr to kernel addr and read length */ 185 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 186 if (va == NULL) 187 return H_PARAMETER; 188 if (subfunc == H_VPA_REG_VPA) 189 len = ((struct reg_vpa *)va)->length.hword; 190 else 191 len = ((struct reg_vpa *)va)->length.word; 192 kvmppc_unpin_guest_page(kvm, va); 193 194 /* Check length */ 195 if (len > nb || len < sizeof(struct reg_vpa)) 196 return H_PARAMETER; 197 } else { 198 vpa = 0; 199 len = 0; 200 } 201 202 err = H_PARAMETER; 203 vpap = NULL; 204 spin_lock(&tvcpu->arch.vpa_update_lock); 205 206 switch (subfunc) { 207 case H_VPA_REG_VPA: /* register VPA */ 208 if (len < sizeof(struct lppaca)) 209 break; 210 vpap = &tvcpu->arch.vpa; 211 err = 0; 212 break; 213 214 case H_VPA_REG_DTL: /* register DTL */ 215 if (len < sizeof(struct dtl_entry)) 216 break; 217 len -= len % sizeof(struct dtl_entry); 218 219 /* Check that they have previously registered a VPA */ 220 err = H_RESOURCE; 221 if (!vpa_is_registered(&tvcpu->arch.vpa)) 222 break; 223 224 vpap = &tvcpu->arch.dtl; 225 err = 0; 226 break; 227 228 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 229 /* Check that they have previously registered a VPA */ 230 err = H_RESOURCE; 231 if (!vpa_is_registered(&tvcpu->arch.vpa)) 232 break; 233 234 vpap = &tvcpu->arch.slb_shadow; 235 err = 0; 236 break; 237 238 case H_VPA_DEREG_VPA: /* deregister VPA */ 239 /* Check they don't still have a DTL or SLB buf registered */ 240 err = H_RESOURCE; 241 if (vpa_is_registered(&tvcpu->arch.dtl) || 242 vpa_is_registered(&tvcpu->arch.slb_shadow)) 243 break; 244 245 vpap = &tvcpu->arch.vpa; 246 err = 0; 247 break; 248 249 case H_VPA_DEREG_DTL: /* deregister DTL */ 250 vpap = &tvcpu->arch.dtl; 251 err = 0; 252 break; 253 254 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 255 vpap = &tvcpu->arch.slb_shadow; 256 err = 0; 257 break; 258 } 259 260 if (vpap) { 261 vpap->next_gpa = vpa; 262 vpap->len = len; 263 vpap->update_pending = 1; 264 } 265 266 spin_unlock(&tvcpu->arch.vpa_update_lock); 267 268 return err; 269 } 270 271 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 272 { 273 struct kvm *kvm = vcpu->kvm; 274 void *va; 275 unsigned long nb; 276 unsigned long gpa; 277 278 /* 279 * We need to pin the page pointed to by vpap->next_gpa, 280 * but we can't call kvmppc_pin_guest_page under the lock 281 * as it does get_user_pages() and down_read(). So we 282 * have to drop the lock, pin the page, then get the lock 283 * again and check that a new area didn't get registered 284 * in the meantime. 285 */ 286 for (;;) { 287 gpa = vpap->next_gpa; 288 spin_unlock(&vcpu->arch.vpa_update_lock); 289 va = NULL; 290 nb = 0; 291 if (gpa) 292 va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb); 293 spin_lock(&vcpu->arch.vpa_update_lock); 294 if (gpa == vpap->next_gpa) 295 break; 296 /* sigh... unpin that one and try again */ 297 if (va) 298 kvmppc_unpin_guest_page(kvm, va); 299 } 300 301 vpap->update_pending = 0; 302 if (va && nb < vpap->len) { 303 /* 304 * If it's now too short, it must be that userspace 305 * has changed the mappings underlying guest memory, 306 * so unregister the region. 307 */ 308 kvmppc_unpin_guest_page(kvm, va); 309 va = NULL; 310 } 311 if (vpap->pinned_addr) 312 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr); 313 vpap->pinned_addr = va; 314 if (va) 315 vpap->pinned_end = va + vpap->len; 316 } 317 318 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 319 { 320 spin_lock(&vcpu->arch.vpa_update_lock); 321 if (vcpu->arch.vpa.update_pending) { 322 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 323 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 324 } 325 if (vcpu->arch.dtl.update_pending) { 326 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 327 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 328 vcpu->arch.dtl_index = 0; 329 } 330 if (vcpu->arch.slb_shadow.update_pending) 331 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 332 spin_unlock(&vcpu->arch.vpa_update_lock); 333 } 334 335 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 336 struct kvmppc_vcore *vc) 337 { 338 struct dtl_entry *dt; 339 struct lppaca *vpa; 340 unsigned long old_stolen; 341 342 dt = vcpu->arch.dtl_ptr; 343 vpa = vcpu->arch.vpa.pinned_addr; 344 old_stolen = vcpu->arch.stolen_logged; 345 vcpu->arch.stolen_logged = vc->stolen_tb; 346 if (!dt || !vpa) 347 return; 348 memset(dt, 0, sizeof(struct dtl_entry)); 349 dt->dispatch_reason = 7; 350 dt->processor_id = vc->pcpu + vcpu->arch.ptid; 351 dt->timebase = mftb(); 352 dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen; 353 dt->srr0 = kvmppc_get_pc(vcpu); 354 dt->srr1 = vcpu->arch.shregs.msr; 355 ++dt; 356 if (dt == vcpu->arch.dtl.pinned_end) 357 dt = vcpu->arch.dtl.pinned_addr; 358 vcpu->arch.dtl_ptr = dt; 359 /* order writing *dt vs. writing vpa->dtl_idx */ 360 smp_wmb(); 361 vpa->dtl_idx = ++vcpu->arch.dtl_index; 362 } 363 364 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 365 { 366 unsigned long req = kvmppc_get_gpr(vcpu, 3); 367 unsigned long target, ret = H_SUCCESS; 368 struct kvm_vcpu *tvcpu; 369 370 switch (req) { 371 case H_ENTER: 372 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 373 kvmppc_get_gpr(vcpu, 5), 374 kvmppc_get_gpr(vcpu, 6), 375 kvmppc_get_gpr(vcpu, 7)); 376 break; 377 case H_CEDE: 378 break; 379 case H_PROD: 380 target = kvmppc_get_gpr(vcpu, 4); 381 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 382 if (!tvcpu) { 383 ret = H_PARAMETER; 384 break; 385 } 386 tvcpu->arch.prodded = 1; 387 smp_mb(); 388 if (vcpu->arch.ceded) { 389 if (waitqueue_active(&vcpu->wq)) { 390 wake_up_interruptible(&vcpu->wq); 391 vcpu->stat.halt_wakeup++; 392 } 393 } 394 break; 395 case H_CONFER: 396 break; 397 case H_REGISTER_VPA: 398 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 399 kvmppc_get_gpr(vcpu, 5), 400 kvmppc_get_gpr(vcpu, 6)); 401 break; 402 default: 403 return RESUME_HOST; 404 } 405 kvmppc_set_gpr(vcpu, 3, ret); 406 vcpu->arch.hcall_needed = 0; 407 return RESUME_GUEST; 408 } 409 410 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu, 411 struct task_struct *tsk) 412 { 413 int r = RESUME_HOST; 414 415 vcpu->stat.sum_exits++; 416 417 run->exit_reason = KVM_EXIT_UNKNOWN; 418 run->ready_for_interrupt_injection = 1; 419 switch (vcpu->arch.trap) { 420 /* We're good on these - the host merely wanted to get our attention */ 421 case BOOK3S_INTERRUPT_HV_DECREMENTER: 422 vcpu->stat.dec_exits++; 423 r = RESUME_GUEST; 424 break; 425 case BOOK3S_INTERRUPT_EXTERNAL: 426 vcpu->stat.ext_intr_exits++; 427 r = RESUME_GUEST; 428 break; 429 case BOOK3S_INTERRUPT_PERFMON: 430 r = RESUME_GUEST; 431 break; 432 case BOOK3S_INTERRUPT_PROGRAM: 433 { 434 ulong flags; 435 /* 436 * Normally program interrupts are delivered directly 437 * to the guest by the hardware, but we can get here 438 * as a result of a hypervisor emulation interrupt 439 * (e40) getting turned into a 700 by BML RTAS. 440 */ 441 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 442 kvmppc_core_queue_program(vcpu, flags); 443 r = RESUME_GUEST; 444 break; 445 } 446 case BOOK3S_INTERRUPT_SYSCALL: 447 { 448 /* hcall - punt to userspace */ 449 int i; 450 451 if (vcpu->arch.shregs.msr & MSR_PR) { 452 /* sc 1 from userspace - reflect to guest syscall */ 453 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL); 454 r = RESUME_GUEST; 455 break; 456 } 457 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 458 for (i = 0; i < 9; ++i) 459 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 460 run->exit_reason = KVM_EXIT_PAPR_HCALL; 461 vcpu->arch.hcall_needed = 1; 462 r = RESUME_HOST; 463 break; 464 } 465 /* 466 * We get these next two if the guest accesses a page which it thinks 467 * it has mapped but which is not actually present, either because 468 * it is for an emulated I/O device or because the corresonding 469 * host page has been paged out. Any other HDSI/HISI interrupts 470 * have been handled already. 471 */ 472 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 473 r = kvmppc_book3s_hv_page_fault(run, vcpu, 474 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 475 break; 476 case BOOK3S_INTERRUPT_H_INST_STORAGE: 477 r = kvmppc_book3s_hv_page_fault(run, vcpu, 478 kvmppc_get_pc(vcpu), 0); 479 break; 480 /* 481 * This occurs if the guest executes an illegal instruction. 482 * We just generate a program interrupt to the guest, since 483 * we don't emulate any guest instructions at this stage. 484 */ 485 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 486 kvmppc_core_queue_program(vcpu, 0x80000); 487 r = RESUME_GUEST; 488 break; 489 default: 490 kvmppc_dump_regs(vcpu); 491 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 492 vcpu->arch.trap, kvmppc_get_pc(vcpu), 493 vcpu->arch.shregs.msr); 494 r = RESUME_HOST; 495 BUG(); 496 break; 497 } 498 499 return r; 500 } 501 502 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 503 struct kvm_sregs *sregs) 504 { 505 int i; 506 507 sregs->pvr = vcpu->arch.pvr; 508 509 memset(sregs, 0, sizeof(struct kvm_sregs)); 510 for (i = 0; i < vcpu->arch.slb_max; i++) { 511 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 512 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 513 } 514 515 return 0; 516 } 517 518 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 519 struct kvm_sregs *sregs) 520 { 521 int i, j; 522 523 kvmppc_set_pvr(vcpu, sregs->pvr); 524 525 j = 0; 526 for (i = 0; i < vcpu->arch.slb_nr; i++) { 527 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 528 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 529 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 530 ++j; 531 } 532 } 533 vcpu->arch.slb_max = j; 534 535 return 0; 536 } 537 538 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 539 { 540 int r = -EINVAL; 541 542 switch (reg->id) { 543 case KVM_REG_PPC_HIOR: 544 r = put_user(0, (u64 __user *)reg->addr); 545 break; 546 default: 547 break; 548 } 549 550 return r; 551 } 552 553 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg) 554 { 555 int r = -EINVAL; 556 557 switch (reg->id) { 558 case KVM_REG_PPC_HIOR: 559 { 560 u64 hior; 561 /* Only allow this to be set to zero */ 562 r = get_user(hior, (u64 __user *)reg->addr); 563 if (!r && (hior != 0)) 564 r = -EINVAL; 565 break; 566 } 567 default: 568 break; 569 } 570 571 return r; 572 } 573 574 int kvmppc_core_check_processor_compat(void) 575 { 576 if (cpu_has_feature(CPU_FTR_HVMODE)) 577 return 0; 578 return -EIO; 579 } 580 581 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id) 582 { 583 struct kvm_vcpu *vcpu; 584 int err = -EINVAL; 585 int core; 586 struct kvmppc_vcore *vcore; 587 588 core = id / threads_per_core; 589 if (core >= KVM_MAX_VCORES) 590 goto out; 591 592 err = -ENOMEM; 593 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 594 if (!vcpu) 595 goto out; 596 597 err = kvm_vcpu_init(vcpu, kvm, id); 598 if (err) 599 goto free_vcpu; 600 601 vcpu->arch.shared = &vcpu->arch.shregs; 602 vcpu->arch.last_cpu = -1; 603 vcpu->arch.mmcr[0] = MMCR0_FC; 604 vcpu->arch.ctrl = CTRL_RUNLATCH; 605 /* default to host PVR, since we can't spoof it */ 606 vcpu->arch.pvr = mfspr(SPRN_PVR); 607 kvmppc_set_pvr(vcpu, vcpu->arch.pvr); 608 spin_lock_init(&vcpu->arch.vpa_update_lock); 609 610 kvmppc_mmu_book3s_hv_init(vcpu); 611 612 /* 613 * We consider the vcpu stopped until we see the first run ioctl for it. 614 */ 615 vcpu->arch.state = KVMPPC_VCPU_STOPPED; 616 617 init_waitqueue_head(&vcpu->arch.cpu_run); 618 619 mutex_lock(&kvm->lock); 620 vcore = kvm->arch.vcores[core]; 621 if (!vcore) { 622 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 623 if (vcore) { 624 INIT_LIST_HEAD(&vcore->runnable_threads); 625 spin_lock_init(&vcore->lock); 626 init_waitqueue_head(&vcore->wq); 627 vcore->preempt_tb = mftb(); 628 } 629 kvm->arch.vcores[core] = vcore; 630 } 631 mutex_unlock(&kvm->lock); 632 633 if (!vcore) 634 goto free_vcpu; 635 636 spin_lock(&vcore->lock); 637 ++vcore->num_threads; 638 spin_unlock(&vcore->lock); 639 vcpu->arch.vcore = vcore; 640 vcpu->arch.stolen_logged = vcore->stolen_tb; 641 642 vcpu->arch.cpu_type = KVM_CPU_3S_64; 643 kvmppc_sanity_check(vcpu); 644 645 return vcpu; 646 647 free_vcpu: 648 kmem_cache_free(kvm_vcpu_cache, vcpu); 649 out: 650 return ERR_PTR(err); 651 } 652 653 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu) 654 { 655 spin_lock(&vcpu->arch.vpa_update_lock); 656 if (vcpu->arch.dtl.pinned_addr) 657 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr); 658 if (vcpu->arch.slb_shadow.pinned_addr) 659 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr); 660 if (vcpu->arch.vpa.pinned_addr) 661 kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr); 662 spin_unlock(&vcpu->arch.vpa_update_lock); 663 kvm_vcpu_uninit(vcpu); 664 kmem_cache_free(kvm_vcpu_cache, vcpu); 665 } 666 667 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 668 { 669 unsigned long dec_nsec, now; 670 671 now = get_tb(); 672 if (now > vcpu->arch.dec_expires) { 673 /* decrementer has already gone negative */ 674 kvmppc_core_queue_dec(vcpu); 675 kvmppc_core_prepare_to_enter(vcpu); 676 return; 677 } 678 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 679 / tb_ticks_per_sec; 680 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 681 HRTIMER_MODE_REL); 682 vcpu->arch.timer_running = 1; 683 } 684 685 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 686 { 687 vcpu->arch.ceded = 0; 688 if (vcpu->arch.timer_running) { 689 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 690 vcpu->arch.timer_running = 0; 691 } 692 } 693 694 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu); 695 extern void xics_wake_cpu(int cpu); 696 697 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 698 struct kvm_vcpu *vcpu) 699 { 700 struct kvm_vcpu *v; 701 702 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 703 return; 704 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 705 --vc->n_runnable; 706 ++vc->n_busy; 707 /* decrement the physical thread id of each following vcpu */ 708 v = vcpu; 709 list_for_each_entry_continue(v, &vc->runnable_threads, arch.run_list) 710 --v->arch.ptid; 711 list_del(&vcpu->arch.run_list); 712 } 713 714 static int kvmppc_grab_hwthread(int cpu) 715 { 716 struct paca_struct *tpaca; 717 long timeout = 1000; 718 719 tpaca = &paca[cpu]; 720 721 /* Ensure the thread won't go into the kernel if it wakes */ 722 tpaca->kvm_hstate.hwthread_req = 1; 723 724 /* 725 * If the thread is already executing in the kernel (e.g. handling 726 * a stray interrupt), wait for it to get back to nap mode. 727 * The smp_mb() is to ensure that our setting of hwthread_req 728 * is visible before we look at hwthread_state, so if this 729 * races with the code at system_reset_pSeries and the thread 730 * misses our setting of hwthread_req, we are sure to see its 731 * setting of hwthread_state, and vice versa. 732 */ 733 smp_mb(); 734 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 735 if (--timeout <= 0) { 736 pr_err("KVM: couldn't grab cpu %d\n", cpu); 737 return -EBUSY; 738 } 739 udelay(1); 740 } 741 return 0; 742 } 743 744 static void kvmppc_release_hwthread(int cpu) 745 { 746 struct paca_struct *tpaca; 747 748 tpaca = &paca[cpu]; 749 tpaca->kvm_hstate.hwthread_req = 0; 750 tpaca->kvm_hstate.kvm_vcpu = NULL; 751 } 752 753 static void kvmppc_start_thread(struct kvm_vcpu *vcpu) 754 { 755 int cpu; 756 struct paca_struct *tpaca; 757 struct kvmppc_vcore *vc = vcpu->arch.vcore; 758 759 if (vcpu->arch.timer_running) { 760 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 761 vcpu->arch.timer_running = 0; 762 } 763 cpu = vc->pcpu + vcpu->arch.ptid; 764 tpaca = &paca[cpu]; 765 tpaca->kvm_hstate.kvm_vcpu = vcpu; 766 tpaca->kvm_hstate.kvm_vcore = vc; 767 tpaca->kvm_hstate.napping = 0; 768 vcpu->cpu = vc->pcpu; 769 smp_wmb(); 770 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 771 if (vcpu->arch.ptid) { 772 kvmppc_grab_hwthread(cpu); 773 xics_wake_cpu(cpu); 774 ++vc->n_woken; 775 } 776 #endif 777 } 778 779 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) 780 { 781 int i; 782 783 HMT_low(); 784 i = 0; 785 while (vc->nap_count < vc->n_woken) { 786 if (++i >= 1000000) { 787 pr_err("kvmppc_wait_for_nap timeout %d %d\n", 788 vc->nap_count, vc->n_woken); 789 break; 790 } 791 cpu_relax(); 792 } 793 HMT_medium(); 794 } 795 796 /* 797 * Check that we are on thread 0 and that any other threads in 798 * this core are off-line. 799 */ 800 static int on_primary_thread(void) 801 { 802 int cpu = smp_processor_id(); 803 int thr = cpu_thread_in_core(cpu); 804 805 if (thr) 806 return 0; 807 while (++thr < threads_per_core) 808 if (cpu_online(cpu + thr)) 809 return 0; 810 return 1; 811 } 812 813 /* 814 * Run a set of guest threads on a physical core. 815 * Called with vc->lock held. 816 */ 817 static int kvmppc_run_core(struct kvmppc_vcore *vc) 818 { 819 struct kvm_vcpu *vcpu, *vcpu0, *vnext; 820 long ret; 821 u64 now; 822 int ptid, i, need_vpa_update; 823 824 /* don't start if any threads have a signal pending */ 825 need_vpa_update = 0; 826 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 827 if (signal_pending(vcpu->arch.run_task)) 828 return 0; 829 need_vpa_update |= vcpu->arch.vpa.update_pending | 830 vcpu->arch.slb_shadow.update_pending | 831 vcpu->arch.dtl.update_pending; 832 } 833 834 /* 835 * Initialize *vc, in particular vc->vcore_state, so we can 836 * drop the vcore lock if necessary. 837 */ 838 vc->n_woken = 0; 839 vc->nap_count = 0; 840 vc->entry_exit_count = 0; 841 vc->vcore_state = VCORE_RUNNING; 842 vc->in_guest = 0; 843 vc->napping_threads = 0; 844 845 /* 846 * Updating any of the vpas requires calling kvmppc_pin_guest_page, 847 * which can't be called with any spinlocks held. 848 */ 849 if (need_vpa_update) { 850 spin_unlock(&vc->lock); 851 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 852 kvmppc_update_vpas(vcpu); 853 spin_lock(&vc->lock); 854 } 855 856 /* 857 * Make sure we are running on thread 0, and that 858 * secondary threads are offline. 859 * XXX we should also block attempts to bring any 860 * secondary threads online. 861 */ 862 if (threads_per_core > 1 && !on_primary_thread()) { 863 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 864 vcpu->arch.ret = -EBUSY; 865 goto out; 866 } 867 868 /* 869 * Assign physical thread IDs, first to non-ceded vcpus 870 * and then to ceded ones. 871 */ 872 ptid = 0; 873 vcpu0 = NULL; 874 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 875 if (!vcpu->arch.ceded) { 876 if (!ptid) 877 vcpu0 = vcpu; 878 vcpu->arch.ptid = ptid++; 879 } 880 } 881 if (!vcpu0) 882 return 0; /* nothing to run */ 883 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 884 if (vcpu->arch.ceded) 885 vcpu->arch.ptid = ptid++; 886 887 vc->stolen_tb += mftb() - vc->preempt_tb; 888 vc->pcpu = smp_processor_id(); 889 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 890 kvmppc_start_thread(vcpu); 891 kvmppc_create_dtl_entry(vcpu, vc); 892 } 893 /* Grab any remaining hw threads so they can't go into the kernel */ 894 for (i = ptid; i < threads_per_core; ++i) 895 kvmppc_grab_hwthread(vc->pcpu + i); 896 897 preempt_disable(); 898 spin_unlock(&vc->lock); 899 900 kvm_guest_enter(); 901 __kvmppc_vcore_entry(NULL, vcpu0); 902 for (i = 0; i < threads_per_core; ++i) 903 kvmppc_release_hwthread(vc->pcpu + i); 904 905 spin_lock(&vc->lock); 906 /* disable sending of IPIs on virtual external irqs */ 907 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 908 vcpu->cpu = -1; 909 /* wait for secondary threads to finish writing their state to memory */ 910 if (vc->nap_count < vc->n_woken) 911 kvmppc_wait_for_nap(vc); 912 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 913 vc->vcore_state = VCORE_EXITING; 914 spin_unlock(&vc->lock); 915 916 /* make sure updates to secondary vcpu structs are visible now */ 917 smp_mb(); 918 kvm_guest_exit(); 919 920 preempt_enable(); 921 kvm_resched(vcpu); 922 923 now = get_tb(); 924 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 925 /* cancel pending dec exception if dec is positive */ 926 if (now < vcpu->arch.dec_expires && 927 kvmppc_core_pending_dec(vcpu)) 928 kvmppc_core_dequeue_dec(vcpu); 929 930 ret = RESUME_GUEST; 931 if (vcpu->arch.trap) 932 ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu, 933 vcpu->arch.run_task); 934 935 vcpu->arch.ret = ret; 936 vcpu->arch.trap = 0; 937 938 if (vcpu->arch.ceded) { 939 if (ret != RESUME_GUEST) 940 kvmppc_end_cede(vcpu); 941 else 942 kvmppc_set_timer(vcpu); 943 } 944 } 945 946 spin_lock(&vc->lock); 947 out: 948 vc->vcore_state = VCORE_INACTIVE; 949 vc->preempt_tb = mftb(); 950 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 951 arch.run_list) { 952 if (vcpu->arch.ret != RESUME_GUEST) { 953 kvmppc_remove_runnable(vc, vcpu); 954 wake_up(&vcpu->arch.cpu_run); 955 } 956 } 957 958 return 1; 959 } 960 961 /* 962 * Wait for some other vcpu thread to execute us, and 963 * wake us up when we need to handle something in the host. 964 */ 965 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) 966 { 967 DEFINE_WAIT(wait); 968 969 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 970 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) 971 schedule(); 972 finish_wait(&vcpu->arch.cpu_run, &wait); 973 } 974 975 /* 976 * All the vcpus in this vcore are idle, so wait for a decrementer 977 * or external interrupt to one of the vcpus. vc->lock is held. 978 */ 979 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 980 { 981 DEFINE_WAIT(wait); 982 struct kvm_vcpu *v; 983 int all_idle = 1; 984 985 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 986 vc->vcore_state = VCORE_SLEEPING; 987 spin_unlock(&vc->lock); 988 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 989 if (!v->arch.ceded || v->arch.pending_exceptions) { 990 all_idle = 0; 991 break; 992 } 993 } 994 if (all_idle) 995 schedule(); 996 finish_wait(&vc->wq, &wait); 997 spin_lock(&vc->lock); 998 vc->vcore_state = VCORE_INACTIVE; 999 } 1000 1001 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 1002 { 1003 int n_ceded; 1004 int prev_state; 1005 struct kvmppc_vcore *vc; 1006 struct kvm_vcpu *v, *vn; 1007 1008 kvm_run->exit_reason = 0; 1009 vcpu->arch.ret = RESUME_GUEST; 1010 vcpu->arch.trap = 0; 1011 1012 /* 1013 * Synchronize with other threads in this virtual core 1014 */ 1015 vc = vcpu->arch.vcore; 1016 spin_lock(&vc->lock); 1017 vcpu->arch.ceded = 0; 1018 vcpu->arch.run_task = current; 1019 vcpu->arch.kvm_run = kvm_run; 1020 prev_state = vcpu->arch.state; 1021 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 1022 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 1023 ++vc->n_runnable; 1024 1025 /* 1026 * This happens the first time this is called for a vcpu. 1027 * If the vcore is already running, we may be able to start 1028 * this thread straight away and have it join in. 1029 */ 1030 if (prev_state == KVMPPC_VCPU_STOPPED) { 1031 if (vc->vcore_state == VCORE_RUNNING && 1032 VCORE_EXIT_COUNT(vc) == 0) { 1033 vcpu->arch.ptid = vc->n_runnable - 1; 1034 kvmppc_start_thread(vcpu); 1035 } 1036 1037 } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST) 1038 --vc->n_busy; 1039 1040 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 1041 !signal_pending(current)) { 1042 if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) { 1043 spin_unlock(&vc->lock); 1044 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); 1045 spin_lock(&vc->lock); 1046 continue; 1047 } 1048 vc->runner = vcpu; 1049 n_ceded = 0; 1050 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) 1051 n_ceded += v->arch.ceded; 1052 if (n_ceded == vc->n_runnable) 1053 kvmppc_vcore_blocked(vc); 1054 else 1055 kvmppc_run_core(vc); 1056 1057 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 1058 arch.run_list) { 1059 kvmppc_core_prepare_to_enter(v); 1060 if (signal_pending(v->arch.run_task)) { 1061 kvmppc_remove_runnable(vc, v); 1062 v->stat.signal_exits++; 1063 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 1064 v->arch.ret = -EINTR; 1065 wake_up(&v->arch.cpu_run); 1066 } 1067 } 1068 vc->runner = NULL; 1069 } 1070 1071 if (signal_pending(current)) { 1072 if (vc->vcore_state == VCORE_RUNNING || 1073 vc->vcore_state == VCORE_EXITING) { 1074 spin_unlock(&vc->lock); 1075 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); 1076 spin_lock(&vc->lock); 1077 } 1078 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 1079 kvmppc_remove_runnable(vc, vcpu); 1080 vcpu->stat.signal_exits++; 1081 kvm_run->exit_reason = KVM_EXIT_INTR; 1082 vcpu->arch.ret = -EINTR; 1083 } 1084 } 1085 1086 spin_unlock(&vc->lock); 1087 return vcpu->arch.ret; 1088 } 1089 1090 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu) 1091 { 1092 int r; 1093 1094 if (!vcpu->arch.sane) { 1095 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1096 return -EINVAL; 1097 } 1098 1099 kvmppc_core_prepare_to_enter(vcpu); 1100 1101 /* No need to go into the guest when all we'll do is come back out */ 1102 if (signal_pending(current)) { 1103 run->exit_reason = KVM_EXIT_INTR; 1104 return -EINTR; 1105 } 1106 1107 atomic_inc(&vcpu->kvm->arch.vcpus_running); 1108 /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */ 1109 smp_mb(); 1110 1111 /* On the first time here, set up HTAB and VRMA or RMA */ 1112 if (!vcpu->kvm->arch.rma_setup_done) { 1113 r = kvmppc_hv_setup_htab_rma(vcpu); 1114 if (r) 1115 goto out; 1116 } 1117 1118 flush_fp_to_thread(current); 1119 flush_altivec_to_thread(current); 1120 flush_vsx_to_thread(current); 1121 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 1122 vcpu->arch.pgdir = current->mm->pgd; 1123 1124 do { 1125 r = kvmppc_run_vcpu(run, vcpu); 1126 1127 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 1128 !(vcpu->arch.shregs.msr & MSR_PR)) { 1129 r = kvmppc_pseries_do_hcall(vcpu); 1130 kvmppc_core_prepare_to_enter(vcpu); 1131 } 1132 } while (r == RESUME_GUEST); 1133 1134 out: 1135 atomic_dec(&vcpu->kvm->arch.vcpus_running); 1136 return r; 1137 } 1138 1139 1140 /* Work out RMLS (real mode limit selector) field value for a given RMA size. 1141 Assumes POWER7 or PPC970. */ 1142 static inline int lpcr_rmls(unsigned long rma_size) 1143 { 1144 switch (rma_size) { 1145 case 32ul << 20: /* 32 MB */ 1146 if (cpu_has_feature(CPU_FTR_ARCH_206)) 1147 return 8; /* only supported on POWER7 */ 1148 return -1; 1149 case 64ul << 20: /* 64 MB */ 1150 return 3; 1151 case 128ul << 20: /* 128 MB */ 1152 return 7; 1153 case 256ul << 20: /* 256 MB */ 1154 return 4; 1155 case 1ul << 30: /* 1 GB */ 1156 return 2; 1157 case 16ul << 30: /* 16 GB */ 1158 return 1; 1159 case 256ul << 30: /* 256 GB */ 1160 return 0; 1161 default: 1162 return -1; 1163 } 1164 } 1165 1166 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1167 { 1168 struct kvmppc_linear_info *ri = vma->vm_file->private_data; 1169 struct page *page; 1170 1171 if (vmf->pgoff >= ri->npages) 1172 return VM_FAULT_SIGBUS; 1173 1174 page = pfn_to_page(ri->base_pfn + vmf->pgoff); 1175 get_page(page); 1176 vmf->page = page; 1177 return 0; 1178 } 1179 1180 static const struct vm_operations_struct kvm_rma_vm_ops = { 1181 .fault = kvm_rma_fault, 1182 }; 1183 1184 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) 1185 { 1186 vma->vm_flags |= VM_RESERVED; 1187 vma->vm_ops = &kvm_rma_vm_ops; 1188 return 0; 1189 } 1190 1191 static int kvm_rma_release(struct inode *inode, struct file *filp) 1192 { 1193 struct kvmppc_linear_info *ri = filp->private_data; 1194 1195 kvm_release_rma(ri); 1196 return 0; 1197 } 1198 1199 static struct file_operations kvm_rma_fops = { 1200 .mmap = kvm_rma_mmap, 1201 .release = kvm_rma_release, 1202 }; 1203 1204 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret) 1205 { 1206 struct kvmppc_linear_info *ri; 1207 long fd; 1208 1209 ri = kvm_alloc_rma(); 1210 if (!ri) 1211 return -ENOMEM; 1212 1213 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR); 1214 if (fd < 0) 1215 kvm_release_rma(ri); 1216 1217 ret->rma_size = ri->npages << PAGE_SHIFT; 1218 return fd; 1219 } 1220 1221 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 1222 int linux_psize) 1223 { 1224 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 1225 1226 if (!def->shift) 1227 return; 1228 (*sps)->page_shift = def->shift; 1229 (*sps)->slb_enc = def->sllp; 1230 (*sps)->enc[0].page_shift = def->shift; 1231 (*sps)->enc[0].pte_enc = def->penc; 1232 (*sps)++; 1233 } 1234 1235 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info) 1236 { 1237 struct kvm_ppc_one_seg_page_size *sps; 1238 1239 info->flags = KVM_PPC_PAGE_SIZES_REAL; 1240 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1241 info->flags |= KVM_PPC_1T_SEGMENTS; 1242 info->slb_size = mmu_slb_size; 1243 1244 /* We only support these sizes for now, and no muti-size segments */ 1245 sps = &info->sps[0]; 1246 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 1247 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 1248 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 1249 1250 return 0; 1251 } 1252 1253 /* 1254 * Get (and clear) the dirty memory log for a memory slot. 1255 */ 1256 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 1257 { 1258 struct kvm_memory_slot *memslot; 1259 int r; 1260 unsigned long n; 1261 1262 mutex_lock(&kvm->slots_lock); 1263 1264 r = -EINVAL; 1265 if (log->slot >= KVM_MEMORY_SLOTS) 1266 goto out; 1267 1268 memslot = id_to_memslot(kvm->memslots, log->slot); 1269 r = -ENOENT; 1270 if (!memslot->dirty_bitmap) 1271 goto out; 1272 1273 n = kvm_dirty_bitmap_bytes(memslot); 1274 memset(memslot->dirty_bitmap, 0, n); 1275 1276 r = kvmppc_hv_get_dirty_log(kvm, memslot); 1277 if (r) 1278 goto out; 1279 1280 r = -EFAULT; 1281 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1282 goto out; 1283 1284 r = 0; 1285 out: 1286 mutex_unlock(&kvm->slots_lock); 1287 return r; 1288 } 1289 1290 static unsigned long slb_pgsize_encoding(unsigned long psize) 1291 { 1292 unsigned long senc = 0; 1293 1294 if (psize > 0x1000) { 1295 senc = SLB_VSID_L; 1296 if (psize == 0x10000) 1297 senc |= SLB_VSID_LP_01; 1298 } 1299 return senc; 1300 } 1301 1302 int kvmppc_core_prepare_memory_region(struct kvm *kvm, 1303 struct kvm_userspace_memory_region *mem) 1304 { 1305 unsigned long npages; 1306 unsigned long *phys; 1307 1308 /* Allocate a slot_phys array */ 1309 phys = kvm->arch.slot_phys[mem->slot]; 1310 if (!kvm->arch.using_mmu_notifiers && !phys) { 1311 npages = mem->memory_size >> PAGE_SHIFT; 1312 phys = vzalloc(npages * sizeof(unsigned long)); 1313 if (!phys) 1314 return -ENOMEM; 1315 kvm->arch.slot_phys[mem->slot] = phys; 1316 kvm->arch.slot_npages[mem->slot] = npages; 1317 } 1318 1319 return 0; 1320 } 1321 1322 static void unpin_slot(struct kvm *kvm, int slot_id) 1323 { 1324 unsigned long *physp; 1325 unsigned long j, npages, pfn; 1326 struct page *page; 1327 1328 physp = kvm->arch.slot_phys[slot_id]; 1329 npages = kvm->arch.slot_npages[slot_id]; 1330 if (physp) { 1331 spin_lock(&kvm->arch.slot_phys_lock); 1332 for (j = 0; j < npages; j++) { 1333 if (!(physp[j] & KVMPPC_GOT_PAGE)) 1334 continue; 1335 pfn = physp[j] >> PAGE_SHIFT; 1336 page = pfn_to_page(pfn); 1337 SetPageDirty(page); 1338 put_page(page); 1339 } 1340 kvm->arch.slot_phys[slot_id] = NULL; 1341 spin_unlock(&kvm->arch.slot_phys_lock); 1342 vfree(physp); 1343 } 1344 } 1345 1346 void kvmppc_core_commit_memory_region(struct kvm *kvm, 1347 struct kvm_userspace_memory_region *mem) 1348 { 1349 } 1350 1351 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 1352 { 1353 int err = 0; 1354 struct kvm *kvm = vcpu->kvm; 1355 struct kvmppc_linear_info *ri = NULL; 1356 unsigned long hva; 1357 struct kvm_memory_slot *memslot; 1358 struct vm_area_struct *vma; 1359 unsigned long lpcr, senc; 1360 unsigned long psize, porder; 1361 unsigned long rma_size; 1362 unsigned long rmls; 1363 unsigned long *physp; 1364 unsigned long i, npages; 1365 1366 mutex_lock(&kvm->lock); 1367 if (kvm->arch.rma_setup_done) 1368 goto out; /* another vcpu beat us to it */ 1369 1370 /* Allocate hashed page table (if not done already) and reset it */ 1371 if (!kvm->arch.hpt_virt) { 1372 err = kvmppc_alloc_hpt(kvm, NULL); 1373 if (err) { 1374 pr_err("KVM: Couldn't alloc HPT\n"); 1375 goto out; 1376 } 1377 } 1378 1379 /* Look up the memslot for guest physical address 0 */ 1380 memslot = gfn_to_memslot(kvm, 0); 1381 1382 /* We must have some memory at 0 by now */ 1383 err = -EINVAL; 1384 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1385 goto out; 1386 1387 /* Look up the VMA for the start of this memory slot */ 1388 hva = memslot->userspace_addr; 1389 down_read(¤t->mm->mmap_sem); 1390 vma = find_vma(current->mm, hva); 1391 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 1392 goto up_out; 1393 1394 psize = vma_kernel_pagesize(vma); 1395 porder = __ilog2(psize); 1396 1397 /* Is this one of our preallocated RMAs? */ 1398 if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops && 1399 hva == vma->vm_start) 1400 ri = vma->vm_file->private_data; 1401 1402 up_read(¤t->mm->mmap_sem); 1403 1404 if (!ri) { 1405 /* On POWER7, use VRMA; on PPC970, give up */ 1406 err = -EPERM; 1407 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1408 pr_err("KVM: CPU requires an RMO\n"); 1409 goto out; 1410 } 1411 1412 /* We can handle 4k, 64k or 16M pages in the VRMA */ 1413 err = -EINVAL; 1414 if (!(psize == 0x1000 || psize == 0x10000 || 1415 psize == 0x1000000)) 1416 goto out; 1417 1418 /* Update VRMASD field in the LPCR */ 1419 senc = slb_pgsize_encoding(psize); 1420 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1421 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1422 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD; 1423 lpcr |= senc << (LPCR_VRMASD_SH - 4); 1424 kvm->arch.lpcr = lpcr; 1425 1426 /* Create HPTEs in the hash page table for the VRMA */ 1427 kvmppc_map_vrma(vcpu, memslot, porder); 1428 1429 } else { 1430 /* Set up to use an RMO region */ 1431 rma_size = ri->npages; 1432 if (rma_size > memslot->npages) 1433 rma_size = memslot->npages; 1434 rma_size <<= PAGE_SHIFT; 1435 rmls = lpcr_rmls(rma_size); 1436 err = -EINVAL; 1437 if (rmls < 0) { 1438 pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size); 1439 goto out; 1440 } 1441 atomic_inc(&ri->use_count); 1442 kvm->arch.rma = ri; 1443 1444 /* Update LPCR and RMOR */ 1445 lpcr = kvm->arch.lpcr; 1446 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1447 /* PPC970; insert RMLS value (split field) in HID4 */ 1448 lpcr &= ~((1ul << HID4_RMLS0_SH) | 1449 (3ul << HID4_RMLS2_SH)); 1450 lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) | 1451 ((rmls & 3) << HID4_RMLS2_SH); 1452 /* RMOR is also in HID4 */ 1453 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) 1454 << HID4_RMOR_SH; 1455 } else { 1456 /* POWER7 */ 1457 lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L); 1458 lpcr |= rmls << LPCR_RMLS_SH; 1459 kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT; 1460 } 1461 kvm->arch.lpcr = lpcr; 1462 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n", 1463 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); 1464 1465 /* Initialize phys addrs of pages in RMO */ 1466 npages = ri->npages; 1467 porder = __ilog2(npages); 1468 physp = kvm->arch.slot_phys[memslot->id]; 1469 spin_lock(&kvm->arch.slot_phys_lock); 1470 for (i = 0; i < npages; ++i) 1471 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + porder; 1472 spin_unlock(&kvm->arch.slot_phys_lock); 1473 } 1474 1475 /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */ 1476 smp_wmb(); 1477 kvm->arch.rma_setup_done = 1; 1478 err = 0; 1479 out: 1480 mutex_unlock(&kvm->lock); 1481 return err; 1482 1483 up_out: 1484 up_read(¤t->mm->mmap_sem); 1485 goto out; 1486 } 1487 1488 int kvmppc_core_init_vm(struct kvm *kvm) 1489 { 1490 unsigned long lpcr, lpid; 1491 1492 /* Allocate the guest's logical partition ID */ 1493 1494 lpid = kvmppc_alloc_lpid(); 1495 if (lpid < 0) 1496 return -ENOMEM; 1497 kvm->arch.lpid = lpid; 1498 1499 INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables); 1500 1501 kvm->arch.rma = NULL; 1502 1503 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 1504 1505 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1506 /* PPC970; HID4 is effectively the LPCR */ 1507 kvm->arch.host_lpid = 0; 1508 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); 1509 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); 1510 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | 1511 ((lpid & 0xf) << HID4_LPID5_SH); 1512 } else { 1513 /* POWER7; init LPCR for virtual RMA mode */ 1514 kvm->arch.host_lpid = mfspr(SPRN_LPID); 1515 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 1516 lpcr &= LPCR_PECE | LPCR_LPES; 1517 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 1518 LPCR_VPM0 | LPCR_VPM1; 1519 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 1520 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1521 } 1522 kvm->arch.lpcr = lpcr; 1523 1524 kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206); 1525 spin_lock_init(&kvm->arch.slot_phys_lock); 1526 return 0; 1527 } 1528 1529 void kvmppc_core_destroy_vm(struct kvm *kvm) 1530 { 1531 unsigned long i; 1532 1533 if (!kvm->arch.using_mmu_notifiers) 1534 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 1535 unpin_slot(kvm, i); 1536 1537 if (kvm->arch.rma) { 1538 kvm_release_rma(kvm->arch.rma); 1539 kvm->arch.rma = NULL; 1540 } 1541 1542 kvmppc_free_hpt(kvm); 1543 WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); 1544 } 1545 1546 /* These are stubs for now */ 1547 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end) 1548 { 1549 } 1550 1551 /* We don't need to emulate any privileged instructions or dcbz */ 1552 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu, 1553 unsigned int inst, int *advance) 1554 { 1555 return EMULATE_FAIL; 1556 } 1557 1558 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val) 1559 { 1560 return EMULATE_FAIL; 1561 } 1562 1563 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val) 1564 { 1565 return EMULATE_FAIL; 1566 } 1567 1568 static int kvmppc_book3s_hv_init(void) 1569 { 1570 int r; 1571 1572 r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 1573 1574 if (r) 1575 return r; 1576 1577 r = kvmppc_mmu_hv_init(); 1578 1579 return r; 1580 } 1581 1582 static void kvmppc_book3s_hv_exit(void) 1583 { 1584 kvm_exit(); 1585 } 1586 1587 module_init(kvmppc_book3s_hv_init); 1588 module_exit(kvmppc_book3s_hv_exit); 1589