1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 46 #include <asm/ftrace.h> 47 #include <asm/reg.h> 48 #include <asm/ppc-opcode.h> 49 #include <asm/asm-prototypes.h> 50 #include <asm/archrandom.h> 51 #include <asm/debug.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <linux/uaccess.h> 56 #include <asm/io.h> 57 #include <asm/kvm_ppc.h> 58 #include <asm/kvm_book3s.h> 59 #include <asm/mmu_context.h> 60 #include <asm/lppaca.h> 61 #include <asm/processor.h> 62 #include <asm/cputhreads.h> 63 #include <asm/page.h> 64 #include <asm/hvcall.h> 65 #include <asm/switch_to.h> 66 #include <asm/smp.h> 67 #include <asm/dbell.h> 68 #include <asm/hmi.h> 69 #include <asm/pnv-pci.h> 70 #include <asm/mmu.h> 71 #include <asm/opal.h> 72 #include <asm/xics.h> 73 #include <asm/xive.h> 74 #include <asm/hw_breakpoint.h> 75 76 #include "book3s.h" 77 78 #define CREATE_TRACE_POINTS 79 #include "trace_hv.h" 80 81 /* #define EXIT_DEBUG */ 82 /* #define EXIT_DEBUG_SIMPLE */ 83 /* #define EXIT_DEBUG_INT */ 84 85 /* Used to indicate that a guest page fault needs to be handled */ 86 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 87 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 88 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 89 90 /* Used as a "null" value for timebase values */ 91 #define TB_NIL (~(u64)0) 92 93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 94 95 static int dynamic_mt_modes = 6; 96 module_param(dynamic_mt_modes, int, 0644); 97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 98 static int target_smt_mode; 99 module_param(target_smt_mode, int, 0644); 100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 101 102 static bool indep_threads_mode = true; 103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 105 106 static bool one_vm_per_core; 107 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 108 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)"); 109 110 #ifdef CONFIG_KVM_XICS 111 static struct kernel_param_ops module_param_ops = { 112 .set = param_set_int, 113 .get = param_get_int, 114 }; 115 116 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 117 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 118 119 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 120 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 121 #endif 122 123 /* If set, guests are allowed to create and control nested guests */ 124 static bool nested = true; 125 module_param(nested, bool, S_IRUGO | S_IWUSR); 126 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 127 128 static inline bool nesting_enabled(struct kvm *kvm) 129 { 130 return kvm->arch.nested_enable && kvm_is_radix(kvm); 131 } 132 133 /* If set, the threads on each CPU core have to be in the same MMU mode */ 134 static bool no_mixing_hpt_and_radix; 135 136 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 137 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 138 139 /* 140 * RWMR values for POWER8. These control the rate at which PURR 141 * and SPURR count and should be set according to the number of 142 * online threads in the vcore being run. 143 */ 144 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 145 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 146 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 147 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 148 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 149 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 150 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 151 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 152 153 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 154 RWMR_RPA_P8_1THREAD, 155 RWMR_RPA_P8_1THREAD, 156 RWMR_RPA_P8_2THREAD, 157 RWMR_RPA_P8_3THREAD, 158 RWMR_RPA_P8_4THREAD, 159 RWMR_RPA_P8_5THREAD, 160 RWMR_RPA_P8_6THREAD, 161 RWMR_RPA_P8_7THREAD, 162 RWMR_RPA_P8_8THREAD, 163 }; 164 165 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 166 int *ip) 167 { 168 int i = *ip; 169 struct kvm_vcpu *vcpu; 170 171 while (++i < MAX_SMT_THREADS) { 172 vcpu = READ_ONCE(vc->runnable_threads[i]); 173 if (vcpu) { 174 *ip = i; 175 return vcpu; 176 } 177 } 178 return NULL; 179 } 180 181 /* Used to traverse the list of runnable threads for a given vcore */ 182 #define for_each_runnable_thread(i, vcpu, vc) \ 183 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 184 185 static bool kvmppc_ipi_thread(int cpu) 186 { 187 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 188 189 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 190 if (kvmhv_on_pseries()) 191 return false; 192 193 /* On POWER9 we can use msgsnd to IPI any cpu */ 194 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 195 msg |= get_hard_smp_processor_id(cpu); 196 smp_mb(); 197 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 198 return true; 199 } 200 201 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 202 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 203 preempt_disable(); 204 if (cpu_first_thread_sibling(cpu) == 205 cpu_first_thread_sibling(smp_processor_id())) { 206 msg |= cpu_thread_in_core(cpu); 207 smp_mb(); 208 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 209 preempt_enable(); 210 return true; 211 } 212 preempt_enable(); 213 } 214 215 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 216 if (cpu >= 0 && cpu < nr_cpu_ids) { 217 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 218 xics_wake_cpu(cpu); 219 return true; 220 } 221 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 222 return true; 223 } 224 #endif 225 226 return false; 227 } 228 229 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 230 { 231 int cpu; 232 struct swait_queue_head *wqp; 233 234 wqp = kvm_arch_vcpu_wq(vcpu); 235 if (swq_has_sleeper(wqp)) { 236 swake_up_one(wqp); 237 ++vcpu->stat.halt_wakeup; 238 } 239 240 cpu = READ_ONCE(vcpu->arch.thread_cpu); 241 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 242 return; 243 244 /* CPU points to the first thread of the core */ 245 cpu = vcpu->cpu; 246 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 247 smp_send_reschedule(cpu); 248 } 249 250 /* 251 * We use the vcpu_load/put functions to measure stolen time. 252 * Stolen time is counted as time when either the vcpu is able to 253 * run as part of a virtual core, but the task running the vcore 254 * is preempted or sleeping, or when the vcpu needs something done 255 * in the kernel by the task running the vcpu, but that task is 256 * preempted or sleeping. Those two things have to be counted 257 * separately, since one of the vcpu tasks will take on the job 258 * of running the core, and the other vcpu tasks in the vcore will 259 * sleep waiting for it to do that, but that sleep shouldn't count 260 * as stolen time. 261 * 262 * Hence we accumulate stolen time when the vcpu can run as part of 263 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 264 * needs its task to do other things in the kernel (for example, 265 * service a page fault) in busy_stolen. We don't accumulate 266 * stolen time for a vcore when it is inactive, or for a vcpu 267 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 268 * a misnomer; it means that the vcpu task is not executing in 269 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 270 * the kernel. We don't have any way of dividing up that time 271 * between time that the vcpu is genuinely stopped, time that 272 * the task is actively working on behalf of the vcpu, and time 273 * that the task is preempted, so we don't count any of it as 274 * stolen. 275 * 276 * Updates to busy_stolen are protected by arch.tbacct_lock; 277 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 278 * lock. The stolen times are measured in units of timebase ticks. 279 * (Note that the != TB_NIL checks below are purely defensive; 280 * they should never fail.) 281 */ 282 283 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 284 { 285 unsigned long flags; 286 287 spin_lock_irqsave(&vc->stoltb_lock, flags); 288 vc->preempt_tb = mftb(); 289 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 290 } 291 292 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 293 { 294 unsigned long flags; 295 296 spin_lock_irqsave(&vc->stoltb_lock, flags); 297 if (vc->preempt_tb != TB_NIL) { 298 vc->stolen_tb += mftb() - vc->preempt_tb; 299 vc->preempt_tb = TB_NIL; 300 } 301 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 302 } 303 304 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 305 { 306 struct kvmppc_vcore *vc = vcpu->arch.vcore; 307 unsigned long flags; 308 309 /* 310 * We can test vc->runner without taking the vcore lock, 311 * because only this task ever sets vc->runner to this 312 * vcpu, and once it is set to this vcpu, only this task 313 * ever sets it to NULL. 314 */ 315 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 316 kvmppc_core_end_stolen(vc); 317 318 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 319 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 320 vcpu->arch.busy_preempt != TB_NIL) { 321 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 322 vcpu->arch.busy_preempt = TB_NIL; 323 } 324 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 325 } 326 327 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 328 { 329 struct kvmppc_vcore *vc = vcpu->arch.vcore; 330 unsigned long flags; 331 332 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 333 kvmppc_core_start_stolen(vc); 334 335 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 336 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 337 vcpu->arch.busy_preempt = mftb(); 338 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 339 } 340 341 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 342 { 343 /* 344 * Check for illegal transactional state bit combination 345 * and if we find it, force the TS field to a safe state. 346 */ 347 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 348 msr &= ~MSR_TS_MASK; 349 vcpu->arch.shregs.msr = msr; 350 kvmppc_end_cede(vcpu); 351 } 352 353 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 354 { 355 vcpu->arch.pvr = pvr; 356 } 357 358 /* Dummy value used in computing PCR value below */ 359 #define PCR_ARCH_300 (PCR_ARCH_207 << 1) 360 361 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 362 { 363 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 364 struct kvmppc_vcore *vc = vcpu->arch.vcore; 365 366 /* We can (emulate) our own architecture version and anything older */ 367 if (cpu_has_feature(CPU_FTR_ARCH_300)) 368 host_pcr_bit = PCR_ARCH_300; 369 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 370 host_pcr_bit = PCR_ARCH_207; 371 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 372 host_pcr_bit = PCR_ARCH_206; 373 else 374 host_pcr_bit = PCR_ARCH_205; 375 376 /* Determine lowest PCR bit needed to run guest in given PVR level */ 377 guest_pcr_bit = host_pcr_bit; 378 if (arch_compat) { 379 switch (arch_compat) { 380 case PVR_ARCH_205: 381 guest_pcr_bit = PCR_ARCH_205; 382 break; 383 case PVR_ARCH_206: 384 case PVR_ARCH_206p: 385 guest_pcr_bit = PCR_ARCH_206; 386 break; 387 case PVR_ARCH_207: 388 guest_pcr_bit = PCR_ARCH_207; 389 break; 390 case PVR_ARCH_300: 391 guest_pcr_bit = PCR_ARCH_300; 392 break; 393 default: 394 return -EINVAL; 395 } 396 } 397 398 /* Check requested PCR bits don't exceed our capabilities */ 399 if (guest_pcr_bit > host_pcr_bit) 400 return -EINVAL; 401 402 spin_lock(&vc->lock); 403 vc->arch_compat = arch_compat; 404 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */ 405 vc->pcr = host_pcr_bit - guest_pcr_bit; 406 spin_unlock(&vc->lock); 407 408 return 0; 409 } 410 411 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 412 { 413 int r; 414 415 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 416 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 417 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 418 for (r = 0; r < 16; ++r) 419 pr_err("r%2d = %.16lx r%d = %.16lx\n", 420 r, kvmppc_get_gpr(vcpu, r), 421 r+16, kvmppc_get_gpr(vcpu, r+16)); 422 pr_err("ctr = %.16lx lr = %.16lx\n", 423 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 424 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 425 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 426 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 427 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 428 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 429 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 430 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 431 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 432 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 433 pr_err("fault dar = %.16lx dsisr = %.8x\n", 434 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 435 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 436 for (r = 0; r < vcpu->arch.slb_max; ++r) 437 pr_err(" ESID = %.16llx VSID = %.16llx\n", 438 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 439 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 440 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 441 vcpu->arch.last_inst); 442 } 443 444 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 445 { 446 return kvm_get_vcpu_by_id(kvm, id); 447 } 448 449 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 450 { 451 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 452 vpa->yield_count = cpu_to_be32(1); 453 } 454 455 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 456 unsigned long addr, unsigned long len) 457 { 458 /* check address is cacheline aligned */ 459 if (addr & (L1_CACHE_BYTES - 1)) 460 return -EINVAL; 461 spin_lock(&vcpu->arch.vpa_update_lock); 462 if (v->next_gpa != addr || v->len != len) { 463 v->next_gpa = addr; 464 v->len = addr ? len : 0; 465 v->update_pending = 1; 466 } 467 spin_unlock(&vcpu->arch.vpa_update_lock); 468 return 0; 469 } 470 471 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 472 struct reg_vpa { 473 u32 dummy; 474 union { 475 __be16 hword; 476 __be32 word; 477 } length; 478 }; 479 480 static int vpa_is_registered(struct kvmppc_vpa *vpap) 481 { 482 if (vpap->update_pending) 483 return vpap->next_gpa != 0; 484 return vpap->pinned_addr != NULL; 485 } 486 487 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 488 unsigned long flags, 489 unsigned long vcpuid, unsigned long vpa) 490 { 491 struct kvm *kvm = vcpu->kvm; 492 unsigned long len, nb; 493 void *va; 494 struct kvm_vcpu *tvcpu; 495 int err; 496 int subfunc; 497 struct kvmppc_vpa *vpap; 498 499 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 500 if (!tvcpu) 501 return H_PARAMETER; 502 503 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 504 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 505 subfunc == H_VPA_REG_SLB) { 506 /* Registering new area - address must be cache-line aligned */ 507 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 508 return H_PARAMETER; 509 510 /* convert logical addr to kernel addr and read length */ 511 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 512 if (va == NULL) 513 return H_PARAMETER; 514 if (subfunc == H_VPA_REG_VPA) 515 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 516 else 517 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 518 kvmppc_unpin_guest_page(kvm, va, vpa, false); 519 520 /* Check length */ 521 if (len > nb || len < sizeof(struct reg_vpa)) 522 return H_PARAMETER; 523 } else { 524 vpa = 0; 525 len = 0; 526 } 527 528 err = H_PARAMETER; 529 vpap = NULL; 530 spin_lock(&tvcpu->arch.vpa_update_lock); 531 532 switch (subfunc) { 533 case H_VPA_REG_VPA: /* register VPA */ 534 /* 535 * The size of our lppaca is 1kB because of the way we align 536 * it for the guest to avoid crossing a 4kB boundary. We only 537 * use 640 bytes of the structure though, so we should accept 538 * clients that set a size of 640. 539 */ 540 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 541 if (len < sizeof(struct lppaca)) 542 break; 543 vpap = &tvcpu->arch.vpa; 544 err = 0; 545 break; 546 547 case H_VPA_REG_DTL: /* register DTL */ 548 if (len < sizeof(struct dtl_entry)) 549 break; 550 len -= len % sizeof(struct dtl_entry); 551 552 /* Check that they have previously registered a VPA */ 553 err = H_RESOURCE; 554 if (!vpa_is_registered(&tvcpu->arch.vpa)) 555 break; 556 557 vpap = &tvcpu->arch.dtl; 558 err = 0; 559 break; 560 561 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 562 /* Check that they have previously registered a VPA */ 563 err = H_RESOURCE; 564 if (!vpa_is_registered(&tvcpu->arch.vpa)) 565 break; 566 567 vpap = &tvcpu->arch.slb_shadow; 568 err = 0; 569 break; 570 571 case H_VPA_DEREG_VPA: /* deregister VPA */ 572 /* Check they don't still have a DTL or SLB buf registered */ 573 err = H_RESOURCE; 574 if (vpa_is_registered(&tvcpu->arch.dtl) || 575 vpa_is_registered(&tvcpu->arch.slb_shadow)) 576 break; 577 578 vpap = &tvcpu->arch.vpa; 579 err = 0; 580 break; 581 582 case H_VPA_DEREG_DTL: /* deregister DTL */ 583 vpap = &tvcpu->arch.dtl; 584 err = 0; 585 break; 586 587 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 588 vpap = &tvcpu->arch.slb_shadow; 589 err = 0; 590 break; 591 } 592 593 if (vpap) { 594 vpap->next_gpa = vpa; 595 vpap->len = len; 596 vpap->update_pending = 1; 597 } 598 599 spin_unlock(&tvcpu->arch.vpa_update_lock); 600 601 return err; 602 } 603 604 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 605 { 606 struct kvm *kvm = vcpu->kvm; 607 void *va; 608 unsigned long nb; 609 unsigned long gpa; 610 611 /* 612 * We need to pin the page pointed to by vpap->next_gpa, 613 * but we can't call kvmppc_pin_guest_page under the lock 614 * as it does get_user_pages() and down_read(). So we 615 * have to drop the lock, pin the page, then get the lock 616 * again and check that a new area didn't get registered 617 * in the meantime. 618 */ 619 for (;;) { 620 gpa = vpap->next_gpa; 621 spin_unlock(&vcpu->arch.vpa_update_lock); 622 va = NULL; 623 nb = 0; 624 if (gpa) 625 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 626 spin_lock(&vcpu->arch.vpa_update_lock); 627 if (gpa == vpap->next_gpa) 628 break; 629 /* sigh... unpin that one and try again */ 630 if (va) 631 kvmppc_unpin_guest_page(kvm, va, gpa, false); 632 } 633 634 vpap->update_pending = 0; 635 if (va && nb < vpap->len) { 636 /* 637 * If it's now too short, it must be that userspace 638 * has changed the mappings underlying guest memory, 639 * so unregister the region. 640 */ 641 kvmppc_unpin_guest_page(kvm, va, gpa, false); 642 va = NULL; 643 } 644 if (vpap->pinned_addr) 645 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 646 vpap->dirty); 647 vpap->gpa = gpa; 648 vpap->pinned_addr = va; 649 vpap->dirty = false; 650 if (va) 651 vpap->pinned_end = va + vpap->len; 652 } 653 654 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 655 { 656 if (!(vcpu->arch.vpa.update_pending || 657 vcpu->arch.slb_shadow.update_pending || 658 vcpu->arch.dtl.update_pending)) 659 return; 660 661 spin_lock(&vcpu->arch.vpa_update_lock); 662 if (vcpu->arch.vpa.update_pending) { 663 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 664 if (vcpu->arch.vpa.pinned_addr) 665 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 666 } 667 if (vcpu->arch.dtl.update_pending) { 668 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 669 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 670 vcpu->arch.dtl_index = 0; 671 } 672 if (vcpu->arch.slb_shadow.update_pending) 673 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 674 spin_unlock(&vcpu->arch.vpa_update_lock); 675 } 676 677 /* 678 * Return the accumulated stolen time for the vcore up until `now'. 679 * The caller should hold the vcore lock. 680 */ 681 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 682 { 683 u64 p; 684 unsigned long flags; 685 686 spin_lock_irqsave(&vc->stoltb_lock, flags); 687 p = vc->stolen_tb; 688 if (vc->vcore_state != VCORE_INACTIVE && 689 vc->preempt_tb != TB_NIL) 690 p += now - vc->preempt_tb; 691 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 692 return p; 693 } 694 695 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 696 struct kvmppc_vcore *vc) 697 { 698 struct dtl_entry *dt; 699 struct lppaca *vpa; 700 unsigned long stolen; 701 unsigned long core_stolen; 702 u64 now; 703 unsigned long flags; 704 705 dt = vcpu->arch.dtl_ptr; 706 vpa = vcpu->arch.vpa.pinned_addr; 707 now = mftb(); 708 core_stolen = vcore_stolen_time(vc, now); 709 stolen = core_stolen - vcpu->arch.stolen_logged; 710 vcpu->arch.stolen_logged = core_stolen; 711 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 712 stolen += vcpu->arch.busy_stolen; 713 vcpu->arch.busy_stolen = 0; 714 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 715 if (!dt || !vpa) 716 return; 717 memset(dt, 0, sizeof(struct dtl_entry)); 718 dt->dispatch_reason = 7; 719 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 720 dt->timebase = cpu_to_be64(now + vc->tb_offset); 721 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 722 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 723 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 724 ++dt; 725 if (dt == vcpu->arch.dtl.pinned_end) 726 dt = vcpu->arch.dtl.pinned_addr; 727 vcpu->arch.dtl_ptr = dt; 728 /* order writing *dt vs. writing vpa->dtl_idx */ 729 smp_wmb(); 730 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 731 vcpu->arch.dtl.dirty = true; 732 } 733 734 /* See if there is a doorbell interrupt pending for a vcpu */ 735 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 736 { 737 int thr; 738 struct kvmppc_vcore *vc; 739 740 if (vcpu->arch.doorbell_request) 741 return true; 742 /* 743 * Ensure that the read of vcore->dpdes comes after the read 744 * of vcpu->doorbell_request. This barrier matches the 745 * smp_wmb() in kvmppc_guest_entry_inject(). 746 */ 747 smp_rmb(); 748 vc = vcpu->arch.vcore; 749 thr = vcpu->vcpu_id - vc->first_vcpuid; 750 return !!(vc->dpdes & (1 << thr)); 751 } 752 753 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 754 { 755 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 756 return true; 757 if ((!vcpu->arch.vcore->arch_compat) && 758 cpu_has_feature(CPU_FTR_ARCH_207S)) 759 return true; 760 return false; 761 } 762 763 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 764 unsigned long resource, unsigned long value1, 765 unsigned long value2) 766 { 767 switch (resource) { 768 case H_SET_MODE_RESOURCE_SET_CIABR: 769 if (!kvmppc_power8_compatible(vcpu)) 770 return H_P2; 771 if (value2) 772 return H_P4; 773 if (mflags) 774 return H_UNSUPPORTED_FLAG_START; 775 /* Guests can't breakpoint the hypervisor */ 776 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 777 return H_P3; 778 vcpu->arch.ciabr = value1; 779 return H_SUCCESS; 780 case H_SET_MODE_RESOURCE_SET_DAWR: 781 if (!kvmppc_power8_compatible(vcpu)) 782 return H_P2; 783 if (!ppc_breakpoint_available()) 784 return H_P2; 785 if (mflags) 786 return H_UNSUPPORTED_FLAG_START; 787 if (value2 & DABRX_HYP) 788 return H_P4; 789 vcpu->arch.dawr = value1; 790 vcpu->arch.dawrx = value2; 791 return H_SUCCESS; 792 default: 793 return H_TOO_HARD; 794 } 795 } 796 797 /* Copy guest memory in place - must reside within a single memslot */ 798 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 799 unsigned long len) 800 { 801 struct kvm_memory_slot *to_memslot = NULL; 802 struct kvm_memory_slot *from_memslot = NULL; 803 unsigned long to_addr, from_addr; 804 int r; 805 806 /* Get HPA for from address */ 807 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 808 if (!from_memslot) 809 return -EFAULT; 810 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 811 << PAGE_SHIFT)) 812 return -EINVAL; 813 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 814 if (kvm_is_error_hva(from_addr)) 815 return -EFAULT; 816 from_addr |= (from & (PAGE_SIZE - 1)); 817 818 /* Get HPA for to address */ 819 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 820 if (!to_memslot) 821 return -EFAULT; 822 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 823 << PAGE_SHIFT)) 824 return -EINVAL; 825 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 826 if (kvm_is_error_hva(to_addr)) 827 return -EFAULT; 828 to_addr |= (to & (PAGE_SIZE - 1)); 829 830 /* Perform copy */ 831 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 832 len); 833 if (r) 834 return -EFAULT; 835 mark_page_dirty(kvm, to >> PAGE_SHIFT); 836 return 0; 837 } 838 839 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 840 unsigned long dest, unsigned long src) 841 { 842 u64 pg_sz = SZ_4K; /* 4K page size */ 843 u64 pg_mask = SZ_4K - 1; 844 int ret; 845 846 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 847 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 848 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 849 return H_PARAMETER; 850 851 /* dest (and src if copy_page flag set) must be page aligned */ 852 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 853 return H_PARAMETER; 854 855 /* zero and/or copy the page as determined by the flags */ 856 if (flags & H_COPY_PAGE) { 857 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 858 if (ret < 0) 859 return H_PARAMETER; 860 } else if (flags & H_ZERO_PAGE) { 861 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 862 if (ret < 0) 863 return H_PARAMETER; 864 } 865 866 /* We can ignore the remaining flags */ 867 868 return H_SUCCESS; 869 } 870 871 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 872 { 873 struct kvmppc_vcore *vcore = target->arch.vcore; 874 875 /* 876 * We expect to have been called by the real mode handler 877 * (kvmppc_rm_h_confer()) which would have directly returned 878 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 879 * have useful work to do and should not confer) so we don't 880 * recheck that here. 881 */ 882 883 spin_lock(&vcore->lock); 884 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 885 vcore->vcore_state != VCORE_INACTIVE && 886 vcore->runner) 887 target = vcore->runner; 888 spin_unlock(&vcore->lock); 889 890 return kvm_vcpu_yield_to(target); 891 } 892 893 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 894 { 895 int yield_count = 0; 896 struct lppaca *lppaca; 897 898 spin_lock(&vcpu->arch.vpa_update_lock); 899 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 900 if (lppaca) 901 yield_count = be32_to_cpu(lppaca->yield_count); 902 spin_unlock(&vcpu->arch.vpa_update_lock); 903 return yield_count; 904 } 905 906 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 907 { 908 unsigned long req = kvmppc_get_gpr(vcpu, 3); 909 unsigned long target, ret = H_SUCCESS; 910 int yield_count; 911 struct kvm_vcpu *tvcpu; 912 int idx, rc; 913 914 if (req <= MAX_HCALL_OPCODE && 915 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 916 return RESUME_HOST; 917 918 switch (req) { 919 case H_CEDE: 920 break; 921 case H_PROD: 922 target = kvmppc_get_gpr(vcpu, 4); 923 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 924 if (!tvcpu) { 925 ret = H_PARAMETER; 926 break; 927 } 928 tvcpu->arch.prodded = 1; 929 smp_mb(); 930 if (tvcpu->arch.ceded) 931 kvmppc_fast_vcpu_kick_hv(tvcpu); 932 break; 933 case H_CONFER: 934 target = kvmppc_get_gpr(vcpu, 4); 935 if (target == -1) 936 break; 937 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 938 if (!tvcpu) { 939 ret = H_PARAMETER; 940 break; 941 } 942 yield_count = kvmppc_get_gpr(vcpu, 5); 943 if (kvmppc_get_yield_count(tvcpu) != yield_count) 944 break; 945 kvm_arch_vcpu_yield_to(tvcpu); 946 break; 947 case H_REGISTER_VPA: 948 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 949 kvmppc_get_gpr(vcpu, 5), 950 kvmppc_get_gpr(vcpu, 6)); 951 break; 952 case H_RTAS: 953 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 954 return RESUME_HOST; 955 956 idx = srcu_read_lock(&vcpu->kvm->srcu); 957 rc = kvmppc_rtas_hcall(vcpu); 958 srcu_read_unlock(&vcpu->kvm->srcu, idx); 959 960 if (rc == -ENOENT) 961 return RESUME_HOST; 962 else if (rc == 0) 963 break; 964 965 /* Send the error out to userspace via KVM_RUN */ 966 return rc; 967 case H_LOGICAL_CI_LOAD: 968 ret = kvmppc_h_logical_ci_load(vcpu); 969 if (ret == H_TOO_HARD) 970 return RESUME_HOST; 971 break; 972 case H_LOGICAL_CI_STORE: 973 ret = kvmppc_h_logical_ci_store(vcpu); 974 if (ret == H_TOO_HARD) 975 return RESUME_HOST; 976 break; 977 case H_SET_MODE: 978 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 979 kvmppc_get_gpr(vcpu, 5), 980 kvmppc_get_gpr(vcpu, 6), 981 kvmppc_get_gpr(vcpu, 7)); 982 if (ret == H_TOO_HARD) 983 return RESUME_HOST; 984 break; 985 case H_XIRR: 986 case H_CPPR: 987 case H_EOI: 988 case H_IPI: 989 case H_IPOLL: 990 case H_XIRR_X: 991 if (kvmppc_xics_enabled(vcpu)) { 992 if (xics_on_xive()) { 993 ret = H_NOT_AVAILABLE; 994 return RESUME_GUEST; 995 } 996 ret = kvmppc_xics_hcall(vcpu, req); 997 break; 998 } 999 return RESUME_HOST; 1000 case H_SET_DABR: 1001 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1002 break; 1003 case H_SET_XDABR: 1004 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1005 kvmppc_get_gpr(vcpu, 5)); 1006 break; 1007 #ifdef CONFIG_SPAPR_TCE_IOMMU 1008 case H_GET_TCE: 1009 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1010 kvmppc_get_gpr(vcpu, 5)); 1011 if (ret == H_TOO_HARD) 1012 return RESUME_HOST; 1013 break; 1014 case H_PUT_TCE: 1015 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1016 kvmppc_get_gpr(vcpu, 5), 1017 kvmppc_get_gpr(vcpu, 6)); 1018 if (ret == H_TOO_HARD) 1019 return RESUME_HOST; 1020 break; 1021 case H_PUT_TCE_INDIRECT: 1022 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1023 kvmppc_get_gpr(vcpu, 5), 1024 kvmppc_get_gpr(vcpu, 6), 1025 kvmppc_get_gpr(vcpu, 7)); 1026 if (ret == H_TOO_HARD) 1027 return RESUME_HOST; 1028 break; 1029 case H_STUFF_TCE: 1030 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1031 kvmppc_get_gpr(vcpu, 5), 1032 kvmppc_get_gpr(vcpu, 6), 1033 kvmppc_get_gpr(vcpu, 7)); 1034 if (ret == H_TOO_HARD) 1035 return RESUME_HOST; 1036 break; 1037 #endif 1038 case H_RANDOM: 1039 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4])) 1040 ret = H_HARDWARE; 1041 break; 1042 1043 case H_SET_PARTITION_TABLE: 1044 ret = H_FUNCTION; 1045 if (nesting_enabled(vcpu->kvm)) 1046 ret = kvmhv_set_partition_table(vcpu); 1047 break; 1048 case H_ENTER_NESTED: 1049 ret = H_FUNCTION; 1050 if (!nesting_enabled(vcpu->kvm)) 1051 break; 1052 ret = kvmhv_enter_nested_guest(vcpu); 1053 if (ret == H_INTERRUPT) { 1054 kvmppc_set_gpr(vcpu, 3, 0); 1055 vcpu->arch.hcall_needed = 0; 1056 return -EINTR; 1057 } else if (ret == H_TOO_HARD) { 1058 kvmppc_set_gpr(vcpu, 3, 0); 1059 vcpu->arch.hcall_needed = 0; 1060 return RESUME_HOST; 1061 } 1062 break; 1063 case H_TLB_INVALIDATE: 1064 ret = H_FUNCTION; 1065 if (nesting_enabled(vcpu->kvm)) 1066 ret = kvmhv_do_nested_tlbie(vcpu); 1067 break; 1068 case H_COPY_TOFROM_GUEST: 1069 ret = H_FUNCTION; 1070 if (nesting_enabled(vcpu->kvm)) 1071 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1072 break; 1073 case H_PAGE_INIT: 1074 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1075 kvmppc_get_gpr(vcpu, 5), 1076 kvmppc_get_gpr(vcpu, 6)); 1077 break; 1078 default: 1079 return RESUME_HOST; 1080 } 1081 kvmppc_set_gpr(vcpu, 3, ret); 1082 vcpu->arch.hcall_needed = 0; 1083 return RESUME_GUEST; 1084 } 1085 1086 /* 1087 * Handle H_CEDE in the nested virtualization case where we haven't 1088 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S. 1089 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1090 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1091 */ 1092 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu) 1093 { 1094 vcpu->arch.shregs.msr |= MSR_EE; 1095 vcpu->arch.ceded = 1; 1096 smp_mb(); 1097 if (vcpu->arch.prodded) { 1098 vcpu->arch.prodded = 0; 1099 smp_mb(); 1100 vcpu->arch.ceded = 0; 1101 } 1102 } 1103 1104 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1105 { 1106 switch (cmd) { 1107 case H_CEDE: 1108 case H_PROD: 1109 case H_CONFER: 1110 case H_REGISTER_VPA: 1111 case H_SET_MODE: 1112 case H_LOGICAL_CI_LOAD: 1113 case H_LOGICAL_CI_STORE: 1114 #ifdef CONFIG_KVM_XICS 1115 case H_XIRR: 1116 case H_CPPR: 1117 case H_EOI: 1118 case H_IPI: 1119 case H_IPOLL: 1120 case H_XIRR_X: 1121 #endif 1122 case H_PAGE_INIT: 1123 return 1; 1124 } 1125 1126 /* See if it's in the real-mode table */ 1127 return kvmppc_hcall_impl_hv_realmode(cmd); 1128 } 1129 1130 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 1131 struct kvm_vcpu *vcpu) 1132 { 1133 u32 last_inst; 1134 1135 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1136 EMULATE_DONE) { 1137 /* 1138 * Fetch failed, so return to guest and 1139 * try executing it again. 1140 */ 1141 return RESUME_GUEST; 1142 } 1143 1144 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1145 run->exit_reason = KVM_EXIT_DEBUG; 1146 run->debug.arch.address = kvmppc_get_pc(vcpu); 1147 return RESUME_HOST; 1148 } else { 1149 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1150 return RESUME_GUEST; 1151 } 1152 } 1153 1154 static void do_nothing(void *x) 1155 { 1156 } 1157 1158 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1159 { 1160 int thr, cpu, pcpu, nthreads; 1161 struct kvm_vcpu *v; 1162 unsigned long dpdes; 1163 1164 nthreads = vcpu->kvm->arch.emul_smt_mode; 1165 dpdes = 0; 1166 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1167 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1168 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1169 if (!v) 1170 continue; 1171 /* 1172 * If the vcpu is currently running on a physical cpu thread, 1173 * interrupt it in order to pull it out of the guest briefly, 1174 * which will update its vcore->dpdes value. 1175 */ 1176 pcpu = READ_ONCE(v->cpu); 1177 if (pcpu >= 0) 1178 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1179 if (kvmppc_doorbell_pending(v)) 1180 dpdes |= 1 << thr; 1181 } 1182 return dpdes; 1183 } 1184 1185 /* 1186 * On POWER9, emulate doorbell-related instructions in order to 1187 * give the guest the illusion of running on a multi-threaded core. 1188 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1189 * and mfspr DPDES. 1190 */ 1191 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1192 { 1193 u32 inst, rb, thr; 1194 unsigned long arg; 1195 struct kvm *kvm = vcpu->kvm; 1196 struct kvm_vcpu *tvcpu; 1197 1198 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1199 return RESUME_GUEST; 1200 if (get_op(inst) != 31) 1201 return EMULATE_FAIL; 1202 rb = get_rb(inst); 1203 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1204 switch (get_xop(inst)) { 1205 case OP_31_XOP_MSGSNDP: 1206 arg = kvmppc_get_gpr(vcpu, rb); 1207 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1208 break; 1209 arg &= 0x3f; 1210 if (arg >= kvm->arch.emul_smt_mode) 1211 break; 1212 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1213 if (!tvcpu) 1214 break; 1215 if (!tvcpu->arch.doorbell_request) { 1216 tvcpu->arch.doorbell_request = 1; 1217 kvmppc_fast_vcpu_kick_hv(tvcpu); 1218 } 1219 break; 1220 case OP_31_XOP_MSGCLRP: 1221 arg = kvmppc_get_gpr(vcpu, rb); 1222 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1223 break; 1224 vcpu->arch.vcore->dpdes = 0; 1225 vcpu->arch.doorbell_request = 0; 1226 break; 1227 case OP_31_XOP_MFSPR: 1228 switch (get_sprn(inst)) { 1229 case SPRN_TIR: 1230 arg = thr; 1231 break; 1232 case SPRN_DPDES: 1233 arg = kvmppc_read_dpdes(vcpu); 1234 break; 1235 default: 1236 return EMULATE_FAIL; 1237 } 1238 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1239 break; 1240 default: 1241 return EMULATE_FAIL; 1242 } 1243 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1244 return RESUME_GUEST; 1245 } 1246 1247 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 1248 struct task_struct *tsk) 1249 { 1250 int r = RESUME_HOST; 1251 1252 vcpu->stat.sum_exits++; 1253 1254 /* 1255 * This can happen if an interrupt occurs in the last stages 1256 * of guest entry or the first stages of guest exit (i.e. after 1257 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1258 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1259 * That can happen due to a bug, or due to a machine check 1260 * occurring at just the wrong time. 1261 */ 1262 if (vcpu->arch.shregs.msr & MSR_HV) { 1263 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1264 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1265 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1266 vcpu->arch.shregs.msr); 1267 kvmppc_dump_regs(vcpu); 1268 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1269 run->hw.hardware_exit_reason = vcpu->arch.trap; 1270 return RESUME_HOST; 1271 } 1272 run->exit_reason = KVM_EXIT_UNKNOWN; 1273 run->ready_for_interrupt_injection = 1; 1274 switch (vcpu->arch.trap) { 1275 /* We're good on these - the host merely wanted to get our attention */ 1276 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1277 vcpu->stat.dec_exits++; 1278 r = RESUME_GUEST; 1279 break; 1280 case BOOK3S_INTERRUPT_EXTERNAL: 1281 case BOOK3S_INTERRUPT_H_DOORBELL: 1282 case BOOK3S_INTERRUPT_H_VIRT: 1283 vcpu->stat.ext_intr_exits++; 1284 r = RESUME_GUEST; 1285 break; 1286 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1287 case BOOK3S_INTERRUPT_HMI: 1288 case BOOK3S_INTERRUPT_PERFMON: 1289 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1290 r = RESUME_GUEST; 1291 break; 1292 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1293 /* Print the MCE event to host console. */ 1294 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1295 1296 /* 1297 * If the guest can do FWNMI, exit to userspace so it can 1298 * deliver a FWNMI to the guest. 1299 * Otherwise we synthesize a machine check for the guest 1300 * so that it knows that the machine check occurred. 1301 */ 1302 if (!vcpu->kvm->arch.fwnmi_enabled) { 1303 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1304 kvmppc_core_queue_machine_check(vcpu, flags); 1305 r = RESUME_GUEST; 1306 break; 1307 } 1308 1309 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1310 run->exit_reason = KVM_EXIT_NMI; 1311 run->hw.hardware_exit_reason = vcpu->arch.trap; 1312 /* Clear out the old NMI status from run->flags */ 1313 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1314 /* Now set the NMI status */ 1315 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1316 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1317 else 1318 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1319 1320 r = RESUME_HOST; 1321 break; 1322 case BOOK3S_INTERRUPT_PROGRAM: 1323 { 1324 ulong flags; 1325 /* 1326 * Normally program interrupts are delivered directly 1327 * to the guest by the hardware, but we can get here 1328 * as a result of a hypervisor emulation interrupt 1329 * (e40) getting turned into a 700 by BML RTAS. 1330 */ 1331 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1332 kvmppc_core_queue_program(vcpu, flags); 1333 r = RESUME_GUEST; 1334 break; 1335 } 1336 case BOOK3S_INTERRUPT_SYSCALL: 1337 { 1338 /* hcall - punt to userspace */ 1339 int i; 1340 1341 /* hypercall with MSR_PR has already been handled in rmode, 1342 * and never reaches here. 1343 */ 1344 1345 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1346 for (i = 0; i < 9; ++i) 1347 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1348 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1349 vcpu->arch.hcall_needed = 1; 1350 r = RESUME_HOST; 1351 break; 1352 } 1353 /* 1354 * We get these next two if the guest accesses a page which it thinks 1355 * it has mapped but which is not actually present, either because 1356 * it is for an emulated I/O device or because the corresonding 1357 * host page has been paged out. Any other HDSI/HISI interrupts 1358 * have been handled already. 1359 */ 1360 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1361 r = RESUME_PAGE_FAULT; 1362 break; 1363 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1364 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1365 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1366 DSISR_SRR1_MATCH_64S; 1367 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1368 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1369 r = RESUME_PAGE_FAULT; 1370 break; 1371 /* 1372 * This occurs if the guest executes an illegal instruction. 1373 * If the guest debug is disabled, generate a program interrupt 1374 * to the guest. If guest debug is enabled, we need to check 1375 * whether the instruction is a software breakpoint instruction. 1376 * Accordingly return to Guest or Host. 1377 */ 1378 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1379 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1380 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1381 swab32(vcpu->arch.emul_inst) : 1382 vcpu->arch.emul_inst; 1383 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1384 r = kvmppc_emulate_debug_inst(run, vcpu); 1385 } else { 1386 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1387 r = RESUME_GUEST; 1388 } 1389 break; 1390 /* 1391 * This occurs if the guest (kernel or userspace), does something that 1392 * is prohibited by HFSCR. 1393 * On POWER9, this could be a doorbell instruction that we need 1394 * to emulate. 1395 * Otherwise, we just generate a program interrupt to the guest. 1396 */ 1397 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1398 r = EMULATE_FAIL; 1399 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1400 cpu_has_feature(CPU_FTR_ARCH_300)) 1401 r = kvmppc_emulate_doorbell_instr(vcpu); 1402 if (r == EMULATE_FAIL) { 1403 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1404 r = RESUME_GUEST; 1405 } 1406 break; 1407 1408 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1409 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1410 /* 1411 * This occurs for various TM-related instructions that 1412 * we need to emulate on POWER9 DD2.2. We have already 1413 * handled the cases where the guest was in real-suspend 1414 * mode and was transitioning to transactional state. 1415 */ 1416 r = kvmhv_p9_tm_emulation(vcpu); 1417 break; 1418 #endif 1419 1420 case BOOK3S_INTERRUPT_HV_RM_HARD: 1421 r = RESUME_PASSTHROUGH; 1422 break; 1423 default: 1424 kvmppc_dump_regs(vcpu); 1425 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1426 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1427 vcpu->arch.shregs.msr); 1428 run->hw.hardware_exit_reason = vcpu->arch.trap; 1429 r = RESUME_HOST; 1430 break; 1431 } 1432 1433 return r; 1434 } 1435 1436 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu) 1437 { 1438 int r; 1439 int srcu_idx; 1440 1441 vcpu->stat.sum_exits++; 1442 1443 /* 1444 * This can happen if an interrupt occurs in the last stages 1445 * of guest entry or the first stages of guest exit (i.e. after 1446 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1447 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1448 * That can happen due to a bug, or due to a machine check 1449 * occurring at just the wrong time. 1450 */ 1451 if (vcpu->arch.shregs.msr & MSR_HV) { 1452 pr_emerg("KVM trap in HV mode while nested!\n"); 1453 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1454 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1455 vcpu->arch.shregs.msr); 1456 kvmppc_dump_regs(vcpu); 1457 return RESUME_HOST; 1458 } 1459 switch (vcpu->arch.trap) { 1460 /* We're good on these - the host merely wanted to get our attention */ 1461 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1462 vcpu->stat.dec_exits++; 1463 r = RESUME_GUEST; 1464 break; 1465 case BOOK3S_INTERRUPT_EXTERNAL: 1466 vcpu->stat.ext_intr_exits++; 1467 r = RESUME_HOST; 1468 break; 1469 case BOOK3S_INTERRUPT_H_DOORBELL: 1470 case BOOK3S_INTERRUPT_H_VIRT: 1471 vcpu->stat.ext_intr_exits++; 1472 r = RESUME_GUEST; 1473 break; 1474 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1475 case BOOK3S_INTERRUPT_HMI: 1476 case BOOK3S_INTERRUPT_PERFMON: 1477 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1478 r = RESUME_GUEST; 1479 break; 1480 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1481 /* Pass the machine check to the L1 guest */ 1482 r = RESUME_HOST; 1483 /* Print the MCE event to host console. */ 1484 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1485 break; 1486 /* 1487 * We get these next two if the guest accesses a page which it thinks 1488 * it has mapped but which is not actually present, either because 1489 * it is for an emulated I/O device or because the corresonding 1490 * host page has been paged out. 1491 */ 1492 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1493 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1494 r = kvmhv_nested_page_fault(run, vcpu); 1495 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1496 break; 1497 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1498 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1499 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1500 DSISR_SRR1_MATCH_64S; 1501 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1502 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1503 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1504 r = kvmhv_nested_page_fault(run, vcpu); 1505 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1506 break; 1507 1508 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1509 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1510 /* 1511 * This occurs for various TM-related instructions that 1512 * we need to emulate on POWER9 DD2.2. We have already 1513 * handled the cases where the guest was in real-suspend 1514 * mode and was transitioning to transactional state. 1515 */ 1516 r = kvmhv_p9_tm_emulation(vcpu); 1517 break; 1518 #endif 1519 1520 case BOOK3S_INTERRUPT_HV_RM_HARD: 1521 vcpu->arch.trap = 0; 1522 r = RESUME_GUEST; 1523 if (!xics_on_xive()) 1524 kvmppc_xics_rm_complete(vcpu, 0); 1525 break; 1526 default: 1527 r = RESUME_HOST; 1528 break; 1529 } 1530 1531 return r; 1532 } 1533 1534 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1535 struct kvm_sregs *sregs) 1536 { 1537 int i; 1538 1539 memset(sregs, 0, sizeof(struct kvm_sregs)); 1540 sregs->pvr = vcpu->arch.pvr; 1541 for (i = 0; i < vcpu->arch.slb_max; i++) { 1542 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1543 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1544 } 1545 1546 return 0; 1547 } 1548 1549 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1550 struct kvm_sregs *sregs) 1551 { 1552 int i, j; 1553 1554 /* Only accept the same PVR as the host's, since we can't spoof it */ 1555 if (sregs->pvr != vcpu->arch.pvr) 1556 return -EINVAL; 1557 1558 j = 0; 1559 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1560 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1561 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1562 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1563 ++j; 1564 } 1565 } 1566 vcpu->arch.slb_max = j; 1567 1568 return 0; 1569 } 1570 1571 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1572 bool preserve_top32) 1573 { 1574 struct kvm *kvm = vcpu->kvm; 1575 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1576 u64 mask; 1577 1578 spin_lock(&vc->lock); 1579 /* 1580 * If ILE (interrupt little-endian) has changed, update the 1581 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1582 */ 1583 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1584 struct kvm_vcpu *vcpu; 1585 int i; 1586 1587 kvm_for_each_vcpu(i, vcpu, kvm) { 1588 if (vcpu->arch.vcore != vc) 1589 continue; 1590 if (new_lpcr & LPCR_ILE) 1591 vcpu->arch.intr_msr |= MSR_LE; 1592 else 1593 vcpu->arch.intr_msr &= ~MSR_LE; 1594 } 1595 } 1596 1597 /* 1598 * Userspace can only modify DPFD (default prefetch depth), 1599 * ILE (interrupt little-endian) and TC (translation control). 1600 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1601 */ 1602 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1603 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1604 mask |= LPCR_AIL; 1605 /* 1606 * On POWER9, allow userspace to enable large decrementer for the 1607 * guest, whether or not the host has it enabled. 1608 */ 1609 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1610 mask |= LPCR_LD; 1611 1612 /* Broken 32-bit version of LPCR must not clear top bits */ 1613 if (preserve_top32) 1614 mask &= 0xFFFFFFFF; 1615 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1616 spin_unlock(&vc->lock); 1617 } 1618 1619 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1620 union kvmppc_one_reg *val) 1621 { 1622 int r = 0; 1623 long int i; 1624 1625 switch (id) { 1626 case KVM_REG_PPC_DEBUG_INST: 1627 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1628 break; 1629 case KVM_REG_PPC_HIOR: 1630 *val = get_reg_val(id, 0); 1631 break; 1632 case KVM_REG_PPC_DABR: 1633 *val = get_reg_val(id, vcpu->arch.dabr); 1634 break; 1635 case KVM_REG_PPC_DABRX: 1636 *val = get_reg_val(id, vcpu->arch.dabrx); 1637 break; 1638 case KVM_REG_PPC_DSCR: 1639 *val = get_reg_val(id, vcpu->arch.dscr); 1640 break; 1641 case KVM_REG_PPC_PURR: 1642 *val = get_reg_val(id, vcpu->arch.purr); 1643 break; 1644 case KVM_REG_PPC_SPURR: 1645 *val = get_reg_val(id, vcpu->arch.spurr); 1646 break; 1647 case KVM_REG_PPC_AMR: 1648 *val = get_reg_val(id, vcpu->arch.amr); 1649 break; 1650 case KVM_REG_PPC_UAMOR: 1651 *val = get_reg_val(id, vcpu->arch.uamor); 1652 break; 1653 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1654 i = id - KVM_REG_PPC_MMCR0; 1655 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1656 break; 1657 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1658 i = id - KVM_REG_PPC_PMC1; 1659 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1660 break; 1661 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1662 i = id - KVM_REG_PPC_SPMC1; 1663 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1664 break; 1665 case KVM_REG_PPC_SIAR: 1666 *val = get_reg_val(id, vcpu->arch.siar); 1667 break; 1668 case KVM_REG_PPC_SDAR: 1669 *val = get_reg_val(id, vcpu->arch.sdar); 1670 break; 1671 case KVM_REG_PPC_SIER: 1672 *val = get_reg_val(id, vcpu->arch.sier); 1673 break; 1674 case KVM_REG_PPC_IAMR: 1675 *val = get_reg_val(id, vcpu->arch.iamr); 1676 break; 1677 case KVM_REG_PPC_PSPB: 1678 *val = get_reg_val(id, vcpu->arch.pspb); 1679 break; 1680 case KVM_REG_PPC_DPDES: 1681 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1682 break; 1683 case KVM_REG_PPC_VTB: 1684 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1685 break; 1686 case KVM_REG_PPC_DAWR: 1687 *val = get_reg_val(id, vcpu->arch.dawr); 1688 break; 1689 case KVM_REG_PPC_DAWRX: 1690 *val = get_reg_val(id, vcpu->arch.dawrx); 1691 break; 1692 case KVM_REG_PPC_CIABR: 1693 *val = get_reg_val(id, vcpu->arch.ciabr); 1694 break; 1695 case KVM_REG_PPC_CSIGR: 1696 *val = get_reg_val(id, vcpu->arch.csigr); 1697 break; 1698 case KVM_REG_PPC_TACR: 1699 *val = get_reg_val(id, vcpu->arch.tacr); 1700 break; 1701 case KVM_REG_PPC_TCSCR: 1702 *val = get_reg_val(id, vcpu->arch.tcscr); 1703 break; 1704 case KVM_REG_PPC_PID: 1705 *val = get_reg_val(id, vcpu->arch.pid); 1706 break; 1707 case KVM_REG_PPC_ACOP: 1708 *val = get_reg_val(id, vcpu->arch.acop); 1709 break; 1710 case KVM_REG_PPC_WORT: 1711 *val = get_reg_val(id, vcpu->arch.wort); 1712 break; 1713 case KVM_REG_PPC_TIDR: 1714 *val = get_reg_val(id, vcpu->arch.tid); 1715 break; 1716 case KVM_REG_PPC_PSSCR: 1717 *val = get_reg_val(id, vcpu->arch.psscr); 1718 break; 1719 case KVM_REG_PPC_VPA_ADDR: 1720 spin_lock(&vcpu->arch.vpa_update_lock); 1721 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1722 spin_unlock(&vcpu->arch.vpa_update_lock); 1723 break; 1724 case KVM_REG_PPC_VPA_SLB: 1725 spin_lock(&vcpu->arch.vpa_update_lock); 1726 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1727 val->vpaval.length = vcpu->arch.slb_shadow.len; 1728 spin_unlock(&vcpu->arch.vpa_update_lock); 1729 break; 1730 case KVM_REG_PPC_VPA_DTL: 1731 spin_lock(&vcpu->arch.vpa_update_lock); 1732 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1733 val->vpaval.length = vcpu->arch.dtl.len; 1734 spin_unlock(&vcpu->arch.vpa_update_lock); 1735 break; 1736 case KVM_REG_PPC_TB_OFFSET: 1737 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1738 break; 1739 case KVM_REG_PPC_LPCR: 1740 case KVM_REG_PPC_LPCR_64: 1741 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1742 break; 1743 case KVM_REG_PPC_PPR: 1744 *val = get_reg_val(id, vcpu->arch.ppr); 1745 break; 1746 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1747 case KVM_REG_PPC_TFHAR: 1748 *val = get_reg_val(id, vcpu->arch.tfhar); 1749 break; 1750 case KVM_REG_PPC_TFIAR: 1751 *val = get_reg_val(id, vcpu->arch.tfiar); 1752 break; 1753 case KVM_REG_PPC_TEXASR: 1754 *val = get_reg_val(id, vcpu->arch.texasr); 1755 break; 1756 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1757 i = id - KVM_REG_PPC_TM_GPR0; 1758 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1759 break; 1760 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1761 { 1762 int j; 1763 i = id - KVM_REG_PPC_TM_VSR0; 1764 if (i < 32) 1765 for (j = 0; j < TS_FPRWIDTH; j++) 1766 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1767 else { 1768 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1769 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1770 else 1771 r = -ENXIO; 1772 } 1773 break; 1774 } 1775 case KVM_REG_PPC_TM_CR: 1776 *val = get_reg_val(id, vcpu->arch.cr_tm); 1777 break; 1778 case KVM_REG_PPC_TM_XER: 1779 *val = get_reg_val(id, vcpu->arch.xer_tm); 1780 break; 1781 case KVM_REG_PPC_TM_LR: 1782 *val = get_reg_val(id, vcpu->arch.lr_tm); 1783 break; 1784 case KVM_REG_PPC_TM_CTR: 1785 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1786 break; 1787 case KVM_REG_PPC_TM_FPSCR: 1788 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1789 break; 1790 case KVM_REG_PPC_TM_AMR: 1791 *val = get_reg_val(id, vcpu->arch.amr_tm); 1792 break; 1793 case KVM_REG_PPC_TM_PPR: 1794 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1795 break; 1796 case KVM_REG_PPC_TM_VRSAVE: 1797 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1798 break; 1799 case KVM_REG_PPC_TM_VSCR: 1800 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1801 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1802 else 1803 r = -ENXIO; 1804 break; 1805 case KVM_REG_PPC_TM_DSCR: 1806 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1807 break; 1808 case KVM_REG_PPC_TM_TAR: 1809 *val = get_reg_val(id, vcpu->arch.tar_tm); 1810 break; 1811 #endif 1812 case KVM_REG_PPC_ARCH_COMPAT: 1813 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1814 break; 1815 case KVM_REG_PPC_DEC_EXPIRY: 1816 *val = get_reg_val(id, vcpu->arch.dec_expires + 1817 vcpu->arch.vcore->tb_offset); 1818 break; 1819 case KVM_REG_PPC_ONLINE: 1820 *val = get_reg_val(id, vcpu->arch.online); 1821 break; 1822 case KVM_REG_PPC_PTCR: 1823 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 1824 break; 1825 default: 1826 r = -EINVAL; 1827 break; 1828 } 1829 1830 return r; 1831 } 1832 1833 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1834 union kvmppc_one_reg *val) 1835 { 1836 int r = 0; 1837 long int i; 1838 unsigned long addr, len; 1839 1840 switch (id) { 1841 case KVM_REG_PPC_HIOR: 1842 /* Only allow this to be set to zero */ 1843 if (set_reg_val(id, *val)) 1844 r = -EINVAL; 1845 break; 1846 case KVM_REG_PPC_DABR: 1847 vcpu->arch.dabr = set_reg_val(id, *val); 1848 break; 1849 case KVM_REG_PPC_DABRX: 1850 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1851 break; 1852 case KVM_REG_PPC_DSCR: 1853 vcpu->arch.dscr = set_reg_val(id, *val); 1854 break; 1855 case KVM_REG_PPC_PURR: 1856 vcpu->arch.purr = set_reg_val(id, *val); 1857 break; 1858 case KVM_REG_PPC_SPURR: 1859 vcpu->arch.spurr = set_reg_val(id, *val); 1860 break; 1861 case KVM_REG_PPC_AMR: 1862 vcpu->arch.amr = set_reg_val(id, *val); 1863 break; 1864 case KVM_REG_PPC_UAMOR: 1865 vcpu->arch.uamor = set_reg_val(id, *val); 1866 break; 1867 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1868 i = id - KVM_REG_PPC_MMCR0; 1869 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1870 break; 1871 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1872 i = id - KVM_REG_PPC_PMC1; 1873 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1874 break; 1875 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1876 i = id - KVM_REG_PPC_SPMC1; 1877 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1878 break; 1879 case KVM_REG_PPC_SIAR: 1880 vcpu->arch.siar = set_reg_val(id, *val); 1881 break; 1882 case KVM_REG_PPC_SDAR: 1883 vcpu->arch.sdar = set_reg_val(id, *val); 1884 break; 1885 case KVM_REG_PPC_SIER: 1886 vcpu->arch.sier = set_reg_val(id, *val); 1887 break; 1888 case KVM_REG_PPC_IAMR: 1889 vcpu->arch.iamr = set_reg_val(id, *val); 1890 break; 1891 case KVM_REG_PPC_PSPB: 1892 vcpu->arch.pspb = set_reg_val(id, *val); 1893 break; 1894 case KVM_REG_PPC_DPDES: 1895 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1896 break; 1897 case KVM_REG_PPC_VTB: 1898 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1899 break; 1900 case KVM_REG_PPC_DAWR: 1901 vcpu->arch.dawr = set_reg_val(id, *val); 1902 break; 1903 case KVM_REG_PPC_DAWRX: 1904 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1905 break; 1906 case KVM_REG_PPC_CIABR: 1907 vcpu->arch.ciabr = set_reg_val(id, *val); 1908 /* Don't allow setting breakpoints in hypervisor code */ 1909 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1910 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1911 break; 1912 case KVM_REG_PPC_CSIGR: 1913 vcpu->arch.csigr = set_reg_val(id, *val); 1914 break; 1915 case KVM_REG_PPC_TACR: 1916 vcpu->arch.tacr = set_reg_val(id, *val); 1917 break; 1918 case KVM_REG_PPC_TCSCR: 1919 vcpu->arch.tcscr = set_reg_val(id, *val); 1920 break; 1921 case KVM_REG_PPC_PID: 1922 vcpu->arch.pid = set_reg_val(id, *val); 1923 break; 1924 case KVM_REG_PPC_ACOP: 1925 vcpu->arch.acop = set_reg_val(id, *val); 1926 break; 1927 case KVM_REG_PPC_WORT: 1928 vcpu->arch.wort = set_reg_val(id, *val); 1929 break; 1930 case KVM_REG_PPC_TIDR: 1931 vcpu->arch.tid = set_reg_val(id, *val); 1932 break; 1933 case KVM_REG_PPC_PSSCR: 1934 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1935 break; 1936 case KVM_REG_PPC_VPA_ADDR: 1937 addr = set_reg_val(id, *val); 1938 r = -EINVAL; 1939 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1940 vcpu->arch.dtl.next_gpa)) 1941 break; 1942 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1943 break; 1944 case KVM_REG_PPC_VPA_SLB: 1945 addr = val->vpaval.addr; 1946 len = val->vpaval.length; 1947 r = -EINVAL; 1948 if (addr && !vcpu->arch.vpa.next_gpa) 1949 break; 1950 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1951 break; 1952 case KVM_REG_PPC_VPA_DTL: 1953 addr = val->vpaval.addr; 1954 len = val->vpaval.length; 1955 r = -EINVAL; 1956 if (addr && (len < sizeof(struct dtl_entry) || 1957 !vcpu->arch.vpa.next_gpa)) 1958 break; 1959 len -= len % sizeof(struct dtl_entry); 1960 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1961 break; 1962 case KVM_REG_PPC_TB_OFFSET: 1963 /* round up to multiple of 2^24 */ 1964 vcpu->arch.vcore->tb_offset = 1965 ALIGN(set_reg_val(id, *val), 1UL << 24); 1966 break; 1967 case KVM_REG_PPC_LPCR: 1968 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1969 break; 1970 case KVM_REG_PPC_LPCR_64: 1971 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1972 break; 1973 case KVM_REG_PPC_PPR: 1974 vcpu->arch.ppr = set_reg_val(id, *val); 1975 break; 1976 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1977 case KVM_REG_PPC_TFHAR: 1978 vcpu->arch.tfhar = set_reg_val(id, *val); 1979 break; 1980 case KVM_REG_PPC_TFIAR: 1981 vcpu->arch.tfiar = set_reg_val(id, *val); 1982 break; 1983 case KVM_REG_PPC_TEXASR: 1984 vcpu->arch.texasr = set_reg_val(id, *val); 1985 break; 1986 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1987 i = id - KVM_REG_PPC_TM_GPR0; 1988 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1989 break; 1990 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1991 { 1992 int j; 1993 i = id - KVM_REG_PPC_TM_VSR0; 1994 if (i < 32) 1995 for (j = 0; j < TS_FPRWIDTH; j++) 1996 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1997 else 1998 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1999 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2000 else 2001 r = -ENXIO; 2002 break; 2003 } 2004 case KVM_REG_PPC_TM_CR: 2005 vcpu->arch.cr_tm = set_reg_val(id, *val); 2006 break; 2007 case KVM_REG_PPC_TM_XER: 2008 vcpu->arch.xer_tm = set_reg_val(id, *val); 2009 break; 2010 case KVM_REG_PPC_TM_LR: 2011 vcpu->arch.lr_tm = set_reg_val(id, *val); 2012 break; 2013 case KVM_REG_PPC_TM_CTR: 2014 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2015 break; 2016 case KVM_REG_PPC_TM_FPSCR: 2017 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2018 break; 2019 case KVM_REG_PPC_TM_AMR: 2020 vcpu->arch.amr_tm = set_reg_val(id, *val); 2021 break; 2022 case KVM_REG_PPC_TM_PPR: 2023 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2024 break; 2025 case KVM_REG_PPC_TM_VRSAVE: 2026 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2027 break; 2028 case KVM_REG_PPC_TM_VSCR: 2029 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2030 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2031 else 2032 r = - ENXIO; 2033 break; 2034 case KVM_REG_PPC_TM_DSCR: 2035 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2036 break; 2037 case KVM_REG_PPC_TM_TAR: 2038 vcpu->arch.tar_tm = set_reg_val(id, *val); 2039 break; 2040 #endif 2041 case KVM_REG_PPC_ARCH_COMPAT: 2042 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2043 break; 2044 case KVM_REG_PPC_DEC_EXPIRY: 2045 vcpu->arch.dec_expires = set_reg_val(id, *val) - 2046 vcpu->arch.vcore->tb_offset; 2047 break; 2048 case KVM_REG_PPC_ONLINE: 2049 i = set_reg_val(id, *val); 2050 if (i && !vcpu->arch.online) 2051 atomic_inc(&vcpu->arch.vcore->online_count); 2052 else if (!i && vcpu->arch.online) 2053 atomic_dec(&vcpu->arch.vcore->online_count); 2054 vcpu->arch.online = i; 2055 break; 2056 case KVM_REG_PPC_PTCR: 2057 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2058 break; 2059 default: 2060 r = -EINVAL; 2061 break; 2062 } 2063 2064 return r; 2065 } 2066 2067 /* 2068 * On POWER9, threads are independent and can be in different partitions. 2069 * Therefore we consider each thread to be a subcore. 2070 * There is a restriction that all threads have to be in the same 2071 * MMU mode (radix or HPT), unfortunately, but since we only support 2072 * HPT guests on a HPT host so far, that isn't an impediment yet. 2073 */ 2074 static int threads_per_vcore(struct kvm *kvm) 2075 { 2076 if (kvm->arch.threads_indep) 2077 return 1; 2078 return threads_per_subcore; 2079 } 2080 2081 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2082 { 2083 struct kvmppc_vcore *vcore; 2084 2085 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2086 2087 if (vcore == NULL) 2088 return NULL; 2089 2090 spin_lock_init(&vcore->lock); 2091 spin_lock_init(&vcore->stoltb_lock); 2092 init_swait_queue_head(&vcore->wq); 2093 vcore->preempt_tb = TB_NIL; 2094 vcore->lpcr = kvm->arch.lpcr; 2095 vcore->first_vcpuid = id; 2096 vcore->kvm = kvm; 2097 INIT_LIST_HEAD(&vcore->preempt_list); 2098 2099 return vcore; 2100 } 2101 2102 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2103 static struct debugfs_timings_element { 2104 const char *name; 2105 size_t offset; 2106 } timings[] = { 2107 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2108 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2109 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2110 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2111 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2112 }; 2113 2114 #define N_TIMINGS (ARRAY_SIZE(timings)) 2115 2116 struct debugfs_timings_state { 2117 struct kvm_vcpu *vcpu; 2118 unsigned int buflen; 2119 char buf[N_TIMINGS * 100]; 2120 }; 2121 2122 static int debugfs_timings_open(struct inode *inode, struct file *file) 2123 { 2124 struct kvm_vcpu *vcpu = inode->i_private; 2125 struct debugfs_timings_state *p; 2126 2127 p = kzalloc(sizeof(*p), GFP_KERNEL); 2128 if (!p) 2129 return -ENOMEM; 2130 2131 kvm_get_kvm(vcpu->kvm); 2132 p->vcpu = vcpu; 2133 file->private_data = p; 2134 2135 return nonseekable_open(inode, file); 2136 } 2137 2138 static int debugfs_timings_release(struct inode *inode, struct file *file) 2139 { 2140 struct debugfs_timings_state *p = file->private_data; 2141 2142 kvm_put_kvm(p->vcpu->kvm); 2143 kfree(p); 2144 return 0; 2145 } 2146 2147 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2148 size_t len, loff_t *ppos) 2149 { 2150 struct debugfs_timings_state *p = file->private_data; 2151 struct kvm_vcpu *vcpu = p->vcpu; 2152 char *s, *buf_end; 2153 struct kvmhv_tb_accumulator tb; 2154 u64 count; 2155 loff_t pos; 2156 ssize_t n; 2157 int i, loops; 2158 bool ok; 2159 2160 if (!p->buflen) { 2161 s = p->buf; 2162 buf_end = s + sizeof(p->buf); 2163 for (i = 0; i < N_TIMINGS; ++i) { 2164 struct kvmhv_tb_accumulator *acc; 2165 2166 acc = (struct kvmhv_tb_accumulator *) 2167 ((unsigned long)vcpu + timings[i].offset); 2168 ok = false; 2169 for (loops = 0; loops < 1000; ++loops) { 2170 count = acc->seqcount; 2171 if (!(count & 1)) { 2172 smp_rmb(); 2173 tb = *acc; 2174 smp_rmb(); 2175 if (count == acc->seqcount) { 2176 ok = true; 2177 break; 2178 } 2179 } 2180 udelay(1); 2181 } 2182 if (!ok) 2183 snprintf(s, buf_end - s, "%s: stuck\n", 2184 timings[i].name); 2185 else 2186 snprintf(s, buf_end - s, 2187 "%s: %llu %llu %llu %llu\n", 2188 timings[i].name, count / 2, 2189 tb_to_ns(tb.tb_total), 2190 tb_to_ns(tb.tb_min), 2191 tb_to_ns(tb.tb_max)); 2192 s += strlen(s); 2193 } 2194 p->buflen = s - p->buf; 2195 } 2196 2197 pos = *ppos; 2198 if (pos >= p->buflen) 2199 return 0; 2200 if (len > p->buflen - pos) 2201 len = p->buflen - pos; 2202 n = copy_to_user(buf, p->buf + pos, len); 2203 if (n) { 2204 if (n == len) 2205 return -EFAULT; 2206 len -= n; 2207 } 2208 *ppos = pos + len; 2209 return len; 2210 } 2211 2212 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2213 size_t len, loff_t *ppos) 2214 { 2215 return -EACCES; 2216 } 2217 2218 static const struct file_operations debugfs_timings_ops = { 2219 .owner = THIS_MODULE, 2220 .open = debugfs_timings_open, 2221 .release = debugfs_timings_release, 2222 .read = debugfs_timings_read, 2223 .write = debugfs_timings_write, 2224 .llseek = generic_file_llseek, 2225 }; 2226 2227 /* Create a debugfs directory for the vcpu */ 2228 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2229 { 2230 char buf[16]; 2231 struct kvm *kvm = vcpu->kvm; 2232 2233 snprintf(buf, sizeof(buf), "vcpu%u", id); 2234 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 2235 return; 2236 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 2237 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 2238 return; 2239 vcpu->arch.debugfs_timings = 2240 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 2241 vcpu, &debugfs_timings_ops); 2242 } 2243 2244 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2245 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2246 { 2247 } 2248 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2249 2250 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 2251 unsigned int id) 2252 { 2253 struct kvm_vcpu *vcpu; 2254 int err; 2255 int core; 2256 struct kvmppc_vcore *vcore; 2257 2258 err = -ENOMEM; 2259 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 2260 if (!vcpu) 2261 goto out; 2262 2263 err = kvm_vcpu_init(vcpu, kvm, id); 2264 if (err) 2265 goto free_vcpu; 2266 2267 vcpu->arch.shared = &vcpu->arch.shregs; 2268 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2269 /* 2270 * The shared struct is never shared on HV, 2271 * so we can always use host endianness 2272 */ 2273 #ifdef __BIG_ENDIAN__ 2274 vcpu->arch.shared_big_endian = true; 2275 #else 2276 vcpu->arch.shared_big_endian = false; 2277 #endif 2278 #endif 2279 vcpu->arch.mmcr[0] = MMCR0_FC; 2280 vcpu->arch.ctrl = CTRL_RUNLATCH; 2281 /* default to host PVR, since we can't spoof it */ 2282 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2283 spin_lock_init(&vcpu->arch.vpa_update_lock); 2284 spin_lock_init(&vcpu->arch.tbacct_lock); 2285 vcpu->arch.busy_preempt = TB_NIL; 2286 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2287 2288 /* 2289 * Set the default HFSCR for the guest from the host value. 2290 * This value is only used on POWER9. 2291 * On POWER9, we want to virtualize the doorbell facility, so we 2292 * don't set the HFSCR_MSGP bit, and that causes those instructions 2293 * to trap and then we emulate them. 2294 */ 2295 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2296 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP; 2297 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2298 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2299 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2300 vcpu->arch.hfscr |= HFSCR_TM; 2301 } 2302 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2303 vcpu->arch.hfscr |= HFSCR_TM; 2304 2305 kvmppc_mmu_book3s_hv_init(vcpu); 2306 2307 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2308 2309 init_waitqueue_head(&vcpu->arch.cpu_run); 2310 2311 mutex_lock(&kvm->lock); 2312 vcore = NULL; 2313 err = -EINVAL; 2314 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2315 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2316 pr_devel("KVM: VCPU ID too high\n"); 2317 core = KVM_MAX_VCORES; 2318 } else { 2319 BUG_ON(kvm->arch.smt_mode != 1); 2320 core = kvmppc_pack_vcpu_id(kvm, id); 2321 } 2322 } else { 2323 core = id / kvm->arch.smt_mode; 2324 } 2325 if (core < KVM_MAX_VCORES) { 2326 vcore = kvm->arch.vcores[core]; 2327 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2328 pr_devel("KVM: collision on id %u", id); 2329 vcore = NULL; 2330 } else if (!vcore) { 2331 /* 2332 * Take mmu_setup_lock for mutual exclusion 2333 * with kvmppc_update_lpcr(). 2334 */ 2335 err = -ENOMEM; 2336 vcore = kvmppc_vcore_create(kvm, 2337 id & ~(kvm->arch.smt_mode - 1)); 2338 mutex_lock(&kvm->arch.mmu_setup_lock); 2339 kvm->arch.vcores[core] = vcore; 2340 kvm->arch.online_vcores++; 2341 mutex_unlock(&kvm->arch.mmu_setup_lock); 2342 } 2343 } 2344 mutex_unlock(&kvm->lock); 2345 2346 if (!vcore) 2347 goto free_vcpu; 2348 2349 spin_lock(&vcore->lock); 2350 ++vcore->num_threads; 2351 spin_unlock(&vcore->lock); 2352 vcpu->arch.vcore = vcore; 2353 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2354 vcpu->arch.thread_cpu = -1; 2355 vcpu->arch.prev_cpu = -1; 2356 2357 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2358 kvmppc_sanity_check(vcpu); 2359 2360 debugfs_vcpu_init(vcpu, id); 2361 2362 return vcpu; 2363 2364 free_vcpu: 2365 kmem_cache_free(kvm_vcpu_cache, vcpu); 2366 out: 2367 return ERR_PTR(err); 2368 } 2369 2370 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2371 unsigned long flags) 2372 { 2373 int err; 2374 int esmt = 0; 2375 2376 if (flags) 2377 return -EINVAL; 2378 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2379 return -EINVAL; 2380 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2381 /* 2382 * On POWER8 (or POWER7), the threading mode is "strict", 2383 * so we pack smt_mode vcpus per vcore. 2384 */ 2385 if (smt_mode > threads_per_subcore) 2386 return -EINVAL; 2387 } else { 2388 /* 2389 * On POWER9, the threading mode is "loose", 2390 * so each vcpu gets its own vcore. 2391 */ 2392 esmt = smt_mode; 2393 smt_mode = 1; 2394 } 2395 mutex_lock(&kvm->lock); 2396 err = -EBUSY; 2397 if (!kvm->arch.online_vcores) { 2398 kvm->arch.smt_mode = smt_mode; 2399 kvm->arch.emul_smt_mode = esmt; 2400 err = 0; 2401 } 2402 mutex_unlock(&kvm->lock); 2403 2404 return err; 2405 } 2406 2407 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2408 { 2409 if (vpa->pinned_addr) 2410 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2411 vpa->dirty); 2412 } 2413 2414 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2415 { 2416 spin_lock(&vcpu->arch.vpa_update_lock); 2417 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2418 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2419 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2420 spin_unlock(&vcpu->arch.vpa_update_lock); 2421 kvm_vcpu_uninit(vcpu); 2422 kmem_cache_free(kvm_vcpu_cache, vcpu); 2423 } 2424 2425 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2426 { 2427 /* Indicate we want to get back into the guest */ 2428 return 1; 2429 } 2430 2431 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2432 { 2433 unsigned long dec_nsec, now; 2434 2435 now = get_tb(); 2436 if (now > vcpu->arch.dec_expires) { 2437 /* decrementer has already gone negative */ 2438 kvmppc_core_queue_dec(vcpu); 2439 kvmppc_core_prepare_to_enter(vcpu); 2440 return; 2441 } 2442 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now); 2443 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2444 vcpu->arch.timer_running = 1; 2445 } 2446 2447 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 2448 { 2449 vcpu->arch.ceded = 0; 2450 if (vcpu->arch.timer_running) { 2451 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2452 vcpu->arch.timer_running = 0; 2453 } 2454 } 2455 2456 extern int __kvmppc_vcore_entry(void); 2457 2458 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2459 struct kvm_vcpu *vcpu) 2460 { 2461 u64 now; 2462 2463 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2464 return; 2465 spin_lock_irq(&vcpu->arch.tbacct_lock); 2466 now = mftb(); 2467 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2468 vcpu->arch.stolen_logged; 2469 vcpu->arch.busy_preempt = now; 2470 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2471 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2472 --vc->n_runnable; 2473 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2474 } 2475 2476 static int kvmppc_grab_hwthread(int cpu) 2477 { 2478 struct paca_struct *tpaca; 2479 long timeout = 10000; 2480 2481 tpaca = paca_ptrs[cpu]; 2482 2483 /* Ensure the thread won't go into the kernel if it wakes */ 2484 tpaca->kvm_hstate.kvm_vcpu = NULL; 2485 tpaca->kvm_hstate.kvm_vcore = NULL; 2486 tpaca->kvm_hstate.napping = 0; 2487 smp_wmb(); 2488 tpaca->kvm_hstate.hwthread_req = 1; 2489 2490 /* 2491 * If the thread is already executing in the kernel (e.g. handling 2492 * a stray interrupt), wait for it to get back to nap mode. 2493 * The smp_mb() is to ensure that our setting of hwthread_req 2494 * is visible before we look at hwthread_state, so if this 2495 * races with the code at system_reset_pSeries and the thread 2496 * misses our setting of hwthread_req, we are sure to see its 2497 * setting of hwthread_state, and vice versa. 2498 */ 2499 smp_mb(); 2500 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2501 if (--timeout <= 0) { 2502 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2503 return -EBUSY; 2504 } 2505 udelay(1); 2506 } 2507 return 0; 2508 } 2509 2510 static void kvmppc_release_hwthread(int cpu) 2511 { 2512 struct paca_struct *tpaca; 2513 2514 tpaca = paca_ptrs[cpu]; 2515 tpaca->kvm_hstate.hwthread_req = 0; 2516 tpaca->kvm_hstate.kvm_vcpu = NULL; 2517 tpaca->kvm_hstate.kvm_vcore = NULL; 2518 tpaca->kvm_hstate.kvm_split_mode = NULL; 2519 } 2520 2521 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2522 { 2523 struct kvm_nested_guest *nested = vcpu->arch.nested; 2524 cpumask_t *cpu_in_guest; 2525 int i; 2526 2527 cpu = cpu_first_thread_sibling(cpu); 2528 if (nested) { 2529 cpumask_set_cpu(cpu, &nested->need_tlb_flush); 2530 cpu_in_guest = &nested->cpu_in_guest; 2531 } else { 2532 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2533 cpu_in_guest = &kvm->arch.cpu_in_guest; 2534 } 2535 /* 2536 * Make sure setting of bit in need_tlb_flush precedes 2537 * testing of cpu_in_guest bits. The matching barrier on 2538 * the other side is the first smp_mb() in kvmppc_run_core(). 2539 */ 2540 smp_mb(); 2541 for (i = 0; i < threads_per_core; ++i) 2542 if (cpumask_test_cpu(cpu + i, cpu_in_guest)) 2543 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2544 } 2545 2546 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2547 { 2548 struct kvm_nested_guest *nested = vcpu->arch.nested; 2549 struct kvm *kvm = vcpu->kvm; 2550 int prev_cpu; 2551 2552 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2553 return; 2554 2555 if (nested) 2556 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 2557 else 2558 prev_cpu = vcpu->arch.prev_cpu; 2559 2560 /* 2561 * With radix, the guest can do TLB invalidations itself, 2562 * and it could choose to use the local form (tlbiel) if 2563 * it is invalidating a translation that has only ever been 2564 * used on one vcpu. However, that doesn't mean it has 2565 * only ever been used on one physical cpu, since vcpus 2566 * can move around between pcpus. To cope with this, when 2567 * a vcpu moves from one pcpu to another, we need to tell 2568 * any vcpus running on the same core as this vcpu previously 2569 * ran to flush the TLB. The TLB is shared between threads, 2570 * so we use a single bit in .need_tlb_flush for all 4 threads. 2571 */ 2572 if (prev_cpu != pcpu) { 2573 if (prev_cpu >= 0 && 2574 cpu_first_thread_sibling(prev_cpu) != 2575 cpu_first_thread_sibling(pcpu)) 2576 radix_flush_cpu(kvm, prev_cpu, vcpu); 2577 if (nested) 2578 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 2579 else 2580 vcpu->arch.prev_cpu = pcpu; 2581 } 2582 } 2583 2584 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2585 { 2586 int cpu; 2587 struct paca_struct *tpaca; 2588 struct kvm *kvm = vc->kvm; 2589 2590 cpu = vc->pcpu; 2591 if (vcpu) { 2592 if (vcpu->arch.timer_running) { 2593 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2594 vcpu->arch.timer_running = 0; 2595 } 2596 cpu += vcpu->arch.ptid; 2597 vcpu->cpu = vc->pcpu; 2598 vcpu->arch.thread_cpu = cpu; 2599 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2600 } 2601 tpaca = paca_ptrs[cpu]; 2602 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2603 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2604 tpaca->kvm_hstate.fake_suspend = 0; 2605 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2606 smp_wmb(); 2607 tpaca->kvm_hstate.kvm_vcore = vc; 2608 if (cpu != smp_processor_id()) 2609 kvmppc_ipi_thread(cpu); 2610 } 2611 2612 static void kvmppc_wait_for_nap(int n_threads) 2613 { 2614 int cpu = smp_processor_id(); 2615 int i, loops; 2616 2617 if (n_threads <= 1) 2618 return; 2619 for (loops = 0; loops < 1000000; ++loops) { 2620 /* 2621 * Check if all threads are finished. 2622 * We set the vcore pointer when starting a thread 2623 * and the thread clears it when finished, so we look 2624 * for any threads that still have a non-NULL vcore ptr. 2625 */ 2626 for (i = 1; i < n_threads; ++i) 2627 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2628 break; 2629 if (i == n_threads) { 2630 HMT_medium(); 2631 return; 2632 } 2633 HMT_low(); 2634 } 2635 HMT_medium(); 2636 for (i = 1; i < n_threads; ++i) 2637 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2638 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2639 } 2640 2641 /* 2642 * Check that we are on thread 0 and that any other threads in 2643 * this core are off-line. Then grab the threads so they can't 2644 * enter the kernel. 2645 */ 2646 static int on_primary_thread(void) 2647 { 2648 int cpu = smp_processor_id(); 2649 int thr; 2650 2651 /* Are we on a primary subcore? */ 2652 if (cpu_thread_in_subcore(cpu)) 2653 return 0; 2654 2655 thr = 0; 2656 while (++thr < threads_per_subcore) 2657 if (cpu_online(cpu + thr)) 2658 return 0; 2659 2660 /* Grab all hw threads so they can't go into the kernel */ 2661 for (thr = 1; thr < threads_per_subcore; ++thr) { 2662 if (kvmppc_grab_hwthread(cpu + thr)) { 2663 /* Couldn't grab one; let the others go */ 2664 do { 2665 kvmppc_release_hwthread(cpu + thr); 2666 } while (--thr > 0); 2667 return 0; 2668 } 2669 } 2670 return 1; 2671 } 2672 2673 /* 2674 * A list of virtual cores for each physical CPU. 2675 * These are vcores that could run but their runner VCPU tasks are 2676 * (or may be) preempted. 2677 */ 2678 struct preempted_vcore_list { 2679 struct list_head list; 2680 spinlock_t lock; 2681 }; 2682 2683 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2684 2685 static void init_vcore_lists(void) 2686 { 2687 int cpu; 2688 2689 for_each_possible_cpu(cpu) { 2690 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2691 spin_lock_init(&lp->lock); 2692 INIT_LIST_HEAD(&lp->list); 2693 } 2694 } 2695 2696 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2697 { 2698 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2699 2700 vc->vcore_state = VCORE_PREEMPT; 2701 vc->pcpu = smp_processor_id(); 2702 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2703 spin_lock(&lp->lock); 2704 list_add_tail(&vc->preempt_list, &lp->list); 2705 spin_unlock(&lp->lock); 2706 } 2707 2708 /* Start accumulating stolen time */ 2709 kvmppc_core_start_stolen(vc); 2710 } 2711 2712 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2713 { 2714 struct preempted_vcore_list *lp; 2715 2716 kvmppc_core_end_stolen(vc); 2717 if (!list_empty(&vc->preempt_list)) { 2718 lp = &per_cpu(preempted_vcores, vc->pcpu); 2719 spin_lock(&lp->lock); 2720 list_del_init(&vc->preempt_list); 2721 spin_unlock(&lp->lock); 2722 } 2723 vc->vcore_state = VCORE_INACTIVE; 2724 } 2725 2726 /* 2727 * This stores information about the virtual cores currently 2728 * assigned to a physical core. 2729 */ 2730 struct core_info { 2731 int n_subcores; 2732 int max_subcore_threads; 2733 int total_threads; 2734 int subcore_threads[MAX_SUBCORES]; 2735 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2736 }; 2737 2738 /* 2739 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2740 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2741 */ 2742 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2743 2744 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2745 { 2746 memset(cip, 0, sizeof(*cip)); 2747 cip->n_subcores = 1; 2748 cip->max_subcore_threads = vc->num_threads; 2749 cip->total_threads = vc->num_threads; 2750 cip->subcore_threads[0] = vc->num_threads; 2751 cip->vc[0] = vc; 2752 } 2753 2754 static bool subcore_config_ok(int n_subcores, int n_threads) 2755 { 2756 /* 2757 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 2758 * split-core mode, with one thread per subcore. 2759 */ 2760 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2761 return n_subcores <= 4 && n_threads == 1; 2762 2763 /* On POWER8, can only dynamically split if unsplit to begin with */ 2764 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2765 return false; 2766 if (n_subcores > MAX_SUBCORES) 2767 return false; 2768 if (n_subcores > 1) { 2769 if (!(dynamic_mt_modes & 2)) 2770 n_subcores = 4; 2771 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2772 return false; 2773 } 2774 2775 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2776 } 2777 2778 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2779 { 2780 vc->entry_exit_map = 0; 2781 vc->in_guest = 0; 2782 vc->napping_threads = 0; 2783 vc->conferring_threads = 0; 2784 vc->tb_offset_applied = 0; 2785 } 2786 2787 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2788 { 2789 int n_threads = vc->num_threads; 2790 int sub; 2791 2792 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2793 return false; 2794 2795 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 2796 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 2797 return false; 2798 2799 /* Some POWER9 chips require all threads to be in the same MMU mode */ 2800 if (no_mixing_hpt_and_radix && 2801 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm)) 2802 return false; 2803 2804 if (n_threads < cip->max_subcore_threads) 2805 n_threads = cip->max_subcore_threads; 2806 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2807 return false; 2808 cip->max_subcore_threads = n_threads; 2809 2810 sub = cip->n_subcores; 2811 ++cip->n_subcores; 2812 cip->total_threads += vc->num_threads; 2813 cip->subcore_threads[sub] = vc->num_threads; 2814 cip->vc[sub] = vc; 2815 init_vcore_to_run(vc); 2816 list_del_init(&vc->preempt_list); 2817 2818 return true; 2819 } 2820 2821 /* 2822 * Work out whether it is possible to piggyback the execution of 2823 * vcore *pvc onto the execution of the other vcores described in *cip. 2824 */ 2825 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2826 int target_threads) 2827 { 2828 if (cip->total_threads + pvc->num_threads > target_threads) 2829 return false; 2830 2831 return can_dynamic_split(pvc, cip); 2832 } 2833 2834 static void prepare_threads(struct kvmppc_vcore *vc) 2835 { 2836 int i; 2837 struct kvm_vcpu *vcpu; 2838 2839 for_each_runnable_thread(i, vcpu, vc) { 2840 if (signal_pending(vcpu->arch.run_task)) 2841 vcpu->arch.ret = -EINTR; 2842 else if (vcpu->arch.vpa.update_pending || 2843 vcpu->arch.slb_shadow.update_pending || 2844 vcpu->arch.dtl.update_pending) 2845 vcpu->arch.ret = RESUME_GUEST; 2846 else 2847 continue; 2848 kvmppc_remove_runnable(vc, vcpu); 2849 wake_up(&vcpu->arch.cpu_run); 2850 } 2851 } 2852 2853 static void collect_piggybacks(struct core_info *cip, int target_threads) 2854 { 2855 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2856 struct kvmppc_vcore *pvc, *vcnext; 2857 2858 spin_lock(&lp->lock); 2859 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2860 if (!spin_trylock(&pvc->lock)) 2861 continue; 2862 prepare_threads(pvc); 2863 if (!pvc->n_runnable) { 2864 list_del_init(&pvc->preempt_list); 2865 if (pvc->runner == NULL) { 2866 pvc->vcore_state = VCORE_INACTIVE; 2867 kvmppc_core_end_stolen(pvc); 2868 } 2869 spin_unlock(&pvc->lock); 2870 continue; 2871 } 2872 if (!can_piggyback(pvc, cip, target_threads)) { 2873 spin_unlock(&pvc->lock); 2874 continue; 2875 } 2876 kvmppc_core_end_stolen(pvc); 2877 pvc->vcore_state = VCORE_PIGGYBACK; 2878 if (cip->total_threads >= target_threads) 2879 break; 2880 } 2881 spin_unlock(&lp->lock); 2882 } 2883 2884 static bool recheck_signals(struct core_info *cip) 2885 { 2886 int sub, i; 2887 struct kvm_vcpu *vcpu; 2888 2889 for (sub = 0; sub < cip->n_subcores; ++sub) 2890 for_each_runnable_thread(i, vcpu, cip->vc[sub]) 2891 if (signal_pending(vcpu->arch.run_task)) 2892 return true; 2893 return false; 2894 } 2895 2896 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2897 { 2898 int still_running = 0, i; 2899 u64 now; 2900 long ret; 2901 struct kvm_vcpu *vcpu; 2902 2903 spin_lock(&vc->lock); 2904 now = get_tb(); 2905 for_each_runnable_thread(i, vcpu, vc) { 2906 /* 2907 * It's safe to unlock the vcore in the loop here, because 2908 * for_each_runnable_thread() is safe against removal of 2909 * the vcpu, and the vcore state is VCORE_EXITING here, 2910 * so any vcpus becoming runnable will have their arch.trap 2911 * set to zero and can't actually run in the guest. 2912 */ 2913 spin_unlock(&vc->lock); 2914 /* cancel pending dec exception if dec is positive */ 2915 if (now < vcpu->arch.dec_expires && 2916 kvmppc_core_pending_dec(vcpu)) 2917 kvmppc_core_dequeue_dec(vcpu); 2918 2919 trace_kvm_guest_exit(vcpu); 2920 2921 ret = RESUME_GUEST; 2922 if (vcpu->arch.trap) 2923 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2924 vcpu->arch.run_task); 2925 2926 vcpu->arch.ret = ret; 2927 vcpu->arch.trap = 0; 2928 2929 spin_lock(&vc->lock); 2930 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2931 if (vcpu->arch.pending_exceptions) 2932 kvmppc_core_prepare_to_enter(vcpu); 2933 if (vcpu->arch.ceded) 2934 kvmppc_set_timer(vcpu); 2935 else 2936 ++still_running; 2937 } else { 2938 kvmppc_remove_runnable(vc, vcpu); 2939 wake_up(&vcpu->arch.cpu_run); 2940 } 2941 } 2942 if (!is_master) { 2943 if (still_running > 0) { 2944 kvmppc_vcore_preempt(vc); 2945 } else if (vc->runner) { 2946 vc->vcore_state = VCORE_PREEMPT; 2947 kvmppc_core_start_stolen(vc); 2948 } else { 2949 vc->vcore_state = VCORE_INACTIVE; 2950 } 2951 if (vc->n_runnable > 0 && vc->runner == NULL) { 2952 /* make sure there's a candidate runner awake */ 2953 i = -1; 2954 vcpu = next_runnable_thread(vc, &i); 2955 wake_up(&vcpu->arch.cpu_run); 2956 } 2957 } 2958 spin_unlock(&vc->lock); 2959 } 2960 2961 /* 2962 * Clear core from the list of active host cores as we are about to 2963 * enter the guest. Only do this if it is the primary thread of the 2964 * core (not if a subcore) that is entering the guest. 2965 */ 2966 static inline int kvmppc_clear_host_core(unsigned int cpu) 2967 { 2968 int core; 2969 2970 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2971 return 0; 2972 /* 2973 * Memory barrier can be omitted here as we will do a smp_wmb() 2974 * later in kvmppc_start_thread and we need ensure that state is 2975 * visible to other CPUs only after we enter guest. 2976 */ 2977 core = cpu >> threads_shift; 2978 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2979 return 0; 2980 } 2981 2982 /* 2983 * Advertise this core as an active host core since we exited the guest 2984 * Only need to do this if it is the primary thread of the core that is 2985 * exiting. 2986 */ 2987 static inline int kvmppc_set_host_core(unsigned int cpu) 2988 { 2989 int core; 2990 2991 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2992 return 0; 2993 2994 /* 2995 * Memory barrier can be omitted here because we do a spin_unlock 2996 * immediately after this which provides the memory barrier. 2997 */ 2998 core = cpu >> threads_shift; 2999 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3000 return 0; 3001 } 3002 3003 static void set_irq_happened(int trap) 3004 { 3005 switch (trap) { 3006 case BOOK3S_INTERRUPT_EXTERNAL: 3007 local_paca->irq_happened |= PACA_IRQ_EE; 3008 break; 3009 case BOOK3S_INTERRUPT_H_DOORBELL: 3010 local_paca->irq_happened |= PACA_IRQ_DBELL; 3011 break; 3012 case BOOK3S_INTERRUPT_HMI: 3013 local_paca->irq_happened |= PACA_IRQ_HMI; 3014 break; 3015 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3016 replay_system_reset(); 3017 break; 3018 } 3019 } 3020 3021 /* 3022 * Run a set of guest threads on a physical core. 3023 * Called with vc->lock held. 3024 */ 3025 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3026 { 3027 struct kvm_vcpu *vcpu; 3028 int i; 3029 int srcu_idx; 3030 struct core_info core_info; 3031 struct kvmppc_vcore *pvc; 3032 struct kvm_split_mode split_info, *sip; 3033 int split, subcore_size, active; 3034 int sub; 3035 bool thr0_done; 3036 unsigned long cmd_bit, stat_bit; 3037 int pcpu, thr; 3038 int target_threads; 3039 int controlled_threads; 3040 int trap; 3041 bool is_power8; 3042 bool hpt_on_radix; 3043 3044 /* 3045 * Remove from the list any threads that have a signal pending 3046 * or need a VPA update done 3047 */ 3048 prepare_threads(vc); 3049 3050 /* if the runner is no longer runnable, let the caller pick a new one */ 3051 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3052 return; 3053 3054 /* 3055 * Initialize *vc. 3056 */ 3057 init_vcore_to_run(vc); 3058 vc->preempt_tb = TB_NIL; 3059 3060 /* 3061 * Number of threads that we will be controlling: the same as 3062 * the number of threads per subcore, except on POWER9, 3063 * where it's 1 because the threads are (mostly) independent. 3064 */ 3065 controlled_threads = threads_per_vcore(vc->kvm); 3066 3067 /* 3068 * Make sure we are running on primary threads, and that secondary 3069 * threads are offline. Also check if the number of threads in this 3070 * guest are greater than the current system threads per guest. 3071 * On POWER9, we need to be not in independent-threads mode if 3072 * this is a HPT guest on a radix host machine where the 3073 * CPU threads may not be in different MMU modes. 3074 */ 3075 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() && 3076 !kvm_is_radix(vc->kvm); 3077 if (((controlled_threads > 1) && 3078 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) || 3079 (hpt_on_radix && vc->kvm->arch.threads_indep)) { 3080 for_each_runnable_thread(i, vcpu, vc) { 3081 vcpu->arch.ret = -EBUSY; 3082 kvmppc_remove_runnable(vc, vcpu); 3083 wake_up(&vcpu->arch.cpu_run); 3084 } 3085 goto out; 3086 } 3087 3088 /* 3089 * See if we could run any other vcores on the physical core 3090 * along with this one. 3091 */ 3092 init_core_info(&core_info, vc); 3093 pcpu = smp_processor_id(); 3094 target_threads = controlled_threads; 3095 if (target_smt_mode && target_smt_mode < target_threads) 3096 target_threads = target_smt_mode; 3097 if (vc->num_threads < target_threads) 3098 collect_piggybacks(&core_info, target_threads); 3099 3100 /* 3101 * On radix, arrange for TLB flushing if necessary. 3102 * This has to be done before disabling interrupts since 3103 * it uses smp_call_function(). 3104 */ 3105 pcpu = smp_processor_id(); 3106 if (kvm_is_radix(vc->kvm)) { 3107 for (sub = 0; sub < core_info.n_subcores; ++sub) 3108 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 3109 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 3110 } 3111 3112 /* 3113 * Hard-disable interrupts, and check resched flag and signals. 3114 * If we need to reschedule or deliver a signal, clean up 3115 * and return without going into the guest(s). 3116 * If the mmu_ready flag has been cleared, don't go into the 3117 * guest because that means a HPT resize operation is in progress. 3118 */ 3119 local_irq_disable(); 3120 hard_irq_disable(); 3121 if (lazy_irq_pending() || need_resched() || 3122 recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) { 3123 local_irq_enable(); 3124 vc->vcore_state = VCORE_INACTIVE; 3125 /* Unlock all except the primary vcore */ 3126 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3127 pvc = core_info.vc[sub]; 3128 /* Put back on to the preempted vcores list */ 3129 kvmppc_vcore_preempt(pvc); 3130 spin_unlock(&pvc->lock); 3131 } 3132 for (i = 0; i < controlled_threads; ++i) 3133 kvmppc_release_hwthread(pcpu + i); 3134 return; 3135 } 3136 3137 kvmppc_clear_host_core(pcpu); 3138 3139 /* Decide on micro-threading (split-core) mode */ 3140 subcore_size = threads_per_subcore; 3141 cmd_bit = stat_bit = 0; 3142 split = core_info.n_subcores; 3143 sip = NULL; 3144 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 3145 && !cpu_has_feature(CPU_FTR_ARCH_300); 3146 3147 if (split > 1 || hpt_on_radix) { 3148 sip = &split_info; 3149 memset(&split_info, 0, sizeof(split_info)); 3150 for (sub = 0; sub < core_info.n_subcores; ++sub) 3151 split_info.vc[sub] = core_info.vc[sub]; 3152 3153 if (is_power8) { 3154 if (split == 2 && (dynamic_mt_modes & 2)) { 3155 cmd_bit = HID0_POWER8_1TO2LPAR; 3156 stat_bit = HID0_POWER8_2LPARMODE; 3157 } else { 3158 split = 4; 3159 cmd_bit = HID0_POWER8_1TO4LPAR; 3160 stat_bit = HID0_POWER8_4LPARMODE; 3161 } 3162 subcore_size = MAX_SMT_THREADS / split; 3163 split_info.rpr = mfspr(SPRN_RPR); 3164 split_info.pmmar = mfspr(SPRN_PMMAR); 3165 split_info.ldbar = mfspr(SPRN_LDBAR); 3166 split_info.subcore_size = subcore_size; 3167 } else { 3168 split_info.subcore_size = 1; 3169 if (hpt_on_radix) { 3170 /* Use the split_info for LPCR/LPIDR changes */ 3171 split_info.lpcr_req = vc->lpcr; 3172 split_info.lpidr_req = vc->kvm->arch.lpid; 3173 split_info.host_lpcr = vc->kvm->arch.host_lpcr; 3174 split_info.do_set = 1; 3175 } 3176 } 3177 3178 /* order writes to split_info before kvm_split_mode pointer */ 3179 smp_wmb(); 3180 } 3181 3182 for (thr = 0; thr < controlled_threads; ++thr) { 3183 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3184 3185 paca->kvm_hstate.tid = thr; 3186 paca->kvm_hstate.napping = 0; 3187 paca->kvm_hstate.kvm_split_mode = sip; 3188 } 3189 3190 /* Initiate micro-threading (split-core) on POWER8 if required */ 3191 if (cmd_bit) { 3192 unsigned long hid0 = mfspr(SPRN_HID0); 3193 3194 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3195 mb(); 3196 mtspr(SPRN_HID0, hid0); 3197 isync(); 3198 for (;;) { 3199 hid0 = mfspr(SPRN_HID0); 3200 if (hid0 & stat_bit) 3201 break; 3202 cpu_relax(); 3203 } 3204 } 3205 3206 /* 3207 * On POWER8, set RWMR register. 3208 * Since it only affects PURR and SPURR, it doesn't affect 3209 * the host, so we don't save/restore the host value. 3210 */ 3211 if (is_power8) { 3212 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3213 int n_online = atomic_read(&vc->online_count); 3214 3215 /* 3216 * Use the 8-thread value if we're doing split-core 3217 * or if the vcore's online count looks bogus. 3218 */ 3219 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3220 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3221 rwmr_val = p8_rwmr_values[n_online]; 3222 mtspr(SPRN_RWMR, rwmr_val); 3223 } 3224 3225 /* Start all the threads */ 3226 active = 0; 3227 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3228 thr = is_power8 ? subcore_thread_map[sub] : sub; 3229 thr0_done = false; 3230 active |= 1 << thr; 3231 pvc = core_info.vc[sub]; 3232 pvc->pcpu = pcpu + thr; 3233 for_each_runnable_thread(i, vcpu, pvc) { 3234 kvmppc_start_thread(vcpu, pvc); 3235 kvmppc_create_dtl_entry(vcpu, pvc); 3236 trace_kvm_guest_enter(vcpu); 3237 if (!vcpu->arch.ptid) 3238 thr0_done = true; 3239 active |= 1 << (thr + vcpu->arch.ptid); 3240 } 3241 /* 3242 * We need to start the first thread of each subcore 3243 * even if it doesn't have a vcpu. 3244 */ 3245 if (!thr0_done) 3246 kvmppc_start_thread(NULL, pvc); 3247 } 3248 3249 /* 3250 * Ensure that split_info.do_nap is set after setting 3251 * the vcore pointer in the PACA of the secondaries. 3252 */ 3253 smp_mb(); 3254 3255 /* 3256 * When doing micro-threading, poke the inactive threads as well. 3257 * This gets them to the nap instruction after kvm_do_nap, 3258 * which reduces the time taken to unsplit later. 3259 * For POWER9 HPT guest on radix host, we need all the secondary 3260 * threads woken up so they can do the LPCR/LPIDR change. 3261 */ 3262 if (cmd_bit || hpt_on_radix) { 3263 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3264 for (thr = 1; thr < threads_per_subcore; ++thr) 3265 if (!(active & (1 << thr))) 3266 kvmppc_ipi_thread(pcpu + thr); 3267 } 3268 3269 vc->vcore_state = VCORE_RUNNING; 3270 preempt_disable(); 3271 3272 trace_kvmppc_run_core(vc, 0); 3273 3274 for (sub = 0; sub < core_info.n_subcores; ++sub) 3275 spin_unlock(&core_info.vc[sub]->lock); 3276 3277 guest_enter_irqoff(); 3278 3279 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3280 3281 this_cpu_disable_ftrace(); 3282 3283 /* 3284 * Interrupts will be enabled once we get into the guest, 3285 * so tell lockdep that we're about to enable interrupts. 3286 */ 3287 trace_hardirqs_on(); 3288 3289 trap = __kvmppc_vcore_entry(); 3290 3291 trace_hardirqs_off(); 3292 3293 this_cpu_enable_ftrace(); 3294 3295 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3296 3297 set_irq_happened(trap); 3298 3299 spin_lock(&vc->lock); 3300 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3301 vc->vcore_state = VCORE_EXITING; 3302 3303 /* wait for secondary threads to finish writing their state to memory */ 3304 kvmppc_wait_for_nap(controlled_threads); 3305 3306 /* Return to whole-core mode if we split the core earlier */ 3307 if (cmd_bit) { 3308 unsigned long hid0 = mfspr(SPRN_HID0); 3309 unsigned long loops = 0; 3310 3311 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3312 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3313 mb(); 3314 mtspr(SPRN_HID0, hid0); 3315 isync(); 3316 for (;;) { 3317 hid0 = mfspr(SPRN_HID0); 3318 if (!(hid0 & stat_bit)) 3319 break; 3320 cpu_relax(); 3321 ++loops; 3322 } 3323 } else if (hpt_on_radix) { 3324 /* Wait for all threads to have seen final sync */ 3325 for (thr = 1; thr < controlled_threads; ++thr) { 3326 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3327 3328 while (paca->kvm_hstate.kvm_split_mode) { 3329 HMT_low(); 3330 barrier(); 3331 } 3332 HMT_medium(); 3333 } 3334 } 3335 split_info.do_nap = 0; 3336 3337 kvmppc_set_host_core(pcpu); 3338 3339 local_irq_enable(); 3340 guest_exit(); 3341 3342 /* Let secondaries go back to the offline loop */ 3343 for (i = 0; i < controlled_threads; ++i) { 3344 kvmppc_release_hwthread(pcpu + i); 3345 if (sip && sip->napped[i]) 3346 kvmppc_ipi_thread(pcpu + i); 3347 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 3348 } 3349 3350 spin_unlock(&vc->lock); 3351 3352 /* make sure updates to secondary vcpu structs are visible now */ 3353 smp_mb(); 3354 3355 preempt_enable(); 3356 3357 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3358 pvc = core_info.vc[sub]; 3359 post_guest_process(pvc, pvc == vc); 3360 } 3361 3362 spin_lock(&vc->lock); 3363 3364 out: 3365 vc->vcore_state = VCORE_INACTIVE; 3366 trace_kvmppc_run_core(vc, 1); 3367 } 3368 3369 /* 3370 * Load up hypervisor-mode registers on P9. 3371 */ 3372 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit, 3373 unsigned long lpcr) 3374 { 3375 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3376 s64 hdec; 3377 u64 tb, purr, spurr; 3378 int trap; 3379 unsigned long host_hfscr = mfspr(SPRN_HFSCR); 3380 unsigned long host_ciabr = mfspr(SPRN_CIABR); 3381 unsigned long host_dawr = mfspr(SPRN_DAWR); 3382 unsigned long host_dawrx = mfspr(SPRN_DAWRX); 3383 unsigned long host_psscr = mfspr(SPRN_PSSCR); 3384 unsigned long host_pidr = mfspr(SPRN_PID); 3385 3386 hdec = time_limit - mftb(); 3387 if (hdec < 0) 3388 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3389 mtspr(SPRN_HDEC, hdec); 3390 3391 if (vc->tb_offset) { 3392 u64 new_tb = mftb() + vc->tb_offset; 3393 mtspr(SPRN_TBU40, new_tb); 3394 tb = mftb(); 3395 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3396 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3397 vc->tb_offset_applied = vc->tb_offset; 3398 } 3399 3400 if (vc->pcr) 3401 mtspr(SPRN_PCR, vc->pcr); 3402 mtspr(SPRN_DPDES, vc->dpdes); 3403 mtspr(SPRN_VTB, vc->vtb); 3404 3405 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR); 3406 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR); 3407 mtspr(SPRN_PURR, vcpu->arch.purr); 3408 mtspr(SPRN_SPURR, vcpu->arch.spurr); 3409 3410 if (dawr_enabled()) { 3411 mtspr(SPRN_DAWR, vcpu->arch.dawr); 3412 mtspr(SPRN_DAWRX, vcpu->arch.dawrx); 3413 } 3414 mtspr(SPRN_CIABR, vcpu->arch.ciabr); 3415 mtspr(SPRN_IC, vcpu->arch.ic); 3416 mtspr(SPRN_PID, vcpu->arch.pid); 3417 3418 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC | 3419 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3420 3421 mtspr(SPRN_HFSCR, vcpu->arch.hfscr); 3422 3423 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0); 3424 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1); 3425 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2); 3426 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3); 3427 3428 mtspr(SPRN_AMOR, ~0UL); 3429 3430 mtspr(SPRN_LPCR, lpcr); 3431 isync(); 3432 3433 kvmppc_xive_push_vcpu(vcpu); 3434 3435 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0); 3436 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1); 3437 3438 trap = __kvmhv_vcpu_entry_p9(vcpu); 3439 3440 /* Advance host PURR/SPURR by the amount used by guest */ 3441 purr = mfspr(SPRN_PURR); 3442 spurr = mfspr(SPRN_SPURR); 3443 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr + 3444 purr - vcpu->arch.purr); 3445 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr + 3446 spurr - vcpu->arch.spurr); 3447 vcpu->arch.purr = purr; 3448 vcpu->arch.spurr = spurr; 3449 3450 vcpu->arch.ic = mfspr(SPRN_IC); 3451 vcpu->arch.pid = mfspr(SPRN_PID); 3452 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS; 3453 3454 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0); 3455 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1); 3456 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2); 3457 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3); 3458 3459 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */ 3460 mtspr(SPRN_PSSCR, host_psscr | 3461 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3462 mtspr(SPRN_HFSCR, host_hfscr); 3463 mtspr(SPRN_CIABR, host_ciabr); 3464 mtspr(SPRN_DAWR, host_dawr); 3465 mtspr(SPRN_DAWRX, host_dawrx); 3466 mtspr(SPRN_PID, host_pidr); 3467 3468 /* 3469 * Since this is radix, do a eieio; tlbsync; ptesync sequence in 3470 * case we interrupted the guest between a tlbie and a ptesync. 3471 */ 3472 asm volatile("eieio; tlbsync; ptesync"); 3473 3474 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */ 3475 isync(); 3476 3477 vc->dpdes = mfspr(SPRN_DPDES); 3478 vc->vtb = mfspr(SPRN_VTB); 3479 mtspr(SPRN_DPDES, 0); 3480 if (vc->pcr) 3481 mtspr(SPRN_PCR, 0); 3482 3483 if (vc->tb_offset_applied) { 3484 u64 new_tb = mftb() - vc->tb_offset_applied; 3485 mtspr(SPRN_TBU40, new_tb); 3486 tb = mftb(); 3487 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3488 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3489 vc->tb_offset_applied = 0; 3490 } 3491 3492 mtspr(SPRN_HDEC, 0x7fffffff); 3493 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr); 3494 3495 return trap; 3496 } 3497 3498 /* 3499 * Virtual-mode guest entry for POWER9 and later when the host and 3500 * guest are both using the radix MMU. The LPIDR has already been set. 3501 */ 3502 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 3503 unsigned long lpcr) 3504 { 3505 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3506 unsigned long host_dscr = mfspr(SPRN_DSCR); 3507 unsigned long host_tidr = mfspr(SPRN_TIDR); 3508 unsigned long host_iamr = mfspr(SPRN_IAMR); 3509 unsigned long host_amr = mfspr(SPRN_AMR); 3510 s64 dec; 3511 u64 tb; 3512 int trap, save_pmu; 3513 3514 dec = mfspr(SPRN_DEC); 3515 tb = mftb(); 3516 if (dec < 512) 3517 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3518 local_paca->kvm_hstate.dec_expires = dec + tb; 3519 if (local_paca->kvm_hstate.dec_expires < time_limit) 3520 time_limit = local_paca->kvm_hstate.dec_expires; 3521 3522 vcpu->arch.ceded = 0; 3523 3524 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */ 3525 3526 kvmppc_subcore_enter_guest(); 3527 3528 vc->entry_exit_map = 1; 3529 vc->in_guest = 1; 3530 3531 if (vcpu->arch.vpa.pinned_addr) { 3532 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3533 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3534 lp->yield_count = cpu_to_be32(yield_count); 3535 vcpu->arch.vpa.dirty = 1; 3536 } 3537 3538 if (cpu_has_feature(CPU_FTR_TM) || 3539 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3540 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3541 3542 kvmhv_load_guest_pmu(vcpu); 3543 3544 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3545 load_fp_state(&vcpu->arch.fp); 3546 #ifdef CONFIG_ALTIVEC 3547 load_vr_state(&vcpu->arch.vr); 3548 #endif 3549 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 3550 3551 mtspr(SPRN_DSCR, vcpu->arch.dscr); 3552 mtspr(SPRN_IAMR, vcpu->arch.iamr); 3553 mtspr(SPRN_PSPB, vcpu->arch.pspb); 3554 mtspr(SPRN_FSCR, vcpu->arch.fscr); 3555 mtspr(SPRN_TAR, vcpu->arch.tar); 3556 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr); 3557 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr); 3558 mtspr(SPRN_BESCR, vcpu->arch.bescr); 3559 mtspr(SPRN_WORT, vcpu->arch.wort); 3560 mtspr(SPRN_TIDR, vcpu->arch.tid); 3561 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 3562 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 3563 mtspr(SPRN_AMR, vcpu->arch.amr); 3564 mtspr(SPRN_UAMOR, vcpu->arch.uamor); 3565 3566 if (!(vcpu->arch.ctrl & 1)) 3567 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1); 3568 3569 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb()); 3570 3571 if (kvmhv_on_pseries()) { 3572 /* call our hypervisor to load up HV regs and go */ 3573 struct hv_guest_state hvregs; 3574 3575 kvmhv_save_hv_regs(vcpu, &hvregs); 3576 hvregs.lpcr = lpcr; 3577 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 3578 hvregs.version = HV_GUEST_STATE_VERSION; 3579 if (vcpu->arch.nested) { 3580 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 3581 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 3582 } else { 3583 hvregs.lpid = vcpu->kvm->arch.lpid; 3584 hvregs.vcpu_token = vcpu->vcpu_id; 3585 } 3586 hvregs.hdec_expiry = time_limit; 3587 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 3588 __pa(&vcpu->arch.regs)); 3589 kvmhv_restore_hv_return_state(vcpu, &hvregs); 3590 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 3591 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 3592 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 3593 3594 /* H_CEDE has to be handled now, not later */ 3595 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 3596 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 3597 kvmppc_nested_cede(vcpu); 3598 trap = 0; 3599 } 3600 } else { 3601 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr); 3602 } 3603 3604 vcpu->arch.slb_max = 0; 3605 dec = mfspr(SPRN_DEC); 3606 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 3607 dec = (s32) dec; 3608 tb = mftb(); 3609 vcpu->arch.dec_expires = dec + tb; 3610 vcpu->cpu = -1; 3611 vcpu->arch.thread_cpu = -1; 3612 vcpu->arch.ctrl = mfspr(SPRN_CTRLF); 3613 3614 vcpu->arch.iamr = mfspr(SPRN_IAMR); 3615 vcpu->arch.pspb = mfspr(SPRN_PSPB); 3616 vcpu->arch.fscr = mfspr(SPRN_FSCR); 3617 vcpu->arch.tar = mfspr(SPRN_TAR); 3618 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR); 3619 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR); 3620 vcpu->arch.bescr = mfspr(SPRN_BESCR); 3621 vcpu->arch.wort = mfspr(SPRN_WORT); 3622 vcpu->arch.tid = mfspr(SPRN_TIDR); 3623 vcpu->arch.amr = mfspr(SPRN_AMR); 3624 vcpu->arch.uamor = mfspr(SPRN_UAMOR); 3625 vcpu->arch.dscr = mfspr(SPRN_DSCR); 3626 3627 mtspr(SPRN_PSPB, 0); 3628 mtspr(SPRN_WORT, 0); 3629 mtspr(SPRN_UAMOR, 0); 3630 mtspr(SPRN_DSCR, host_dscr); 3631 mtspr(SPRN_TIDR, host_tidr); 3632 mtspr(SPRN_IAMR, host_iamr); 3633 mtspr(SPRN_PSPB, 0); 3634 3635 if (host_amr != vcpu->arch.amr) 3636 mtspr(SPRN_AMR, host_amr); 3637 3638 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3639 store_fp_state(&vcpu->arch.fp); 3640 #ifdef CONFIG_ALTIVEC 3641 store_vr_state(&vcpu->arch.vr); 3642 #endif 3643 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 3644 3645 if (cpu_has_feature(CPU_FTR_TM) || 3646 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3647 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3648 3649 save_pmu = 1; 3650 if (vcpu->arch.vpa.pinned_addr) { 3651 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3652 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3653 lp->yield_count = cpu_to_be32(yield_count); 3654 vcpu->arch.vpa.dirty = 1; 3655 save_pmu = lp->pmcregs_in_use; 3656 } 3657 3658 kvmhv_save_guest_pmu(vcpu, save_pmu); 3659 3660 vc->entry_exit_map = 0x101; 3661 vc->in_guest = 0; 3662 3663 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb()); 3664 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso); 3665 3666 kvmhv_load_host_pmu(); 3667 3668 kvmppc_subcore_exit_guest(); 3669 3670 return trap; 3671 } 3672 3673 /* 3674 * Wait for some other vcpu thread to execute us, and 3675 * wake us up when we need to handle something in the host. 3676 */ 3677 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 3678 struct kvm_vcpu *vcpu, int wait_state) 3679 { 3680 DEFINE_WAIT(wait); 3681 3682 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 3683 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3684 spin_unlock(&vc->lock); 3685 schedule(); 3686 spin_lock(&vc->lock); 3687 } 3688 finish_wait(&vcpu->arch.cpu_run, &wait); 3689 } 3690 3691 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 3692 { 3693 if (!halt_poll_ns_grow) 3694 return; 3695 3696 vc->halt_poll_ns *= halt_poll_ns_grow; 3697 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 3698 vc->halt_poll_ns = halt_poll_ns_grow_start; 3699 } 3700 3701 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 3702 { 3703 if (halt_poll_ns_shrink == 0) 3704 vc->halt_poll_ns = 0; 3705 else 3706 vc->halt_poll_ns /= halt_poll_ns_shrink; 3707 } 3708 3709 #ifdef CONFIG_KVM_XICS 3710 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3711 { 3712 if (!xics_on_xive()) 3713 return false; 3714 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 3715 vcpu->arch.xive_saved_state.cppr; 3716 } 3717 #else 3718 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3719 { 3720 return false; 3721 } 3722 #endif /* CONFIG_KVM_XICS */ 3723 3724 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3725 { 3726 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3727 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3728 return true; 3729 3730 return false; 3731 } 3732 3733 /* 3734 * Check to see if any of the runnable vcpus on the vcore have pending 3735 * exceptions or are no longer ceded 3736 */ 3737 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3738 { 3739 struct kvm_vcpu *vcpu; 3740 int i; 3741 3742 for_each_runnable_thread(i, vcpu, vc) { 3743 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3744 return 1; 3745 } 3746 3747 return 0; 3748 } 3749 3750 /* 3751 * All the vcpus in this vcore are idle, so wait for a decrementer 3752 * or external interrupt to one of the vcpus. vc->lock is held. 3753 */ 3754 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3755 { 3756 ktime_t cur, start_poll, start_wait; 3757 int do_sleep = 1; 3758 u64 block_ns; 3759 DECLARE_SWAITQUEUE(wait); 3760 3761 /* Poll for pending exceptions and ceded state */ 3762 cur = start_poll = ktime_get(); 3763 if (vc->halt_poll_ns) { 3764 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3765 ++vc->runner->stat.halt_attempted_poll; 3766 3767 vc->vcore_state = VCORE_POLLING; 3768 spin_unlock(&vc->lock); 3769 3770 do { 3771 if (kvmppc_vcore_check_block(vc)) { 3772 do_sleep = 0; 3773 break; 3774 } 3775 cur = ktime_get(); 3776 } while (single_task_running() && ktime_before(cur, stop)); 3777 3778 spin_lock(&vc->lock); 3779 vc->vcore_state = VCORE_INACTIVE; 3780 3781 if (!do_sleep) { 3782 ++vc->runner->stat.halt_successful_poll; 3783 goto out; 3784 } 3785 } 3786 3787 prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE); 3788 3789 if (kvmppc_vcore_check_block(vc)) { 3790 finish_swait(&vc->wq, &wait); 3791 do_sleep = 0; 3792 /* If we polled, count this as a successful poll */ 3793 if (vc->halt_poll_ns) 3794 ++vc->runner->stat.halt_successful_poll; 3795 goto out; 3796 } 3797 3798 start_wait = ktime_get(); 3799 3800 vc->vcore_state = VCORE_SLEEPING; 3801 trace_kvmppc_vcore_blocked(vc, 0); 3802 spin_unlock(&vc->lock); 3803 schedule(); 3804 finish_swait(&vc->wq, &wait); 3805 spin_lock(&vc->lock); 3806 vc->vcore_state = VCORE_INACTIVE; 3807 trace_kvmppc_vcore_blocked(vc, 1); 3808 ++vc->runner->stat.halt_successful_wait; 3809 3810 cur = ktime_get(); 3811 3812 out: 3813 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3814 3815 /* Attribute wait time */ 3816 if (do_sleep) { 3817 vc->runner->stat.halt_wait_ns += 3818 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3819 /* Attribute failed poll time */ 3820 if (vc->halt_poll_ns) 3821 vc->runner->stat.halt_poll_fail_ns += 3822 ktime_to_ns(start_wait) - 3823 ktime_to_ns(start_poll); 3824 } else { 3825 /* Attribute successful poll time */ 3826 if (vc->halt_poll_ns) 3827 vc->runner->stat.halt_poll_success_ns += 3828 ktime_to_ns(cur) - 3829 ktime_to_ns(start_poll); 3830 } 3831 3832 /* Adjust poll time */ 3833 if (halt_poll_ns) { 3834 if (block_ns <= vc->halt_poll_ns) 3835 ; 3836 /* We slept and blocked for longer than the max halt time */ 3837 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3838 shrink_halt_poll_ns(vc); 3839 /* We slept and our poll time is too small */ 3840 else if (vc->halt_poll_ns < halt_poll_ns && 3841 block_ns < halt_poll_ns) 3842 grow_halt_poll_ns(vc); 3843 if (vc->halt_poll_ns > halt_poll_ns) 3844 vc->halt_poll_ns = halt_poll_ns; 3845 } else 3846 vc->halt_poll_ns = 0; 3847 3848 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3849 } 3850 3851 /* 3852 * This never fails for a radix guest, as none of the operations it does 3853 * for a radix guest can fail or have a way to report failure. 3854 * kvmhv_run_single_vcpu() relies on this fact. 3855 */ 3856 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 3857 { 3858 int r = 0; 3859 struct kvm *kvm = vcpu->kvm; 3860 3861 mutex_lock(&kvm->arch.mmu_setup_lock); 3862 if (!kvm->arch.mmu_ready) { 3863 if (!kvm_is_radix(kvm)) 3864 r = kvmppc_hv_setup_htab_rma(vcpu); 3865 if (!r) { 3866 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3867 kvmppc_setup_partition_table(kvm); 3868 kvm->arch.mmu_ready = 1; 3869 } 3870 } 3871 mutex_unlock(&kvm->arch.mmu_setup_lock); 3872 return r; 3873 } 3874 3875 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 3876 { 3877 int n_ceded, i, r; 3878 struct kvmppc_vcore *vc; 3879 struct kvm_vcpu *v; 3880 3881 trace_kvmppc_run_vcpu_enter(vcpu); 3882 3883 kvm_run->exit_reason = 0; 3884 vcpu->arch.ret = RESUME_GUEST; 3885 vcpu->arch.trap = 0; 3886 kvmppc_update_vpas(vcpu); 3887 3888 /* 3889 * Synchronize with other threads in this virtual core 3890 */ 3891 vc = vcpu->arch.vcore; 3892 spin_lock(&vc->lock); 3893 vcpu->arch.ceded = 0; 3894 vcpu->arch.run_task = current; 3895 vcpu->arch.kvm_run = kvm_run; 3896 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3897 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3898 vcpu->arch.busy_preempt = TB_NIL; 3899 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 3900 ++vc->n_runnable; 3901 3902 /* 3903 * This happens the first time this is called for a vcpu. 3904 * If the vcore is already running, we may be able to start 3905 * this thread straight away and have it join in. 3906 */ 3907 if (!signal_pending(current)) { 3908 if ((vc->vcore_state == VCORE_PIGGYBACK || 3909 vc->vcore_state == VCORE_RUNNING) && 3910 !VCORE_IS_EXITING(vc)) { 3911 kvmppc_create_dtl_entry(vcpu, vc); 3912 kvmppc_start_thread(vcpu, vc); 3913 trace_kvm_guest_enter(vcpu); 3914 } else if (vc->vcore_state == VCORE_SLEEPING) { 3915 swake_up_one(&vc->wq); 3916 } 3917 3918 } 3919 3920 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3921 !signal_pending(current)) { 3922 /* See if the MMU is ready to go */ 3923 if (!vcpu->kvm->arch.mmu_ready) { 3924 spin_unlock(&vc->lock); 3925 r = kvmhv_setup_mmu(vcpu); 3926 spin_lock(&vc->lock); 3927 if (r) { 3928 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3929 kvm_run->fail_entry. 3930 hardware_entry_failure_reason = 0; 3931 vcpu->arch.ret = r; 3932 break; 3933 } 3934 } 3935 3936 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3937 kvmppc_vcore_end_preempt(vc); 3938 3939 if (vc->vcore_state != VCORE_INACTIVE) { 3940 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 3941 continue; 3942 } 3943 for_each_runnable_thread(i, v, vc) { 3944 kvmppc_core_prepare_to_enter(v); 3945 if (signal_pending(v->arch.run_task)) { 3946 kvmppc_remove_runnable(vc, v); 3947 v->stat.signal_exits++; 3948 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 3949 v->arch.ret = -EINTR; 3950 wake_up(&v->arch.cpu_run); 3951 } 3952 } 3953 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3954 break; 3955 n_ceded = 0; 3956 for_each_runnable_thread(i, v, vc) { 3957 if (!kvmppc_vcpu_woken(v)) 3958 n_ceded += v->arch.ceded; 3959 else 3960 v->arch.ceded = 0; 3961 } 3962 vc->runner = vcpu; 3963 if (n_ceded == vc->n_runnable) { 3964 kvmppc_vcore_blocked(vc); 3965 } else if (need_resched()) { 3966 kvmppc_vcore_preempt(vc); 3967 /* Let something else run */ 3968 cond_resched_lock(&vc->lock); 3969 if (vc->vcore_state == VCORE_PREEMPT) 3970 kvmppc_vcore_end_preempt(vc); 3971 } else { 3972 kvmppc_run_core(vc); 3973 } 3974 vc->runner = NULL; 3975 } 3976 3977 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3978 (vc->vcore_state == VCORE_RUNNING || 3979 vc->vcore_state == VCORE_EXITING || 3980 vc->vcore_state == VCORE_PIGGYBACK)) 3981 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 3982 3983 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3984 kvmppc_vcore_end_preempt(vc); 3985 3986 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3987 kvmppc_remove_runnable(vc, vcpu); 3988 vcpu->stat.signal_exits++; 3989 kvm_run->exit_reason = KVM_EXIT_INTR; 3990 vcpu->arch.ret = -EINTR; 3991 } 3992 3993 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 3994 /* Wake up some vcpu to run the core */ 3995 i = -1; 3996 v = next_runnable_thread(vc, &i); 3997 wake_up(&v->arch.cpu_run); 3998 } 3999 4000 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 4001 spin_unlock(&vc->lock); 4002 return vcpu->arch.ret; 4003 } 4004 4005 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run, 4006 struct kvm_vcpu *vcpu, u64 time_limit, 4007 unsigned long lpcr) 4008 { 4009 int trap, r, pcpu; 4010 int srcu_idx, lpid; 4011 struct kvmppc_vcore *vc; 4012 struct kvm *kvm = vcpu->kvm; 4013 struct kvm_nested_guest *nested = vcpu->arch.nested; 4014 4015 trace_kvmppc_run_vcpu_enter(vcpu); 4016 4017 kvm_run->exit_reason = 0; 4018 vcpu->arch.ret = RESUME_GUEST; 4019 vcpu->arch.trap = 0; 4020 4021 vc = vcpu->arch.vcore; 4022 vcpu->arch.ceded = 0; 4023 vcpu->arch.run_task = current; 4024 vcpu->arch.kvm_run = kvm_run; 4025 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4026 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4027 vcpu->arch.busy_preempt = TB_NIL; 4028 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4029 vc->runnable_threads[0] = vcpu; 4030 vc->n_runnable = 1; 4031 vc->runner = vcpu; 4032 4033 /* See if the MMU is ready to go */ 4034 if (!kvm->arch.mmu_ready) 4035 kvmhv_setup_mmu(vcpu); 4036 4037 if (need_resched()) 4038 cond_resched(); 4039 4040 kvmppc_update_vpas(vcpu); 4041 4042 init_vcore_to_run(vc); 4043 vc->preempt_tb = TB_NIL; 4044 4045 preempt_disable(); 4046 pcpu = smp_processor_id(); 4047 vc->pcpu = pcpu; 4048 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4049 4050 local_irq_disable(); 4051 hard_irq_disable(); 4052 if (signal_pending(current)) 4053 goto sigpend; 4054 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready) 4055 goto out; 4056 4057 if (!nested) { 4058 kvmppc_core_prepare_to_enter(vcpu); 4059 if (vcpu->arch.doorbell_request) { 4060 vc->dpdes = 1; 4061 smp_wmb(); 4062 vcpu->arch.doorbell_request = 0; 4063 } 4064 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4065 &vcpu->arch.pending_exceptions)) 4066 lpcr |= LPCR_MER; 4067 } else if (vcpu->arch.pending_exceptions || 4068 vcpu->arch.doorbell_request || 4069 xive_interrupt_pending(vcpu)) { 4070 vcpu->arch.ret = RESUME_HOST; 4071 goto out; 4072 } 4073 4074 kvmppc_clear_host_core(pcpu); 4075 4076 local_paca->kvm_hstate.tid = 0; 4077 local_paca->kvm_hstate.napping = 0; 4078 local_paca->kvm_hstate.kvm_split_mode = NULL; 4079 kvmppc_start_thread(vcpu, vc); 4080 kvmppc_create_dtl_entry(vcpu, vc); 4081 trace_kvm_guest_enter(vcpu); 4082 4083 vc->vcore_state = VCORE_RUNNING; 4084 trace_kvmppc_run_core(vc, 0); 4085 4086 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4087 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid; 4088 mtspr(SPRN_LPID, lpid); 4089 isync(); 4090 kvmppc_check_need_tlb_flush(kvm, pcpu, nested); 4091 } 4092 4093 guest_enter_irqoff(); 4094 4095 srcu_idx = srcu_read_lock(&kvm->srcu); 4096 4097 this_cpu_disable_ftrace(); 4098 4099 /* Tell lockdep that we're about to enable interrupts */ 4100 trace_hardirqs_on(); 4101 4102 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr); 4103 vcpu->arch.trap = trap; 4104 4105 trace_hardirqs_off(); 4106 4107 this_cpu_enable_ftrace(); 4108 4109 srcu_read_unlock(&kvm->srcu, srcu_idx); 4110 4111 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4112 mtspr(SPRN_LPID, kvm->arch.host_lpid); 4113 isync(); 4114 } 4115 4116 set_irq_happened(trap); 4117 4118 kvmppc_set_host_core(pcpu); 4119 4120 local_irq_enable(); 4121 guest_exit(); 4122 4123 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest); 4124 4125 preempt_enable(); 4126 4127 /* 4128 * cancel pending decrementer exception if DEC is now positive, or if 4129 * entering a nested guest in which case the decrementer is now owned 4130 * by L2 and the L1 decrementer is provided in hdec_expires 4131 */ 4132 if (kvmppc_core_pending_dec(vcpu) && 4133 ((get_tb() < vcpu->arch.dec_expires) || 4134 (trap == BOOK3S_INTERRUPT_SYSCALL && 4135 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4136 kvmppc_core_dequeue_dec(vcpu); 4137 4138 trace_kvm_guest_exit(vcpu); 4139 r = RESUME_GUEST; 4140 if (trap) { 4141 if (!nested) 4142 r = kvmppc_handle_exit_hv(kvm_run, vcpu, current); 4143 else 4144 r = kvmppc_handle_nested_exit(kvm_run, vcpu); 4145 } 4146 vcpu->arch.ret = r; 4147 4148 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded && 4149 !kvmppc_vcpu_woken(vcpu)) { 4150 kvmppc_set_timer(vcpu); 4151 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) { 4152 if (signal_pending(current)) { 4153 vcpu->stat.signal_exits++; 4154 kvm_run->exit_reason = KVM_EXIT_INTR; 4155 vcpu->arch.ret = -EINTR; 4156 break; 4157 } 4158 spin_lock(&vc->lock); 4159 kvmppc_vcore_blocked(vc); 4160 spin_unlock(&vc->lock); 4161 } 4162 } 4163 vcpu->arch.ceded = 0; 4164 4165 vc->vcore_state = VCORE_INACTIVE; 4166 trace_kvmppc_run_core(vc, 1); 4167 4168 done: 4169 kvmppc_remove_runnable(vc, vcpu); 4170 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 4171 4172 return vcpu->arch.ret; 4173 4174 sigpend: 4175 vcpu->stat.signal_exits++; 4176 kvm_run->exit_reason = KVM_EXIT_INTR; 4177 vcpu->arch.ret = -EINTR; 4178 out: 4179 local_irq_enable(); 4180 preempt_enable(); 4181 goto done; 4182 } 4183 4184 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 4185 { 4186 int r; 4187 int srcu_idx; 4188 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 4189 unsigned long user_tar = 0; 4190 unsigned int user_vrsave; 4191 struct kvm *kvm; 4192 4193 if (!vcpu->arch.sane) { 4194 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4195 return -EINVAL; 4196 } 4197 4198 /* 4199 * Don't allow entry with a suspended transaction, because 4200 * the guest entry/exit code will lose it. 4201 * If the guest has TM enabled, save away their TM-related SPRs 4202 * (they will get restored by the TM unavailable interrupt). 4203 */ 4204 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4205 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4206 (current->thread.regs->msr & MSR_TM)) { 4207 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4208 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4209 run->fail_entry.hardware_entry_failure_reason = 0; 4210 return -EINVAL; 4211 } 4212 /* Enable TM so we can read the TM SPRs */ 4213 mtmsr(mfmsr() | MSR_TM); 4214 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 4215 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 4216 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 4217 current->thread.regs->msr &= ~MSR_TM; 4218 } 4219 #endif 4220 4221 /* 4222 * Force online to 1 for the sake of old userspace which doesn't 4223 * set it. 4224 */ 4225 if (!vcpu->arch.online) { 4226 atomic_inc(&vcpu->arch.vcore->online_count); 4227 vcpu->arch.online = 1; 4228 } 4229 4230 kvmppc_core_prepare_to_enter(vcpu); 4231 4232 /* No need to go into the guest when all we'll do is come back out */ 4233 if (signal_pending(current)) { 4234 run->exit_reason = KVM_EXIT_INTR; 4235 return -EINTR; 4236 } 4237 4238 kvm = vcpu->kvm; 4239 atomic_inc(&kvm->arch.vcpus_running); 4240 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4241 smp_mb(); 4242 4243 flush_all_to_thread(current); 4244 4245 /* Save userspace EBB and other register values */ 4246 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4247 ebb_regs[0] = mfspr(SPRN_EBBHR); 4248 ebb_regs[1] = mfspr(SPRN_EBBRR); 4249 ebb_regs[2] = mfspr(SPRN_BESCR); 4250 user_tar = mfspr(SPRN_TAR); 4251 } 4252 user_vrsave = mfspr(SPRN_VRSAVE); 4253 4254 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 4255 vcpu->arch.pgdir = current->mm->pgd; 4256 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4257 4258 do { 4259 /* 4260 * The early POWER9 chips that can't mix radix and HPT threads 4261 * on the same core also need the workaround for the problem 4262 * where the TLB would prefetch entries in the guest exit path 4263 * for radix guests using the guest PIDR value and LPID 0. 4264 * The workaround is in the old path (kvmppc_run_vcpu()) 4265 * but not the new path (kvmhv_run_single_vcpu()). 4266 */ 4267 if (kvm->arch.threads_indep && kvm_is_radix(kvm) && 4268 !no_mixing_hpt_and_radix) 4269 r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0, 4270 vcpu->arch.vcore->lpcr); 4271 else 4272 r = kvmppc_run_vcpu(run, vcpu); 4273 4274 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 4275 !(vcpu->arch.shregs.msr & MSR_PR)) { 4276 trace_kvm_hcall_enter(vcpu); 4277 r = kvmppc_pseries_do_hcall(vcpu); 4278 trace_kvm_hcall_exit(vcpu, r); 4279 kvmppc_core_prepare_to_enter(vcpu); 4280 } else if (r == RESUME_PAGE_FAULT) { 4281 srcu_idx = srcu_read_lock(&kvm->srcu); 4282 r = kvmppc_book3s_hv_page_fault(run, vcpu, 4283 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4284 srcu_read_unlock(&kvm->srcu, srcu_idx); 4285 } else if (r == RESUME_PASSTHROUGH) { 4286 if (WARN_ON(xics_on_xive())) 4287 r = H_SUCCESS; 4288 else 4289 r = kvmppc_xics_rm_complete(vcpu, 0); 4290 } 4291 } while (is_kvmppc_resume_guest(r)); 4292 4293 /* Restore userspace EBB and other register values */ 4294 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4295 mtspr(SPRN_EBBHR, ebb_regs[0]); 4296 mtspr(SPRN_EBBRR, ebb_regs[1]); 4297 mtspr(SPRN_BESCR, ebb_regs[2]); 4298 mtspr(SPRN_TAR, user_tar); 4299 mtspr(SPRN_FSCR, current->thread.fscr); 4300 } 4301 mtspr(SPRN_VRSAVE, user_vrsave); 4302 4303 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4304 atomic_dec(&kvm->arch.vcpus_running); 4305 return r; 4306 } 4307 4308 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4309 int shift, int sllp) 4310 { 4311 (*sps)->page_shift = shift; 4312 (*sps)->slb_enc = sllp; 4313 (*sps)->enc[0].page_shift = shift; 4314 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4315 /* 4316 * Add 16MB MPSS support (may get filtered out by userspace) 4317 */ 4318 if (shift != 24) { 4319 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4320 if (penc != -1) { 4321 (*sps)->enc[1].page_shift = 24; 4322 (*sps)->enc[1].pte_enc = penc; 4323 } 4324 } 4325 (*sps)++; 4326 } 4327 4328 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4329 struct kvm_ppc_smmu_info *info) 4330 { 4331 struct kvm_ppc_one_seg_page_size *sps; 4332 4333 /* 4334 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4335 * POWER7 doesn't support keys for instruction accesses, 4336 * POWER8 and POWER9 do. 4337 */ 4338 info->data_keys = 32; 4339 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4340 4341 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4342 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4343 info->slb_size = 32; 4344 4345 /* We only support these sizes for now, and no muti-size segments */ 4346 sps = &info->sps[0]; 4347 kvmppc_add_seg_page_size(&sps, 12, 0); 4348 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4349 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4350 4351 /* If running as a nested hypervisor, we don't support HPT guests */ 4352 if (kvmhv_on_pseries()) 4353 info->flags |= KVM_PPC_NO_HASH; 4354 4355 return 0; 4356 } 4357 4358 /* 4359 * Get (and clear) the dirty memory log for a memory slot. 4360 */ 4361 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4362 struct kvm_dirty_log *log) 4363 { 4364 struct kvm_memslots *slots; 4365 struct kvm_memory_slot *memslot; 4366 int i, r; 4367 unsigned long n; 4368 unsigned long *buf, *p; 4369 struct kvm_vcpu *vcpu; 4370 4371 mutex_lock(&kvm->slots_lock); 4372 4373 r = -EINVAL; 4374 if (log->slot >= KVM_USER_MEM_SLOTS) 4375 goto out; 4376 4377 slots = kvm_memslots(kvm); 4378 memslot = id_to_memslot(slots, log->slot); 4379 r = -ENOENT; 4380 if (!memslot->dirty_bitmap) 4381 goto out; 4382 4383 /* 4384 * Use second half of bitmap area because both HPT and radix 4385 * accumulate bits in the first half. 4386 */ 4387 n = kvm_dirty_bitmap_bytes(memslot); 4388 buf = memslot->dirty_bitmap + n / sizeof(long); 4389 memset(buf, 0, n); 4390 4391 if (kvm_is_radix(kvm)) 4392 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4393 else 4394 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4395 if (r) 4396 goto out; 4397 4398 /* 4399 * We accumulate dirty bits in the first half of the 4400 * memslot's dirty_bitmap area, for when pages are paged 4401 * out or modified by the host directly. Pick up these 4402 * bits and add them to the map. 4403 */ 4404 p = memslot->dirty_bitmap; 4405 for (i = 0; i < n / sizeof(long); ++i) 4406 buf[i] |= xchg(&p[i], 0); 4407 4408 /* Harvest dirty bits from VPA and DTL updates */ 4409 /* Note: we never modify the SLB shadow buffer areas */ 4410 kvm_for_each_vcpu(i, vcpu, kvm) { 4411 spin_lock(&vcpu->arch.vpa_update_lock); 4412 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4413 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4414 spin_unlock(&vcpu->arch.vpa_update_lock); 4415 } 4416 4417 r = -EFAULT; 4418 if (copy_to_user(log->dirty_bitmap, buf, n)) 4419 goto out; 4420 4421 r = 0; 4422 out: 4423 mutex_unlock(&kvm->slots_lock); 4424 return r; 4425 } 4426 4427 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 4428 struct kvm_memory_slot *dont) 4429 { 4430 if (!dont || free->arch.rmap != dont->arch.rmap) { 4431 vfree(free->arch.rmap); 4432 free->arch.rmap = NULL; 4433 } 4434 } 4435 4436 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 4437 unsigned long npages) 4438 { 4439 slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap))); 4440 if (!slot->arch.rmap) 4441 return -ENOMEM; 4442 4443 return 0; 4444 } 4445 4446 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 4447 struct kvm_memory_slot *memslot, 4448 const struct kvm_userspace_memory_region *mem) 4449 { 4450 return 0; 4451 } 4452 4453 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 4454 const struct kvm_userspace_memory_region *mem, 4455 const struct kvm_memory_slot *old, 4456 const struct kvm_memory_slot *new, 4457 enum kvm_mr_change change) 4458 { 4459 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4460 4461 /* 4462 * If we are making a new memslot, it might make 4463 * some address that was previously cached as emulated 4464 * MMIO be no longer emulated MMIO, so invalidate 4465 * all the caches of emulated MMIO translations. 4466 */ 4467 if (npages) 4468 atomic64_inc(&kvm->arch.mmio_update); 4469 4470 /* 4471 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 4472 * have already called kvm_arch_flush_shadow_memslot() to 4473 * flush shadow mappings. For KVM_MR_CREATE we have no 4474 * previous mappings. So the only case to handle is 4475 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 4476 * has been changed. 4477 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 4478 * to get rid of any THP PTEs in the partition-scoped page tables 4479 * so we can track dirtiness at the page level; we flush when 4480 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 4481 * using THP PTEs. 4482 */ 4483 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 4484 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 4485 kvmppc_radix_flush_memslot(kvm, old); 4486 } 4487 4488 /* 4489 * Update LPCR values in kvm->arch and in vcores. 4490 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 4491 * of kvm->arch.lpcr update). 4492 */ 4493 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 4494 { 4495 long int i; 4496 u32 cores_done = 0; 4497 4498 if ((kvm->arch.lpcr & mask) == lpcr) 4499 return; 4500 4501 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 4502 4503 for (i = 0; i < KVM_MAX_VCORES; ++i) { 4504 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 4505 if (!vc) 4506 continue; 4507 spin_lock(&vc->lock); 4508 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 4509 spin_unlock(&vc->lock); 4510 if (++cores_done >= kvm->arch.online_vcores) 4511 break; 4512 } 4513 } 4514 4515 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 4516 { 4517 return; 4518 } 4519 4520 void kvmppc_setup_partition_table(struct kvm *kvm) 4521 { 4522 unsigned long dw0, dw1; 4523 4524 if (!kvm_is_radix(kvm)) { 4525 /* PS field - page size for VRMA */ 4526 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 4527 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 4528 /* HTABSIZE and HTABORG fields */ 4529 dw0 |= kvm->arch.sdr1; 4530 4531 /* Second dword as set by userspace */ 4532 dw1 = kvm->arch.process_table; 4533 } else { 4534 dw0 = PATB_HR | radix__get_tree_size() | 4535 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 4536 dw1 = PATB_GR | kvm->arch.process_table; 4537 } 4538 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 4539 } 4540 4541 /* 4542 * Set up HPT (hashed page table) and RMA (real-mode area). 4543 * Must be called with kvm->arch.mmu_setup_lock held. 4544 */ 4545 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 4546 { 4547 int err = 0; 4548 struct kvm *kvm = vcpu->kvm; 4549 unsigned long hva; 4550 struct kvm_memory_slot *memslot; 4551 struct vm_area_struct *vma; 4552 unsigned long lpcr = 0, senc; 4553 unsigned long psize, porder; 4554 int srcu_idx; 4555 4556 /* Allocate hashed page table (if not done already) and reset it */ 4557 if (!kvm->arch.hpt.virt) { 4558 int order = KVM_DEFAULT_HPT_ORDER; 4559 struct kvm_hpt_info info; 4560 4561 err = kvmppc_allocate_hpt(&info, order); 4562 /* If we get here, it means userspace didn't specify a 4563 * size explicitly. So, try successively smaller 4564 * sizes if the default failed. */ 4565 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 4566 err = kvmppc_allocate_hpt(&info, order); 4567 4568 if (err < 0) { 4569 pr_err("KVM: Couldn't alloc HPT\n"); 4570 goto out; 4571 } 4572 4573 kvmppc_set_hpt(kvm, &info); 4574 } 4575 4576 /* Look up the memslot for guest physical address 0 */ 4577 srcu_idx = srcu_read_lock(&kvm->srcu); 4578 memslot = gfn_to_memslot(kvm, 0); 4579 4580 /* We must have some memory at 0 by now */ 4581 err = -EINVAL; 4582 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 4583 goto out_srcu; 4584 4585 /* Look up the VMA for the start of this memory slot */ 4586 hva = memslot->userspace_addr; 4587 down_read(¤t->mm->mmap_sem); 4588 vma = find_vma(current->mm, hva); 4589 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 4590 goto up_out; 4591 4592 psize = vma_kernel_pagesize(vma); 4593 4594 up_read(¤t->mm->mmap_sem); 4595 4596 /* We can handle 4k, 64k or 16M pages in the VRMA */ 4597 if (psize >= 0x1000000) 4598 psize = 0x1000000; 4599 else if (psize >= 0x10000) 4600 psize = 0x10000; 4601 else 4602 psize = 0x1000; 4603 porder = __ilog2(psize); 4604 4605 senc = slb_pgsize_encoding(psize); 4606 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 4607 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4608 /* Create HPTEs in the hash page table for the VRMA */ 4609 kvmppc_map_vrma(vcpu, memslot, porder); 4610 4611 /* Update VRMASD field in the LPCR */ 4612 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 4613 /* the -4 is to account for senc values starting at 0x10 */ 4614 lpcr = senc << (LPCR_VRMASD_SH - 4); 4615 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 4616 } 4617 4618 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 4619 smp_wmb(); 4620 err = 0; 4621 out_srcu: 4622 srcu_read_unlock(&kvm->srcu, srcu_idx); 4623 out: 4624 return err; 4625 4626 up_out: 4627 up_read(¤t->mm->mmap_sem); 4628 goto out_srcu; 4629 } 4630 4631 /* 4632 * Must be called with kvm->arch.mmu_setup_lock held and 4633 * mmu_ready = 0 and no vcpus running. 4634 */ 4635 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 4636 { 4637 if (nesting_enabled(kvm)) 4638 kvmhv_release_all_nested(kvm); 4639 kvmppc_rmap_reset(kvm); 4640 kvm->arch.process_table = 0; 4641 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4642 spin_lock(&kvm->mmu_lock); 4643 kvm->arch.radix = 0; 4644 spin_unlock(&kvm->mmu_lock); 4645 kvmppc_free_radix(kvm); 4646 kvmppc_update_lpcr(kvm, LPCR_VPM1, 4647 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4648 return 0; 4649 } 4650 4651 /* 4652 * Must be called with kvm->arch.mmu_setup_lock held and 4653 * mmu_ready = 0 and no vcpus running. 4654 */ 4655 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 4656 { 4657 int err; 4658 4659 err = kvmppc_init_vm_radix(kvm); 4660 if (err) 4661 return err; 4662 kvmppc_rmap_reset(kvm); 4663 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4664 spin_lock(&kvm->mmu_lock); 4665 kvm->arch.radix = 1; 4666 spin_unlock(&kvm->mmu_lock); 4667 kvmppc_free_hpt(&kvm->arch.hpt); 4668 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 4669 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4670 return 0; 4671 } 4672 4673 #ifdef CONFIG_KVM_XICS 4674 /* 4675 * Allocate a per-core structure for managing state about which cores are 4676 * running in the host versus the guest and for exchanging data between 4677 * real mode KVM and CPU running in the host. 4678 * This is only done for the first VM. 4679 * The allocated structure stays even if all VMs have stopped. 4680 * It is only freed when the kvm-hv module is unloaded. 4681 * It's OK for this routine to fail, we just don't support host 4682 * core operations like redirecting H_IPI wakeups. 4683 */ 4684 void kvmppc_alloc_host_rm_ops(void) 4685 { 4686 struct kvmppc_host_rm_ops *ops; 4687 unsigned long l_ops; 4688 int cpu, core; 4689 int size; 4690 4691 /* Not the first time here ? */ 4692 if (kvmppc_host_rm_ops_hv != NULL) 4693 return; 4694 4695 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 4696 if (!ops) 4697 return; 4698 4699 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 4700 ops->rm_core = kzalloc(size, GFP_KERNEL); 4701 4702 if (!ops->rm_core) { 4703 kfree(ops); 4704 return; 4705 } 4706 4707 cpus_read_lock(); 4708 4709 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 4710 if (!cpu_online(cpu)) 4711 continue; 4712 4713 core = cpu >> threads_shift; 4714 ops->rm_core[core].rm_state.in_host = 1; 4715 } 4716 4717 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 4718 4719 /* 4720 * Make the contents of the kvmppc_host_rm_ops structure visible 4721 * to other CPUs before we assign it to the global variable. 4722 * Do an atomic assignment (no locks used here), but if someone 4723 * beats us to it, just free our copy and return. 4724 */ 4725 smp_wmb(); 4726 l_ops = (unsigned long) ops; 4727 4728 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 4729 cpus_read_unlock(); 4730 kfree(ops->rm_core); 4731 kfree(ops); 4732 return; 4733 } 4734 4735 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 4736 "ppc/kvm_book3s:prepare", 4737 kvmppc_set_host_core, 4738 kvmppc_clear_host_core); 4739 cpus_read_unlock(); 4740 } 4741 4742 void kvmppc_free_host_rm_ops(void) 4743 { 4744 if (kvmppc_host_rm_ops_hv) { 4745 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 4746 kfree(kvmppc_host_rm_ops_hv->rm_core); 4747 kfree(kvmppc_host_rm_ops_hv); 4748 kvmppc_host_rm_ops_hv = NULL; 4749 } 4750 } 4751 #endif 4752 4753 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 4754 { 4755 unsigned long lpcr, lpid; 4756 char buf[32]; 4757 int ret; 4758 4759 mutex_init(&kvm->arch.mmu_setup_lock); 4760 4761 /* Allocate the guest's logical partition ID */ 4762 4763 lpid = kvmppc_alloc_lpid(); 4764 if ((long)lpid < 0) 4765 return -ENOMEM; 4766 kvm->arch.lpid = lpid; 4767 4768 kvmppc_alloc_host_rm_ops(); 4769 4770 kvmhv_vm_nested_init(kvm); 4771 4772 /* 4773 * Since we don't flush the TLB when tearing down a VM, 4774 * and this lpid might have previously been used, 4775 * make sure we flush on each core before running the new VM. 4776 * On POWER9, the tlbie in mmu_partition_table_set_entry() 4777 * does this flush for us. 4778 */ 4779 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4780 cpumask_setall(&kvm->arch.need_tlb_flush); 4781 4782 /* Start out with the default set of hcalls enabled */ 4783 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 4784 sizeof(kvm->arch.enabled_hcalls)); 4785 4786 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4787 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 4788 4789 /* Init LPCR for virtual RMA mode */ 4790 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4791 kvm->arch.host_lpid = mfspr(SPRN_LPID); 4792 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 4793 lpcr &= LPCR_PECE | LPCR_LPES; 4794 } else { 4795 lpcr = 0; 4796 } 4797 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 4798 LPCR_VPM0 | LPCR_VPM1; 4799 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 4800 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4801 /* On POWER8 turn on online bit to enable PURR/SPURR */ 4802 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4803 lpcr |= LPCR_ONL; 4804 /* 4805 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 4806 * Set HVICE bit to enable hypervisor virtualization interrupts. 4807 * Set HEIC to prevent OS interrupts to go to hypervisor (should 4808 * be unnecessary but better safe than sorry in case we re-enable 4809 * EE in HV mode with this LPCR still set) 4810 */ 4811 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4812 lpcr &= ~LPCR_VPM0; 4813 lpcr |= LPCR_HVICE | LPCR_HEIC; 4814 4815 /* 4816 * If xive is enabled, we route 0x500 interrupts directly 4817 * to the guest. 4818 */ 4819 if (xics_on_xive()) 4820 lpcr |= LPCR_LPES; 4821 } 4822 4823 /* 4824 * If the host uses radix, the guest starts out as radix. 4825 */ 4826 if (radix_enabled()) { 4827 kvm->arch.radix = 1; 4828 kvm->arch.mmu_ready = 1; 4829 lpcr &= ~LPCR_VPM1; 4830 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 4831 ret = kvmppc_init_vm_radix(kvm); 4832 if (ret) { 4833 kvmppc_free_lpid(kvm->arch.lpid); 4834 return ret; 4835 } 4836 kvmppc_setup_partition_table(kvm); 4837 } 4838 4839 kvm->arch.lpcr = lpcr; 4840 4841 /* Initialization for future HPT resizes */ 4842 kvm->arch.resize_hpt = NULL; 4843 4844 /* 4845 * Work out how many sets the TLB has, for the use of 4846 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 4847 */ 4848 if (radix_enabled()) 4849 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 4850 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 4851 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 4852 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4853 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 4854 else 4855 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 4856 4857 /* 4858 * Track that we now have a HV mode VM active. This blocks secondary 4859 * CPU threads from coming online. 4860 * On POWER9, we only need to do this if the "indep_threads_mode" 4861 * module parameter has been set to N. 4862 */ 4863 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4864 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) { 4865 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n"); 4866 kvm->arch.threads_indep = true; 4867 } else { 4868 kvm->arch.threads_indep = indep_threads_mode; 4869 } 4870 } 4871 if (!kvm->arch.threads_indep) 4872 kvm_hv_vm_activated(); 4873 4874 /* 4875 * Initialize smt_mode depending on processor. 4876 * POWER8 and earlier have to use "strict" threading, where 4877 * all vCPUs in a vcore have to run on the same (sub)core, 4878 * whereas on POWER9 the threads can each run a different 4879 * guest. 4880 */ 4881 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4882 kvm->arch.smt_mode = threads_per_subcore; 4883 else 4884 kvm->arch.smt_mode = 1; 4885 kvm->arch.emul_smt_mode = 1; 4886 4887 /* 4888 * Create a debugfs directory for the VM 4889 */ 4890 snprintf(buf, sizeof(buf), "vm%d", current->pid); 4891 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 4892 kvmppc_mmu_debugfs_init(kvm); 4893 if (radix_enabled()) 4894 kvmhv_radix_debugfs_init(kvm); 4895 4896 return 0; 4897 } 4898 4899 static void kvmppc_free_vcores(struct kvm *kvm) 4900 { 4901 long int i; 4902 4903 for (i = 0; i < KVM_MAX_VCORES; ++i) 4904 kfree(kvm->arch.vcores[i]); 4905 kvm->arch.online_vcores = 0; 4906 } 4907 4908 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 4909 { 4910 debugfs_remove_recursive(kvm->arch.debugfs_dir); 4911 4912 if (!kvm->arch.threads_indep) 4913 kvm_hv_vm_deactivated(); 4914 4915 kvmppc_free_vcores(kvm); 4916 4917 4918 if (kvm_is_radix(kvm)) 4919 kvmppc_free_radix(kvm); 4920 else 4921 kvmppc_free_hpt(&kvm->arch.hpt); 4922 4923 /* Perform global invalidation and return lpid to the pool */ 4924 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4925 if (nesting_enabled(kvm)) 4926 kvmhv_release_all_nested(kvm); 4927 kvm->arch.process_table = 0; 4928 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 4929 } 4930 kvmppc_free_lpid(kvm->arch.lpid); 4931 4932 kvmppc_free_pimap(kvm); 4933 } 4934 4935 /* We don't need to emulate any privileged instructions or dcbz */ 4936 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 4937 unsigned int inst, int *advance) 4938 { 4939 return EMULATE_FAIL; 4940 } 4941 4942 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 4943 ulong spr_val) 4944 { 4945 return EMULATE_FAIL; 4946 } 4947 4948 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 4949 ulong *spr_val) 4950 { 4951 return EMULATE_FAIL; 4952 } 4953 4954 static int kvmppc_core_check_processor_compat_hv(void) 4955 { 4956 if (cpu_has_feature(CPU_FTR_HVMODE) && 4957 cpu_has_feature(CPU_FTR_ARCH_206)) 4958 return 0; 4959 4960 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 4961 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 4962 return 0; 4963 4964 return -EIO; 4965 } 4966 4967 #ifdef CONFIG_KVM_XICS 4968 4969 void kvmppc_free_pimap(struct kvm *kvm) 4970 { 4971 kfree(kvm->arch.pimap); 4972 } 4973 4974 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 4975 { 4976 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 4977 } 4978 4979 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 4980 { 4981 struct irq_desc *desc; 4982 struct kvmppc_irq_map *irq_map; 4983 struct kvmppc_passthru_irqmap *pimap; 4984 struct irq_chip *chip; 4985 int i, rc = 0; 4986 4987 if (!kvm_irq_bypass) 4988 return 1; 4989 4990 desc = irq_to_desc(host_irq); 4991 if (!desc) 4992 return -EIO; 4993 4994 mutex_lock(&kvm->lock); 4995 4996 pimap = kvm->arch.pimap; 4997 if (pimap == NULL) { 4998 /* First call, allocate structure to hold IRQ map */ 4999 pimap = kvmppc_alloc_pimap(); 5000 if (pimap == NULL) { 5001 mutex_unlock(&kvm->lock); 5002 return -ENOMEM; 5003 } 5004 kvm->arch.pimap = pimap; 5005 } 5006 5007 /* 5008 * For now, we only support interrupts for which the EOI operation 5009 * is an OPAL call followed by a write to XIRR, since that's 5010 * what our real-mode EOI code does, or a XIVE interrupt 5011 */ 5012 chip = irq_data_get_irq_chip(&desc->irq_data); 5013 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 5014 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5015 host_irq, guest_gsi); 5016 mutex_unlock(&kvm->lock); 5017 return -ENOENT; 5018 } 5019 5020 /* 5021 * See if we already have an entry for this guest IRQ number. 5022 * If it's mapped to a hardware IRQ number, that's an error, 5023 * otherwise re-use this entry. 5024 */ 5025 for (i = 0; i < pimap->n_mapped; i++) { 5026 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5027 if (pimap->mapped[i].r_hwirq) { 5028 mutex_unlock(&kvm->lock); 5029 return -EINVAL; 5030 } 5031 break; 5032 } 5033 } 5034 5035 if (i == KVMPPC_PIRQ_MAPPED) { 5036 mutex_unlock(&kvm->lock); 5037 return -EAGAIN; /* table is full */ 5038 } 5039 5040 irq_map = &pimap->mapped[i]; 5041 5042 irq_map->v_hwirq = guest_gsi; 5043 irq_map->desc = desc; 5044 5045 /* 5046 * Order the above two stores before the next to serialize with 5047 * the KVM real mode handler. 5048 */ 5049 smp_wmb(); 5050 irq_map->r_hwirq = desc->irq_data.hwirq; 5051 5052 if (i == pimap->n_mapped) 5053 pimap->n_mapped++; 5054 5055 if (xics_on_xive()) 5056 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 5057 else 5058 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 5059 if (rc) 5060 irq_map->r_hwirq = 0; 5061 5062 mutex_unlock(&kvm->lock); 5063 5064 return 0; 5065 } 5066 5067 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5068 { 5069 struct irq_desc *desc; 5070 struct kvmppc_passthru_irqmap *pimap; 5071 int i, rc = 0; 5072 5073 if (!kvm_irq_bypass) 5074 return 0; 5075 5076 desc = irq_to_desc(host_irq); 5077 if (!desc) 5078 return -EIO; 5079 5080 mutex_lock(&kvm->lock); 5081 if (!kvm->arch.pimap) 5082 goto unlock; 5083 5084 pimap = kvm->arch.pimap; 5085 5086 for (i = 0; i < pimap->n_mapped; i++) { 5087 if (guest_gsi == pimap->mapped[i].v_hwirq) 5088 break; 5089 } 5090 5091 if (i == pimap->n_mapped) { 5092 mutex_unlock(&kvm->lock); 5093 return -ENODEV; 5094 } 5095 5096 if (xics_on_xive()) 5097 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 5098 else 5099 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5100 5101 /* invalidate the entry (what do do on error from the above ?) */ 5102 pimap->mapped[i].r_hwirq = 0; 5103 5104 /* 5105 * We don't free this structure even when the count goes to 5106 * zero. The structure is freed when we destroy the VM. 5107 */ 5108 unlock: 5109 mutex_unlock(&kvm->lock); 5110 return rc; 5111 } 5112 5113 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5114 struct irq_bypass_producer *prod) 5115 { 5116 int ret = 0; 5117 struct kvm_kernel_irqfd *irqfd = 5118 container_of(cons, struct kvm_kernel_irqfd, consumer); 5119 5120 irqfd->producer = prod; 5121 5122 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5123 if (ret) 5124 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5125 prod->irq, irqfd->gsi, ret); 5126 5127 return ret; 5128 } 5129 5130 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5131 struct irq_bypass_producer *prod) 5132 { 5133 int ret; 5134 struct kvm_kernel_irqfd *irqfd = 5135 container_of(cons, struct kvm_kernel_irqfd, consumer); 5136 5137 irqfd->producer = NULL; 5138 5139 /* 5140 * When producer of consumer is unregistered, we change back to 5141 * default external interrupt handling mode - KVM real mode 5142 * will switch back to host. 5143 */ 5144 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5145 if (ret) 5146 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5147 prod->irq, irqfd->gsi, ret); 5148 } 5149 #endif 5150 5151 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5152 unsigned int ioctl, unsigned long arg) 5153 { 5154 struct kvm *kvm __maybe_unused = filp->private_data; 5155 void __user *argp = (void __user *)arg; 5156 long r; 5157 5158 switch (ioctl) { 5159 5160 case KVM_PPC_ALLOCATE_HTAB: { 5161 u32 htab_order; 5162 5163 r = -EFAULT; 5164 if (get_user(htab_order, (u32 __user *)argp)) 5165 break; 5166 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5167 if (r) 5168 break; 5169 r = 0; 5170 break; 5171 } 5172 5173 case KVM_PPC_GET_HTAB_FD: { 5174 struct kvm_get_htab_fd ghf; 5175 5176 r = -EFAULT; 5177 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5178 break; 5179 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5180 break; 5181 } 5182 5183 case KVM_PPC_RESIZE_HPT_PREPARE: { 5184 struct kvm_ppc_resize_hpt rhpt; 5185 5186 r = -EFAULT; 5187 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5188 break; 5189 5190 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5191 break; 5192 } 5193 5194 case KVM_PPC_RESIZE_HPT_COMMIT: { 5195 struct kvm_ppc_resize_hpt rhpt; 5196 5197 r = -EFAULT; 5198 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5199 break; 5200 5201 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5202 break; 5203 } 5204 5205 default: 5206 r = -ENOTTY; 5207 } 5208 5209 return r; 5210 } 5211 5212 /* 5213 * List of hcall numbers to enable by default. 5214 * For compatibility with old userspace, we enable by default 5215 * all hcalls that were implemented before the hcall-enabling 5216 * facility was added. Note this list should not include H_RTAS. 5217 */ 5218 static unsigned int default_hcall_list[] = { 5219 H_REMOVE, 5220 H_ENTER, 5221 H_READ, 5222 H_PROTECT, 5223 H_BULK_REMOVE, 5224 H_GET_TCE, 5225 H_PUT_TCE, 5226 H_SET_DABR, 5227 H_SET_XDABR, 5228 H_CEDE, 5229 H_PROD, 5230 H_CONFER, 5231 H_REGISTER_VPA, 5232 #ifdef CONFIG_KVM_XICS 5233 H_EOI, 5234 H_CPPR, 5235 H_IPI, 5236 H_IPOLL, 5237 H_XIRR, 5238 H_XIRR_X, 5239 #endif 5240 0 5241 }; 5242 5243 static void init_default_hcalls(void) 5244 { 5245 int i; 5246 unsigned int hcall; 5247 5248 for (i = 0; default_hcall_list[i]; ++i) { 5249 hcall = default_hcall_list[i]; 5250 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5251 __set_bit(hcall / 4, default_enabled_hcalls); 5252 } 5253 } 5254 5255 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5256 { 5257 unsigned long lpcr; 5258 int radix; 5259 int err; 5260 5261 /* If not on a POWER9, reject it */ 5262 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5263 return -ENODEV; 5264 5265 /* If any unknown flags set, reject it */ 5266 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5267 return -EINVAL; 5268 5269 /* GR (guest radix) bit in process_table field must match */ 5270 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5271 if (!!(cfg->process_table & PATB_GR) != radix) 5272 return -EINVAL; 5273 5274 /* Process table size field must be reasonable, i.e. <= 24 */ 5275 if ((cfg->process_table & PRTS_MASK) > 24) 5276 return -EINVAL; 5277 5278 /* We can change a guest to/from radix now, if the host is radix */ 5279 if (radix && !radix_enabled()) 5280 return -EINVAL; 5281 5282 /* If we're a nested hypervisor, we currently only support radix */ 5283 if (kvmhv_on_pseries() && !radix) 5284 return -EINVAL; 5285 5286 mutex_lock(&kvm->arch.mmu_setup_lock); 5287 if (radix != kvm_is_radix(kvm)) { 5288 if (kvm->arch.mmu_ready) { 5289 kvm->arch.mmu_ready = 0; 5290 /* order mmu_ready vs. vcpus_running */ 5291 smp_mb(); 5292 if (atomic_read(&kvm->arch.vcpus_running)) { 5293 kvm->arch.mmu_ready = 1; 5294 err = -EBUSY; 5295 goto out_unlock; 5296 } 5297 } 5298 if (radix) 5299 err = kvmppc_switch_mmu_to_radix(kvm); 5300 else 5301 err = kvmppc_switch_mmu_to_hpt(kvm); 5302 if (err) 5303 goto out_unlock; 5304 } 5305 5306 kvm->arch.process_table = cfg->process_table; 5307 kvmppc_setup_partition_table(kvm); 5308 5309 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5310 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5311 err = 0; 5312 5313 out_unlock: 5314 mutex_unlock(&kvm->arch.mmu_setup_lock); 5315 return err; 5316 } 5317 5318 static int kvmhv_enable_nested(struct kvm *kvm) 5319 { 5320 if (!nested) 5321 return -EPERM; 5322 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix) 5323 return -ENODEV; 5324 5325 /* kvm == NULL means the caller is testing if the capability exists */ 5326 if (kvm) 5327 kvm->arch.nested_enable = true; 5328 return 0; 5329 } 5330 5331 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5332 int size) 5333 { 5334 int rc = -EINVAL; 5335 5336 if (kvmhv_vcpu_is_radix(vcpu)) { 5337 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5338 5339 if (rc > 0) 5340 rc = -EINVAL; 5341 } 5342 5343 /* For now quadrants are the only way to access nested guest memory */ 5344 if (rc && vcpu->arch.nested) 5345 rc = -EAGAIN; 5346 5347 return rc; 5348 } 5349 5350 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5351 int size) 5352 { 5353 int rc = -EINVAL; 5354 5355 if (kvmhv_vcpu_is_radix(vcpu)) { 5356 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5357 5358 if (rc > 0) 5359 rc = -EINVAL; 5360 } 5361 5362 /* For now quadrants are the only way to access nested guest memory */ 5363 if (rc && vcpu->arch.nested) 5364 rc = -EAGAIN; 5365 5366 return rc; 5367 } 5368 5369 static struct kvmppc_ops kvm_ops_hv = { 5370 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 5371 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 5372 .get_one_reg = kvmppc_get_one_reg_hv, 5373 .set_one_reg = kvmppc_set_one_reg_hv, 5374 .vcpu_load = kvmppc_core_vcpu_load_hv, 5375 .vcpu_put = kvmppc_core_vcpu_put_hv, 5376 .set_msr = kvmppc_set_msr_hv, 5377 .vcpu_run = kvmppc_vcpu_run_hv, 5378 .vcpu_create = kvmppc_core_vcpu_create_hv, 5379 .vcpu_free = kvmppc_core_vcpu_free_hv, 5380 .check_requests = kvmppc_core_check_requests_hv, 5381 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 5382 .flush_memslot = kvmppc_core_flush_memslot_hv, 5383 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 5384 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 5385 .unmap_hva_range = kvm_unmap_hva_range_hv, 5386 .age_hva = kvm_age_hva_hv, 5387 .test_age_hva = kvm_test_age_hva_hv, 5388 .set_spte_hva = kvm_set_spte_hva_hv, 5389 .mmu_destroy = kvmppc_mmu_destroy_hv, 5390 .free_memslot = kvmppc_core_free_memslot_hv, 5391 .create_memslot = kvmppc_core_create_memslot_hv, 5392 .init_vm = kvmppc_core_init_vm_hv, 5393 .destroy_vm = kvmppc_core_destroy_vm_hv, 5394 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 5395 .emulate_op = kvmppc_core_emulate_op_hv, 5396 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 5397 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 5398 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 5399 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 5400 .hcall_implemented = kvmppc_hcall_impl_hv, 5401 #ifdef CONFIG_KVM_XICS 5402 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 5403 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 5404 #endif 5405 .configure_mmu = kvmhv_configure_mmu, 5406 .get_rmmu_info = kvmhv_get_rmmu_info, 5407 .set_smt_mode = kvmhv_set_smt_mode, 5408 .enable_nested = kvmhv_enable_nested, 5409 .load_from_eaddr = kvmhv_load_from_eaddr, 5410 .store_to_eaddr = kvmhv_store_to_eaddr, 5411 }; 5412 5413 static int kvm_init_subcore_bitmap(void) 5414 { 5415 int i, j; 5416 int nr_cores = cpu_nr_cores(); 5417 struct sibling_subcore_state *sibling_subcore_state; 5418 5419 for (i = 0; i < nr_cores; i++) { 5420 int first_cpu = i * threads_per_core; 5421 int node = cpu_to_node(first_cpu); 5422 5423 /* Ignore if it is already allocated. */ 5424 if (paca_ptrs[first_cpu]->sibling_subcore_state) 5425 continue; 5426 5427 sibling_subcore_state = 5428 kzalloc_node(sizeof(struct sibling_subcore_state), 5429 GFP_KERNEL, node); 5430 if (!sibling_subcore_state) 5431 return -ENOMEM; 5432 5433 5434 for (j = 0; j < threads_per_core; j++) { 5435 int cpu = first_cpu + j; 5436 5437 paca_ptrs[cpu]->sibling_subcore_state = 5438 sibling_subcore_state; 5439 } 5440 } 5441 return 0; 5442 } 5443 5444 static int kvmppc_radix_possible(void) 5445 { 5446 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 5447 } 5448 5449 static int kvmppc_book3s_init_hv(void) 5450 { 5451 int r; 5452 /* 5453 * FIXME!! Do we need to check on all cpus ? 5454 */ 5455 r = kvmppc_core_check_processor_compat_hv(); 5456 if (r < 0) 5457 return -ENODEV; 5458 5459 r = kvmhv_nested_init(); 5460 if (r) 5461 return r; 5462 5463 r = kvm_init_subcore_bitmap(); 5464 if (r) 5465 return r; 5466 5467 /* 5468 * We need a way of accessing the XICS interrupt controller, 5469 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 5470 * indirectly, via OPAL. 5471 */ 5472 #ifdef CONFIG_SMP 5473 if (!xics_on_xive() && !kvmhv_on_pseries() && 5474 !local_paca->kvm_hstate.xics_phys) { 5475 struct device_node *np; 5476 5477 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 5478 if (!np) { 5479 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 5480 return -ENODEV; 5481 } 5482 /* presence of intc confirmed - node can be dropped again */ 5483 of_node_put(np); 5484 } 5485 #endif 5486 5487 kvm_ops_hv.owner = THIS_MODULE; 5488 kvmppc_hv_ops = &kvm_ops_hv; 5489 5490 init_default_hcalls(); 5491 5492 init_vcore_lists(); 5493 5494 r = kvmppc_mmu_hv_init(); 5495 if (r) 5496 return r; 5497 5498 if (kvmppc_radix_possible()) 5499 r = kvmppc_radix_init(); 5500 5501 /* 5502 * POWER9 chips before version 2.02 can't have some threads in 5503 * HPT mode and some in radix mode on the same core. 5504 */ 5505 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5506 unsigned int pvr = mfspr(SPRN_PVR); 5507 if ((pvr >> 16) == PVR_POWER9 && 5508 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 5509 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 5510 no_mixing_hpt_and_radix = true; 5511 } 5512 5513 return r; 5514 } 5515 5516 static void kvmppc_book3s_exit_hv(void) 5517 { 5518 kvmppc_free_host_rm_ops(); 5519 if (kvmppc_radix_possible()) 5520 kvmppc_radix_exit(); 5521 kvmppc_hv_ops = NULL; 5522 kvmhv_nested_exit(); 5523 } 5524 5525 module_init(kvmppc_book3s_init_hv); 5526 module_exit(kvmppc_book3s_exit_hv); 5527 MODULE_LICENSE("GPL"); 5528 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5529 MODULE_ALIAS("devname:kvm"); 5530