1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 37 #include <asm/reg.h> 38 #include <asm/cputable.h> 39 #include <asm/cacheflush.h> 40 #include <asm/tlbflush.h> 41 #include <asm/uaccess.h> 42 #include <asm/io.h> 43 #include <asm/kvm_ppc.h> 44 #include <asm/kvm_book3s.h> 45 #include <asm/mmu_context.h> 46 #include <asm/lppaca.h> 47 #include <asm/processor.h> 48 #include <asm/cputhreads.h> 49 #include <asm/page.h> 50 #include <asm/hvcall.h> 51 #include <asm/switch_to.h> 52 #include <asm/smp.h> 53 #include <asm/dbell.h> 54 #include <linux/gfp.h> 55 #include <linux/vmalloc.h> 56 #include <linux/highmem.h> 57 #include <linux/hugetlb.h> 58 #include <linux/module.h> 59 60 #include "book3s.h" 61 62 #define CREATE_TRACE_POINTS 63 #include "trace_hv.h" 64 65 /* #define EXIT_DEBUG */ 66 /* #define EXIT_DEBUG_SIMPLE */ 67 /* #define EXIT_DEBUG_INT */ 68 69 /* Used to indicate that a guest page fault needs to be handled */ 70 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 71 72 /* Used as a "null" value for timebase values */ 73 #define TB_NIL (~(u64)0) 74 75 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 76 77 static int dynamic_mt_modes = 6; 78 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR); 79 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 80 static int target_smt_mode; 81 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR); 82 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 83 84 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 85 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 86 87 static bool kvmppc_ipi_thread(int cpu) 88 { 89 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 90 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 91 preempt_disable(); 92 if (cpu_first_thread_sibling(cpu) == 93 cpu_first_thread_sibling(smp_processor_id())) { 94 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 95 msg |= cpu_thread_in_core(cpu); 96 smp_mb(); 97 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 98 preempt_enable(); 99 return true; 100 } 101 preempt_enable(); 102 } 103 104 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 105 if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) { 106 xics_wake_cpu(cpu); 107 return true; 108 } 109 #endif 110 111 return false; 112 } 113 114 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 115 { 116 int cpu; 117 wait_queue_head_t *wqp; 118 119 wqp = kvm_arch_vcpu_wq(vcpu); 120 if (waitqueue_active(wqp)) { 121 wake_up_interruptible(wqp); 122 ++vcpu->stat.halt_wakeup; 123 } 124 125 if (kvmppc_ipi_thread(vcpu->arch.thread_cpu)) 126 return; 127 128 /* CPU points to the first thread of the core */ 129 cpu = vcpu->cpu; 130 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 131 smp_send_reschedule(cpu); 132 } 133 134 /* 135 * We use the vcpu_load/put functions to measure stolen time. 136 * Stolen time is counted as time when either the vcpu is able to 137 * run as part of a virtual core, but the task running the vcore 138 * is preempted or sleeping, or when the vcpu needs something done 139 * in the kernel by the task running the vcpu, but that task is 140 * preempted or sleeping. Those two things have to be counted 141 * separately, since one of the vcpu tasks will take on the job 142 * of running the core, and the other vcpu tasks in the vcore will 143 * sleep waiting for it to do that, but that sleep shouldn't count 144 * as stolen time. 145 * 146 * Hence we accumulate stolen time when the vcpu can run as part of 147 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 148 * needs its task to do other things in the kernel (for example, 149 * service a page fault) in busy_stolen. We don't accumulate 150 * stolen time for a vcore when it is inactive, or for a vcpu 151 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 152 * a misnomer; it means that the vcpu task is not executing in 153 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 154 * the kernel. We don't have any way of dividing up that time 155 * between time that the vcpu is genuinely stopped, time that 156 * the task is actively working on behalf of the vcpu, and time 157 * that the task is preempted, so we don't count any of it as 158 * stolen. 159 * 160 * Updates to busy_stolen are protected by arch.tbacct_lock; 161 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 162 * lock. The stolen times are measured in units of timebase ticks. 163 * (Note that the != TB_NIL checks below are purely defensive; 164 * they should never fail.) 165 */ 166 167 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 168 { 169 unsigned long flags; 170 171 spin_lock_irqsave(&vc->stoltb_lock, flags); 172 vc->preempt_tb = mftb(); 173 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 174 } 175 176 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 177 { 178 unsigned long flags; 179 180 spin_lock_irqsave(&vc->stoltb_lock, flags); 181 if (vc->preempt_tb != TB_NIL) { 182 vc->stolen_tb += mftb() - vc->preempt_tb; 183 vc->preempt_tb = TB_NIL; 184 } 185 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 186 } 187 188 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 189 { 190 struct kvmppc_vcore *vc = vcpu->arch.vcore; 191 unsigned long flags; 192 193 /* 194 * We can test vc->runner without taking the vcore lock, 195 * because only this task ever sets vc->runner to this 196 * vcpu, and once it is set to this vcpu, only this task 197 * ever sets it to NULL. 198 */ 199 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 200 kvmppc_core_end_stolen(vc); 201 202 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 203 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 204 vcpu->arch.busy_preempt != TB_NIL) { 205 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 206 vcpu->arch.busy_preempt = TB_NIL; 207 } 208 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 209 } 210 211 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 212 { 213 struct kvmppc_vcore *vc = vcpu->arch.vcore; 214 unsigned long flags; 215 216 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 217 kvmppc_core_start_stolen(vc); 218 219 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 220 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 221 vcpu->arch.busy_preempt = mftb(); 222 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 223 } 224 225 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 226 { 227 vcpu->arch.shregs.msr = msr; 228 kvmppc_end_cede(vcpu); 229 } 230 231 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 232 { 233 vcpu->arch.pvr = pvr; 234 } 235 236 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 237 { 238 unsigned long pcr = 0; 239 struct kvmppc_vcore *vc = vcpu->arch.vcore; 240 241 if (arch_compat) { 242 switch (arch_compat) { 243 case PVR_ARCH_205: 244 /* 245 * If an arch bit is set in PCR, all the defined 246 * higher-order arch bits also have to be set. 247 */ 248 pcr = PCR_ARCH_206 | PCR_ARCH_205; 249 break; 250 case PVR_ARCH_206: 251 case PVR_ARCH_206p: 252 pcr = PCR_ARCH_206; 253 break; 254 case PVR_ARCH_207: 255 break; 256 default: 257 return -EINVAL; 258 } 259 260 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) { 261 /* POWER7 can't emulate POWER8 */ 262 if (!(pcr & PCR_ARCH_206)) 263 return -EINVAL; 264 pcr &= ~PCR_ARCH_206; 265 } 266 } 267 268 spin_lock(&vc->lock); 269 vc->arch_compat = arch_compat; 270 vc->pcr = pcr; 271 spin_unlock(&vc->lock); 272 273 return 0; 274 } 275 276 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 277 { 278 int r; 279 280 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 281 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 282 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 283 for (r = 0; r < 16; ++r) 284 pr_err("r%2d = %.16lx r%d = %.16lx\n", 285 r, kvmppc_get_gpr(vcpu, r), 286 r+16, kvmppc_get_gpr(vcpu, r+16)); 287 pr_err("ctr = %.16lx lr = %.16lx\n", 288 vcpu->arch.ctr, vcpu->arch.lr); 289 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 290 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 291 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 292 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 293 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 294 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 295 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 296 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 297 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 298 pr_err("fault dar = %.16lx dsisr = %.8x\n", 299 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 300 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 301 for (r = 0; r < vcpu->arch.slb_max; ++r) 302 pr_err(" ESID = %.16llx VSID = %.16llx\n", 303 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 304 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 305 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 306 vcpu->arch.last_inst); 307 } 308 309 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 310 { 311 int r; 312 struct kvm_vcpu *v, *ret = NULL; 313 314 mutex_lock(&kvm->lock); 315 kvm_for_each_vcpu(r, v, kvm) { 316 if (v->vcpu_id == id) { 317 ret = v; 318 break; 319 } 320 } 321 mutex_unlock(&kvm->lock); 322 return ret; 323 } 324 325 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 326 { 327 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 328 vpa->yield_count = cpu_to_be32(1); 329 } 330 331 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 332 unsigned long addr, unsigned long len) 333 { 334 /* check address is cacheline aligned */ 335 if (addr & (L1_CACHE_BYTES - 1)) 336 return -EINVAL; 337 spin_lock(&vcpu->arch.vpa_update_lock); 338 if (v->next_gpa != addr || v->len != len) { 339 v->next_gpa = addr; 340 v->len = addr ? len : 0; 341 v->update_pending = 1; 342 } 343 spin_unlock(&vcpu->arch.vpa_update_lock); 344 return 0; 345 } 346 347 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 348 struct reg_vpa { 349 u32 dummy; 350 union { 351 __be16 hword; 352 __be32 word; 353 } length; 354 }; 355 356 static int vpa_is_registered(struct kvmppc_vpa *vpap) 357 { 358 if (vpap->update_pending) 359 return vpap->next_gpa != 0; 360 return vpap->pinned_addr != NULL; 361 } 362 363 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 364 unsigned long flags, 365 unsigned long vcpuid, unsigned long vpa) 366 { 367 struct kvm *kvm = vcpu->kvm; 368 unsigned long len, nb; 369 void *va; 370 struct kvm_vcpu *tvcpu; 371 int err; 372 int subfunc; 373 struct kvmppc_vpa *vpap; 374 375 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 376 if (!tvcpu) 377 return H_PARAMETER; 378 379 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 380 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 381 subfunc == H_VPA_REG_SLB) { 382 /* Registering new area - address must be cache-line aligned */ 383 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 384 return H_PARAMETER; 385 386 /* convert logical addr to kernel addr and read length */ 387 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 388 if (va == NULL) 389 return H_PARAMETER; 390 if (subfunc == H_VPA_REG_VPA) 391 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 392 else 393 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 394 kvmppc_unpin_guest_page(kvm, va, vpa, false); 395 396 /* Check length */ 397 if (len > nb || len < sizeof(struct reg_vpa)) 398 return H_PARAMETER; 399 } else { 400 vpa = 0; 401 len = 0; 402 } 403 404 err = H_PARAMETER; 405 vpap = NULL; 406 spin_lock(&tvcpu->arch.vpa_update_lock); 407 408 switch (subfunc) { 409 case H_VPA_REG_VPA: /* register VPA */ 410 if (len < sizeof(struct lppaca)) 411 break; 412 vpap = &tvcpu->arch.vpa; 413 err = 0; 414 break; 415 416 case H_VPA_REG_DTL: /* register DTL */ 417 if (len < sizeof(struct dtl_entry)) 418 break; 419 len -= len % sizeof(struct dtl_entry); 420 421 /* Check that they have previously registered a VPA */ 422 err = H_RESOURCE; 423 if (!vpa_is_registered(&tvcpu->arch.vpa)) 424 break; 425 426 vpap = &tvcpu->arch.dtl; 427 err = 0; 428 break; 429 430 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 431 /* Check that they have previously registered a VPA */ 432 err = H_RESOURCE; 433 if (!vpa_is_registered(&tvcpu->arch.vpa)) 434 break; 435 436 vpap = &tvcpu->arch.slb_shadow; 437 err = 0; 438 break; 439 440 case H_VPA_DEREG_VPA: /* deregister VPA */ 441 /* Check they don't still have a DTL or SLB buf registered */ 442 err = H_RESOURCE; 443 if (vpa_is_registered(&tvcpu->arch.dtl) || 444 vpa_is_registered(&tvcpu->arch.slb_shadow)) 445 break; 446 447 vpap = &tvcpu->arch.vpa; 448 err = 0; 449 break; 450 451 case H_VPA_DEREG_DTL: /* deregister DTL */ 452 vpap = &tvcpu->arch.dtl; 453 err = 0; 454 break; 455 456 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 457 vpap = &tvcpu->arch.slb_shadow; 458 err = 0; 459 break; 460 } 461 462 if (vpap) { 463 vpap->next_gpa = vpa; 464 vpap->len = len; 465 vpap->update_pending = 1; 466 } 467 468 spin_unlock(&tvcpu->arch.vpa_update_lock); 469 470 return err; 471 } 472 473 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 474 { 475 struct kvm *kvm = vcpu->kvm; 476 void *va; 477 unsigned long nb; 478 unsigned long gpa; 479 480 /* 481 * We need to pin the page pointed to by vpap->next_gpa, 482 * but we can't call kvmppc_pin_guest_page under the lock 483 * as it does get_user_pages() and down_read(). So we 484 * have to drop the lock, pin the page, then get the lock 485 * again and check that a new area didn't get registered 486 * in the meantime. 487 */ 488 for (;;) { 489 gpa = vpap->next_gpa; 490 spin_unlock(&vcpu->arch.vpa_update_lock); 491 va = NULL; 492 nb = 0; 493 if (gpa) 494 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 495 spin_lock(&vcpu->arch.vpa_update_lock); 496 if (gpa == vpap->next_gpa) 497 break; 498 /* sigh... unpin that one and try again */ 499 if (va) 500 kvmppc_unpin_guest_page(kvm, va, gpa, false); 501 } 502 503 vpap->update_pending = 0; 504 if (va && nb < vpap->len) { 505 /* 506 * If it's now too short, it must be that userspace 507 * has changed the mappings underlying guest memory, 508 * so unregister the region. 509 */ 510 kvmppc_unpin_guest_page(kvm, va, gpa, false); 511 va = NULL; 512 } 513 if (vpap->pinned_addr) 514 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 515 vpap->dirty); 516 vpap->gpa = gpa; 517 vpap->pinned_addr = va; 518 vpap->dirty = false; 519 if (va) 520 vpap->pinned_end = va + vpap->len; 521 } 522 523 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 524 { 525 if (!(vcpu->arch.vpa.update_pending || 526 vcpu->arch.slb_shadow.update_pending || 527 vcpu->arch.dtl.update_pending)) 528 return; 529 530 spin_lock(&vcpu->arch.vpa_update_lock); 531 if (vcpu->arch.vpa.update_pending) { 532 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 533 if (vcpu->arch.vpa.pinned_addr) 534 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 535 } 536 if (vcpu->arch.dtl.update_pending) { 537 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 538 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 539 vcpu->arch.dtl_index = 0; 540 } 541 if (vcpu->arch.slb_shadow.update_pending) 542 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 543 spin_unlock(&vcpu->arch.vpa_update_lock); 544 } 545 546 /* 547 * Return the accumulated stolen time for the vcore up until `now'. 548 * The caller should hold the vcore lock. 549 */ 550 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 551 { 552 u64 p; 553 unsigned long flags; 554 555 spin_lock_irqsave(&vc->stoltb_lock, flags); 556 p = vc->stolen_tb; 557 if (vc->vcore_state != VCORE_INACTIVE && 558 vc->preempt_tb != TB_NIL) 559 p += now - vc->preempt_tb; 560 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 561 return p; 562 } 563 564 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 565 struct kvmppc_vcore *vc) 566 { 567 struct dtl_entry *dt; 568 struct lppaca *vpa; 569 unsigned long stolen; 570 unsigned long core_stolen; 571 u64 now; 572 573 dt = vcpu->arch.dtl_ptr; 574 vpa = vcpu->arch.vpa.pinned_addr; 575 now = mftb(); 576 core_stolen = vcore_stolen_time(vc, now); 577 stolen = core_stolen - vcpu->arch.stolen_logged; 578 vcpu->arch.stolen_logged = core_stolen; 579 spin_lock_irq(&vcpu->arch.tbacct_lock); 580 stolen += vcpu->arch.busy_stolen; 581 vcpu->arch.busy_stolen = 0; 582 spin_unlock_irq(&vcpu->arch.tbacct_lock); 583 if (!dt || !vpa) 584 return; 585 memset(dt, 0, sizeof(struct dtl_entry)); 586 dt->dispatch_reason = 7; 587 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 588 dt->timebase = cpu_to_be64(now + vc->tb_offset); 589 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 590 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 591 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 592 ++dt; 593 if (dt == vcpu->arch.dtl.pinned_end) 594 dt = vcpu->arch.dtl.pinned_addr; 595 vcpu->arch.dtl_ptr = dt; 596 /* order writing *dt vs. writing vpa->dtl_idx */ 597 smp_wmb(); 598 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 599 vcpu->arch.dtl.dirty = true; 600 } 601 602 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 603 { 604 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 605 return true; 606 if ((!vcpu->arch.vcore->arch_compat) && 607 cpu_has_feature(CPU_FTR_ARCH_207S)) 608 return true; 609 return false; 610 } 611 612 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 613 unsigned long resource, unsigned long value1, 614 unsigned long value2) 615 { 616 switch (resource) { 617 case H_SET_MODE_RESOURCE_SET_CIABR: 618 if (!kvmppc_power8_compatible(vcpu)) 619 return H_P2; 620 if (value2) 621 return H_P4; 622 if (mflags) 623 return H_UNSUPPORTED_FLAG_START; 624 /* Guests can't breakpoint the hypervisor */ 625 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 626 return H_P3; 627 vcpu->arch.ciabr = value1; 628 return H_SUCCESS; 629 case H_SET_MODE_RESOURCE_SET_DAWR: 630 if (!kvmppc_power8_compatible(vcpu)) 631 return H_P2; 632 if (mflags) 633 return H_UNSUPPORTED_FLAG_START; 634 if (value2 & DABRX_HYP) 635 return H_P4; 636 vcpu->arch.dawr = value1; 637 vcpu->arch.dawrx = value2; 638 return H_SUCCESS; 639 default: 640 return H_TOO_HARD; 641 } 642 } 643 644 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 645 { 646 struct kvmppc_vcore *vcore = target->arch.vcore; 647 648 /* 649 * We expect to have been called by the real mode handler 650 * (kvmppc_rm_h_confer()) which would have directly returned 651 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 652 * have useful work to do and should not confer) so we don't 653 * recheck that here. 654 */ 655 656 spin_lock(&vcore->lock); 657 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 658 vcore->vcore_state != VCORE_INACTIVE && 659 vcore->runner) 660 target = vcore->runner; 661 spin_unlock(&vcore->lock); 662 663 return kvm_vcpu_yield_to(target); 664 } 665 666 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 667 { 668 int yield_count = 0; 669 struct lppaca *lppaca; 670 671 spin_lock(&vcpu->arch.vpa_update_lock); 672 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 673 if (lppaca) 674 yield_count = be32_to_cpu(lppaca->yield_count); 675 spin_unlock(&vcpu->arch.vpa_update_lock); 676 return yield_count; 677 } 678 679 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 680 { 681 unsigned long req = kvmppc_get_gpr(vcpu, 3); 682 unsigned long target, ret = H_SUCCESS; 683 int yield_count; 684 struct kvm_vcpu *tvcpu; 685 int idx, rc; 686 687 if (req <= MAX_HCALL_OPCODE && 688 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 689 return RESUME_HOST; 690 691 switch (req) { 692 case H_CEDE: 693 break; 694 case H_PROD: 695 target = kvmppc_get_gpr(vcpu, 4); 696 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 697 if (!tvcpu) { 698 ret = H_PARAMETER; 699 break; 700 } 701 tvcpu->arch.prodded = 1; 702 smp_mb(); 703 if (vcpu->arch.ceded) { 704 if (waitqueue_active(&vcpu->wq)) { 705 wake_up_interruptible(&vcpu->wq); 706 vcpu->stat.halt_wakeup++; 707 } 708 } 709 break; 710 case H_CONFER: 711 target = kvmppc_get_gpr(vcpu, 4); 712 if (target == -1) 713 break; 714 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 715 if (!tvcpu) { 716 ret = H_PARAMETER; 717 break; 718 } 719 yield_count = kvmppc_get_gpr(vcpu, 5); 720 if (kvmppc_get_yield_count(tvcpu) != yield_count) 721 break; 722 kvm_arch_vcpu_yield_to(tvcpu); 723 break; 724 case H_REGISTER_VPA: 725 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 726 kvmppc_get_gpr(vcpu, 5), 727 kvmppc_get_gpr(vcpu, 6)); 728 break; 729 case H_RTAS: 730 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 731 return RESUME_HOST; 732 733 idx = srcu_read_lock(&vcpu->kvm->srcu); 734 rc = kvmppc_rtas_hcall(vcpu); 735 srcu_read_unlock(&vcpu->kvm->srcu, idx); 736 737 if (rc == -ENOENT) 738 return RESUME_HOST; 739 else if (rc == 0) 740 break; 741 742 /* Send the error out to userspace via KVM_RUN */ 743 return rc; 744 case H_LOGICAL_CI_LOAD: 745 ret = kvmppc_h_logical_ci_load(vcpu); 746 if (ret == H_TOO_HARD) 747 return RESUME_HOST; 748 break; 749 case H_LOGICAL_CI_STORE: 750 ret = kvmppc_h_logical_ci_store(vcpu); 751 if (ret == H_TOO_HARD) 752 return RESUME_HOST; 753 break; 754 case H_SET_MODE: 755 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 756 kvmppc_get_gpr(vcpu, 5), 757 kvmppc_get_gpr(vcpu, 6), 758 kvmppc_get_gpr(vcpu, 7)); 759 if (ret == H_TOO_HARD) 760 return RESUME_HOST; 761 break; 762 case H_XIRR: 763 case H_CPPR: 764 case H_EOI: 765 case H_IPI: 766 case H_IPOLL: 767 case H_XIRR_X: 768 if (kvmppc_xics_enabled(vcpu)) { 769 ret = kvmppc_xics_hcall(vcpu, req); 770 break; 771 } /* fallthrough */ 772 default: 773 return RESUME_HOST; 774 } 775 kvmppc_set_gpr(vcpu, 3, ret); 776 vcpu->arch.hcall_needed = 0; 777 return RESUME_GUEST; 778 } 779 780 static int kvmppc_hcall_impl_hv(unsigned long cmd) 781 { 782 switch (cmd) { 783 case H_CEDE: 784 case H_PROD: 785 case H_CONFER: 786 case H_REGISTER_VPA: 787 case H_SET_MODE: 788 case H_LOGICAL_CI_LOAD: 789 case H_LOGICAL_CI_STORE: 790 #ifdef CONFIG_KVM_XICS 791 case H_XIRR: 792 case H_CPPR: 793 case H_EOI: 794 case H_IPI: 795 case H_IPOLL: 796 case H_XIRR_X: 797 #endif 798 return 1; 799 } 800 801 /* See if it's in the real-mode table */ 802 return kvmppc_hcall_impl_hv_realmode(cmd); 803 } 804 805 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 806 struct kvm_vcpu *vcpu) 807 { 808 u32 last_inst; 809 810 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 811 EMULATE_DONE) { 812 /* 813 * Fetch failed, so return to guest and 814 * try executing it again. 815 */ 816 return RESUME_GUEST; 817 } 818 819 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 820 run->exit_reason = KVM_EXIT_DEBUG; 821 run->debug.arch.address = kvmppc_get_pc(vcpu); 822 return RESUME_HOST; 823 } else { 824 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 825 return RESUME_GUEST; 826 } 827 } 828 829 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 830 struct task_struct *tsk) 831 { 832 int r = RESUME_HOST; 833 834 vcpu->stat.sum_exits++; 835 836 run->exit_reason = KVM_EXIT_UNKNOWN; 837 run->ready_for_interrupt_injection = 1; 838 switch (vcpu->arch.trap) { 839 /* We're good on these - the host merely wanted to get our attention */ 840 case BOOK3S_INTERRUPT_HV_DECREMENTER: 841 vcpu->stat.dec_exits++; 842 r = RESUME_GUEST; 843 break; 844 case BOOK3S_INTERRUPT_EXTERNAL: 845 case BOOK3S_INTERRUPT_H_DOORBELL: 846 vcpu->stat.ext_intr_exits++; 847 r = RESUME_GUEST; 848 break; 849 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/ 850 case BOOK3S_INTERRUPT_HMI: 851 case BOOK3S_INTERRUPT_PERFMON: 852 r = RESUME_GUEST; 853 break; 854 case BOOK3S_INTERRUPT_MACHINE_CHECK: 855 /* 856 * Deliver a machine check interrupt to the guest. 857 * We have to do this, even if the host has handled the 858 * machine check, because machine checks use SRR0/1 and 859 * the interrupt might have trashed guest state in them. 860 */ 861 kvmppc_book3s_queue_irqprio(vcpu, 862 BOOK3S_INTERRUPT_MACHINE_CHECK); 863 r = RESUME_GUEST; 864 break; 865 case BOOK3S_INTERRUPT_PROGRAM: 866 { 867 ulong flags; 868 /* 869 * Normally program interrupts are delivered directly 870 * to the guest by the hardware, but we can get here 871 * as a result of a hypervisor emulation interrupt 872 * (e40) getting turned into a 700 by BML RTAS. 873 */ 874 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 875 kvmppc_core_queue_program(vcpu, flags); 876 r = RESUME_GUEST; 877 break; 878 } 879 case BOOK3S_INTERRUPT_SYSCALL: 880 { 881 /* hcall - punt to userspace */ 882 int i; 883 884 /* hypercall with MSR_PR has already been handled in rmode, 885 * and never reaches here. 886 */ 887 888 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 889 for (i = 0; i < 9; ++i) 890 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 891 run->exit_reason = KVM_EXIT_PAPR_HCALL; 892 vcpu->arch.hcall_needed = 1; 893 r = RESUME_HOST; 894 break; 895 } 896 /* 897 * We get these next two if the guest accesses a page which it thinks 898 * it has mapped but which is not actually present, either because 899 * it is for an emulated I/O device or because the corresonding 900 * host page has been paged out. Any other HDSI/HISI interrupts 901 * have been handled already. 902 */ 903 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 904 r = RESUME_PAGE_FAULT; 905 break; 906 case BOOK3S_INTERRUPT_H_INST_STORAGE: 907 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 908 vcpu->arch.fault_dsisr = 0; 909 r = RESUME_PAGE_FAULT; 910 break; 911 /* 912 * This occurs if the guest executes an illegal instruction. 913 * If the guest debug is disabled, generate a program interrupt 914 * to the guest. If guest debug is enabled, we need to check 915 * whether the instruction is a software breakpoint instruction. 916 * Accordingly return to Guest or Host. 917 */ 918 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 919 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 920 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 921 swab32(vcpu->arch.emul_inst) : 922 vcpu->arch.emul_inst; 923 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 924 r = kvmppc_emulate_debug_inst(run, vcpu); 925 } else { 926 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 927 r = RESUME_GUEST; 928 } 929 break; 930 /* 931 * This occurs if the guest (kernel or userspace), does something that 932 * is prohibited by HFSCR. We just generate a program interrupt to 933 * the guest. 934 */ 935 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 936 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 937 r = RESUME_GUEST; 938 break; 939 default: 940 kvmppc_dump_regs(vcpu); 941 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 942 vcpu->arch.trap, kvmppc_get_pc(vcpu), 943 vcpu->arch.shregs.msr); 944 run->hw.hardware_exit_reason = vcpu->arch.trap; 945 r = RESUME_HOST; 946 break; 947 } 948 949 return r; 950 } 951 952 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 953 struct kvm_sregs *sregs) 954 { 955 int i; 956 957 memset(sregs, 0, sizeof(struct kvm_sregs)); 958 sregs->pvr = vcpu->arch.pvr; 959 for (i = 0; i < vcpu->arch.slb_max; i++) { 960 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 961 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 962 } 963 964 return 0; 965 } 966 967 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 968 struct kvm_sregs *sregs) 969 { 970 int i, j; 971 972 /* Only accept the same PVR as the host's, since we can't spoof it */ 973 if (sregs->pvr != vcpu->arch.pvr) 974 return -EINVAL; 975 976 j = 0; 977 for (i = 0; i < vcpu->arch.slb_nr; i++) { 978 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 979 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 980 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 981 ++j; 982 } 983 } 984 vcpu->arch.slb_max = j; 985 986 return 0; 987 } 988 989 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 990 bool preserve_top32) 991 { 992 struct kvm *kvm = vcpu->kvm; 993 struct kvmppc_vcore *vc = vcpu->arch.vcore; 994 u64 mask; 995 996 mutex_lock(&kvm->lock); 997 spin_lock(&vc->lock); 998 /* 999 * If ILE (interrupt little-endian) has changed, update the 1000 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1001 */ 1002 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1003 struct kvm_vcpu *vcpu; 1004 int i; 1005 1006 kvm_for_each_vcpu(i, vcpu, kvm) { 1007 if (vcpu->arch.vcore != vc) 1008 continue; 1009 if (new_lpcr & LPCR_ILE) 1010 vcpu->arch.intr_msr |= MSR_LE; 1011 else 1012 vcpu->arch.intr_msr &= ~MSR_LE; 1013 } 1014 } 1015 1016 /* 1017 * Userspace can only modify DPFD (default prefetch depth), 1018 * ILE (interrupt little-endian) and TC (translation control). 1019 * On POWER8 userspace can also modify AIL (alt. interrupt loc.) 1020 */ 1021 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1022 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1023 mask |= LPCR_AIL; 1024 1025 /* Broken 32-bit version of LPCR must not clear top bits */ 1026 if (preserve_top32) 1027 mask &= 0xFFFFFFFF; 1028 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1029 spin_unlock(&vc->lock); 1030 mutex_unlock(&kvm->lock); 1031 } 1032 1033 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1034 union kvmppc_one_reg *val) 1035 { 1036 int r = 0; 1037 long int i; 1038 1039 switch (id) { 1040 case KVM_REG_PPC_DEBUG_INST: 1041 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1042 break; 1043 case KVM_REG_PPC_HIOR: 1044 *val = get_reg_val(id, 0); 1045 break; 1046 case KVM_REG_PPC_DABR: 1047 *val = get_reg_val(id, vcpu->arch.dabr); 1048 break; 1049 case KVM_REG_PPC_DABRX: 1050 *val = get_reg_val(id, vcpu->arch.dabrx); 1051 break; 1052 case KVM_REG_PPC_DSCR: 1053 *val = get_reg_val(id, vcpu->arch.dscr); 1054 break; 1055 case KVM_REG_PPC_PURR: 1056 *val = get_reg_val(id, vcpu->arch.purr); 1057 break; 1058 case KVM_REG_PPC_SPURR: 1059 *val = get_reg_val(id, vcpu->arch.spurr); 1060 break; 1061 case KVM_REG_PPC_AMR: 1062 *val = get_reg_val(id, vcpu->arch.amr); 1063 break; 1064 case KVM_REG_PPC_UAMOR: 1065 *val = get_reg_val(id, vcpu->arch.uamor); 1066 break; 1067 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1068 i = id - KVM_REG_PPC_MMCR0; 1069 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1070 break; 1071 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1072 i = id - KVM_REG_PPC_PMC1; 1073 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1074 break; 1075 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1076 i = id - KVM_REG_PPC_SPMC1; 1077 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1078 break; 1079 case KVM_REG_PPC_SIAR: 1080 *val = get_reg_val(id, vcpu->arch.siar); 1081 break; 1082 case KVM_REG_PPC_SDAR: 1083 *val = get_reg_val(id, vcpu->arch.sdar); 1084 break; 1085 case KVM_REG_PPC_SIER: 1086 *val = get_reg_val(id, vcpu->arch.sier); 1087 break; 1088 case KVM_REG_PPC_IAMR: 1089 *val = get_reg_val(id, vcpu->arch.iamr); 1090 break; 1091 case KVM_REG_PPC_PSPB: 1092 *val = get_reg_val(id, vcpu->arch.pspb); 1093 break; 1094 case KVM_REG_PPC_DPDES: 1095 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1096 break; 1097 case KVM_REG_PPC_DAWR: 1098 *val = get_reg_val(id, vcpu->arch.dawr); 1099 break; 1100 case KVM_REG_PPC_DAWRX: 1101 *val = get_reg_val(id, vcpu->arch.dawrx); 1102 break; 1103 case KVM_REG_PPC_CIABR: 1104 *val = get_reg_val(id, vcpu->arch.ciabr); 1105 break; 1106 case KVM_REG_PPC_CSIGR: 1107 *val = get_reg_val(id, vcpu->arch.csigr); 1108 break; 1109 case KVM_REG_PPC_TACR: 1110 *val = get_reg_val(id, vcpu->arch.tacr); 1111 break; 1112 case KVM_REG_PPC_TCSCR: 1113 *val = get_reg_val(id, vcpu->arch.tcscr); 1114 break; 1115 case KVM_REG_PPC_PID: 1116 *val = get_reg_val(id, vcpu->arch.pid); 1117 break; 1118 case KVM_REG_PPC_ACOP: 1119 *val = get_reg_val(id, vcpu->arch.acop); 1120 break; 1121 case KVM_REG_PPC_WORT: 1122 *val = get_reg_val(id, vcpu->arch.wort); 1123 break; 1124 case KVM_REG_PPC_VPA_ADDR: 1125 spin_lock(&vcpu->arch.vpa_update_lock); 1126 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1127 spin_unlock(&vcpu->arch.vpa_update_lock); 1128 break; 1129 case KVM_REG_PPC_VPA_SLB: 1130 spin_lock(&vcpu->arch.vpa_update_lock); 1131 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1132 val->vpaval.length = vcpu->arch.slb_shadow.len; 1133 spin_unlock(&vcpu->arch.vpa_update_lock); 1134 break; 1135 case KVM_REG_PPC_VPA_DTL: 1136 spin_lock(&vcpu->arch.vpa_update_lock); 1137 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1138 val->vpaval.length = vcpu->arch.dtl.len; 1139 spin_unlock(&vcpu->arch.vpa_update_lock); 1140 break; 1141 case KVM_REG_PPC_TB_OFFSET: 1142 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1143 break; 1144 case KVM_REG_PPC_LPCR: 1145 case KVM_REG_PPC_LPCR_64: 1146 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1147 break; 1148 case KVM_REG_PPC_PPR: 1149 *val = get_reg_val(id, vcpu->arch.ppr); 1150 break; 1151 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1152 case KVM_REG_PPC_TFHAR: 1153 *val = get_reg_val(id, vcpu->arch.tfhar); 1154 break; 1155 case KVM_REG_PPC_TFIAR: 1156 *val = get_reg_val(id, vcpu->arch.tfiar); 1157 break; 1158 case KVM_REG_PPC_TEXASR: 1159 *val = get_reg_val(id, vcpu->arch.texasr); 1160 break; 1161 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1162 i = id - KVM_REG_PPC_TM_GPR0; 1163 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1164 break; 1165 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1166 { 1167 int j; 1168 i = id - KVM_REG_PPC_TM_VSR0; 1169 if (i < 32) 1170 for (j = 0; j < TS_FPRWIDTH; j++) 1171 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1172 else { 1173 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1174 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1175 else 1176 r = -ENXIO; 1177 } 1178 break; 1179 } 1180 case KVM_REG_PPC_TM_CR: 1181 *val = get_reg_val(id, vcpu->arch.cr_tm); 1182 break; 1183 case KVM_REG_PPC_TM_LR: 1184 *val = get_reg_val(id, vcpu->arch.lr_tm); 1185 break; 1186 case KVM_REG_PPC_TM_CTR: 1187 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1188 break; 1189 case KVM_REG_PPC_TM_FPSCR: 1190 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1191 break; 1192 case KVM_REG_PPC_TM_AMR: 1193 *val = get_reg_val(id, vcpu->arch.amr_tm); 1194 break; 1195 case KVM_REG_PPC_TM_PPR: 1196 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1197 break; 1198 case KVM_REG_PPC_TM_VRSAVE: 1199 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1200 break; 1201 case KVM_REG_PPC_TM_VSCR: 1202 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1203 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1204 else 1205 r = -ENXIO; 1206 break; 1207 case KVM_REG_PPC_TM_DSCR: 1208 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1209 break; 1210 case KVM_REG_PPC_TM_TAR: 1211 *val = get_reg_val(id, vcpu->arch.tar_tm); 1212 break; 1213 #endif 1214 case KVM_REG_PPC_ARCH_COMPAT: 1215 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1216 break; 1217 default: 1218 r = -EINVAL; 1219 break; 1220 } 1221 1222 return r; 1223 } 1224 1225 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1226 union kvmppc_one_reg *val) 1227 { 1228 int r = 0; 1229 long int i; 1230 unsigned long addr, len; 1231 1232 switch (id) { 1233 case KVM_REG_PPC_HIOR: 1234 /* Only allow this to be set to zero */ 1235 if (set_reg_val(id, *val)) 1236 r = -EINVAL; 1237 break; 1238 case KVM_REG_PPC_DABR: 1239 vcpu->arch.dabr = set_reg_val(id, *val); 1240 break; 1241 case KVM_REG_PPC_DABRX: 1242 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1243 break; 1244 case KVM_REG_PPC_DSCR: 1245 vcpu->arch.dscr = set_reg_val(id, *val); 1246 break; 1247 case KVM_REG_PPC_PURR: 1248 vcpu->arch.purr = set_reg_val(id, *val); 1249 break; 1250 case KVM_REG_PPC_SPURR: 1251 vcpu->arch.spurr = set_reg_val(id, *val); 1252 break; 1253 case KVM_REG_PPC_AMR: 1254 vcpu->arch.amr = set_reg_val(id, *val); 1255 break; 1256 case KVM_REG_PPC_UAMOR: 1257 vcpu->arch.uamor = set_reg_val(id, *val); 1258 break; 1259 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1260 i = id - KVM_REG_PPC_MMCR0; 1261 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1262 break; 1263 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1264 i = id - KVM_REG_PPC_PMC1; 1265 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1266 break; 1267 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1268 i = id - KVM_REG_PPC_SPMC1; 1269 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1270 break; 1271 case KVM_REG_PPC_SIAR: 1272 vcpu->arch.siar = set_reg_val(id, *val); 1273 break; 1274 case KVM_REG_PPC_SDAR: 1275 vcpu->arch.sdar = set_reg_val(id, *val); 1276 break; 1277 case KVM_REG_PPC_SIER: 1278 vcpu->arch.sier = set_reg_val(id, *val); 1279 break; 1280 case KVM_REG_PPC_IAMR: 1281 vcpu->arch.iamr = set_reg_val(id, *val); 1282 break; 1283 case KVM_REG_PPC_PSPB: 1284 vcpu->arch.pspb = set_reg_val(id, *val); 1285 break; 1286 case KVM_REG_PPC_DPDES: 1287 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1288 break; 1289 case KVM_REG_PPC_DAWR: 1290 vcpu->arch.dawr = set_reg_val(id, *val); 1291 break; 1292 case KVM_REG_PPC_DAWRX: 1293 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1294 break; 1295 case KVM_REG_PPC_CIABR: 1296 vcpu->arch.ciabr = set_reg_val(id, *val); 1297 /* Don't allow setting breakpoints in hypervisor code */ 1298 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1299 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1300 break; 1301 case KVM_REG_PPC_CSIGR: 1302 vcpu->arch.csigr = set_reg_val(id, *val); 1303 break; 1304 case KVM_REG_PPC_TACR: 1305 vcpu->arch.tacr = set_reg_val(id, *val); 1306 break; 1307 case KVM_REG_PPC_TCSCR: 1308 vcpu->arch.tcscr = set_reg_val(id, *val); 1309 break; 1310 case KVM_REG_PPC_PID: 1311 vcpu->arch.pid = set_reg_val(id, *val); 1312 break; 1313 case KVM_REG_PPC_ACOP: 1314 vcpu->arch.acop = set_reg_val(id, *val); 1315 break; 1316 case KVM_REG_PPC_WORT: 1317 vcpu->arch.wort = set_reg_val(id, *val); 1318 break; 1319 case KVM_REG_PPC_VPA_ADDR: 1320 addr = set_reg_val(id, *val); 1321 r = -EINVAL; 1322 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1323 vcpu->arch.dtl.next_gpa)) 1324 break; 1325 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1326 break; 1327 case KVM_REG_PPC_VPA_SLB: 1328 addr = val->vpaval.addr; 1329 len = val->vpaval.length; 1330 r = -EINVAL; 1331 if (addr && !vcpu->arch.vpa.next_gpa) 1332 break; 1333 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1334 break; 1335 case KVM_REG_PPC_VPA_DTL: 1336 addr = val->vpaval.addr; 1337 len = val->vpaval.length; 1338 r = -EINVAL; 1339 if (addr && (len < sizeof(struct dtl_entry) || 1340 !vcpu->arch.vpa.next_gpa)) 1341 break; 1342 len -= len % sizeof(struct dtl_entry); 1343 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1344 break; 1345 case KVM_REG_PPC_TB_OFFSET: 1346 /* round up to multiple of 2^24 */ 1347 vcpu->arch.vcore->tb_offset = 1348 ALIGN(set_reg_val(id, *val), 1UL << 24); 1349 break; 1350 case KVM_REG_PPC_LPCR: 1351 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1352 break; 1353 case KVM_REG_PPC_LPCR_64: 1354 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1355 break; 1356 case KVM_REG_PPC_PPR: 1357 vcpu->arch.ppr = set_reg_val(id, *val); 1358 break; 1359 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1360 case KVM_REG_PPC_TFHAR: 1361 vcpu->arch.tfhar = set_reg_val(id, *val); 1362 break; 1363 case KVM_REG_PPC_TFIAR: 1364 vcpu->arch.tfiar = set_reg_val(id, *val); 1365 break; 1366 case KVM_REG_PPC_TEXASR: 1367 vcpu->arch.texasr = set_reg_val(id, *val); 1368 break; 1369 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1370 i = id - KVM_REG_PPC_TM_GPR0; 1371 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1372 break; 1373 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1374 { 1375 int j; 1376 i = id - KVM_REG_PPC_TM_VSR0; 1377 if (i < 32) 1378 for (j = 0; j < TS_FPRWIDTH; j++) 1379 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1380 else 1381 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1382 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1383 else 1384 r = -ENXIO; 1385 break; 1386 } 1387 case KVM_REG_PPC_TM_CR: 1388 vcpu->arch.cr_tm = set_reg_val(id, *val); 1389 break; 1390 case KVM_REG_PPC_TM_LR: 1391 vcpu->arch.lr_tm = set_reg_val(id, *val); 1392 break; 1393 case KVM_REG_PPC_TM_CTR: 1394 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1395 break; 1396 case KVM_REG_PPC_TM_FPSCR: 1397 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1398 break; 1399 case KVM_REG_PPC_TM_AMR: 1400 vcpu->arch.amr_tm = set_reg_val(id, *val); 1401 break; 1402 case KVM_REG_PPC_TM_PPR: 1403 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1404 break; 1405 case KVM_REG_PPC_TM_VRSAVE: 1406 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1407 break; 1408 case KVM_REG_PPC_TM_VSCR: 1409 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1410 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1411 else 1412 r = - ENXIO; 1413 break; 1414 case KVM_REG_PPC_TM_DSCR: 1415 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1416 break; 1417 case KVM_REG_PPC_TM_TAR: 1418 vcpu->arch.tar_tm = set_reg_val(id, *val); 1419 break; 1420 #endif 1421 case KVM_REG_PPC_ARCH_COMPAT: 1422 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1423 break; 1424 default: 1425 r = -EINVAL; 1426 break; 1427 } 1428 1429 return r; 1430 } 1431 1432 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) 1433 { 1434 struct kvmppc_vcore *vcore; 1435 1436 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1437 1438 if (vcore == NULL) 1439 return NULL; 1440 1441 INIT_LIST_HEAD(&vcore->runnable_threads); 1442 spin_lock_init(&vcore->lock); 1443 spin_lock_init(&vcore->stoltb_lock); 1444 init_waitqueue_head(&vcore->wq); 1445 vcore->preempt_tb = TB_NIL; 1446 vcore->lpcr = kvm->arch.lpcr; 1447 vcore->first_vcpuid = core * threads_per_subcore; 1448 vcore->kvm = kvm; 1449 INIT_LIST_HEAD(&vcore->preempt_list); 1450 1451 return vcore; 1452 } 1453 1454 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 1455 static struct debugfs_timings_element { 1456 const char *name; 1457 size_t offset; 1458 } timings[] = { 1459 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 1460 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 1461 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 1462 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 1463 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 1464 }; 1465 1466 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0])) 1467 1468 struct debugfs_timings_state { 1469 struct kvm_vcpu *vcpu; 1470 unsigned int buflen; 1471 char buf[N_TIMINGS * 100]; 1472 }; 1473 1474 static int debugfs_timings_open(struct inode *inode, struct file *file) 1475 { 1476 struct kvm_vcpu *vcpu = inode->i_private; 1477 struct debugfs_timings_state *p; 1478 1479 p = kzalloc(sizeof(*p), GFP_KERNEL); 1480 if (!p) 1481 return -ENOMEM; 1482 1483 kvm_get_kvm(vcpu->kvm); 1484 p->vcpu = vcpu; 1485 file->private_data = p; 1486 1487 return nonseekable_open(inode, file); 1488 } 1489 1490 static int debugfs_timings_release(struct inode *inode, struct file *file) 1491 { 1492 struct debugfs_timings_state *p = file->private_data; 1493 1494 kvm_put_kvm(p->vcpu->kvm); 1495 kfree(p); 1496 return 0; 1497 } 1498 1499 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 1500 size_t len, loff_t *ppos) 1501 { 1502 struct debugfs_timings_state *p = file->private_data; 1503 struct kvm_vcpu *vcpu = p->vcpu; 1504 char *s, *buf_end; 1505 struct kvmhv_tb_accumulator tb; 1506 u64 count; 1507 loff_t pos; 1508 ssize_t n; 1509 int i, loops; 1510 bool ok; 1511 1512 if (!p->buflen) { 1513 s = p->buf; 1514 buf_end = s + sizeof(p->buf); 1515 for (i = 0; i < N_TIMINGS; ++i) { 1516 struct kvmhv_tb_accumulator *acc; 1517 1518 acc = (struct kvmhv_tb_accumulator *) 1519 ((unsigned long)vcpu + timings[i].offset); 1520 ok = false; 1521 for (loops = 0; loops < 1000; ++loops) { 1522 count = acc->seqcount; 1523 if (!(count & 1)) { 1524 smp_rmb(); 1525 tb = *acc; 1526 smp_rmb(); 1527 if (count == acc->seqcount) { 1528 ok = true; 1529 break; 1530 } 1531 } 1532 udelay(1); 1533 } 1534 if (!ok) 1535 snprintf(s, buf_end - s, "%s: stuck\n", 1536 timings[i].name); 1537 else 1538 snprintf(s, buf_end - s, 1539 "%s: %llu %llu %llu %llu\n", 1540 timings[i].name, count / 2, 1541 tb_to_ns(tb.tb_total), 1542 tb_to_ns(tb.tb_min), 1543 tb_to_ns(tb.tb_max)); 1544 s += strlen(s); 1545 } 1546 p->buflen = s - p->buf; 1547 } 1548 1549 pos = *ppos; 1550 if (pos >= p->buflen) 1551 return 0; 1552 if (len > p->buflen - pos) 1553 len = p->buflen - pos; 1554 n = copy_to_user(buf, p->buf + pos, len); 1555 if (n) { 1556 if (n == len) 1557 return -EFAULT; 1558 len -= n; 1559 } 1560 *ppos = pos + len; 1561 return len; 1562 } 1563 1564 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 1565 size_t len, loff_t *ppos) 1566 { 1567 return -EACCES; 1568 } 1569 1570 static const struct file_operations debugfs_timings_ops = { 1571 .owner = THIS_MODULE, 1572 .open = debugfs_timings_open, 1573 .release = debugfs_timings_release, 1574 .read = debugfs_timings_read, 1575 .write = debugfs_timings_write, 1576 .llseek = generic_file_llseek, 1577 }; 1578 1579 /* Create a debugfs directory for the vcpu */ 1580 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1581 { 1582 char buf[16]; 1583 struct kvm *kvm = vcpu->kvm; 1584 1585 snprintf(buf, sizeof(buf), "vcpu%u", id); 1586 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 1587 return; 1588 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 1589 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 1590 return; 1591 vcpu->arch.debugfs_timings = 1592 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 1593 vcpu, &debugfs_timings_ops); 1594 } 1595 1596 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1597 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1598 { 1599 } 1600 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1601 1602 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1603 unsigned int id) 1604 { 1605 struct kvm_vcpu *vcpu; 1606 int err = -EINVAL; 1607 int core; 1608 struct kvmppc_vcore *vcore; 1609 1610 core = id / threads_per_subcore; 1611 if (core >= KVM_MAX_VCORES) 1612 goto out; 1613 1614 err = -ENOMEM; 1615 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1616 if (!vcpu) 1617 goto out; 1618 1619 err = kvm_vcpu_init(vcpu, kvm, id); 1620 if (err) 1621 goto free_vcpu; 1622 1623 vcpu->arch.shared = &vcpu->arch.shregs; 1624 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1625 /* 1626 * The shared struct is never shared on HV, 1627 * so we can always use host endianness 1628 */ 1629 #ifdef __BIG_ENDIAN__ 1630 vcpu->arch.shared_big_endian = true; 1631 #else 1632 vcpu->arch.shared_big_endian = false; 1633 #endif 1634 #endif 1635 vcpu->arch.mmcr[0] = MMCR0_FC; 1636 vcpu->arch.ctrl = CTRL_RUNLATCH; 1637 /* default to host PVR, since we can't spoof it */ 1638 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1639 spin_lock_init(&vcpu->arch.vpa_update_lock); 1640 spin_lock_init(&vcpu->arch.tbacct_lock); 1641 vcpu->arch.busy_preempt = TB_NIL; 1642 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1643 1644 kvmppc_mmu_book3s_hv_init(vcpu); 1645 1646 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1647 1648 init_waitqueue_head(&vcpu->arch.cpu_run); 1649 1650 mutex_lock(&kvm->lock); 1651 vcore = kvm->arch.vcores[core]; 1652 if (!vcore) { 1653 vcore = kvmppc_vcore_create(kvm, core); 1654 kvm->arch.vcores[core] = vcore; 1655 kvm->arch.online_vcores++; 1656 } 1657 mutex_unlock(&kvm->lock); 1658 1659 if (!vcore) 1660 goto free_vcpu; 1661 1662 spin_lock(&vcore->lock); 1663 ++vcore->num_threads; 1664 spin_unlock(&vcore->lock); 1665 vcpu->arch.vcore = vcore; 1666 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 1667 vcpu->arch.thread_cpu = -1; 1668 1669 vcpu->arch.cpu_type = KVM_CPU_3S_64; 1670 kvmppc_sanity_check(vcpu); 1671 1672 debugfs_vcpu_init(vcpu, id); 1673 1674 return vcpu; 1675 1676 free_vcpu: 1677 kmem_cache_free(kvm_vcpu_cache, vcpu); 1678 out: 1679 return ERR_PTR(err); 1680 } 1681 1682 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 1683 { 1684 if (vpa->pinned_addr) 1685 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 1686 vpa->dirty); 1687 } 1688 1689 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 1690 { 1691 spin_lock(&vcpu->arch.vpa_update_lock); 1692 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 1693 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 1694 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 1695 spin_unlock(&vcpu->arch.vpa_update_lock); 1696 kvm_vcpu_uninit(vcpu); 1697 kmem_cache_free(kvm_vcpu_cache, vcpu); 1698 } 1699 1700 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 1701 { 1702 /* Indicate we want to get back into the guest */ 1703 return 1; 1704 } 1705 1706 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 1707 { 1708 unsigned long dec_nsec, now; 1709 1710 now = get_tb(); 1711 if (now > vcpu->arch.dec_expires) { 1712 /* decrementer has already gone negative */ 1713 kvmppc_core_queue_dec(vcpu); 1714 kvmppc_core_prepare_to_enter(vcpu); 1715 return; 1716 } 1717 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 1718 / tb_ticks_per_sec; 1719 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 1720 HRTIMER_MODE_REL); 1721 vcpu->arch.timer_running = 1; 1722 } 1723 1724 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1725 { 1726 vcpu->arch.ceded = 0; 1727 if (vcpu->arch.timer_running) { 1728 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1729 vcpu->arch.timer_running = 0; 1730 } 1731 } 1732 1733 extern void __kvmppc_vcore_entry(void); 1734 1735 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1736 struct kvm_vcpu *vcpu) 1737 { 1738 u64 now; 1739 1740 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1741 return; 1742 spin_lock_irq(&vcpu->arch.tbacct_lock); 1743 now = mftb(); 1744 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1745 vcpu->arch.stolen_logged; 1746 vcpu->arch.busy_preempt = now; 1747 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1748 spin_unlock_irq(&vcpu->arch.tbacct_lock); 1749 --vc->n_runnable; 1750 list_del(&vcpu->arch.run_list); 1751 } 1752 1753 static int kvmppc_grab_hwthread(int cpu) 1754 { 1755 struct paca_struct *tpaca; 1756 long timeout = 10000; 1757 1758 tpaca = &paca[cpu]; 1759 1760 /* Ensure the thread won't go into the kernel if it wakes */ 1761 tpaca->kvm_hstate.kvm_vcpu = NULL; 1762 tpaca->kvm_hstate.kvm_vcore = NULL; 1763 tpaca->kvm_hstate.napping = 0; 1764 smp_wmb(); 1765 tpaca->kvm_hstate.hwthread_req = 1; 1766 1767 /* 1768 * If the thread is already executing in the kernel (e.g. handling 1769 * a stray interrupt), wait for it to get back to nap mode. 1770 * The smp_mb() is to ensure that our setting of hwthread_req 1771 * is visible before we look at hwthread_state, so if this 1772 * races with the code at system_reset_pSeries and the thread 1773 * misses our setting of hwthread_req, we are sure to see its 1774 * setting of hwthread_state, and vice versa. 1775 */ 1776 smp_mb(); 1777 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1778 if (--timeout <= 0) { 1779 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1780 return -EBUSY; 1781 } 1782 udelay(1); 1783 } 1784 return 0; 1785 } 1786 1787 static void kvmppc_release_hwthread(int cpu) 1788 { 1789 struct paca_struct *tpaca; 1790 1791 tpaca = &paca[cpu]; 1792 tpaca->kvm_hstate.hwthread_req = 0; 1793 tpaca->kvm_hstate.kvm_vcpu = NULL; 1794 tpaca->kvm_hstate.kvm_vcore = NULL; 1795 tpaca->kvm_hstate.kvm_split_mode = NULL; 1796 } 1797 1798 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 1799 { 1800 int cpu; 1801 struct paca_struct *tpaca; 1802 struct kvmppc_vcore *mvc = vc->master_vcore; 1803 1804 cpu = vc->pcpu; 1805 if (vcpu) { 1806 if (vcpu->arch.timer_running) { 1807 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1808 vcpu->arch.timer_running = 0; 1809 } 1810 cpu += vcpu->arch.ptid; 1811 vcpu->cpu = mvc->pcpu; 1812 vcpu->arch.thread_cpu = cpu; 1813 } 1814 tpaca = &paca[cpu]; 1815 tpaca->kvm_hstate.kvm_vcpu = vcpu; 1816 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu; 1817 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 1818 smp_wmb(); 1819 tpaca->kvm_hstate.kvm_vcore = mvc; 1820 if (cpu != smp_processor_id()) 1821 kvmppc_ipi_thread(cpu); 1822 } 1823 1824 static void kvmppc_wait_for_nap(void) 1825 { 1826 int cpu = smp_processor_id(); 1827 int i, loops; 1828 1829 for (loops = 0; loops < 1000000; ++loops) { 1830 /* 1831 * Check if all threads are finished. 1832 * We set the vcore pointer when starting a thread 1833 * and the thread clears it when finished, so we look 1834 * for any threads that still have a non-NULL vcore ptr. 1835 */ 1836 for (i = 1; i < threads_per_subcore; ++i) 1837 if (paca[cpu + i].kvm_hstate.kvm_vcore) 1838 break; 1839 if (i == threads_per_subcore) { 1840 HMT_medium(); 1841 return; 1842 } 1843 HMT_low(); 1844 } 1845 HMT_medium(); 1846 for (i = 1; i < threads_per_subcore; ++i) 1847 if (paca[cpu + i].kvm_hstate.kvm_vcore) 1848 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 1849 } 1850 1851 /* 1852 * Check that we are on thread 0 and that any other threads in 1853 * this core are off-line. Then grab the threads so they can't 1854 * enter the kernel. 1855 */ 1856 static int on_primary_thread(void) 1857 { 1858 int cpu = smp_processor_id(); 1859 int thr; 1860 1861 /* Are we on a primary subcore? */ 1862 if (cpu_thread_in_subcore(cpu)) 1863 return 0; 1864 1865 thr = 0; 1866 while (++thr < threads_per_subcore) 1867 if (cpu_online(cpu + thr)) 1868 return 0; 1869 1870 /* Grab all hw threads so they can't go into the kernel */ 1871 for (thr = 1; thr < threads_per_subcore; ++thr) { 1872 if (kvmppc_grab_hwthread(cpu + thr)) { 1873 /* Couldn't grab one; let the others go */ 1874 do { 1875 kvmppc_release_hwthread(cpu + thr); 1876 } while (--thr > 0); 1877 return 0; 1878 } 1879 } 1880 return 1; 1881 } 1882 1883 /* 1884 * A list of virtual cores for each physical CPU. 1885 * These are vcores that could run but their runner VCPU tasks are 1886 * (or may be) preempted. 1887 */ 1888 struct preempted_vcore_list { 1889 struct list_head list; 1890 spinlock_t lock; 1891 }; 1892 1893 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 1894 1895 static void init_vcore_lists(void) 1896 { 1897 int cpu; 1898 1899 for_each_possible_cpu(cpu) { 1900 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 1901 spin_lock_init(&lp->lock); 1902 INIT_LIST_HEAD(&lp->list); 1903 } 1904 } 1905 1906 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 1907 { 1908 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 1909 1910 vc->vcore_state = VCORE_PREEMPT; 1911 vc->pcpu = smp_processor_id(); 1912 if (vc->num_threads < threads_per_subcore) { 1913 spin_lock(&lp->lock); 1914 list_add_tail(&vc->preempt_list, &lp->list); 1915 spin_unlock(&lp->lock); 1916 } 1917 1918 /* Start accumulating stolen time */ 1919 kvmppc_core_start_stolen(vc); 1920 } 1921 1922 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 1923 { 1924 struct preempted_vcore_list *lp; 1925 1926 kvmppc_core_end_stolen(vc); 1927 if (!list_empty(&vc->preempt_list)) { 1928 lp = &per_cpu(preempted_vcores, vc->pcpu); 1929 spin_lock(&lp->lock); 1930 list_del_init(&vc->preempt_list); 1931 spin_unlock(&lp->lock); 1932 } 1933 vc->vcore_state = VCORE_INACTIVE; 1934 } 1935 1936 /* 1937 * This stores information about the virtual cores currently 1938 * assigned to a physical core. 1939 */ 1940 struct core_info { 1941 int n_subcores; 1942 int max_subcore_threads; 1943 int total_threads; 1944 int subcore_threads[MAX_SUBCORES]; 1945 struct kvm *subcore_vm[MAX_SUBCORES]; 1946 struct list_head vcs[MAX_SUBCORES]; 1947 }; 1948 1949 /* 1950 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 1951 * respectively in 2-way micro-threading (split-core) mode. 1952 */ 1953 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 1954 1955 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 1956 { 1957 int sub; 1958 1959 memset(cip, 0, sizeof(*cip)); 1960 cip->n_subcores = 1; 1961 cip->max_subcore_threads = vc->num_threads; 1962 cip->total_threads = vc->num_threads; 1963 cip->subcore_threads[0] = vc->num_threads; 1964 cip->subcore_vm[0] = vc->kvm; 1965 for (sub = 0; sub < MAX_SUBCORES; ++sub) 1966 INIT_LIST_HEAD(&cip->vcs[sub]); 1967 list_add_tail(&vc->preempt_list, &cip->vcs[0]); 1968 } 1969 1970 static bool subcore_config_ok(int n_subcores, int n_threads) 1971 { 1972 /* Can only dynamically split if unsplit to begin with */ 1973 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 1974 return false; 1975 if (n_subcores > MAX_SUBCORES) 1976 return false; 1977 if (n_subcores > 1) { 1978 if (!(dynamic_mt_modes & 2)) 1979 n_subcores = 4; 1980 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 1981 return false; 1982 } 1983 1984 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 1985 } 1986 1987 static void init_master_vcore(struct kvmppc_vcore *vc) 1988 { 1989 vc->master_vcore = vc; 1990 vc->entry_exit_map = 0; 1991 vc->in_guest = 0; 1992 vc->napping_threads = 0; 1993 vc->conferring_threads = 0; 1994 } 1995 1996 /* 1997 * See if the existing subcores can be split into 3 (or fewer) subcores 1998 * of at most two threads each, so we can fit in another vcore. This 1999 * assumes there are at most two subcores and at most 6 threads in total. 2000 */ 2001 static bool can_split_piggybacked_subcores(struct core_info *cip) 2002 { 2003 int sub, new_sub; 2004 int large_sub = -1; 2005 int thr; 2006 int n_subcores = cip->n_subcores; 2007 struct kvmppc_vcore *vc, *vcnext; 2008 struct kvmppc_vcore *master_vc = NULL; 2009 2010 for (sub = 0; sub < cip->n_subcores; ++sub) { 2011 if (cip->subcore_threads[sub] <= 2) 2012 continue; 2013 if (large_sub >= 0) 2014 return false; 2015 large_sub = sub; 2016 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore, 2017 preempt_list); 2018 if (vc->num_threads > 2) 2019 return false; 2020 n_subcores += (cip->subcore_threads[sub] - 1) >> 1; 2021 } 2022 if (large_sub < 0 || !subcore_config_ok(n_subcores + 1, 2)) 2023 return false; 2024 2025 /* 2026 * Seems feasible, so go through and move vcores to new subcores. 2027 * Note that when we have two or more vcores in one subcore, 2028 * all those vcores must have only one thread each. 2029 */ 2030 new_sub = cip->n_subcores; 2031 thr = 0; 2032 sub = large_sub; 2033 list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) { 2034 if (thr >= 2) { 2035 list_del(&vc->preempt_list); 2036 list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]); 2037 /* vc->num_threads must be 1 */ 2038 if (++cip->subcore_threads[new_sub] == 1) { 2039 cip->subcore_vm[new_sub] = vc->kvm; 2040 init_master_vcore(vc); 2041 master_vc = vc; 2042 ++cip->n_subcores; 2043 } else { 2044 vc->master_vcore = master_vc; 2045 ++new_sub; 2046 } 2047 } 2048 thr += vc->num_threads; 2049 } 2050 cip->subcore_threads[large_sub] = 2; 2051 cip->max_subcore_threads = 2; 2052 2053 return true; 2054 } 2055 2056 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2057 { 2058 int n_threads = vc->num_threads; 2059 int sub; 2060 2061 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2062 return false; 2063 2064 if (n_threads < cip->max_subcore_threads) 2065 n_threads = cip->max_subcore_threads; 2066 if (subcore_config_ok(cip->n_subcores + 1, n_threads)) { 2067 cip->max_subcore_threads = n_threads; 2068 } else if (cip->n_subcores <= 2 && cip->total_threads <= 6 && 2069 vc->num_threads <= 2) { 2070 /* 2071 * We may be able to fit another subcore in by 2072 * splitting an existing subcore with 3 or 4 2073 * threads into two 2-thread subcores, or one 2074 * with 5 or 6 threads into three subcores. 2075 * We can only do this if those subcores have 2076 * piggybacked virtual cores. 2077 */ 2078 if (!can_split_piggybacked_subcores(cip)) 2079 return false; 2080 } else { 2081 return false; 2082 } 2083 2084 sub = cip->n_subcores; 2085 ++cip->n_subcores; 2086 cip->total_threads += vc->num_threads; 2087 cip->subcore_threads[sub] = vc->num_threads; 2088 cip->subcore_vm[sub] = vc->kvm; 2089 init_master_vcore(vc); 2090 list_del(&vc->preempt_list); 2091 list_add_tail(&vc->preempt_list, &cip->vcs[sub]); 2092 2093 return true; 2094 } 2095 2096 static bool can_piggyback_subcore(struct kvmppc_vcore *pvc, 2097 struct core_info *cip, int sub) 2098 { 2099 struct kvmppc_vcore *vc; 2100 int n_thr; 2101 2102 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore, 2103 preempt_list); 2104 2105 /* require same VM and same per-core reg values */ 2106 if (pvc->kvm != vc->kvm || 2107 pvc->tb_offset != vc->tb_offset || 2108 pvc->pcr != vc->pcr || 2109 pvc->lpcr != vc->lpcr) 2110 return false; 2111 2112 /* P8 guest with > 1 thread per core would see wrong TIR value */ 2113 if (cpu_has_feature(CPU_FTR_ARCH_207S) && 2114 (vc->num_threads > 1 || pvc->num_threads > 1)) 2115 return false; 2116 2117 n_thr = cip->subcore_threads[sub] + pvc->num_threads; 2118 if (n_thr > cip->max_subcore_threads) { 2119 if (!subcore_config_ok(cip->n_subcores, n_thr)) 2120 return false; 2121 cip->max_subcore_threads = n_thr; 2122 } 2123 2124 cip->total_threads += pvc->num_threads; 2125 cip->subcore_threads[sub] = n_thr; 2126 pvc->master_vcore = vc; 2127 list_del(&pvc->preempt_list); 2128 list_add_tail(&pvc->preempt_list, &cip->vcs[sub]); 2129 2130 return true; 2131 } 2132 2133 /* 2134 * Work out whether it is possible to piggyback the execution of 2135 * vcore *pvc onto the execution of the other vcores described in *cip. 2136 */ 2137 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2138 int target_threads) 2139 { 2140 int sub; 2141 2142 if (cip->total_threads + pvc->num_threads > target_threads) 2143 return false; 2144 for (sub = 0; sub < cip->n_subcores; ++sub) 2145 if (cip->subcore_threads[sub] && 2146 can_piggyback_subcore(pvc, cip, sub)) 2147 return true; 2148 2149 if (can_dynamic_split(pvc, cip)) 2150 return true; 2151 2152 return false; 2153 } 2154 2155 static void prepare_threads(struct kvmppc_vcore *vc) 2156 { 2157 struct kvm_vcpu *vcpu, *vnext; 2158 2159 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 2160 arch.run_list) { 2161 if (signal_pending(vcpu->arch.run_task)) 2162 vcpu->arch.ret = -EINTR; 2163 else if (vcpu->arch.vpa.update_pending || 2164 vcpu->arch.slb_shadow.update_pending || 2165 vcpu->arch.dtl.update_pending) 2166 vcpu->arch.ret = RESUME_GUEST; 2167 else 2168 continue; 2169 kvmppc_remove_runnable(vc, vcpu); 2170 wake_up(&vcpu->arch.cpu_run); 2171 } 2172 } 2173 2174 static void collect_piggybacks(struct core_info *cip, int target_threads) 2175 { 2176 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2177 struct kvmppc_vcore *pvc, *vcnext; 2178 2179 spin_lock(&lp->lock); 2180 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2181 if (!spin_trylock(&pvc->lock)) 2182 continue; 2183 prepare_threads(pvc); 2184 if (!pvc->n_runnable) { 2185 list_del_init(&pvc->preempt_list); 2186 if (pvc->runner == NULL) { 2187 pvc->vcore_state = VCORE_INACTIVE; 2188 kvmppc_core_end_stolen(pvc); 2189 } 2190 spin_unlock(&pvc->lock); 2191 continue; 2192 } 2193 if (!can_piggyback(pvc, cip, target_threads)) { 2194 spin_unlock(&pvc->lock); 2195 continue; 2196 } 2197 kvmppc_core_end_stolen(pvc); 2198 pvc->vcore_state = VCORE_PIGGYBACK; 2199 if (cip->total_threads >= target_threads) 2200 break; 2201 } 2202 spin_unlock(&lp->lock); 2203 } 2204 2205 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2206 { 2207 int still_running = 0; 2208 u64 now; 2209 long ret; 2210 struct kvm_vcpu *vcpu, *vnext; 2211 2212 spin_lock(&vc->lock); 2213 now = get_tb(); 2214 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 2215 arch.run_list) { 2216 /* cancel pending dec exception if dec is positive */ 2217 if (now < vcpu->arch.dec_expires && 2218 kvmppc_core_pending_dec(vcpu)) 2219 kvmppc_core_dequeue_dec(vcpu); 2220 2221 trace_kvm_guest_exit(vcpu); 2222 2223 ret = RESUME_GUEST; 2224 if (vcpu->arch.trap) 2225 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2226 vcpu->arch.run_task); 2227 2228 vcpu->arch.ret = ret; 2229 vcpu->arch.trap = 0; 2230 2231 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2232 if (vcpu->arch.pending_exceptions) 2233 kvmppc_core_prepare_to_enter(vcpu); 2234 if (vcpu->arch.ceded) 2235 kvmppc_set_timer(vcpu); 2236 else 2237 ++still_running; 2238 } else { 2239 kvmppc_remove_runnable(vc, vcpu); 2240 wake_up(&vcpu->arch.cpu_run); 2241 } 2242 } 2243 list_del_init(&vc->preempt_list); 2244 if (!is_master) { 2245 if (still_running > 0) { 2246 kvmppc_vcore_preempt(vc); 2247 } else if (vc->runner) { 2248 vc->vcore_state = VCORE_PREEMPT; 2249 kvmppc_core_start_stolen(vc); 2250 } else { 2251 vc->vcore_state = VCORE_INACTIVE; 2252 } 2253 if (vc->n_runnable > 0 && vc->runner == NULL) { 2254 /* make sure there's a candidate runner awake */ 2255 vcpu = list_first_entry(&vc->runnable_threads, 2256 struct kvm_vcpu, arch.run_list); 2257 wake_up(&vcpu->arch.cpu_run); 2258 } 2259 } 2260 spin_unlock(&vc->lock); 2261 } 2262 2263 /* 2264 * Run a set of guest threads on a physical core. 2265 * Called with vc->lock held. 2266 */ 2267 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 2268 { 2269 struct kvm_vcpu *vcpu, *vnext; 2270 int i; 2271 int srcu_idx; 2272 struct core_info core_info; 2273 struct kvmppc_vcore *pvc, *vcnext; 2274 struct kvm_split_mode split_info, *sip; 2275 int split, subcore_size, active; 2276 int sub; 2277 bool thr0_done; 2278 unsigned long cmd_bit, stat_bit; 2279 int pcpu, thr; 2280 int target_threads; 2281 2282 /* 2283 * Remove from the list any threads that have a signal pending 2284 * or need a VPA update done 2285 */ 2286 prepare_threads(vc); 2287 2288 /* if the runner is no longer runnable, let the caller pick a new one */ 2289 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 2290 return; 2291 2292 /* 2293 * Initialize *vc. 2294 */ 2295 init_master_vcore(vc); 2296 vc->preempt_tb = TB_NIL; 2297 2298 /* 2299 * Make sure we are running on primary threads, and that secondary 2300 * threads are offline. Also check if the number of threads in this 2301 * guest are greater than the current system threads per guest. 2302 */ 2303 if ((threads_per_core > 1) && 2304 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 2305 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 2306 arch.run_list) { 2307 vcpu->arch.ret = -EBUSY; 2308 kvmppc_remove_runnable(vc, vcpu); 2309 wake_up(&vcpu->arch.cpu_run); 2310 } 2311 goto out; 2312 } 2313 2314 /* 2315 * See if we could run any other vcores on the physical core 2316 * along with this one. 2317 */ 2318 init_core_info(&core_info, vc); 2319 pcpu = smp_processor_id(); 2320 target_threads = threads_per_subcore; 2321 if (target_smt_mode && target_smt_mode < target_threads) 2322 target_threads = target_smt_mode; 2323 if (vc->num_threads < target_threads) 2324 collect_piggybacks(&core_info, target_threads); 2325 2326 /* Decide on micro-threading (split-core) mode */ 2327 subcore_size = threads_per_subcore; 2328 cmd_bit = stat_bit = 0; 2329 split = core_info.n_subcores; 2330 sip = NULL; 2331 if (split > 1) { 2332 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */ 2333 if (split == 2 && (dynamic_mt_modes & 2)) { 2334 cmd_bit = HID0_POWER8_1TO2LPAR; 2335 stat_bit = HID0_POWER8_2LPARMODE; 2336 } else { 2337 split = 4; 2338 cmd_bit = HID0_POWER8_1TO4LPAR; 2339 stat_bit = HID0_POWER8_4LPARMODE; 2340 } 2341 subcore_size = MAX_SMT_THREADS / split; 2342 sip = &split_info; 2343 memset(&split_info, 0, sizeof(split_info)); 2344 split_info.rpr = mfspr(SPRN_RPR); 2345 split_info.pmmar = mfspr(SPRN_PMMAR); 2346 split_info.ldbar = mfspr(SPRN_LDBAR); 2347 split_info.subcore_size = subcore_size; 2348 for (sub = 0; sub < core_info.n_subcores; ++sub) 2349 split_info.master_vcs[sub] = 2350 list_first_entry(&core_info.vcs[sub], 2351 struct kvmppc_vcore, preempt_list); 2352 /* order writes to split_info before kvm_split_mode pointer */ 2353 smp_wmb(); 2354 } 2355 pcpu = smp_processor_id(); 2356 for (thr = 0; thr < threads_per_subcore; ++thr) 2357 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip; 2358 2359 /* Initiate micro-threading (split-core) if required */ 2360 if (cmd_bit) { 2361 unsigned long hid0 = mfspr(SPRN_HID0); 2362 2363 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 2364 mb(); 2365 mtspr(SPRN_HID0, hid0); 2366 isync(); 2367 for (;;) { 2368 hid0 = mfspr(SPRN_HID0); 2369 if (hid0 & stat_bit) 2370 break; 2371 cpu_relax(); 2372 } 2373 } 2374 2375 /* Start all the threads */ 2376 active = 0; 2377 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2378 thr = subcore_thread_map[sub]; 2379 thr0_done = false; 2380 active |= 1 << thr; 2381 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) { 2382 pvc->pcpu = pcpu + thr; 2383 list_for_each_entry(vcpu, &pvc->runnable_threads, 2384 arch.run_list) { 2385 kvmppc_start_thread(vcpu, pvc); 2386 kvmppc_create_dtl_entry(vcpu, pvc); 2387 trace_kvm_guest_enter(vcpu); 2388 if (!vcpu->arch.ptid) 2389 thr0_done = true; 2390 active |= 1 << (thr + vcpu->arch.ptid); 2391 } 2392 /* 2393 * We need to start the first thread of each subcore 2394 * even if it doesn't have a vcpu. 2395 */ 2396 if (pvc->master_vcore == pvc && !thr0_done) 2397 kvmppc_start_thread(NULL, pvc); 2398 thr += pvc->num_threads; 2399 } 2400 } 2401 2402 /* 2403 * Ensure that split_info.do_nap is set after setting 2404 * the vcore pointer in the PACA of the secondaries. 2405 */ 2406 smp_mb(); 2407 if (cmd_bit) 2408 split_info.do_nap = 1; /* ask secondaries to nap when done */ 2409 2410 /* 2411 * When doing micro-threading, poke the inactive threads as well. 2412 * This gets them to the nap instruction after kvm_do_nap, 2413 * which reduces the time taken to unsplit later. 2414 */ 2415 if (split > 1) 2416 for (thr = 1; thr < threads_per_subcore; ++thr) 2417 if (!(active & (1 << thr))) 2418 kvmppc_ipi_thread(pcpu + thr); 2419 2420 vc->vcore_state = VCORE_RUNNING; 2421 preempt_disable(); 2422 2423 trace_kvmppc_run_core(vc, 0); 2424 2425 for (sub = 0; sub < core_info.n_subcores; ++sub) 2426 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) 2427 spin_unlock(&pvc->lock); 2428 2429 kvm_guest_enter(); 2430 2431 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 2432 2433 __kvmppc_vcore_entry(); 2434 2435 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 2436 2437 spin_lock(&vc->lock); 2438 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 2439 vc->vcore_state = VCORE_EXITING; 2440 2441 /* wait for secondary threads to finish writing their state to memory */ 2442 kvmppc_wait_for_nap(); 2443 2444 /* Return to whole-core mode if we split the core earlier */ 2445 if (split > 1) { 2446 unsigned long hid0 = mfspr(SPRN_HID0); 2447 unsigned long loops = 0; 2448 2449 hid0 &= ~HID0_POWER8_DYNLPARDIS; 2450 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 2451 mb(); 2452 mtspr(SPRN_HID0, hid0); 2453 isync(); 2454 for (;;) { 2455 hid0 = mfspr(SPRN_HID0); 2456 if (!(hid0 & stat_bit)) 2457 break; 2458 cpu_relax(); 2459 ++loops; 2460 } 2461 split_info.do_nap = 0; 2462 } 2463 2464 /* Let secondaries go back to the offline loop */ 2465 for (i = 0; i < threads_per_subcore; ++i) { 2466 kvmppc_release_hwthread(pcpu + i); 2467 if (sip && sip->napped[i]) 2468 kvmppc_ipi_thread(pcpu + i); 2469 } 2470 2471 spin_unlock(&vc->lock); 2472 2473 /* make sure updates to secondary vcpu structs are visible now */ 2474 smp_mb(); 2475 kvm_guest_exit(); 2476 2477 for (sub = 0; sub < core_info.n_subcores; ++sub) 2478 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub], 2479 preempt_list) 2480 post_guest_process(pvc, pvc == vc); 2481 2482 spin_lock(&vc->lock); 2483 preempt_enable(); 2484 2485 out: 2486 vc->vcore_state = VCORE_INACTIVE; 2487 trace_kvmppc_run_core(vc, 1); 2488 } 2489 2490 /* 2491 * Wait for some other vcpu thread to execute us, and 2492 * wake us up when we need to handle something in the host. 2493 */ 2494 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 2495 struct kvm_vcpu *vcpu, int wait_state) 2496 { 2497 DEFINE_WAIT(wait); 2498 2499 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 2500 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2501 spin_unlock(&vc->lock); 2502 schedule(); 2503 spin_lock(&vc->lock); 2504 } 2505 finish_wait(&vcpu->arch.cpu_run, &wait); 2506 } 2507 2508 /* 2509 * All the vcpus in this vcore are idle, so wait for a decrementer 2510 * or external interrupt to one of the vcpus. vc->lock is held. 2511 */ 2512 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 2513 { 2514 struct kvm_vcpu *vcpu; 2515 int do_sleep = 1; 2516 2517 DEFINE_WAIT(wait); 2518 2519 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 2520 2521 /* 2522 * Check one last time for pending exceptions and ceded state after 2523 * we put ourselves on the wait queue 2524 */ 2525 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 2526 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) { 2527 do_sleep = 0; 2528 break; 2529 } 2530 } 2531 2532 if (!do_sleep) { 2533 finish_wait(&vc->wq, &wait); 2534 return; 2535 } 2536 2537 vc->vcore_state = VCORE_SLEEPING; 2538 trace_kvmppc_vcore_blocked(vc, 0); 2539 spin_unlock(&vc->lock); 2540 schedule(); 2541 finish_wait(&vc->wq, &wait); 2542 spin_lock(&vc->lock); 2543 vc->vcore_state = VCORE_INACTIVE; 2544 trace_kvmppc_vcore_blocked(vc, 1); 2545 } 2546 2547 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 2548 { 2549 int n_ceded; 2550 struct kvmppc_vcore *vc; 2551 struct kvm_vcpu *v, *vn; 2552 2553 trace_kvmppc_run_vcpu_enter(vcpu); 2554 2555 kvm_run->exit_reason = 0; 2556 vcpu->arch.ret = RESUME_GUEST; 2557 vcpu->arch.trap = 0; 2558 kvmppc_update_vpas(vcpu); 2559 2560 /* 2561 * Synchronize with other threads in this virtual core 2562 */ 2563 vc = vcpu->arch.vcore; 2564 spin_lock(&vc->lock); 2565 vcpu->arch.ceded = 0; 2566 vcpu->arch.run_task = current; 2567 vcpu->arch.kvm_run = kvm_run; 2568 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 2569 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 2570 vcpu->arch.busy_preempt = TB_NIL; 2571 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 2572 ++vc->n_runnable; 2573 2574 /* 2575 * This happens the first time this is called for a vcpu. 2576 * If the vcore is already running, we may be able to start 2577 * this thread straight away and have it join in. 2578 */ 2579 if (!signal_pending(current)) { 2580 if (vc->vcore_state == VCORE_PIGGYBACK) { 2581 struct kvmppc_vcore *mvc = vc->master_vcore; 2582 if (spin_trylock(&mvc->lock)) { 2583 if (mvc->vcore_state == VCORE_RUNNING && 2584 !VCORE_IS_EXITING(mvc)) { 2585 kvmppc_create_dtl_entry(vcpu, vc); 2586 kvmppc_start_thread(vcpu, vc); 2587 trace_kvm_guest_enter(vcpu); 2588 } 2589 spin_unlock(&mvc->lock); 2590 } 2591 } else if (vc->vcore_state == VCORE_RUNNING && 2592 !VCORE_IS_EXITING(vc)) { 2593 kvmppc_create_dtl_entry(vcpu, vc); 2594 kvmppc_start_thread(vcpu, vc); 2595 trace_kvm_guest_enter(vcpu); 2596 } else if (vc->vcore_state == VCORE_SLEEPING) { 2597 wake_up(&vc->wq); 2598 } 2599 2600 } 2601 2602 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2603 !signal_pending(current)) { 2604 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 2605 kvmppc_vcore_end_preempt(vc); 2606 2607 if (vc->vcore_state != VCORE_INACTIVE) { 2608 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 2609 continue; 2610 } 2611 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 2612 arch.run_list) { 2613 kvmppc_core_prepare_to_enter(v); 2614 if (signal_pending(v->arch.run_task)) { 2615 kvmppc_remove_runnable(vc, v); 2616 v->stat.signal_exits++; 2617 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 2618 v->arch.ret = -EINTR; 2619 wake_up(&v->arch.cpu_run); 2620 } 2621 } 2622 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2623 break; 2624 n_ceded = 0; 2625 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 2626 if (!v->arch.pending_exceptions) 2627 n_ceded += v->arch.ceded; 2628 else 2629 v->arch.ceded = 0; 2630 } 2631 vc->runner = vcpu; 2632 if (n_ceded == vc->n_runnable) { 2633 kvmppc_vcore_blocked(vc); 2634 } else if (need_resched()) { 2635 kvmppc_vcore_preempt(vc); 2636 /* Let something else run */ 2637 cond_resched_lock(&vc->lock); 2638 if (vc->vcore_state == VCORE_PREEMPT) 2639 kvmppc_vcore_end_preempt(vc); 2640 } else { 2641 kvmppc_run_core(vc); 2642 } 2643 vc->runner = NULL; 2644 } 2645 2646 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2647 (vc->vcore_state == VCORE_RUNNING || 2648 vc->vcore_state == VCORE_EXITING || 2649 vc->vcore_state == VCORE_PIGGYBACK)) 2650 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 2651 2652 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 2653 kvmppc_vcore_end_preempt(vc); 2654 2655 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2656 kvmppc_remove_runnable(vc, vcpu); 2657 vcpu->stat.signal_exits++; 2658 kvm_run->exit_reason = KVM_EXIT_INTR; 2659 vcpu->arch.ret = -EINTR; 2660 } 2661 2662 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 2663 /* Wake up some vcpu to run the core */ 2664 v = list_first_entry(&vc->runnable_threads, 2665 struct kvm_vcpu, arch.run_list); 2666 wake_up(&v->arch.cpu_run); 2667 } 2668 2669 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 2670 spin_unlock(&vc->lock); 2671 return vcpu->arch.ret; 2672 } 2673 2674 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 2675 { 2676 int r; 2677 int srcu_idx; 2678 2679 if (!vcpu->arch.sane) { 2680 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2681 return -EINVAL; 2682 } 2683 2684 kvmppc_core_prepare_to_enter(vcpu); 2685 2686 /* No need to go into the guest when all we'll do is come back out */ 2687 if (signal_pending(current)) { 2688 run->exit_reason = KVM_EXIT_INTR; 2689 return -EINTR; 2690 } 2691 2692 atomic_inc(&vcpu->kvm->arch.vcpus_running); 2693 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */ 2694 smp_mb(); 2695 2696 /* On the first time here, set up HTAB and VRMA */ 2697 if (!vcpu->kvm->arch.hpte_setup_done) { 2698 r = kvmppc_hv_setup_htab_rma(vcpu); 2699 if (r) 2700 goto out; 2701 } 2702 2703 flush_fp_to_thread(current); 2704 flush_altivec_to_thread(current); 2705 flush_vsx_to_thread(current); 2706 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 2707 vcpu->arch.pgdir = current->mm->pgd; 2708 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2709 2710 do { 2711 r = kvmppc_run_vcpu(run, vcpu); 2712 2713 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 2714 !(vcpu->arch.shregs.msr & MSR_PR)) { 2715 trace_kvm_hcall_enter(vcpu); 2716 r = kvmppc_pseries_do_hcall(vcpu); 2717 trace_kvm_hcall_exit(vcpu, r); 2718 kvmppc_core_prepare_to_enter(vcpu); 2719 } else if (r == RESUME_PAGE_FAULT) { 2720 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2721 r = kvmppc_book3s_hv_page_fault(run, vcpu, 2722 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 2723 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2724 } 2725 } while (is_kvmppc_resume_guest(r)); 2726 2727 out: 2728 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2729 atomic_dec(&vcpu->kvm->arch.vcpus_running); 2730 return r; 2731 } 2732 2733 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 2734 int linux_psize) 2735 { 2736 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 2737 2738 if (!def->shift) 2739 return; 2740 (*sps)->page_shift = def->shift; 2741 (*sps)->slb_enc = def->sllp; 2742 (*sps)->enc[0].page_shift = def->shift; 2743 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 2744 /* 2745 * Add 16MB MPSS support if host supports it 2746 */ 2747 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) { 2748 (*sps)->enc[1].page_shift = 24; 2749 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M]; 2750 } 2751 (*sps)++; 2752 } 2753 2754 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 2755 struct kvm_ppc_smmu_info *info) 2756 { 2757 struct kvm_ppc_one_seg_page_size *sps; 2758 2759 info->flags = KVM_PPC_PAGE_SIZES_REAL; 2760 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 2761 info->flags |= KVM_PPC_1T_SEGMENTS; 2762 info->slb_size = mmu_slb_size; 2763 2764 /* We only support these sizes for now, and no muti-size segments */ 2765 sps = &info->sps[0]; 2766 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 2767 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 2768 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 2769 2770 return 0; 2771 } 2772 2773 /* 2774 * Get (and clear) the dirty memory log for a memory slot. 2775 */ 2776 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 2777 struct kvm_dirty_log *log) 2778 { 2779 struct kvm_memslots *slots; 2780 struct kvm_memory_slot *memslot; 2781 int r; 2782 unsigned long n; 2783 2784 mutex_lock(&kvm->slots_lock); 2785 2786 r = -EINVAL; 2787 if (log->slot >= KVM_USER_MEM_SLOTS) 2788 goto out; 2789 2790 slots = kvm_memslots(kvm); 2791 memslot = id_to_memslot(slots, log->slot); 2792 r = -ENOENT; 2793 if (!memslot->dirty_bitmap) 2794 goto out; 2795 2796 n = kvm_dirty_bitmap_bytes(memslot); 2797 memset(memslot->dirty_bitmap, 0, n); 2798 2799 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); 2800 if (r) 2801 goto out; 2802 2803 r = -EFAULT; 2804 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 2805 goto out; 2806 2807 r = 0; 2808 out: 2809 mutex_unlock(&kvm->slots_lock); 2810 return r; 2811 } 2812 2813 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 2814 struct kvm_memory_slot *dont) 2815 { 2816 if (!dont || free->arch.rmap != dont->arch.rmap) { 2817 vfree(free->arch.rmap); 2818 free->arch.rmap = NULL; 2819 } 2820 } 2821 2822 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 2823 unsigned long npages) 2824 { 2825 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 2826 if (!slot->arch.rmap) 2827 return -ENOMEM; 2828 2829 return 0; 2830 } 2831 2832 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 2833 struct kvm_memory_slot *memslot, 2834 const struct kvm_userspace_memory_region *mem) 2835 { 2836 return 0; 2837 } 2838 2839 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 2840 const struct kvm_userspace_memory_region *mem, 2841 const struct kvm_memory_slot *old, 2842 const struct kvm_memory_slot *new) 2843 { 2844 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 2845 struct kvm_memslots *slots; 2846 struct kvm_memory_slot *memslot; 2847 2848 if (npages && old->npages) { 2849 /* 2850 * If modifying a memslot, reset all the rmap dirty bits. 2851 * If this is a new memslot, we don't need to do anything 2852 * since the rmap array starts out as all zeroes, 2853 * i.e. no pages are dirty. 2854 */ 2855 slots = kvm_memslots(kvm); 2856 memslot = id_to_memslot(slots, mem->slot); 2857 kvmppc_hv_get_dirty_log(kvm, memslot, NULL); 2858 } 2859 } 2860 2861 /* 2862 * Update LPCR values in kvm->arch and in vcores. 2863 * Caller must hold kvm->lock. 2864 */ 2865 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 2866 { 2867 long int i; 2868 u32 cores_done = 0; 2869 2870 if ((kvm->arch.lpcr & mask) == lpcr) 2871 return; 2872 2873 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 2874 2875 for (i = 0; i < KVM_MAX_VCORES; ++i) { 2876 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 2877 if (!vc) 2878 continue; 2879 spin_lock(&vc->lock); 2880 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 2881 spin_unlock(&vc->lock); 2882 if (++cores_done >= kvm->arch.online_vcores) 2883 break; 2884 } 2885 } 2886 2887 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 2888 { 2889 return; 2890 } 2891 2892 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 2893 { 2894 int err = 0; 2895 struct kvm *kvm = vcpu->kvm; 2896 unsigned long hva; 2897 struct kvm_memory_slot *memslot; 2898 struct vm_area_struct *vma; 2899 unsigned long lpcr = 0, senc; 2900 unsigned long psize, porder; 2901 int srcu_idx; 2902 2903 mutex_lock(&kvm->lock); 2904 if (kvm->arch.hpte_setup_done) 2905 goto out; /* another vcpu beat us to it */ 2906 2907 /* Allocate hashed page table (if not done already) and reset it */ 2908 if (!kvm->arch.hpt_virt) { 2909 err = kvmppc_alloc_hpt(kvm, NULL); 2910 if (err) { 2911 pr_err("KVM: Couldn't alloc HPT\n"); 2912 goto out; 2913 } 2914 } 2915 2916 /* Look up the memslot for guest physical address 0 */ 2917 srcu_idx = srcu_read_lock(&kvm->srcu); 2918 memslot = gfn_to_memslot(kvm, 0); 2919 2920 /* We must have some memory at 0 by now */ 2921 err = -EINVAL; 2922 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 2923 goto out_srcu; 2924 2925 /* Look up the VMA for the start of this memory slot */ 2926 hva = memslot->userspace_addr; 2927 down_read(¤t->mm->mmap_sem); 2928 vma = find_vma(current->mm, hva); 2929 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 2930 goto up_out; 2931 2932 psize = vma_kernel_pagesize(vma); 2933 porder = __ilog2(psize); 2934 2935 up_read(¤t->mm->mmap_sem); 2936 2937 /* We can handle 4k, 64k or 16M pages in the VRMA */ 2938 err = -EINVAL; 2939 if (!(psize == 0x1000 || psize == 0x10000 || 2940 psize == 0x1000000)) 2941 goto out_srcu; 2942 2943 /* Update VRMASD field in the LPCR */ 2944 senc = slb_pgsize_encoding(psize); 2945 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 2946 (VRMA_VSID << SLB_VSID_SHIFT_1T); 2947 /* the -4 is to account for senc values starting at 0x10 */ 2948 lpcr = senc << (LPCR_VRMASD_SH - 4); 2949 2950 /* Create HPTEs in the hash page table for the VRMA */ 2951 kvmppc_map_vrma(vcpu, memslot, porder); 2952 2953 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 2954 2955 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */ 2956 smp_wmb(); 2957 kvm->arch.hpte_setup_done = 1; 2958 err = 0; 2959 out_srcu: 2960 srcu_read_unlock(&kvm->srcu, srcu_idx); 2961 out: 2962 mutex_unlock(&kvm->lock); 2963 return err; 2964 2965 up_out: 2966 up_read(¤t->mm->mmap_sem); 2967 goto out_srcu; 2968 } 2969 2970 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 2971 { 2972 unsigned long lpcr, lpid; 2973 char buf[32]; 2974 2975 /* Allocate the guest's logical partition ID */ 2976 2977 lpid = kvmppc_alloc_lpid(); 2978 if ((long)lpid < 0) 2979 return -ENOMEM; 2980 kvm->arch.lpid = lpid; 2981 2982 /* 2983 * Since we don't flush the TLB when tearing down a VM, 2984 * and this lpid might have previously been used, 2985 * make sure we flush on each core before running the new VM. 2986 */ 2987 cpumask_setall(&kvm->arch.need_tlb_flush); 2988 2989 /* Start out with the default set of hcalls enabled */ 2990 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 2991 sizeof(kvm->arch.enabled_hcalls)); 2992 2993 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 2994 2995 /* Init LPCR for virtual RMA mode */ 2996 kvm->arch.host_lpid = mfspr(SPRN_LPID); 2997 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 2998 lpcr &= LPCR_PECE | LPCR_LPES; 2999 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 3000 LPCR_VPM0 | LPCR_VPM1; 3001 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 3002 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3003 /* On POWER8 turn on online bit to enable PURR/SPURR */ 3004 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3005 lpcr |= LPCR_ONL; 3006 kvm->arch.lpcr = lpcr; 3007 3008 /* 3009 * Track that we now have a HV mode VM active. This blocks secondary 3010 * CPU threads from coming online. 3011 */ 3012 kvm_hv_vm_activated(); 3013 3014 /* 3015 * Create a debugfs directory for the VM 3016 */ 3017 snprintf(buf, sizeof(buf), "vm%d", current->pid); 3018 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 3019 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 3020 kvmppc_mmu_debugfs_init(kvm); 3021 3022 return 0; 3023 } 3024 3025 static void kvmppc_free_vcores(struct kvm *kvm) 3026 { 3027 long int i; 3028 3029 for (i = 0; i < KVM_MAX_VCORES; ++i) 3030 kfree(kvm->arch.vcores[i]); 3031 kvm->arch.online_vcores = 0; 3032 } 3033 3034 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 3035 { 3036 debugfs_remove_recursive(kvm->arch.debugfs_dir); 3037 3038 kvm_hv_vm_deactivated(); 3039 3040 kvmppc_free_vcores(kvm); 3041 3042 kvmppc_free_hpt(kvm); 3043 } 3044 3045 /* We don't need to emulate any privileged instructions or dcbz */ 3046 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 3047 unsigned int inst, int *advance) 3048 { 3049 return EMULATE_FAIL; 3050 } 3051 3052 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 3053 ulong spr_val) 3054 { 3055 return EMULATE_FAIL; 3056 } 3057 3058 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 3059 ulong *spr_val) 3060 { 3061 return EMULATE_FAIL; 3062 } 3063 3064 static int kvmppc_core_check_processor_compat_hv(void) 3065 { 3066 if (!cpu_has_feature(CPU_FTR_HVMODE) || 3067 !cpu_has_feature(CPU_FTR_ARCH_206)) 3068 return -EIO; 3069 return 0; 3070 } 3071 3072 static long kvm_arch_vm_ioctl_hv(struct file *filp, 3073 unsigned int ioctl, unsigned long arg) 3074 { 3075 struct kvm *kvm __maybe_unused = filp->private_data; 3076 void __user *argp = (void __user *)arg; 3077 long r; 3078 3079 switch (ioctl) { 3080 3081 case KVM_PPC_ALLOCATE_HTAB: { 3082 u32 htab_order; 3083 3084 r = -EFAULT; 3085 if (get_user(htab_order, (u32 __user *)argp)) 3086 break; 3087 r = kvmppc_alloc_reset_hpt(kvm, &htab_order); 3088 if (r) 3089 break; 3090 r = -EFAULT; 3091 if (put_user(htab_order, (u32 __user *)argp)) 3092 break; 3093 r = 0; 3094 break; 3095 } 3096 3097 case KVM_PPC_GET_HTAB_FD: { 3098 struct kvm_get_htab_fd ghf; 3099 3100 r = -EFAULT; 3101 if (copy_from_user(&ghf, argp, sizeof(ghf))) 3102 break; 3103 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 3104 break; 3105 } 3106 3107 default: 3108 r = -ENOTTY; 3109 } 3110 3111 return r; 3112 } 3113 3114 /* 3115 * List of hcall numbers to enable by default. 3116 * For compatibility with old userspace, we enable by default 3117 * all hcalls that were implemented before the hcall-enabling 3118 * facility was added. Note this list should not include H_RTAS. 3119 */ 3120 static unsigned int default_hcall_list[] = { 3121 H_REMOVE, 3122 H_ENTER, 3123 H_READ, 3124 H_PROTECT, 3125 H_BULK_REMOVE, 3126 H_GET_TCE, 3127 H_PUT_TCE, 3128 H_SET_DABR, 3129 H_SET_XDABR, 3130 H_CEDE, 3131 H_PROD, 3132 H_CONFER, 3133 H_REGISTER_VPA, 3134 #ifdef CONFIG_KVM_XICS 3135 H_EOI, 3136 H_CPPR, 3137 H_IPI, 3138 H_IPOLL, 3139 H_XIRR, 3140 H_XIRR_X, 3141 #endif 3142 0 3143 }; 3144 3145 static void init_default_hcalls(void) 3146 { 3147 int i; 3148 unsigned int hcall; 3149 3150 for (i = 0; default_hcall_list[i]; ++i) { 3151 hcall = default_hcall_list[i]; 3152 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 3153 __set_bit(hcall / 4, default_enabled_hcalls); 3154 } 3155 } 3156 3157 static struct kvmppc_ops kvm_ops_hv = { 3158 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 3159 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 3160 .get_one_reg = kvmppc_get_one_reg_hv, 3161 .set_one_reg = kvmppc_set_one_reg_hv, 3162 .vcpu_load = kvmppc_core_vcpu_load_hv, 3163 .vcpu_put = kvmppc_core_vcpu_put_hv, 3164 .set_msr = kvmppc_set_msr_hv, 3165 .vcpu_run = kvmppc_vcpu_run_hv, 3166 .vcpu_create = kvmppc_core_vcpu_create_hv, 3167 .vcpu_free = kvmppc_core_vcpu_free_hv, 3168 .check_requests = kvmppc_core_check_requests_hv, 3169 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 3170 .flush_memslot = kvmppc_core_flush_memslot_hv, 3171 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 3172 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 3173 .unmap_hva = kvm_unmap_hva_hv, 3174 .unmap_hva_range = kvm_unmap_hva_range_hv, 3175 .age_hva = kvm_age_hva_hv, 3176 .test_age_hva = kvm_test_age_hva_hv, 3177 .set_spte_hva = kvm_set_spte_hva_hv, 3178 .mmu_destroy = kvmppc_mmu_destroy_hv, 3179 .free_memslot = kvmppc_core_free_memslot_hv, 3180 .create_memslot = kvmppc_core_create_memslot_hv, 3181 .init_vm = kvmppc_core_init_vm_hv, 3182 .destroy_vm = kvmppc_core_destroy_vm_hv, 3183 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 3184 .emulate_op = kvmppc_core_emulate_op_hv, 3185 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 3186 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 3187 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 3188 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 3189 .hcall_implemented = kvmppc_hcall_impl_hv, 3190 }; 3191 3192 static int kvmppc_book3s_init_hv(void) 3193 { 3194 int r; 3195 /* 3196 * FIXME!! Do we need to check on all cpus ? 3197 */ 3198 r = kvmppc_core_check_processor_compat_hv(); 3199 if (r < 0) 3200 return -ENODEV; 3201 3202 kvm_ops_hv.owner = THIS_MODULE; 3203 kvmppc_hv_ops = &kvm_ops_hv; 3204 3205 init_default_hcalls(); 3206 3207 init_vcore_lists(); 3208 3209 r = kvmppc_mmu_hv_init(); 3210 return r; 3211 } 3212 3213 static void kvmppc_book3s_exit_hv(void) 3214 { 3215 kvmppc_hv_ops = NULL; 3216 } 3217 3218 module_init(kvmppc_book3s_init_hv); 3219 module_exit(kvmppc_book3s_exit_hv); 3220 MODULE_LICENSE("GPL"); 3221 MODULE_ALIAS_MISCDEV(KVM_MINOR); 3222 MODULE_ALIAS("devname:kvm"); 3223