1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/kernel.h> 23 #include <linux/err.h> 24 #include <linux/slab.h> 25 #include <linux/preempt.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sched/stat.h> 28 #include <linux/delay.h> 29 #include <linux/export.h> 30 #include <linux/fs.h> 31 #include <linux/anon_inodes.h> 32 #include <linux/cpu.h> 33 #include <linux/cpumask.h> 34 #include <linux/spinlock.h> 35 #include <linux/page-flags.h> 36 #include <linux/srcu.h> 37 #include <linux/miscdevice.h> 38 #include <linux/debugfs.h> 39 #include <linux/gfp.h> 40 #include <linux/vmalloc.h> 41 #include <linux/highmem.h> 42 #include <linux/hugetlb.h> 43 #include <linux/kvm_irqfd.h> 44 #include <linux/irqbypass.h> 45 #include <linux/module.h> 46 #include <linux/compiler.h> 47 #include <linux/of.h> 48 49 #include <asm/reg.h> 50 #include <asm/ppc-opcode.h> 51 #include <asm/asm-prototypes.h> 52 #include <asm/debug.h> 53 #include <asm/disassemble.h> 54 #include <asm/cputable.h> 55 #include <asm/cacheflush.h> 56 #include <asm/tlbflush.h> 57 #include <linux/uaccess.h> 58 #include <asm/io.h> 59 #include <asm/kvm_ppc.h> 60 #include <asm/kvm_book3s.h> 61 #include <asm/mmu_context.h> 62 #include <asm/lppaca.h> 63 #include <asm/processor.h> 64 #include <asm/cputhreads.h> 65 #include <asm/page.h> 66 #include <asm/hvcall.h> 67 #include <asm/switch_to.h> 68 #include <asm/smp.h> 69 #include <asm/dbell.h> 70 #include <asm/hmi.h> 71 #include <asm/pnv-pci.h> 72 #include <asm/mmu.h> 73 #include <asm/opal.h> 74 #include <asm/xics.h> 75 #include <asm/xive.h> 76 77 #include "book3s.h" 78 79 #define CREATE_TRACE_POINTS 80 #include "trace_hv.h" 81 82 /* #define EXIT_DEBUG */ 83 /* #define EXIT_DEBUG_SIMPLE */ 84 /* #define EXIT_DEBUG_INT */ 85 86 /* Used to indicate that a guest page fault needs to be handled */ 87 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 88 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 89 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 90 91 /* Used as a "null" value for timebase values */ 92 #define TB_NIL (~(u64)0) 93 94 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 95 96 static int dynamic_mt_modes = 6; 97 module_param(dynamic_mt_modes, int, 0644); 98 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 99 static int target_smt_mode; 100 module_param(target_smt_mode, int, 0644); 101 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 102 103 static bool indep_threads_mode = true; 104 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 105 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 106 107 #ifdef CONFIG_KVM_XICS 108 static struct kernel_param_ops module_param_ops = { 109 .set = param_set_int, 110 .get = param_get_int, 111 }; 112 113 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 114 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 115 116 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 117 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 118 #endif 119 120 /* If set, the threads on each CPU core have to be in the same MMU mode */ 121 static bool no_mixing_hpt_and_radix; 122 123 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 124 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 125 126 /* 127 * RWMR values for POWER8. These control the rate at which PURR 128 * and SPURR count and should be set according to the number of 129 * online threads in the vcore being run. 130 */ 131 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECA 132 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9 133 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECA 134 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9 135 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECA 136 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECA 137 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECA 138 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECA 139 140 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 141 RWMR_RPA_P8_1THREAD, 142 RWMR_RPA_P8_1THREAD, 143 RWMR_RPA_P8_2THREAD, 144 RWMR_RPA_P8_3THREAD, 145 RWMR_RPA_P8_4THREAD, 146 RWMR_RPA_P8_5THREAD, 147 RWMR_RPA_P8_6THREAD, 148 RWMR_RPA_P8_7THREAD, 149 RWMR_RPA_P8_8THREAD, 150 }; 151 152 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 153 int *ip) 154 { 155 int i = *ip; 156 struct kvm_vcpu *vcpu; 157 158 while (++i < MAX_SMT_THREADS) { 159 vcpu = READ_ONCE(vc->runnable_threads[i]); 160 if (vcpu) { 161 *ip = i; 162 return vcpu; 163 } 164 } 165 return NULL; 166 } 167 168 /* Used to traverse the list of runnable threads for a given vcore */ 169 #define for_each_runnable_thread(i, vcpu, vc) \ 170 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 171 172 static bool kvmppc_ipi_thread(int cpu) 173 { 174 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 175 176 /* On POWER9 we can use msgsnd to IPI any cpu */ 177 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 178 msg |= get_hard_smp_processor_id(cpu); 179 smp_mb(); 180 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 181 return true; 182 } 183 184 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 185 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 186 preempt_disable(); 187 if (cpu_first_thread_sibling(cpu) == 188 cpu_first_thread_sibling(smp_processor_id())) { 189 msg |= cpu_thread_in_core(cpu); 190 smp_mb(); 191 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 192 preempt_enable(); 193 return true; 194 } 195 preempt_enable(); 196 } 197 198 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 199 if (cpu >= 0 && cpu < nr_cpu_ids) { 200 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 201 xics_wake_cpu(cpu); 202 return true; 203 } 204 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 205 return true; 206 } 207 #endif 208 209 return false; 210 } 211 212 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 213 { 214 int cpu; 215 struct swait_queue_head *wqp; 216 217 wqp = kvm_arch_vcpu_wq(vcpu); 218 if (swq_has_sleeper(wqp)) { 219 swake_up(wqp); 220 ++vcpu->stat.halt_wakeup; 221 } 222 223 cpu = READ_ONCE(vcpu->arch.thread_cpu); 224 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 225 return; 226 227 /* CPU points to the first thread of the core */ 228 cpu = vcpu->cpu; 229 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 230 smp_send_reschedule(cpu); 231 } 232 233 /* 234 * We use the vcpu_load/put functions to measure stolen time. 235 * Stolen time is counted as time when either the vcpu is able to 236 * run as part of a virtual core, but the task running the vcore 237 * is preempted or sleeping, or when the vcpu needs something done 238 * in the kernel by the task running the vcpu, but that task is 239 * preempted or sleeping. Those two things have to be counted 240 * separately, since one of the vcpu tasks will take on the job 241 * of running the core, and the other vcpu tasks in the vcore will 242 * sleep waiting for it to do that, but that sleep shouldn't count 243 * as stolen time. 244 * 245 * Hence we accumulate stolen time when the vcpu can run as part of 246 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 247 * needs its task to do other things in the kernel (for example, 248 * service a page fault) in busy_stolen. We don't accumulate 249 * stolen time for a vcore when it is inactive, or for a vcpu 250 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 251 * a misnomer; it means that the vcpu task is not executing in 252 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 253 * the kernel. We don't have any way of dividing up that time 254 * between time that the vcpu is genuinely stopped, time that 255 * the task is actively working on behalf of the vcpu, and time 256 * that the task is preempted, so we don't count any of it as 257 * stolen. 258 * 259 * Updates to busy_stolen are protected by arch.tbacct_lock; 260 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 261 * lock. The stolen times are measured in units of timebase ticks. 262 * (Note that the != TB_NIL checks below are purely defensive; 263 * they should never fail.) 264 */ 265 266 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 267 { 268 unsigned long flags; 269 270 spin_lock_irqsave(&vc->stoltb_lock, flags); 271 vc->preempt_tb = mftb(); 272 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 273 } 274 275 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 276 { 277 unsigned long flags; 278 279 spin_lock_irqsave(&vc->stoltb_lock, flags); 280 if (vc->preempt_tb != TB_NIL) { 281 vc->stolen_tb += mftb() - vc->preempt_tb; 282 vc->preempt_tb = TB_NIL; 283 } 284 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 285 } 286 287 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 288 { 289 struct kvmppc_vcore *vc = vcpu->arch.vcore; 290 unsigned long flags; 291 292 /* 293 * We can test vc->runner without taking the vcore lock, 294 * because only this task ever sets vc->runner to this 295 * vcpu, and once it is set to this vcpu, only this task 296 * ever sets it to NULL. 297 */ 298 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 299 kvmppc_core_end_stolen(vc); 300 301 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 302 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 303 vcpu->arch.busy_preempt != TB_NIL) { 304 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 305 vcpu->arch.busy_preempt = TB_NIL; 306 } 307 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 308 } 309 310 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 311 { 312 struct kvmppc_vcore *vc = vcpu->arch.vcore; 313 unsigned long flags; 314 315 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 316 kvmppc_core_start_stolen(vc); 317 318 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 319 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 320 vcpu->arch.busy_preempt = mftb(); 321 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 322 } 323 324 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 325 { 326 /* 327 * Check for illegal transactional state bit combination 328 * and if we find it, force the TS field to a safe state. 329 */ 330 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 331 msr &= ~MSR_TS_MASK; 332 vcpu->arch.shregs.msr = msr; 333 kvmppc_end_cede(vcpu); 334 } 335 336 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 337 { 338 vcpu->arch.pvr = pvr; 339 } 340 341 /* Dummy value used in computing PCR value below */ 342 #define PCR_ARCH_300 (PCR_ARCH_207 << 1) 343 344 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 345 { 346 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 347 struct kvmppc_vcore *vc = vcpu->arch.vcore; 348 349 /* We can (emulate) our own architecture version and anything older */ 350 if (cpu_has_feature(CPU_FTR_ARCH_300)) 351 host_pcr_bit = PCR_ARCH_300; 352 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 353 host_pcr_bit = PCR_ARCH_207; 354 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 355 host_pcr_bit = PCR_ARCH_206; 356 else 357 host_pcr_bit = PCR_ARCH_205; 358 359 /* Determine lowest PCR bit needed to run guest in given PVR level */ 360 guest_pcr_bit = host_pcr_bit; 361 if (arch_compat) { 362 switch (arch_compat) { 363 case PVR_ARCH_205: 364 guest_pcr_bit = PCR_ARCH_205; 365 break; 366 case PVR_ARCH_206: 367 case PVR_ARCH_206p: 368 guest_pcr_bit = PCR_ARCH_206; 369 break; 370 case PVR_ARCH_207: 371 guest_pcr_bit = PCR_ARCH_207; 372 break; 373 case PVR_ARCH_300: 374 guest_pcr_bit = PCR_ARCH_300; 375 break; 376 default: 377 return -EINVAL; 378 } 379 } 380 381 /* Check requested PCR bits don't exceed our capabilities */ 382 if (guest_pcr_bit > host_pcr_bit) 383 return -EINVAL; 384 385 spin_lock(&vc->lock); 386 vc->arch_compat = arch_compat; 387 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */ 388 vc->pcr = host_pcr_bit - guest_pcr_bit; 389 spin_unlock(&vc->lock); 390 391 return 0; 392 } 393 394 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 395 { 396 int r; 397 398 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 399 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 400 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 401 for (r = 0; r < 16; ++r) 402 pr_err("r%2d = %.16lx r%d = %.16lx\n", 403 r, kvmppc_get_gpr(vcpu, r), 404 r+16, kvmppc_get_gpr(vcpu, r+16)); 405 pr_err("ctr = %.16lx lr = %.16lx\n", 406 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 407 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 408 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 409 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 410 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 411 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 412 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 413 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 414 vcpu->arch.cr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 415 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 416 pr_err("fault dar = %.16lx dsisr = %.8x\n", 417 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 418 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 419 for (r = 0; r < vcpu->arch.slb_max; ++r) 420 pr_err(" ESID = %.16llx VSID = %.16llx\n", 421 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 422 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 423 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 424 vcpu->arch.last_inst); 425 } 426 427 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 428 { 429 struct kvm_vcpu *ret; 430 431 mutex_lock(&kvm->lock); 432 ret = kvm_get_vcpu_by_id(kvm, id); 433 mutex_unlock(&kvm->lock); 434 return ret; 435 } 436 437 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 438 { 439 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 440 vpa->yield_count = cpu_to_be32(1); 441 } 442 443 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 444 unsigned long addr, unsigned long len) 445 { 446 /* check address is cacheline aligned */ 447 if (addr & (L1_CACHE_BYTES - 1)) 448 return -EINVAL; 449 spin_lock(&vcpu->arch.vpa_update_lock); 450 if (v->next_gpa != addr || v->len != len) { 451 v->next_gpa = addr; 452 v->len = addr ? len : 0; 453 v->update_pending = 1; 454 } 455 spin_unlock(&vcpu->arch.vpa_update_lock); 456 return 0; 457 } 458 459 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 460 struct reg_vpa { 461 u32 dummy; 462 union { 463 __be16 hword; 464 __be32 word; 465 } length; 466 }; 467 468 static int vpa_is_registered(struct kvmppc_vpa *vpap) 469 { 470 if (vpap->update_pending) 471 return vpap->next_gpa != 0; 472 return vpap->pinned_addr != NULL; 473 } 474 475 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 476 unsigned long flags, 477 unsigned long vcpuid, unsigned long vpa) 478 { 479 struct kvm *kvm = vcpu->kvm; 480 unsigned long len, nb; 481 void *va; 482 struct kvm_vcpu *tvcpu; 483 int err; 484 int subfunc; 485 struct kvmppc_vpa *vpap; 486 487 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 488 if (!tvcpu) 489 return H_PARAMETER; 490 491 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 492 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 493 subfunc == H_VPA_REG_SLB) { 494 /* Registering new area - address must be cache-line aligned */ 495 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 496 return H_PARAMETER; 497 498 /* convert logical addr to kernel addr and read length */ 499 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 500 if (va == NULL) 501 return H_PARAMETER; 502 if (subfunc == H_VPA_REG_VPA) 503 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 504 else 505 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 506 kvmppc_unpin_guest_page(kvm, va, vpa, false); 507 508 /* Check length */ 509 if (len > nb || len < sizeof(struct reg_vpa)) 510 return H_PARAMETER; 511 } else { 512 vpa = 0; 513 len = 0; 514 } 515 516 err = H_PARAMETER; 517 vpap = NULL; 518 spin_lock(&tvcpu->arch.vpa_update_lock); 519 520 switch (subfunc) { 521 case H_VPA_REG_VPA: /* register VPA */ 522 /* 523 * The size of our lppaca is 1kB because of the way we align 524 * it for the guest to avoid crossing a 4kB boundary. We only 525 * use 640 bytes of the structure though, so we should accept 526 * clients that set a size of 640. 527 */ 528 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 529 if (len < sizeof(struct lppaca)) 530 break; 531 vpap = &tvcpu->arch.vpa; 532 err = 0; 533 break; 534 535 case H_VPA_REG_DTL: /* register DTL */ 536 if (len < sizeof(struct dtl_entry)) 537 break; 538 len -= len % sizeof(struct dtl_entry); 539 540 /* Check that they have previously registered a VPA */ 541 err = H_RESOURCE; 542 if (!vpa_is_registered(&tvcpu->arch.vpa)) 543 break; 544 545 vpap = &tvcpu->arch.dtl; 546 err = 0; 547 break; 548 549 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 550 /* Check that they have previously registered a VPA */ 551 err = H_RESOURCE; 552 if (!vpa_is_registered(&tvcpu->arch.vpa)) 553 break; 554 555 vpap = &tvcpu->arch.slb_shadow; 556 err = 0; 557 break; 558 559 case H_VPA_DEREG_VPA: /* deregister VPA */ 560 /* Check they don't still have a DTL or SLB buf registered */ 561 err = H_RESOURCE; 562 if (vpa_is_registered(&tvcpu->arch.dtl) || 563 vpa_is_registered(&tvcpu->arch.slb_shadow)) 564 break; 565 566 vpap = &tvcpu->arch.vpa; 567 err = 0; 568 break; 569 570 case H_VPA_DEREG_DTL: /* deregister DTL */ 571 vpap = &tvcpu->arch.dtl; 572 err = 0; 573 break; 574 575 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 576 vpap = &tvcpu->arch.slb_shadow; 577 err = 0; 578 break; 579 } 580 581 if (vpap) { 582 vpap->next_gpa = vpa; 583 vpap->len = len; 584 vpap->update_pending = 1; 585 } 586 587 spin_unlock(&tvcpu->arch.vpa_update_lock); 588 589 return err; 590 } 591 592 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 593 { 594 struct kvm *kvm = vcpu->kvm; 595 void *va; 596 unsigned long nb; 597 unsigned long gpa; 598 599 /* 600 * We need to pin the page pointed to by vpap->next_gpa, 601 * but we can't call kvmppc_pin_guest_page under the lock 602 * as it does get_user_pages() and down_read(). So we 603 * have to drop the lock, pin the page, then get the lock 604 * again and check that a new area didn't get registered 605 * in the meantime. 606 */ 607 for (;;) { 608 gpa = vpap->next_gpa; 609 spin_unlock(&vcpu->arch.vpa_update_lock); 610 va = NULL; 611 nb = 0; 612 if (gpa) 613 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 614 spin_lock(&vcpu->arch.vpa_update_lock); 615 if (gpa == vpap->next_gpa) 616 break; 617 /* sigh... unpin that one and try again */ 618 if (va) 619 kvmppc_unpin_guest_page(kvm, va, gpa, false); 620 } 621 622 vpap->update_pending = 0; 623 if (va && nb < vpap->len) { 624 /* 625 * If it's now too short, it must be that userspace 626 * has changed the mappings underlying guest memory, 627 * so unregister the region. 628 */ 629 kvmppc_unpin_guest_page(kvm, va, gpa, false); 630 va = NULL; 631 } 632 if (vpap->pinned_addr) 633 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 634 vpap->dirty); 635 vpap->gpa = gpa; 636 vpap->pinned_addr = va; 637 vpap->dirty = false; 638 if (va) 639 vpap->pinned_end = va + vpap->len; 640 } 641 642 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 643 { 644 if (!(vcpu->arch.vpa.update_pending || 645 vcpu->arch.slb_shadow.update_pending || 646 vcpu->arch.dtl.update_pending)) 647 return; 648 649 spin_lock(&vcpu->arch.vpa_update_lock); 650 if (vcpu->arch.vpa.update_pending) { 651 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 652 if (vcpu->arch.vpa.pinned_addr) 653 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 654 } 655 if (vcpu->arch.dtl.update_pending) { 656 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 657 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 658 vcpu->arch.dtl_index = 0; 659 } 660 if (vcpu->arch.slb_shadow.update_pending) 661 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 662 spin_unlock(&vcpu->arch.vpa_update_lock); 663 } 664 665 /* 666 * Return the accumulated stolen time for the vcore up until `now'. 667 * The caller should hold the vcore lock. 668 */ 669 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 670 { 671 u64 p; 672 unsigned long flags; 673 674 spin_lock_irqsave(&vc->stoltb_lock, flags); 675 p = vc->stolen_tb; 676 if (vc->vcore_state != VCORE_INACTIVE && 677 vc->preempt_tb != TB_NIL) 678 p += now - vc->preempt_tb; 679 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 680 return p; 681 } 682 683 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 684 struct kvmppc_vcore *vc) 685 { 686 struct dtl_entry *dt; 687 struct lppaca *vpa; 688 unsigned long stolen; 689 unsigned long core_stolen; 690 u64 now; 691 unsigned long flags; 692 693 dt = vcpu->arch.dtl_ptr; 694 vpa = vcpu->arch.vpa.pinned_addr; 695 now = mftb(); 696 core_stolen = vcore_stolen_time(vc, now); 697 stolen = core_stolen - vcpu->arch.stolen_logged; 698 vcpu->arch.stolen_logged = core_stolen; 699 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 700 stolen += vcpu->arch.busy_stolen; 701 vcpu->arch.busy_stolen = 0; 702 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 703 if (!dt || !vpa) 704 return; 705 memset(dt, 0, sizeof(struct dtl_entry)); 706 dt->dispatch_reason = 7; 707 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 708 dt->timebase = cpu_to_be64(now + vc->tb_offset); 709 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 710 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 711 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 712 ++dt; 713 if (dt == vcpu->arch.dtl.pinned_end) 714 dt = vcpu->arch.dtl.pinned_addr; 715 vcpu->arch.dtl_ptr = dt; 716 /* order writing *dt vs. writing vpa->dtl_idx */ 717 smp_wmb(); 718 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 719 vcpu->arch.dtl.dirty = true; 720 } 721 722 /* See if there is a doorbell interrupt pending for a vcpu */ 723 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 724 { 725 int thr; 726 struct kvmppc_vcore *vc; 727 728 if (vcpu->arch.doorbell_request) 729 return true; 730 /* 731 * Ensure that the read of vcore->dpdes comes after the read 732 * of vcpu->doorbell_request. This barrier matches the 733 * lwsync in book3s_hv_rmhandlers.S just before the 734 * fast_guest_return label. 735 */ 736 smp_rmb(); 737 vc = vcpu->arch.vcore; 738 thr = vcpu->vcpu_id - vc->first_vcpuid; 739 return !!(vc->dpdes & (1 << thr)); 740 } 741 742 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 743 { 744 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 745 return true; 746 if ((!vcpu->arch.vcore->arch_compat) && 747 cpu_has_feature(CPU_FTR_ARCH_207S)) 748 return true; 749 return false; 750 } 751 752 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 753 unsigned long resource, unsigned long value1, 754 unsigned long value2) 755 { 756 switch (resource) { 757 case H_SET_MODE_RESOURCE_SET_CIABR: 758 if (!kvmppc_power8_compatible(vcpu)) 759 return H_P2; 760 if (value2) 761 return H_P4; 762 if (mflags) 763 return H_UNSUPPORTED_FLAG_START; 764 /* Guests can't breakpoint the hypervisor */ 765 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 766 return H_P3; 767 vcpu->arch.ciabr = value1; 768 return H_SUCCESS; 769 case H_SET_MODE_RESOURCE_SET_DAWR: 770 if (!kvmppc_power8_compatible(vcpu)) 771 return H_P2; 772 if (!ppc_breakpoint_available()) 773 return H_P2; 774 if (mflags) 775 return H_UNSUPPORTED_FLAG_START; 776 if (value2 & DABRX_HYP) 777 return H_P4; 778 vcpu->arch.dawr = value1; 779 vcpu->arch.dawrx = value2; 780 return H_SUCCESS; 781 default: 782 return H_TOO_HARD; 783 } 784 } 785 786 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 787 { 788 struct kvmppc_vcore *vcore = target->arch.vcore; 789 790 /* 791 * We expect to have been called by the real mode handler 792 * (kvmppc_rm_h_confer()) which would have directly returned 793 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 794 * have useful work to do and should not confer) so we don't 795 * recheck that here. 796 */ 797 798 spin_lock(&vcore->lock); 799 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 800 vcore->vcore_state != VCORE_INACTIVE && 801 vcore->runner) 802 target = vcore->runner; 803 spin_unlock(&vcore->lock); 804 805 return kvm_vcpu_yield_to(target); 806 } 807 808 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 809 { 810 int yield_count = 0; 811 struct lppaca *lppaca; 812 813 spin_lock(&vcpu->arch.vpa_update_lock); 814 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 815 if (lppaca) 816 yield_count = be32_to_cpu(lppaca->yield_count); 817 spin_unlock(&vcpu->arch.vpa_update_lock); 818 return yield_count; 819 } 820 821 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 822 { 823 unsigned long req = kvmppc_get_gpr(vcpu, 3); 824 unsigned long target, ret = H_SUCCESS; 825 int yield_count; 826 struct kvm_vcpu *tvcpu; 827 int idx, rc; 828 829 if (req <= MAX_HCALL_OPCODE && 830 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 831 return RESUME_HOST; 832 833 switch (req) { 834 case H_CEDE: 835 break; 836 case H_PROD: 837 target = kvmppc_get_gpr(vcpu, 4); 838 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 839 if (!tvcpu) { 840 ret = H_PARAMETER; 841 break; 842 } 843 tvcpu->arch.prodded = 1; 844 smp_mb(); 845 if (tvcpu->arch.ceded) 846 kvmppc_fast_vcpu_kick_hv(tvcpu); 847 break; 848 case H_CONFER: 849 target = kvmppc_get_gpr(vcpu, 4); 850 if (target == -1) 851 break; 852 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 853 if (!tvcpu) { 854 ret = H_PARAMETER; 855 break; 856 } 857 yield_count = kvmppc_get_gpr(vcpu, 5); 858 if (kvmppc_get_yield_count(tvcpu) != yield_count) 859 break; 860 kvm_arch_vcpu_yield_to(tvcpu); 861 break; 862 case H_REGISTER_VPA: 863 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 864 kvmppc_get_gpr(vcpu, 5), 865 kvmppc_get_gpr(vcpu, 6)); 866 break; 867 case H_RTAS: 868 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 869 return RESUME_HOST; 870 871 idx = srcu_read_lock(&vcpu->kvm->srcu); 872 rc = kvmppc_rtas_hcall(vcpu); 873 srcu_read_unlock(&vcpu->kvm->srcu, idx); 874 875 if (rc == -ENOENT) 876 return RESUME_HOST; 877 else if (rc == 0) 878 break; 879 880 /* Send the error out to userspace via KVM_RUN */ 881 return rc; 882 case H_LOGICAL_CI_LOAD: 883 ret = kvmppc_h_logical_ci_load(vcpu); 884 if (ret == H_TOO_HARD) 885 return RESUME_HOST; 886 break; 887 case H_LOGICAL_CI_STORE: 888 ret = kvmppc_h_logical_ci_store(vcpu); 889 if (ret == H_TOO_HARD) 890 return RESUME_HOST; 891 break; 892 case H_SET_MODE: 893 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 894 kvmppc_get_gpr(vcpu, 5), 895 kvmppc_get_gpr(vcpu, 6), 896 kvmppc_get_gpr(vcpu, 7)); 897 if (ret == H_TOO_HARD) 898 return RESUME_HOST; 899 break; 900 case H_XIRR: 901 case H_CPPR: 902 case H_EOI: 903 case H_IPI: 904 case H_IPOLL: 905 case H_XIRR_X: 906 if (kvmppc_xics_enabled(vcpu)) { 907 if (xive_enabled()) { 908 ret = H_NOT_AVAILABLE; 909 return RESUME_GUEST; 910 } 911 ret = kvmppc_xics_hcall(vcpu, req); 912 break; 913 } 914 return RESUME_HOST; 915 case H_PUT_TCE: 916 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 917 kvmppc_get_gpr(vcpu, 5), 918 kvmppc_get_gpr(vcpu, 6)); 919 if (ret == H_TOO_HARD) 920 return RESUME_HOST; 921 break; 922 case H_PUT_TCE_INDIRECT: 923 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 924 kvmppc_get_gpr(vcpu, 5), 925 kvmppc_get_gpr(vcpu, 6), 926 kvmppc_get_gpr(vcpu, 7)); 927 if (ret == H_TOO_HARD) 928 return RESUME_HOST; 929 break; 930 case H_STUFF_TCE: 931 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 932 kvmppc_get_gpr(vcpu, 5), 933 kvmppc_get_gpr(vcpu, 6), 934 kvmppc_get_gpr(vcpu, 7)); 935 if (ret == H_TOO_HARD) 936 return RESUME_HOST; 937 break; 938 default: 939 return RESUME_HOST; 940 } 941 kvmppc_set_gpr(vcpu, 3, ret); 942 vcpu->arch.hcall_needed = 0; 943 return RESUME_GUEST; 944 } 945 946 static int kvmppc_hcall_impl_hv(unsigned long cmd) 947 { 948 switch (cmd) { 949 case H_CEDE: 950 case H_PROD: 951 case H_CONFER: 952 case H_REGISTER_VPA: 953 case H_SET_MODE: 954 case H_LOGICAL_CI_LOAD: 955 case H_LOGICAL_CI_STORE: 956 #ifdef CONFIG_KVM_XICS 957 case H_XIRR: 958 case H_CPPR: 959 case H_EOI: 960 case H_IPI: 961 case H_IPOLL: 962 case H_XIRR_X: 963 #endif 964 return 1; 965 } 966 967 /* See if it's in the real-mode table */ 968 return kvmppc_hcall_impl_hv_realmode(cmd); 969 } 970 971 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 972 struct kvm_vcpu *vcpu) 973 { 974 u32 last_inst; 975 976 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 977 EMULATE_DONE) { 978 /* 979 * Fetch failed, so return to guest and 980 * try executing it again. 981 */ 982 return RESUME_GUEST; 983 } 984 985 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 986 run->exit_reason = KVM_EXIT_DEBUG; 987 run->debug.arch.address = kvmppc_get_pc(vcpu); 988 return RESUME_HOST; 989 } else { 990 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 991 return RESUME_GUEST; 992 } 993 } 994 995 static void do_nothing(void *x) 996 { 997 } 998 999 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1000 { 1001 int thr, cpu, pcpu, nthreads; 1002 struct kvm_vcpu *v; 1003 unsigned long dpdes; 1004 1005 nthreads = vcpu->kvm->arch.emul_smt_mode; 1006 dpdes = 0; 1007 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1008 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1009 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1010 if (!v) 1011 continue; 1012 /* 1013 * If the vcpu is currently running on a physical cpu thread, 1014 * interrupt it in order to pull it out of the guest briefly, 1015 * which will update its vcore->dpdes value. 1016 */ 1017 pcpu = READ_ONCE(v->cpu); 1018 if (pcpu >= 0) 1019 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1020 if (kvmppc_doorbell_pending(v)) 1021 dpdes |= 1 << thr; 1022 } 1023 return dpdes; 1024 } 1025 1026 /* 1027 * On POWER9, emulate doorbell-related instructions in order to 1028 * give the guest the illusion of running on a multi-threaded core. 1029 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1030 * and mfspr DPDES. 1031 */ 1032 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1033 { 1034 u32 inst, rb, thr; 1035 unsigned long arg; 1036 struct kvm *kvm = vcpu->kvm; 1037 struct kvm_vcpu *tvcpu; 1038 1039 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1040 return RESUME_GUEST; 1041 if (get_op(inst) != 31) 1042 return EMULATE_FAIL; 1043 rb = get_rb(inst); 1044 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1045 switch (get_xop(inst)) { 1046 case OP_31_XOP_MSGSNDP: 1047 arg = kvmppc_get_gpr(vcpu, rb); 1048 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1049 break; 1050 arg &= 0x3f; 1051 if (arg >= kvm->arch.emul_smt_mode) 1052 break; 1053 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1054 if (!tvcpu) 1055 break; 1056 if (!tvcpu->arch.doorbell_request) { 1057 tvcpu->arch.doorbell_request = 1; 1058 kvmppc_fast_vcpu_kick_hv(tvcpu); 1059 } 1060 break; 1061 case OP_31_XOP_MSGCLRP: 1062 arg = kvmppc_get_gpr(vcpu, rb); 1063 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1064 break; 1065 vcpu->arch.vcore->dpdes = 0; 1066 vcpu->arch.doorbell_request = 0; 1067 break; 1068 case OP_31_XOP_MFSPR: 1069 switch (get_sprn(inst)) { 1070 case SPRN_TIR: 1071 arg = thr; 1072 break; 1073 case SPRN_DPDES: 1074 arg = kvmppc_read_dpdes(vcpu); 1075 break; 1076 default: 1077 return EMULATE_FAIL; 1078 } 1079 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1080 break; 1081 default: 1082 return EMULATE_FAIL; 1083 } 1084 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1085 return RESUME_GUEST; 1086 } 1087 1088 /* Called with vcpu->arch.vcore->lock held */ 1089 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 1090 struct task_struct *tsk) 1091 { 1092 int r = RESUME_HOST; 1093 1094 vcpu->stat.sum_exits++; 1095 1096 /* 1097 * This can happen if an interrupt occurs in the last stages 1098 * of guest entry or the first stages of guest exit (i.e. after 1099 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1100 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1101 * That can happen due to a bug, or due to a machine check 1102 * occurring at just the wrong time. 1103 */ 1104 if (vcpu->arch.shregs.msr & MSR_HV) { 1105 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1106 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1107 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1108 vcpu->arch.shregs.msr); 1109 kvmppc_dump_regs(vcpu); 1110 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1111 run->hw.hardware_exit_reason = vcpu->arch.trap; 1112 return RESUME_HOST; 1113 } 1114 run->exit_reason = KVM_EXIT_UNKNOWN; 1115 run->ready_for_interrupt_injection = 1; 1116 switch (vcpu->arch.trap) { 1117 /* We're good on these - the host merely wanted to get our attention */ 1118 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1119 vcpu->stat.dec_exits++; 1120 r = RESUME_GUEST; 1121 break; 1122 case BOOK3S_INTERRUPT_EXTERNAL: 1123 case BOOK3S_INTERRUPT_H_DOORBELL: 1124 case BOOK3S_INTERRUPT_H_VIRT: 1125 vcpu->stat.ext_intr_exits++; 1126 r = RESUME_GUEST; 1127 break; 1128 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1129 case BOOK3S_INTERRUPT_HMI: 1130 case BOOK3S_INTERRUPT_PERFMON: 1131 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1132 r = RESUME_GUEST; 1133 break; 1134 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1135 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1136 run->exit_reason = KVM_EXIT_NMI; 1137 run->hw.hardware_exit_reason = vcpu->arch.trap; 1138 /* Clear out the old NMI status from run->flags */ 1139 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1140 /* Now set the NMI status */ 1141 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1142 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1143 else 1144 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1145 1146 r = RESUME_HOST; 1147 /* Print the MCE event to host console. */ 1148 machine_check_print_event_info(&vcpu->arch.mce_evt, false); 1149 break; 1150 case BOOK3S_INTERRUPT_PROGRAM: 1151 { 1152 ulong flags; 1153 /* 1154 * Normally program interrupts are delivered directly 1155 * to the guest by the hardware, but we can get here 1156 * as a result of a hypervisor emulation interrupt 1157 * (e40) getting turned into a 700 by BML RTAS. 1158 */ 1159 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1160 kvmppc_core_queue_program(vcpu, flags); 1161 r = RESUME_GUEST; 1162 break; 1163 } 1164 case BOOK3S_INTERRUPT_SYSCALL: 1165 { 1166 /* hcall - punt to userspace */ 1167 int i; 1168 1169 /* hypercall with MSR_PR has already been handled in rmode, 1170 * and never reaches here. 1171 */ 1172 1173 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1174 for (i = 0; i < 9; ++i) 1175 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1176 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1177 vcpu->arch.hcall_needed = 1; 1178 r = RESUME_HOST; 1179 break; 1180 } 1181 /* 1182 * We get these next two if the guest accesses a page which it thinks 1183 * it has mapped but which is not actually present, either because 1184 * it is for an emulated I/O device or because the corresonding 1185 * host page has been paged out. Any other HDSI/HISI interrupts 1186 * have been handled already. 1187 */ 1188 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1189 r = RESUME_PAGE_FAULT; 1190 break; 1191 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1192 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1193 vcpu->arch.fault_dsisr = 0; 1194 r = RESUME_PAGE_FAULT; 1195 break; 1196 /* 1197 * This occurs if the guest executes an illegal instruction. 1198 * If the guest debug is disabled, generate a program interrupt 1199 * to the guest. If guest debug is enabled, we need to check 1200 * whether the instruction is a software breakpoint instruction. 1201 * Accordingly return to Guest or Host. 1202 */ 1203 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1204 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1205 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1206 swab32(vcpu->arch.emul_inst) : 1207 vcpu->arch.emul_inst; 1208 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1209 /* Need vcore unlocked to call kvmppc_get_last_inst */ 1210 spin_unlock(&vcpu->arch.vcore->lock); 1211 r = kvmppc_emulate_debug_inst(run, vcpu); 1212 spin_lock(&vcpu->arch.vcore->lock); 1213 } else { 1214 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1215 r = RESUME_GUEST; 1216 } 1217 break; 1218 /* 1219 * This occurs if the guest (kernel or userspace), does something that 1220 * is prohibited by HFSCR. 1221 * On POWER9, this could be a doorbell instruction that we need 1222 * to emulate. 1223 * Otherwise, we just generate a program interrupt to the guest. 1224 */ 1225 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1226 r = EMULATE_FAIL; 1227 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1228 cpu_has_feature(CPU_FTR_ARCH_300)) { 1229 /* Need vcore unlocked to call kvmppc_get_last_inst */ 1230 spin_unlock(&vcpu->arch.vcore->lock); 1231 r = kvmppc_emulate_doorbell_instr(vcpu); 1232 spin_lock(&vcpu->arch.vcore->lock); 1233 } 1234 if (r == EMULATE_FAIL) { 1235 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1236 r = RESUME_GUEST; 1237 } 1238 break; 1239 1240 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1241 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1242 /* 1243 * This occurs for various TM-related instructions that 1244 * we need to emulate on POWER9 DD2.2. We have already 1245 * handled the cases where the guest was in real-suspend 1246 * mode and was transitioning to transactional state. 1247 */ 1248 r = kvmhv_p9_tm_emulation(vcpu); 1249 break; 1250 #endif 1251 1252 case BOOK3S_INTERRUPT_HV_RM_HARD: 1253 r = RESUME_PASSTHROUGH; 1254 break; 1255 default: 1256 kvmppc_dump_regs(vcpu); 1257 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1258 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1259 vcpu->arch.shregs.msr); 1260 run->hw.hardware_exit_reason = vcpu->arch.trap; 1261 r = RESUME_HOST; 1262 break; 1263 } 1264 1265 return r; 1266 } 1267 1268 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1269 struct kvm_sregs *sregs) 1270 { 1271 int i; 1272 1273 memset(sregs, 0, sizeof(struct kvm_sregs)); 1274 sregs->pvr = vcpu->arch.pvr; 1275 for (i = 0; i < vcpu->arch.slb_max; i++) { 1276 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1277 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1278 } 1279 1280 return 0; 1281 } 1282 1283 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1284 struct kvm_sregs *sregs) 1285 { 1286 int i, j; 1287 1288 /* Only accept the same PVR as the host's, since we can't spoof it */ 1289 if (sregs->pvr != vcpu->arch.pvr) 1290 return -EINVAL; 1291 1292 j = 0; 1293 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1294 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1295 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1296 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1297 ++j; 1298 } 1299 } 1300 vcpu->arch.slb_max = j; 1301 1302 return 0; 1303 } 1304 1305 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1306 bool preserve_top32) 1307 { 1308 struct kvm *kvm = vcpu->kvm; 1309 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1310 u64 mask; 1311 1312 mutex_lock(&kvm->lock); 1313 spin_lock(&vc->lock); 1314 /* 1315 * If ILE (interrupt little-endian) has changed, update the 1316 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1317 */ 1318 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1319 struct kvm_vcpu *vcpu; 1320 int i; 1321 1322 kvm_for_each_vcpu(i, vcpu, kvm) { 1323 if (vcpu->arch.vcore != vc) 1324 continue; 1325 if (new_lpcr & LPCR_ILE) 1326 vcpu->arch.intr_msr |= MSR_LE; 1327 else 1328 vcpu->arch.intr_msr &= ~MSR_LE; 1329 } 1330 } 1331 1332 /* 1333 * Userspace can only modify DPFD (default prefetch depth), 1334 * ILE (interrupt little-endian) and TC (translation control). 1335 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1336 */ 1337 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1338 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1339 mask |= LPCR_AIL; 1340 /* 1341 * On POWER9, allow userspace to enable large decrementer for the 1342 * guest, whether or not the host has it enabled. 1343 */ 1344 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1345 mask |= LPCR_LD; 1346 1347 /* Broken 32-bit version of LPCR must not clear top bits */ 1348 if (preserve_top32) 1349 mask &= 0xFFFFFFFF; 1350 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1351 spin_unlock(&vc->lock); 1352 mutex_unlock(&kvm->lock); 1353 } 1354 1355 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1356 union kvmppc_one_reg *val) 1357 { 1358 int r = 0; 1359 long int i; 1360 1361 switch (id) { 1362 case KVM_REG_PPC_DEBUG_INST: 1363 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1364 break; 1365 case KVM_REG_PPC_HIOR: 1366 *val = get_reg_val(id, 0); 1367 break; 1368 case KVM_REG_PPC_DABR: 1369 *val = get_reg_val(id, vcpu->arch.dabr); 1370 break; 1371 case KVM_REG_PPC_DABRX: 1372 *val = get_reg_val(id, vcpu->arch.dabrx); 1373 break; 1374 case KVM_REG_PPC_DSCR: 1375 *val = get_reg_val(id, vcpu->arch.dscr); 1376 break; 1377 case KVM_REG_PPC_PURR: 1378 *val = get_reg_val(id, vcpu->arch.purr); 1379 break; 1380 case KVM_REG_PPC_SPURR: 1381 *val = get_reg_val(id, vcpu->arch.spurr); 1382 break; 1383 case KVM_REG_PPC_AMR: 1384 *val = get_reg_val(id, vcpu->arch.amr); 1385 break; 1386 case KVM_REG_PPC_UAMOR: 1387 *val = get_reg_val(id, vcpu->arch.uamor); 1388 break; 1389 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1390 i = id - KVM_REG_PPC_MMCR0; 1391 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1392 break; 1393 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1394 i = id - KVM_REG_PPC_PMC1; 1395 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1396 break; 1397 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1398 i = id - KVM_REG_PPC_SPMC1; 1399 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1400 break; 1401 case KVM_REG_PPC_SIAR: 1402 *val = get_reg_val(id, vcpu->arch.siar); 1403 break; 1404 case KVM_REG_PPC_SDAR: 1405 *val = get_reg_val(id, vcpu->arch.sdar); 1406 break; 1407 case KVM_REG_PPC_SIER: 1408 *val = get_reg_val(id, vcpu->arch.sier); 1409 break; 1410 case KVM_REG_PPC_IAMR: 1411 *val = get_reg_val(id, vcpu->arch.iamr); 1412 break; 1413 case KVM_REG_PPC_PSPB: 1414 *val = get_reg_val(id, vcpu->arch.pspb); 1415 break; 1416 case KVM_REG_PPC_DPDES: 1417 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1418 break; 1419 case KVM_REG_PPC_VTB: 1420 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1421 break; 1422 case KVM_REG_PPC_DAWR: 1423 *val = get_reg_val(id, vcpu->arch.dawr); 1424 break; 1425 case KVM_REG_PPC_DAWRX: 1426 *val = get_reg_val(id, vcpu->arch.dawrx); 1427 break; 1428 case KVM_REG_PPC_CIABR: 1429 *val = get_reg_val(id, vcpu->arch.ciabr); 1430 break; 1431 case KVM_REG_PPC_CSIGR: 1432 *val = get_reg_val(id, vcpu->arch.csigr); 1433 break; 1434 case KVM_REG_PPC_TACR: 1435 *val = get_reg_val(id, vcpu->arch.tacr); 1436 break; 1437 case KVM_REG_PPC_TCSCR: 1438 *val = get_reg_val(id, vcpu->arch.tcscr); 1439 break; 1440 case KVM_REG_PPC_PID: 1441 *val = get_reg_val(id, vcpu->arch.pid); 1442 break; 1443 case KVM_REG_PPC_ACOP: 1444 *val = get_reg_val(id, vcpu->arch.acop); 1445 break; 1446 case KVM_REG_PPC_WORT: 1447 *val = get_reg_val(id, vcpu->arch.wort); 1448 break; 1449 case KVM_REG_PPC_TIDR: 1450 *val = get_reg_val(id, vcpu->arch.tid); 1451 break; 1452 case KVM_REG_PPC_PSSCR: 1453 *val = get_reg_val(id, vcpu->arch.psscr); 1454 break; 1455 case KVM_REG_PPC_VPA_ADDR: 1456 spin_lock(&vcpu->arch.vpa_update_lock); 1457 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1458 spin_unlock(&vcpu->arch.vpa_update_lock); 1459 break; 1460 case KVM_REG_PPC_VPA_SLB: 1461 spin_lock(&vcpu->arch.vpa_update_lock); 1462 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1463 val->vpaval.length = vcpu->arch.slb_shadow.len; 1464 spin_unlock(&vcpu->arch.vpa_update_lock); 1465 break; 1466 case KVM_REG_PPC_VPA_DTL: 1467 spin_lock(&vcpu->arch.vpa_update_lock); 1468 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1469 val->vpaval.length = vcpu->arch.dtl.len; 1470 spin_unlock(&vcpu->arch.vpa_update_lock); 1471 break; 1472 case KVM_REG_PPC_TB_OFFSET: 1473 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1474 break; 1475 case KVM_REG_PPC_LPCR: 1476 case KVM_REG_PPC_LPCR_64: 1477 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1478 break; 1479 case KVM_REG_PPC_PPR: 1480 *val = get_reg_val(id, vcpu->arch.ppr); 1481 break; 1482 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1483 case KVM_REG_PPC_TFHAR: 1484 *val = get_reg_val(id, vcpu->arch.tfhar); 1485 break; 1486 case KVM_REG_PPC_TFIAR: 1487 *val = get_reg_val(id, vcpu->arch.tfiar); 1488 break; 1489 case KVM_REG_PPC_TEXASR: 1490 *val = get_reg_val(id, vcpu->arch.texasr); 1491 break; 1492 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1493 i = id - KVM_REG_PPC_TM_GPR0; 1494 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1495 break; 1496 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1497 { 1498 int j; 1499 i = id - KVM_REG_PPC_TM_VSR0; 1500 if (i < 32) 1501 for (j = 0; j < TS_FPRWIDTH; j++) 1502 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1503 else { 1504 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1505 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1506 else 1507 r = -ENXIO; 1508 } 1509 break; 1510 } 1511 case KVM_REG_PPC_TM_CR: 1512 *val = get_reg_val(id, vcpu->arch.cr_tm); 1513 break; 1514 case KVM_REG_PPC_TM_XER: 1515 *val = get_reg_val(id, vcpu->arch.xer_tm); 1516 break; 1517 case KVM_REG_PPC_TM_LR: 1518 *val = get_reg_val(id, vcpu->arch.lr_tm); 1519 break; 1520 case KVM_REG_PPC_TM_CTR: 1521 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1522 break; 1523 case KVM_REG_PPC_TM_FPSCR: 1524 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1525 break; 1526 case KVM_REG_PPC_TM_AMR: 1527 *val = get_reg_val(id, vcpu->arch.amr_tm); 1528 break; 1529 case KVM_REG_PPC_TM_PPR: 1530 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1531 break; 1532 case KVM_REG_PPC_TM_VRSAVE: 1533 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1534 break; 1535 case KVM_REG_PPC_TM_VSCR: 1536 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1537 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1538 else 1539 r = -ENXIO; 1540 break; 1541 case KVM_REG_PPC_TM_DSCR: 1542 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1543 break; 1544 case KVM_REG_PPC_TM_TAR: 1545 *val = get_reg_val(id, vcpu->arch.tar_tm); 1546 break; 1547 #endif 1548 case KVM_REG_PPC_ARCH_COMPAT: 1549 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1550 break; 1551 case KVM_REG_PPC_DEC_EXPIRY: 1552 *val = get_reg_val(id, vcpu->arch.dec_expires + 1553 vcpu->arch.vcore->tb_offset); 1554 break; 1555 case KVM_REG_PPC_ONLINE: 1556 *val = get_reg_val(id, vcpu->arch.online); 1557 break; 1558 default: 1559 r = -EINVAL; 1560 break; 1561 } 1562 1563 return r; 1564 } 1565 1566 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1567 union kvmppc_one_reg *val) 1568 { 1569 int r = 0; 1570 long int i; 1571 unsigned long addr, len; 1572 1573 switch (id) { 1574 case KVM_REG_PPC_HIOR: 1575 /* Only allow this to be set to zero */ 1576 if (set_reg_val(id, *val)) 1577 r = -EINVAL; 1578 break; 1579 case KVM_REG_PPC_DABR: 1580 vcpu->arch.dabr = set_reg_val(id, *val); 1581 break; 1582 case KVM_REG_PPC_DABRX: 1583 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1584 break; 1585 case KVM_REG_PPC_DSCR: 1586 vcpu->arch.dscr = set_reg_val(id, *val); 1587 break; 1588 case KVM_REG_PPC_PURR: 1589 vcpu->arch.purr = set_reg_val(id, *val); 1590 break; 1591 case KVM_REG_PPC_SPURR: 1592 vcpu->arch.spurr = set_reg_val(id, *val); 1593 break; 1594 case KVM_REG_PPC_AMR: 1595 vcpu->arch.amr = set_reg_val(id, *val); 1596 break; 1597 case KVM_REG_PPC_UAMOR: 1598 vcpu->arch.uamor = set_reg_val(id, *val); 1599 break; 1600 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1601 i = id - KVM_REG_PPC_MMCR0; 1602 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1603 break; 1604 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1605 i = id - KVM_REG_PPC_PMC1; 1606 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1607 break; 1608 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1609 i = id - KVM_REG_PPC_SPMC1; 1610 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1611 break; 1612 case KVM_REG_PPC_SIAR: 1613 vcpu->arch.siar = set_reg_val(id, *val); 1614 break; 1615 case KVM_REG_PPC_SDAR: 1616 vcpu->arch.sdar = set_reg_val(id, *val); 1617 break; 1618 case KVM_REG_PPC_SIER: 1619 vcpu->arch.sier = set_reg_val(id, *val); 1620 break; 1621 case KVM_REG_PPC_IAMR: 1622 vcpu->arch.iamr = set_reg_val(id, *val); 1623 break; 1624 case KVM_REG_PPC_PSPB: 1625 vcpu->arch.pspb = set_reg_val(id, *val); 1626 break; 1627 case KVM_REG_PPC_DPDES: 1628 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1629 break; 1630 case KVM_REG_PPC_VTB: 1631 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1632 break; 1633 case KVM_REG_PPC_DAWR: 1634 vcpu->arch.dawr = set_reg_val(id, *val); 1635 break; 1636 case KVM_REG_PPC_DAWRX: 1637 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1638 break; 1639 case KVM_REG_PPC_CIABR: 1640 vcpu->arch.ciabr = set_reg_val(id, *val); 1641 /* Don't allow setting breakpoints in hypervisor code */ 1642 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1643 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1644 break; 1645 case KVM_REG_PPC_CSIGR: 1646 vcpu->arch.csigr = set_reg_val(id, *val); 1647 break; 1648 case KVM_REG_PPC_TACR: 1649 vcpu->arch.tacr = set_reg_val(id, *val); 1650 break; 1651 case KVM_REG_PPC_TCSCR: 1652 vcpu->arch.tcscr = set_reg_val(id, *val); 1653 break; 1654 case KVM_REG_PPC_PID: 1655 vcpu->arch.pid = set_reg_val(id, *val); 1656 break; 1657 case KVM_REG_PPC_ACOP: 1658 vcpu->arch.acop = set_reg_val(id, *val); 1659 break; 1660 case KVM_REG_PPC_WORT: 1661 vcpu->arch.wort = set_reg_val(id, *val); 1662 break; 1663 case KVM_REG_PPC_TIDR: 1664 vcpu->arch.tid = set_reg_val(id, *val); 1665 break; 1666 case KVM_REG_PPC_PSSCR: 1667 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1668 break; 1669 case KVM_REG_PPC_VPA_ADDR: 1670 addr = set_reg_val(id, *val); 1671 r = -EINVAL; 1672 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1673 vcpu->arch.dtl.next_gpa)) 1674 break; 1675 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1676 break; 1677 case KVM_REG_PPC_VPA_SLB: 1678 addr = val->vpaval.addr; 1679 len = val->vpaval.length; 1680 r = -EINVAL; 1681 if (addr && !vcpu->arch.vpa.next_gpa) 1682 break; 1683 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1684 break; 1685 case KVM_REG_PPC_VPA_DTL: 1686 addr = val->vpaval.addr; 1687 len = val->vpaval.length; 1688 r = -EINVAL; 1689 if (addr && (len < sizeof(struct dtl_entry) || 1690 !vcpu->arch.vpa.next_gpa)) 1691 break; 1692 len -= len % sizeof(struct dtl_entry); 1693 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1694 break; 1695 case KVM_REG_PPC_TB_OFFSET: 1696 /* 1697 * POWER9 DD1 has an erratum where writing TBU40 causes 1698 * the timebase to lose ticks. So we don't let the 1699 * timebase offset be changed on P9 DD1. (It is 1700 * initialized to zero.) 1701 */ 1702 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) 1703 break; 1704 /* round up to multiple of 2^24 */ 1705 vcpu->arch.vcore->tb_offset = 1706 ALIGN(set_reg_val(id, *val), 1UL << 24); 1707 break; 1708 case KVM_REG_PPC_LPCR: 1709 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1710 break; 1711 case KVM_REG_PPC_LPCR_64: 1712 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1713 break; 1714 case KVM_REG_PPC_PPR: 1715 vcpu->arch.ppr = set_reg_val(id, *val); 1716 break; 1717 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1718 case KVM_REG_PPC_TFHAR: 1719 vcpu->arch.tfhar = set_reg_val(id, *val); 1720 break; 1721 case KVM_REG_PPC_TFIAR: 1722 vcpu->arch.tfiar = set_reg_val(id, *val); 1723 break; 1724 case KVM_REG_PPC_TEXASR: 1725 vcpu->arch.texasr = set_reg_val(id, *val); 1726 break; 1727 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1728 i = id - KVM_REG_PPC_TM_GPR0; 1729 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1730 break; 1731 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1732 { 1733 int j; 1734 i = id - KVM_REG_PPC_TM_VSR0; 1735 if (i < 32) 1736 for (j = 0; j < TS_FPRWIDTH; j++) 1737 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1738 else 1739 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1740 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1741 else 1742 r = -ENXIO; 1743 break; 1744 } 1745 case KVM_REG_PPC_TM_CR: 1746 vcpu->arch.cr_tm = set_reg_val(id, *val); 1747 break; 1748 case KVM_REG_PPC_TM_XER: 1749 vcpu->arch.xer_tm = set_reg_val(id, *val); 1750 break; 1751 case KVM_REG_PPC_TM_LR: 1752 vcpu->arch.lr_tm = set_reg_val(id, *val); 1753 break; 1754 case KVM_REG_PPC_TM_CTR: 1755 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1756 break; 1757 case KVM_REG_PPC_TM_FPSCR: 1758 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1759 break; 1760 case KVM_REG_PPC_TM_AMR: 1761 vcpu->arch.amr_tm = set_reg_val(id, *val); 1762 break; 1763 case KVM_REG_PPC_TM_PPR: 1764 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1765 break; 1766 case KVM_REG_PPC_TM_VRSAVE: 1767 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1768 break; 1769 case KVM_REG_PPC_TM_VSCR: 1770 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1771 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1772 else 1773 r = - ENXIO; 1774 break; 1775 case KVM_REG_PPC_TM_DSCR: 1776 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1777 break; 1778 case KVM_REG_PPC_TM_TAR: 1779 vcpu->arch.tar_tm = set_reg_val(id, *val); 1780 break; 1781 #endif 1782 case KVM_REG_PPC_ARCH_COMPAT: 1783 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1784 break; 1785 case KVM_REG_PPC_DEC_EXPIRY: 1786 vcpu->arch.dec_expires = set_reg_val(id, *val) - 1787 vcpu->arch.vcore->tb_offset; 1788 break; 1789 case KVM_REG_PPC_ONLINE: 1790 i = set_reg_val(id, *val); 1791 if (i && !vcpu->arch.online) 1792 atomic_inc(&vcpu->arch.vcore->online_count); 1793 else if (!i && vcpu->arch.online) 1794 atomic_dec(&vcpu->arch.vcore->online_count); 1795 vcpu->arch.online = i; 1796 break; 1797 default: 1798 r = -EINVAL; 1799 break; 1800 } 1801 1802 return r; 1803 } 1804 1805 /* 1806 * On POWER9, threads are independent and can be in different partitions. 1807 * Therefore we consider each thread to be a subcore. 1808 * There is a restriction that all threads have to be in the same 1809 * MMU mode (radix or HPT), unfortunately, but since we only support 1810 * HPT guests on a HPT host so far, that isn't an impediment yet. 1811 */ 1812 static int threads_per_vcore(struct kvm *kvm) 1813 { 1814 if (kvm->arch.threads_indep) 1815 return 1; 1816 return threads_per_subcore; 1817 } 1818 1819 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) 1820 { 1821 struct kvmppc_vcore *vcore; 1822 1823 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1824 1825 if (vcore == NULL) 1826 return NULL; 1827 1828 spin_lock_init(&vcore->lock); 1829 spin_lock_init(&vcore->stoltb_lock); 1830 init_swait_queue_head(&vcore->wq); 1831 vcore->preempt_tb = TB_NIL; 1832 vcore->lpcr = kvm->arch.lpcr; 1833 vcore->first_vcpuid = core * kvm->arch.smt_mode; 1834 vcore->kvm = kvm; 1835 INIT_LIST_HEAD(&vcore->preempt_list); 1836 1837 return vcore; 1838 } 1839 1840 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 1841 static struct debugfs_timings_element { 1842 const char *name; 1843 size_t offset; 1844 } timings[] = { 1845 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 1846 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 1847 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 1848 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 1849 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 1850 }; 1851 1852 #define N_TIMINGS (ARRAY_SIZE(timings)) 1853 1854 struct debugfs_timings_state { 1855 struct kvm_vcpu *vcpu; 1856 unsigned int buflen; 1857 char buf[N_TIMINGS * 100]; 1858 }; 1859 1860 static int debugfs_timings_open(struct inode *inode, struct file *file) 1861 { 1862 struct kvm_vcpu *vcpu = inode->i_private; 1863 struct debugfs_timings_state *p; 1864 1865 p = kzalloc(sizeof(*p), GFP_KERNEL); 1866 if (!p) 1867 return -ENOMEM; 1868 1869 kvm_get_kvm(vcpu->kvm); 1870 p->vcpu = vcpu; 1871 file->private_data = p; 1872 1873 return nonseekable_open(inode, file); 1874 } 1875 1876 static int debugfs_timings_release(struct inode *inode, struct file *file) 1877 { 1878 struct debugfs_timings_state *p = file->private_data; 1879 1880 kvm_put_kvm(p->vcpu->kvm); 1881 kfree(p); 1882 return 0; 1883 } 1884 1885 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 1886 size_t len, loff_t *ppos) 1887 { 1888 struct debugfs_timings_state *p = file->private_data; 1889 struct kvm_vcpu *vcpu = p->vcpu; 1890 char *s, *buf_end; 1891 struct kvmhv_tb_accumulator tb; 1892 u64 count; 1893 loff_t pos; 1894 ssize_t n; 1895 int i, loops; 1896 bool ok; 1897 1898 if (!p->buflen) { 1899 s = p->buf; 1900 buf_end = s + sizeof(p->buf); 1901 for (i = 0; i < N_TIMINGS; ++i) { 1902 struct kvmhv_tb_accumulator *acc; 1903 1904 acc = (struct kvmhv_tb_accumulator *) 1905 ((unsigned long)vcpu + timings[i].offset); 1906 ok = false; 1907 for (loops = 0; loops < 1000; ++loops) { 1908 count = acc->seqcount; 1909 if (!(count & 1)) { 1910 smp_rmb(); 1911 tb = *acc; 1912 smp_rmb(); 1913 if (count == acc->seqcount) { 1914 ok = true; 1915 break; 1916 } 1917 } 1918 udelay(1); 1919 } 1920 if (!ok) 1921 snprintf(s, buf_end - s, "%s: stuck\n", 1922 timings[i].name); 1923 else 1924 snprintf(s, buf_end - s, 1925 "%s: %llu %llu %llu %llu\n", 1926 timings[i].name, count / 2, 1927 tb_to_ns(tb.tb_total), 1928 tb_to_ns(tb.tb_min), 1929 tb_to_ns(tb.tb_max)); 1930 s += strlen(s); 1931 } 1932 p->buflen = s - p->buf; 1933 } 1934 1935 pos = *ppos; 1936 if (pos >= p->buflen) 1937 return 0; 1938 if (len > p->buflen - pos) 1939 len = p->buflen - pos; 1940 n = copy_to_user(buf, p->buf + pos, len); 1941 if (n) { 1942 if (n == len) 1943 return -EFAULT; 1944 len -= n; 1945 } 1946 *ppos = pos + len; 1947 return len; 1948 } 1949 1950 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 1951 size_t len, loff_t *ppos) 1952 { 1953 return -EACCES; 1954 } 1955 1956 static const struct file_operations debugfs_timings_ops = { 1957 .owner = THIS_MODULE, 1958 .open = debugfs_timings_open, 1959 .release = debugfs_timings_release, 1960 .read = debugfs_timings_read, 1961 .write = debugfs_timings_write, 1962 .llseek = generic_file_llseek, 1963 }; 1964 1965 /* Create a debugfs directory for the vcpu */ 1966 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1967 { 1968 char buf[16]; 1969 struct kvm *kvm = vcpu->kvm; 1970 1971 snprintf(buf, sizeof(buf), "vcpu%u", id); 1972 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 1973 return; 1974 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 1975 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 1976 return; 1977 vcpu->arch.debugfs_timings = 1978 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 1979 vcpu, &debugfs_timings_ops); 1980 } 1981 1982 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1983 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1984 { 1985 } 1986 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1987 1988 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1989 unsigned int id) 1990 { 1991 struct kvm_vcpu *vcpu; 1992 int err; 1993 int core; 1994 struct kvmppc_vcore *vcore; 1995 1996 err = -ENOMEM; 1997 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1998 if (!vcpu) 1999 goto out; 2000 2001 err = kvm_vcpu_init(vcpu, kvm, id); 2002 if (err) 2003 goto free_vcpu; 2004 2005 vcpu->arch.shared = &vcpu->arch.shregs; 2006 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2007 /* 2008 * The shared struct is never shared on HV, 2009 * so we can always use host endianness 2010 */ 2011 #ifdef __BIG_ENDIAN__ 2012 vcpu->arch.shared_big_endian = true; 2013 #else 2014 vcpu->arch.shared_big_endian = false; 2015 #endif 2016 #endif 2017 vcpu->arch.mmcr[0] = MMCR0_FC; 2018 vcpu->arch.ctrl = CTRL_RUNLATCH; 2019 /* default to host PVR, since we can't spoof it */ 2020 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2021 spin_lock_init(&vcpu->arch.vpa_update_lock); 2022 spin_lock_init(&vcpu->arch.tbacct_lock); 2023 vcpu->arch.busy_preempt = TB_NIL; 2024 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2025 2026 /* 2027 * Set the default HFSCR for the guest from the host value. 2028 * This value is only used on POWER9. 2029 * On POWER9 DD1, TM doesn't work, so we make sure to 2030 * prevent the guest from using it. 2031 * On POWER9, we want to virtualize the doorbell facility, so we 2032 * turn off the HFSCR bit, which causes those instructions to trap. 2033 */ 2034 vcpu->arch.hfscr = mfspr(SPRN_HFSCR); 2035 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2036 vcpu->arch.hfscr |= HFSCR_TM; 2037 else if (!cpu_has_feature(CPU_FTR_TM_COMP)) 2038 vcpu->arch.hfscr &= ~HFSCR_TM; 2039 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2040 vcpu->arch.hfscr &= ~HFSCR_MSGP; 2041 2042 kvmppc_mmu_book3s_hv_init(vcpu); 2043 2044 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2045 2046 init_waitqueue_head(&vcpu->arch.cpu_run); 2047 2048 mutex_lock(&kvm->lock); 2049 vcore = NULL; 2050 err = -EINVAL; 2051 core = id / kvm->arch.smt_mode; 2052 if (core < KVM_MAX_VCORES) { 2053 vcore = kvm->arch.vcores[core]; 2054 if (!vcore) { 2055 err = -ENOMEM; 2056 vcore = kvmppc_vcore_create(kvm, core); 2057 kvm->arch.vcores[core] = vcore; 2058 kvm->arch.online_vcores++; 2059 } 2060 } 2061 mutex_unlock(&kvm->lock); 2062 2063 if (!vcore) 2064 goto free_vcpu; 2065 2066 spin_lock(&vcore->lock); 2067 ++vcore->num_threads; 2068 spin_unlock(&vcore->lock); 2069 vcpu->arch.vcore = vcore; 2070 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2071 vcpu->arch.thread_cpu = -1; 2072 vcpu->arch.prev_cpu = -1; 2073 2074 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2075 kvmppc_sanity_check(vcpu); 2076 2077 debugfs_vcpu_init(vcpu, id); 2078 2079 return vcpu; 2080 2081 free_vcpu: 2082 kmem_cache_free(kvm_vcpu_cache, vcpu); 2083 out: 2084 return ERR_PTR(err); 2085 } 2086 2087 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2088 unsigned long flags) 2089 { 2090 int err; 2091 int esmt = 0; 2092 2093 if (flags) 2094 return -EINVAL; 2095 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2096 return -EINVAL; 2097 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2098 /* 2099 * On POWER8 (or POWER7), the threading mode is "strict", 2100 * so we pack smt_mode vcpus per vcore. 2101 */ 2102 if (smt_mode > threads_per_subcore) 2103 return -EINVAL; 2104 } else { 2105 /* 2106 * On POWER9, the threading mode is "loose", 2107 * so each vcpu gets its own vcore. 2108 */ 2109 esmt = smt_mode; 2110 smt_mode = 1; 2111 } 2112 mutex_lock(&kvm->lock); 2113 err = -EBUSY; 2114 if (!kvm->arch.online_vcores) { 2115 kvm->arch.smt_mode = smt_mode; 2116 kvm->arch.emul_smt_mode = esmt; 2117 err = 0; 2118 } 2119 mutex_unlock(&kvm->lock); 2120 2121 return err; 2122 } 2123 2124 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2125 { 2126 if (vpa->pinned_addr) 2127 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2128 vpa->dirty); 2129 } 2130 2131 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2132 { 2133 spin_lock(&vcpu->arch.vpa_update_lock); 2134 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2135 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2136 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2137 spin_unlock(&vcpu->arch.vpa_update_lock); 2138 kvm_vcpu_uninit(vcpu); 2139 kmem_cache_free(kvm_vcpu_cache, vcpu); 2140 } 2141 2142 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2143 { 2144 /* Indicate we want to get back into the guest */ 2145 return 1; 2146 } 2147 2148 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2149 { 2150 unsigned long dec_nsec, now; 2151 2152 now = get_tb(); 2153 if (now > vcpu->arch.dec_expires) { 2154 /* decrementer has already gone negative */ 2155 kvmppc_core_queue_dec(vcpu); 2156 kvmppc_core_prepare_to_enter(vcpu); 2157 return; 2158 } 2159 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 2160 / tb_ticks_per_sec; 2161 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2162 vcpu->arch.timer_running = 1; 2163 } 2164 2165 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 2166 { 2167 vcpu->arch.ceded = 0; 2168 if (vcpu->arch.timer_running) { 2169 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2170 vcpu->arch.timer_running = 0; 2171 } 2172 } 2173 2174 extern int __kvmppc_vcore_entry(void); 2175 2176 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2177 struct kvm_vcpu *vcpu) 2178 { 2179 u64 now; 2180 2181 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2182 return; 2183 spin_lock_irq(&vcpu->arch.tbacct_lock); 2184 now = mftb(); 2185 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2186 vcpu->arch.stolen_logged; 2187 vcpu->arch.busy_preempt = now; 2188 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2189 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2190 --vc->n_runnable; 2191 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2192 } 2193 2194 static int kvmppc_grab_hwthread(int cpu) 2195 { 2196 struct paca_struct *tpaca; 2197 long timeout = 10000; 2198 2199 tpaca = paca_ptrs[cpu]; 2200 2201 /* Ensure the thread won't go into the kernel if it wakes */ 2202 tpaca->kvm_hstate.kvm_vcpu = NULL; 2203 tpaca->kvm_hstate.kvm_vcore = NULL; 2204 tpaca->kvm_hstate.napping = 0; 2205 smp_wmb(); 2206 tpaca->kvm_hstate.hwthread_req = 1; 2207 2208 /* 2209 * If the thread is already executing in the kernel (e.g. handling 2210 * a stray interrupt), wait for it to get back to nap mode. 2211 * The smp_mb() is to ensure that our setting of hwthread_req 2212 * is visible before we look at hwthread_state, so if this 2213 * races with the code at system_reset_pSeries and the thread 2214 * misses our setting of hwthread_req, we are sure to see its 2215 * setting of hwthread_state, and vice versa. 2216 */ 2217 smp_mb(); 2218 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2219 if (--timeout <= 0) { 2220 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2221 return -EBUSY; 2222 } 2223 udelay(1); 2224 } 2225 return 0; 2226 } 2227 2228 static void kvmppc_release_hwthread(int cpu) 2229 { 2230 struct paca_struct *tpaca; 2231 2232 tpaca = paca_ptrs[cpu]; 2233 tpaca->kvm_hstate.hwthread_req = 0; 2234 tpaca->kvm_hstate.kvm_vcpu = NULL; 2235 tpaca->kvm_hstate.kvm_vcore = NULL; 2236 tpaca->kvm_hstate.kvm_split_mode = NULL; 2237 } 2238 2239 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2240 { 2241 int i; 2242 2243 cpu = cpu_first_thread_sibling(cpu); 2244 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2245 /* 2246 * Make sure setting of bit in need_tlb_flush precedes 2247 * testing of cpu_in_guest bits. The matching barrier on 2248 * the other side is the first smp_mb() in kvmppc_run_core(). 2249 */ 2250 smp_mb(); 2251 for (i = 0; i < threads_per_core; ++i) 2252 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest)) 2253 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2254 } 2255 2256 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2257 { 2258 struct kvm *kvm = vcpu->kvm; 2259 2260 /* 2261 * With radix, the guest can do TLB invalidations itself, 2262 * and it could choose to use the local form (tlbiel) if 2263 * it is invalidating a translation that has only ever been 2264 * used on one vcpu. However, that doesn't mean it has 2265 * only ever been used on one physical cpu, since vcpus 2266 * can move around between pcpus. To cope with this, when 2267 * a vcpu moves from one pcpu to another, we need to tell 2268 * any vcpus running on the same core as this vcpu previously 2269 * ran to flush the TLB. The TLB is shared between threads, 2270 * so we use a single bit in .need_tlb_flush for all 4 threads. 2271 */ 2272 if (vcpu->arch.prev_cpu != pcpu) { 2273 if (vcpu->arch.prev_cpu >= 0 && 2274 cpu_first_thread_sibling(vcpu->arch.prev_cpu) != 2275 cpu_first_thread_sibling(pcpu)) 2276 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu); 2277 vcpu->arch.prev_cpu = pcpu; 2278 } 2279 } 2280 2281 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2282 { 2283 int cpu; 2284 struct paca_struct *tpaca; 2285 struct kvm *kvm = vc->kvm; 2286 2287 cpu = vc->pcpu; 2288 if (vcpu) { 2289 if (vcpu->arch.timer_running) { 2290 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2291 vcpu->arch.timer_running = 0; 2292 } 2293 cpu += vcpu->arch.ptid; 2294 vcpu->cpu = vc->pcpu; 2295 vcpu->arch.thread_cpu = cpu; 2296 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2297 } 2298 tpaca = paca_ptrs[cpu]; 2299 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2300 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2301 tpaca->kvm_hstate.fake_suspend = 0; 2302 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2303 smp_wmb(); 2304 tpaca->kvm_hstate.kvm_vcore = vc; 2305 if (cpu != smp_processor_id()) 2306 kvmppc_ipi_thread(cpu); 2307 } 2308 2309 static void kvmppc_wait_for_nap(int n_threads) 2310 { 2311 int cpu = smp_processor_id(); 2312 int i, loops; 2313 2314 if (n_threads <= 1) 2315 return; 2316 for (loops = 0; loops < 1000000; ++loops) { 2317 /* 2318 * Check if all threads are finished. 2319 * We set the vcore pointer when starting a thread 2320 * and the thread clears it when finished, so we look 2321 * for any threads that still have a non-NULL vcore ptr. 2322 */ 2323 for (i = 1; i < n_threads; ++i) 2324 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2325 break; 2326 if (i == n_threads) { 2327 HMT_medium(); 2328 return; 2329 } 2330 HMT_low(); 2331 } 2332 HMT_medium(); 2333 for (i = 1; i < n_threads; ++i) 2334 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2335 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2336 } 2337 2338 /* 2339 * Check that we are on thread 0 and that any other threads in 2340 * this core are off-line. Then grab the threads so they can't 2341 * enter the kernel. 2342 */ 2343 static int on_primary_thread(void) 2344 { 2345 int cpu = smp_processor_id(); 2346 int thr; 2347 2348 /* Are we on a primary subcore? */ 2349 if (cpu_thread_in_subcore(cpu)) 2350 return 0; 2351 2352 thr = 0; 2353 while (++thr < threads_per_subcore) 2354 if (cpu_online(cpu + thr)) 2355 return 0; 2356 2357 /* Grab all hw threads so they can't go into the kernel */ 2358 for (thr = 1; thr < threads_per_subcore; ++thr) { 2359 if (kvmppc_grab_hwthread(cpu + thr)) { 2360 /* Couldn't grab one; let the others go */ 2361 do { 2362 kvmppc_release_hwthread(cpu + thr); 2363 } while (--thr > 0); 2364 return 0; 2365 } 2366 } 2367 return 1; 2368 } 2369 2370 /* 2371 * A list of virtual cores for each physical CPU. 2372 * These are vcores that could run but their runner VCPU tasks are 2373 * (or may be) preempted. 2374 */ 2375 struct preempted_vcore_list { 2376 struct list_head list; 2377 spinlock_t lock; 2378 }; 2379 2380 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2381 2382 static void init_vcore_lists(void) 2383 { 2384 int cpu; 2385 2386 for_each_possible_cpu(cpu) { 2387 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2388 spin_lock_init(&lp->lock); 2389 INIT_LIST_HEAD(&lp->list); 2390 } 2391 } 2392 2393 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2394 { 2395 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2396 2397 vc->vcore_state = VCORE_PREEMPT; 2398 vc->pcpu = smp_processor_id(); 2399 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2400 spin_lock(&lp->lock); 2401 list_add_tail(&vc->preempt_list, &lp->list); 2402 spin_unlock(&lp->lock); 2403 } 2404 2405 /* Start accumulating stolen time */ 2406 kvmppc_core_start_stolen(vc); 2407 } 2408 2409 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2410 { 2411 struct preempted_vcore_list *lp; 2412 2413 kvmppc_core_end_stolen(vc); 2414 if (!list_empty(&vc->preempt_list)) { 2415 lp = &per_cpu(preempted_vcores, vc->pcpu); 2416 spin_lock(&lp->lock); 2417 list_del_init(&vc->preempt_list); 2418 spin_unlock(&lp->lock); 2419 } 2420 vc->vcore_state = VCORE_INACTIVE; 2421 } 2422 2423 /* 2424 * This stores information about the virtual cores currently 2425 * assigned to a physical core. 2426 */ 2427 struct core_info { 2428 int n_subcores; 2429 int max_subcore_threads; 2430 int total_threads; 2431 int subcore_threads[MAX_SUBCORES]; 2432 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2433 }; 2434 2435 /* 2436 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2437 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2438 */ 2439 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2440 2441 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2442 { 2443 memset(cip, 0, sizeof(*cip)); 2444 cip->n_subcores = 1; 2445 cip->max_subcore_threads = vc->num_threads; 2446 cip->total_threads = vc->num_threads; 2447 cip->subcore_threads[0] = vc->num_threads; 2448 cip->vc[0] = vc; 2449 } 2450 2451 static bool subcore_config_ok(int n_subcores, int n_threads) 2452 { 2453 /* 2454 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 2455 * split-core mode, with one thread per subcore. 2456 */ 2457 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2458 return n_subcores <= 4 && n_threads == 1; 2459 2460 /* On POWER8, can only dynamically split if unsplit to begin with */ 2461 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2462 return false; 2463 if (n_subcores > MAX_SUBCORES) 2464 return false; 2465 if (n_subcores > 1) { 2466 if (!(dynamic_mt_modes & 2)) 2467 n_subcores = 4; 2468 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2469 return false; 2470 } 2471 2472 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2473 } 2474 2475 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2476 { 2477 vc->entry_exit_map = 0; 2478 vc->in_guest = 0; 2479 vc->napping_threads = 0; 2480 vc->conferring_threads = 0; 2481 vc->tb_offset_applied = 0; 2482 } 2483 2484 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2485 { 2486 int n_threads = vc->num_threads; 2487 int sub; 2488 2489 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2490 return false; 2491 2492 /* Some POWER9 chips require all threads to be in the same MMU mode */ 2493 if (no_mixing_hpt_and_radix && 2494 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm)) 2495 return false; 2496 2497 if (n_threads < cip->max_subcore_threads) 2498 n_threads = cip->max_subcore_threads; 2499 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2500 return false; 2501 cip->max_subcore_threads = n_threads; 2502 2503 sub = cip->n_subcores; 2504 ++cip->n_subcores; 2505 cip->total_threads += vc->num_threads; 2506 cip->subcore_threads[sub] = vc->num_threads; 2507 cip->vc[sub] = vc; 2508 init_vcore_to_run(vc); 2509 list_del_init(&vc->preempt_list); 2510 2511 return true; 2512 } 2513 2514 /* 2515 * Work out whether it is possible to piggyback the execution of 2516 * vcore *pvc onto the execution of the other vcores described in *cip. 2517 */ 2518 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2519 int target_threads) 2520 { 2521 if (cip->total_threads + pvc->num_threads > target_threads) 2522 return false; 2523 2524 return can_dynamic_split(pvc, cip); 2525 } 2526 2527 static void prepare_threads(struct kvmppc_vcore *vc) 2528 { 2529 int i; 2530 struct kvm_vcpu *vcpu; 2531 2532 for_each_runnable_thread(i, vcpu, vc) { 2533 if (signal_pending(vcpu->arch.run_task)) 2534 vcpu->arch.ret = -EINTR; 2535 else if (vcpu->arch.vpa.update_pending || 2536 vcpu->arch.slb_shadow.update_pending || 2537 vcpu->arch.dtl.update_pending) 2538 vcpu->arch.ret = RESUME_GUEST; 2539 else 2540 continue; 2541 kvmppc_remove_runnable(vc, vcpu); 2542 wake_up(&vcpu->arch.cpu_run); 2543 } 2544 } 2545 2546 static void collect_piggybacks(struct core_info *cip, int target_threads) 2547 { 2548 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2549 struct kvmppc_vcore *pvc, *vcnext; 2550 2551 spin_lock(&lp->lock); 2552 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2553 if (!spin_trylock(&pvc->lock)) 2554 continue; 2555 prepare_threads(pvc); 2556 if (!pvc->n_runnable) { 2557 list_del_init(&pvc->preempt_list); 2558 if (pvc->runner == NULL) { 2559 pvc->vcore_state = VCORE_INACTIVE; 2560 kvmppc_core_end_stolen(pvc); 2561 } 2562 spin_unlock(&pvc->lock); 2563 continue; 2564 } 2565 if (!can_piggyback(pvc, cip, target_threads)) { 2566 spin_unlock(&pvc->lock); 2567 continue; 2568 } 2569 kvmppc_core_end_stolen(pvc); 2570 pvc->vcore_state = VCORE_PIGGYBACK; 2571 if (cip->total_threads >= target_threads) 2572 break; 2573 } 2574 spin_unlock(&lp->lock); 2575 } 2576 2577 static bool recheck_signals(struct core_info *cip) 2578 { 2579 int sub, i; 2580 struct kvm_vcpu *vcpu; 2581 2582 for (sub = 0; sub < cip->n_subcores; ++sub) 2583 for_each_runnable_thread(i, vcpu, cip->vc[sub]) 2584 if (signal_pending(vcpu->arch.run_task)) 2585 return true; 2586 return false; 2587 } 2588 2589 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2590 { 2591 int still_running = 0, i; 2592 u64 now; 2593 long ret; 2594 struct kvm_vcpu *vcpu; 2595 2596 spin_lock(&vc->lock); 2597 now = get_tb(); 2598 for_each_runnable_thread(i, vcpu, vc) { 2599 /* cancel pending dec exception if dec is positive */ 2600 if (now < vcpu->arch.dec_expires && 2601 kvmppc_core_pending_dec(vcpu)) 2602 kvmppc_core_dequeue_dec(vcpu); 2603 2604 trace_kvm_guest_exit(vcpu); 2605 2606 ret = RESUME_GUEST; 2607 if (vcpu->arch.trap) 2608 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2609 vcpu->arch.run_task); 2610 2611 vcpu->arch.ret = ret; 2612 vcpu->arch.trap = 0; 2613 2614 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2615 if (vcpu->arch.pending_exceptions) 2616 kvmppc_core_prepare_to_enter(vcpu); 2617 if (vcpu->arch.ceded) 2618 kvmppc_set_timer(vcpu); 2619 else 2620 ++still_running; 2621 } else { 2622 kvmppc_remove_runnable(vc, vcpu); 2623 wake_up(&vcpu->arch.cpu_run); 2624 } 2625 } 2626 if (!is_master) { 2627 if (still_running > 0) { 2628 kvmppc_vcore_preempt(vc); 2629 } else if (vc->runner) { 2630 vc->vcore_state = VCORE_PREEMPT; 2631 kvmppc_core_start_stolen(vc); 2632 } else { 2633 vc->vcore_state = VCORE_INACTIVE; 2634 } 2635 if (vc->n_runnable > 0 && vc->runner == NULL) { 2636 /* make sure there's a candidate runner awake */ 2637 i = -1; 2638 vcpu = next_runnable_thread(vc, &i); 2639 wake_up(&vcpu->arch.cpu_run); 2640 } 2641 } 2642 spin_unlock(&vc->lock); 2643 } 2644 2645 /* 2646 * Clear core from the list of active host cores as we are about to 2647 * enter the guest. Only do this if it is the primary thread of the 2648 * core (not if a subcore) that is entering the guest. 2649 */ 2650 static inline int kvmppc_clear_host_core(unsigned int cpu) 2651 { 2652 int core; 2653 2654 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2655 return 0; 2656 /* 2657 * Memory barrier can be omitted here as we will do a smp_wmb() 2658 * later in kvmppc_start_thread and we need ensure that state is 2659 * visible to other CPUs only after we enter guest. 2660 */ 2661 core = cpu >> threads_shift; 2662 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2663 return 0; 2664 } 2665 2666 /* 2667 * Advertise this core as an active host core since we exited the guest 2668 * Only need to do this if it is the primary thread of the core that is 2669 * exiting. 2670 */ 2671 static inline int kvmppc_set_host_core(unsigned int cpu) 2672 { 2673 int core; 2674 2675 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2676 return 0; 2677 2678 /* 2679 * Memory barrier can be omitted here because we do a spin_unlock 2680 * immediately after this which provides the memory barrier. 2681 */ 2682 core = cpu >> threads_shift; 2683 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 2684 return 0; 2685 } 2686 2687 static void set_irq_happened(int trap) 2688 { 2689 switch (trap) { 2690 case BOOK3S_INTERRUPT_EXTERNAL: 2691 local_paca->irq_happened |= PACA_IRQ_EE; 2692 break; 2693 case BOOK3S_INTERRUPT_H_DOORBELL: 2694 local_paca->irq_happened |= PACA_IRQ_DBELL; 2695 break; 2696 case BOOK3S_INTERRUPT_HMI: 2697 local_paca->irq_happened |= PACA_IRQ_HMI; 2698 break; 2699 case BOOK3S_INTERRUPT_SYSTEM_RESET: 2700 replay_system_reset(); 2701 break; 2702 } 2703 } 2704 2705 /* 2706 * Run a set of guest threads on a physical core. 2707 * Called with vc->lock held. 2708 */ 2709 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 2710 { 2711 struct kvm_vcpu *vcpu; 2712 int i; 2713 int srcu_idx; 2714 struct core_info core_info; 2715 struct kvmppc_vcore *pvc; 2716 struct kvm_split_mode split_info, *sip; 2717 int split, subcore_size, active; 2718 int sub; 2719 bool thr0_done; 2720 unsigned long cmd_bit, stat_bit; 2721 int pcpu, thr; 2722 int target_threads; 2723 int controlled_threads; 2724 int trap; 2725 bool is_power8; 2726 bool hpt_on_radix; 2727 2728 /* 2729 * Remove from the list any threads that have a signal pending 2730 * or need a VPA update done 2731 */ 2732 prepare_threads(vc); 2733 2734 /* if the runner is no longer runnable, let the caller pick a new one */ 2735 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 2736 return; 2737 2738 /* 2739 * Initialize *vc. 2740 */ 2741 init_vcore_to_run(vc); 2742 vc->preempt_tb = TB_NIL; 2743 2744 /* 2745 * Number of threads that we will be controlling: the same as 2746 * the number of threads per subcore, except on POWER9, 2747 * where it's 1 because the threads are (mostly) independent. 2748 */ 2749 controlled_threads = threads_per_vcore(vc->kvm); 2750 2751 /* 2752 * Make sure we are running on primary threads, and that secondary 2753 * threads are offline. Also check if the number of threads in this 2754 * guest are greater than the current system threads per guest. 2755 * On POWER9, we need to be not in independent-threads mode if 2756 * this is a HPT guest on a radix host machine where the 2757 * CPU threads may not be in different MMU modes. 2758 */ 2759 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() && 2760 !kvm_is_radix(vc->kvm); 2761 if (((controlled_threads > 1) && 2762 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) || 2763 (hpt_on_radix && vc->kvm->arch.threads_indep)) { 2764 for_each_runnable_thread(i, vcpu, vc) { 2765 vcpu->arch.ret = -EBUSY; 2766 kvmppc_remove_runnable(vc, vcpu); 2767 wake_up(&vcpu->arch.cpu_run); 2768 } 2769 goto out; 2770 } 2771 2772 /* 2773 * See if we could run any other vcores on the physical core 2774 * along with this one. 2775 */ 2776 init_core_info(&core_info, vc); 2777 pcpu = smp_processor_id(); 2778 target_threads = controlled_threads; 2779 if (target_smt_mode && target_smt_mode < target_threads) 2780 target_threads = target_smt_mode; 2781 if (vc->num_threads < target_threads) 2782 collect_piggybacks(&core_info, target_threads); 2783 2784 /* 2785 * On radix, arrange for TLB flushing if necessary. 2786 * This has to be done before disabling interrupts since 2787 * it uses smp_call_function(). 2788 */ 2789 pcpu = smp_processor_id(); 2790 if (kvm_is_radix(vc->kvm)) { 2791 for (sub = 0; sub < core_info.n_subcores; ++sub) 2792 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 2793 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 2794 } 2795 2796 /* 2797 * Hard-disable interrupts, and check resched flag and signals. 2798 * If we need to reschedule or deliver a signal, clean up 2799 * and return without going into the guest(s). 2800 * If the mmu_ready flag has been cleared, don't go into the 2801 * guest because that means a HPT resize operation is in progress. 2802 */ 2803 local_irq_disable(); 2804 hard_irq_disable(); 2805 if (lazy_irq_pending() || need_resched() || 2806 recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) { 2807 local_irq_enable(); 2808 vc->vcore_state = VCORE_INACTIVE; 2809 /* Unlock all except the primary vcore */ 2810 for (sub = 1; sub < core_info.n_subcores; ++sub) { 2811 pvc = core_info.vc[sub]; 2812 /* Put back on to the preempted vcores list */ 2813 kvmppc_vcore_preempt(pvc); 2814 spin_unlock(&pvc->lock); 2815 } 2816 for (i = 0; i < controlled_threads; ++i) 2817 kvmppc_release_hwthread(pcpu + i); 2818 return; 2819 } 2820 2821 kvmppc_clear_host_core(pcpu); 2822 2823 /* Decide on micro-threading (split-core) mode */ 2824 subcore_size = threads_per_subcore; 2825 cmd_bit = stat_bit = 0; 2826 split = core_info.n_subcores; 2827 sip = NULL; 2828 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 2829 && !cpu_has_feature(CPU_FTR_ARCH_300); 2830 2831 if (split > 1 || hpt_on_radix) { 2832 sip = &split_info; 2833 memset(&split_info, 0, sizeof(split_info)); 2834 for (sub = 0; sub < core_info.n_subcores; ++sub) 2835 split_info.vc[sub] = core_info.vc[sub]; 2836 2837 if (is_power8) { 2838 if (split == 2 && (dynamic_mt_modes & 2)) { 2839 cmd_bit = HID0_POWER8_1TO2LPAR; 2840 stat_bit = HID0_POWER8_2LPARMODE; 2841 } else { 2842 split = 4; 2843 cmd_bit = HID0_POWER8_1TO4LPAR; 2844 stat_bit = HID0_POWER8_4LPARMODE; 2845 } 2846 subcore_size = MAX_SMT_THREADS / split; 2847 split_info.rpr = mfspr(SPRN_RPR); 2848 split_info.pmmar = mfspr(SPRN_PMMAR); 2849 split_info.ldbar = mfspr(SPRN_LDBAR); 2850 split_info.subcore_size = subcore_size; 2851 } else { 2852 split_info.subcore_size = 1; 2853 if (hpt_on_radix) { 2854 /* Use the split_info for LPCR/LPIDR changes */ 2855 split_info.lpcr_req = vc->lpcr; 2856 split_info.lpidr_req = vc->kvm->arch.lpid; 2857 split_info.host_lpcr = vc->kvm->arch.host_lpcr; 2858 split_info.do_set = 1; 2859 } 2860 } 2861 2862 /* order writes to split_info before kvm_split_mode pointer */ 2863 smp_wmb(); 2864 } 2865 2866 for (thr = 0; thr < controlled_threads; ++thr) { 2867 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 2868 2869 paca->kvm_hstate.tid = thr; 2870 paca->kvm_hstate.napping = 0; 2871 paca->kvm_hstate.kvm_split_mode = sip; 2872 } 2873 2874 /* Initiate micro-threading (split-core) on POWER8 if required */ 2875 if (cmd_bit) { 2876 unsigned long hid0 = mfspr(SPRN_HID0); 2877 2878 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 2879 mb(); 2880 mtspr(SPRN_HID0, hid0); 2881 isync(); 2882 for (;;) { 2883 hid0 = mfspr(SPRN_HID0); 2884 if (hid0 & stat_bit) 2885 break; 2886 cpu_relax(); 2887 } 2888 } 2889 2890 /* 2891 * On POWER8, set RWMR register. 2892 * Since it only affects PURR and SPURR, it doesn't affect 2893 * the host, so we don't save/restore the host value. 2894 */ 2895 if (is_power8) { 2896 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 2897 int n_online = atomic_read(&vc->online_count); 2898 2899 /* 2900 * Use the 8-thread value if we're doing split-core 2901 * or if the vcore's online count looks bogus. 2902 */ 2903 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 2904 n_online >= 1 && n_online <= MAX_SMT_THREADS) 2905 rwmr_val = p8_rwmr_values[n_online]; 2906 mtspr(SPRN_RWMR, rwmr_val); 2907 } 2908 2909 /* Start all the threads */ 2910 active = 0; 2911 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2912 thr = is_power8 ? subcore_thread_map[sub] : sub; 2913 thr0_done = false; 2914 active |= 1 << thr; 2915 pvc = core_info.vc[sub]; 2916 pvc->pcpu = pcpu + thr; 2917 for_each_runnable_thread(i, vcpu, pvc) { 2918 kvmppc_start_thread(vcpu, pvc); 2919 kvmppc_create_dtl_entry(vcpu, pvc); 2920 trace_kvm_guest_enter(vcpu); 2921 if (!vcpu->arch.ptid) 2922 thr0_done = true; 2923 active |= 1 << (thr + vcpu->arch.ptid); 2924 } 2925 /* 2926 * We need to start the first thread of each subcore 2927 * even if it doesn't have a vcpu. 2928 */ 2929 if (!thr0_done) 2930 kvmppc_start_thread(NULL, pvc); 2931 } 2932 2933 /* 2934 * Ensure that split_info.do_nap is set after setting 2935 * the vcore pointer in the PACA of the secondaries. 2936 */ 2937 smp_mb(); 2938 2939 /* 2940 * When doing micro-threading, poke the inactive threads as well. 2941 * This gets them to the nap instruction after kvm_do_nap, 2942 * which reduces the time taken to unsplit later. 2943 * For POWER9 HPT guest on radix host, we need all the secondary 2944 * threads woken up so they can do the LPCR/LPIDR change. 2945 */ 2946 if (cmd_bit || hpt_on_radix) { 2947 split_info.do_nap = 1; /* ask secondaries to nap when done */ 2948 for (thr = 1; thr < threads_per_subcore; ++thr) 2949 if (!(active & (1 << thr))) 2950 kvmppc_ipi_thread(pcpu + thr); 2951 } 2952 2953 vc->vcore_state = VCORE_RUNNING; 2954 preempt_disable(); 2955 2956 trace_kvmppc_run_core(vc, 0); 2957 2958 for (sub = 0; sub < core_info.n_subcores; ++sub) 2959 spin_unlock(&core_info.vc[sub]->lock); 2960 2961 if (kvm_is_radix(vc->kvm)) { 2962 int tmp = pcpu; 2963 2964 /* 2965 * Do we need to flush the process scoped TLB for the LPAR? 2966 * 2967 * On POWER9, individual threads can come in here, but the 2968 * TLB is shared between the 4 threads in a core, hence 2969 * invalidating on one thread invalidates for all. 2970 * Thus we make all 4 threads use the same bit here. 2971 * 2972 * Hash must be flushed in realmode in order to use tlbiel. 2973 */ 2974 mtspr(SPRN_LPID, vc->kvm->arch.lpid); 2975 isync(); 2976 2977 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2978 tmp &= ~0x3UL; 2979 2980 if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) { 2981 radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid); 2982 /* Clear the bit after the TLB flush */ 2983 cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush); 2984 } 2985 } 2986 2987 /* 2988 * Interrupts will be enabled once we get into the guest, 2989 * so tell lockdep that we're about to enable interrupts. 2990 */ 2991 trace_hardirqs_on(); 2992 2993 guest_enter_irqoff(); 2994 2995 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 2996 2997 this_cpu_disable_ftrace(); 2998 2999 trap = __kvmppc_vcore_entry(); 3000 3001 this_cpu_enable_ftrace(); 3002 3003 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3004 3005 trace_hardirqs_off(); 3006 set_irq_happened(trap); 3007 3008 spin_lock(&vc->lock); 3009 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3010 vc->vcore_state = VCORE_EXITING; 3011 3012 /* wait for secondary threads to finish writing their state to memory */ 3013 kvmppc_wait_for_nap(controlled_threads); 3014 3015 /* Return to whole-core mode if we split the core earlier */ 3016 if (cmd_bit) { 3017 unsigned long hid0 = mfspr(SPRN_HID0); 3018 unsigned long loops = 0; 3019 3020 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3021 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3022 mb(); 3023 mtspr(SPRN_HID0, hid0); 3024 isync(); 3025 for (;;) { 3026 hid0 = mfspr(SPRN_HID0); 3027 if (!(hid0 & stat_bit)) 3028 break; 3029 cpu_relax(); 3030 ++loops; 3031 } 3032 } else if (hpt_on_radix) { 3033 /* Wait for all threads to have seen final sync */ 3034 for (thr = 1; thr < controlled_threads; ++thr) { 3035 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3036 3037 while (paca->kvm_hstate.kvm_split_mode) { 3038 HMT_low(); 3039 barrier(); 3040 } 3041 HMT_medium(); 3042 } 3043 } 3044 split_info.do_nap = 0; 3045 3046 kvmppc_set_host_core(pcpu); 3047 3048 local_irq_enable(); 3049 guest_exit(); 3050 3051 /* Let secondaries go back to the offline loop */ 3052 for (i = 0; i < controlled_threads; ++i) { 3053 kvmppc_release_hwthread(pcpu + i); 3054 if (sip && sip->napped[i]) 3055 kvmppc_ipi_thread(pcpu + i); 3056 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 3057 } 3058 3059 spin_unlock(&vc->lock); 3060 3061 /* make sure updates to secondary vcpu structs are visible now */ 3062 smp_mb(); 3063 3064 preempt_enable(); 3065 3066 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3067 pvc = core_info.vc[sub]; 3068 post_guest_process(pvc, pvc == vc); 3069 } 3070 3071 spin_lock(&vc->lock); 3072 3073 out: 3074 vc->vcore_state = VCORE_INACTIVE; 3075 trace_kvmppc_run_core(vc, 1); 3076 } 3077 3078 /* 3079 * Wait for some other vcpu thread to execute us, and 3080 * wake us up when we need to handle something in the host. 3081 */ 3082 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 3083 struct kvm_vcpu *vcpu, int wait_state) 3084 { 3085 DEFINE_WAIT(wait); 3086 3087 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 3088 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3089 spin_unlock(&vc->lock); 3090 schedule(); 3091 spin_lock(&vc->lock); 3092 } 3093 finish_wait(&vcpu->arch.cpu_run, &wait); 3094 } 3095 3096 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 3097 { 3098 /* 10us base */ 3099 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow) 3100 vc->halt_poll_ns = 10000; 3101 else 3102 vc->halt_poll_ns *= halt_poll_ns_grow; 3103 } 3104 3105 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 3106 { 3107 if (halt_poll_ns_shrink == 0) 3108 vc->halt_poll_ns = 0; 3109 else 3110 vc->halt_poll_ns /= halt_poll_ns_shrink; 3111 } 3112 3113 #ifdef CONFIG_KVM_XICS 3114 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3115 { 3116 if (!xive_enabled()) 3117 return false; 3118 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 3119 vcpu->arch.xive_saved_state.cppr; 3120 } 3121 #else 3122 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3123 { 3124 return false; 3125 } 3126 #endif /* CONFIG_KVM_XICS */ 3127 3128 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3129 { 3130 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3131 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3132 return true; 3133 3134 return false; 3135 } 3136 3137 /* 3138 * Check to see if any of the runnable vcpus on the vcore have pending 3139 * exceptions or are no longer ceded 3140 */ 3141 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3142 { 3143 struct kvm_vcpu *vcpu; 3144 int i; 3145 3146 for_each_runnable_thread(i, vcpu, vc) { 3147 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3148 return 1; 3149 } 3150 3151 return 0; 3152 } 3153 3154 /* 3155 * All the vcpus in this vcore are idle, so wait for a decrementer 3156 * or external interrupt to one of the vcpus. vc->lock is held. 3157 */ 3158 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3159 { 3160 ktime_t cur, start_poll, start_wait; 3161 int do_sleep = 1; 3162 u64 block_ns; 3163 DECLARE_SWAITQUEUE(wait); 3164 3165 /* Poll for pending exceptions and ceded state */ 3166 cur = start_poll = ktime_get(); 3167 if (vc->halt_poll_ns) { 3168 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3169 ++vc->runner->stat.halt_attempted_poll; 3170 3171 vc->vcore_state = VCORE_POLLING; 3172 spin_unlock(&vc->lock); 3173 3174 do { 3175 if (kvmppc_vcore_check_block(vc)) { 3176 do_sleep = 0; 3177 break; 3178 } 3179 cur = ktime_get(); 3180 } while (single_task_running() && ktime_before(cur, stop)); 3181 3182 spin_lock(&vc->lock); 3183 vc->vcore_state = VCORE_INACTIVE; 3184 3185 if (!do_sleep) { 3186 ++vc->runner->stat.halt_successful_poll; 3187 goto out; 3188 } 3189 } 3190 3191 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 3192 3193 if (kvmppc_vcore_check_block(vc)) { 3194 finish_swait(&vc->wq, &wait); 3195 do_sleep = 0; 3196 /* If we polled, count this as a successful poll */ 3197 if (vc->halt_poll_ns) 3198 ++vc->runner->stat.halt_successful_poll; 3199 goto out; 3200 } 3201 3202 start_wait = ktime_get(); 3203 3204 vc->vcore_state = VCORE_SLEEPING; 3205 trace_kvmppc_vcore_blocked(vc, 0); 3206 spin_unlock(&vc->lock); 3207 schedule(); 3208 finish_swait(&vc->wq, &wait); 3209 spin_lock(&vc->lock); 3210 vc->vcore_state = VCORE_INACTIVE; 3211 trace_kvmppc_vcore_blocked(vc, 1); 3212 ++vc->runner->stat.halt_successful_wait; 3213 3214 cur = ktime_get(); 3215 3216 out: 3217 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3218 3219 /* Attribute wait time */ 3220 if (do_sleep) { 3221 vc->runner->stat.halt_wait_ns += 3222 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3223 /* Attribute failed poll time */ 3224 if (vc->halt_poll_ns) 3225 vc->runner->stat.halt_poll_fail_ns += 3226 ktime_to_ns(start_wait) - 3227 ktime_to_ns(start_poll); 3228 } else { 3229 /* Attribute successful poll time */ 3230 if (vc->halt_poll_ns) 3231 vc->runner->stat.halt_poll_success_ns += 3232 ktime_to_ns(cur) - 3233 ktime_to_ns(start_poll); 3234 } 3235 3236 /* Adjust poll time */ 3237 if (halt_poll_ns) { 3238 if (block_ns <= vc->halt_poll_ns) 3239 ; 3240 /* We slept and blocked for longer than the max halt time */ 3241 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3242 shrink_halt_poll_ns(vc); 3243 /* We slept and our poll time is too small */ 3244 else if (vc->halt_poll_ns < halt_poll_ns && 3245 block_ns < halt_poll_ns) 3246 grow_halt_poll_ns(vc); 3247 if (vc->halt_poll_ns > halt_poll_ns) 3248 vc->halt_poll_ns = halt_poll_ns; 3249 } else 3250 vc->halt_poll_ns = 0; 3251 3252 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3253 } 3254 3255 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 3256 { 3257 int r = 0; 3258 struct kvm *kvm = vcpu->kvm; 3259 3260 mutex_lock(&kvm->lock); 3261 if (!kvm->arch.mmu_ready) { 3262 if (!kvm_is_radix(kvm)) 3263 r = kvmppc_hv_setup_htab_rma(vcpu); 3264 if (!r) { 3265 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3266 kvmppc_setup_partition_table(kvm); 3267 kvm->arch.mmu_ready = 1; 3268 } 3269 } 3270 mutex_unlock(&kvm->lock); 3271 return r; 3272 } 3273 3274 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 3275 { 3276 int n_ceded, i, r; 3277 struct kvmppc_vcore *vc; 3278 struct kvm_vcpu *v; 3279 3280 trace_kvmppc_run_vcpu_enter(vcpu); 3281 3282 kvm_run->exit_reason = 0; 3283 vcpu->arch.ret = RESUME_GUEST; 3284 vcpu->arch.trap = 0; 3285 kvmppc_update_vpas(vcpu); 3286 3287 /* 3288 * Synchronize with other threads in this virtual core 3289 */ 3290 vc = vcpu->arch.vcore; 3291 spin_lock(&vc->lock); 3292 vcpu->arch.ceded = 0; 3293 vcpu->arch.run_task = current; 3294 vcpu->arch.kvm_run = kvm_run; 3295 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3296 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3297 vcpu->arch.busy_preempt = TB_NIL; 3298 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 3299 ++vc->n_runnable; 3300 3301 /* 3302 * This happens the first time this is called for a vcpu. 3303 * If the vcore is already running, we may be able to start 3304 * this thread straight away and have it join in. 3305 */ 3306 if (!signal_pending(current)) { 3307 if ((vc->vcore_state == VCORE_PIGGYBACK || 3308 vc->vcore_state == VCORE_RUNNING) && 3309 !VCORE_IS_EXITING(vc)) { 3310 kvmppc_create_dtl_entry(vcpu, vc); 3311 kvmppc_start_thread(vcpu, vc); 3312 trace_kvm_guest_enter(vcpu); 3313 } else if (vc->vcore_state == VCORE_SLEEPING) { 3314 swake_up(&vc->wq); 3315 } 3316 3317 } 3318 3319 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3320 !signal_pending(current)) { 3321 /* See if the MMU is ready to go */ 3322 if (!vcpu->kvm->arch.mmu_ready) { 3323 spin_unlock(&vc->lock); 3324 r = kvmhv_setup_mmu(vcpu); 3325 spin_lock(&vc->lock); 3326 if (r) { 3327 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3328 kvm_run->fail_entry. 3329 hardware_entry_failure_reason = 0; 3330 vcpu->arch.ret = r; 3331 break; 3332 } 3333 } 3334 3335 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3336 kvmppc_vcore_end_preempt(vc); 3337 3338 if (vc->vcore_state != VCORE_INACTIVE) { 3339 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 3340 continue; 3341 } 3342 for_each_runnable_thread(i, v, vc) { 3343 kvmppc_core_prepare_to_enter(v); 3344 if (signal_pending(v->arch.run_task)) { 3345 kvmppc_remove_runnable(vc, v); 3346 v->stat.signal_exits++; 3347 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 3348 v->arch.ret = -EINTR; 3349 wake_up(&v->arch.cpu_run); 3350 } 3351 } 3352 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3353 break; 3354 n_ceded = 0; 3355 for_each_runnable_thread(i, v, vc) { 3356 if (!kvmppc_vcpu_woken(v)) 3357 n_ceded += v->arch.ceded; 3358 else 3359 v->arch.ceded = 0; 3360 } 3361 vc->runner = vcpu; 3362 if (n_ceded == vc->n_runnable) { 3363 kvmppc_vcore_blocked(vc); 3364 } else if (need_resched()) { 3365 kvmppc_vcore_preempt(vc); 3366 /* Let something else run */ 3367 cond_resched_lock(&vc->lock); 3368 if (vc->vcore_state == VCORE_PREEMPT) 3369 kvmppc_vcore_end_preempt(vc); 3370 } else { 3371 kvmppc_run_core(vc); 3372 } 3373 vc->runner = NULL; 3374 } 3375 3376 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3377 (vc->vcore_state == VCORE_RUNNING || 3378 vc->vcore_state == VCORE_EXITING || 3379 vc->vcore_state == VCORE_PIGGYBACK)) 3380 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 3381 3382 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3383 kvmppc_vcore_end_preempt(vc); 3384 3385 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3386 kvmppc_remove_runnable(vc, vcpu); 3387 vcpu->stat.signal_exits++; 3388 kvm_run->exit_reason = KVM_EXIT_INTR; 3389 vcpu->arch.ret = -EINTR; 3390 } 3391 3392 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 3393 /* Wake up some vcpu to run the core */ 3394 i = -1; 3395 v = next_runnable_thread(vc, &i); 3396 wake_up(&v->arch.cpu_run); 3397 } 3398 3399 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 3400 spin_unlock(&vc->lock); 3401 return vcpu->arch.ret; 3402 } 3403 3404 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 3405 { 3406 int r; 3407 int srcu_idx; 3408 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 3409 unsigned long user_tar = 0; 3410 unsigned int user_vrsave; 3411 struct kvm *kvm; 3412 3413 if (!vcpu->arch.sane) { 3414 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3415 return -EINVAL; 3416 } 3417 3418 /* 3419 * Don't allow entry with a suspended transaction, because 3420 * the guest entry/exit code will lose it. 3421 * If the guest has TM enabled, save away their TM-related SPRs 3422 * (they will get restored by the TM unavailable interrupt). 3423 */ 3424 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 3425 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 3426 (current->thread.regs->msr & MSR_TM)) { 3427 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 3428 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3429 run->fail_entry.hardware_entry_failure_reason = 0; 3430 return -EINVAL; 3431 } 3432 /* Enable TM so we can read the TM SPRs */ 3433 mtmsr(mfmsr() | MSR_TM); 3434 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 3435 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 3436 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 3437 current->thread.regs->msr &= ~MSR_TM; 3438 } 3439 #endif 3440 3441 /* 3442 * Force online to 1 for the sake of old userspace which doesn't 3443 * set it. 3444 */ 3445 if (!vcpu->arch.online) { 3446 atomic_inc(&vcpu->arch.vcore->online_count); 3447 vcpu->arch.online = 1; 3448 } 3449 3450 kvmppc_core_prepare_to_enter(vcpu); 3451 3452 /* No need to go into the guest when all we'll do is come back out */ 3453 if (signal_pending(current)) { 3454 run->exit_reason = KVM_EXIT_INTR; 3455 return -EINTR; 3456 } 3457 3458 kvm = vcpu->kvm; 3459 atomic_inc(&kvm->arch.vcpus_running); 3460 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 3461 smp_mb(); 3462 3463 flush_all_to_thread(current); 3464 3465 /* Save userspace EBB and other register values */ 3466 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 3467 ebb_regs[0] = mfspr(SPRN_EBBHR); 3468 ebb_regs[1] = mfspr(SPRN_EBBRR); 3469 ebb_regs[2] = mfspr(SPRN_BESCR); 3470 user_tar = mfspr(SPRN_TAR); 3471 } 3472 user_vrsave = mfspr(SPRN_VRSAVE); 3473 3474 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 3475 vcpu->arch.pgdir = current->mm->pgd; 3476 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 3477 3478 do { 3479 r = kvmppc_run_vcpu(run, vcpu); 3480 3481 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 3482 !(vcpu->arch.shregs.msr & MSR_PR)) { 3483 trace_kvm_hcall_enter(vcpu); 3484 r = kvmppc_pseries_do_hcall(vcpu); 3485 trace_kvm_hcall_exit(vcpu, r); 3486 kvmppc_core_prepare_to_enter(vcpu); 3487 } else if (r == RESUME_PAGE_FAULT) { 3488 srcu_idx = srcu_read_lock(&kvm->srcu); 3489 r = kvmppc_book3s_hv_page_fault(run, vcpu, 3490 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 3491 srcu_read_unlock(&kvm->srcu, srcu_idx); 3492 } else if (r == RESUME_PASSTHROUGH) { 3493 if (WARN_ON(xive_enabled())) 3494 r = H_SUCCESS; 3495 else 3496 r = kvmppc_xics_rm_complete(vcpu, 0); 3497 } 3498 } while (is_kvmppc_resume_guest(r)); 3499 3500 /* Restore userspace EBB and other register values */ 3501 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 3502 mtspr(SPRN_EBBHR, ebb_regs[0]); 3503 mtspr(SPRN_EBBRR, ebb_regs[1]); 3504 mtspr(SPRN_BESCR, ebb_regs[2]); 3505 mtspr(SPRN_TAR, user_tar); 3506 mtspr(SPRN_FSCR, current->thread.fscr); 3507 } 3508 mtspr(SPRN_VRSAVE, user_vrsave); 3509 3510 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 3511 atomic_dec(&kvm->arch.vcpus_running); 3512 return r; 3513 } 3514 3515 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 3516 int shift, int sllp) 3517 { 3518 (*sps)->page_shift = shift; 3519 (*sps)->slb_enc = sllp; 3520 (*sps)->enc[0].page_shift = shift; 3521 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 3522 /* 3523 * Add 16MB MPSS support (may get filtered out by userspace) 3524 */ 3525 if (shift != 24) { 3526 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 3527 if (penc != -1) { 3528 (*sps)->enc[1].page_shift = 24; 3529 (*sps)->enc[1].pte_enc = penc; 3530 } 3531 } 3532 (*sps)++; 3533 } 3534 3535 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 3536 struct kvm_ppc_smmu_info *info) 3537 { 3538 struct kvm_ppc_one_seg_page_size *sps; 3539 3540 /* 3541 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 3542 * POWER7 doesn't support keys for instruction accesses, 3543 * POWER8 and POWER9 do. 3544 */ 3545 info->data_keys = 32; 3546 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 3547 3548 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 3549 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 3550 info->slb_size = 32; 3551 3552 /* We only support these sizes for now, and no muti-size segments */ 3553 sps = &info->sps[0]; 3554 kvmppc_add_seg_page_size(&sps, 12, 0); 3555 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 3556 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 3557 3558 return 0; 3559 } 3560 3561 /* 3562 * Get (and clear) the dirty memory log for a memory slot. 3563 */ 3564 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 3565 struct kvm_dirty_log *log) 3566 { 3567 struct kvm_memslots *slots; 3568 struct kvm_memory_slot *memslot; 3569 int i, r; 3570 unsigned long n; 3571 unsigned long *buf, *p; 3572 struct kvm_vcpu *vcpu; 3573 3574 mutex_lock(&kvm->slots_lock); 3575 3576 r = -EINVAL; 3577 if (log->slot >= KVM_USER_MEM_SLOTS) 3578 goto out; 3579 3580 slots = kvm_memslots(kvm); 3581 memslot = id_to_memslot(slots, log->slot); 3582 r = -ENOENT; 3583 if (!memslot->dirty_bitmap) 3584 goto out; 3585 3586 /* 3587 * Use second half of bitmap area because both HPT and radix 3588 * accumulate bits in the first half. 3589 */ 3590 n = kvm_dirty_bitmap_bytes(memslot); 3591 buf = memslot->dirty_bitmap + n / sizeof(long); 3592 memset(buf, 0, n); 3593 3594 if (kvm_is_radix(kvm)) 3595 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 3596 else 3597 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 3598 if (r) 3599 goto out; 3600 3601 /* 3602 * We accumulate dirty bits in the first half of the 3603 * memslot's dirty_bitmap area, for when pages are paged 3604 * out or modified by the host directly. Pick up these 3605 * bits and add them to the map. 3606 */ 3607 p = memslot->dirty_bitmap; 3608 for (i = 0; i < n / sizeof(long); ++i) 3609 buf[i] |= xchg(&p[i], 0); 3610 3611 /* Harvest dirty bits from VPA and DTL updates */ 3612 /* Note: we never modify the SLB shadow buffer areas */ 3613 kvm_for_each_vcpu(i, vcpu, kvm) { 3614 spin_lock(&vcpu->arch.vpa_update_lock); 3615 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 3616 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 3617 spin_unlock(&vcpu->arch.vpa_update_lock); 3618 } 3619 3620 r = -EFAULT; 3621 if (copy_to_user(log->dirty_bitmap, buf, n)) 3622 goto out; 3623 3624 r = 0; 3625 out: 3626 mutex_unlock(&kvm->slots_lock); 3627 return r; 3628 } 3629 3630 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 3631 struct kvm_memory_slot *dont) 3632 { 3633 if (!dont || free->arch.rmap != dont->arch.rmap) { 3634 vfree(free->arch.rmap); 3635 free->arch.rmap = NULL; 3636 } 3637 } 3638 3639 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 3640 unsigned long npages) 3641 { 3642 slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap))); 3643 if (!slot->arch.rmap) 3644 return -ENOMEM; 3645 3646 return 0; 3647 } 3648 3649 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 3650 struct kvm_memory_slot *memslot, 3651 const struct kvm_userspace_memory_region *mem) 3652 { 3653 return 0; 3654 } 3655 3656 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 3657 const struct kvm_userspace_memory_region *mem, 3658 const struct kvm_memory_slot *old, 3659 const struct kvm_memory_slot *new) 3660 { 3661 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 3662 3663 /* 3664 * If we are making a new memslot, it might make 3665 * some address that was previously cached as emulated 3666 * MMIO be no longer emulated MMIO, so invalidate 3667 * all the caches of emulated MMIO translations. 3668 */ 3669 if (npages) 3670 atomic64_inc(&kvm->arch.mmio_update); 3671 } 3672 3673 /* 3674 * Update LPCR values in kvm->arch and in vcores. 3675 * Caller must hold kvm->lock. 3676 */ 3677 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 3678 { 3679 long int i; 3680 u32 cores_done = 0; 3681 3682 if ((kvm->arch.lpcr & mask) == lpcr) 3683 return; 3684 3685 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 3686 3687 for (i = 0; i < KVM_MAX_VCORES; ++i) { 3688 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 3689 if (!vc) 3690 continue; 3691 spin_lock(&vc->lock); 3692 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 3693 spin_unlock(&vc->lock); 3694 if (++cores_done >= kvm->arch.online_vcores) 3695 break; 3696 } 3697 } 3698 3699 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 3700 { 3701 return; 3702 } 3703 3704 void kvmppc_setup_partition_table(struct kvm *kvm) 3705 { 3706 unsigned long dw0, dw1; 3707 3708 if (!kvm_is_radix(kvm)) { 3709 /* PS field - page size for VRMA */ 3710 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 3711 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 3712 /* HTABSIZE and HTABORG fields */ 3713 dw0 |= kvm->arch.sdr1; 3714 3715 /* Second dword as set by userspace */ 3716 dw1 = kvm->arch.process_table; 3717 } else { 3718 dw0 = PATB_HR | radix__get_tree_size() | 3719 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 3720 dw1 = PATB_GR | kvm->arch.process_table; 3721 } 3722 3723 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1); 3724 } 3725 3726 /* 3727 * Set up HPT (hashed page table) and RMA (real-mode area). 3728 * Must be called with kvm->lock held. 3729 */ 3730 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 3731 { 3732 int err = 0; 3733 struct kvm *kvm = vcpu->kvm; 3734 unsigned long hva; 3735 struct kvm_memory_slot *memslot; 3736 struct vm_area_struct *vma; 3737 unsigned long lpcr = 0, senc; 3738 unsigned long psize, porder; 3739 int srcu_idx; 3740 3741 /* Allocate hashed page table (if not done already) and reset it */ 3742 if (!kvm->arch.hpt.virt) { 3743 int order = KVM_DEFAULT_HPT_ORDER; 3744 struct kvm_hpt_info info; 3745 3746 err = kvmppc_allocate_hpt(&info, order); 3747 /* If we get here, it means userspace didn't specify a 3748 * size explicitly. So, try successively smaller 3749 * sizes if the default failed. */ 3750 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 3751 err = kvmppc_allocate_hpt(&info, order); 3752 3753 if (err < 0) { 3754 pr_err("KVM: Couldn't alloc HPT\n"); 3755 goto out; 3756 } 3757 3758 kvmppc_set_hpt(kvm, &info); 3759 } 3760 3761 /* Look up the memslot for guest physical address 0 */ 3762 srcu_idx = srcu_read_lock(&kvm->srcu); 3763 memslot = gfn_to_memslot(kvm, 0); 3764 3765 /* We must have some memory at 0 by now */ 3766 err = -EINVAL; 3767 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 3768 goto out_srcu; 3769 3770 /* Look up the VMA for the start of this memory slot */ 3771 hva = memslot->userspace_addr; 3772 down_read(¤t->mm->mmap_sem); 3773 vma = find_vma(current->mm, hva); 3774 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 3775 goto up_out; 3776 3777 psize = vma_kernel_pagesize(vma); 3778 3779 up_read(¤t->mm->mmap_sem); 3780 3781 /* We can handle 4k, 64k or 16M pages in the VRMA */ 3782 if (psize >= 0x1000000) 3783 psize = 0x1000000; 3784 else if (psize >= 0x10000) 3785 psize = 0x10000; 3786 else 3787 psize = 0x1000; 3788 porder = __ilog2(psize); 3789 3790 senc = slb_pgsize_encoding(psize); 3791 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 3792 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3793 /* Create HPTEs in the hash page table for the VRMA */ 3794 kvmppc_map_vrma(vcpu, memslot, porder); 3795 3796 /* Update VRMASD field in the LPCR */ 3797 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 3798 /* the -4 is to account for senc values starting at 0x10 */ 3799 lpcr = senc << (LPCR_VRMASD_SH - 4); 3800 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 3801 } 3802 3803 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 3804 smp_wmb(); 3805 err = 0; 3806 out_srcu: 3807 srcu_read_unlock(&kvm->srcu, srcu_idx); 3808 out: 3809 return err; 3810 3811 up_out: 3812 up_read(¤t->mm->mmap_sem); 3813 goto out_srcu; 3814 } 3815 3816 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */ 3817 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 3818 { 3819 kvmppc_free_radix(kvm); 3820 kvmppc_update_lpcr(kvm, LPCR_VPM1, 3821 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 3822 kvmppc_rmap_reset(kvm); 3823 kvm->arch.radix = 0; 3824 kvm->arch.process_table = 0; 3825 return 0; 3826 } 3827 3828 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */ 3829 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 3830 { 3831 int err; 3832 3833 err = kvmppc_init_vm_radix(kvm); 3834 if (err) 3835 return err; 3836 3837 kvmppc_free_hpt(&kvm->arch.hpt); 3838 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 3839 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 3840 kvm->arch.radix = 1; 3841 return 0; 3842 } 3843 3844 #ifdef CONFIG_KVM_XICS 3845 /* 3846 * Allocate a per-core structure for managing state about which cores are 3847 * running in the host versus the guest and for exchanging data between 3848 * real mode KVM and CPU running in the host. 3849 * This is only done for the first VM. 3850 * The allocated structure stays even if all VMs have stopped. 3851 * It is only freed when the kvm-hv module is unloaded. 3852 * It's OK for this routine to fail, we just don't support host 3853 * core operations like redirecting H_IPI wakeups. 3854 */ 3855 void kvmppc_alloc_host_rm_ops(void) 3856 { 3857 struct kvmppc_host_rm_ops *ops; 3858 unsigned long l_ops; 3859 int cpu, core; 3860 int size; 3861 3862 /* Not the first time here ? */ 3863 if (kvmppc_host_rm_ops_hv != NULL) 3864 return; 3865 3866 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 3867 if (!ops) 3868 return; 3869 3870 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 3871 ops->rm_core = kzalloc(size, GFP_KERNEL); 3872 3873 if (!ops->rm_core) { 3874 kfree(ops); 3875 return; 3876 } 3877 3878 cpus_read_lock(); 3879 3880 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 3881 if (!cpu_online(cpu)) 3882 continue; 3883 3884 core = cpu >> threads_shift; 3885 ops->rm_core[core].rm_state.in_host = 1; 3886 } 3887 3888 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 3889 3890 /* 3891 * Make the contents of the kvmppc_host_rm_ops structure visible 3892 * to other CPUs before we assign it to the global variable. 3893 * Do an atomic assignment (no locks used here), but if someone 3894 * beats us to it, just free our copy and return. 3895 */ 3896 smp_wmb(); 3897 l_ops = (unsigned long) ops; 3898 3899 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 3900 cpus_read_unlock(); 3901 kfree(ops->rm_core); 3902 kfree(ops); 3903 return; 3904 } 3905 3906 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 3907 "ppc/kvm_book3s:prepare", 3908 kvmppc_set_host_core, 3909 kvmppc_clear_host_core); 3910 cpus_read_unlock(); 3911 } 3912 3913 void kvmppc_free_host_rm_ops(void) 3914 { 3915 if (kvmppc_host_rm_ops_hv) { 3916 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 3917 kfree(kvmppc_host_rm_ops_hv->rm_core); 3918 kfree(kvmppc_host_rm_ops_hv); 3919 kvmppc_host_rm_ops_hv = NULL; 3920 } 3921 } 3922 #endif 3923 3924 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 3925 { 3926 unsigned long lpcr, lpid; 3927 char buf[32]; 3928 int ret; 3929 3930 /* Allocate the guest's logical partition ID */ 3931 3932 lpid = kvmppc_alloc_lpid(); 3933 if ((long)lpid < 0) 3934 return -ENOMEM; 3935 kvm->arch.lpid = lpid; 3936 3937 kvmppc_alloc_host_rm_ops(); 3938 3939 /* 3940 * Since we don't flush the TLB when tearing down a VM, 3941 * and this lpid might have previously been used, 3942 * make sure we flush on each core before running the new VM. 3943 * On POWER9, the tlbie in mmu_partition_table_set_entry() 3944 * does this flush for us. 3945 */ 3946 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3947 cpumask_setall(&kvm->arch.need_tlb_flush); 3948 3949 /* Start out with the default set of hcalls enabled */ 3950 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 3951 sizeof(kvm->arch.enabled_hcalls)); 3952 3953 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3954 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 3955 3956 /* Init LPCR for virtual RMA mode */ 3957 kvm->arch.host_lpid = mfspr(SPRN_LPID); 3958 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 3959 lpcr &= LPCR_PECE | LPCR_LPES; 3960 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 3961 LPCR_VPM0 | LPCR_VPM1; 3962 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 3963 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3964 /* On POWER8 turn on online bit to enable PURR/SPURR */ 3965 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3966 lpcr |= LPCR_ONL; 3967 /* 3968 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 3969 * Set HVICE bit to enable hypervisor virtualization interrupts. 3970 * Set HEIC to prevent OS interrupts to go to hypervisor (should 3971 * be unnecessary but better safe than sorry in case we re-enable 3972 * EE in HV mode with this LPCR still set) 3973 */ 3974 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 3975 lpcr &= ~LPCR_VPM0; 3976 lpcr |= LPCR_HVICE | LPCR_HEIC; 3977 3978 /* 3979 * If xive is enabled, we route 0x500 interrupts directly 3980 * to the guest. 3981 */ 3982 if (xive_enabled()) 3983 lpcr |= LPCR_LPES; 3984 } 3985 3986 /* 3987 * If the host uses radix, the guest starts out as radix. 3988 */ 3989 if (radix_enabled()) { 3990 kvm->arch.radix = 1; 3991 kvm->arch.mmu_ready = 1; 3992 lpcr &= ~LPCR_VPM1; 3993 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 3994 ret = kvmppc_init_vm_radix(kvm); 3995 if (ret) { 3996 kvmppc_free_lpid(kvm->arch.lpid); 3997 return ret; 3998 } 3999 kvmppc_setup_partition_table(kvm); 4000 } 4001 4002 kvm->arch.lpcr = lpcr; 4003 4004 /* Initialization for future HPT resizes */ 4005 kvm->arch.resize_hpt = NULL; 4006 4007 /* 4008 * Work out how many sets the TLB has, for the use of 4009 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 4010 */ 4011 if (radix_enabled()) 4012 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 4013 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 4014 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 4015 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4016 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 4017 else 4018 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 4019 4020 /* 4021 * Track that we now have a HV mode VM active. This blocks secondary 4022 * CPU threads from coming online. 4023 * On POWER9, we only need to do this if the "indep_threads_mode" 4024 * module parameter has been set to N. 4025 */ 4026 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4027 kvm->arch.threads_indep = indep_threads_mode; 4028 if (!kvm->arch.threads_indep) 4029 kvm_hv_vm_activated(); 4030 4031 /* 4032 * Initialize smt_mode depending on processor. 4033 * POWER8 and earlier have to use "strict" threading, where 4034 * all vCPUs in a vcore have to run on the same (sub)core, 4035 * whereas on POWER9 the threads can each run a different 4036 * guest. 4037 */ 4038 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4039 kvm->arch.smt_mode = threads_per_subcore; 4040 else 4041 kvm->arch.smt_mode = 1; 4042 kvm->arch.emul_smt_mode = 1; 4043 4044 /* 4045 * Create a debugfs directory for the VM 4046 */ 4047 snprintf(buf, sizeof(buf), "vm%d", current->pid); 4048 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 4049 kvmppc_mmu_debugfs_init(kvm); 4050 4051 return 0; 4052 } 4053 4054 static void kvmppc_free_vcores(struct kvm *kvm) 4055 { 4056 long int i; 4057 4058 for (i = 0; i < KVM_MAX_VCORES; ++i) 4059 kfree(kvm->arch.vcores[i]); 4060 kvm->arch.online_vcores = 0; 4061 } 4062 4063 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 4064 { 4065 debugfs_remove_recursive(kvm->arch.debugfs_dir); 4066 4067 if (!kvm->arch.threads_indep) 4068 kvm_hv_vm_deactivated(); 4069 4070 kvmppc_free_vcores(kvm); 4071 4072 kvmppc_free_lpid(kvm->arch.lpid); 4073 4074 if (kvm_is_radix(kvm)) 4075 kvmppc_free_radix(kvm); 4076 else 4077 kvmppc_free_hpt(&kvm->arch.hpt); 4078 4079 kvmppc_free_pimap(kvm); 4080 } 4081 4082 /* We don't need to emulate any privileged instructions or dcbz */ 4083 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 4084 unsigned int inst, int *advance) 4085 { 4086 return EMULATE_FAIL; 4087 } 4088 4089 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 4090 ulong spr_val) 4091 { 4092 return EMULATE_FAIL; 4093 } 4094 4095 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 4096 ulong *spr_val) 4097 { 4098 return EMULATE_FAIL; 4099 } 4100 4101 static int kvmppc_core_check_processor_compat_hv(void) 4102 { 4103 if (!cpu_has_feature(CPU_FTR_HVMODE) || 4104 !cpu_has_feature(CPU_FTR_ARCH_206)) 4105 return -EIO; 4106 4107 return 0; 4108 } 4109 4110 #ifdef CONFIG_KVM_XICS 4111 4112 void kvmppc_free_pimap(struct kvm *kvm) 4113 { 4114 kfree(kvm->arch.pimap); 4115 } 4116 4117 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 4118 { 4119 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 4120 } 4121 4122 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 4123 { 4124 struct irq_desc *desc; 4125 struct kvmppc_irq_map *irq_map; 4126 struct kvmppc_passthru_irqmap *pimap; 4127 struct irq_chip *chip; 4128 int i, rc = 0; 4129 4130 if (!kvm_irq_bypass) 4131 return 1; 4132 4133 desc = irq_to_desc(host_irq); 4134 if (!desc) 4135 return -EIO; 4136 4137 mutex_lock(&kvm->lock); 4138 4139 pimap = kvm->arch.pimap; 4140 if (pimap == NULL) { 4141 /* First call, allocate structure to hold IRQ map */ 4142 pimap = kvmppc_alloc_pimap(); 4143 if (pimap == NULL) { 4144 mutex_unlock(&kvm->lock); 4145 return -ENOMEM; 4146 } 4147 kvm->arch.pimap = pimap; 4148 } 4149 4150 /* 4151 * For now, we only support interrupts for which the EOI operation 4152 * is an OPAL call followed by a write to XIRR, since that's 4153 * what our real-mode EOI code does, or a XIVE interrupt 4154 */ 4155 chip = irq_data_get_irq_chip(&desc->irq_data); 4156 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 4157 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 4158 host_irq, guest_gsi); 4159 mutex_unlock(&kvm->lock); 4160 return -ENOENT; 4161 } 4162 4163 /* 4164 * See if we already have an entry for this guest IRQ number. 4165 * If it's mapped to a hardware IRQ number, that's an error, 4166 * otherwise re-use this entry. 4167 */ 4168 for (i = 0; i < pimap->n_mapped; i++) { 4169 if (guest_gsi == pimap->mapped[i].v_hwirq) { 4170 if (pimap->mapped[i].r_hwirq) { 4171 mutex_unlock(&kvm->lock); 4172 return -EINVAL; 4173 } 4174 break; 4175 } 4176 } 4177 4178 if (i == KVMPPC_PIRQ_MAPPED) { 4179 mutex_unlock(&kvm->lock); 4180 return -EAGAIN; /* table is full */ 4181 } 4182 4183 irq_map = &pimap->mapped[i]; 4184 4185 irq_map->v_hwirq = guest_gsi; 4186 irq_map->desc = desc; 4187 4188 /* 4189 * Order the above two stores before the next to serialize with 4190 * the KVM real mode handler. 4191 */ 4192 smp_wmb(); 4193 irq_map->r_hwirq = desc->irq_data.hwirq; 4194 4195 if (i == pimap->n_mapped) 4196 pimap->n_mapped++; 4197 4198 if (xive_enabled()) 4199 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 4200 else 4201 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 4202 if (rc) 4203 irq_map->r_hwirq = 0; 4204 4205 mutex_unlock(&kvm->lock); 4206 4207 return 0; 4208 } 4209 4210 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 4211 { 4212 struct irq_desc *desc; 4213 struct kvmppc_passthru_irqmap *pimap; 4214 int i, rc = 0; 4215 4216 if (!kvm_irq_bypass) 4217 return 0; 4218 4219 desc = irq_to_desc(host_irq); 4220 if (!desc) 4221 return -EIO; 4222 4223 mutex_lock(&kvm->lock); 4224 if (!kvm->arch.pimap) 4225 goto unlock; 4226 4227 pimap = kvm->arch.pimap; 4228 4229 for (i = 0; i < pimap->n_mapped; i++) { 4230 if (guest_gsi == pimap->mapped[i].v_hwirq) 4231 break; 4232 } 4233 4234 if (i == pimap->n_mapped) { 4235 mutex_unlock(&kvm->lock); 4236 return -ENODEV; 4237 } 4238 4239 if (xive_enabled()) 4240 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 4241 else 4242 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 4243 4244 /* invalidate the entry (what do do on error from the above ?) */ 4245 pimap->mapped[i].r_hwirq = 0; 4246 4247 /* 4248 * We don't free this structure even when the count goes to 4249 * zero. The structure is freed when we destroy the VM. 4250 */ 4251 unlock: 4252 mutex_unlock(&kvm->lock); 4253 return rc; 4254 } 4255 4256 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 4257 struct irq_bypass_producer *prod) 4258 { 4259 int ret = 0; 4260 struct kvm_kernel_irqfd *irqfd = 4261 container_of(cons, struct kvm_kernel_irqfd, consumer); 4262 4263 irqfd->producer = prod; 4264 4265 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 4266 if (ret) 4267 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 4268 prod->irq, irqfd->gsi, ret); 4269 4270 return ret; 4271 } 4272 4273 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 4274 struct irq_bypass_producer *prod) 4275 { 4276 int ret; 4277 struct kvm_kernel_irqfd *irqfd = 4278 container_of(cons, struct kvm_kernel_irqfd, consumer); 4279 4280 irqfd->producer = NULL; 4281 4282 /* 4283 * When producer of consumer is unregistered, we change back to 4284 * default external interrupt handling mode - KVM real mode 4285 * will switch back to host. 4286 */ 4287 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 4288 if (ret) 4289 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 4290 prod->irq, irqfd->gsi, ret); 4291 } 4292 #endif 4293 4294 static long kvm_arch_vm_ioctl_hv(struct file *filp, 4295 unsigned int ioctl, unsigned long arg) 4296 { 4297 struct kvm *kvm __maybe_unused = filp->private_data; 4298 void __user *argp = (void __user *)arg; 4299 long r; 4300 4301 switch (ioctl) { 4302 4303 case KVM_PPC_ALLOCATE_HTAB: { 4304 u32 htab_order; 4305 4306 r = -EFAULT; 4307 if (get_user(htab_order, (u32 __user *)argp)) 4308 break; 4309 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 4310 if (r) 4311 break; 4312 r = 0; 4313 break; 4314 } 4315 4316 case KVM_PPC_GET_HTAB_FD: { 4317 struct kvm_get_htab_fd ghf; 4318 4319 r = -EFAULT; 4320 if (copy_from_user(&ghf, argp, sizeof(ghf))) 4321 break; 4322 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 4323 break; 4324 } 4325 4326 case KVM_PPC_RESIZE_HPT_PREPARE: { 4327 struct kvm_ppc_resize_hpt rhpt; 4328 4329 r = -EFAULT; 4330 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 4331 break; 4332 4333 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 4334 break; 4335 } 4336 4337 case KVM_PPC_RESIZE_HPT_COMMIT: { 4338 struct kvm_ppc_resize_hpt rhpt; 4339 4340 r = -EFAULT; 4341 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 4342 break; 4343 4344 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 4345 break; 4346 } 4347 4348 default: 4349 r = -ENOTTY; 4350 } 4351 4352 return r; 4353 } 4354 4355 /* 4356 * List of hcall numbers to enable by default. 4357 * For compatibility with old userspace, we enable by default 4358 * all hcalls that were implemented before the hcall-enabling 4359 * facility was added. Note this list should not include H_RTAS. 4360 */ 4361 static unsigned int default_hcall_list[] = { 4362 H_REMOVE, 4363 H_ENTER, 4364 H_READ, 4365 H_PROTECT, 4366 H_BULK_REMOVE, 4367 H_GET_TCE, 4368 H_PUT_TCE, 4369 H_SET_DABR, 4370 H_SET_XDABR, 4371 H_CEDE, 4372 H_PROD, 4373 H_CONFER, 4374 H_REGISTER_VPA, 4375 #ifdef CONFIG_KVM_XICS 4376 H_EOI, 4377 H_CPPR, 4378 H_IPI, 4379 H_IPOLL, 4380 H_XIRR, 4381 H_XIRR_X, 4382 #endif 4383 0 4384 }; 4385 4386 static void init_default_hcalls(void) 4387 { 4388 int i; 4389 unsigned int hcall; 4390 4391 for (i = 0; default_hcall_list[i]; ++i) { 4392 hcall = default_hcall_list[i]; 4393 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 4394 __set_bit(hcall / 4, default_enabled_hcalls); 4395 } 4396 } 4397 4398 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 4399 { 4400 unsigned long lpcr; 4401 int radix; 4402 int err; 4403 4404 /* If not on a POWER9, reject it */ 4405 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4406 return -ENODEV; 4407 4408 /* If any unknown flags set, reject it */ 4409 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 4410 return -EINVAL; 4411 4412 /* GR (guest radix) bit in process_table field must match */ 4413 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 4414 if (!!(cfg->process_table & PATB_GR) != radix) 4415 return -EINVAL; 4416 4417 /* Process table size field must be reasonable, i.e. <= 24 */ 4418 if ((cfg->process_table & PRTS_MASK) > 24) 4419 return -EINVAL; 4420 4421 /* We can change a guest to/from radix now, if the host is radix */ 4422 if (radix && !radix_enabled()) 4423 return -EINVAL; 4424 4425 mutex_lock(&kvm->lock); 4426 if (radix != kvm_is_radix(kvm)) { 4427 if (kvm->arch.mmu_ready) { 4428 kvm->arch.mmu_ready = 0; 4429 /* order mmu_ready vs. vcpus_running */ 4430 smp_mb(); 4431 if (atomic_read(&kvm->arch.vcpus_running)) { 4432 kvm->arch.mmu_ready = 1; 4433 err = -EBUSY; 4434 goto out_unlock; 4435 } 4436 } 4437 if (radix) 4438 err = kvmppc_switch_mmu_to_radix(kvm); 4439 else 4440 err = kvmppc_switch_mmu_to_hpt(kvm); 4441 if (err) 4442 goto out_unlock; 4443 } 4444 4445 kvm->arch.process_table = cfg->process_table; 4446 kvmppc_setup_partition_table(kvm); 4447 4448 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 4449 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 4450 err = 0; 4451 4452 out_unlock: 4453 mutex_unlock(&kvm->lock); 4454 return err; 4455 } 4456 4457 static struct kvmppc_ops kvm_ops_hv = { 4458 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 4459 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 4460 .get_one_reg = kvmppc_get_one_reg_hv, 4461 .set_one_reg = kvmppc_set_one_reg_hv, 4462 .vcpu_load = kvmppc_core_vcpu_load_hv, 4463 .vcpu_put = kvmppc_core_vcpu_put_hv, 4464 .set_msr = kvmppc_set_msr_hv, 4465 .vcpu_run = kvmppc_vcpu_run_hv, 4466 .vcpu_create = kvmppc_core_vcpu_create_hv, 4467 .vcpu_free = kvmppc_core_vcpu_free_hv, 4468 .check_requests = kvmppc_core_check_requests_hv, 4469 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 4470 .flush_memslot = kvmppc_core_flush_memslot_hv, 4471 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 4472 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 4473 .unmap_hva_range = kvm_unmap_hva_range_hv, 4474 .age_hva = kvm_age_hva_hv, 4475 .test_age_hva = kvm_test_age_hva_hv, 4476 .set_spte_hva = kvm_set_spte_hva_hv, 4477 .mmu_destroy = kvmppc_mmu_destroy_hv, 4478 .free_memslot = kvmppc_core_free_memslot_hv, 4479 .create_memslot = kvmppc_core_create_memslot_hv, 4480 .init_vm = kvmppc_core_init_vm_hv, 4481 .destroy_vm = kvmppc_core_destroy_vm_hv, 4482 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 4483 .emulate_op = kvmppc_core_emulate_op_hv, 4484 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 4485 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 4486 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 4487 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 4488 .hcall_implemented = kvmppc_hcall_impl_hv, 4489 #ifdef CONFIG_KVM_XICS 4490 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 4491 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 4492 #endif 4493 .configure_mmu = kvmhv_configure_mmu, 4494 .get_rmmu_info = kvmhv_get_rmmu_info, 4495 .set_smt_mode = kvmhv_set_smt_mode, 4496 }; 4497 4498 static int kvm_init_subcore_bitmap(void) 4499 { 4500 int i, j; 4501 int nr_cores = cpu_nr_cores(); 4502 struct sibling_subcore_state *sibling_subcore_state; 4503 4504 for (i = 0; i < nr_cores; i++) { 4505 int first_cpu = i * threads_per_core; 4506 int node = cpu_to_node(first_cpu); 4507 4508 /* Ignore if it is already allocated. */ 4509 if (paca_ptrs[first_cpu]->sibling_subcore_state) 4510 continue; 4511 4512 sibling_subcore_state = 4513 kmalloc_node(sizeof(struct sibling_subcore_state), 4514 GFP_KERNEL, node); 4515 if (!sibling_subcore_state) 4516 return -ENOMEM; 4517 4518 memset(sibling_subcore_state, 0, 4519 sizeof(struct sibling_subcore_state)); 4520 4521 for (j = 0; j < threads_per_core; j++) { 4522 int cpu = first_cpu + j; 4523 4524 paca_ptrs[cpu]->sibling_subcore_state = 4525 sibling_subcore_state; 4526 } 4527 } 4528 return 0; 4529 } 4530 4531 static int kvmppc_radix_possible(void) 4532 { 4533 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 4534 } 4535 4536 static int kvmppc_book3s_init_hv(void) 4537 { 4538 int r; 4539 /* 4540 * FIXME!! Do we need to check on all cpus ? 4541 */ 4542 r = kvmppc_core_check_processor_compat_hv(); 4543 if (r < 0) 4544 return -ENODEV; 4545 4546 r = kvm_init_subcore_bitmap(); 4547 if (r) 4548 return r; 4549 4550 /* 4551 * We need a way of accessing the XICS interrupt controller, 4552 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 4553 * indirectly, via OPAL. 4554 */ 4555 #ifdef CONFIG_SMP 4556 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) { 4557 struct device_node *np; 4558 4559 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 4560 if (!np) { 4561 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 4562 return -ENODEV; 4563 } 4564 } 4565 #endif 4566 4567 kvm_ops_hv.owner = THIS_MODULE; 4568 kvmppc_hv_ops = &kvm_ops_hv; 4569 4570 init_default_hcalls(); 4571 4572 init_vcore_lists(); 4573 4574 r = kvmppc_mmu_hv_init(); 4575 if (r) 4576 return r; 4577 4578 if (kvmppc_radix_possible()) 4579 r = kvmppc_radix_init(); 4580 4581 /* 4582 * POWER9 chips before version 2.02 can't have some threads in 4583 * HPT mode and some in radix mode on the same core. 4584 */ 4585 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4586 unsigned int pvr = mfspr(SPRN_PVR); 4587 if ((pvr >> 16) == PVR_POWER9 && 4588 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 4589 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 4590 no_mixing_hpt_and_radix = true; 4591 } 4592 4593 return r; 4594 } 4595 4596 static void kvmppc_book3s_exit_hv(void) 4597 { 4598 kvmppc_free_host_rm_ops(); 4599 if (kvmppc_radix_possible()) 4600 kvmppc_radix_exit(); 4601 kvmppc_hv_ops = NULL; 4602 } 4603 4604 module_init(kvmppc_book3s_init_hv); 4605 module_exit(kvmppc_book3s_exit_hv); 4606 MODULE_LICENSE("GPL"); 4607 MODULE_ALIAS_MISCDEV(KVM_MINOR); 4608 MODULE_ALIAS("devname:kvm"); 4609