xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision a59511d1)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 
37 #include <asm/reg.h>
38 #include <asm/cputable.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/kvm_book3s.h>
45 #include <asm/mmu_context.h>
46 #include <asm/lppaca.h>
47 #include <asm/processor.h>
48 #include <asm/cputhreads.h>
49 #include <asm/page.h>
50 #include <asm/hvcall.h>
51 #include <asm/switch_to.h>
52 #include <asm/smp.h>
53 #include <asm/dbell.h>
54 #include <linux/gfp.h>
55 #include <linux/vmalloc.h>
56 #include <linux/highmem.h>
57 #include <linux/hugetlb.h>
58 #include <linux/module.h>
59 
60 #include "book3s.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include "trace_hv.h"
64 
65 /* #define EXIT_DEBUG */
66 /* #define EXIT_DEBUG_SIMPLE */
67 /* #define EXIT_DEBUG_INT */
68 
69 /* Used to indicate that a guest page fault needs to be handled */
70 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
71 
72 /* Used as a "null" value for timebase values */
73 #define TB_NIL	(~(u64)0)
74 
75 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
76 
77 static int dynamic_mt_modes = 6;
78 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
80 static int target_smt_mode;
81 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
82 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
83 
84 #ifdef CONFIG_KVM_XICS
85 static struct kernel_param_ops module_param_ops = {
86 	.set = param_set_int,
87 	.get = param_get_int,
88 };
89 
90 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
91 							S_IRUGO | S_IWUSR);
92 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
93 #endif
94 
95 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
96 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
97 
98 static bool kvmppc_ipi_thread(int cpu)
99 {
100 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
101 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
102 		preempt_disable();
103 		if (cpu_first_thread_sibling(cpu) ==
104 		    cpu_first_thread_sibling(smp_processor_id())) {
105 			unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
106 			msg |= cpu_thread_in_core(cpu);
107 			smp_mb();
108 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
109 			preempt_enable();
110 			return true;
111 		}
112 		preempt_enable();
113 	}
114 
115 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
116 	if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
117 		xics_wake_cpu(cpu);
118 		return true;
119 	}
120 #endif
121 
122 	return false;
123 }
124 
125 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
126 {
127 	int cpu;
128 	struct swait_queue_head *wqp;
129 
130 	wqp = kvm_arch_vcpu_wq(vcpu);
131 	if (swait_active(wqp)) {
132 		swake_up(wqp);
133 		++vcpu->stat.halt_wakeup;
134 	}
135 
136 	if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
137 		return;
138 
139 	/* CPU points to the first thread of the core */
140 	cpu = vcpu->cpu;
141 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
142 		smp_send_reschedule(cpu);
143 }
144 
145 /*
146  * We use the vcpu_load/put functions to measure stolen time.
147  * Stolen time is counted as time when either the vcpu is able to
148  * run as part of a virtual core, but the task running the vcore
149  * is preempted or sleeping, or when the vcpu needs something done
150  * in the kernel by the task running the vcpu, but that task is
151  * preempted or sleeping.  Those two things have to be counted
152  * separately, since one of the vcpu tasks will take on the job
153  * of running the core, and the other vcpu tasks in the vcore will
154  * sleep waiting for it to do that, but that sleep shouldn't count
155  * as stolen time.
156  *
157  * Hence we accumulate stolen time when the vcpu can run as part of
158  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
159  * needs its task to do other things in the kernel (for example,
160  * service a page fault) in busy_stolen.  We don't accumulate
161  * stolen time for a vcore when it is inactive, or for a vcpu
162  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
163  * a misnomer; it means that the vcpu task is not executing in
164  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
165  * the kernel.  We don't have any way of dividing up that time
166  * between time that the vcpu is genuinely stopped, time that
167  * the task is actively working on behalf of the vcpu, and time
168  * that the task is preempted, so we don't count any of it as
169  * stolen.
170  *
171  * Updates to busy_stolen are protected by arch.tbacct_lock;
172  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
173  * lock.  The stolen times are measured in units of timebase ticks.
174  * (Note that the != TB_NIL checks below are purely defensive;
175  * they should never fail.)
176  */
177 
178 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
179 {
180 	unsigned long flags;
181 
182 	spin_lock_irqsave(&vc->stoltb_lock, flags);
183 	vc->preempt_tb = mftb();
184 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
185 }
186 
187 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
188 {
189 	unsigned long flags;
190 
191 	spin_lock_irqsave(&vc->stoltb_lock, flags);
192 	if (vc->preempt_tb != TB_NIL) {
193 		vc->stolen_tb += mftb() - vc->preempt_tb;
194 		vc->preempt_tb = TB_NIL;
195 	}
196 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
197 }
198 
199 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
200 {
201 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
202 	unsigned long flags;
203 
204 	/*
205 	 * We can test vc->runner without taking the vcore lock,
206 	 * because only this task ever sets vc->runner to this
207 	 * vcpu, and once it is set to this vcpu, only this task
208 	 * ever sets it to NULL.
209 	 */
210 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
211 		kvmppc_core_end_stolen(vc);
212 
213 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
214 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
215 	    vcpu->arch.busy_preempt != TB_NIL) {
216 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
217 		vcpu->arch.busy_preempt = TB_NIL;
218 	}
219 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
220 }
221 
222 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
223 {
224 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
225 	unsigned long flags;
226 
227 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
228 		kvmppc_core_start_stolen(vc);
229 
230 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
231 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
232 		vcpu->arch.busy_preempt = mftb();
233 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
234 }
235 
236 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
237 {
238 	/*
239 	 * Check for illegal transactional state bit combination
240 	 * and if we find it, force the TS field to a safe state.
241 	 */
242 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
243 		msr &= ~MSR_TS_MASK;
244 	vcpu->arch.shregs.msr = msr;
245 	kvmppc_end_cede(vcpu);
246 }
247 
248 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
249 {
250 	vcpu->arch.pvr = pvr;
251 }
252 
253 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
254 {
255 	unsigned long pcr = 0;
256 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
257 
258 	if (arch_compat) {
259 		switch (arch_compat) {
260 		case PVR_ARCH_205:
261 			/*
262 			 * If an arch bit is set in PCR, all the defined
263 			 * higher-order arch bits also have to be set.
264 			 */
265 			pcr = PCR_ARCH_206 | PCR_ARCH_205;
266 			break;
267 		case PVR_ARCH_206:
268 		case PVR_ARCH_206p:
269 			pcr = PCR_ARCH_206;
270 			break;
271 		case PVR_ARCH_207:
272 			break;
273 		default:
274 			return -EINVAL;
275 		}
276 
277 		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
278 			/* POWER7 can't emulate POWER8 */
279 			if (!(pcr & PCR_ARCH_206))
280 				return -EINVAL;
281 			pcr &= ~PCR_ARCH_206;
282 		}
283 	}
284 
285 	spin_lock(&vc->lock);
286 	vc->arch_compat = arch_compat;
287 	vc->pcr = pcr;
288 	spin_unlock(&vc->lock);
289 
290 	return 0;
291 }
292 
293 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
294 {
295 	int r;
296 
297 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
298 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
299 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
300 	for (r = 0; r < 16; ++r)
301 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
302 		       r, kvmppc_get_gpr(vcpu, r),
303 		       r+16, kvmppc_get_gpr(vcpu, r+16));
304 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
305 	       vcpu->arch.ctr, vcpu->arch.lr);
306 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
307 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
308 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
309 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
310 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
311 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
312 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
313 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
314 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
315 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
316 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
317 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
318 	for (r = 0; r < vcpu->arch.slb_max; ++r)
319 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
320 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
321 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
322 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
323 	       vcpu->arch.last_inst);
324 }
325 
326 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
327 {
328 	struct kvm_vcpu *ret;
329 
330 	mutex_lock(&kvm->lock);
331 	ret = kvm_get_vcpu_by_id(kvm, id);
332 	mutex_unlock(&kvm->lock);
333 	return ret;
334 }
335 
336 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
337 {
338 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
339 	vpa->yield_count = cpu_to_be32(1);
340 }
341 
342 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
343 		   unsigned long addr, unsigned long len)
344 {
345 	/* check address is cacheline aligned */
346 	if (addr & (L1_CACHE_BYTES - 1))
347 		return -EINVAL;
348 	spin_lock(&vcpu->arch.vpa_update_lock);
349 	if (v->next_gpa != addr || v->len != len) {
350 		v->next_gpa = addr;
351 		v->len = addr ? len : 0;
352 		v->update_pending = 1;
353 	}
354 	spin_unlock(&vcpu->arch.vpa_update_lock);
355 	return 0;
356 }
357 
358 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
359 struct reg_vpa {
360 	u32 dummy;
361 	union {
362 		__be16 hword;
363 		__be32 word;
364 	} length;
365 };
366 
367 static int vpa_is_registered(struct kvmppc_vpa *vpap)
368 {
369 	if (vpap->update_pending)
370 		return vpap->next_gpa != 0;
371 	return vpap->pinned_addr != NULL;
372 }
373 
374 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
375 				       unsigned long flags,
376 				       unsigned long vcpuid, unsigned long vpa)
377 {
378 	struct kvm *kvm = vcpu->kvm;
379 	unsigned long len, nb;
380 	void *va;
381 	struct kvm_vcpu *tvcpu;
382 	int err;
383 	int subfunc;
384 	struct kvmppc_vpa *vpap;
385 
386 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
387 	if (!tvcpu)
388 		return H_PARAMETER;
389 
390 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
391 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
392 	    subfunc == H_VPA_REG_SLB) {
393 		/* Registering new area - address must be cache-line aligned */
394 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
395 			return H_PARAMETER;
396 
397 		/* convert logical addr to kernel addr and read length */
398 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
399 		if (va == NULL)
400 			return H_PARAMETER;
401 		if (subfunc == H_VPA_REG_VPA)
402 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
403 		else
404 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
405 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
406 
407 		/* Check length */
408 		if (len > nb || len < sizeof(struct reg_vpa))
409 			return H_PARAMETER;
410 	} else {
411 		vpa = 0;
412 		len = 0;
413 	}
414 
415 	err = H_PARAMETER;
416 	vpap = NULL;
417 	spin_lock(&tvcpu->arch.vpa_update_lock);
418 
419 	switch (subfunc) {
420 	case H_VPA_REG_VPA:		/* register VPA */
421 		if (len < sizeof(struct lppaca))
422 			break;
423 		vpap = &tvcpu->arch.vpa;
424 		err = 0;
425 		break;
426 
427 	case H_VPA_REG_DTL:		/* register DTL */
428 		if (len < sizeof(struct dtl_entry))
429 			break;
430 		len -= len % sizeof(struct dtl_entry);
431 
432 		/* Check that they have previously registered a VPA */
433 		err = H_RESOURCE;
434 		if (!vpa_is_registered(&tvcpu->arch.vpa))
435 			break;
436 
437 		vpap = &tvcpu->arch.dtl;
438 		err = 0;
439 		break;
440 
441 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
442 		/* Check that they have previously registered a VPA */
443 		err = H_RESOURCE;
444 		if (!vpa_is_registered(&tvcpu->arch.vpa))
445 			break;
446 
447 		vpap = &tvcpu->arch.slb_shadow;
448 		err = 0;
449 		break;
450 
451 	case H_VPA_DEREG_VPA:		/* deregister VPA */
452 		/* Check they don't still have a DTL or SLB buf registered */
453 		err = H_RESOURCE;
454 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
455 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
456 			break;
457 
458 		vpap = &tvcpu->arch.vpa;
459 		err = 0;
460 		break;
461 
462 	case H_VPA_DEREG_DTL:		/* deregister DTL */
463 		vpap = &tvcpu->arch.dtl;
464 		err = 0;
465 		break;
466 
467 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
468 		vpap = &tvcpu->arch.slb_shadow;
469 		err = 0;
470 		break;
471 	}
472 
473 	if (vpap) {
474 		vpap->next_gpa = vpa;
475 		vpap->len = len;
476 		vpap->update_pending = 1;
477 	}
478 
479 	spin_unlock(&tvcpu->arch.vpa_update_lock);
480 
481 	return err;
482 }
483 
484 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
485 {
486 	struct kvm *kvm = vcpu->kvm;
487 	void *va;
488 	unsigned long nb;
489 	unsigned long gpa;
490 
491 	/*
492 	 * We need to pin the page pointed to by vpap->next_gpa,
493 	 * but we can't call kvmppc_pin_guest_page under the lock
494 	 * as it does get_user_pages() and down_read().  So we
495 	 * have to drop the lock, pin the page, then get the lock
496 	 * again and check that a new area didn't get registered
497 	 * in the meantime.
498 	 */
499 	for (;;) {
500 		gpa = vpap->next_gpa;
501 		spin_unlock(&vcpu->arch.vpa_update_lock);
502 		va = NULL;
503 		nb = 0;
504 		if (gpa)
505 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
506 		spin_lock(&vcpu->arch.vpa_update_lock);
507 		if (gpa == vpap->next_gpa)
508 			break;
509 		/* sigh... unpin that one and try again */
510 		if (va)
511 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
512 	}
513 
514 	vpap->update_pending = 0;
515 	if (va && nb < vpap->len) {
516 		/*
517 		 * If it's now too short, it must be that userspace
518 		 * has changed the mappings underlying guest memory,
519 		 * so unregister the region.
520 		 */
521 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
522 		va = NULL;
523 	}
524 	if (vpap->pinned_addr)
525 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
526 					vpap->dirty);
527 	vpap->gpa = gpa;
528 	vpap->pinned_addr = va;
529 	vpap->dirty = false;
530 	if (va)
531 		vpap->pinned_end = va + vpap->len;
532 }
533 
534 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
535 {
536 	if (!(vcpu->arch.vpa.update_pending ||
537 	      vcpu->arch.slb_shadow.update_pending ||
538 	      vcpu->arch.dtl.update_pending))
539 		return;
540 
541 	spin_lock(&vcpu->arch.vpa_update_lock);
542 	if (vcpu->arch.vpa.update_pending) {
543 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
544 		if (vcpu->arch.vpa.pinned_addr)
545 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
546 	}
547 	if (vcpu->arch.dtl.update_pending) {
548 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
549 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
550 		vcpu->arch.dtl_index = 0;
551 	}
552 	if (vcpu->arch.slb_shadow.update_pending)
553 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
554 	spin_unlock(&vcpu->arch.vpa_update_lock);
555 }
556 
557 /*
558  * Return the accumulated stolen time for the vcore up until `now'.
559  * The caller should hold the vcore lock.
560  */
561 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
562 {
563 	u64 p;
564 	unsigned long flags;
565 
566 	spin_lock_irqsave(&vc->stoltb_lock, flags);
567 	p = vc->stolen_tb;
568 	if (vc->vcore_state != VCORE_INACTIVE &&
569 	    vc->preempt_tb != TB_NIL)
570 		p += now - vc->preempt_tb;
571 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
572 	return p;
573 }
574 
575 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
576 				    struct kvmppc_vcore *vc)
577 {
578 	struct dtl_entry *dt;
579 	struct lppaca *vpa;
580 	unsigned long stolen;
581 	unsigned long core_stolen;
582 	u64 now;
583 
584 	dt = vcpu->arch.dtl_ptr;
585 	vpa = vcpu->arch.vpa.pinned_addr;
586 	now = mftb();
587 	core_stolen = vcore_stolen_time(vc, now);
588 	stolen = core_stolen - vcpu->arch.stolen_logged;
589 	vcpu->arch.stolen_logged = core_stolen;
590 	spin_lock_irq(&vcpu->arch.tbacct_lock);
591 	stolen += vcpu->arch.busy_stolen;
592 	vcpu->arch.busy_stolen = 0;
593 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
594 	if (!dt || !vpa)
595 		return;
596 	memset(dt, 0, sizeof(struct dtl_entry));
597 	dt->dispatch_reason = 7;
598 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
599 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
600 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
601 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
602 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
603 	++dt;
604 	if (dt == vcpu->arch.dtl.pinned_end)
605 		dt = vcpu->arch.dtl.pinned_addr;
606 	vcpu->arch.dtl_ptr = dt;
607 	/* order writing *dt vs. writing vpa->dtl_idx */
608 	smp_wmb();
609 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
610 	vcpu->arch.dtl.dirty = true;
611 }
612 
613 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
614 {
615 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
616 		return true;
617 	if ((!vcpu->arch.vcore->arch_compat) &&
618 	    cpu_has_feature(CPU_FTR_ARCH_207S))
619 		return true;
620 	return false;
621 }
622 
623 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
624 			     unsigned long resource, unsigned long value1,
625 			     unsigned long value2)
626 {
627 	switch (resource) {
628 	case H_SET_MODE_RESOURCE_SET_CIABR:
629 		if (!kvmppc_power8_compatible(vcpu))
630 			return H_P2;
631 		if (value2)
632 			return H_P4;
633 		if (mflags)
634 			return H_UNSUPPORTED_FLAG_START;
635 		/* Guests can't breakpoint the hypervisor */
636 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
637 			return H_P3;
638 		vcpu->arch.ciabr  = value1;
639 		return H_SUCCESS;
640 	case H_SET_MODE_RESOURCE_SET_DAWR:
641 		if (!kvmppc_power8_compatible(vcpu))
642 			return H_P2;
643 		if (mflags)
644 			return H_UNSUPPORTED_FLAG_START;
645 		if (value2 & DABRX_HYP)
646 			return H_P4;
647 		vcpu->arch.dawr  = value1;
648 		vcpu->arch.dawrx = value2;
649 		return H_SUCCESS;
650 	default:
651 		return H_TOO_HARD;
652 	}
653 }
654 
655 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
656 {
657 	struct kvmppc_vcore *vcore = target->arch.vcore;
658 
659 	/*
660 	 * We expect to have been called by the real mode handler
661 	 * (kvmppc_rm_h_confer()) which would have directly returned
662 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
663 	 * have useful work to do and should not confer) so we don't
664 	 * recheck that here.
665 	 */
666 
667 	spin_lock(&vcore->lock);
668 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
669 	    vcore->vcore_state != VCORE_INACTIVE &&
670 	    vcore->runner)
671 		target = vcore->runner;
672 	spin_unlock(&vcore->lock);
673 
674 	return kvm_vcpu_yield_to(target);
675 }
676 
677 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
678 {
679 	int yield_count = 0;
680 	struct lppaca *lppaca;
681 
682 	spin_lock(&vcpu->arch.vpa_update_lock);
683 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
684 	if (lppaca)
685 		yield_count = be32_to_cpu(lppaca->yield_count);
686 	spin_unlock(&vcpu->arch.vpa_update_lock);
687 	return yield_count;
688 }
689 
690 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
691 {
692 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
693 	unsigned long target, ret = H_SUCCESS;
694 	int yield_count;
695 	struct kvm_vcpu *tvcpu;
696 	int idx, rc;
697 
698 	if (req <= MAX_HCALL_OPCODE &&
699 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
700 		return RESUME_HOST;
701 
702 	switch (req) {
703 	case H_CEDE:
704 		break;
705 	case H_PROD:
706 		target = kvmppc_get_gpr(vcpu, 4);
707 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
708 		if (!tvcpu) {
709 			ret = H_PARAMETER;
710 			break;
711 		}
712 		tvcpu->arch.prodded = 1;
713 		smp_mb();
714 		if (vcpu->arch.ceded) {
715 			if (swait_active(&vcpu->wq)) {
716 				swake_up(&vcpu->wq);
717 				vcpu->stat.halt_wakeup++;
718 			}
719 		}
720 		break;
721 	case H_CONFER:
722 		target = kvmppc_get_gpr(vcpu, 4);
723 		if (target == -1)
724 			break;
725 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
726 		if (!tvcpu) {
727 			ret = H_PARAMETER;
728 			break;
729 		}
730 		yield_count = kvmppc_get_gpr(vcpu, 5);
731 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
732 			break;
733 		kvm_arch_vcpu_yield_to(tvcpu);
734 		break;
735 	case H_REGISTER_VPA:
736 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
737 					kvmppc_get_gpr(vcpu, 5),
738 					kvmppc_get_gpr(vcpu, 6));
739 		break;
740 	case H_RTAS:
741 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
742 			return RESUME_HOST;
743 
744 		idx = srcu_read_lock(&vcpu->kvm->srcu);
745 		rc = kvmppc_rtas_hcall(vcpu);
746 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
747 
748 		if (rc == -ENOENT)
749 			return RESUME_HOST;
750 		else if (rc == 0)
751 			break;
752 
753 		/* Send the error out to userspace via KVM_RUN */
754 		return rc;
755 	case H_LOGICAL_CI_LOAD:
756 		ret = kvmppc_h_logical_ci_load(vcpu);
757 		if (ret == H_TOO_HARD)
758 			return RESUME_HOST;
759 		break;
760 	case H_LOGICAL_CI_STORE:
761 		ret = kvmppc_h_logical_ci_store(vcpu);
762 		if (ret == H_TOO_HARD)
763 			return RESUME_HOST;
764 		break;
765 	case H_SET_MODE:
766 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
767 					kvmppc_get_gpr(vcpu, 5),
768 					kvmppc_get_gpr(vcpu, 6),
769 					kvmppc_get_gpr(vcpu, 7));
770 		if (ret == H_TOO_HARD)
771 			return RESUME_HOST;
772 		break;
773 	case H_XIRR:
774 	case H_CPPR:
775 	case H_EOI:
776 	case H_IPI:
777 	case H_IPOLL:
778 	case H_XIRR_X:
779 		if (kvmppc_xics_enabled(vcpu)) {
780 			ret = kvmppc_xics_hcall(vcpu, req);
781 			break;
782 		}
783 		return RESUME_HOST;
784 	case H_PUT_TCE:
785 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
786 						kvmppc_get_gpr(vcpu, 5),
787 						kvmppc_get_gpr(vcpu, 6));
788 		if (ret == H_TOO_HARD)
789 			return RESUME_HOST;
790 		break;
791 	case H_PUT_TCE_INDIRECT:
792 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
793 						kvmppc_get_gpr(vcpu, 5),
794 						kvmppc_get_gpr(vcpu, 6),
795 						kvmppc_get_gpr(vcpu, 7));
796 		if (ret == H_TOO_HARD)
797 			return RESUME_HOST;
798 		break;
799 	case H_STUFF_TCE:
800 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
801 						kvmppc_get_gpr(vcpu, 5),
802 						kvmppc_get_gpr(vcpu, 6),
803 						kvmppc_get_gpr(vcpu, 7));
804 		if (ret == H_TOO_HARD)
805 			return RESUME_HOST;
806 		break;
807 	default:
808 		return RESUME_HOST;
809 	}
810 	kvmppc_set_gpr(vcpu, 3, ret);
811 	vcpu->arch.hcall_needed = 0;
812 	return RESUME_GUEST;
813 }
814 
815 static int kvmppc_hcall_impl_hv(unsigned long cmd)
816 {
817 	switch (cmd) {
818 	case H_CEDE:
819 	case H_PROD:
820 	case H_CONFER:
821 	case H_REGISTER_VPA:
822 	case H_SET_MODE:
823 	case H_LOGICAL_CI_LOAD:
824 	case H_LOGICAL_CI_STORE:
825 #ifdef CONFIG_KVM_XICS
826 	case H_XIRR:
827 	case H_CPPR:
828 	case H_EOI:
829 	case H_IPI:
830 	case H_IPOLL:
831 	case H_XIRR_X:
832 #endif
833 		return 1;
834 	}
835 
836 	/* See if it's in the real-mode table */
837 	return kvmppc_hcall_impl_hv_realmode(cmd);
838 }
839 
840 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
841 					struct kvm_vcpu *vcpu)
842 {
843 	u32 last_inst;
844 
845 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
846 					EMULATE_DONE) {
847 		/*
848 		 * Fetch failed, so return to guest and
849 		 * try executing it again.
850 		 */
851 		return RESUME_GUEST;
852 	}
853 
854 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
855 		run->exit_reason = KVM_EXIT_DEBUG;
856 		run->debug.arch.address = kvmppc_get_pc(vcpu);
857 		return RESUME_HOST;
858 	} else {
859 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
860 		return RESUME_GUEST;
861 	}
862 }
863 
864 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
865 				 struct task_struct *tsk)
866 {
867 	int r = RESUME_HOST;
868 
869 	vcpu->stat.sum_exits++;
870 
871 	/*
872 	 * This can happen if an interrupt occurs in the last stages
873 	 * of guest entry or the first stages of guest exit (i.e. after
874 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
875 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
876 	 * That can happen due to a bug, or due to a machine check
877 	 * occurring at just the wrong time.
878 	 */
879 	if (vcpu->arch.shregs.msr & MSR_HV) {
880 		printk(KERN_EMERG "KVM trap in HV mode!\n");
881 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
882 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
883 			vcpu->arch.shregs.msr);
884 		kvmppc_dump_regs(vcpu);
885 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
886 		run->hw.hardware_exit_reason = vcpu->arch.trap;
887 		return RESUME_HOST;
888 	}
889 	run->exit_reason = KVM_EXIT_UNKNOWN;
890 	run->ready_for_interrupt_injection = 1;
891 	switch (vcpu->arch.trap) {
892 	/* We're good on these - the host merely wanted to get our attention */
893 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
894 		vcpu->stat.dec_exits++;
895 		r = RESUME_GUEST;
896 		break;
897 	case BOOK3S_INTERRUPT_EXTERNAL:
898 	case BOOK3S_INTERRUPT_H_DOORBELL:
899 		vcpu->stat.ext_intr_exits++;
900 		r = RESUME_GUEST;
901 		break;
902 	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
903 	case BOOK3S_INTERRUPT_HMI:
904 	case BOOK3S_INTERRUPT_PERFMON:
905 		r = RESUME_GUEST;
906 		break;
907 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
908 		/*
909 		 * Deliver a machine check interrupt to the guest.
910 		 * We have to do this, even if the host has handled the
911 		 * machine check, because machine checks use SRR0/1 and
912 		 * the interrupt might have trashed guest state in them.
913 		 */
914 		kvmppc_book3s_queue_irqprio(vcpu,
915 					    BOOK3S_INTERRUPT_MACHINE_CHECK);
916 		r = RESUME_GUEST;
917 		break;
918 	case BOOK3S_INTERRUPT_PROGRAM:
919 	{
920 		ulong flags;
921 		/*
922 		 * Normally program interrupts are delivered directly
923 		 * to the guest by the hardware, but we can get here
924 		 * as a result of a hypervisor emulation interrupt
925 		 * (e40) getting turned into a 700 by BML RTAS.
926 		 */
927 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
928 		kvmppc_core_queue_program(vcpu, flags);
929 		r = RESUME_GUEST;
930 		break;
931 	}
932 	case BOOK3S_INTERRUPT_SYSCALL:
933 	{
934 		/* hcall - punt to userspace */
935 		int i;
936 
937 		/* hypercall with MSR_PR has already been handled in rmode,
938 		 * and never reaches here.
939 		 */
940 
941 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
942 		for (i = 0; i < 9; ++i)
943 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
944 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
945 		vcpu->arch.hcall_needed = 1;
946 		r = RESUME_HOST;
947 		break;
948 	}
949 	/*
950 	 * We get these next two if the guest accesses a page which it thinks
951 	 * it has mapped but which is not actually present, either because
952 	 * it is for an emulated I/O device or because the corresonding
953 	 * host page has been paged out.  Any other HDSI/HISI interrupts
954 	 * have been handled already.
955 	 */
956 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
957 		r = RESUME_PAGE_FAULT;
958 		break;
959 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
960 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
961 		vcpu->arch.fault_dsisr = 0;
962 		r = RESUME_PAGE_FAULT;
963 		break;
964 	/*
965 	 * This occurs if the guest executes an illegal instruction.
966 	 * If the guest debug is disabled, generate a program interrupt
967 	 * to the guest. If guest debug is enabled, we need to check
968 	 * whether the instruction is a software breakpoint instruction.
969 	 * Accordingly return to Guest or Host.
970 	 */
971 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
972 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
973 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
974 				swab32(vcpu->arch.emul_inst) :
975 				vcpu->arch.emul_inst;
976 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
977 			r = kvmppc_emulate_debug_inst(run, vcpu);
978 		} else {
979 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
980 			r = RESUME_GUEST;
981 		}
982 		break;
983 	/*
984 	 * This occurs if the guest (kernel or userspace), does something that
985 	 * is prohibited by HFSCR.  We just generate a program interrupt to
986 	 * the guest.
987 	 */
988 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
989 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
990 		r = RESUME_GUEST;
991 		break;
992 	default:
993 		kvmppc_dump_regs(vcpu);
994 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
995 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
996 			vcpu->arch.shregs.msr);
997 		run->hw.hardware_exit_reason = vcpu->arch.trap;
998 		r = RESUME_HOST;
999 		break;
1000 	}
1001 
1002 	return r;
1003 }
1004 
1005 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1006 					    struct kvm_sregs *sregs)
1007 {
1008 	int i;
1009 
1010 	memset(sregs, 0, sizeof(struct kvm_sregs));
1011 	sregs->pvr = vcpu->arch.pvr;
1012 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1013 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1014 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1015 	}
1016 
1017 	return 0;
1018 }
1019 
1020 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1021 					    struct kvm_sregs *sregs)
1022 {
1023 	int i, j;
1024 
1025 	/* Only accept the same PVR as the host's, since we can't spoof it */
1026 	if (sregs->pvr != vcpu->arch.pvr)
1027 		return -EINVAL;
1028 
1029 	j = 0;
1030 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1031 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1032 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1033 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1034 			++j;
1035 		}
1036 	}
1037 	vcpu->arch.slb_max = j;
1038 
1039 	return 0;
1040 }
1041 
1042 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1043 		bool preserve_top32)
1044 {
1045 	struct kvm *kvm = vcpu->kvm;
1046 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1047 	u64 mask;
1048 
1049 	mutex_lock(&kvm->lock);
1050 	spin_lock(&vc->lock);
1051 	/*
1052 	 * If ILE (interrupt little-endian) has changed, update the
1053 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1054 	 */
1055 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1056 		struct kvm_vcpu *vcpu;
1057 		int i;
1058 
1059 		kvm_for_each_vcpu(i, vcpu, kvm) {
1060 			if (vcpu->arch.vcore != vc)
1061 				continue;
1062 			if (new_lpcr & LPCR_ILE)
1063 				vcpu->arch.intr_msr |= MSR_LE;
1064 			else
1065 				vcpu->arch.intr_msr &= ~MSR_LE;
1066 		}
1067 	}
1068 
1069 	/*
1070 	 * Userspace can only modify DPFD (default prefetch depth),
1071 	 * ILE (interrupt little-endian) and TC (translation control).
1072 	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1073 	 */
1074 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1075 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1076 		mask |= LPCR_AIL;
1077 
1078 	/* Broken 32-bit version of LPCR must not clear top bits */
1079 	if (preserve_top32)
1080 		mask &= 0xFFFFFFFF;
1081 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1082 	spin_unlock(&vc->lock);
1083 	mutex_unlock(&kvm->lock);
1084 }
1085 
1086 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1087 				 union kvmppc_one_reg *val)
1088 {
1089 	int r = 0;
1090 	long int i;
1091 
1092 	switch (id) {
1093 	case KVM_REG_PPC_DEBUG_INST:
1094 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1095 		break;
1096 	case KVM_REG_PPC_HIOR:
1097 		*val = get_reg_val(id, 0);
1098 		break;
1099 	case KVM_REG_PPC_DABR:
1100 		*val = get_reg_val(id, vcpu->arch.dabr);
1101 		break;
1102 	case KVM_REG_PPC_DABRX:
1103 		*val = get_reg_val(id, vcpu->arch.dabrx);
1104 		break;
1105 	case KVM_REG_PPC_DSCR:
1106 		*val = get_reg_val(id, vcpu->arch.dscr);
1107 		break;
1108 	case KVM_REG_PPC_PURR:
1109 		*val = get_reg_val(id, vcpu->arch.purr);
1110 		break;
1111 	case KVM_REG_PPC_SPURR:
1112 		*val = get_reg_val(id, vcpu->arch.spurr);
1113 		break;
1114 	case KVM_REG_PPC_AMR:
1115 		*val = get_reg_val(id, vcpu->arch.amr);
1116 		break;
1117 	case KVM_REG_PPC_UAMOR:
1118 		*val = get_reg_val(id, vcpu->arch.uamor);
1119 		break;
1120 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1121 		i = id - KVM_REG_PPC_MMCR0;
1122 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1123 		break;
1124 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1125 		i = id - KVM_REG_PPC_PMC1;
1126 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1127 		break;
1128 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1129 		i = id - KVM_REG_PPC_SPMC1;
1130 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1131 		break;
1132 	case KVM_REG_PPC_SIAR:
1133 		*val = get_reg_val(id, vcpu->arch.siar);
1134 		break;
1135 	case KVM_REG_PPC_SDAR:
1136 		*val = get_reg_val(id, vcpu->arch.sdar);
1137 		break;
1138 	case KVM_REG_PPC_SIER:
1139 		*val = get_reg_val(id, vcpu->arch.sier);
1140 		break;
1141 	case KVM_REG_PPC_IAMR:
1142 		*val = get_reg_val(id, vcpu->arch.iamr);
1143 		break;
1144 	case KVM_REG_PPC_PSPB:
1145 		*val = get_reg_val(id, vcpu->arch.pspb);
1146 		break;
1147 	case KVM_REG_PPC_DPDES:
1148 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1149 		break;
1150 	case KVM_REG_PPC_DAWR:
1151 		*val = get_reg_val(id, vcpu->arch.dawr);
1152 		break;
1153 	case KVM_REG_PPC_DAWRX:
1154 		*val = get_reg_val(id, vcpu->arch.dawrx);
1155 		break;
1156 	case KVM_REG_PPC_CIABR:
1157 		*val = get_reg_val(id, vcpu->arch.ciabr);
1158 		break;
1159 	case KVM_REG_PPC_CSIGR:
1160 		*val = get_reg_val(id, vcpu->arch.csigr);
1161 		break;
1162 	case KVM_REG_PPC_TACR:
1163 		*val = get_reg_val(id, vcpu->arch.tacr);
1164 		break;
1165 	case KVM_REG_PPC_TCSCR:
1166 		*val = get_reg_val(id, vcpu->arch.tcscr);
1167 		break;
1168 	case KVM_REG_PPC_PID:
1169 		*val = get_reg_val(id, vcpu->arch.pid);
1170 		break;
1171 	case KVM_REG_PPC_ACOP:
1172 		*val = get_reg_val(id, vcpu->arch.acop);
1173 		break;
1174 	case KVM_REG_PPC_WORT:
1175 		*val = get_reg_val(id, vcpu->arch.wort);
1176 		break;
1177 	case KVM_REG_PPC_VPA_ADDR:
1178 		spin_lock(&vcpu->arch.vpa_update_lock);
1179 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1180 		spin_unlock(&vcpu->arch.vpa_update_lock);
1181 		break;
1182 	case KVM_REG_PPC_VPA_SLB:
1183 		spin_lock(&vcpu->arch.vpa_update_lock);
1184 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1185 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1186 		spin_unlock(&vcpu->arch.vpa_update_lock);
1187 		break;
1188 	case KVM_REG_PPC_VPA_DTL:
1189 		spin_lock(&vcpu->arch.vpa_update_lock);
1190 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1191 		val->vpaval.length = vcpu->arch.dtl.len;
1192 		spin_unlock(&vcpu->arch.vpa_update_lock);
1193 		break;
1194 	case KVM_REG_PPC_TB_OFFSET:
1195 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1196 		break;
1197 	case KVM_REG_PPC_LPCR:
1198 	case KVM_REG_PPC_LPCR_64:
1199 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1200 		break;
1201 	case KVM_REG_PPC_PPR:
1202 		*val = get_reg_val(id, vcpu->arch.ppr);
1203 		break;
1204 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1205 	case KVM_REG_PPC_TFHAR:
1206 		*val = get_reg_val(id, vcpu->arch.tfhar);
1207 		break;
1208 	case KVM_REG_PPC_TFIAR:
1209 		*val = get_reg_val(id, vcpu->arch.tfiar);
1210 		break;
1211 	case KVM_REG_PPC_TEXASR:
1212 		*val = get_reg_val(id, vcpu->arch.texasr);
1213 		break;
1214 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1215 		i = id - KVM_REG_PPC_TM_GPR0;
1216 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1217 		break;
1218 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1219 	{
1220 		int j;
1221 		i = id - KVM_REG_PPC_TM_VSR0;
1222 		if (i < 32)
1223 			for (j = 0; j < TS_FPRWIDTH; j++)
1224 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1225 		else {
1226 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1227 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1228 			else
1229 				r = -ENXIO;
1230 		}
1231 		break;
1232 	}
1233 	case KVM_REG_PPC_TM_CR:
1234 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1235 		break;
1236 	case KVM_REG_PPC_TM_LR:
1237 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1238 		break;
1239 	case KVM_REG_PPC_TM_CTR:
1240 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1241 		break;
1242 	case KVM_REG_PPC_TM_FPSCR:
1243 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1244 		break;
1245 	case KVM_REG_PPC_TM_AMR:
1246 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1247 		break;
1248 	case KVM_REG_PPC_TM_PPR:
1249 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1250 		break;
1251 	case KVM_REG_PPC_TM_VRSAVE:
1252 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1253 		break;
1254 	case KVM_REG_PPC_TM_VSCR:
1255 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1256 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1257 		else
1258 			r = -ENXIO;
1259 		break;
1260 	case KVM_REG_PPC_TM_DSCR:
1261 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1262 		break;
1263 	case KVM_REG_PPC_TM_TAR:
1264 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1265 		break;
1266 #endif
1267 	case KVM_REG_PPC_ARCH_COMPAT:
1268 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1269 		break;
1270 	default:
1271 		r = -EINVAL;
1272 		break;
1273 	}
1274 
1275 	return r;
1276 }
1277 
1278 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1279 				 union kvmppc_one_reg *val)
1280 {
1281 	int r = 0;
1282 	long int i;
1283 	unsigned long addr, len;
1284 
1285 	switch (id) {
1286 	case KVM_REG_PPC_HIOR:
1287 		/* Only allow this to be set to zero */
1288 		if (set_reg_val(id, *val))
1289 			r = -EINVAL;
1290 		break;
1291 	case KVM_REG_PPC_DABR:
1292 		vcpu->arch.dabr = set_reg_val(id, *val);
1293 		break;
1294 	case KVM_REG_PPC_DABRX:
1295 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1296 		break;
1297 	case KVM_REG_PPC_DSCR:
1298 		vcpu->arch.dscr = set_reg_val(id, *val);
1299 		break;
1300 	case KVM_REG_PPC_PURR:
1301 		vcpu->arch.purr = set_reg_val(id, *val);
1302 		break;
1303 	case KVM_REG_PPC_SPURR:
1304 		vcpu->arch.spurr = set_reg_val(id, *val);
1305 		break;
1306 	case KVM_REG_PPC_AMR:
1307 		vcpu->arch.amr = set_reg_val(id, *val);
1308 		break;
1309 	case KVM_REG_PPC_UAMOR:
1310 		vcpu->arch.uamor = set_reg_val(id, *val);
1311 		break;
1312 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1313 		i = id - KVM_REG_PPC_MMCR0;
1314 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1315 		break;
1316 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1317 		i = id - KVM_REG_PPC_PMC1;
1318 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1319 		break;
1320 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1321 		i = id - KVM_REG_PPC_SPMC1;
1322 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1323 		break;
1324 	case KVM_REG_PPC_SIAR:
1325 		vcpu->arch.siar = set_reg_val(id, *val);
1326 		break;
1327 	case KVM_REG_PPC_SDAR:
1328 		vcpu->arch.sdar = set_reg_val(id, *val);
1329 		break;
1330 	case KVM_REG_PPC_SIER:
1331 		vcpu->arch.sier = set_reg_val(id, *val);
1332 		break;
1333 	case KVM_REG_PPC_IAMR:
1334 		vcpu->arch.iamr = set_reg_val(id, *val);
1335 		break;
1336 	case KVM_REG_PPC_PSPB:
1337 		vcpu->arch.pspb = set_reg_val(id, *val);
1338 		break;
1339 	case KVM_REG_PPC_DPDES:
1340 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1341 		break;
1342 	case KVM_REG_PPC_DAWR:
1343 		vcpu->arch.dawr = set_reg_val(id, *val);
1344 		break;
1345 	case KVM_REG_PPC_DAWRX:
1346 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1347 		break;
1348 	case KVM_REG_PPC_CIABR:
1349 		vcpu->arch.ciabr = set_reg_val(id, *val);
1350 		/* Don't allow setting breakpoints in hypervisor code */
1351 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1352 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1353 		break;
1354 	case KVM_REG_PPC_CSIGR:
1355 		vcpu->arch.csigr = set_reg_val(id, *val);
1356 		break;
1357 	case KVM_REG_PPC_TACR:
1358 		vcpu->arch.tacr = set_reg_val(id, *val);
1359 		break;
1360 	case KVM_REG_PPC_TCSCR:
1361 		vcpu->arch.tcscr = set_reg_val(id, *val);
1362 		break;
1363 	case KVM_REG_PPC_PID:
1364 		vcpu->arch.pid = set_reg_val(id, *val);
1365 		break;
1366 	case KVM_REG_PPC_ACOP:
1367 		vcpu->arch.acop = set_reg_val(id, *val);
1368 		break;
1369 	case KVM_REG_PPC_WORT:
1370 		vcpu->arch.wort = set_reg_val(id, *val);
1371 		break;
1372 	case KVM_REG_PPC_VPA_ADDR:
1373 		addr = set_reg_val(id, *val);
1374 		r = -EINVAL;
1375 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1376 			      vcpu->arch.dtl.next_gpa))
1377 			break;
1378 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1379 		break;
1380 	case KVM_REG_PPC_VPA_SLB:
1381 		addr = val->vpaval.addr;
1382 		len = val->vpaval.length;
1383 		r = -EINVAL;
1384 		if (addr && !vcpu->arch.vpa.next_gpa)
1385 			break;
1386 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1387 		break;
1388 	case KVM_REG_PPC_VPA_DTL:
1389 		addr = val->vpaval.addr;
1390 		len = val->vpaval.length;
1391 		r = -EINVAL;
1392 		if (addr && (len < sizeof(struct dtl_entry) ||
1393 			     !vcpu->arch.vpa.next_gpa))
1394 			break;
1395 		len -= len % sizeof(struct dtl_entry);
1396 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1397 		break;
1398 	case KVM_REG_PPC_TB_OFFSET:
1399 		/* round up to multiple of 2^24 */
1400 		vcpu->arch.vcore->tb_offset =
1401 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1402 		break;
1403 	case KVM_REG_PPC_LPCR:
1404 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1405 		break;
1406 	case KVM_REG_PPC_LPCR_64:
1407 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1408 		break;
1409 	case KVM_REG_PPC_PPR:
1410 		vcpu->arch.ppr = set_reg_val(id, *val);
1411 		break;
1412 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1413 	case KVM_REG_PPC_TFHAR:
1414 		vcpu->arch.tfhar = set_reg_val(id, *val);
1415 		break;
1416 	case KVM_REG_PPC_TFIAR:
1417 		vcpu->arch.tfiar = set_reg_val(id, *val);
1418 		break;
1419 	case KVM_REG_PPC_TEXASR:
1420 		vcpu->arch.texasr = set_reg_val(id, *val);
1421 		break;
1422 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1423 		i = id - KVM_REG_PPC_TM_GPR0;
1424 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1425 		break;
1426 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1427 	{
1428 		int j;
1429 		i = id - KVM_REG_PPC_TM_VSR0;
1430 		if (i < 32)
1431 			for (j = 0; j < TS_FPRWIDTH; j++)
1432 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1433 		else
1434 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1435 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1436 			else
1437 				r = -ENXIO;
1438 		break;
1439 	}
1440 	case KVM_REG_PPC_TM_CR:
1441 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1442 		break;
1443 	case KVM_REG_PPC_TM_LR:
1444 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1445 		break;
1446 	case KVM_REG_PPC_TM_CTR:
1447 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1448 		break;
1449 	case KVM_REG_PPC_TM_FPSCR:
1450 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1451 		break;
1452 	case KVM_REG_PPC_TM_AMR:
1453 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1454 		break;
1455 	case KVM_REG_PPC_TM_PPR:
1456 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1457 		break;
1458 	case KVM_REG_PPC_TM_VRSAVE:
1459 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1460 		break;
1461 	case KVM_REG_PPC_TM_VSCR:
1462 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1463 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1464 		else
1465 			r = - ENXIO;
1466 		break;
1467 	case KVM_REG_PPC_TM_DSCR:
1468 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1469 		break;
1470 	case KVM_REG_PPC_TM_TAR:
1471 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1472 		break;
1473 #endif
1474 	case KVM_REG_PPC_ARCH_COMPAT:
1475 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1476 		break;
1477 	default:
1478 		r = -EINVAL;
1479 		break;
1480 	}
1481 
1482 	return r;
1483 }
1484 
1485 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1486 {
1487 	struct kvmppc_vcore *vcore;
1488 
1489 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1490 
1491 	if (vcore == NULL)
1492 		return NULL;
1493 
1494 	INIT_LIST_HEAD(&vcore->runnable_threads);
1495 	spin_lock_init(&vcore->lock);
1496 	spin_lock_init(&vcore->stoltb_lock);
1497 	init_swait_queue_head(&vcore->wq);
1498 	vcore->preempt_tb = TB_NIL;
1499 	vcore->lpcr = kvm->arch.lpcr;
1500 	vcore->first_vcpuid = core * threads_per_subcore;
1501 	vcore->kvm = kvm;
1502 	INIT_LIST_HEAD(&vcore->preempt_list);
1503 
1504 	return vcore;
1505 }
1506 
1507 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1508 static struct debugfs_timings_element {
1509 	const char *name;
1510 	size_t offset;
1511 } timings[] = {
1512 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
1513 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
1514 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
1515 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
1516 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
1517 };
1518 
1519 #define N_TIMINGS	(sizeof(timings) / sizeof(timings[0]))
1520 
1521 struct debugfs_timings_state {
1522 	struct kvm_vcpu	*vcpu;
1523 	unsigned int	buflen;
1524 	char		buf[N_TIMINGS * 100];
1525 };
1526 
1527 static int debugfs_timings_open(struct inode *inode, struct file *file)
1528 {
1529 	struct kvm_vcpu *vcpu = inode->i_private;
1530 	struct debugfs_timings_state *p;
1531 
1532 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1533 	if (!p)
1534 		return -ENOMEM;
1535 
1536 	kvm_get_kvm(vcpu->kvm);
1537 	p->vcpu = vcpu;
1538 	file->private_data = p;
1539 
1540 	return nonseekable_open(inode, file);
1541 }
1542 
1543 static int debugfs_timings_release(struct inode *inode, struct file *file)
1544 {
1545 	struct debugfs_timings_state *p = file->private_data;
1546 
1547 	kvm_put_kvm(p->vcpu->kvm);
1548 	kfree(p);
1549 	return 0;
1550 }
1551 
1552 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1553 				    size_t len, loff_t *ppos)
1554 {
1555 	struct debugfs_timings_state *p = file->private_data;
1556 	struct kvm_vcpu *vcpu = p->vcpu;
1557 	char *s, *buf_end;
1558 	struct kvmhv_tb_accumulator tb;
1559 	u64 count;
1560 	loff_t pos;
1561 	ssize_t n;
1562 	int i, loops;
1563 	bool ok;
1564 
1565 	if (!p->buflen) {
1566 		s = p->buf;
1567 		buf_end = s + sizeof(p->buf);
1568 		for (i = 0; i < N_TIMINGS; ++i) {
1569 			struct kvmhv_tb_accumulator *acc;
1570 
1571 			acc = (struct kvmhv_tb_accumulator *)
1572 				((unsigned long)vcpu + timings[i].offset);
1573 			ok = false;
1574 			for (loops = 0; loops < 1000; ++loops) {
1575 				count = acc->seqcount;
1576 				if (!(count & 1)) {
1577 					smp_rmb();
1578 					tb = *acc;
1579 					smp_rmb();
1580 					if (count == acc->seqcount) {
1581 						ok = true;
1582 						break;
1583 					}
1584 				}
1585 				udelay(1);
1586 			}
1587 			if (!ok)
1588 				snprintf(s, buf_end - s, "%s: stuck\n",
1589 					timings[i].name);
1590 			else
1591 				snprintf(s, buf_end - s,
1592 					"%s: %llu %llu %llu %llu\n",
1593 					timings[i].name, count / 2,
1594 					tb_to_ns(tb.tb_total),
1595 					tb_to_ns(tb.tb_min),
1596 					tb_to_ns(tb.tb_max));
1597 			s += strlen(s);
1598 		}
1599 		p->buflen = s - p->buf;
1600 	}
1601 
1602 	pos = *ppos;
1603 	if (pos >= p->buflen)
1604 		return 0;
1605 	if (len > p->buflen - pos)
1606 		len = p->buflen - pos;
1607 	n = copy_to_user(buf, p->buf + pos, len);
1608 	if (n) {
1609 		if (n == len)
1610 			return -EFAULT;
1611 		len -= n;
1612 	}
1613 	*ppos = pos + len;
1614 	return len;
1615 }
1616 
1617 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1618 				     size_t len, loff_t *ppos)
1619 {
1620 	return -EACCES;
1621 }
1622 
1623 static const struct file_operations debugfs_timings_ops = {
1624 	.owner	 = THIS_MODULE,
1625 	.open	 = debugfs_timings_open,
1626 	.release = debugfs_timings_release,
1627 	.read	 = debugfs_timings_read,
1628 	.write	 = debugfs_timings_write,
1629 	.llseek	 = generic_file_llseek,
1630 };
1631 
1632 /* Create a debugfs directory for the vcpu */
1633 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1634 {
1635 	char buf[16];
1636 	struct kvm *kvm = vcpu->kvm;
1637 
1638 	snprintf(buf, sizeof(buf), "vcpu%u", id);
1639 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1640 		return;
1641 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1642 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1643 		return;
1644 	vcpu->arch.debugfs_timings =
1645 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1646 				    vcpu, &debugfs_timings_ops);
1647 }
1648 
1649 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1650 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1651 {
1652 }
1653 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1654 
1655 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1656 						   unsigned int id)
1657 {
1658 	struct kvm_vcpu *vcpu;
1659 	int err = -EINVAL;
1660 	int core;
1661 	struct kvmppc_vcore *vcore;
1662 
1663 	core = id / threads_per_subcore;
1664 	if (core >= KVM_MAX_VCORES)
1665 		goto out;
1666 
1667 	err = -ENOMEM;
1668 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1669 	if (!vcpu)
1670 		goto out;
1671 
1672 	err = kvm_vcpu_init(vcpu, kvm, id);
1673 	if (err)
1674 		goto free_vcpu;
1675 
1676 	vcpu->arch.shared = &vcpu->arch.shregs;
1677 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1678 	/*
1679 	 * The shared struct is never shared on HV,
1680 	 * so we can always use host endianness
1681 	 */
1682 #ifdef __BIG_ENDIAN__
1683 	vcpu->arch.shared_big_endian = true;
1684 #else
1685 	vcpu->arch.shared_big_endian = false;
1686 #endif
1687 #endif
1688 	vcpu->arch.mmcr[0] = MMCR0_FC;
1689 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1690 	/* default to host PVR, since we can't spoof it */
1691 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1692 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1693 	spin_lock_init(&vcpu->arch.tbacct_lock);
1694 	vcpu->arch.busy_preempt = TB_NIL;
1695 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1696 
1697 	kvmppc_mmu_book3s_hv_init(vcpu);
1698 
1699 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1700 
1701 	init_waitqueue_head(&vcpu->arch.cpu_run);
1702 
1703 	mutex_lock(&kvm->lock);
1704 	vcore = kvm->arch.vcores[core];
1705 	if (!vcore) {
1706 		vcore = kvmppc_vcore_create(kvm, core);
1707 		kvm->arch.vcores[core] = vcore;
1708 		kvm->arch.online_vcores++;
1709 	}
1710 	mutex_unlock(&kvm->lock);
1711 
1712 	if (!vcore)
1713 		goto free_vcpu;
1714 
1715 	spin_lock(&vcore->lock);
1716 	++vcore->num_threads;
1717 	spin_unlock(&vcore->lock);
1718 	vcpu->arch.vcore = vcore;
1719 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1720 	vcpu->arch.thread_cpu = -1;
1721 
1722 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
1723 	kvmppc_sanity_check(vcpu);
1724 
1725 	debugfs_vcpu_init(vcpu, id);
1726 
1727 	return vcpu;
1728 
1729 free_vcpu:
1730 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1731 out:
1732 	return ERR_PTR(err);
1733 }
1734 
1735 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1736 {
1737 	if (vpa->pinned_addr)
1738 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1739 					vpa->dirty);
1740 }
1741 
1742 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1743 {
1744 	spin_lock(&vcpu->arch.vpa_update_lock);
1745 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1746 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1747 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1748 	spin_unlock(&vcpu->arch.vpa_update_lock);
1749 	kvm_vcpu_uninit(vcpu);
1750 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1751 }
1752 
1753 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1754 {
1755 	/* Indicate we want to get back into the guest */
1756 	return 1;
1757 }
1758 
1759 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1760 {
1761 	unsigned long dec_nsec, now;
1762 
1763 	now = get_tb();
1764 	if (now > vcpu->arch.dec_expires) {
1765 		/* decrementer has already gone negative */
1766 		kvmppc_core_queue_dec(vcpu);
1767 		kvmppc_core_prepare_to_enter(vcpu);
1768 		return;
1769 	}
1770 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1771 		   / tb_ticks_per_sec;
1772 	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1773 		      HRTIMER_MODE_REL);
1774 	vcpu->arch.timer_running = 1;
1775 }
1776 
1777 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1778 {
1779 	vcpu->arch.ceded = 0;
1780 	if (vcpu->arch.timer_running) {
1781 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1782 		vcpu->arch.timer_running = 0;
1783 	}
1784 }
1785 
1786 extern void __kvmppc_vcore_entry(void);
1787 
1788 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1789 				   struct kvm_vcpu *vcpu)
1790 {
1791 	u64 now;
1792 
1793 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1794 		return;
1795 	spin_lock_irq(&vcpu->arch.tbacct_lock);
1796 	now = mftb();
1797 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1798 		vcpu->arch.stolen_logged;
1799 	vcpu->arch.busy_preempt = now;
1800 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1801 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1802 	--vc->n_runnable;
1803 	list_del(&vcpu->arch.run_list);
1804 }
1805 
1806 static int kvmppc_grab_hwthread(int cpu)
1807 {
1808 	struct paca_struct *tpaca;
1809 	long timeout = 10000;
1810 
1811 	tpaca = &paca[cpu];
1812 
1813 	/* Ensure the thread won't go into the kernel if it wakes */
1814 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1815 	tpaca->kvm_hstate.kvm_vcore = NULL;
1816 	tpaca->kvm_hstate.napping = 0;
1817 	smp_wmb();
1818 	tpaca->kvm_hstate.hwthread_req = 1;
1819 
1820 	/*
1821 	 * If the thread is already executing in the kernel (e.g. handling
1822 	 * a stray interrupt), wait for it to get back to nap mode.
1823 	 * The smp_mb() is to ensure that our setting of hwthread_req
1824 	 * is visible before we look at hwthread_state, so if this
1825 	 * races with the code at system_reset_pSeries and the thread
1826 	 * misses our setting of hwthread_req, we are sure to see its
1827 	 * setting of hwthread_state, and vice versa.
1828 	 */
1829 	smp_mb();
1830 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1831 		if (--timeout <= 0) {
1832 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
1833 			return -EBUSY;
1834 		}
1835 		udelay(1);
1836 	}
1837 	return 0;
1838 }
1839 
1840 static void kvmppc_release_hwthread(int cpu)
1841 {
1842 	struct paca_struct *tpaca;
1843 
1844 	tpaca = &paca[cpu];
1845 	tpaca->kvm_hstate.hwthread_req = 0;
1846 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1847 	tpaca->kvm_hstate.kvm_vcore = NULL;
1848 	tpaca->kvm_hstate.kvm_split_mode = NULL;
1849 }
1850 
1851 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1852 {
1853 	int cpu;
1854 	struct paca_struct *tpaca;
1855 	struct kvmppc_vcore *mvc = vc->master_vcore;
1856 
1857 	cpu = vc->pcpu;
1858 	if (vcpu) {
1859 		if (vcpu->arch.timer_running) {
1860 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1861 			vcpu->arch.timer_running = 0;
1862 		}
1863 		cpu += vcpu->arch.ptid;
1864 		vcpu->cpu = mvc->pcpu;
1865 		vcpu->arch.thread_cpu = cpu;
1866 	}
1867 	tpaca = &paca[cpu];
1868 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1869 	tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
1870 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1871 	smp_wmb();
1872 	tpaca->kvm_hstate.kvm_vcore = mvc;
1873 	if (cpu != smp_processor_id())
1874 		kvmppc_ipi_thread(cpu);
1875 }
1876 
1877 static void kvmppc_wait_for_nap(void)
1878 {
1879 	int cpu = smp_processor_id();
1880 	int i, loops;
1881 
1882 	for (loops = 0; loops < 1000000; ++loops) {
1883 		/*
1884 		 * Check if all threads are finished.
1885 		 * We set the vcore pointer when starting a thread
1886 		 * and the thread clears it when finished, so we look
1887 		 * for any threads that still have a non-NULL vcore ptr.
1888 		 */
1889 		for (i = 1; i < threads_per_subcore; ++i)
1890 			if (paca[cpu + i].kvm_hstate.kvm_vcore)
1891 				break;
1892 		if (i == threads_per_subcore) {
1893 			HMT_medium();
1894 			return;
1895 		}
1896 		HMT_low();
1897 	}
1898 	HMT_medium();
1899 	for (i = 1; i < threads_per_subcore; ++i)
1900 		if (paca[cpu + i].kvm_hstate.kvm_vcore)
1901 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1902 }
1903 
1904 /*
1905  * Check that we are on thread 0 and that any other threads in
1906  * this core are off-line.  Then grab the threads so they can't
1907  * enter the kernel.
1908  */
1909 static int on_primary_thread(void)
1910 {
1911 	int cpu = smp_processor_id();
1912 	int thr;
1913 
1914 	/* Are we on a primary subcore? */
1915 	if (cpu_thread_in_subcore(cpu))
1916 		return 0;
1917 
1918 	thr = 0;
1919 	while (++thr < threads_per_subcore)
1920 		if (cpu_online(cpu + thr))
1921 			return 0;
1922 
1923 	/* Grab all hw threads so they can't go into the kernel */
1924 	for (thr = 1; thr < threads_per_subcore; ++thr) {
1925 		if (kvmppc_grab_hwthread(cpu + thr)) {
1926 			/* Couldn't grab one; let the others go */
1927 			do {
1928 				kvmppc_release_hwthread(cpu + thr);
1929 			} while (--thr > 0);
1930 			return 0;
1931 		}
1932 	}
1933 	return 1;
1934 }
1935 
1936 /*
1937  * A list of virtual cores for each physical CPU.
1938  * These are vcores that could run but their runner VCPU tasks are
1939  * (or may be) preempted.
1940  */
1941 struct preempted_vcore_list {
1942 	struct list_head	list;
1943 	spinlock_t		lock;
1944 };
1945 
1946 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
1947 
1948 static void init_vcore_lists(void)
1949 {
1950 	int cpu;
1951 
1952 	for_each_possible_cpu(cpu) {
1953 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
1954 		spin_lock_init(&lp->lock);
1955 		INIT_LIST_HEAD(&lp->list);
1956 	}
1957 }
1958 
1959 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
1960 {
1961 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
1962 
1963 	vc->vcore_state = VCORE_PREEMPT;
1964 	vc->pcpu = smp_processor_id();
1965 	if (vc->num_threads < threads_per_subcore) {
1966 		spin_lock(&lp->lock);
1967 		list_add_tail(&vc->preempt_list, &lp->list);
1968 		spin_unlock(&lp->lock);
1969 	}
1970 
1971 	/* Start accumulating stolen time */
1972 	kvmppc_core_start_stolen(vc);
1973 }
1974 
1975 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
1976 {
1977 	struct preempted_vcore_list *lp;
1978 
1979 	kvmppc_core_end_stolen(vc);
1980 	if (!list_empty(&vc->preempt_list)) {
1981 		lp = &per_cpu(preempted_vcores, vc->pcpu);
1982 		spin_lock(&lp->lock);
1983 		list_del_init(&vc->preempt_list);
1984 		spin_unlock(&lp->lock);
1985 	}
1986 	vc->vcore_state = VCORE_INACTIVE;
1987 }
1988 
1989 /*
1990  * This stores information about the virtual cores currently
1991  * assigned to a physical core.
1992  */
1993 struct core_info {
1994 	int		n_subcores;
1995 	int		max_subcore_threads;
1996 	int		total_threads;
1997 	int		subcore_threads[MAX_SUBCORES];
1998 	struct kvm	*subcore_vm[MAX_SUBCORES];
1999 	struct list_head vcs[MAX_SUBCORES];
2000 };
2001 
2002 /*
2003  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2004  * respectively in 2-way micro-threading (split-core) mode.
2005  */
2006 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2007 
2008 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2009 {
2010 	int sub;
2011 
2012 	memset(cip, 0, sizeof(*cip));
2013 	cip->n_subcores = 1;
2014 	cip->max_subcore_threads = vc->num_threads;
2015 	cip->total_threads = vc->num_threads;
2016 	cip->subcore_threads[0] = vc->num_threads;
2017 	cip->subcore_vm[0] = vc->kvm;
2018 	for (sub = 0; sub < MAX_SUBCORES; ++sub)
2019 		INIT_LIST_HEAD(&cip->vcs[sub]);
2020 	list_add_tail(&vc->preempt_list, &cip->vcs[0]);
2021 }
2022 
2023 static bool subcore_config_ok(int n_subcores, int n_threads)
2024 {
2025 	/* Can only dynamically split if unsplit to begin with */
2026 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2027 		return false;
2028 	if (n_subcores > MAX_SUBCORES)
2029 		return false;
2030 	if (n_subcores > 1) {
2031 		if (!(dynamic_mt_modes & 2))
2032 			n_subcores = 4;
2033 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2034 			return false;
2035 	}
2036 
2037 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2038 }
2039 
2040 static void init_master_vcore(struct kvmppc_vcore *vc)
2041 {
2042 	vc->master_vcore = vc;
2043 	vc->entry_exit_map = 0;
2044 	vc->in_guest = 0;
2045 	vc->napping_threads = 0;
2046 	vc->conferring_threads = 0;
2047 }
2048 
2049 /*
2050  * See if the existing subcores can be split into 3 (or fewer) subcores
2051  * of at most two threads each, so we can fit in another vcore.  This
2052  * assumes there are at most two subcores and at most 6 threads in total.
2053  */
2054 static bool can_split_piggybacked_subcores(struct core_info *cip)
2055 {
2056 	int sub, new_sub;
2057 	int large_sub = -1;
2058 	int thr;
2059 	int n_subcores = cip->n_subcores;
2060 	struct kvmppc_vcore *vc, *vcnext;
2061 	struct kvmppc_vcore *master_vc = NULL;
2062 
2063 	for (sub = 0; sub < cip->n_subcores; ++sub) {
2064 		if (cip->subcore_threads[sub] <= 2)
2065 			continue;
2066 		if (large_sub >= 0)
2067 			return false;
2068 		large_sub = sub;
2069 		vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2070 				      preempt_list);
2071 		if (vc->num_threads > 2)
2072 			return false;
2073 		n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
2074 	}
2075 	if (large_sub < 0 || !subcore_config_ok(n_subcores + 1, 2))
2076 		return false;
2077 
2078 	/*
2079 	 * Seems feasible, so go through and move vcores to new subcores.
2080 	 * Note that when we have two or more vcores in one subcore,
2081 	 * all those vcores must have only one thread each.
2082 	 */
2083 	new_sub = cip->n_subcores;
2084 	thr = 0;
2085 	sub = large_sub;
2086 	list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
2087 		if (thr >= 2) {
2088 			list_del(&vc->preempt_list);
2089 			list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
2090 			/* vc->num_threads must be 1 */
2091 			if (++cip->subcore_threads[new_sub] == 1) {
2092 				cip->subcore_vm[new_sub] = vc->kvm;
2093 				init_master_vcore(vc);
2094 				master_vc = vc;
2095 				++cip->n_subcores;
2096 			} else {
2097 				vc->master_vcore = master_vc;
2098 				++new_sub;
2099 			}
2100 		}
2101 		thr += vc->num_threads;
2102 	}
2103 	cip->subcore_threads[large_sub] = 2;
2104 	cip->max_subcore_threads = 2;
2105 
2106 	return true;
2107 }
2108 
2109 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2110 {
2111 	int n_threads = vc->num_threads;
2112 	int sub;
2113 
2114 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2115 		return false;
2116 
2117 	if (n_threads < cip->max_subcore_threads)
2118 		n_threads = cip->max_subcore_threads;
2119 	if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
2120 		cip->max_subcore_threads = n_threads;
2121 	} else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
2122 		   vc->num_threads <= 2) {
2123 		/*
2124 		 * We may be able to fit another subcore in by
2125 		 * splitting an existing subcore with 3 or 4
2126 		 * threads into two 2-thread subcores, or one
2127 		 * with 5 or 6 threads into three subcores.
2128 		 * We can only do this if those subcores have
2129 		 * piggybacked virtual cores.
2130 		 */
2131 		if (!can_split_piggybacked_subcores(cip))
2132 			return false;
2133 	} else {
2134 		return false;
2135 	}
2136 
2137 	sub = cip->n_subcores;
2138 	++cip->n_subcores;
2139 	cip->total_threads += vc->num_threads;
2140 	cip->subcore_threads[sub] = vc->num_threads;
2141 	cip->subcore_vm[sub] = vc->kvm;
2142 	init_master_vcore(vc);
2143 	list_del(&vc->preempt_list);
2144 	list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
2145 
2146 	return true;
2147 }
2148 
2149 static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
2150 				  struct core_info *cip, int sub)
2151 {
2152 	struct kvmppc_vcore *vc;
2153 	int n_thr;
2154 
2155 	vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2156 			      preempt_list);
2157 
2158 	/* require same VM and same per-core reg values */
2159 	if (pvc->kvm != vc->kvm ||
2160 	    pvc->tb_offset != vc->tb_offset ||
2161 	    pvc->pcr != vc->pcr ||
2162 	    pvc->lpcr != vc->lpcr)
2163 		return false;
2164 
2165 	/* P8 guest with > 1 thread per core would see wrong TIR value */
2166 	if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2167 	    (vc->num_threads > 1 || pvc->num_threads > 1))
2168 		return false;
2169 
2170 	n_thr = cip->subcore_threads[sub] + pvc->num_threads;
2171 	if (n_thr > cip->max_subcore_threads) {
2172 		if (!subcore_config_ok(cip->n_subcores, n_thr))
2173 			return false;
2174 		cip->max_subcore_threads = n_thr;
2175 	}
2176 
2177 	cip->total_threads += pvc->num_threads;
2178 	cip->subcore_threads[sub] = n_thr;
2179 	pvc->master_vcore = vc;
2180 	list_del(&pvc->preempt_list);
2181 	list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
2182 
2183 	return true;
2184 }
2185 
2186 /*
2187  * Work out whether it is possible to piggyback the execution of
2188  * vcore *pvc onto the execution of the other vcores described in *cip.
2189  */
2190 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2191 			  int target_threads)
2192 {
2193 	int sub;
2194 
2195 	if (cip->total_threads + pvc->num_threads > target_threads)
2196 		return false;
2197 	for (sub = 0; sub < cip->n_subcores; ++sub)
2198 		if (cip->subcore_threads[sub] &&
2199 		    can_piggyback_subcore(pvc, cip, sub))
2200 			return true;
2201 
2202 	if (can_dynamic_split(pvc, cip))
2203 		return true;
2204 
2205 	return false;
2206 }
2207 
2208 static void prepare_threads(struct kvmppc_vcore *vc)
2209 {
2210 	struct kvm_vcpu *vcpu, *vnext;
2211 
2212 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2213 				 arch.run_list) {
2214 		if (signal_pending(vcpu->arch.run_task))
2215 			vcpu->arch.ret = -EINTR;
2216 		else if (vcpu->arch.vpa.update_pending ||
2217 			 vcpu->arch.slb_shadow.update_pending ||
2218 			 vcpu->arch.dtl.update_pending)
2219 			vcpu->arch.ret = RESUME_GUEST;
2220 		else
2221 			continue;
2222 		kvmppc_remove_runnable(vc, vcpu);
2223 		wake_up(&vcpu->arch.cpu_run);
2224 	}
2225 }
2226 
2227 static void collect_piggybacks(struct core_info *cip, int target_threads)
2228 {
2229 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2230 	struct kvmppc_vcore *pvc, *vcnext;
2231 
2232 	spin_lock(&lp->lock);
2233 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2234 		if (!spin_trylock(&pvc->lock))
2235 			continue;
2236 		prepare_threads(pvc);
2237 		if (!pvc->n_runnable) {
2238 			list_del_init(&pvc->preempt_list);
2239 			if (pvc->runner == NULL) {
2240 				pvc->vcore_state = VCORE_INACTIVE;
2241 				kvmppc_core_end_stolen(pvc);
2242 			}
2243 			spin_unlock(&pvc->lock);
2244 			continue;
2245 		}
2246 		if (!can_piggyback(pvc, cip, target_threads)) {
2247 			spin_unlock(&pvc->lock);
2248 			continue;
2249 		}
2250 		kvmppc_core_end_stolen(pvc);
2251 		pvc->vcore_state = VCORE_PIGGYBACK;
2252 		if (cip->total_threads >= target_threads)
2253 			break;
2254 	}
2255 	spin_unlock(&lp->lock);
2256 }
2257 
2258 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2259 {
2260 	int still_running = 0;
2261 	u64 now;
2262 	long ret;
2263 	struct kvm_vcpu *vcpu, *vnext;
2264 
2265 	spin_lock(&vc->lock);
2266 	now = get_tb();
2267 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2268 				 arch.run_list) {
2269 		/* cancel pending dec exception if dec is positive */
2270 		if (now < vcpu->arch.dec_expires &&
2271 		    kvmppc_core_pending_dec(vcpu))
2272 			kvmppc_core_dequeue_dec(vcpu);
2273 
2274 		trace_kvm_guest_exit(vcpu);
2275 
2276 		ret = RESUME_GUEST;
2277 		if (vcpu->arch.trap)
2278 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2279 						    vcpu->arch.run_task);
2280 
2281 		vcpu->arch.ret = ret;
2282 		vcpu->arch.trap = 0;
2283 
2284 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2285 			if (vcpu->arch.pending_exceptions)
2286 				kvmppc_core_prepare_to_enter(vcpu);
2287 			if (vcpu->arch.ceded)
2288 				kvmppc_set_timer(vcpu);
2289 			else
2290 				++still_running;
2291 		} else {
2292 			kvmppc_remove_runnable(vc, vcpu);
2293 			wake_up(&vcpu->arch.cpu_run);
2294 		}
2295 	}
2296 	list_del_init(&vc->preempt_list);
2297 	if (!is_master) {
2298 		if (still_running > 0) {
2299 			kvmppc_vcore_preempt(vc);
2300 		} else if (vc->runner) {
2301 			vc->vcore_state = VCORE_PREEMPT;
2302 			kvmppc_core_start_stolen(vc);
2303 		} else {
2304 			vc->vcore_state = VCORE_INACTIVE;
2305 		}
2306 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2307 			/* make sure there's a candidate runner awake */
2308 			vcpu = list_first_entry(&vc->runnable_threads,
2309 						struct kvm_vcpu, arch.run_list);
2310 			wake_up(&vcpu->arch.cpu_run);
2311 		}
2312 	}
2313 	spin_unlock(&vc->lock);
2314 }
2315 
2316 /*
2317  * Clear core from the list of active host cores as we are about to
2318  * enter the guest. Only do this if it is the primary thread of the
2319  * core (not if a subcore) that is entering the guest.
2320  */
2321 static inline void kvmppc_clear_host_core(int cpu)
2322 {
2323 	int core;
2324 
2325 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2326 		return;
2327 	/*
2328 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2329 	 * later in kvmppc_start_thread and we need ensure that state is
2330 	 * visible to other CPUs only after we enter guest.
2331 	 */
2332 	core = cpu >> threads_shift;
2333 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2334 }
2335 
2336 /*
2337  * Advertise this core as an active host core since we exited the guest
2338  * Only need to do this if it is the primary thread of the core that is
2339  * exiting.
2340  */
2341 static inline void kvmppc_set_host_core(int cpu)
2342 {
2343 	int core;
2344 
2345 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2346 		return;
2347 
2348 	/*
2349 	 * Memory barrier can be omitted here because we do a spin_unlock
2350 	 * immediately after this which provides the memory barrier.
2351 	 */
2352 	core = cpu >> threads_shift;
2353 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2354 }
2355 
2356 /*
2357  * Run a set of guest threads on a physical core.
2358  * Called with vc->lock held.
2359  */
2360 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2361 {
2362 	struct kvm_vcpu *vcpu, *vnext;
2363 	int i;
2364 	int srcu_idx;
2365 	struct core_info core_info;
2366 	struct kvmppc_vcore *pvc, *vcnext;
2367 	struct kvm_split_mode split_info, *sip;
2368 	int split, subcore_size, active;
2369 	int sub;
2370 	bool thr0_done;
2371 	unsigned long cmd_bit, stat_bit;
2372 	int pcpu, thr;
2373 	int target_threads;
2374 
2375 	/*
2376 	 * Remove from the list any threads that have a signal pending
2377 	 * or need a VPA update done
2378 	 */
2379 	prepare_threads(vc);
2380 
2381 	/* if the runner is no longer runnable, let the caller pick a new one */
2382 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2383 		return;
2384 
2385 	/*
2386 	 * Initialize *vc.
2387 	 */
2388 	init_master_vcore(vc);
2389 	vc->preempt_tb = TB_NIL;
2390 
2391 	/*
2392 	 * Make sure we are running on primary threads, and that secondary
2393 	 * threads are offline.  Also check if the number of threads in this
2394 	 * guest are greater than the current system threads per guest.
2395 	 */
2396 	if ((threads_per_core > 1) &&
2397 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2398 		list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2399 					 arch.run_list) {
2400 			vcpu->arch.ret = -EBUSY;
2401 			kvmppc_remove_runnable(vc, vcpu);
2402 			wake_up(&vcpu->arch.cpu_run);
2403 		}
2404 		goto out;
2405 	}
2406 
2407 	/*
2408 	 * See if we could run any other vcores on the physical core
2409 	 * along with this one.
2410 	 */
2411 	init_core_info(&core_info, vc);
2412 	pcpu = smp_processor_id();
2413 	target_threads = threads_per_subcore;
2414 	if (target_smt_mode && target_smt_mode < target_threads)
2415 		target_threads = target_smt_mode;
2416 	if (vc->num_threads < target_threads)
2417 		collect_piggybacks(&core_info, target_threads);
2418 
2419 	/* Decide on micro-threading (split-core) mode */
2420 	subcore_size = threads_per_subcore;
2421 	cmd_bit = stat_bit = 0;
2422 	split = core_info.n_subcores;
2423 	sip = NULL;
2424 	if (split > 1) {
2425 		/* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2426 		if (split == 2 && (dynamic_mt_modes & 2)) {
2427 			cmd_bit = HID0_POWER8_1TO2LPAR;
2428 			stat_bit = HID0_POWER8_2LPARMODE;
2429 		} else {
2430 			split = 4;
2431 			cmd_bit = HID0_POWER8_1TO4LPAR;
2432 			stat_bit = HID0_POWER8_4LPARMODE;
2433 		}
2434 		subcore_size = MAX_SMT_THREADS / split;
2435 		sip = &split_info;
2436 		memset(&split_info, 0, sizeof(split_info));
2437 		split_info.rpr = mfspr(SPRN_RPR);
2438 		split_info.pmmar = mfspr(SPRN_PMMAR);
2439 		split_info.ldbar = mfspr(SPRN_LDBAR);
2440 		split_info.subcore_size = subcore_size;
2441 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2442 			split_info.master_vcs[sub] =
2443 				list_first_entry(&core_info.vcs[sub],
2444 					struct kvmppc_vcore, preempt_list);
2445 		/* order writes to split_info before kvm_split_mode pointer */
2446 		smp_wmb();
2447 	}
2448 	pcpu = smp_processor_id();
2449 	for (thr = 0; thr < threads_per_subcore; ++thr)
2450 		paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2451 
2452 	/* Initiate micro-threading (split-core) if required */
2453 	if (cmd_bit) {
2454 		unsigned long hid0 = mfspr(SPRN_HID0);
2455 
2456 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2457 		mb();
2458 		mtspr(SPRN_HID0, hid0);
2459 		isync();
2460 		for (;;) {
2461 			hid0 = mfspr(SPRN_HID0);
2462 			if (hid0 & stat_bit)
2463 				break;
2464 			cpu_relax();
2465 		}
2466 	}
2467 
2468 	kvmppc_clear_host_core(pcpu);
2469 
2470 	/* Start all the threads */
2471 	active = 0;
2472 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2473 		thr = subcore_thread_map[sub];
2474 		thr0_done = false;
2475 		active |= 1 << thr;
2476 		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2477 			pvc->pcpu = pcpu + thr;
2478 			list_for_each_entry(vcpu, &pvc->runnable_threads,
2479 					    arch.run_list) {
2480 				kvmppc_start_thread(vcpu, pvc);
2481 				kvmppc_create_dtl_entry(vcpu, pvc);
2482 				trace_kvm_guest_enter(vcpu);
2483 				if (!vcpu->arch.ptid)
2484 					thr0_done = true;
2485 				active |= 1 << (thr + vcpu->arch.ptid);
2486 			}
2487 			/*
2488 			 * We need to start the first thread of each subcore
2489 			 * even if it doesn't have a vcpu.
2490 			 */
2491 			if (pvc->master_vcore == pvc && !thr0_done)
2492 				kvmppc_start_thread(NULL, pvc);
2493 			thr += pvc->num_threads;
2494 		}
2495 	}
2496 
2497 	/*
2498 	 * Ensure that split_info.do_nap is set after setting
2499 	 * the vcore pointer in the PACA of the secondaries.
2500 	 */
2501 	smp_mb();
2502 	if (cmd_bit)
2503 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2504 
2505 	/*
2506 	 * When doing micro-threading, poke the inactive threads as well.
2507 	 * This gets them to the nap instruction after kvm_do_nap,
2508 	 * which reduces the time taken to unsplit later.
2509 	 */
2510 	if (split > 1)
2511 		for (thr = 1; thr < threads_per_subcore; ++thr)
2512 			if (!(active & (1 << thr)))
2513 				kvmppc_ipi_thread(pcpu + thr);
2514 
2515 	vc->vcore_state = VCORE_RUNNING;
2516 	preempt_disable();
2517 
2518 	trace_kvmppc_run_core(vc, 0);
2519 
2520 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2521 		list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2522 			spin_unlock(&pvc->lock);
2523 
2524 	kvm_guest_enter();
2525 
2526 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2527 
2528 	__kvmppc_vcore_entry();
2529 
2530 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2531 
2532 	spin_lock(&vc->lock);
2533 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
2534 	vc->vcore_state = VCORE_EXITING;
2535 
2536 	/* wait for secondary threads to finish writing their state to memory */
2537 	kvmppc_wait_for_nap();
2538 
2539 	/* Return to whole-core mode if we split the core earlier */
2540 	if (split > 1) {
2541 		unsigned long hid0 = mfspr(SPRN_HID0);
2542 		unsigned long loops = 0;
2543 
2544 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
2545 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2546 		mb();
2547 		mtspr(SPRN_HID0, hid0);
2548 		isync();
2549 		for (;;) {
2550 			hid0 = mfspr(SPRN_HID0);
2551 			if (!(hid0 & stat_bit))
2552 				break;
2553 			cpu_relax();
2554 			++loops;
2555 		}
2556 		split_info.do_nap = 0;
2557 	}
2558 
2559 	/* Let secondaries go back to the offline loop */
2560 	for (i = 0; i < threads_per_subcore; ++i) {
2561 		kvmppc_release_hwthread(pcpu + i);
2562 		if (sip && sip->napped[i])
2563 			kvmppc_ipi_thread(pcpu + i);
2564 	}
2565 
2566 	kvmppc_set_host_core(pcpu);
2567 
2568 	spin_unlock(&vc->lock);
2569 
2570 	/* make sure updates to secondary vcpu structs are visible now */
2571 	smp_mb();
2572 	kvm_guest_exit();
2573 
2574 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2575 		list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2576 					 preempt_list)
2577 			post_guest_process(pvc, pvc == vc);
2578 
2579 	spin_lock(&vc->lock);
2580 	preempt_enable();
2581 
2582  out:
2583 	vc->vcore_state = VCORE_INACTIVE;
2584 	trace_kvmppc_run_core(vc, 1);
2585 }
2586 
2587 /*
2588  * Wait for some other vcpu thread to execute us, and
2589  * wake us up when we need to handle something in the host.
2590  */
2591 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2592 				 struct kvm_vcpu *vcpu, int wait_state)
2593 {
2594 	DEFINE_WAIT(wait);
2595 
2596 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2597 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2598 		spin_unlock(&vc->lock);
2599 		schedule();
2600 		spin_lock(&vc->lock);
2601 	}
2602 	finish_wait(&vcpu->arch.cpu_run, &wait);
2603 }
2604 
2605 /*
2606  * All the vcpus in this vcore are idle, so wait for a decrementer
2607  * or external interrupt to one of the vcpus.  vc->lock is held.
2608  */
2609 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2610 {
2611 	struct kvm_vcpu *vcpu;
2612 	int do_sleep = 1;
2613 	DECLARE_SWAITQUEUE(wait);
2614 
2615 	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2616 
2617 	/*
2618 	 * Check one last time for pending exceptions and ceded state after
2619 	 * we put ourselves on the wait queue
2620 	 */
2621 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
2622 		if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
2623 			do_sleep = 0;
2624 			break;
2625 		}
2626 	}
2627 
2628 	if (!do_sleep) {
2629 		finish_swait(&vc->wq, &wait);
2630 		return;
2631 	}
2632 
2633 	vc->vcore_state = VCORE_SLEEPING;
2634 	trace_kvmppc_vcore_blocked(vc, 0);
2635 	spin_unlock(&vc->lock);
2636 	schedule();
2637 	finish_swait(&vc->wq, &wait);
2638 	spin_lock(&vc->lock);
2639 	vc->vcore_state = VCORE_INACTIVE;
2640 	trace_kvmppc_vcore_blocked(vc, 1);
2641 }
2642 
2643 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2644 {
2645 	int n_ceded;
2646 	struct kvmppc_vcore *vc;
2647 	struct kvm_vcpu *v, *vn;
2648 
2649 	trace_kvmppc_run_vcpu_enter(vcpu);
2650 
2651 	kvm_run->exit_reason = 0;
2652 	vcpu->arch.ret = RESUME_GUEST;
2653 	vcpu->arch.trap = 0;
2654 	kvmppc_update_vpas(vcpu);
2655 
2656 	/*
2657 	 * Synchronize with other threads in this virtual core
2658 	 */
2659 	vc = vcpu->arch.vcore;
2660 	spin_lock(&vc->lock);
2661 	vcpu->arch.ceded = 0;
2662 	vcpu->arch.run_task = current;
2663 	vcpu->arch.kvm_run = kvm_run;
2664 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2665 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2666 	vcpu->arch.busy_preempt = TB_NIL;
2667 	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
2668 	++vc->n_runnable;
2669 
2670 	/*
2671 	 * This happens the first time this is called for a vcpu.
2672 	 * If the vcore is already running, we may be able to start
2673 	 * this thread straight away and have it join in.
2674 	 */
2675 	if (!signal_pending(current)) {
2676 		if (vc->vcore_state == VCORE_PIGGYBACK) {
2677 			struct kvmppc_vcore *mvc = vc->master_vcore;
2678 			if (spin_trylock(&mvc->lock)) {
2679 				if (mvc->vcore_state == VCORE_RUNNING &&
2680 				    !VCORE_IS_EXITING(mvc)) {
2681 					kvmppc_create_dtl_entry(vcpu, vc);
2682 					kvmppc_start_thread(vcpu, vc);
2683 					trace_kvm_guest_enter(vcpu);
2684 				}
2685 				spin_unlock(&mvc->lock);
2686 			}
2687 		} else if (vc->vcore_state == VCORE_RUNNING &&
2688 			   !VCORE_IS_EXITING(vc)) {
2689 			kvmppc_create_dtl_entry(vcpu, vc);
2690 			kvmppc_start_thread(vcpu, vc);
2691 			trace_kvm_guest_enter(vcpu);
2692 		} else if (vc->vcore_state == VCORE_SLEEPING) {
2693 			swake_up(&vc->wq);
2694 		}
2695 
2696 	}
2697 
2698 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2699 	       !signal_pending(current)) {
2700 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2701 			kvmppc_vcore_end_preempt(vc);
2702 
2703 		if (vc->vcore_state != VCORE_INACTIVE) {
2704 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2705 			continue;
2706 		}
2707 		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
2708 					 arch.run_list) {
2709 			kvmppc_core_prepare_to_enter(v);
2710 			if (signal_pending(v->arch.run_task)) {
2711 				kvmppc_remove_runnable(vc, v);
2712 				v->stat.signal_exits++;
2713 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2714 				v->arch.ret = -EINTR;
2715 				wake_up(&v->arch.cpu_run);
2716 			}
2717 		}
2718 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2719 			break;
2720 		n_ceded = 0;
2721 		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2722 			if (!v->arch.pending_exceptions)
2723 				n_ceded += v->arch.ceded;
2724 			else
2725 				v->arch.ceded = 0;
2726 		}
2727 		vc->runner = vcpu;
2728 		if (n_ceded == vc->n_runnable) {
2729 			kvmppc_vcore_blocked(vc);
2730 		} else if (need_resched()) {
2731 			kvmppc_vcore_preempt(vc);
2732 			/* Let something else run */
2733 			cond_resched_lock(&vc->lock);
2734 			if (vc->vcore_state == VCORE_PREEMPT)
2735 				kvmppc_vcore_end_preempt(vc);
2736 		} else {
2737 			kvmppc_run_core(vc);
2738 		}
2739 		vc->runner = NULL;
2740 	}
2741 
2742 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2743 	       (vc->vcore_state == VCORE_RUNNING ||
2744 		vc->vcore_state == VCORE_EXITING ||
2745 		vc->vcore_state == VCORE_PIGGYBACK))
2746 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2747 
2748 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2749 		kvmppc_vcore_end_preempt(vc);
2750 
2751 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2752 		kvmppc_remove_runnable(vc, vcpu);
2753 		vcpu->stat.signal_exits++;
2754 		kvm_run->exit_reason = KVM_EXIT_INTR;
2755 		vcpu->arch.ret = -EINTR;
2756 	}
2757 
2758 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2759 		/* Wake up some vcpu to run the core */
2760 		v = list_first_entry(&vc->runnable_threads,
2761 				     struct kvm_vcpu, arch.run_list);
2762 		wake_up(&v->arch.cpu_run);
2763 	}
2764 
2765 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2766 	spin_unlock(&vc->lock);
2767 	return vcpu->arch.ret;
2768 }
2769 
2770 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2771 {
2772 	int r;
2773 	int srcu_idx;
2774 
2775 	if (!vcpu->arch.sane) {
2776 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2777 		return -EINVAL;
2778 	}
2779 
2780 	kvmppc_core_prepare_to_enter(vcpu);
2781 
2782 	/* No need to go into the guest when all we'll do is come back out */
2783 	if (signal_pending(current)) {
2784 		run->exit_reason = KVM_EXIT_INTR;
2785 		return -EINTR;
2786 	}
2787 
2788 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
2789 	/* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2790 	smp_mb();
2791 
2792 	/* On the first time here, set up HTAB and VRMA */
2793 	if (!vcpu->kvm->arch.hpte_setup_done) {
2794 		r = kvmppc_hv_setup_htab_rma(vcpu);
2795 		if (r)
2796 			goto out;
2797 	}
2798 
2799 	flush_all_to_thread(current);
2800 
2801 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2802 	vcpu->arch.pgdir = current->mm->pgd;
2803 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2804 
2805 	do {
2806 		r = kvmppc_run_vcpu(run, vcpu);
2807 
2808 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2809 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2810 			trace_kvm_hcall_enter(vcpu);
2811 			r = kvmppc_pseries_do_hcall(vcpu);
2812 			trace_kvm_hcall_exit(vcpu, r);
2813 			kvmppc_core_prepare_to_enter(vcpu);
2814 		} else if (r == RESUME_PAGE_FAULT) {
2815 			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2816 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
2817 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2818 			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2819 		}
2820 	} while (is_kvmppc_resume_guest(r));
2821 
2822  out:
2823 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2824 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
2825 	return r;
2826 }
2827 
2828 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2829 				     int linux_psize)
2830 {
2831 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2832 
2833 	if (!def->shift)
2834 		return;
2835 	(*sps)->page_shift = def->shift;
2836 	(*sps)->slb_enc = def->sllp;
2837 	(*sps)->enc[0].page_shift = def->shift;
2838 	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2839 	/*
2840 	 * Add 16MB MPSS support if host supports it
2841 	 */
2842 	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2843 		(*sps)->enc[1].page_shift = 24;
2844 		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2845 	}
2846 	(*sps)++;
2847 }
2848 
2849 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2850 					 struct kvm_ppc_smmu_info *info)
2851 {
2852 	struct kvm_ppc_one_seg_page_size *sps;
2853 
2854 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
2855 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2856 		info->flags |= KVM_PPC_1T_SEGMENTS;
2857 	info->slb_size = mmu_slb_size;
2858 
2859 	/* We only support these sizes for now, and no muti-size segments */
2860 	sps = &info->sps[0];
2861 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2862 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2863 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2864 
2865 	return 0;
2866 }
2867 
2868 /*
2869  * Get (and clear) the dirty memory log for a memory slot.
2870  */
2871 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2872 					 struct kvm_dirty_log *log)
2873 {
2874 	struct kvm_memslots *slots;
2875 	struct kvm_memory_slot *memslot;
2876 	int r;
2877 	unsigned long n;
2878 
2879 	mutex_lock(&kvm->slots_lock);
2880 
2881 	r = -EINVAL;
2882 	if (log->slot >= KVM_USER_MEM_SLOTS)
2883 		goto out;
2884 
2885 	slots = kvm_memslots(kvm);
2886 	memslot = id_to_memslot(slots, log->slot);
2887 	r = -ENOENT;
2888 	if (!memslot->dirty_bitmap)
2889 		goto out;
2890 
2891 	n = kvm_dirty_bitmap_bytes(memslot);
2892 	memset(memslot->dirty_bitmap, 0, n);
2893 
2894 	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2895 	if (r)
2896 		goto out;
2897 
2898 	r = -EFAULT;
2899 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2900 		goto out;
2901 
2902 	r = 0;
2903 out:
2904 	mutex_unlock(&kvm->slots_lock);
2905 	return r;
2906 }
2907 
2908 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2909 					struct kvm_memory_slot *dont)
2910 {
2911 	if (!dont || free->arch.rmap != dont->arch.rmap) {
2912 		vfree(free->arch.rmap);
2913 		free->arch.rmap = NULL;
2914 	}
2915 }
2916 
2917 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2918 					 unsigned long npages)
2919 {
2920 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2921 	if (!slot->arch.rmap)
2922 		return -ENOMEM;
2923 
2924 	return 0;
2925 }
2926 
2927 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2928 					struct kvm_memory_slot *memslot,
2929 					const struct kvm_userspace_memory_region *mem)
2930 {
2931 	return 0;
2932 }
2933 
2934 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2935 				const struct kvm_userspace_memory_region *mem,
2936 				const struct kvm_memory_slot *old,
2937 				const struct kvm_memory_slot *new)
2938 {
2939 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2940 	struct kvm_memslots *slots;
2941 	struct kvm_memory_slot *memslot;
2942 
2943 	if (npages && old->npages) {
2944 		/*
2945 		 * If modifying a memslot, reset all the rmap dirty bits.
2946 		 * If this is a new memslot, we don't need to do anything
2947 		 * since the rmap array starts out as all zeroes,
2948 		 * i.e. no pages are dirty.
2949 		 */
2950 		slots = kvm_memslots(kvm);
2951 		memslot = id_to_memslot(slots, mem->slot);
2952 		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2953 	}
2954 }
2955 
2956 /*
2957  * Update LPCR values in kvm->arch and in vcores.
2958  * Caller must hold kvm->lock.
2959  */
2960 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2961 {
2962 	long int i;
2963 	u32 cores_done = 0;
2964 
2965 	if ((kvm->arch.lpcr & mask) == lpcr)
2966 		return;
2967 
2968 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2969 
2970 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
2971 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2972 		if (!vc)
2973 			continue;
2974 		spin_lock(&vc->lock);
2975 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2976 		spin_unlock(&vc->lock);
2977 		if (++cores_done >= kvm->arch.online_vcores)
2978 			break;
2979 	}
2980 }
2981 
2982 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2983 {
2984 	return;
2985 }
2986 
2987 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2988 {
2989 	int err = 0;
2990 	struct kvm *kvm = vcpu->kvm;
2991 	unsigned long hva;
2992 	struct kvm_memory_slot *memslot;
2993 	struct vm_area_struct *vma;
2994 	unsigned long lpcr = 0, senc;
2995 	unsigned long psize, porder;
2996 	int srcu_idx;
2997 
2998 	mutex_lock(&kvm->lock);
2999 	if (kvm->arch.hpte_setup_done)
3000 		goto out;	/* another vcpu beat us to it */
3001 
3002 	/* Allocate hashed page table (if not done already) and reset it */
3003 	if (!kvm->arch.hpt_virt) {
3004 		err = kvmppc_alloc_hpt(kvm, NULL);
3005 		if (err) {
3006 			pr_err("KVM: Couldn't alloc HPT\n");
3007 			goto out;
3008 		}
3009 	}
3010 
3011 	/* Look up the memslot for guest physical address 0 */
3012 	srcu_idx = srcu_read_lock(&kvm->srcu);
3013 	memslot = gfn_to_memslot(kvm, 0);
3014 
3015 	/* We must have some memory at 0 by now */
3016 	err = -EINVAL;
3017 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3018 		goto out_srcu;
3019 
3020 	/* Look up the VMA for the start of this memory slot */
3021 	hva = memslot->userspace_addr;
3022 	down_read(&current->mm->mmap_sem);
3023 	vma = find_vma(current->mm, hva);
3024 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3025 		goto up_out;
3026 
3027 	psize = vma_kernel_pagesize(vma);
3028 	porder = __ilog2(psize);
3029 
3030 	up_read(&current->mm->mmap_sem);
3031 
3032 	/* We can handle 4k, 64k or 16M pages in the VRMA */
3033 	err = -EINVAL;
3034 	if (!(psize == 0x1000 || psize == 0x10000 ||
3035 	      psize == 0x1000000))
3036 		goto out_srcu;
3037 
3038 	/* Update VRMASD field in the LPCR */
3039 	senc = slb_pgsize_encoding(psize);
3040 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3041 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3042 	/* the -4 is to account for senc values starting at 0x10 */
3043 	lpcr = senc << (LPCR_VRMASD_SH - 4);
3044 
3045 	/* Create HPTEs in the hash page table for the VRMA */
3046 	kvmppc_map_vrma(vcpu, memslot, porder);
3047 
3048 	kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3049 
3050 	/* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
3051 	smp_wmb();
3052 	kvm->arch.hpte_setup_done = 1;
3053 	err = 0;
3054  out_srcu:
3055 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3056  out:
3057 	mutex_unlock(&kvm->lock);
3058 	return err;
3059 
3060  up_out:
3061 	up_read(&current->mm->mmap_sem);
3062 	goto out_srcu;
3063 }
3064 
3065 #ifdef CONFIG_KVM_XICS
3066 static int kvmppc_cpu_notify(struct notifier_block *self, unsigned long action,
3067 			void *hcpu)
3068 {
3069 	unsigned long cpu = (long)hcpu;
3070 
3071 	switch (action) {
3072 	case CPU_UP_PREPARE:
3073 	case CPU_UP_PREPARE_FROZEN:
3074 		kvmppc_set_host_core(cpu);
3075 		break;
3076 
3077 #ifdef CONFIG_HOTPLUG_CPU
3078 	case CPU_DEAD:
3079 	case CPU_DEAD_FROZEN:
3080 	case CPU_UP_CANCELED:
3081 	case CPU_UP_CANCELED_FROZEN:
3082 		kvmppc_clear_host_core(cpu);
3083 		break;
3084 #endif
3085 	default:
3086 		break;
3087 	}
3088 
3089 	return NOTIFY_OK;
3090 }
3091 
3092 static struct notifier_block kvmppc_cpu_notifier = {
3093 	    .notifier_call = kvmppc_cpu_notify,
3094 };
3095 
3096 /*
3097  * Allocate a per-core structure for managing state about which cores are
3098  * running in the host versus the guest and for exchanging data between
3099  * real mode KVM and CPU running in the host.
3100  * This is only done for the first VM.
3101  * The allocated structure stays even if all VMs have stopped.
3102  * It is only freed when the kvm-hv module is unloaded.
3103  * It's OK for this routine to fail, we just don't support host
3104  * core operations like redirecting H_IPI wakeups.
3105  */
3106 void kvmppc_alloc_host_rm_ops(void)
3107 {
3108 	struct kvmppc_host_rm_ops *ops;
3109 	unsigned long l_ops;
3110 	int cpu, core;
3111 	int size;
3112 
3113 	/* Not the first time here ? */
3114 	if (kvmppc_host_rm_ops_hv != NULL)
3115 		return;
3116 
3117 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3118 	if (!ops)
3119 		return;
3120 
3121 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3122 	ops->rm_core = kzalloc(size, GFP_KERNEL);
3123 
3124 	if (!ops->rm_core) {
3125 		kfree(ops);
3126 		return;
3127 	}
3128 
3129 	get_online_cpus();
3130 
3131 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3132 		if (!cpu_online(cpu))
3133 			continue;
3134 
3135 		core = cpu >> threads_shift;
3136 		ops->rm_core[core].rm_state.in_host = 1;
3137 	}
3138 
3139 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3140 
3141 	/*
3142 	 * Make the contents of the kvmppc_host_rm_ops structure visible
3143 	 * to other CPUs before we assign it to the global variable.
3144 	 * Do an atomic assignment (no locks used here), but if someone
3145 	 * beats us to it, just free our copy and return.
3146 	 */
3147 	smp_wmb();
3148 	l_ops = (unsigned long) ops;
3149 
3150 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3151 		put_online_cpus();
3152 		kfree(ops->rm_core);
3153 		kfree(ops);
3154 		return;
3155 	}
3156 
3157 	register_cpu_notifier(&kvmppc_cpu_notifier);
3158 
3159 	put_online_cpus();
3160 }
3161 
3162 void kvmppc_free_host_rm_ops(void)
3163 {
3164 	if (kvmppc_host_rm_ops_hv) {
3165 		unregister_cpu_notifier(&kvmppc_cpu_notifier);
3166 		kfree(kvmppc_host_rm_ops_hv->rm_core);
3167 		kfree(kvmppc_host_rm_ops_hv);
3168 		kvmppc_host_rm_ops_hv = NULL;
3169 	}
3170 }
3171 #endif
3172 
3173 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3174 {
3175 	unsigned long lpcr, lpid;
3176 	char buf[32];
3177 
3178 	/* Allocate the guest's logical partition ID */
3179 
3180 	lpid = kvmppc_alloc_lpid();
3181 	if ((long)lpid < 0)
3182 		return -ENOMEM;
3183 	kvm->arch.lpid = lpid;
3184 
3185 	kvmppc_alloc_host_rm_ops();
3186 
3187 	/*
3188 	 * Since we don't flush the TLB when tearing down a VM,
3189 	 * and this lpid might have previously been used,
3190 	 * make sure we flush on each core before running the new VM.
3191 	 */
3192 	cpumask_setall(&kvm->arch.need_tlb_flush);
3193 
3194 	/* Start out with the default set of hcalls enabled */
3195 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3196 	       sizeof(kvm->arch.enabled_hcalls));
3197 
3198 	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3199 
3200 	/* Init LPCR for virtual RMA mode */
3201 	kvm->arch.host_lpid = mfspr(SPRN_LPID);
3202 	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3203 	lpcr &= LPCR_PECE | LPCR_LPES;
3204 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3205 		LPCR_VPM0 | LPCR_VPM1;
3206 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3207 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3208 	/* On POWER8 turn on online bit to enable PURR/SPURR */
3209 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
3210 		lpcr |= LPCR_ONL;
3211 	kvm->arch.lpcr = lpcr;
3212 
3213 	/*
3214 	 * Track that we now have a HV mode VM active. This blocks secondary
3215 	 * CPU threads from coming online.
3216 	 */
3217 	kvm_hv_vm_activated();
3218 
3219 	/*
3220 	 * Create a debugfs directory for the VM
3221 	 */
3222 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
3223 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3224 	if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3225 		kvmppc_mmu_debugfs_init(kvm);
3226 
3227 	return 0;
3228 }
3229 
3230 static void kvmppc_free_vcores(struct kvm *kvm)
3231 {
3232 	long int i;
3233 
3234 	for (i = 0; i < KVM_MAX_VCORES; ++i)
3235 		kfree(kvm->arch.vcores[i]);
3236 	kvm->arch.online_vcores = 0;
3237 }
3238 
3239 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3240 {
3241 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
3242 
3243 	kvm_hv_vm_deactivated();
3244 
3245 	kvmppc_free_vcores(kvm);
3246 
3247 	kvmppc_free_hpt(kvm);
3248 }
3249 
3250 /* We don't need to emulate any privileged instructions or dcbz */
3251 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3252 				     unsigned int inst, int *advance)
3253 {
3254 	return EMULATE_FAIL;
3255 }
3256 
3257 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3258 					ulong spr_val)
3259 {
3260 	return EMULATE_FAIL;
3261 }
3262 
3263 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3264 					ulong *spr_val)
3265 {
3266 	return EMULATE_FAIL;
3267 }
3268 
3269 static int kvmppc_core_check_processor_compat_hv(void)
3270 {
3271 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3272 	    !cpu_has_feature(CPU_FTR_ARCH_206))
3273 		return -EIO;
3274 	return 0;
3275 }
3276 
3277 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3278 				 unsigned int ioctl, unsigned long arg)
3279 {
3280 	struct kvm *kvm __maybe_unused = filp->private_data;
3281 	void __user *argp = (void __user *)arg;
3282 	long r;
3283 
3284 	switch (ioctl) {
3285 
3286 	case KVM_PPC_ALLOCATE_HTAB: {
3287 		u32 htab_order;
3288 
3289 		r = -EFAULT;
3290 		if (get_user(htab_order, (u32 __user *)argp))
3291 			break;
3292 		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3293 		if (r)
3294 			break;
3295 		r = -EFAULT;
3296 		if (put_user(htab_order, (u32 __user *)argp))
3297 			break;
3298 		r = 0;
3299 		break;
3300 	}
3301 
3302 	case KVM_PPC_GET_HTAB_FD: {
3303 		struct kvm_get_htab_fd ghf;
3304 
3305 		r = -EFAULT;
3306 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
3307 			break;
3308 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3309 		break;
3310 	}
3311 
3312 	default:
3313 		r = -ENOTTY;
3314 	}
3315 
3316 	return r;
3317 }
3318 
3319 /*
3320  * List of hcall numbers to enable by default.
3321  * For compatibility with old userspace, we enable by default
3322  * all hcalls that were implemented before the hcall-enabling
3323  * facility was added.  Note this list should not include H_RTAS.
3324  */
3325 static unsigned int default_hcall_list[] = {
3326 	H_REMOVE,
3327 	H_ENTER,
3328 	H_READ,
3329 	H_PROTECT,
3330 	H_BULK_REMOVE,
3331 	H_GET_TCE,
3332 	H_PUT_TCE,
3333 	H_SET_DABR,
3334 	H_SET_XDABR,
3335 	H_CEDE,
3336 	H_PROD,
3337 	H_CONFER,
3338 	H_REGISTER_VPA,
3339 #ifdef CONFIG_KVM_XICS
3340 	H_EOI,
3341 	H_CPPR,
3342 	H_IPI,
3343 	H_IPOLL,
3344 	H_XIRR,
3345 	H_XIRR_X,
3346 #endif
3347 	0
3348 };
3349 
3350 static void init_default_hcalls(void)
3351 {
3352 	int i;
3353 	unsigned int hcall;
3354 
3355 	for (i = 0; default_hcall_list[i]; ++i) {
3356 		hcall = default_hcall_list[i];
3357 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3358 		__set_bit(hcall / 4, default_enabled_hcalls);
3359 	}
3360 }
3361 
3362 static struct kvmppc_ops kvm_ops_hv = {
3363 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3364 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3365 	.get_one_reg = kvmppc_get_one_reg_hv,
3366 	.set_one_reg = kvmppc_set_one_reg_hv,
3367 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
3368 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
3369 	.set_msr     = kvmppc_set_msr_hv,
3370 	.vcpu_run    = kvmppc_vcpu_run_hv,
3371 	.vcpu_create = kvmppc_core_vcpu_create_hv,
3372 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
3373 	.check_requests = kvmppc_core_check_requests_hv,
3374 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
3375 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
3376 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3377 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
3378 	.unmap_hva = kvm_unmap_hva_hv,
3379 	.unmap_hva_range = kvm_unmap_hva_range_hv,
3380 	.age_hva  = kvm_age_hva_hv,
3381 	.test_age_hva = kvm_test_age_hva_hv,
3382 	.set_spte_hva = kvm_set_spte_hva_hv,
3383 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
3384 	.free_memslot = kvmppc_core_free_memslot_hv,
3385 	.create_memslot = kvmppc_core_create_memslot_hv,
3386 	.init_vm =  kvmppc_core_init_vm_hv,
3387 	.destroy_vm = kvmppc_core_destroy_vm_hv,
3388 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3389 	.emulate_op = kvmppc_core_emulate_op_hv,
3390 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3391 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3392 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3393 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
3394 	.hcall_implemented = kvmppc_hcall_impl_hv,
3395 };
3396 
3397 static int kvmppc_book3s_init_hv(void)
3398 {
3399 	int r;
3400 	/*
3401 	 * FIXME!! Do we need to check on all cpus ?
3402 	 */
3403 	r = kvmppc_core_check_processor_compat_hv();
3404 	if (r < 0)
3405 		return -ENODEV;
3406 
3407 	kvm_ops_hv.owner = THIS_MODULE;
3408 	kvmppc_hv_ops = &kvm_ops_hv;
3409 
3410 	init_default_hcalls();
3411 
3412 	init_vcore_lists();
3413 
3414 	r = kvmppc_mmu_hv_init();
3415 	return r;
3416 }
3417 
3418 static void kvmppc_book3s_exit_hv(void)
3419 {
3420 	kvmppc_free_host_rm_ops();
3421 	kvmppc_hv_ops = NULL;
3422 }
3423 
3424 module_init(kvmppc_book3s_init_hv);
3425 module_exit(kvmppc_book3s_exit_hv);
3426 MODULE_LICENSE("GPL");
3427 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3428 MODULE_ALIAS("devname:kvm");
3429