xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 9c5a432a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/interrupt.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/pmc.h>
63 #include <asm/processor.h>
64 #include <asm/cputhreads.h>
65 #include <asm/page.h>
66 #include <asm/hvcall.h>
67 #include <asm/switch_to.h>
68 #include <asm/smp.h>
69 #include <asm/dbell.h>
70 #include <asm/hmi.h>
71 #include <asm/pnv-pci.h>
72 #include <asm/mmu.h>
73 #include <asm/opal.h>
74 #include <asm/xics.h>
75 #include <asm/xive.h>
76 #include <asm/hw_breakpoint.h>
77 #include <asm/kvm_book3s_uvmem.h>
78 #include <asm/ultravisor.h>
79 #include <asm/dtl.h>
80 #include <asm/plpar_wrappers.h>
81 
82 #include "book3s.h"
83 #include "book3s_hv.h"
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace_hv.h"
87 
88 /* #define EXIT_DEBUG */
89 /* #define EXIT_DEBUG_SIMPLE */
90 /* #define EXIT_DEBUG_INT */
91 
92 /* Used to indicate that a guest page fault needs to be handled */
93 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
94 /* Used to indicate that a guest passthrough interrupt needs to be handled */
95 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
96 
97 /* Used as a "null" value for timebase values */
98 #define TB_NIL	(~(u64)0)
99 
100 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
101 
102 static int dynamic_mt_modes = 6;
103 module_param(dynamic_mt_modes, int, 0644);
104 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
105 static int target_smt_mode;
106 module_param(target_smt_mode, int, 0644);
107 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
108 
109 static bool one_vm_per_core;
110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
112 
113 #ifdef CONFIG_KVM_XICS
114 static const struct kernel_param_ops module_param_ops = {
115 	.set = param_set_int,
116 	.get = param_get_int,
117 };
118 
119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
121 
122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
124 #endif
125 
126 /* If set, guests are allowed to create and control nested guests */
127 static bool nested = true;
128 module_param(nested, bool, S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
130 
131 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
132 
133 /*
134  * RWMR values for POWER8.  These control the rate at which PURR
135  * and SPURR count and should be set according to the number of
136  * online threads in the vcore being run.
137  */
138 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
139 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
140 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
141 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
142 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
143 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
144 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
145 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
146 
147 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
148 	RWMR_RPA_P8_1THREAD,
149 	RWMR_RPA_P8_1THREAD,
150 	RWMR_RPA_P8_2THREAD,
151 	RWMR_RPA_P8_3THREAD,
152 	RWMR_RPA_P8_4THREAD,
153 	RWMR_RPA_P8_5THREAD,
154 	RWMR_RPA_P8_6THREAD,
155 	RWMR_RPA_P8_7THREAD,
156 	RWMR_RPA_P8_8THREAD,
157 };
158 
159 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
160 		int *ip)
161 {
162 	int i = *ip;
163 	struct kvm_vcpu *vcpu;
164 
165 	while (++i < MAX_SMT_THREADS) {
166 		vcpu = READ_ONCE(vc->runnable_threads[i]);
167 		if (vcpu) {
168 			*ip = i;
169 			return vcpu;
170 		}
171 	}
172 	return NULL;
173 }
174 
175 /* Used to traverse the list of runnable threads for a given vcore */
176 #define for_each_runnable_thread(i, vcpu, vc) \
177 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
178 
179 static bool kvmppc_ipi_thread(int cpu)
180 {
181 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
182 
183 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
184 	if (kvmhv_on_pseries())
185 		return false;
186 
187 	/* On POWER9 we can use msgsnd to IPI any cpu */
188 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
189 		msg |= get_hard_smp_processor_id(cpu);
190 		smp_mb();
191 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
192 		return true;
193 	}
194 
195 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
196 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
197 		preempt_disable();
198 		if (cpu_first_thread_sibling(cpu) ==
199 		    cpu_first_thread_sibling(smp_processor_id())) {
200 			msg |= cpu_thread_in_core(cpu);
201 			smp_mb();
202 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
203 			preempt_enable();
204 			return true;
205 		}
206 		preempt_enable();
207 	}
208 
209 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
210 	if (cpu >= 0 && cpu < nr_cpu_ids) {
211 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
212 			xics_wake_cpu(cpu);
213 			return true;
214 		}
215 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
216 		return true;
217 	}
218 #endif
219 
220 	return false;
221 }
222 
223 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
224 {
225 	int cpu;
226 	struct rcuwait *waitp;
227 
228 	waitp = kvm_arch_vcpu_get_wait(vcpu);
229 	if (rcuwait_wake_up(waitp))
230 		++vcpu->stat.generic.halt_wakeup;
231 
232 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
233 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
234 		return;
235 
236 	/* CPU points to the first thread of the core */
237 	cpu = vcpu->cpu;
238 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
239 		smp_send_reschedule(cpu);
240 }
241 
242 /*
243  * We use the vcpu_load/put functions to measure stolen time.
244  * Stolen time is counted as time when either the vcpu is able to
245  * run as part of a virtual core, but the task running the vcore
246  * is preempted or sleeping, or when the vcpu needs something done
247  * in the kernel by the task running the vcpu, but that task is
248  * preempted or sleeping.  Those two things have to be counted
249  * separately, since one of the vcpu tasks will take on the job
250  * of running the core, and the other vcpu tasks in the vcore will
251  * sleep waiting for it to do that, but that sleep shouldn't count
252  * as stolen time.
253  *
254  * Hence we accumulate stolen time when the vcpu can run as part of
255  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
256  * needs its task to do other things in the kernel (for example,
257  * service a page fault) in busy_stolen.  We don't accumulate
258  * stolen time for a vcore when it is inactive, or for a vcpu
259  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
260  * a misnomer; it means that the vcpu task is not executing in
261  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
262  * the kernel.  We don't have any way of dividing up that time
263  * between time that the vcpu is genuinely stopped, time that
264  * the task is actively working on behalf of the vcpu, and time
265  * that the task is preempted, so we don't count any of it as
266  * stolen.
267  *
268  * Updates to busy_stolen are protected by arch.tbacct_lock;
269  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
270  * lock.  The stolen times are measured in units of timebase ticks.
271  * (Note that the != TB_NIL checks below are purely defensive;
272  * they should never fail.)
273  */
274 
275 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
276 {
277 	unsigned long flags;
278 
279 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
280 
281 	spin_lock_irqsave(&vc->stoltb_lock, flags);
282 	vc->preempt_tb = tb;
283 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
284 }
285 
286 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
287 {
288 	unsigned long flags;
289 
290 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
291 
292 	spin_lock_irqsave(&vc->stoltb_lock, flags);
293 	if (vc->preempt_tb != TB_NIL) {
294 		vc->stolen_tb += tb - vc->preempt_tb;
295 		vc->preempt_tb = TB_NIL;
296 	}
297 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
298 }
299 
300 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
301 {
302 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
303 	unsigned long flags;
304 	u64 now;
305 
306 	if (cpu_has_feature(CPU_FTR_ARCH_300))
307 		return;
308 
309 	now = mftb();
310 
311 	/*
312 	 * We can test vc->runner without taking the vcore lock,
313 	 * because only this task ever sets vc->runner to this
314 	 * vcpu, and once it is set to this vcpu, only this task
315 	 * ever sets it to NULL.
316 	 */
317 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
318 		kvmppc_core_end_stolen(vc, now);
319 
320 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
321 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
322 	    vcpu->arch.busy_preempt != TB_NIL) {
323 		vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
324 		vcpu->arch.busy_preempt = TB_NIL;
325 	}
326 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
327 }
328 
329 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
330 {
331 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
332 	unsigned long flags;
333 	u64 now;
334 
335 	if (cpu_has_feature(CPU_FTR_ARCH_300))
336 		return;
337 
338 	now = mftb();
339 
340 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
341 		kvmppc_core_start_stolen(vc, now);
342 
343 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
344 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
345 		vcpu->arch.busy_preempt = now;
346 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
347 }
348 
349 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
350 {
351 	vcpu->arch.pvr = pvr;
352 }
353 
354 /* Dummy value used in computing PCR value below */
355 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
356 
357 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
358 {
359 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
360 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
361 
362 	/* We can (emulate) our own architecture version and anything older */
363 	if (cpu_has_feature(CPU_FTR_ARCH_31))
364 		host_pcr_bit = PCR_ARCH_31;
365 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
366 		host_pcr_bit = PCR_ARCH_300;
367 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
368 		host_pcr_bit = PCR_ARCH_207;
369 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
370 		host_pcr_bit = PCR_ARCH_206;
371 	else
372 		host_pcr_bit = PCR_ARCH_205;
373 
374 	/* Determine lowest PCR bit needed to run guest in given PVR level */
375 	guest_pcr_bit = host_pcr_bit;
376 	if (arch_compat) {
377 		switch (arch_compat) {
378 		case PVR_ARCH_205:
379 			guest_pcr_bit = PCR_ARCH_205;
380 			break;
381 		case PVR_ARCH_206:
382 		case PVR_ARCH_206p:
383 			guest_pcr_bit = PCR_ARCH_206;
384 			break;
385 		case PVR_ARCH_207:
386 			guest_pcr_bit = PCR_ARCH_207;
387 			break;
388 		case PVR_ARCH_300:
389 			guest_pcr_bit = PCR_ARCH_300;
390 			break;
391 		case PVR_ARCH_31:
392 			guest_pcr_bit = PCR_ARCH_31;
393 			break;
394 		default:
395 			return -EINVAL;
396 		}
397 	}
398 
399 	/* Check requested PCR bits don't exceed our capabilities */
400 	if (guest_pcr_bit > host_pcr_bit)
401 		return -EINVAL;
402 
403 	spin_lock(&vc->lock);
404 	vc->arch_compat = arch_compat;
405 	/*
406 	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
407 	 * Also set all reserved PCR bits
408 	 */
409 	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
410 	spin_unlock(&vc->lock);
411 
412 	return 0;
413 }
414 
415 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
416 {
417 	int r;
418 
419 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
420 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
421 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
422 	for (r = 0; r < 16; ++r)
423 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
424 		       r, kvmppc_get_gpr(vcpu, r),
425 		       r+16, kvmppc_get_gpr(vcpu, r+16));
426 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
427 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
428 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
429 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
430 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
431 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
432 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
433 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
434 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
435 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
436 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
437 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
438 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
439 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
440 	for (r = 0; r < vcpu->arch.slb_max; ++r)
441 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
442 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
443 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
444 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
445 	       vcpu->arch.last_inst);
446 }
447 
448 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
449 {
450 	return kvm_get_vcpu_by_id(kvm, id);
451 }
452 
453 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
454 {
455 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
456 	vpa->yield_count = cpu_to_be32(1);
457 }
458 
459 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
460 		   unsigned long addr, unsigned long len)
461 {
462 	/* check address is cacheline aligned */
463 	if (addr & (L1_CACHE_BYTES - 1))
464 		return -EINVAL;
465 	spin_lock(&vcpu->arch.vpa_update_lock);
466 	if (v->next_gpa != addr || v->len != len) {
467 		v->next_gpa = addr;
468 		v->len = addr ? len : 0;
469 		v->update_pending = 1;
470 	}
471 	spin_unlock(&vcpu->arch.vpa_update_lock);
472 	return 0;
473 }
474 
475 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
476 struct reg_vpa {
477 	u32 dummy;
478 	union {
479 		__be16 hword;
480 		__be32 word;
481 	} length;
482 };
483 
484 static int vpa_is_registered(struct kvmppc_vpa *vpap)
485 {
486 	if (vpap->update_pending)
487 		return vpap->next_gpa != 0;
488 	return vpap->pinned_addr != NULL;
489 }
490 
491 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
492 				       unsigned long flags,
493 				       unsigned long vcpuid, unsigned long vpa)
494 {
495 	struct kvm *kvm = vcpu->kvm;
496 	unsigned long len, nb;
497 	void *va;
498 	struct kvm_vcpu *tvcpu;
499 	int err;
500 	int subfunc;
501 	struct kvmppc_vpa *vpap;
502 
503 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
504 	if (!tvcpu)
505 		return H_PARAMETER;
506 
507 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
508 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
509 	    subfunc == H_VPA_REG_SLB) {
510 		/* Registering new area - address must be cache-line aligned */
511 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
512 			return H_PARAMETER;
513 
514 		/* convert logical addr to kernel addr and read length */
515 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
516 		if (va == NULL)
517 			return H_PARAMETER;
518 		if (subfunc == H_VPA_REG_VPA)
519 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
520 		else
521 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
522 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
523 
524 		/* Check length */
525 		if (len > nb || len < sizeof(struct reg_vpa))
526 			return H_PARAMETER;
527 	} else {
528 		vpa = 0;
529 		len = 0;
530 	}
531 
532 	err = H_PARAMETER;
533 	vpap = NULL;
534 	spin_lock(&tvcpu->arch.vpa_update_lock);
535 
536 	switch (subfunc) {
537 	case H_VPA_REG_VPA:		/* register VPA */
538 		/*
539 		 * The size of our lppaca is 1kB because of the way we align
540 		 * it for the guest to avoid crossing a 4kB boundary. We only
541 		 * use 640 bytes of the structure though, so we should accept
542 		 * clients that set a size of 640.
543 		 */
544 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
545 		if (len < sizeof(struct lppaca))
546 			break;
547 		vpap = &tvcpu->arch.vpa;
548 		err = 0;
549 		break;
550 
551 	case H_VPA_REG_DTL:		/* register DTL */
552 		if (len < sizeof(struct dtl_entry))
553 			break;
554 		len -= len % sizeof(struct dtl_entry);
555 
556 		/* Check that they have previously registered a VPA */
557 		err = H_RESOURCE;
558 		if (!vpa_is_registered(&tvcpu->arch.vpa))
559 			break;
560 
561 		vpap = &tvcpu->arch.dtl;
562 		err = 0;
563 		break;
564 
565 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
566 		/* Check that they have previously registered a VPA */
567 		err = H_RESOURCE;
568 		if (!vpa_is_registered(&tvcpu->arch.vpa))
569 			break;
570 
571 		vpap = &tvcpu->arch.slb_shadow;
572 		err = 0;
573 		break;
574 
575 	case H_VPA_DEREG_VPA:		/* deregister VPA */
576 		/* Check they don't still have a DTL or SLB buf registered */
577 		err = H_RESOURCE;
578 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
579 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
580 			break;
581 
582 		vpap = &tvcpu->arch.vpa;
583 		err = 0;
584 		break;
585 
586 	case H_VPA_DEREG_DTL:		/* deregister DTL */
587 		vpap = &tvcpu->arch.dtl;
588 		err = 0;
589 		break;
590 
591 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
592 		vpap = &tvcpu->arch.slb_shadow;
593 		err = 0;
594 		break;
595 	}
596 
597 	if (vpap) {
598 		vpap->next_gpa = vpa;
599 		vpap->len = len;
600 		vpap->update_pending = 1;
601 	}
602 
603 	spin_unlock(&tvcpu->arch.vpa_update_lock);
604 
605 	return err;
606 }
607 
608 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
609 {
610 	struct kvm *kvm = vcpu->kvm;
611 	void *va;
612 	unsigned long nb;
613 	unsigned long gpa;
614 
615 	/*
616 	 * We need to pin the page pointed to by vpap->next_gpa,
617 	 * but we can't call kvmppc_pin_guest_page under the lock
618 	 * as it does get_user_pages() and down_read().  So we
619 	 * have to drop the lock, pin the page, then get the lock
620 	 * again and check that a new area didn't get registered
621 	 * in the meantime.
622 	 */
623 	for (;;) {
624 		gpa = vpap->next_gpa;
625 		spin_unlock(&vcpu->arch.vpa_update_lock);
626 		va = NULL;
627 		nb = 0;
628 		if (gpa)
629 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
630 		spin_lock(&vcpu->arch.vpa_update_lock);
631 		if (gpa == vpap->next_gpa)
632 			break;
633 		/* sigh... unpin that one and try again */
634 		if (va)
635 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
636 	}
637 
638 	vpap->update_pending = 0;
639 	if (va && nb < vpap->len) {
640 		/*
641 		 * If it's now too short, it must be that userspace
642 		 * has changed the mappings underlying guest memory,
643 		 * so unregister the region.
644 		 */
645 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
646 		va = NULL;
647 	}
648 	if (vpap->pinned_addr)
649 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
650 					vpap->dirty);
651 	vpap->gpa = gpa;
652 	vpap->pinned_addr = va;
653 	vpap->dirty = false;
654 	if (va)
655 		vpap->pinned_end = va + vpap->len;
656 }
657 
658 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
659 {
660 	if (!(vcpu->arch.vpa.update_pending ||
661 	      vcpu->arch.slb_shadow.update_pending ||
662 	      vcpu->arch.dtl.update_pending))
663 		return;
664 
665 	spin_lock(&vcpu->arch.vpa_update_lock);
666 	if (vcpu->arch.vpa.update_pending) {
667 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
668 		if (vcpu->arch.vpa.pinned_addr)
669 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
670 	}
671 	if (vcpu->arch.dtl.update_pending) {
672 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
673 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
674 		vcpu->arch.dtl_index = 0;
675 	}
676 	if (vcpu->arch.slb_shadow.update_pending)
677 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
678 	spin_unlock(&vcpu->arch.vpa_update_lock);
679 }
680 
681 /*
682  * Return the accumulated stolen time for the vcore up until `now'.
683  * The caller should hold the vcore lock.
684  */
685 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
686 {
687 	u64 p;
688 	unsigned long flags;
689 
690 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
691 
692 	spin_lock_irqsave(&vc->stoltb_lock, flags);
693 	p = vc->stolen_tb;
694 	if (vc->vcore_state != VCORE_INACTIVE &&
695 	    vc->preempt_tb != TB_NIL)
696 		p += now - vc->preempt_tb;
697 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
698 	return p;
699 }
700 
701 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
702 					unsigned int pcpu, u64 now,
703 					unsigned long stolen)
704 {
705 	struct dtl_entry *dt;
706 	struct lppaca *vpa;
707 
708 	dt = vcpu->arch.dtl_ptr;
709 	vpa = vcpu->arch.vpa.pinned_addr;
710 
711 	if (!dt || !vpa)
712 		return;
713 
714 	dt->dispatch_reason = 7;
715 	dt->preempt_reason = 0;
716 	dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
717 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
718 	dt->ready_to_enqueue_time = 0;
719 	dt->waiting_to_ready_time = 0;
720 	dt->timebase = cpu_to_be64(now);
721 	dt->fault_addr = 0;
722 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
723 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
724 
725 	++dt;
726 	if (dt == vcpu->arch.dtl.pinned_end)
727 		dt = vcpu->arch.dtl.pinned_addr;
728 	vcpu->arch.dtl_ptr = dt;
729 	/* order writing *dt vs. writing vpa->dtl_idx */
730 	smp_wmb();
731 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
732 	vcpu->arch.dtl.dirty = true;
733 }
734 
735 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
736 				    struct kvmppc_vcore *vc)
737 {
738 	unsigned long stolen;
739 	unsigned long core_stolen;
740 	u64 now;
741 	unsigned long flags;
742 
743 	now = mftb();
744 
745 	core_stolen = vcore_stolen_time(vc, now);
746 	stolen = core_stolen - vcpu->arch.stolen_logged;
747 	vcpu->arch.stolen_logged = core_stolen;
748 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
749 	stolen += vcpu->arch.busy_stolen;
750 	vcpu->arch.busy_stolen = 0;
751 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
752 
753 	__kvmppc_create_dtl_entry(vcpu, vc->pcpu, now + vc->tb_offset, stolen);
754 }
755 
756 /* See if there is a doorbell interrupt pending for a vcpu */
757 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
758 {
759 	int thr;
760 	struct kvmppc_vcore *vc;
761 
762 	if (vcpu->arch.doorbell_request)
763 		return true;
764 	if (cpu_has_feature(CPU_FTR_ARCH_300))
765 		return false;
766 	/*
767 	 * Ensure that the read of vcore->dpdes comes after the read
768 	 * of vcpu->doorbell_request.  This barrier matches the
769 	 * smp_wmb() in kvmppc_guest_entry_inject().
770 	 */
771 	smp_rmb();
772 	vc = vcpu->arch.vcore;
773 	thr = vcpu->vcpu_id - vc->first_vcpuid;
774 	return !!(vc->dpdes & (1 << thr));
775 }
776 
777 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
778 {
779 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
780 		return true;
781 	if ((!vcpu->arch.vcore->arch_compat) &&
782 	    cpu_has_feature(CPU_FTR_ARCH_207S))
783 		return true;
784 	return false;
785 }
786 
787 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
788 			     unsigned long resource, unsigned long value1,
789 			     unsigned long value2)
790 {
791 	switch (resource) {
792 	case H_SET_MODE_RESOURCE_SET_CIABR:
793 		if (!kvmppc_power8_compatible(vcpu))
794 			return H_P2;
795 		if (value2)
796 			return H_P4;
797 		if (mflags)
798 			return H_UNSUPPORTED_FLAG_START;
799 		/* Guests can't breakpoint the hypervisor */
800 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
801 			return H_P3;
802 		vcpu->arch.ciabr  = value1;
803 		return H_SUCCESS;
804 	case H_SET_MODE_RESOURCE_SET_DAWR0:
805 		if (!kvmppc_power8_compatible(vcpu))
806 			return H_P2;
807 		if (!ppc_breakpoint_available())
808 			return H_P2;
809 		if (mflags)
810 			return H_UNSUPPORTED_FLAG_START;
811 		if (value2 & DABRX_HYP)
812 			return H_P4;
813 		vcpu->arch.dawr0  = value1;
814 		vcpu->arch.dawrx0 = value2;
815 		return H_SUCCESS;
816 	case H_SET_MODE_RESOURCE_SET_DAWR1:
817 		if (!kvmppc_power8_compatible(vcpu))
818 			return H_P2;
819 		if (!ppc_breakpoint_available())
820 			return H_P2;
821 		if (!cpu_has_feature(CPU_FTR_DAWR1))
822 			return H_P2;
823 		if (!vcpu->kvm->arch.dawr1_enabled)
824 			return H_FUNCTION;
825 		if (mflags)
826 			return H_UNSUPPORTED_FLAG_START;
827 		if (value2 & DABRX_HYP)
828 			return H_P4;
829 		vcpu->arch.dawr1  = value1;
830 		vcpu->arch.dawrx1 = value2;
831 		return H_SUCCESS;
832 	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
833 		/*
834 		 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
835 		 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
836 		 */
837 		if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
838 				kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
839 			return H_UNSUPPORTED_FLAG_START;
840 		return H_TOO_HARD;
841 	default:
842 		return H_TOO_HARD;
843 	}
844 }
845 
846 /* Copy guest memory in place - must reside within a single memslot */
847 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
848 				  unsigned long len)
849 {
850 	struct kvm_memory_slot *to_memslot = NULL;
851 	struct kvm_memory_slot *from_memslot = NULL;
852 	unsigned long to_addr, from_addr;
853 	int r;
854 
855 	/* Get HPA for from address */
856 	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
857 	if (!from_memslot)
858 		return -EFAULT;
859 	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
860 			     << PAGE_SHIFT))
861 		return -EINVAL;
862 	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
863 	if (kvm_is_error_hva(from_addr))
864 		return -EFAULT;
865 	from_addr |= (from & (PAGE_SIZE - 1));
866 
867 	/* Get HPA for to address */
868 	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
869 	if (!to_memslot)
870 		return -EFAULT;
871 	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
872 			   << PAGE_SHIFT))
873 		return -EINVAL;
874 	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
875 	if (kvm_is_error_hva(to_addr))
876 		return -EFAULT;
877 	to_addr |= (to & (PAGE_SIZE - 1));
878 
879 	/* Perform copy */
880 	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
881 			     len);
882 	if (r)
883 		return -EFAULT;
884 	mark_page_dirty(kvm, to >> PAGE_SHIFT);
885 	return 0;
886 }
887 
888 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
889 			       unsigned long dest, unsigned long src)
890 {
891 	u64 pg_sz = SZ_4K;		/* 4K page size */
892 	u64 pg_mask = SZ_4K - 1;
893 	int ret;
894 
895 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
896 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
897 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
898 		return H_PARAMETER;
899 
900 	/* dest (and src if copy_page flag set) must be page aligned */
901 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
902 		return H_PARAMETER;
903 
904 	/* zero and/or copy the page as determined by the flags */
905 	if (flags & H_COPY_PAGE) {
906 		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
907 		if (ret < 0)
908 			return H_PARAMETER;
909 	} else if (flags & H_ZERO_PAGE) {
910 		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
911 		if (ret < 0)
912 			return H_PARAMETER;
913 	}
914 
915 	/* We can ignore the remaining flags */
916 
917 	return H_SUCCESS;
918 }
919 
920 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
921 {
922 	struct kvmppc_vcore *vcore = target->arch.vcore;
923 
924 	/*
925 	 * We expect to have been called by the real mode handler
926 	 * (kvmppc_rm_h_confer()) which would have directly returned
927 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
928 	 * have useful work to do and should not confer) so we don't
929 	 * recheck that here.
930 	 *
931 	 * In the case of the P9 single vcpu per vcore case, the real
932 	 * mode handler is not called but no other threads are in the
933 	 * source vcore.
934 	 */
935 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
936 		spin_lock(&vcore->lock);
937 		if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
938 		    vcore->vcore_state != VCORE_INACTIVE &&
939 		    vcore->runner)
940 			target = vcore->runner;
941 		spin_unlock(&vcore->lock);
942 	}
943 
944 	return kvm_vcpu_yield_to(target);
945 }
946 
947 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
948 {
949 	int yield_count = 0;
950 	struct lppaca *lppaca;
951 
952 	spin_lock(&vcpu->arch.vpa_update_lock);
953 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
954 	if (lppaca)
955 		yield_count = be32_to_cpu(lppaca->yield_count);
956 	spin_unlock(&vcpu->arch.vpa_update_lock);
957 	return yield_count;
958 }
959 
960 /*
961  * H_RPT_INVALIDATE hcall handler for nested guests.
962  *
963  * Handles only nested process-scoped invalidation requests in L0.
964  */
965 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
966 {
967 	unsigned long type = kvmppc_get_gpr(vcpu, 6);
968 	unsigned long pid, pg_sizes, start, end;
969 
970 	/*
971 	 * The partition-scoped invalidations aren't handled here in L0.
972 	 */
973 	if (type & H_RPTI_TYPE_NESTED)
974 		return RESUME_HOST;
975 
976 	pid = kvmppc_get_gpr(vcpu, 4);
977 	pg_sizes = kvmppc_get_gpr(vcpu, 7);
978 	start = kvmppc_get_gpr(vcpu, 8);
979 	end = kvmppc_get_gpr(vcpu, 9);
980 
981 	do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
982 				type, pg_sizes, start, end);
983 
984 	kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
985 	return RESUME_GUEST;
986 }
987 
988 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
989 				    unsigned long id, unsigned long target,
990 				    unsigned long type, unsigned long pg_sizes,
991 				    unsigned long start, unsigned long end)
992 {
993 	if (!kvm_is_radix(vcpu->kvm))
994 		return H_UNSUPPORTED;
995 
996 	if (end < start)
997 		return H_P5;
998 
999 	/*
1000 	 * Partition-scoped invalidation for nested guests.
1001 	 */
1002 	if (type & H_RPTI_TYPE_NESTED) {
1003 		if (!nesting_enabled(vcpu->kvm))
1004 			return H_FUNCTION;
1005 
1006 		/* Support only cores as target */
1007 		if (target != H_RPTI_TARGET_CMMU)
1008 			return H_P2;
1009 
1010 		return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1011 					       start, end);
1012 	}
1013 
1014 	/*
1015 	 * Process-scoped invalidation for L1 guests.
1016 	 */
1017 	do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1018 				type, pg_sizes, start, end);
1019 	return H_SUCCESS;
1020 }
1021 
1022 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1023 {
1024 	struct kvm *kvm = vcpu->kvm;
1025 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
1026 	unsigned long target, ret = H_SUCCESS;
1027 	int yield_count;
1028 	struct kvm_vcpu *tvcpu;
1029 	int idx, rc;
1030 
1031 	if (req <= MAX_HCALL_OPCODE &&
1032 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1033 		return RESUME_HOST;
1034 
1035 	switch (req) {
1036 	case H_REMOVE:
1037 		ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1038 					kvmppc_get_gpr(vcpu, 5),
1039 					kvmppc_get_gpr(vcpu, 6));
1040 		if (ret == H_TOO_HARD)
1041 			return RESUME_HOST;
1042 		break;
1043 	case H_ENTER:
1044 		ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1045 					kvmppc_get_gpr(vcpu, 5),
1046 					kvmppc_get_gpr(vcpu, 6),
1047 					kvmppc_get_gpr(vcpu, 7));
1048 		if (ret == H_TOO_HARD)
1049 			return RESUME_HOST;
1050 		break;
1051 	case H_READ:
1052 		ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1053 					kvmppc_get_gpr(vcpu, 5));
1054 		if (ret == H_TOO_HARD)
1055 			return RESUME_HOST;
1056 		break;
1057 	case H_CLEAR_MOD:
1058 		ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1059 					kvmppc_get_gpr(vcpu, 5));
1060 		if (ret == H_TOO_HARD)
1061 			return RESUME_HOST;
1062 		break;
1063 	case H_CLEAR_REF:
1064 		ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1065 					kvmppc_get_gpr(vcpu, 5));
1066 		if (ret == H_TOO_HARD)
1067 			return RESUME_HOST;
1068 		break;
1069 	case H_PROTECT:
1070 		ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1071 					kvmppc_get_gpr(vcpu, 5),
1072 					kvmppc_get_gpr(vcpu, 6));
1073 		if (ret == H_TOO_HARD)
1074 			return RESUME_HOST;
1075 		break;
1076 	case H_BULK_REMOVE:
1077 		ret = kvmppc_h_bulk_remove(vcpu);
1078 		if (ret == H_TOO_HARD)
1079 			return RESUME_HOST;
1080 		break;
1081 
1082 	case H_CEDE:
1083 		break;
1084 	case H_PROD:
1085 		target = kvmppc_get_gpr(vcpu, 4);
1086 		tvcpu = kvmppc_find_vcpu(kvm, target);
1087 		if (!tvcpu) {
1088 			ret = H_PARAMETER;
1089 			break;
1090 		}
1091 		tvcpu->arch.prodded = 1;
1092 		smp_mb();
1093 		if (tvcpu->arch.ceded)
1094 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1095 		break;
1096 	case H_CONFER:
1097 		target = kvmppc_get_gpr(vcpu, 4);
1098 		if (target == -1)
1099 			break;
1100 		tvcpu = kvmppc_find_vcpu(kvm, target);
1101 		if (!tvcpu) {
1102 			ret = H_PARAMETER;
1103 			break;
1104 		}
1105 		yield_count = kvmppc_get_gpr(vcpu, 5);
1106 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
1107 			break;
1108 		kvm_arch_vcpu_yield_to(tvcpu);
1109 		break;
1110 	case H_REGISTER_VPA:
1111 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1112 					kvmppc_get_gpr(vcpu, 5),
1113 					kvmppc_get_gpr(vcpu, 6));
1114 		break;
1115 	case H_RTAS:
1116 		if (list_empty(&kvm->arch.rtas_tokens))
1117 			return RESUME_HOST;
1118 
1119 		idx = srcu_read_lock(&kvm->srcu);
1120 		rc = kvmppc_rtas_hcall(vcpu);
1121 		srcu_read_unlock(&kvm->srcu, idx);
1122 
1123 		if (rc == -ENOENT)
1124 			return RESUME_HOST;
1125 		else if (rc == 0)
1126 			break;
1127 
1128 		/* Send the error out to userspace via KVM_RUN */
1129 		return rc;
1130 	case H_LOGICAL_CI_LOAD:
1131 		ret = kvmppc_h_logical_ci_load(vcpu);
1132 		if (ret == H_TOO_HARD)
1133 			return RESUME_HOST;
1134 		break;
1135 	case H_LOGICAL_CI_STORE:
1136 		ret = kvmppc_h_logical_ci_store(vcpu);
1137 		if (ret == H_TOO_HARD)
1138 			return RESUME_HOST;
1139 		break;
1140 	case H_SET_MODE:
1141 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1142 					kvmppc_get_gpr(vcpu, 5),
1143 					kvmppc_get_gpr(vcpu, 6),
1144 					kvmppc_get_gpr(vcpu, 7));
1145 		if (ret == H_TOO_HARD)
1146 			return RESUME_HOST;
1147 		break;
1148 	case H_XIRR:
1149 	case H_CPPR:
1150 	case H_EOI:
1151 	case H_IPI:
1152 	case H_IPOLL:
1153 	case H_XIRR_X:
1154 		if (kvmppc_xics_enabled(vcpu)) {
1155 			if (xics_on_xive()) {
1156 				ret = H_NOT_AVAILABLE;
1157 				return RESUME_GUEST;
1158 			}
1159 			ret = kvmppc_xics_hcall(vcpu, req);
1160 			break;
1161 		}
1162 		return RESUME_HOST;
1163 	case H_SET_DABR:
1164 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1165 		break;
1166 	case H_SET_XDABR:
1167 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1168 						kvmppc_get_gpr(vcpu, 5));
1169 		break;
1170 #ifdef CONFIG_SPAPR_TCE_IOMMU
1171 	case H_GET_TCE:
1172 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1173 						kvmppc_get_gpr(vcpu, 5));
1174 		if (ret == H_TOO_HARD)
1175 			return RESUME_HOST;
1176 		break;
1177 	case H_PUT_TCE:
1178 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1179 						kvmppc_get_gpr(vcpu, 5),
1180 						kvmppc_get_gpr(vcpu, 6));
1181 		if (ret == H_TOO_HARD)
1182 			return RESUME_HOST;
1183 		break;
1184 	case H_PUT_TCE_INDIRECT:
1185 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1186 						kvmppc_get_gpr(vcpu, 5),
1187 						kvmppc_get_gpr(vcpu, 6),
1188 						kvmppc_get_gpr(vcpu, 7));
1189 		if (ret == H_TOO_HARD)
1190 			return RESUME_HOST;
1191 		break;
1192 	case H_STUFF_TCE:
1193 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1194 						kvmppc_get_gpr(vcpu, 5),
1195 						kvmppc_get_gpr(vcpu, 6),
1196 						kvmppc_get_gpr(vcpu, 7));
1197 		if (ret == H_TOO_HARD)
1198 			return RESUME_HOST;
1199 		break;
1200 #endif
1201 	case H_RANDOM:
1202 		if (!arch_get_random_seed_long(&vcpu->arch.regs.gpr[4]))
1203 			ret = H_HARDWARE;
1204 		break;
1205 	case H_RPT_INVALIDATE:
1206 		ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1207 					      kvmppc_get_gpr(vcpu, 5),
1208 					      kvmppc_get_gpr(vcpu, 6),
1209 					      kvmppc_get_gpr(vcpu, 7),
1210 					      kvmppc_get_gpr(vcpu, 8),
1211 					      kvmppc_get_gpr(vcpu, 9));
1212 		break;
1213 
1214 	case H_SET_PARTITION_TABLE:
1215 		ret = H_FUNCTION;
1216 		if (nesting_enabled(kvm))
1217 			ret = kvmhv_set_partition_table(vcpu);
1218 		break;
1219 	case H_ENTER_NESTED:
1220 		ret = H_FUNCTION;
1221 		if (!nesting_enabled(kvm))
1222 			break;
1223 		ret = kvmhv_enter_nested_guest(vcpu);
1224 		if (ret == H_INTERRUPT) {
1225 			kvmppc_set_gpr(vcpu, 3, 0);
1226 			vcpu->arch.hcall_needed = 0;
1227 			return -EINTR;
1228 		} else if (ret == H_TOO_HARD) {
1229 			kvmppc_set_gpr(vcpu, 3, 0);
1230 			vcpu->arch.hcall_needed = 0;
1231 			return RESUME_HOST;
1232 		}
1233 		break;
1234 	case H_TLB_INVALIDATE:
1235 		ret = H_FUNCTION;
1236 		if (nesting_enabled(kvm))
1237 			ret = kvmhv_do_nested_tlbie(vcpu);
1238 		break;
1239 	case H_COPY_TOFROM_GUEST:
1240 		ret = H_FUNCTION;
1241 		if (nesting_enabled(kvm))
1242 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1243 		break;
1244 	case H_PAGE_INIT:
1245 		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1246 					 kvmppc_get_gpr(vcpu, 5),
1247 					 kvmppc_get_gpr(vcpu, 6));
1248 		break;
1249 	case H_SVM_PAGE_IN:
1250 		ret = H_UNSUPPORTED;
1251 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1252 			ret = kvmppc_h_svm_page_in(kvm,
1253 						   kvmppc_get_gpr(vcpu, 4),
1254 						   kvmppc_get_gpr(vcpu, 5),
1255 						   kvmppc_get_gpr(vcpu, 6));
1256 		break;
1257 	case H_SVM_PAGE_OUT:
1258 		ret = H_UNSUPPORTED;
1259 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1260 			ret = kvmppc_h_svm_page_out(kvm,
1261 						    kvmppc_get_gpr(vcpu, 4),
1262 						    kvmppc_get_gpr(vcpu, 5),
1263 						    kvmppc_get_gpr(vcpu, 6));
1264 		break;
1265 	case H_SVM_INIT_START:
1266 		ret = H_UNSUPPORTED;
1267 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1268 			ret = kvmppc_h_svm_init_start(kvm);
1269 		break;
1270 	case H_SVM_INIT_DONE:
1271 		ret = H_UNSUPPORTED;
1272 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1273 			ret = kvmppc_h_svm_init_done(kvm);
1274 		break;
1275 	case H_SVM_INIT_ABORT:
1276 		/*
1277 		 * Even if that call is made by the Ultravisor, the SSR1 value
1278 		 * is the guest context one, with the secure bit clear as it has
1279 		 * not yet been secured. So we can't check it here.
1280 		 * Instead the kvm->arch.secure_guest flag is checked inside
1281 		 * kvmppc_h_svm_init_abort().
1282 		 */
1283 		ret = kvmppc_h_svm_init_abort(kvm);
1284 		break;
1285 
1286 	default:
1287 		return RESUME_HOST;
1288 	}
1289 	WARN_ON_ONCE(ret == H_TOO_HARD);
1290 	kvmppc_set_gpr(vcpu, 3, ret);
1291 	vcpu->arch.hcall_needed = 0;
1292 	return RESUME_GUEST;
1293 }
1294 
1295 /*
1296  * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1297  * handlers in book3s_hv_rmhandlers.S.
1298  *
1299  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1300  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1301  */
1302 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1303 {
1304 	vcpu->arch.shregs.msr |= MSR_EE;
1305 	vcpu->arch.ceded = 1;
1306 	smp_mb();
1307 	if (vcpu->arch.prodded) {
1308 		vcpu->arch.prodded = 0;
1309 		smp_mb();
1310 		vcpu->arch.ceded = 0;
1311 	}
1312 }
1313 
1314 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1315 {
1316 	switch (cmd) {
1317 	case H_CEDE:
1318 	case H_PROD:
1319 	case H_CONFER:
1320 	case H_REGISTER_VPA:
1321 	case H_SET_MODE:
1322 	case H_LOGICAL_CI_LOAD:
1323 	case H_LOGICAL_CI_STORE:
1324 #ifdef CONFIG_KVM_XICS
1325 	case H_XIRR:
1326 	case H_CPPR:
1327 	case H_EOI:
1328 	case H_IPI:
1329 	case H_IPOLL:
1330 	case H_XIRR_X:
1331 #endif
1332 	case H_PAGE_INIT:
1333 	case H_RPT_INVALIDATE:
1334 		return 1;
1335 	}
1336 
1337 	/* See if it's in the real-mode table */
1338 	return kvmppc_hcall_impl_hv_realmode(cmd);
1339 }
1340 
1341 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1342 {
1343 	u32 last_inst;
1344 
1345 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1346 					EMULATE_DONE) {
1347 		/*
1348 		 * Fetch failed, so return to guest and
1349 		 * try executing it again.
1350 		 */
1351 		return RESUME_GUEST;
1352 	}
1353 
1354 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1355 		vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1356 		vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1357 		return RESUME_HOST;
1358 	} else {
1359 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1360 		return RESUME_GUEST;
1361 	}
1362 }
1363 
1364 static void do_nothing(void *x)
1365 {
1366 }
1367 
1368 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1369 {
1370 	int thr, cpu, pcpu, nthreads;
1371 	struct kvm_vcpu *v;
1372 	unsigned long dpdes;
1373 
1374 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1375 	dpdes = 0;
1376 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1377 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1378 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1379 		if (!v)
1380 			continue;
1381 		/*
1382 		 * If the vcpu is currently running on a physical cpu thread,
1383 		 * interrupt it in order to pull it out of the guest briefly,
1384 		 * which will update its vcore->dpdes value.
1385 		 */
1386 		pcpu = READ_ONCE(v->cpu);
1387 		if (pcpu >= 0)
1388 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1389 		if (kvmppc_doorbell_pending(v))
1390 			dpdes |= 1 << thr;
1391 	}
1392 	return dpdes;
1393 }
1394 
1395 /*
1396  * On POWER9, emulate doorbell-related instructions in order to
1397  * give the guest the illusion of running on a multi-threaded core.
1398  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1399  * and mfspr DPDES.
1400  */
1401 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1402 {
1403 	u32 inst, rb, thr;
1404 	unsigned long arg;
1405 	struct kvm *kvm = vcpu->kvm;
1406 	struct kvm_vcpu *tvcpu;
1407 
1408 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1409 		return RESUME_GUEST;
1410 	if (get_op(inst) != 31)
1411 		return EMULATE_FAIL;
1412 	rb = get_rb(inst);
1413 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1414 	switch (get_xop(inst)) {
1415 	case OP_31_XOP_MSGSNDP:
1416 		arg = kvmppc_get_gpr(vcpu, rb);
1417 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1418 			break;
1419 		arg &= 0x7f;
1420 		if (arg >= kvm->arch.emul_smt_mode)
1421 			break;
1422 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1423 		if (!tvcpu)
1424 			break;
1425 		if (!tvcpu->arch.doorbell_request) {
1426 			tvcpu->arch.doorbell_request = 1;
1427 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1428 		}
1429 		break;
1430 	case OP_31_XOP_MSGCLRP:
1431 		arg = kvmppc_get_gpr(vcpu, rb);
1432 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1433 			break;
1434 		vcpu->arch.vcore->dpdes = 0;
1435 		vcpu->arch.doorbell_request = 0;
1436 		break;
1437 	case OP_31_XOP_MFSPR:
1438 		switch (get_sprn(inst)) {
1439 		case SPRN_TIR:
1440 			arg = thr;
1441 			break;
1442 		case SPRN_DPDES:
1443 			arg = kvmppc_read_dpdes(vcpu);
1444 			break;
1445 		default:
1446 			return EMULATE_FAIL;
1447 		}
1448 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1449 		break;
1450 	default:
1451 		return EMULATE_FAIL;
1452 	}
1453 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1454 	return RESUME_GUEST;
1455 }
1456 
1457 /*
1458  * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1459  * HFSCR_PM is cleared for next entry. If the guest then tries to access
1460  * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1461  * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1462  * allow the guest access to continue.
1463  */
1464 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1465 {
1466 	if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1467 		return EMULATE_FAIL;
1468 
1469 	vcpu->arch.hfscr |= HFSCR_PM;
1470 
1471 	return RESUME_GUEST;
1472 }
1473 
1474 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1475 {
1476 	if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1477 		return EMULATE_FAIL;
1478 
1479 	vcpu->arch.hfscr |= HFSCR_EBB;
1480 
1481 	return RESUME_GUEST;
1482 }
1483 
1484 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1485 {
1486 	if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1487 		return EMULATE_FAIL;
1488 
1489 	vcpu->arch.hfscr |= HFSCR_TM;
1490 
1491 	return RESUME_GUEST;
1492 }
1493 
1494 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1495 				 struct task_struct *tsk)
1496 {
1497 	struct kvm_run *run = vcpu->run;
1498 	int r = RESUME_HOST;
1499 
1500 	vcpu->stat.sum_exits++;
1501 
1502 	/*
1503 	 * This can happen if an interrupt occurs in the last stages
1504 	 * of guest entry or the first stages of guest exit (i.e. after
1505 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1506 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1507 	 * That can happen due to a bug, or due to a machine check
1508 	 * occurring at just the wrong time.
1509 	 */
1510 	if (vcpu->arch.shregs.msr & MSR_HV) {
1511 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1512 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1513 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1514 			vcpu->arch.shregs.msr);
1515 		kvmppc_dump_regs(vcpu);
1516 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1517 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1518 		return RESUME_HOST;
1519 	}
1520 	run->exit_reason = KVM_EXIT_UNKNOWN;
1521 	run->ready_for_interrupt_injection = 1;
1522 	switch (vcpu->arch.trap) {
1523 	/* We're good on these - the host merely wanted to get our attention */
1524 	case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1525 		WARN_ON_ONCE(1); /* Should never happen */
1526 		vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1527 		fallthrough;
1528 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1529 		vcpu->stat.dec_exits++;
1530 		r = RESUME_GUEST;
1531 		break;
1532 	case BOOK3S_INTERRUPT_EXTERNAL:
1533 	case BOOK3S_INTERRUPT_H_DOORBELL:
1534 	case BOOK3S_INTERRUPT_H_VIRT:
1535 		vcpu->stat.ext_intr_exits++;
1536 		r = RESUME_GUEST;
1537 		break;
1538 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1539 	case BOOK3S_INTERRUPT_HMI:
1540 	case BOOK3S_INTERRUPT_PERFMON:
1541 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1542 		r = RESUME_GUEST;
1543 		break;
1544 	case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1545 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1546 					      DEFAULT_RATELIMIT_BURST);
1547 		/*
1548 		 * Print the MCE event to host console. Ratelimit so the guest
1549 		 * can't flood the host log.
1550 		 */
1551 		if (__ratelimit(&rs))
1552 			machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1553 
1554 		/*
1555 		 * If the guest can do FWNMI, exit to userspace so it can
1556 		 * deliver a FWNMI to the guest.
1557 		 * Otherwise we synthesize a machine check for the guest
1558 		 * so that it knows that the machine check occurred.
1559 		 */
1560 		if (!vcpu->kvm->arch.fwnmi_enabled) {
1561 			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1562 			kvmppc_core_queue_machine_check(vcpu, flags);
1563 			r = RESUME_GUEST;
1564 			break;
1565 		}
1566 
1567 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1568 		run->exit_reason = KVM_EXIT_NMI;
1569 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1570 		/* Clear out the old NMI status from run->flags */
1571 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1572 		/* Now set the NMI status */
1573 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1574 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1575 		else
1576 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1577 
1578 		r = RESUME_HOST;
1579 		break;
1580 	}
1581 	case BOOK3S_INTERRUPT_PROGRAM:
1582 	{
1583 		ulong flags;
1584 		/*
1585 		 * Normally program interrupts are delivered directly
1586 		 * to the guest by the hardware, but we can get here
1587 		 * as a result of a hypervisor emulation interrupt
1588 		 * (e40) getting turned into a 700 by BML RTAS.
1589 		 */
1590 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1591 		kvmppc_core_queue_program(vcpu, flags);
1592 		r = RESUME_GUEST;
1593 		break;
1594 	}
1595 	case BOOK3S_INTERRUPT_SYSCALL:
1596 	{
1597 		int i;
1598 
1599 		if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1600 			/*
1601 			 * Guest userspace executed sc 1. This can only be
1602 			 * reached by the P9 path because the old path
1603 			 * handles this case in realmode hcall handlers.
1604 			 */
1605 			if (!kvmhv_vcpu_is_radix(vcpu)) {
1606 				/*
1607 				 * A guest could be running PR KVM, so this
1608 				 * may be a PR KVM hcall. It must be reflected
1609 				 * to the guest kernel as a sc interrupt.
1610 				 */
1611 				kvmppc_core_queue_syscall(vcpu);
1612 			} else {
1613 				/*
1614 				 * Radix guests can not run PR KVM or nested HV
1615 				 * hash guests which might run PR KVM, so this
1616 				 * is always a privilege fault. Send a program
1617 				 * check to guest kernel.
1618 				 */
1619 				kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1620 			}
1621 			r = RESUME_GUEST;
1622 			break;
1623 		}
1624 
1625 		/*
1626 		 * hcall - gather args and set exit_reason. This will next be
1627 		 * handled by kvmppc_pseries_do_hcall which may be able to deal
1628 		 * with it and resume guest, or may punt to userspace.
1629 		 */
1630 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1631 		for (i = 0; i < 9; ++i)
1632 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1633 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1634 		vcpu->arch.hcall_needed = 1;
1635 		r = RESUME_HOST;
1636 		break;
1637 	}
1638 	/*
1639 	 * We get these next two if the guest accesses a page which it thinks
1640 	 * it has mapped but which is not actually present, either because
1641 	 * it is for an emulated I/O device or because the corresonding
1642 	 * host page has been paged out.
1643 	 *
1644 	 * Any other HDSI/HISI interrupts have been handled already for P7/8
1645 	 * guests. For POWER9 hash guests not using rmhandlers, basic hash
1646 	 * fault handling is done here.
1647 	 */
1648 	case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1649 		unsigned long vsid;
1650 		long err;
1651 
1652 		if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1653 		    unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1654 			r = RESUME_GUEST; /* Just retry if it's the canary */
1655 			break;
1656 		}
1657 
1658 		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1659 			/*
1660 			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1661 			 * already attempted to handle this in rmhandlers. The
1662 			 * hash fault handling below is v3 only (it uses ASDR
1663 			 * via fault_gpa).
1664 			 */
1665 			r = RESUME_PAGE_FAULT;
1666 			break;
1667 		}
1668 
1669 		if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1670 			kvmppc_core_queue_data_storage(vcpu,
1671 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1672 			r = RESUME_GUEST;
1673 			break;
1674 		}
1675 
1676 		if (!(vcpu->arch.shregs.msr & MSR_DR))
1677 			vsid = vcpu->kvm->arch.vrma_slb_v;
1678 		else
1679 			vsid = vcpu->arch.fault_gpa;
1680 
1681 		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1682 				vsid, vcpu->arch.fault_dsisr, true);
1683 		if (err == 0) {
1684 			r = RESUME_GUEST;
1685 		} else if (err == -1 || err == -2) {
1686 			r = RESUME_PAGE_FAULT;
1687 		} else {
1688 			kvmppc_core_queue_data_storage(vcpu,
1689 				vcpu->arch.fault_dar, err);
1690 			r = RESUME_GUEST;
1691 		}
1692 		break;
1693 	}
1694 	case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1695 		unsigned long vsid;
1696 		long err;
1697 
1698 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1699 		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1700 			DSISR_SRR1_MATCH_64S;
1701 		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1702 			/*
1703 			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1704 			 * already attempted to handle this in rmhandlers. The
1705 			 * hash fault handling below is v3 only (it uses ASDR
1706 			 * via fault_gpa).
1707 			 */
1708 			if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1709 				vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1710 			r = RESUME_PAGE_FAULT;
1711 			break;
1712 		}
1713 
1714 		if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1715 			kvmppc_core_queue_inst_storage(vcpu,
1716 				vcpu->arch.fault_dsisr);
1717 			r = RESUME_GUEST;
1718 			break;
1719 		}
1720 
1721 		if (!(vcpu->arch.shregs.msr & MSR_IR))
1722 			vsid = vcpu->kvm->arch.vrma_slb_v;
1723 		else
1724 			vsid = vcpu->arch.fault_gpa;
1725 
1726 		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1727 				vsid, vcpu->arch.fault_dsisr, false);
1728 		if (err == 0) {
1729 			r = RESUME_GUEST;
1730 		} else if (err == -1) {
1731 			r = RESUME_PAGE_FAULT;
1732 		} else {
1733 			kvmppc_core_queue_inst_storage(vcpu, err);
1734 			r = RESUME_GUEST;
1735 		}
1736 		break;
1737 	}
1738 
1739 	/*
1740 	 * This occurs if the guest executes an illegal instruction.
1741 	 * If the guest debug is disabled, generate a program interrupt
1742 	 * to the guest. If guest debug is enabled, we need to check
1743 	 * whether the instruction is a software breakpoint instruction.
1744 	 * Accordingly return to Guest or Host.
1745 	 */
1746 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1747 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1748 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1749 				swab32(vcpu->arch.emul_inst) :
1750 				vcpu->arch.emul_inst;
1751 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1752 			r = kvmppc_emulate_debug_inst(vcpu);
1753 		} else {
1754 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1755 			r = RESUME_GUEST;
1756 		}
1757 		break;
1758 
1759 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1760 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1761 		/*
1762 		 * This occurs for various TM-related instructions that
1763 		 * we need to emulate on POWER9 DD2.2.  We have already
1764 		 * handled the cases where the guest was in real-suspend
1765 		 * mode and was transitioning to transactional state.
1766 		 */
1767 		r = kvmhv_p9_tm_emulation(vcpu);
1768 		if (r != -1)
1769 			break;
1770 		fallthrough; /* go to facility unavailable handler */
1771 #endif
1772 
1773 	/*
1774 	 * This occurs if the guest (kernel or userspace), does something that
1775 	 * is prohibited by HFSCR.
1776 	 * On POWER9, this could be a doorbell instruction that we need
1777 	 * to emulate.
1778 	 * Otherwise, we just generate a program interrupt to the guest.
1779 	 */
1780 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1781 		u64 cause = vcpu->arch.hfscr >> 56;
1782 
1783 		r = EMULATE_FAIL;
1784 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1785 			if (cause == FSCR_MSGP_LG)
1786 				r = kvmppc_emulate_doorbell_instr(vcpu);
1787 			if (cause == FSCR_PM_LG)
1788 				r = kvmppc_pmu_unavailable(vcpu);
1789 			if (cause == FSCR_EBB_LG)
1790 				r = kvmppc_ebb_unavailable(vcpu);
1791 			if (cause == FSCR_TM_LG)
1792 				r = kvmppc_tm_unavailable(vcpu);
1793 		}
1794 		if (r == EMULATE_FAIL) {
1795 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1796 			r = RESUME_GUEST;
1797 		}
1798 		break;
1799 	}
1800 
1801 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1802 		r = RESUME_PASSTHROUGH;
1803 		break;
1804 	default:
1805 		kvmppc_dump_regs(vcpu);
1806 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1807 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1808 			vcpu->arch.shregs.msr);
1809 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1810 		r = RESUME_HOST;
1811 		break;
1812 	}
1813 
1814 	return r;
1815 }
1816 
1817 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1818 {
1819 	struct kvm_nested_guest *nested = vcpu->arch.nested;
1820 	int r;
1821 	int srcu_idx;
1822 
1823 	vcpu->stat.sum_exits++;
1824 
1825 	/*
1826 	 * This can happen if an interrupt occurs in the last stages
1827 	 * of guest entry or the first stages of guest exit (i.e. after
1828 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1829 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1830 	 * That can happen due to a bug, or due to a machine check
1831 	 * occurring at just the wrong time.
1832 	 */
1833 	if (vcpu->arch.shregs.msr & MSR_HV) {
1834 		pr_emerg("KVM trap in HV mode while nested!\n");
1835 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1836 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1837 			 vcpu->arch.shregs.msr);
1838 		kvmppc_dump_regs(vcpu);
1839 		return RESUME_HOST;
1840 	}
1841 	switch (vcpu->arch.trap) {
1842 	/* We're good on these - the host merely wanted to get our attention */
1843 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1844 		vcpu->stat.dec_exits++;
1845 		r = RESUME_GUEST;
1846 		break;
1847 	case BOOK3S_INTERRUPT_EXTERNAL:
1848 		vcpu->stat.ext_intr_exits++;
1849 		r = RESUME_HOST;
1850 		break;
1851 	case BOOK3S_INTERRUPT_H_DOORBELL:
1852 	case BOOK3S_INTERRUPT_H_VIRT:
1853 		vcpu->stat.ext_intr_exits++;
1854 		r = RESUME_GUEST;
1855 		break;
1856 	/* These need to go to the nested HV */
1857 	case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1858 		vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1859 		vcpu->stat.dec_exits++;
1860 		r = RESUME_HOST;
1861 		break;
1862 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1863 	case BOOK3S_INTERRUPT_HMI:
1864 	case BOOK3S_INTERRUPT_PERFMON:
1865 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1866 		r = RESUME_GUEST;
1867 		break;
1868 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1869 	{
1870 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1871 					      DEFAULT_RATELIMIT_BURST);
1872 		/* Pass the machine check to the L1 guest */
1873 		r = RESUME_HOST;
1874 		/* Print the MCE event to host console. */
1875 		if (__ratelimit(&rs))
1876 			machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1877 		break;
1878 	}
1879 	/*
1880 	 * We get these next two if the guest accesses a page which it thinks
1881 	 * it has mapped but which is not actually present, either because
1882 	 * it is for an emulated I/O device or because the corresonding
1883 	 * host page has been paged out.
1884 	 */
1885 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1886 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1887 		r = kvmhv_nested_page_fault(vcpu);
1888 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1889 		break;
1890 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1891 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1892 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1893 					 DSISR_SRR1_MATCH_64S;
1894 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1895 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1896 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1897 		r = kvmhv_nested_page_fault(vcpu);
1898 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1899 		break;
1900 
1901 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1902 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1903 		/*
1904 		 * This occurs for various TM-related instructions that
1905 		 * we need to emulate on POWER9 DD2.2.  We have already
1906 		 * handled the cases where the guest was in real-suspend
1907 		 * mode and was transitioning to transactional state.
1908 		 */
1909 		r = kvmhv_p9_tm_emulation(vcpu);
1910 		if (r != -1)
1911 			break;
1912 		fallthrough; /* go to facility unavailable handler */
1913 #endif
1914 
1915 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1916 		u64 cause = vcpu->arch.hfscr >> 56;
1917 
1918 		/*
1919 		 * Only pass HFU interrupts to the L1 if the facility is
1920 		 * permitted but disabled by the L1's HFSCR, otherwise
1921 		 * the interrupt does not make sense to the L1 so turn
1922 		 * it into a HEAI.
1923 		 */
1924 		if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
1925 					(nested->hfscr & (1UL << cause))) {
1926 			vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
1927 
1928 			/*
1929 			 * If the fetch failed, return to guest and
1930 			 * try executing it again.
1931 			 */
1932 			r = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1933 						 &vcpu->arch.emul_inst);
1934 			if (r != EMULATE_DONE)
1935 				r = RESUME_GUEST;
1936 			else
1937 				r = RESUME_HOST;
1938 		} else {
1939 			r = RESUME_HOST;
1940 		}
1941 
1942 		break;
1943 	}
1944 
1945 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1946 		vcpu->arch.trap = 0;
1947 		r = RESUME_GUEST;
1948 		if (!xics_on_xive())
1949 			kvmppc_xics_rm_complete(vcpu, 0);
1950 		break;
1951 	case BOOK3S_INTERRUPT_SYSCALL:
1952 	{
1953 		unsigned long req = kvmppc_get_gpr(vcpu, 3);
1954 
1955 		/*
1956 		 * The H_RPT_INVALIDATE hcalls issued by nested
1957 		 * guests for process-scoped invalidations when
1958 		 * GTSE=0, are handled here in L0.
1959 		 */
1960 		if (req == H_RPT_INVALIDATE) {
1961 			r = kvmppc_nested_h_rpt_invalidate(vcpu);
1962 			break;
1963 		}
1964 
1965 		r = RESUME_HOST;
1966 		break;
1967 	}
1968 	default:
1969 		r = RESUME_HOST;
1970 		break;
1971 	}
1972 
1973 	return r;
1974 }
1975 
1976 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1977 					    struct kvm_sregs *sregs)
1978 {
1979 	int i;
1980 
1981 	memset(sregs, 0, sizeof(struct kvm_sregs));
1982 	sregs->pvr = vcpu->arch.pvr;
1983 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1984 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1985 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1992 					    struct kvm_sregs *sregs)
1993 {
1994 	int i, j;
1995 
1996 	/* Only accept the same PVR as the host's, since we can't spoof it */
1997 	if (sregs->pvr != vcpu->arch.pvr)
1998 		return -EINVAL;
1999 
2000 	j = 0;
2001 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
2002 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2003 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2004 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2005 			++j;
2006 		}
2007 	}
2008 	vcpu->arch.slb_max = j;
2009 
2010 	return 0;
2011 }
2012 
2013 /*
2014  * Enforce limits on guest LPCR values based on hardware availability,
2015  * guest configuration, and possibly hypervisor support and security
2016  * concerns.
2017  */
2018 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2019 {
2020 	/* LPCR_TC only applies to HPT guests */
2021 	if (kvm_is_radix(kvm))
2022 		lpcr &= ~LPCR_TC;
2023 
2024 	/* On POWER8 and above, userspace can modify AIL */
2025 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2026 		lpcr &= ~LPCR_AIL;
2027 	if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2028 		lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2029 	/*
2030 	 * On some POWER9s we force AIL off for radix guests to prevent
2031 	 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2032 	 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2033 	 * be cached, which the host TLB management does not expect.
2034 	 */
2035 	if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2036 		lpcr &= ~LPCR_AIL;
2037 
2038 	/*
2039 	 * On POWER9, allow userspace to enable large decrementer for the
2040 	 * guest, whether or not the host has it enabled.
2041 	 */
2042 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
2043 		lpcr &= ~LPCR_LD;
2044 
2045 	return lpcr;
2046 }
2047 
2048 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2049 {
2050 	if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2051 		WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2052 			  lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2053 	}
2054 }
2055 
2056 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2057 		bool preserve_top32)
2058 {
2059 	struct kvm *kvm = vcpu->kvm;
2060 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
2061 	u64 mask;
2062 
2063 	spin_lock(&vc->lock);
2064 
2065 	/*
2066 	 * Userspace can only modify
2067 	 * DPFD (default prefetch depth), ILE (interrupt little-endian),
2068 	 * TC (translation control), AIL (alternate interrupt location),
2069 	 * LD (large decrementer).
2070 	 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2071 	 */
2072 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2073 
2074 	/* Broken 32-bit version of LPCR must not clear top bits */
2075 	if (preserve_top32)
2076 		mask &= 0xFFFFFFFF;
2077 
2078 	new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2079 			(vc->lpcr & ~mask) | (new_lpcr & mask));
2080 
2081 	/*
2082 	 * If ILE (interrupt little-endian) has changed, update the
2083 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2084 	 */
2085 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2086 		struct kvm_vcpu *vcpu;
2087 		int i;
2088 
2089 		kvm_for_each_vcpu(i, vcpu, kvm) {
2090 			if (vcpu->arch.vcore != vc)
2091 				continue;
2092 			if (new_lpcr & LPCR_ILE)
2093 				vcpu->arch.intr_msr |= MSR_LE;
2094 			else
2095 				vcpu->arch.intr_msr &= ~MSR_LE;
2096 		}
2097 	}
2098 
2099 	vc->lpcr = new_lpcr;
2100 
2101 	spin_unlock(&vc->lock);
2102 }
2103 
2104 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2105 				 union kvmppc_one_reg *val)
2106 {
2107 	int r = 0;
2108 	long int i;
2109 
2110 	switch (id) {
2111 	case KVM_REG_PPC_DEBUG_INST:
2112 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2113 		break;
2114 	case KVM_REG_PPC_HIOR:
2115 		*val = get_reg_val(id, 0);
2116 		break;
2117 	case KVM_REG_PPC_DABR:
2118 		*val = get_reg_val(id, vcpu->arch.dabr);
2119 		break;
2120 	case KVM_REG_PPC_DABRX:
2121 		*val = get_reg_val(id, vcpu->arch.dabrx);
2122 		break;
2123 	case KVM_REG_PPC_DSCR:
2124 		*val = get_reg_val(id, vcpu->arch.dscr);
2125 		break;
2126 	case KVM_REG_PPC_PURR:
2127 		*val = get_reg_val(id, vcpu->arch.purr);
2128 		break;
2129 	case KVM_REG_PPC_SPURR:
2130 		*val = get_reg_val(id, vcpu->arch.spurr);
2131 		break;
2132 	case KVM_REG_PPC_AMR:
2133 		*val = get_reg_val(id, vcpu->arch.amr);
2134 		break;
2135 	case KVM_REG_PPC_UAMOR:
2136 		*val = get_reg_val(id, vcpu->arch.uamor);
2137 		break;
2138 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2139 		i = id - KVM_REG_PPC_MMCR0;
2140 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
2141 		break;
2142 	case KVM_REG_PPC_MMCR2:
2143 		*val = get_reg_val(id, vcpu->arch.mmcr[2]);
2144 		break;
2145 	case KVM_REG_PPC_MMCRA:
2146 		*val = get_reg_val(id, vcpu->arch.mmcra);
2147 		break;
2148 	case KVM_REG_PPC_MMCRS:
2149 		*val = get_reg_val(id, vcpu->arch.mmcrs);
2150 		break;
2151 	case KVM_REG_PPC_MMCR3:
2152 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
2153 		break;
2154 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2155 		i = id - KVM_REG_PPC_PMC1;
2156 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
2157 		break;
2158 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2159 		i = id - KVM_REG_PPC_SPMC1;
2160 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
2161 		break;
2162 	case KVM_REG_PPC_SIAR:
2163 		*val = get_reg_val(id, vcpu->arch.siar);
2164 		break;
2165 	case KVM_REG_PPC_SDAR:
2166 		*val = get_reg_val(id, vcpu->arch.sdar);
2167 		break;
2168 	case KVM_REG_PPC_SIER:
2169 		*val = get_reg_val(id, vcpu->arch.sier[0]);
2170 		break;
2171 	case KVM_REG_PPC_SIER2:
2172 		*val = get_reg_val(id, vcpu->arch.sier[1]);
2173 		break;
2174 	case KVM_REG_PPC_SIER3:
2175 		*val = get_reg_val(id, vcpu->arch.sier[2]);
2176 		break;
2177 	case KVM_REG_PPC_IAMR:
2178 		*val = get_reg_val(id, vcpu->arch.iamr);
2179 		break;
2180 	case KVM_REG_PPC_PSPB:
2181 		*val = get_reg_val(id, vcpu->arch.pspb);
2182 		break;
2183 	case KVM_REG_PPC_DPDES:
2184 		/*
2185 		 * On POWER9, where we are emulating msgsndp etc.,
2186 		 * we return 1 bit for each vcpu, which can come from
2187 		 * either vcore->dpdes or doorbell_request.
2188 		 * On POWER8, doorbell_request is 0.
2189 		 */
2190 		if (cpu_has_feature(CPU_FTR_ARCH_300))
2191 			*val = get_reg_val(id, vcpu->arch.doorbell_request);
2192 		else
2193 			*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2194 		break;
2195 	case KVM_REG_PPC_VTB:
2196 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
2197 		break;
2198 	case KVM_REG_PPC_DAWR:
2199 		*val = get_reg_val(id, vcpu->arch.dawr0);
2200 		break;
2201 	case KVM_REG_PPC_DAWRX:
2202 		*val = get_reg_val(id, vcpu->arch.dawrx0);
2203 		break;
2204 	case KVM_REG_PPC_DAWR1:
2205 		*val = get_reg_val(id, vcpu->arch.dawr1);
2206 		break;
2207 	case KVM_REG_PPC_DAWRX1:
2208 		*val = get_reg_val(id, vcpu->arch.dawrx1);
2209 		break;
2210 	case KVM_REG_PPC_CIABR:
2211 		*val = get_reg_val(id, vcpu->arch.ciabr);
2212 		break;
2213 	case KVM_REG_PPC_CSIGR:
2214 		*val = get_reg_val(id, vcpu->arch.csigr);
2215 		break;
2216 	case KVM_REG_PPC_TACR:
2217 		*val = get_reg_val(id, vcpu->arch.tacr);
2218 		break;
2219 	case KVM_REG_PPC_TCSCR:
2220 		*val = get_reg_val(id, vcpu->arch.tcscr);
2221 		break;
2222 	case KVM_REG_PPC_PID:
2223 		*val = get_reg_val(id, vcpu->arch.pid);
2224 		break;
2225 	case KVM_REG_PPC_ACOP:
2226 		*val = get_reg_val(id, vcpu->arch.acop);
2227 		break;
2228 	case KVM_REG_PPC_WORT:
2229 		*val = get_reg_val(id, vcpu->arch.wort);
2230 		break;
2231 	case KVM_REG_PPC_TIDR:
2232 		*val = get_reg_val(id, vcpu->arch.tid);
2233 		break;
2234 	case KVM_REG_PPC_PSSCR:
2235 		*val = get_reg_val(id, vcpu->arch.psscr);
2236 		break;
2237 	case KVM_REG_PPC_VPA_ADDR:
2238 		spin_lock(&vcpu->arch.vpa_update_lock);
2239 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2240 		spin_unlock(&vcpu->arch.vpa_update_lock);
2241 		break;
2242 	case KVM_REG_PPC_VPA_SLB:
2243 		spin_lock(&vcpu->arch.vpa_update_lock);
2244 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2245 		val->vpaval.length = vcpu->arch.slb_shadow.len;
2246 		spin_unlock(&vcpu->arch.vpa_update_lock);
2247 		break;
2248 	case KVM_REG_PPC_VPA_DTL:
2249 		spin_lock(&vcpu->arch.vpa_update_lock);
2250 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2251 		val->vpaval.length = vcpu->arch.dtl.len;
2252 		spin_unlock(&vcpu->arch.vpa_update_lock);
2253 		break;
2254 	case KVM_REG_PPC_TB_OFFSET:
2255 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2256 		break;
2257 	case KVM_REG_PPC_LPCR:
2258 	case KVM_REG_PPC_LPCR_64:
2259 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2260 		break;
2261 	case KVM_REG_PPC_PPR:
2262 		*val = get_reg_val(id, vcpu->arch.ppr);
2263 		break;
2264 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2265 	case KVM_REG_PPC_TFHAR:
2266 		*val = get_reg_val(id, vcpu->arch.tfhar);
2267 		break;
2268 	case KVM_REG_PPC_TFIAR:
2269 		*val = get_reg_val(id, vcpu->arch.tfiar);
2270 		break;
2271 	case KVM_REG_PPC_TEXASR:
2272 		*val = get_reg_val(id, vcpu->arch.texasr);
2273 		break;
2274 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2275 		i = id - KVM_REG_PPC_TM_GPR0;
2276 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2277 		break;
2278 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2279 	{
2280 		int j;
2281 		i = id - KVM_REG_PPC_TM_VSR0;
2282 		if (i < 32)
2283 			for (j = 0; j < TS_FPRWIDTH; j++)
2284 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2285 		else {
2286 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2287 				val->vval = vcpu->arch.vr_tm.vr[i-32];
2288 			else
2289 				r = -ENXIO;
2290 		}
2291 		break;
2292 	}
2293 	case KVM_REG_PPC_TM_CR:
2294 		*val = get_reg_val(id, vcpu->arch.cr_tm);
2295 		break;
2296 	case KVM_REG_PPC_TM_XER:
2297 		*val = get_reg_val(id, vcpu->arch.xer_tm);
2298 		break;
2299 	case KVM_REG_PPC_TM_LR:
2300 		*val = get_reg_val(id, vcpu->arch.lr_tm);
2301 		break;
2302 	case KVM_REG_PPC_TM_CTR:
2303 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
2304 		break;
2305 	case KVM_REG_PPC_TM_FPSCR:
2306 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2307 		break;
2308 	case KVM_REG_PPC_TM_AMR:
2309 		*val = get_reg_val(id, vcpu->arch.amr_tm);
2310 		break;
2311 	case KVM_REG_PPC_TM_PPR:
2312 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
2313 		break;
2314 	case KVM_REG_PPC_TM_VRSAVE:
2315 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
2316 		break;
2317 	case KVM_REG_PPC_TM_VSCR:
2318 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2319 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2320 		else
2321 			r = -ENXIO;
2322 		break;
2323 	case KVM_REG_PPC_TM_DSCR:
2324 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
2325 		break;
2326 	case KVM_REG_PPC_TM_TAR:
2327 		*val = get_reg_val(id, vcpu->arch.tar_tm);
2328 		break;
2329 #endif
2330 	case KVM_REG_PPC_ARCH_COMPAT:
2331 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2332 		break;
2333 	case KVM_REG_PPC_DEC_EXPIRY:
2334 		*val = get_reg_val(id, vcpu->arch.dec_expires);
2335 		break;
2336 	case KVM_REG_PPC_ONLINE:
2337 		*val = get_reg_val(id, vcpu->arch.online);
2338 		break;
2339 	case KVM_REG_PPC_PTCR:
2340 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2341 		break;
2342 	default:
2343 		r = -EINVAL;
2344 		break;
2345 	}
2346 
2347 	return r;
2348 }
2349 
2350 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2351 				 union kvmppc_one_reg *val)
2352 {
2353 	int r = 0;
2354 	long int i;
2355 	unsigned long addr, len;
2356 
2357 	switch (id) {
2358 	case KVM_REG_PPC_HIOR:
2359 		/* Only allow this to be set to zero */
2360 		if (set_reg_val(id, *val))
2361 			r = -EINVAL;
2362 		break;
2363 	case KVM_REG_PPC_DABR:
2364 		vcpu->arch.dabr = set_reg_val(id, *val);
2365 		break;
2366 	case KVM_REG_PPC_DABRX:
2367 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2368 		break;
2369 	case KVM_REG_PPC_DSCR:
2370 		vcpu->arch.dscr = set_reg_val(id, *val);
2371 		break;
2372 	case KVM_REG_PPC_PURR:
2373 		vcpu->arch.purr = set_reg_val(id, *val);
2374 		break;
2375 	case KVM_REG_PPC_SPURR:
2376 		vcpu->arch.spurr = set_reg_val(id, *val);
2377 		break;
2378 	case KVM_REG_PPC_AMR:
2379 		vcpu->arch.amr = set_reg_val(id, *val);
2380 		break;
2381 	case KVM_REG_PPC_UAMOR:
2382 		vcpu->arch.uamor = set_reg_val(id, *val);
2383 		break;
2384 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2385 		i = id - KVM_REG_PPC_MMCR0;
2386 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2387 		break;
2388 	case KVM_REG_PPC_MMCR2:
2389 		vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2390 		break;
2391 	case KVM_REG_PPC_MMCRA:
2392 		vcpu->arch.mmcra = set_reg_val(id, *val);
2393 		break;
2394 	case KVM_REG_PPC_MMCRS:
2395 		vcpu->arch.mmcrs = set_reg_val(id, *val);
2396 		break;
2397 	case KVM_REG_PPC_MMCR3:
2398 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
2399 		break;
2400 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2401 		i = id - KVM_REG_PPC_PMC1;
2402 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
2403 		break;
2404 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2405 		i = id - KVM_REG_PPC_SPMC1;
2406 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
2407 		break;
2408 	case KVM_REG_PPC_SIAR:
2409 		vcpu->arch.siar = set_reg_val(id, *val);
2410 		break;
2411 	case KVM_REG_PPC_SDAR:
2412 		vcpu->arch.sdar = set_reg_val(id, *val);
2413 		break;
2414 	case KVM_REG_PPC_SIER:
2415 		vcpu->arch.sier[0] = set_reg_val(id, *val);
2416 		break;
2417 	case KVM_REG_PPC_SIER2:
2418 		vcpu->arch.sier[1] = set_reg_val(id, *val);
2419 		break;
2420 	case KVM_REG_PPC_SIER3:
2421 		vcpu->arch.sier[2] = set_reg_val(id, *val);
2422 		break;
2423 	case KVM_REG_PPC_IAMR:
2424 		vcpu->arch.iamr = set_reg_val(id, *val);
2425 		break;
2426 	case KVM_REG_PPC_PSPB:
2427 		vcpu->arch.pspb = set_reg_val(id, *val);
2428 		break;
2429 	case KVM_REG_PPC_DPDES:
2430 		if (cpu_has_feature(CPU_FTR_ARCH_300))
2431 			vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2432 		else
2433 			vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2434 		break;
2435 	case KVM_REG_PPC_VTB:
2436 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2437 		break;
2438 	case KVM_REG_PPC_DAWR:
2439 		vcpu->arch.dawr0 = set_reg_val(id, *val);
2440 		break;
2441 	case KVM_REG_PPC_DAWRX:
2442 		vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2443 		break;
2444 	case KVM_REG_PPC_DAWR1:
2445 		vcpu->arch.dawr1 = set_reg_val(id, *val);
2446 		break;
2447 	case KVM_REG_PPC_DAWRX1:
2448 		vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2449 		break;
2450 	case KVM_REG_PPC_CIABR:
2451 		vcpu->arch.ciabr = set_reg_val(id, *val);
2452 		/* Don't allow setting breakpoints in hypervisor code */
2453 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2454 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
2455 		break;
2456 	case KVM_REG_PPC_CSIGR:
2457 		vcpu->arch.csigr = set_reg_val(id, *val);
2458 		break;
2459 	case KVM_REG_PPC_TACR:
2460 		vcpu->arch.tacr = set_reg_val(id, *val);
2461 		break;
2462 	case KVM_REG_PPC_TCSCR:
2463 		vcpu->arch.tcscr = set_reg_val(id, *val);
2464 		break;
2465 	case KVM_REG_PPC_PID:
2466 		vcpu->arch.pid = set_reg_val(id, *val);
2467 		break;
2468 	case KVM_REG_PPC_ACOP:
2469 		vcpu->arch.acop = set_reg_val(id, *val);
2470 		break;
2471 	case KVM_REG_PPC_WORT:
2472 		vcpu->arch.wort = set_reg_val(id, *val);
2473 		break;
2474 	case KVM_REG_PPC_TIDR:
2475 		vcpu->arch.tid = set_reg_val(id, *val);
2476 		break;
2477 	case KVM_REG_PPC_PSSCR:
2478 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2479 		break;
2480 	case KVM_REG_PPC_VPA_ADDR:
2481 		addr = set_reg_val(id, *val);
2482 		r = -EINVAL;
2483 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2484 			      vcpu->arch.dtl.next_gpa))
2485 			break;
2486 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2487 		break;
2488 	case KVM_REG_PPC_VPA_SLB:
2489 		addr = val->vpaval.addr;
2490 		len = val->vpaval.length;
2491 		r = -EINVAL;
2492 		if (addr && !vcpu->arch.vpa.next_gpa)
2493 			break;
2494 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2495 		break;
2496 	case KVM_REG_PPC_VPA_DTL:
2497 		addr = val->vpaval.addr;
2498 		len = val->vpaval.length;
2499 		r = -EINVAL;
2500 		if (addr && (len < sizeof(struct dtl_entry) ||
2501 			     !vcpu->arch.vpa.next_gpa))
2502 			break;
2503 		len -= len % sizeof(struct dtl_entry);
2504 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2505 		break;
2506 	case KVM_REG_PPC_TB_OFFSET:
2507 		/* round up to multiple of 2^24 */
2508 		vcpu->arch.vcore->tb_offset =
2509 			ALIGN(set_reg_val(id, *val), 1UL << 24);
2510 		break;
2511 	case KVM_REG_PPC_LPCR:
2512 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2513 		break;
2514 	case KVM_REG_PPC_LPCR_64:
2515 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2516 		break;
2517 	case KVM_REG_PPC_PPR:
2518 		vcpu->arch.ppr = set_reg_val(id, *val);
2519 		break;
2520 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2521 	case KVM_REG_PPC_TFHAR:
2522 		vcpu->arch.tfhar = set_reg_val(id, *val);
2523 		break;
2524 	case KVM_REG_PPC_TFIAR:
2525 		vcpu->arch.tfiar = set_reg_val(id, *val);
2526 		break;
2527 	case KVM_REG_PPC_TEXASR:
2528 		vcpu->arch.texasr = set_reg_val(id, *val);
2529 		break;
2530 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2531 		i = id - KVM_REG_PPC_TM_GPR0;
2532 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2533 		break;
2534 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2535 	{
2536 		int j;
2537 		i = id - KVM_REG_PPC_TM_VSR0;
2538 		if (i < 32)
2539 			for (j = 0; j < TS_FPRWIDTH; j++)
2540 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2541 		else
2542 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2543 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2544 			else
2545 				r = -ENXIO;
2546 		break;
2547 	}
2548 	case KVM_REG_PPC_TM_CR:
2549 		vcpu->arch.cr_tm = set_reg_val(id, *val);
2550 		break;
2551 	case KVM_REG_PPC_TM_XER:
2552 		vcpu->arch.xer_tm = set_reg_val(id, *val);
2553 		break;
2554 	case KVM_REG_PPC_TM_LR:
2555 		vcpu->arch.lr_tm = set_reg_val(id, *val);
2556 		break;
2557 	case KVM_REG_PPC_TM_CTR:
2558 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2559 		break;
2560 	case KVM_REG_PPC_TM_FPSCR:
2561 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2562 		break;
2563 	case KVM_REG_PPC_TM_AMR:
2564 		vcpu->arch.amr_tm = set_reg_val(id, *val);
2565 		break;
2566 	case KVM_REG_PPC_TM_PPR:
2567 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2568 		break;
2569 	case KVM_REG_PPC_TM_VRSAVE:
2570 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2571 		break;
2572 	case KVM_REG_PPC_TM_VSCR:
2573 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2574 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2575 		else
2576 			r = - ENXIO;
2577 		break;
2578 	case KVM_REG_PPC_TM_DSCR:
2579 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2580 		break;
2581 	case KVM_REG_PPC_TM_TAR:
2582 		vcpu->arch.tar_tm = set_reg_val(id, *val);
2583 		break;
2584 #endif
2585 	case KVM_REG_PPC_ARCH_COMPAT:
2586 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2587 		break;
2588 	case KVM_REG_PPC_DEC_EXPIRY:
2589 		vcpu->arch.dec_expires = set_reg_val(id, *val);
2590 		break;
2591 	case KVM_REG_PPC_ONLINE:
2592 		i = set_reg_val(id, *val);
2593 		if (i && !vcpu->arch.online)
2594 			atomic_inc(&vcpu->arch.vcore->online_count);
2595 		else if (!i && vcpu->arch.online)
2596 			atomic_dec(&vcpu->arch.vcore->online_count);
2597 		vcpu->arch.online = i;
2598 		break;
2599 	case KVM_REG_PPC_PTCR:
2600 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2601 		break;
2602 	default:
2603 		r = -EINVAL;
2604 		break;
2605 	}
2606 
2607 	return r;
2608 }
2609 
2610 /*
2611  * On POWER9, threads are independent and can be in different partitions.
2612  * Therefore we consider each thread to be a subcore.
2613  * There is a restriction that all threads have to be in the same
2614  * MMU mode (radix or HPT), unfortunately, but since we only support
2615  * HPT guests on a HPT host so far, that isn't an impediment yet.
2616  */
2617 static int threads_per_vcore(struct kvm *kvm)
2618 {
2619 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2620 		return 1;
2621 	return threads_per_subcore;
2622 }
2623 
2624 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2625 {
2626 	struct kvmppc_vcore *vcore;
2627 
2628 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2629 
2630 	if (vcore == NULL)
2631 		return NULL;
2632 
2633 	spin_lock_init(&vcore->lock);
2634 	spin_lock_init(&vcore->stoltb_lock);
2635 	rcuwait_init(&vcore->wait);
2636 	vcore->preempt_tb = TB_NIL;
2637 	vcore->lpcr = kvm->arch.lpcr;
2638 	vcore->first_vcpuid = id;
2639 	vcore->kvm = kvm;
2640 	INIT_LIST_HEAD(&vcore->preempt_list);
2641 
2642 	return vcore;
2643 }
2644 
2645 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2646 static struct debugfs_timings_element {
2647 	const char *name;
2648 	size_t offset;
2649 } timings[] = {
2650 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2651 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2652 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2653 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2654 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2655 };
2656 
2657 #define N_TIMINGS	(ARRAY_SIZE(timings))
2658 
2659 struct debugfs_timings_state {
2660 	struct kvm_vcpu	*vcpu;
2661 	unsigned int	buflen;
2662 	char		buf[N_TIMINGS * 100];
2663 };
2664 
2665 static int debugfs_timings_open(struct inode *inode, struct file *file)
2666 {
2667 	struct kvm_vcpu *vcpu = inode->i_private;
2668 	struct debugfs_timings_state *p;
2669 
2670 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2671 	if (!p)
2672 		return -ENOMEM;
2673 
2674 	kvm_get_kvm(vcpu->kvm);
2675 	p->vcpu = vcpu;
2676 	file->private_data = p;
2677 
2678 	return nonseekable_open(inode, file);
2679 }
2680 
2681 static int debugfs_timings_release(struct inode *inode, struct file *file)
2682 {
2683 	struct debugfs_timings_state *p = file->private_data;
2684 
2685 	kvm_put_kvm(p->vcpu->kvm);
2686 	kfree(p);
2687 	return 0;
2688 }
2689 
2690 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2691 				    size_t len, loff_t *ppos)
2692 {
2693 	struct debugfs_timings_state *p = file->private_data;
2694 	struct kvm_vcpu *vcpu = p->vcpu;
2695 	char *s, *buf_end;
2696 	struct kvmhv_tb_accumulator tb;
2697 	u64 count;
2698 	loff_t pos;
2699 	ssize_t n;
2700 	int i, loops;
2701 	bool ok;
2702 
2703 	if (!p->buflen) {
2704 		s = p->buf;
2705 		buf_end = s + sizeof(p->buf);
2706 		for (i = 0; i < N_TIMINGS; ++i) {
2707 			struct kvmhv_tb_accumulator *acc;
2708 
2709 			acc = (struct kvmhv_tb_accumulator *)
2710 				((unsigned long)vcpu + timings[i].offset);
2711 			ok = false;
2712 			for (loops = 0; loops < 1000; ++loops) {
2713 				count = acc->seqcount;
2714 				if (!(count & 1)) {
2715 					smp_rmb();
2716 					tb = *acc;
2717 					smp_rmb();
2718 					if (count == acc->seqcount) {
2719 						ok = true;
2720 						break;
2721 					}
2722 				}
2723 				udelay(1);
2724 			}
2725 			if (!ok)
2726 				snprintf(s, buf_end - s, "%s: stuck\n",
2727 					timings[i].name);
2728 			else
2729 				snprintf(s, buf_end - s,
2730 					"%s: %llu %llu %llu %llu\n",
2731 					timings[i].name, count / 2,
2732 					tb_to_ns(tb.tb_total),
2733 					tb_to_ns(tb.tb_min),
2734 					tb_to_ns(tb.tb_max));
2735 			s += strlen(s);
2736 		}
2737 		p->buflen = s - p->buf;
2738 	}
2739 
2740 	pos = *ppos;
2741 	if (pos >= p->buflen)
2742 		return 0;
2743 	if (len > p->buflen - pos)
2744 		len = p->buflen - pos;
2745 	n = copy_to_user(buf, p->buf + pos, len);
2746 	if (n) {
2747 		if (n == len)
2748 			return -EFAULT;
2749 		len -= n;
2750 	}
2751 	*ppos = pos + len;
2752 	return len;
2753 }
2754 
2755 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2756 				     size_t len, loff_t *ppos)
2757 {
2758 	return -EACCES;
2759 }
2760 
2761 static const struct file_operations debugfs_timings_ops = {
2762 	.owner	 = THIS_MODULE,
2763 	.open	 = debugfs_timings_open,
2764 	.release = debugfs_timings_release,
2765 	.read	 = debugfs_timings_read,
2766 	.write	 = debugfs_timings_write,
2767 	.llseek	 = generic_file_llseek,
2768 };
2769 
2770 /* Create a debugfs directory for the vcpu */
2771 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2772 {
2773 	char buf[16];
2774 	struct kvm *kvm = vcpu->kvm;
2775 
2776 	snprintf(buf, sizeof(buf), "vcpu%u", id);
2777 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2778 	debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2779 			    &debugfs_timings_ops);
2780 }
2781 
2782 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2783 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2784 {
2785 }
2786 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2787 
2788 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2789 {
2790 	int err;
2791 	int core;
2792 	struct kvmppc_vcore *vcore;
2793 	struct kvm *kvm;
2794 	unsigned int id;
2795 
2796 	kvm = vcpu->kvm;
2797 	id = vcpu->vcpu_id;
2798 
2799 	vcpu->arch.shared = &vcpu->arch.shregs;
2800 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2801 	/*
2802 	 * The shared struct is never shared on HV,
2803 	 * so we can always use host endianness
2804 	 */
2805 #ifdef __BIG_ENDIAN__
2806 	vcpu->arch.shared_big_endian = true;
2807 #else
2808 	vcpu->arch.shared_big_endian = false;
2809 #endif
2810 #endif
2811 	vcpu->arch.mmcr[0] = MMCR0_FC;
2812 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2813 		vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT;
2814 		vcpu->arch.mmcra = MMCRA_BHRB_DISABLE;
2815 	}
2816 
2817 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2818 	/* default to host PVR, since we can't spoof it */
2819 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2820 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2821 	spin_lock_init(&vcpu->arch.tbacct_lock);
2822 	vcpu->arch.busy_preempt = TB_NIL;
2823 	vcpu->arch.shregs.msr = MSR_ME;
2824 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2825 
2826 	/*
2827 	 * Set the default HFSCR for the guest from the host value.
2828 	 * This value is only used on POWER9.
2829 	 * On POWER9, we want to virtualize the doorbell facility, so we
2830 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2831 	 * to trap and then we emulate them.
2832 	 */
2833 	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2834 		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2835 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2836 		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2837 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2838 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2839 			vcpu->arch.hfscr |= HFSCR_TM;
2840 #endif
2841 	}
2842 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2843 		vcpu->arch.hfscr |= HFSCR_TM;
2844 
2845 	vcpu->arch.hfscr_permitted = vcpu->arch.hfscr;
2846 
2847 	/*
2848 	 * PM, EBB, TM are demand-faulted so start with it clear.
2849 	 */
2850 	vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM);
2851 
2852 	kvmppc_mmu_book3s_hv_init(vcpu);
2853 
2854 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2855 
2856 	init_waitqueue_head(&vcpu->arch.cpu_run);
2857 
2858 	mutex_lock(&kvm->lock);
2859 	vcore = NULL;
2860 	err = -EINVAL;
2861 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2862 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2863 			pr_devel("KVM: VCPU ID too high\n");
2864 			core = KVM_MAX_VCORES;
2865 		} else {
2866 			BUG_ON(kvm->arch.smt_mode != 1);
2867 			core = kvmppc_pack_vcpu_id(kvm, id);
2868 		}
2869 	} else {
2870 		core = id / kvm->arch.smt_mode;
2871 	}
2872 	if (core < KVM_MAX_VCORES) {
2873 		vcore = kvm->arch.vcores[core];
2874 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2875 			pr_devel("KVM: collision on id %u", id);
2876 			vcore = NULL;
2877 		} else if (!vcore) {
2878 			/*
2879 			 * Take mmu_setup_lock for mutual exclusion
2880 			 * with kvmppc_update_lpcr().
2881 			 */
2882 			err = -ENOMEM;
2883 			vcore = kvmppc_vcore_create(kvm,
2884 					id & ~(kvm->arch.smt_mode - 1));
2885 			mutex_lock(&kvm->arch.mmu_setup_lock);
2886 			kvm->arch.vcores[core] = vcore;
2887 			kvm->arch.online_vcores++;
2888 			mutex_unlock(&kvm->arch.mmu_setup_lock);
2889 		}
2890 	}
2891 	mutex_unlock(&kvm->lock);
2892 
2893 	if (!vcore)
2894 		return err;
2895 
2896 	spin_lock(&vcore->lock);
2897 	++vcore->num_threads;
2898 	spin_unlock(&vcore->lock);
2899 	vcpu->arch.vcore = vcore;
2900 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2901 	vcpu->arch.thread_cpu = -1;
2902 	vcpu->arch.prev_cpu = -1;
2903 
2904 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2905 	kvmppc_sanity_check(vcpu);
2906 
2907 	debugfs_vcpu_init(vcpu, id);
2908 
2909 	return 0;
2910 }
2911 
2912 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2913 			      unsigned long flags)
2914 {
2915 	int err;
2916 	int esmt = 0;
2917 
2918 	if (flags)
2919 		return -EINVAL;
2920 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2921 		return -EINVAL;
2922 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2923 		/*
2924 		 * On POWER8 (or POWER7), the threading mode is "strict",
2925 		 * so we pack smt_mode vcpus per vcore.
2926 		 */
2927 		if (smt_mode > threads_per_subcore)
2928 			return -EINVAL;
2929 	} else {
2930 		/*
2931 		 * On POWER9, the threading mode is "loose",
2932 		 * so each vcpu gets its own vcore.
2933 		 */
2934 		esmt = smt_mode;
2935 		smt_mode = 1;
2936 	}
2937 	mutex_lock(&kvm->lock);
2938 	err = -EBUSY;
2939 	if (!kvm->arch.online_vcores) {
2940 		kvm->arch.smt_mode = smt_mode;
2941 		kvm->arch.emul_smt_mode = esmt;
2942 		err = 0;
2943 	}
2944 	mutex_unlock(&kvm->lock);
2945 
2946 	return err;
2947 }
2948 
2949 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2950 {
2951 	if (vpa->pinned_addr)
2952 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2953 					vpa->dirty);
2954 }
2955 
2956 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2957 {
2958 	spin_lock(&vcpu->arch.vpa_update_lock);
2959 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2960 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2961 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2962 	spin_unlock(&vcpu->arch.vpa_update_lock);
2963 }
2964 
2965 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2966 {
2967 	/* Indicate we want to get back into the guest */
2968 	return 1;
2969 }
2970 
2971 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2972 {
2973 	unsigned long dec_nsec, now;
2974 
2975 	now = get_tb();
2976 	if (now > kvmppc_dec_expires_host_tb(vcpu)) {
2977 		/* decrementer has already gone negative */
2978 		kvmppc_core_queue_dec(vcpu);
2979 		kvmppc_core_prepare_to_enter(vcpu);
2980 		return;
2981 	}
2982 	dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
2983 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2984 	vcpu->arch.timer_running = 1;
2985 }
2986 
2987 extern int __kvmppc_vcore_entry(void);
2988 
2989 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2990 				   struct kvm_vcpu *vcpu, u64 tb)
2991 {
2992 	u64 now;
2993 
2994 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2995 		return;
2996 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2997 	now = tb;
2998 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2999 		vcpu->arch.stolen_logged;
3000 	vcpu->arch.busy_preempt = now;
3001 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3002 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
3003 	--vc->n_runnable;
3004 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3005 }
3006 
3007 static int kvmppc_grab_hwthread(int cpu)
3008 {
3009 	struct paca_struct *tpaca;
3010 	long timeout = 10000;
3011 
3012 	tpaca = paca_ptrs[cpu];
3013 
3014 	/* Ensure the thread won't go into the kernel if it wakes */
3015 	tpaca->kvm_hstate.kvm_vcpu = NULL;
3016 	tpaca->kvm_hstate.kvm_vcore = NULL;
3017 	tpaca->kvm_hstate.napping = 0;
3018 	smp_wmb();
3019 	tpaca->kvm_hstate.hwthread_req = 1;
3020 
3021 	/*
3022 	 * If the thread is already executing in the kernel (e.g. handling
3023 	 * a stray interrupt), wait for it to get back to nap mode.
3024 	 * The smp_mb() is to ensure that our setting of hwthread_req
3025 	 * is visible before we look at hwthread_state, so if this
3026 	 * races with the code at system_reset_pSeries and the thread
3027 	 * misses our setting of hwthread_req, we are sure to see its
3028 	 * setting of hwthread_state, and vice versa.
3029 	 */
3030 	smp_mb();
3031 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3032 		if (--timeout <= 0) {
3033 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
3034 			return -EBUSY;
3035 		}
3036 		udelay(1);
3037 	}
3038 	return 0;
3039 }
3040 
3041 static void kvmppc_release_hwthread(int cpu)
3042 {
3043 	struct paca_struct *tpaca;
3044 
3045 	tpaca = paca_ptrs[cpu];
3046 	tpaca->kvm_hstate.hwthread_req = 0;
3047 	tpaca->kvm_hstate.kvm_vcpu = NULL;
3048 	tpaca->kvm_hstate.kvm_vcore = NULL;
3049 	tpaca->kvm_hstate.kvm_split_mode = NULL;
3050 }
3051 
3052 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3053 
3054 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3055 {
3056 	struct kvm_nested_guest *nested = vcpu->arch.nested;
3057 	cpumask_t *need_tlb_flush;
3058 	int i;
3059 
3060 	if (nested)
3061 		need_tlb_flush = &nested->need_tlb_flush;
3062 	else
3063 		need_tlb_flush = &kvm->arch.need_tlb_flush;
3064 
3065 	cpu = cpu_first_tlb_thread_sibling(cpu);
3066 	for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3067 					i += cpu_tlb_thread_sibling_step())
3068 		cpumask_set_cpu(i, need_tlb_flush);
3069 
3070 	/*
3071 	 * Make sure setting of bit in need_tlb_flush precedes testing of
3072 	 * cpu_in_guest. The matching barrier on the other side is hwsync
3073 	 * when switching to guest MMU mode, which happens between
3074 	 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3075 	 * being tested.
3076 	 */
3077 	smp_mb();
3078 
3079 	for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3080 					i += cpu_tlb_thread_sibling_step()) {
3081 		struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3082 
3083 		if (running == kvm)
3084 			smp_call_function_single(i, do_nothing, NULL, 1);
3085 	}
3086 }
3087 
3088 static void do_migrate_away_vcpu(void *arg)
3089 {
3090 	struct kvm_vcpu *vcpu = arg;
3091 	struct kvm *kvm = vcpu->kvm;
3092 
3093 	/*
3094 	 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3095 	 * ptesync sequence on the old CPU before migrating to a new one, in
3096 	 * case we interrupted the guest between a tlbie ; eieio ;
3097 	 * tlbsync; ptesync sequence.
3098 	 *
3099 	 * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3100 	 */
3101 	if (kvm->arch.lpcr & LPCR_GTSE)
3102 		asm volatile("eieio; tlbsync; ptesync");
3103 	else
3104 		asm volatile("ptesync");
3105 }
3106 
3107 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3108 {
3109 	struct kvm_nested_guest *nested = vcpu->arch.nested;
3110 	struct kvm *kvm = vcpu->kvm;
3111 	int prev_cpu;
3112 
3113 	if (!cpu_has_feature(CPU_FTR_HVMODE))
3114 		return;
3115 
3116 	if (nested)
3117 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3118 	else
3119 		prev_cpu = vcpu->arch.prev_cpu;
3120 
3121 	/*
3122 	 * With radix, the guest can do TLB invalidations itself,
3123 	 * and it could choose to use the local form (tlbiel) if
3124 	 * it is invalidating a translation that has only ever been
3125 	 * used on one vcpu.  However, that doesn't mean it has
3126 	 * only ever been used on one physical cpu, since vcpus
3127 	 * can move around between pcpus.  To cope with this, when
3128 	 * a vcpu moves from one pcpu to another, we need to tell
3129 	 * any vcpus running on the same core as this vcpu previously
3130 	 * ran to flush the TLB.
3131 	 */
3132 	if (prev_cpu != pcpu) {
3133 		if (prev_cpu >= 0) {
3134 			if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3135 			    cpu_first_tlb_thread_sibling(pcpu))
3136 				radix_flush_cpu(kvm, prev_cpu, vcpu);
3137 
3138 			smp_call_function_single(prev_cpu,
3139 					do_migrate_away_vcpu, vcpu, 1);
3140 		}
3141 		if (nested)
3142 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3143 		else
3144 			vcpu->arch.prev_cpu = pcpu;
3145 	}
3146 }
3147 
3148 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3149 {
3150 	int cpu;
3151 	struct paca_struct *tpaca;
3152 
3153 	cpu = vc->pcpu;
3154 	if (vcpu) {
3155 		if (vcpu->arch.timer_running) {
3156 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3157 			vcpu->arch.timer_running = 0;
3158 		}
3159 		cpu += vcpu->arch.ptid;
3160 		vcpu->cpu = vc->pcpu;
3161 		vcpu->arch.thread_cpu = cpu;
3162 	}
3163 	tpaca = paca_ptrs[cpu];
3164 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
3165 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3166 	tpaca->kvm_hstate.fake_suspend = 0;
3167 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3168 	smp_wmb();
3169 	tpaca->kvm_hstate.kvm_vcore = vc;
3170 	if (cpu != smp_processor_id())
3171 		kvmppc_ipi_thread(cpu);
3172 }
3173 
3174 static void kvmppc_wait_for_nap(int n_threads)
3175 {
3176 	int cpu = smp_processor_id();
3177 	int i, loops;
3178 
3179 	if (n_threads <= 1)
3180 		return;
3181 	for (loops = 0; loops < 1000000; ++loops) {
3182 		/*
3183 		 * Check if all threads are finished.
3184 		 * We set the vcore pointer when starting a thread
3185 		 * and the thread clears it when finished, so we look
3186 		 * for any threads that still have a non-NULL vcore ptr.
3187 		 */
3188 		for (i = 1; i < n_threads; ++i)
3189 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3190 				break;
3191 		if (i == n_threads) {
3192 			HMT_medium();
3193 			return;
3194 		}
3195 		HMT_low();
3196 	}
3197 	HMT_medium();
3198 	for (i = 1; i < n_threads; ++i)
3199 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3200 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3201 }
3202 
3203 /*
3204  * Check that we are on thread 0 and that any other threads in
3205  * this core are off-line.  Then grab the threads so they can't
3206  * enter the kernel.
3207  */
3208 static int on_primary_thread(void)
3209 {
3210 	int cpu = smp_processor_id();
3211 	int thr;
3212 
3213 	/* Are we on a primary subcore? */
3214 	if (cpu_thread_in_subcore(cpu))
3215 		return 0;
3216 
3217 	thr = 0;
3218 	while (++thr < threads_per_subcore)
3219 		if (cpu_online(cpu + thr))
3220 			return 0;
3221 
3222 	/* Grab all hw threads so they can't go into the kernel */
3223 	for (thr = 1; thr < threads_per_subcore; ++thr) {
3224 		if (kvmppc_grab_hwthread(cpu + thr)) {
3225 			/* Couldn't grab one; let the others go */
3226 			do {
3227 				kvmppc_release_hwthread(cpu + thr);
3228 			} while (--thr > 0);
3229 			return 0;
3230 		}
3231 	}
3232 	return 1;
3233 }
3234 
3235 /*
3236  * A list of virtual cores for each physical CPU.
3237  * These are vcores that could run but their runner VCPU tasks are
3238  * (or may be) preempted.
3239  */
3240 struct preempted_vcore_list {
3241 	struct list_head	list;
3242 	spinlock_t		lock;
3243 };
3244 
3245 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3246 
3247 static void init_vcore_lists(void)
3248 {
3249 	int cpu;
3250 
3251 	for_each_possible_cpu(cpu) {
3252 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3253 		spin_lock_init(&lp->lock);
3254 		INIT_LIST_HEAD(&lp->list);
3255 	}
3256 }
3257 
3258 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3259 {
3260 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3261 
3262 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3263 
3264 	vc->vcore_state = VCORE_PREEMPT;
3265 	vc->pcpu = smp_processor_id();
3266 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3267 		spin_lock(&lp->lock);
3268 		list_add_tail(&vc->preempt_list, &lp->list);
3269 		spin_unlock(&lp->lock);
3270 	}
3271 
3272 	/* Start accumulating stolen time */
3273 	kvmppc_core_start_stolen(vc, mftb());
3274 }
3275 
3276 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3277 {
3278 	struct preempted_vcore_list *lp;
3279 
3280 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3281 
3282 	kvmppc_core_end_stolen(vc, mftb());
3283 	if (!list_empty(&vc->preempt_list)) {
3284 		lp = &per_cpu(preempted_vcores, vc->pcpu);
3285 		spin_lock(&lp->lock);
3286 		list_del_init(&vc->preempt_list);
3287 		spin_unlock(&lp->lock);
3288 	}
3289 	vc->vcore_state = VCORE_INACTIVE;
3290 }
3291 
3292 /*
3293  * This stores information about the virtual cores currently
3294  * assigned to a physical core.
3295  */
3296 struct core_info {
3297 	int		n_subcores;
3298 	int		max_subcore_threads;
3299 	int		total_threads;
3300 	int		subcore_threads[MAX_SUBCORES];
3301 	struct kvmppc_vcore *vc[MAX_SUBCORES];
3302 };
3303 
3304 /*
3305  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3306  * respectively in 2-way micro-threading (split-core) mode on POWER8.
3307  */
3308 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3309 
3310 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3311 {
3312 	memset(cip, 0, sizeof(*cip));
3313 	cip->n_subcores = 1;
3314 	cip->max_subcore_threads = vc->num_threads;
3315 	cip->total_threads = vc->num_threads;
3316 	cip->subcore_threads[0] = vc->num_threads;
3317 	cip->vc[0] = vc;
3318 }
3319 
3320 static bool subcore_config_ok(int n_subcores, int n_threads)
3321 {
3322 	/*
3323 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3324 	 * split-core mode, with one thread per subcore.
3325 	 */
3326 	if (cpu_has_feature(CPU_FTR_ARCH_300))
3327 		return n_subcores <= 4 && n_threads == 1;
3328 
3329 	/* On POWER8, can only dynamically split if unsplit to begin with */
3330 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3331 		return false;
3332 	if (n_subcores > MAX_SUBCORES)
3333 		return false;
3334 	if (n_subcores > 1) {
3335 		if (!(dynamic_mt_modes & 2))
3336 			n_subcores = 4;
3337 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3338 			return false;
3339 	}
3340 
3341 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3342 }
3343 
3344 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3345 {
3346 	vc->entry_exit_map = 0;
3347 	vc->in_guest = 0;
3348 	vc->napping_threads = 0;
3349 	vc->conferring_threads = 0;
3350 	vc->tb_offset_applied = 0;
3351 }
3352 
3353 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3354 {
3355 	int n_threads = vc->num_threads;
3356 	int sub;
3357 
3358 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3359 		return false;
3360 
3361 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
3362 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3363 		return false;
3364 
3365 	if (n_threads < cip->max_subcore_threads)
3366 		n_threads = cip->max_subcore_threads;
3367 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3368 		return false;
3369 	cip->max_subcore_threads = n_threads;
3370 
3371 	sub = cip->n_subcores;
3372 	++cip->n_subcores;
3373 	cip->total_threads += vc->num_threads;
3374 	cip->subcore_threads[sub] = vc->num_threads;
3375 	cip->vc[sub] = vc;
3376 	init_vcore_to_run(vc);
3377 	list_del_init(&vc->preempt_list);
3378 
3379 	return true;
3380 }
3381 
3382 /*
3383  * Work out whether it is possible to piggyback the execution of
3384  * vcore *pvc onto the execution of the other vcores described in *cip.
3385  */
3386 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3387 			  int target_threads)
3388 {
3389 	if (cip->total_threads + pvc->num_threads > target_threads)
3390 		return false;
3391 
3392 	return can_dynamic_split(pvc, cip);
3393 }
3394 
3395 static void prepare_threads(struct kvmppc_vcore *vc)
3396 {
3397 	int i;
3398 	struct kvm_vcpu *vcpu;
3399 
3400 	for_each_runnable_thread(i, vcpu, vc) {
3401 		if (signal_pending(vcpu->arch.run_task))
3402 			vcpu->arch.ret = -EINTR;
3403 		else if (vcpu->arch.vpa.update_pending ||
3404 			 vcpu->arch.slb_shadow.update_pending ||
3405 			 vcpu->arch.dtl.update_pending)
3406 			vcpu->arch.ret = RESUME_GUEST;
3407 		else
3408 			continue;
3409 		kvmppc_remove_runnable(vc, vcpu, mftb());
3410 		wake_up(&vcpu->arch.cpu_run);
3411 	}
3412 }
3413 
3414 static void collect_piggybacks(struct core_info *cip, int target_threads)
3415 {
3416 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3417 	struct kvmppc_vcore *pvc, *vcnext;
3418 
3419 	spin_lock(&lp->lock);
3420 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3421 		if (!spin_trylock(&pvc->lock))
3422 			continue;
3423 		prepare_threads(pvc);
3424 		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3425 			list_del_init(&pvc->preempt_list);
3426 			if (pvc->runner == NULL) {
3427 				pvc->vcore_state = VCORE_INACTIVE;
3428 				kvmppc_core_end_stolen(pvc, mftb());
3429 			}
3430 			spin_unlock(&pvc->lock);
3431 			continue;
3432 		}
3433 		if (!can_piggyback(pvc, cip, target_threads)) {
3434 			spin_unlock(&pvc->lock);
3435 			continue;
3436 		}
3437 		kvmppc_core_end_stolen(pvc, mftb());
3438 		pvc->vcore_state = VCORE_PIGGYBACK;
3439 		if (cip->total_threads >= target_threads)
3440 			break;
3441 	}
3442 	spin_unlock(&lp->lock);
3443 }
3444 
3445 static bool recheck_signals_and_mmu(struct core_info *cip)
3446 {
3447 	int sub, i;
3448 	struct kvm_vcpu *vcpu;
3449 	struct kvmppc_vcore *vc;
3450 
3451 	for (sub = 0; sub < cip->n_subcores; ++sub) {
3452 		vc = cip->vc[sub];
3453 		if (!vc->kvm->arch.mmu_ready)
3454 			return true;
3455 		for_each_runnable_thread(i, vcpu, vc)
3456 			if (signal_pending(vcpu->arch.run_task))
3457 				return true;
3458 	}
3459 	return false;
3460 }
3461 
3462 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3463 {
3464 	int still_running = 0, i;
3465 	u64 now;
3466 	long ret;
3467 	struct kvm_vcpu *vcpu;
3468 
3469 	spin_lock(&vc->lock);
3470 	now = get_tb();
3471 	for_each_runnable_thread(i, vcpu, vc) {
3472 		/*
3473 		 * It's safe to unlock the vcore in the loop here, because
3474 		 * for_each_runnable_thread() is safe against removal of
3475 		 * the vcpu, and the vcore state is VCORE_EXITING here,
3476 		 * so any vcpus becoming runnable will have their arch.trap
3477 		 * set to zero and can't actually run in the guest.
3478 		 */
3479 		spin_unlock(&vc->lock);
3480 		/* cancel pending dec exception if dec is positive */
3481 		if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3482 		    kvmppc_core_pending_dec(vcpu))
3483 			kvmppc_core_dequeue_dec(vcpu);
3484 
3485 		trace_kvm_guest_exit(vcpu);
3486 
3487 		ret = RESUME_GUEST;
3488 		if (vcpu->arch.trap)
3489 			ret = kvmppc_handle_exit_hv(vcpu,
3490 						    vcpu->arch.run_task);
3491 
3492 		vcpu->arch.ret = ret;
3493 		vcpu->arch.trap = 0;
3494 
3495 		spin_lock(&vc->lock);
3496 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3497 			if (vcpu->arch.pending_exceptions)
3498 				kvmppc_core_prepare_to_enter(vcpu);
3499 			if (vcpu->arch.ceded)
3500 				kvmppc_set_timer(vcpu);
3501 			else
3502 				++still_running;
3503 		} else {
3504 			kvmppc_remove_runnable(vc, vcpu, mftb());
3505 			wake_up(&vcpu->arch.cpu_run);
3506 		}
3507 	}
3508 	if (!is_master) {
3509 		if (still_running > 0) {
3510 			kvmppc_vcore_preempt(vc);
3511 		} else if (vc->runner) {
3512 			vc->vcore_state = VCORE_PREEMPT;
3513 			kvmppc_core_start_stolen(vc, mftb());
3514 		} else {
3515 			vc->vcore_state = VCORE_INACTIVE;
3516 		}
3517 		if (vc->n_runnable > 0 && vc->runner == NULL) {
3518 			/* make sure there's a candidate runner awake */
3519 			i = -1;
3520 			vcpu = next_runnable_thread(vc, &i);
3521 			wake_up(&vcpu->arch.cpu_run);
3522 		}
3523 	}
3524 	spin_unlock(&vc->lock);
3525 }
3526 
3527 /*
3528  * Clear core from the list of active host cores as we are about to
3529  * enter the guest. Only do this if it is the primary thread of the
3530  * core (not if a subcore) that is entering the guest.
3531  */
3532 static inline int kvmppc_clear_host_core(unsigned int cpu)
3533 {
3534 	int core;
3535 
3536 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3537 		return 0;
3538 	/*
3539 	 * Memory barrier can be omitted here as we will do a smp_wmb()
3540 	 * later in kvmppc_start_thread and we need ensure that state is
3541 	 * visible to other CPUs only after we enter guest.
3542 	 */
3543 	core = cpu >> threads_shift;
3544 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3545 	return 0;
3546 }
3547 
3548 /*
3549  * Advertise this core as an active host core since we exited the guest
3550  * Only need to do this if it is the primary thread of the core that is
3551  * exiting.
3552  */
3553 static inline int kvmppc_set_host_core(unsigned int cpu)
3554 {
3555 	int core;
3556 
3557 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3558 		return 0;
3559 
3560 	/*
3561 	 * Memory barrier can be omitted here because we do a spin_unlock
3562 	 * immediately after this which provides the memory barrier.
3563 	 */
3564 	core = cpu >> threads_shift;
3565 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3566 	return 0;
3567 }
3568 
3569 static void set_irq_happened(int trap)
3570 {
3571 	switch (trap) {
3572 	case BOOK3S_INTERRUPT_EXTERNAL:
3573 		local_paca->irq_happened |= PACA_IRQ_EE;
3574 		break;
3575 	case BOOK3S_INTERRUPT_H_DOORBELL:
3576 		local_paca->irq_happened |= PACA_IRQ_DBELL;
3577 		break;
3578 	case BOOK3S_INTERRUPT_HMI:
3579 		local_paca->irq_happened |= PACA_IRQ_HMI;
3580 		break;
3581 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3582 		replay_system_reset();
3583 		break;
3584 	}
3585 }
3586 
3587 /*
3588  * Run a set of guest threads on a physical core.
3589  * Called with vc->lock held.
3590  */
3591 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3592 {
3593 	struct kvm_vcpu *vcpu;
3594 	int i;
3595 	int srcu_idx;
3596 	struct core_info core_info;
3597 	struct kvmppc_vcore *pvc;
3598 	struct kvm_split_mode split_info, *sip;
3599 	int split, subcore_size, active;
3600 	int sub;
3601 	bool thr0_done;
3602 	unsigned long cmd_bit, stat_bit;
3603 	int pcpu, thr;
3604 	int target_threads;
3605 	int controlled_threads;
3606 	int trap;
3607 	bool is_power8;
3608 
3609 	if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3610 		return;
3611 
3612 	/*
3613 	 * Remove from the list any threads that have a signal pending
3614 	 * or need a VPA update done
3615 	 */
3616 	prepare_threads(vc);
3617 
3618 	/* if the runner is no longer runnable, let the caller pick a new one */
3619 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3620 		return;
3621 
3622 	/*
3623 	 * Initialize *vc.
3624 	 */
3625 	init_vcore_to_run(vc);
3626 	vc->preempt_tb = TB_NIL;
3627 
3628 	/*
3629 	 * Number of threads that we will be controlling: the same as
3630 	 * the number of threads per subcore, except on POWER9,
3631 	 * where it's 1 because the threads are (mostly) independent.
3632 	 */
3633 	controlled_threads = threads_per_vcore(vc->kvm);
3634 
3635 	/*
3636 	 * Make sure we are running on primary threads, and that secondary
3637 	 * threads are offline.  Also check if the number of threads in this
3638 	 * guest are greater than the current system threads per guest.
3639 	 */
3640 	if ((controlled_threads > 1) &&
3641 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3642 		for_each_runnable_thread(i, vcpu, vc) {
3643 			vcpu->arch.ret = -EBUSY;
3644 			kvmppc_remove_runnable(vc, vcpu, mftb());
3645 			wake_up(&vcpu->arch.cpu_run);
3646 		}
3647 		goto out;
3648 	}
3649 
3650 	/*
3651 	 * See if we could run any other vcores on the physical core
3652 	 * along with this one.
3653 	 */
3654 	init_core_info(&core_info, vc);
3655 	pcpu = smp_processor_id();
3656 	target_threads = controlled_threads;
3657 	if (target_smt_mode && target_smt_mode < target_threads)
3658 		target_threads = target_smt_mode;
3659 	if (vc->num_threads < target_threads)
3660 		collect_piggybacks(&core_info, target_threads);
3661 
3662 	/*
3663 	 * Hard-disable interrupts, and check resched flag and signals.
3664 	 * If we need to reschedule or deliver a signal, clean up
3665 	 * and return without going into the guest(s).
3666 	 * If the mmu_ready flag has been cleared, don't go into the
3667 	 * guest because that means a HPT resize operation is in progress.
3668 	 */
3669 	local_irq_disable();
3670 	hard_irq_disable();
3671 	if (lazy_irq_pending() || need_resched() ||
3672 	    recheck_signals_and_mmu(&core_info)) {
3673 		local_irq_enable();
3674 		vc->vcore_state = VCORE_INACTIVE;
3675 		/* Unlock all except the primary vcore */
3676 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3677 			pvc = core_info.vc[sub];
3678 			/* Put back on to the preempted vcores list */
3679 			kvmppc_vcore_preempt(pvc);
3680 			spin_unlock(&pvc->lock);
3681 		}
3682 		for (i = 0; i < controlled_threads; ++i)
3683 			kvmppc_release_hwthread(pcpu + i);
3684 		return;
3685 	}
3686 
3687 	kvmppc_clear_host_core(pcpu);
3688 
3689 	/* Decide on micro-threading (split-core) mode */
3690 	subcore_size = threads_per_subcore;
3691 	cmd_bit = stat_bit = 0;
3692 	split = core_info.n_subcores;
3693 	sip = NULL;
3694 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3695 
3696 	if (split > 1) {
3697 		sip = &split_info;
3698 		memset(&split_info, 0, sizeof(split_info));
3699 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3700 			split_info.vc[sub] = core_info.vc[sub];
3701 
3702 		if (is_power8) {
3703 			if (split == 2 && (dynamic_mt_modes & 2)) {
3704 				cmd_bit = HID0_POWER8_1TO2LPAR;
3705 				stat_bit = HID0_POWER8_2LPARMODE;
3706 			} else {
3707 				split = 4;
3708 				cmd_bit = HID0_POWER8_1TO4LPAR;
3709 				stat_bit = HID0_POWER8_4LPARMODE;
3710 			}
3711 			subcore_size = MAX_SMT_THREADS / split;
3712 			split_info.rpr = mfspr(SPRN_RPR);
3713 			split_info.pmmar = mfspr(SPRN_PMMAR);
3714 			split_info.ldbar = mfspr(SPRN_LDBAR);
3715 			split_info.subcore_size = subcore_size;
3716 		} else {
3717 			split_info.subcore_size = 1;
3718 		}
3719 
3720 		/* order writes to split_info before kvm_split_mode pointer */
3721 		smp_wmb();
3722 	}
3723 
3724 	for (thr = 0; thr < controlled_threads; ++thr) {
3725 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3726 
3727 		paca->kvm_hstate.napping = 0;
3728 		paca->kvm_hstate.kvm_split_mode = sip;
3729 	}
3730 
3731 	/* Initiate micro-threading (split-core) on POWER8 if required */
3732 	if (cmd_bit) {
3733 		unsigned long hid0 = mfspr(SPRN_HID0);
3734 
3735 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3736 		mb();
3737 		mtspr(SPRN_HID0, hid0);
3738 		isync();
3739 		for (;;) {
3740 			hid0 = mfspr(SPRN_HID0);
3741 			if (hid0 & stat_bit)
3742 				break;
3743 			cpu_relax();
3744 		}
3745 	}
3746 
3747 	/*
3748 	 * On POWER8, set RWMR register.
3749 	 * Since it only affects PURR and SPURR, it doesn't affect
3750 	 * the host, so we don't save/restore the host value.
3751 	 */
3752 	if (is_power8) {
3753 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3754 		int n_online = atomic_read(&vc->online_count);
3755 
3756 		/*
3757 		 * Use the 8-thread value if we're doing split-core
3758 		 * or if the vcore's online count looks bogus.
3759 		 */
3760 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3761 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3762 			rwmr_val = p8_rwmr_values[n_online];
3763 		mtspr(SPRN_RWMR, rwmr_val);
3764 	}
3765 
3766 	/* Start all the threads */
3767 	active = 0;
3768 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3769 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3770 		thr0_done = false;
3771 		active |= 1 << thr;
3772 		pvc = core_info.vc[sub];
3773 		pvc->pcpu = pcpu + thr;
3774 		for_each_runnable_thread(i, vcpu, pvc) {
3775 			kvmppc_start_thread(vcpu, pvc);
3776 			kvmppc_create_dtl_entry(vcpu, pvc);
3777 			trace_kvm_guest_enter(vcpu);
3778 			if (!vcpu->arch.ptid)
3779 				thr0_done = true;
3780 			active |= 1 << (thr + vcpu->arch.ptid);
3781 		}
3782 		/*
3783 		 * We need to start the first thread of each subcore
3784 		 * even if it doesn't have a vcpu.
3785 		 */
3786 		if (!thr0_done)
3787 			kvmppc_start_thread(NULL, pvc);
3788 	}
3789 
3790 	/*
3791 	 * Ensure that split_info.do_nap is set after setting
3792 	 * the vcore pointer in the PACA of the secondaries.
3793 	 */
3794 	smp_mb();
3795 
3796 	/*
3797 	 * When doing micro-threading, poke the inactive threads as well.
3798 	 * This gets them to the nap instruction after kvm_do_nap,
3799 	 * which reduces the time taken to unsplit later.
3800 	 */
3801 	if (cmd_bit) {
3802 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3803 		for (thr = 1; thr < threads_per_subcore; ++thr)
3804 			if (!(active & (1 << thr)))
3805 				kvmppc_ipi_thread(pcpu + thr);
3806 	}
3807 
3808 	vc->vcore_state = VCORE_RUNNING;
3809 	preempt_disable();
3810 
3811 	trace_kvmppc_run_core(vc, 0);
3812 
3813 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3814 		spin_unlock(&core_info.vc[sub]->lock);
3815 
3816 	guest_enter_irqoff();
3817 
3818 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3819 
3820 	this_cpu_disable_ftrace();
3821 
3822 	/*
3823 	 * Interrupts will be enabled once we get into the guest,
3824 	 * so tell lockdep that we're about to enable interrupts.
3825 	 */
3826 	trace_hardirqs_on();
3827 
3828 	trap = __kvmppc_vcore_entry();
3829 
3830 	trace_hardirqs_off();
3831 
3832 	this_cpu_enable_ftrace();
3833 
3834 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3835 
3836 	set_irq_happened(trap);
3837 
3838 	spin_lock(&vc->lock);
3839 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3840 	vc->vcore_state = VCORE_EXITING;
3841 
3842 	/* wait for secondary threads to finish writing their state to memory */
3843 	kvmppc_wait_for_nap(controlled_threads);
3844 
3845 	/* Return to whole-core mode if we split the core earlier */
3846 	if (cmd_bit) {
3847 		unsigned long hid0 = mfspr(SPRN_HID0);
3848 		unsigned long loops = 0;
3849 
3850 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3851 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3852 		mb();
3853 		mtspr(SPRN_HID0, hid0);
3854 		isync();
3855 		for (;;) {
3856 			hid0 = mfspr(SPRN_HID0);
3857 			if (!(hid0 & stat_bit))
3858 				break;
3859 			cpu_relax();
3860 			++loops;
3861 		}
3862 		split_info.do_nap = 0;
3863 	}
3864 
3865 	kvmppc_set_host_core(pcpu);
3866 
3867 	context_tracking_guest_exit();
3868 	if (!vtime_accounting_enabled_this_cpu()) {
3869 		local_irq_enable();
3870 		/*
3871 		 * Service IRQs here before vtime_account_guest_exit() so any
3872 		 * ticks that occurred while running the guest are accounted to
3873 		 * the guest. If vtime accounting is enabled, accounting uses
3874 		 * TB rather than ticks, so it can be done without enabling
3875 		 * interrupts here, which has the problem that it accounts
3876 		 * interrupt processing overhead to the host.
3877 		 */
3878 		local_irq_disable();
3879 	}
3880 	vtime_account_guest_exit();
3881 
3882 	local_irq_enable();
3883 
3884 	/* Let secondaries go back to the offline loop */
3885 	for (i = 0; i < controlled_threads; ++i) {
3886 		kvmppc_release_hwthread(pcpu + i);
3887 		if (sip && sip->napped[i])
3888 			kvmppc_ipi_thread(pcpu + i);
3889 	}
3890 
3891 	spin_unlock(&vc->lock);
3892 
3893 	/* make sure updates to secondary vcpu structs are visible now */
3894 	smp_mb();
3895 
3896 	preempt_enable();
3897 
3898 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3899 		pvc = core_info.vc[sub];
3900 		post_guest_process(pvc, pvc == vc);
3901 	}
3902 
3903 	spin_lock(&vc->lock);
3904 
3905  out:
3906 	vc->vcore_state = VCORE_INACTIVE;
3907 	trace_kvmppc_run_core(vc, 1);
3908 }
3909 
3910 static inline bool hcall_is_xics(unsigned long req)
3911 {
3912 	return req == H_EOI || req == H_CPPR || req == H_IPI ||
3913 		req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
3914 }
3915 
3916 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
3917 {
3918 	struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3919 	if (lp) {
3920 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3921 		lp->yield_count = cpu_to_be32(yield_count);
3922 		vcpu->arch.vpa.dirty = 1;
3923 	}
3924 }
3925 
3926 /* call our hypervisor to load up HV regs and go */
3927 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
3928 {
3929 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3930 	unsigned long host_psscr;
3931 	unsigned long msr;
3932 	struct hv_guest_state hvregs;
3933 	struct p9_host_os_sprs host_os_sprs;
3934 	s64 dec;
3935 	int trap;
3936 
3937 	msr = mfmsr();
3938 
3939 	save_p9_host_os_sprs(&host_os_sprs);
3940 
3941 	/*
3942 	 * We need to save and restore the guest visible part of the
3943 	 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3944 	 * doesn't do this for us. Note only required if pseries since
3945 	 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
3946 	 */
3947 	host_psscr = mfspr(SPRN_PSSCR_PR);
3948 
3949 	kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
3950 	if (lazy_irq_pending())
3951 		return 0;
3952 
3953 	if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
3954 		msr = mfmsr(); /* TM restore can update msr */
3955 
3956 	if (vcpu->arch.psscr != host_psscr)
3957 		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3958 
3959 	kvmhv_save_hv_regs(vcpu, &hvregs);
3960 	hvregs.lpcr = lpcr;
3961 	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3962 	hvregs.version = HV_GUEST_STATE_VERSION;
3963 	if (vcpu->arch.nested) {
3964 		hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3965 		hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3966 	} else {
3967 		hvregs.lpid = vcpu->kvm->arch.lpid;
3968 		hvregs.vcpu_token = vcpu->vcpu_id;
3969 	}
3970 	hvregs.hdec_expiry = time_limit;
3971 
3972 	/*
3973 	 * When setting DEC, we must always deal with irq_work_raise
3974 	 * via NMI vs setting DEC. The problem occurs right as we
3975 	 * switch into guest mode if a NMI hits and sets pending work
3976 	 * and sets DEC, then that will apply to the guest and not
3977 	 * bring us back to the host.
3978 	 *
3979 	 * irq_work_raise could check a flag (or possibly LPCR[HDICE]
3980 	 * for example) and set HDEC to 1? That wouldn't solve the
3981 	 * nested hv case which needs to abort the hcall or zero the
3982 	 * time limit.
3983 	 *
3984 	 * XXX: Another day's problem.
3985 	 */
3986 	mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
3987 
3988 	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3989 	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3990 	switch_pmu_to_guest(vcpu, &host_os_sprs);
3991 	trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3992 				  __pa(&vcpu->arch.regs));
3993 	kvmhv_restore_hv_return_state(vcpu, &hvregs);
3994 	switch_pmu_to_host(vcpu, &host_os_sprs);
3995 	vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3996 	vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3997 	vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3998 	vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3999 
4000 	store_vcpu_state(vcpu);
4001 
4002 	dec = mfspr(SPRN_DEC);
4003 	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4004 		dec = (s32) dec;
4005 	*tb = mftb();
4006 	vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset);
4007 
4008 	timer_rearm_host_dec(*tb);
4009 
4010 	restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4011 	if (vcpu->arch.psscr != host_psscr)
4012 		mtspr(SPRN_PSSCR_PR, host_psscr);
4013 
4014 	return trap;
4015 }
4016 
4017 /*
4018  * Guest entry for POWER9 and later CPUs.
4019  */
4020 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4021 			 unsigned long lpcr, u64 *tb)
4022 {
4023 	u64 next_timer;
4024 	int trap;
4025 
4026 	next_timer = timer_get_next_tb();
4027 	if (*tb >= next_timer)
4028 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
4029 	if (next_timer < time_limit)
4030 		time_limit = next_timer;
4031 	else if (*tb >= time_limit) /* nested time limit */
4032 		return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4033 
4034 	vcpu->arch.ceded = 0;
4035 
4036 	vcpu_vpa_increment_dispatch(vcpu);
4037 
4038 	if (kvmhv_on_pseries()) {
4039 		trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4040 
4041 		/* H_CEDE has to be handled now, not later */
4042 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
4043 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4044 			kvmppc_cede(vcpu);
4045 			kvmppc_set_gpr(vcpu, 3, 0);
4046 			trap = 0;
4047 		}
4048 
4049 	} else {
4050 		struct kvm *kvm = vcpu->kvm;
4051 
4052 		kvmppc_xive_push_vcpu(vcpu);
4053 
4054 		__this_cpu_write(cpu_in_guest, kvm);
4055 		trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4056 		__this_cpu_write(cpu_in_guest, NULL);
4057 
4058 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
4059 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4060 			unsigned long req = kvmppc_get_gpr(vcpu, 3);
4061 
4062 			/* H_CEDE has to be handled now, not later */
4063 			if (req == H_CEDE) {
4064 				kvmppc_cede(vcpu);
4065 				kvmppc_xive_rearm_escalation(vcpu); /* may un-cede */
4066 				kvmppc_set_gpr(vcpu, 3, 0);
4067 				trap = 0;
4068 
4069 			/* XICS hcalls must be handled before xive is pulled */
4070 			} else if (hcall_is_xics(req)) {
4071 				int ret;
4072 
4073 				ret = kvmppc_xive_xics_hcall(vcpu, req);
4074 				if (ret != H_TOO_HARD) {
4075 					kvmppc_set_gpr(vcpu, 3, ret);
4076 					trap = 0;
4077 				}
4078 			}
4079 		}
4080 		kvmppc_xive_pull_vcpu(vcpu);
4081 
4082 		if (kvm_is_radix(kvm))
4083 			vcpu->arch.slb_max = 0;
4084 	}
4085 
4086 	vcpu_vpa_increment_dispatch(vcpu);
4087 
4088 	return trap;
4089 }
4090 
4091 /*
4092  * Wait for some other vcpu thread to execute us, and
4093  * wake us up when we need to handle something in the host.
4094  */
4095 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4096 				 struct kvm_vcpu *vcpu, int wait_state)
4097 {
4098 	DEFINE_WAIT(wait);
4099 
4100 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4101 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4102 		spin_unlock(&vc->lock);
4103 		schedule();
4104 		spin_lock(&vc->lock);
4105 	}
4106 	finish_wait(&vcpu->arch.cpu_run, &wait);
4107 }
4108 
4109 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4110 {
4111 	if (!halt_poll_ns_grow)
4112 		return;
4113 
4114 	vc->halt_poll_ns *= halt_poll_ns_grow;
4115 	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4116 		vc->halt_poll_ns = halt_poll_ns_grow_start;
4117 }
4118 
4119 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4120 {
4121 	if (halt_poll_ns_shrink == 0)
4122 		vc->halt_poll_ns = 0;
4123 	else
4124 		vc->halt_poll_ns /= halt_poll_ns_shrink;
4125 }
4126 
4127 #ifdef CONFIG_KVM_XICS
4128 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4129 {
4130 	if (!xics_on_xive())
4131 		return false;
4132 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4133 		vcpu->arch.xive_saved_state.cppr;
4134 }
4135 #else
4136 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4137 {
4138 	return false;
4139 }
4140 #endif /* CONFIG_KVM_XICS */
4141 
4142 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4143 {
4144 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4145 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4146 		return true;
4147 
4148 	return false;
4149 }
4150 
4151 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4152 {
4153 	if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4154 		return true;
4155 	return false;
4156 }
4157 
4158 /*
4159  * Check to see if any of the runnable vcpus on the vcore have pending
4160  * exceptions or are no longer ceded
4161  */
4162 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4163 {
4164 	struct kvm_vcpu *vcpu;
4165 	int i;
4166 
4167 	for_each_runnable_thread(i, vcpu, vc) {
4168 		if (kvmppc_vcpu_check_block(vcpu))
4169 			return 1;
4170 	}
4171 
4172 	return 0;
4173 }
4174 
4175 /*
4176  * All the vcpus in this vcore are idle, so wait for a decrementer
4177  * or external interrupt to one of the vcpus.  vc->lock is held.
4178  */
4179 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4180 {
4181 	ktime_t cur, start_poll, start_wait;
4182 	int do_sleep = 1;
4183 	u64 block_ns;
4184 
4185 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4186 
4187 	/* Poll for pending exceptions and ceded state */
4188 	cur = start_poll = ktime_get();
4189 	if (vc->halt_poll_ns) {
4190 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4191 		++vc->runner->stat.generic.halt_attempted_poll;
4192 
4193 		vc->vcore_state = VCORE_POLLING;
4194 		spin_unlock(&vc->lock);
4195 
4196 		do {
4197 			if (kvmppc_vcore_check_block(vc)) {
4198 				do_sleep = 0;
4199 				break;
4200 			}
4201 			cur = ktime_get();
4202 		} while (kvm_vcpu_can_poll(cur, stop));
4203 
4204 		spin_lock(&vc->lock);
4205 		vc->vcore_state = VCORE_INACTIVE;
4206 
4207 		if (!do_sleep) {
4208 			++vc->runner->stat.generic.halt_successful_poll;
4209 			goto out;
4210 		}
4211 	}
4212 
4213 	prepare_to_rcuwait(&vc->wait);
4214 	set_current_state(TASK_INTERRUPTIBLE);
4215 	if (kvmppc_vcore_check_block(vc)) {
4216 		finish_rcuwait(&vc->wait);
4217 		do_sleep = 0;
4218 		/* If we polled, count this as a successful poll */
4219 		if (vc->halt_poll_ns)
4220 			++vc->runner->stat.generic.halt_successful_poll;
4221 		goto out;
4222 	}
4223 
4224 	start_wait = ktime_get();
4225 
4226 	vc->vcore_state = VCORE_SLEEPING;
4227 	trace_kvmppc_vcore_blocked(vc, 0);
4228 	spin_unlock(&vc->lock);
4229 	schedule();
4230 	finish_rcuwait(&vc->wait);
4231 	spin_lock(&vc->lock);
4232 	vc->vcore_state = VCORE_INACTIVE;
4233 	trace_kvmppc_vcore_blocked(vc, 1);
4234 	++vc->runner->stat.halt_successful_wait;
4235 
4236 	cur = ktime_get();
4237 
4238 out:
4239 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4240 
4241 	/* Attribute wait time */
4242 	if (do_sleep) {
4243 		vc->runner->stat.generic.halt_wait_ns +=
4244 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
4245 		KVM_STATS_LOG_HIST_UPDATE(
4246 				vc->runner->stat.generic.halt_wait_hist,
4247 				ktime_to_ns(cur) - ktime_to_ns(start_wait));
4248 		/* Attribute failed poll time */
4249 		if (vc->halt_poll_ns) {
4250 			vc->runner->stat.generic.halt_poll_fail_ns +=
4251 				ktime_to_ns(start_wait) -
4252 				ktime_to_ns(start_poll);
4253 			KVM_STATS_LOG_HIST_UPDATE(
4254 				vc->runner->stat.generic.halt_poll_fail_hist,
4255 				ktime_to_ns(start_wait) -
4256 				ktime_to_ns(start_poll));
4257 		}
4258 	} else {
4259 		/* Attribute successful poll time */
4260 		if (vc->halt_poll_ns) {
4261 			vc->runner->stat.generic.halt_poll_success_ns +=
4262 				ktime_to_ns(cur) -
4263 				ktime_to_ns(start_poll);
4264 			KVM_STATS_LOG_HIST_UPDATE(
4265 				vc->runner->stat.generic.halt_poll_success_hist,
4266 				ktime_to_ns(cur) - ktime_to_ns(start_poll));
4267 		}
4268 	}
4269 
4270 	/* Adjust poll time */
4271 	if (halt_poll_ns) {
4272 		if (block_ns <= vc->halt_poll_ns)
4273 			;
4274 		/* We slept and blocked for longer than the max halt time */
4275 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4276 			shrink_halt_poll_ns(vc);
4277 		/* We slept and our poll time is too small */
4278 		else if (vc->halt_poll_ns < halt_poll_ns &&
4279 				block_ns < halt_poll_ns)
4280 			grow_halt_poll_ns(vc);
4281 		if (vc->halt_poll_ns > halt_poll_ns)
4282 			vc->halt_poll_ns = halt_poll_ns;
4283 	} else
4284 		vc->halt_poll_ns = 0;
4285 
4286 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4287 }
4288 
4289 /*
4290  * This never fails for a radix guest, as none of the operations it does
4291  * for a radix guest can fail or have a way to report failure.
4292  */
4293 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4294 {
4295 	int r = 0;
4296 	struct kvm *kvm = vcpu->kvm;
4297 
4298 	mutex_lock(&kvm->arch.mmu_setup_lock);
4299 	if (!kvm->arch.mmu_ready) {
4300 		if (!kvm_is_radix(kvm))
4301 			r = kvmppc_hv_setup_htab_rma(vcpu);
4302 		if (!r) {
4303 			if (cpu_has_feature(CPU_FTR_ARCH_300))
4304 				kvmppc_setup_partition_table(kvm);
4305 			kvm->arch.mmu_ready = 1;
4306 		}
4307 	}
4308 	mutex_unlock(&kvm->arch.mmu_setup_lock);
4309 	return r;
4310 }
4311 
4312 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4313 {
4314 	struct kvm_run *run = vcpu->run;
4315 	int n_ceded, i, r;
4316 	struct kvmppc_vcore *vc;
4317 	struct kvm_vcpu *v;
4318 
4319 	trace_kvmppc_run_vcpu_enter(vcpu);
4320 
4321 	run->exit_reason = 0;
4322 	vcpu->arch.ret = RESUME_GUEST;
4323 	vcpu->arch.trap = 0;
4324 	kvmppc_update_vpas(vcpu);
4325 
4326 	/*
4327 	 * Synchronize with other threads in this virtual core
4328 	 */
4329 	vc = vcpu->arch.vcore;
4330 	spin_lock(&vc->lock);
4331 	vcpu->arch.ceded = 0;
4332 	vcpu->arch.run_task = current;
4333 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4334 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4335 	vcpu->arch.busy_preempt = TB_NIL;
4336 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4337 	++vc->n_runnable;
4338 
4339 	/*
4340 	 * This happens the first time this is called for a vcpu.
4341 	 * If the vcore is already running, we may be able to start
4342 	 * this thread straight away and have it join in.
4343 	 */
4344 	if (!signal_pending(current)) {
4345 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
4346 		     vc->vcore_state == VCORE_RUNNING) &&
4347 			   !VCORE_IS_EXITING(vc)) {
4348 			kvmppc_create_dtl_entry(vcpu, vc);
4349 			kvmppc_start_thread(vcpu, vc);
4350 			trace_kvm_guest_enter(vcpu);
4351 		} else if (vc->vcore_state == VCORE_SLEEPING) {
4352 		        rcuwait_wake_up(&vc->wait);
4353 		}
4354 
4355 	}
4356 
4357 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4358 	       !signal_pending(current)) {
4359 		/* See if the MMU is ready to go */
4360 		if (!vcpu->kvm->arch.mmu_ready) {
4361 			spin_unlock(&vc->lock);
4362 			r = kvmhv_setup_mmu(vcpu);
4363 			spin_lock(&vc->lock);
4364 			if (r) {
4365 				run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4366 				run->fail_entry.
4367 					hardware_entry_failure_reason = 0;
4368 				vcpu->arch.ret = r;
4369 				break;
4370 			}
4371 		}
4372 
4373 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4374 			kvmppc_vcore_end_preempt(vc);
4375 
4376 		if (vc->vcore_state != VCORE_INACTIVE) {
4377 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4378 			continue;
4379 		}
4380 		for_each_runnable_thread(i, v, vc) {
4381 			kvmppc_core_prepare_to_enter(v);
4382 			if (signal_pending(v->arch.run_task)) {
4383 				kvmppc_remove_runnable(vc, v, mftb());
4384 				v->stat.signal_exits++;
4385 				v->run->exit_reason = KVM_EXIT_INTR;
4386 				v->arch.ret = -EINTR;
4387 				wake_up(&v->arch.cpu_run);
4388 			}
4389 		}
4390 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4391 			break;
4392 		n_ceded = 0;
4393 		for_each_runnable_thread(i, v, vc) {
4394 			if (!kvmppc_vcpu_woken(v))
4395 				n_ceded += v->arch.ceded;
4396 			else
4397 				v->arch.ceded = 0;
4398 		}
4399 		vc->runner = vcpu;
4400 		if (n_ceded == vc->n_runnable) {
4401 			kvmppc_vcore_blocked(vc);
4402 		} else if (need_resched()) {
4403 			kvmppc_vcore_preempt(vc);
4404 			/* Let something else run */
4405 			cond_resched_lock(&vc->lock);
4406 			if (vc->vcore_state == VCORE_PREEMPT)
4407 				kvmppc_vcore_end_preempt(vc);
4408 		} else {
4409 			kvmppc_run_core(vc);
4410 		}
4411 		vc->runner = NULL;
4412 	}
4413 
4414 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4415 	       (vc->vcore_state == VCORE_RUNNING ||
4416 		vc->vcore_state == VCORE_EXITING ||
4417 		vc->vcore_state == VCORE_PIGGYBACK))
4418 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4419 
4420 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4421 		kvmppc_vcore_end_preempt(vc);
4422 
4423 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4424 		kvmppc_remove_runnable(vc, vcpu, mftb());
4425 		vcpu->stat.signal_exits++;
4426 		run->exit_reason = KVM_EXIT_INTR;
4427 		vcpu->arch.ret = -EINTR;
4428 	}
4429 
4430 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4431 		/* Wake up some vcpu to run the core */
4432 		i = -1;
4433 		v = next_runnable_thread(vc, &i);
4434 		wake_up(&v->arch.cpu_run);
4435 	}
4436 
4437 	trace_kvmppc_run_vcpu_exit(vcpu);
4438 	spin_unlock(&vc->lock);
4439 	return vcpu->arch.ret;
4440 }
4441 
4442 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4443 			  unsigned long lpcr)
4444 {
4445 	struct kvm_run *run = vcpu->run;
4446 	int trap, r, pcpu;
4447 	int srcu_idx;
4448 	struct kvmppc_vcore *vc;
4449 	struct kvm *kvm = vcpu->kvm;
4450 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4451 	unsigned long flags;
4452 	u64 tb;
4453 
4454 	trace_kvmppc_run_vcpu_enter(vcpu);
4455 
4456 	run->exit_reason = 0;
4457 	vcpu->arch.ret = RESUME_GUEST;
4458 	vcpu->arch.trap = 0;
4459 
4460 	vc = vcpu->arch.vcore;
4461 	vcpu->arch.ceded = 0;
4462 	vcpu->arch.run_task = current;
4463 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4464 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4465 
4466 	/* See if the MMU is ready to go */
4467 	if (unlikely(!kvm->arch.mmu_ready)) {
4468 		r = kvmhv_setup_mmu(vcpu);
4469 		if (r) {
4470 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4471 			run->fail_entry.hardware_entry_failure_reason = 0;
4472 			vcpu->arch.ret = r;
4473 			return r;
4474 		}
4475 	}
4476 
4477 	if (need_resched())
4478 		cond_resched();
4479 
4480 	kvmppc_update_vpas(vcpu);
4481 
4482 	preempt_disable();
4483 	pcpu = smp_processor_id();
4484 	if (kvm_is_radix(kvm))
4485 		kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4486 
4487 	/* flags save not required, but irq_pmu has no disable/enable API */
4488 	powerpc_local_irq_pmu_save(flags);
4489 
4490 	if (signal_pending(current))
4491 		goto sigpend;
4492 	if (need_resched() || !kvm->arch.mmu_ready)
4493 		goto out;
4494 
4495 	if (!nested) {
4496 		kvmppc_core_prepare_to_enter(vcpu);
4497 		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4498 			     &vcpu->arch.pending_exceptions))
4499 			lpcr |= LPCR_MER;
4500 	} else if (vcpu->arch.pending_exceptions ||
4501 		   vcpu->arch.doorbell_request ||
4502 		   xive_interrupt_pending(vcpu)) {
4503 		vcpu->arch.ret = RESUME_HOST;
4504 		goto out;
4505 	}
4506 
4507 	if (vcpu->arch.timer_running) {
4508 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4509 		vcpu->arch.timer_running = 0;
4510 	}
4511 
4512 	tb = mftb();
4513 
4514 	vcpu->cpu = pcpu;
4515 	vcpu->arch.thread_cpu = pcpu;
4516 	vc->pcpu = pcpu;
4517 	local_paca->kvm_hstate.kvm_vcpu = vcpu;
4518 	local_paca->kvm_hstate.ptid = 0;
4519 	local_paca->kvm_hstate.fake_suspend = 0;
4520 
4521 	__kvmppc_create_dtl_entry(vcpu, pcpu, tb + vc->tb_offset, 0);
4522 
4523 	trace_kvm_guest_enter(vcpu);
4524 
4525 	guest_enter_irqoff();
4526 
4527 	srcu_idx = srcu_read_lock(&kvm->srcu);
4528 
4529 	this_cpu_disable_ftrace();
4530 
4531 	/* Tell lockdep that we're about to enable interrupts */
4532 	trace_hardirqs_on();
4533 
4534 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4535 	vcpu->arch.trap = trap;
4536 
4537 	trace_hardirqs_off();
4538 
4539 	this_cpu_enable_ftrace();
4540 
4541 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4542 
4543 	set_irq_happened(trap);
4544 
4545 	context_tracking_guest_exit();
4546 	if (!vtime_accounting_enabled_this_cpu()) {
4547 		local_irq_enable();
4548 		/*
4549 		 * Service IRQs here before vtime_account_guest_exit() so any
4550 		 * ticks that occurred while running the guest are accounted to
4551 		 * the guest. If vtime accounting is enabled, accounting uses
4552 		 * TB rather than ticks, so it can be done without enabling
4553 		 * interrupts here, which has the problem that it accounts
4554 		 * interrupt processing overhead to the host.
4555 		 */
4556 		local_irq_disable();
4557 	}
4558 	vtime_account_guest_exit();
4559 
4560 	vcpu->cpu = -1;
4561 	vcpu->arch.thread_cpu = -1;
4562 
4563 	powerpc_local_irq_pmu_restore(flags);
4564 
4565 	preempt_enable();
4566 
4567 	/*
4568 	 * cancel pending decrementer exception if DEC is now positive, or if
4569 	 * entering a nested guest in which case the decrementer is now owned
4570 	 * by L2 and the L1 decrementer is provided in hdec_expires
4571 	 */
4572 	if (kvmppc_core_pending_dec(vcpu) &&
4573 			((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4574 			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4575 			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4576 		kvmppc_core_dequeue_dec(vcpu);
4577 
4578 	trace_kvm_guest_exit(vcpu);
4579 	r = RESUME_GUEST;
4580 	if (trap) {
4581 		if (!nested)
4582 			r = kvmppc_handle_exit_hv(vcpu, current);
4583 		else
4584 			r = kvmppc_handle_nested_exit(vcpu);
4585 	}
4586 	vcpu->arch.ret = r;
4587 
4588 	if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4589 		kvmppc_set_timer(vcpu);
4590 
4591 		prepare_to_rcuwait(&vcpu->wait);
4592 		for (;;) {
4593 			set_current_state(TASK_INTERRUPTIBLE);
4594 			if (signal_pending(current)) {
4595 				vcpu->stat.signal_exits++;
4596 				run->exit_reason = KVM_EXIT_INTR;
4597 				vcpu->arch.ret = -EINTR;
4598 				break;
4599 			}
4600 
4601 			if (kvmppc_vcpu_check_block(vcpu))
4602 				break;
4603 
4604 			trace_kvmppc_vcore_blocked(vc, 0);
4605 			schedule();
4606 			trace_kvmppc_vcore_blocked(vc, 1);
4607 		}
4608 		finish_rcuwait(&vcpu->wait);
4609 	}
4610 	vcpu->arch.ceded = 0;
4611 
4612  done:
4613 	trace_kvmppc_run_vcpu_exit(vcpu);
4614 
4615 	return vcpu->arch.ret;
4616 
4617  sigpend:
4618 	vcpu->stat.signal_exits++;
4619 	run->exit_reason = KVM_EXIT_INTR;
4620 	vcpu->arch.ret = -EINTR;
4621  out:
4622 	powerpc_local_irq_pmu_restore(flags);
4623 	preempt_enable();
4624 	goto done;
4625 }
4626 
4627 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4628 {
4629 	struct kvm_run *run = vcpu->run;
4630 	int r;
4631 	int srcu_idx;
4632 	struct kvm *kvm;
4633 	unsigned long msr;
4634 
4635 	if (!vcpu->arch.sane) {
4636 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4637 		return -EINVAL;
4638 	}
4639 
4640 	/* No need to go into the guest when all we'll do is come back out */
4641 	if (signal_pending(current)) {
4642 		run->exit_reason = KVM_EXIT_INTR;
4643 		return -EINTR;
4644 	}
4645 
4646 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4647 	/*
4648 	 * Don't allow entry with a suspended transaction, because
4649 	 * the guest entry/exit code will lose it.
4650 	 */
4651 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4652 	    (current->thread.regs->msr & MSR_TM)) {
4653 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4654 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4655 			run->fail_entry.hardware_entry_failure_reason = 0;
4656 			return -EINVAL;
4657 		}
4658 	}
4659 #endif
4660 
4661 	/*
4662 	 * Force online to 1 for the sake of old userspace which doesn't
4663 	 * set it.
4664 	 */
4665 	if (!vcpu->arch.online) {
4666 		atomic_inc(&vcpu->arch.vcore->online_count);
4667 		vcpu->arch.online = 1;
4668 	}
4669 
4670 	kvmppc_core_prepare_to_enter(vcpu);
4671 
4672 	kvm = vcpu->kvm;
4673 	atomic_inc(&kvm->arch.vcpus_running);
4674 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4675 	smp_mb();
4676 
4677 	msr = 0;
4678 	if (IS_ENABLED(CONFIG_PPC_FPU))
4679 		msr |= MSR_FP;
4680 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
4681 		msr |= MSR_VEC;
4682 	if (cpu_has_feature(CPU_FTR_VSX))
4683 		msr |= MSR_VSX;
4684 	if ((cpu_has_feature(CPU_FTR_TM) ||
4685 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4686 			(vcpu->arch.hfscr & HFSCR_TM))
4687 		msr |= MSR_TM;
4688 	msr = msr_check_and_set(msr);
4689 
4690 	kvmppc_save_user_regs();
4691 
4692 	kvmppc_save_current_sprs();
4693 
4694 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4695 		vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4696 	vcpu->arch.pgdir = kvm->mm->pgd;
4697 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4698 
4699 	do {
4700 		if (cpu_has_feature(CPU_FTR_ARCH_300))
4701 			r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4702 						  vcpu->arch.vcore->lpcr);
4703 		else
4704 			r = kvmppc_run_vcpu(vcpu);
4705 
4706 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4707 			if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4708 				/*
4709 				 * These should have been caught reflected
4710 				 * into the guest by now. Final sanity check:
4711 				 * don't allow userspace to execute hcalls in
4712 				 * the hypervisor.
4713 				 */
4714 				r = RESUME_GUEST;
4715 				continue;
4716 			}
4717 			trace_kvm_hcall_enter(vcpu);
4718 			r = kvmppc_pseries_do_hcall(vcpu);
4719 			trace_kvm_hcall_exit(vcpu, r);
4720 			kvmppc_core_prepare_to_enter(vcpu);
4721 		} else if (r == RESUME_PAGE_FAULT) {
4722 			srcu_idx = srcu_read_lock(&kvm->srcu);
4723 			r = kvmppc_book3s_hv_page_fault(vcpu,
4724 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4725 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4726 		} else if (r == RESUME_PASSTHROUGH) {
4727 			if (WARN_ON(xics_on_xive()))
4728 				r = H_SUCCESS;
4729 			else
4730 				r = kvmppc_xics_rm_complete(vcpu, 0);
4731 		}
4732 	} while (is_kvmppc_resume_guest(r));
4733 
4734 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4735 	atomic_dec(&kvm->arch.vcpus_running);
4736 
4737 	srr_regs_clobbered();
4738 
4739 	return r;
4740 }
4741 
4742 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4743 				     int shift, int sllp)
4744 {
4745 	(*sps)->page_shift = shift;
4746 	(*sps)->slb_enc = sllp;
4747 	(*sps)->enc[0].page_shift = shift;
4748 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4749 	/*
4750 	 * Add 16MB MPSS support (may get filtered out by userspace)
4751 	 */
4752 	if (shift != 24) {
4753 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4754 		if (penc != -1) {
4755 			(*sps)->enc[1].page_shift = 24;
4756 			(*sps)->enc[1].pte_enc = penc;
4757 		}
4758 	}
4759 	(*sps)++;
4760 }
4761 
4762 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4763 					 struct kvm_ppc_smmu_info *info)
4764 {
4765 	struct kvm_ppc_one_seg_page_size *sps;
4766 
4767 	/*
4768 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4769 	 * POWER7 doesn't support keys for instruction accesses,
4770 	 * POWER8 and POWER9 do.
4771 	 */
4772 	info->data_keys = 32;
4773 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4774 
4775 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4776 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4777 	info->slb_size = 32;
4778 
4779 	/* We only support these sizes for now, and no muti-size segments */
4780 	sps = &info->sps[0];
4781 	kvmppc_add_seg_page_size(&sps, 12, 0);
4782 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4783 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4784 
4785 	/* If running as a nested hypervisor, we don't support HPT guests */
4786 	if (kvmhv_on_pseries())
4787 		info->flags |= KVM_PPC_NO_HASH;
4788 
4789 	return 0;
4790 }
4791 
4792 /*
4793  * Get (and clear) the dirty memory log for a memory slot.
4794  */
4795 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4796 					 struct kvm_dirty_log *log)
4797 {
4798 	struct kvm_memslots *slots;
4799 	struct kvm_memory_slot *memslot;
4800 	int i, r;
4801 	unsigned long n;
4802 	unsigned long *buf, *p;
4803 	struct kvm_vcpu *vcpu;
4804 
4805 	mutex_lock(&kvm->slots_lock);
4806 
4807 	r = -EINVAL;
4808 	if (log->slot >= KVM_USER_MEM_SLOTS)
4809 		goto out;
4810 
4811 	slots = kvm_memslots(kvm);
4812 	memslot = id_to_memslot(slots, log->slot);
4813 	r = -ENOENT;
4814 	if (!memslot || !memslot->dirty_bitmap)
4815 		goto out;
4816 
4817 	/*
4818 	 * Use second half of bitmap area because both HPT and radix
4819 	 * accumulate bits in the first half.
4820 	 */
4821 	n = kvm_dirty_bitmap_bytes(memslot);
4822 	buf = memslot->dirty_bitmap + n / sizeof(long);
4823 	memset(buf, 0, n);
4824 
4825 	if (kvm_is_radix(kvm))
4826 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4827 	else
4828 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4829 	if (r)
4830 		goto out;
4831 
4832 	/*
4833 	 * We accumulate dirty bits in the first half of the
4834 	 * memslot's dirty_bitmap area, for when pages are paged
4835 	 * out or modified by the host directly.  Pick up these
4836 	 * bits and add them to the map.
4837 	 */
4838 	p = memslot->dirty_bitmap;
4839 	for (i = 0; i < n / sizeof(long); ++i)
4840 		buf[i] |= xchg(&p[i], 0);
4841 
4842 	/* Harvest dirty bits from VPA and DTL updates */
4843 	/* Note: we never modify the SLB shadow buffer areas */
4844 	kvm_for_each_vcpu(i, vcpu, kvm) {
4845 		spin_lock(&vcpu->arch.vpa_update_lock);
4846 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4847 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4848 		spin_unlock(&vcpu->arch.vpa_update_lock);
4849 	}
4850 
4851 	r = -EFAULT;
4852 	if (copy_to_user(log->dirty_bitmap, buf, n))
4853 		goto out;
4854 
4855 	r = 0;
4856 out:
4857 	mutex_unlock(&kvm->slots_lock);
4858 	return r;
4859 }
4860 
4861 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4862 {
4863 	vfree(slot->arch.rmap);
4864 	slot->arch.rmap = NULL;
4865 }
4866 
4867 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4868 					struct kvm_memory_slot *slot,
4869 					const struct kvm_userspace_memory_region *mem,
4870 					enum kvm_mr_change change)
4871 {
4872 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4873 
4874 	if (change == KVM_MR_CREATE) {
4875 		slot->arch.rmap = vzalloc(array_size(npages,
4876 					  sizeof(*slot->arch.rmap)));
4877 		if (!slot->arch.rmap)
4878 			return -ENOMEM;
4879 	}
4880 
4881 	return 0;
4882 }
4883 
4884 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4885 				const struct kvm_userspace_memory_region *mem,
4886 				const struct kvm_memory_slot *old,
4887 				const struct kvm_memory_slot *new,
4888 				enum kvm_mr_change change)
4889 {
4890 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4891 
4892 	/*
4893 	 * If we are making a new memslot, it might make
4894 	 * some address that was previously cached as emulated
4895 	 * MMIO be no longer emulated MMIO, so invalidate
4896 	 * all the caches of emulated MMIO translations.
4897 	 */
4898 	if (npages)
4899 		atomic64_inc(&kvm->arch.mmio_update);
4900 
4901 	/*
4902 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4903 	 * have already called kvm_arch_flush_shadow_memslot() to
4904 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
4905 	 * previous mappings.  So the only case to handle is
4906 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4907 	 * has been changed.
4908 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4909 	 * to get rid of any THP PTEs in the partition-scoped page tables
4910 	 * so we can track dirtiness at the page level; we flush when
4911 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4912 	 * using THP PTEs.
4913 	 */
4914 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4915 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4916 		kvmppc_radix_flush_memslot(kvm, old);
4917 	/*
4918 	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4919 	 */
4920 	if (!kvm->arch.secure_guest)
4921 		return;
4922 
4923 	switch (change) {
4924 	case KVM_MR_CREATE:
4925 		/*
4926 		 * @TODO kvmppc_uvmem_memslot_create() can fail and
4927 		 * return error. Fix this.
4928 		 */
4929 		kvmppc_uvmem_memslot_create(kvm, new);
4930 		break;
4931 	case KVM_MR_DELETE:
4932 		kvmppc_uvmem_memslot_delete(kvm, old);
4933 		break;
4934 	default:
4935 		/* TODO: Handle KVM_MR_MOVE */
4936 		break;
4937 	}
4938 }
4939 
4940 /*
4941  * Update LPCR values in kvm->arch and in vcores.
4942  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4943  * of kvm->arch.lpcr update).
4944  */
4945 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4946 {
4947 	long int i;
4948 	u32 cores_done = 0;
4949 
4950 	if ((kvm->arch.lpcr & mask) == lpcr)
4951 		return;
4952 
4953 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4954 
4955 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
4956 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4957 		if (!vc)
4958 			continue;
4959 
4960 		spin_lock(&vc->lock);
4961 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4962 		verify_lpcr(kvm, vc->lpcr);
4963 		spin_unlock(&vc->lock);
4964 		if (++cores_done >= kvm->arch.online_vcores)
4965 			break;
4966 	}
4967 }
4968 
4969 void kvmppc_setup_partition_table(struct kvm *kvm)
4970 {
4971 	unsigned long dw0, dw1;
4972 
4973 	if (!kvm_is_radix(kvm)) {
4974 		/* PS field - page size for VRMA */
4975 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4976 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4977 		/* HTABSIZE and HTABORG fields */
4978 		dw0 |= kvm->arch.sdr1;
4979 
4980 		/* Second dword as set by userspace */
4981 		dw1 = kvm->arch.process_table;
4982 	} else {
4983 		dw0 = PATB_HR | radix__get_tree_size() |
4984 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4985 		dw1 = PATB_GR | kvm->arch.process_table;
4986 	}
4987 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4988 }
4989 
4990 /*
4991  * Set up HPT (hashed page table) and RMA (real-mode area).
4992  * Must be called with kvm->arch.mmu_setup_lock held.
4993  */
4994 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4995 {
4996 	int err = 0;
4997 	struct kvm *kvm = vcpu->kvm;
4998 	unsigned long hva;
4999 	struct kvm_memory_slot *memslot;
5000 	struct vm_area_struct *vma;
5001 	unsigned long lpcr = 0, senc;
5002 	unsigned long psize, porder;
5003 	int srcu_idx;
5004 
5005 	/* Allocate hashed page table (if not done already) and reset it */
5006 	if (!kvm->arch.hpt.virt) {
5007 		int order = KVM_DEFAULT_HPT_ORDER;
5008 		struct kvm_hpt_info info;
5009 
5010 		err = kvmppc_allocate_hpt(&info, order);
5011 		/* If we get here, it means userspace didn't specify a
5012 		 * size explicitly.  So, try successively smaller
5013 		 * sizes if the default failed. */
5014 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5015 			err  = kvmppc_allocate_hpt(&info, order);
5016 
5017 		if (err < 0) {
5018 			pr_err("KVM: Couldn't alloc HPT\n");
5019 			goto out;
5020 		}
5021 
5022 		kvmppc_set_hpt(kvm, &info);
5023 	}
5024 
5025 	/* Look up the memslot for guest physical address 0 */
5026 	srcu_idx = srcu_read_lock(&kvm->srcu);
5027 	memslot = gfn_to_memslot(kvm, 0);
5028 
5029 	/* We must have some memory at 0 by now */
5030 	err = -EINVAL;
5031 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5032 		goto out_srcu;
5033 
5034 	/* Look up the VMA for the start of this memory slot */
5035 	hva = memslot->userspace_addr;
5036 	mmap_read_lock(kvm->mm);
5037 	vma = vma_lookup(kvm->mm, hva);
5038 	if (!vma || (vma->vm_flags & VM_IO))
5039 		goto up_out;
5040 
5041 	psize = vma_kernel_pagesize(vma);
5042 
5043 	mmap_read_unlock(kvm->mm);
5044 
5045 	/* We can handle 4k, 64k or 16M pages in the VRMA */
5046 	if (psize >= 0x1000000)
5047 		psize = 0x1000000;
5048 	else if (psize >= 0x10000)
5049 		psize = 0x10000;
5050 	else
5051 		psize = 0x1000;
5052 	porder = __ilog2(psize);
5053 
5054 	senc = slb_pgsize_encoding(psize);
5055 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5056 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
5057 	/* Create HPTEs in the hash page table for the VRMA */
5058 	kvmppc_map_vrma(vcpu, memslot, porder);
5059 
5060 	/* Update VRMASD field in the LPCR */
5061 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5062 		/* the -4 is to account for senc values starting at 0x10 */
5063 		lpcr = senc << (LPCR_VRMASD_SH - 4);
5064 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5065 	}
5066 
5067 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5068 	smp_wmb();
5069 	err = 0;
5070  out_srcu:
5071 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5072  out:
5073 	return err;
5074 
5075  up_out:
5076 	mmap_read_unlock(kvm->mm);
5077 	goto out_srcu;
5078 }
5079 
5080 /*
5081  * Must be called with kvm->arch.mmu_setup_lock held and
5082  * mmu_ready = 0 and no vcpus running.
5083  */
5084 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5085 {
5086 	unsigned long lpcr, lpcr_mask;
5087 
5088 	if (nesting_enabled(kvm))
5089 		kvmhv_release_all_nested(kvm);
5090 	kvmppc_rmap_reset(kvm);
5091 	kvm->arch.process_table = 0;
5092 	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
5093 	spin_lock(&kvm->mmu_lock);
5094 	kvm->arch.radix = 0;
5095 	spin_unlock(&kvm->mmu_lock);
5096 	kvmppc_free_radix(kvm);
5097 
5098 	lpcr = LPCR_VPM1;
5099 	lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5100 	if (cpu_has_feature(CPU_FTR_ARCH_31))
5101 		lpcr_mask |= LPCR_HAIL;
5102 	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5103 
5104 	return 0;
5105 }
5106 
5107 /*
5108  * Must be called with kvm->arch.mmu_setup_lock held and
5109  * mmu_ready = 0 and no vcpus running.
5110  */
5111 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5112 {
5113 	unsigned long lpcr, lpcr_mask;
5114 	int err;
5115 
5116 	err = kvmppc_init_vm_radix(kvm);
5117 	if (err)
5118 		return err;
5119 	kvmppc_rmap_reset(kvm);
5120 	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
5121 	spin_lock(&kvm->mmu_lock);
5122 	kvm->arch.radix = 1;
5123 	spin_unlock(&kvm->mmu_lock);
5124 	kvmppc_free_hpt(&kvm->arch.hpt);
5125 
5126 	lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5127 	lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5128 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5129 		lpcr_mask |= LPCR_HAIL;
5130 		if (cpu_has_feature(CPU_FTR_HVMODE) &&
5131 				(kvm->arch.host_lpcr & LPCR_HAIL))
5132 			lpcr |= LPCR_HAIL;
5133 	}
5134 	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5135 
5136 	return 0;
5137 }
5138 
5139 #ifdef CONFIG_KVM_XICS
5140 /*
5141  * Allocate a per-core structure for managing state about which cores are
5142  * running in the host versus the guest and for exchanging data between
5143  * real mode KVM and CPU running in the host.
5144  * This is only done for the first VM.
5145  * The allocated structure stays even if all VMs have stopped.
5146  * It is only freed when the kvm-hv module is unloaded.
5147  * It's OK for this routine to fail, we just don't support host
5148  * core operations like redirecting H_IPI wakeups.
5149  */
5150 void kvmppc_alloc_host_rm_ops(void)
5151 {
5152 	struct kvmppc_host_rm_ops *ops;
5153 	unsigned long l_ops;
5154 	int cpu, core;
5155 	int size;
5156 
5157 	if (cpu_has_feature(CPU_FTR_ARCH_300))
5158 		return;
5159 
5160 	/* Not the first time here ? */
5161 	if (kvmppc_host_rm_ops_hv != NULL)
5162 		return;
5163 
5164 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5165 	if (!ops)
5166 		return;
5167 
5168 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5169 	ops->rm_core = kzalloc(size, GFP_KERNEL);
5170 
5171 	if (!ops->rm_core) {
5172 		kfree(ops);
5173 		return;
5174 	}
5175 
5176 	cpus_read_lock();
5177 
5178 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5179 		if (!cpu_online(cpu))
5180 			continue;
5181 
5182 		core = cpu >> threads_shift;
5183 		ops->rm_core[core].rm_state.in_host = 1;
5184 	}
5185 
5186 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5187 
5188 	/*
5189 	 * Make the contents of the kvmppc_host_rm_ops structure visible
5190 	 * to other CPUs before we assign it to the global variable.
5191 	 * Do an atomic assignment (no locks used here), but if someone
5192 	 * beats us to it, just free our copy and return.
5193 	 */
5194 	smp_wmb();
5195 	l_ops = (unsigned long) ops;
5196 
5197 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5198 		cpus_read_unlock();
5199 		kfree(ops->rm_core);
5200 		kfree(ops);
5201 		return;
5202 	}
5203 
5204 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5205 					     "ppc/kvm_book3s:prepare",
5206 					     kvmppc_set_host_core,
5207 					     kvmppc_clear_host_core);
5208 	cpus_read_unlock();
5209 }
5210 
5211 void kvmppc_free_host_rm_ops(void)
5212 {
5213 	if (kvmppc_host_rm_ops_hv) {
5214 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5215 		kfree(kvmppc_host_rm_ops_hv->rm_core);
5216 		kfree(kvmppc_host_rm_ops_hv);
5217 		kvmppc_host_rm_ops_hv = NULL;
5218 	}
5219 }
5220 #endif
5221 
5222 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5223 {
5224 	unsigned long lpcr, lpid;
5225 	char buf[32];
5226 	int ret;
5227 
5228 	mutex_init(&kvm->arch.uvmem_lock);
5229 	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5230 	mutex_init(&kvm->arch.mmu_setup_lock);
5231 
5232 	/* Allocate the guest's logical partition ID */
5233 
5234 	lpid = kvmppc_alloc_lpid();
5235 	if ((long)lpid < 0)
5236 		return -ENOMEM;
5237 	kvm->arch.lpid = lpid;
5238 
5239 	kvmppc_alloc_host_rm_ops();
5240 
5241 	kvmhv_vm_nested_init(kvm);
5242 
5243 	/*
5244 	 * Since we don't flush the TLB when tearing down a VM,
5245 	 * and this lpid might have previously been used,
5246 	 * make sure we flush on each core before running the new VM.
5247 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
5248 	 * does this flush for us.
5249 	 */
5250 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5251 		cpumask_setall(&kvm->arch.need_tlb_flush);
5252 
5253 	/* Start out with the default set of hcalls enabled */
5254 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5255 	       sizeof(kvm->arch.enabled_hcalls));
5256 
5257 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5258 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5259 
5260 	/* Init LPCR for virtual RMA mode */
5261 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
5262 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
5263 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5264 		lpcr &= LPCR_PECE | LPCR_LPES;
5265 	} else {
5266 		lpcr = 0;
5267 	}
5268 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5269 		LPCR_VPM0 | LPCR_VPM1;
5270 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5271 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
5272 	/* On POWER8 turn on online bit to enable PURR/SPURR */
5273 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
5274 		lpcr |= LPCR_ONL;
5275 	/*
5276 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5277 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
5278 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
5279 	 * be unnecessary but better safe than sorry in case we re-enable
5280 	 * EE in HV mode with this LPCR still set)
5281 	 */
5282 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5283 		lpcr &= ~LPCR_VPM0;
5284 		lpcr |= LPCR_HVICE | LPCR_HEIC;
5285 
5286 		/*
5287 		 * If xive is enabled, we route 0x500 interrupts directly
5288 		 * to the guest.
5289 		 */
5290 		if (xics_on_xive())
5291 			lpcr |= LPCR_LPES;
5292 	}
5293 
5294 	/*
5295 	 * If the host uses radix, the guest starts out as radix.
5296 	 */
5297 	if (radix_enabled()) {
5298 		kvm->arch.radix = 1;
5299 		kvm->arch.mmu_ready = 1;
5300 		lpcr &= ~LPCR_VPM1;
5301 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5302 		if (cpu_has_feature(CPU_FTR_HVMODE) &&
5303 		    cpu_has_feature(CPU_FTR_ARCH_31) &&
5304 		    (kvm->arch.host_lpcr & LPCR_HAIL))
5305 			lpcr |= LPCR_HAIL;
5306 		ret = kvmppc_init_vm_radix(kvm);
5307 		if (ret) {
5308 			kvmppc_free_lpid(kvm->arch.lpid);
5309 			return ret;
5310 		}
5311 		kvmppc_setup_partition_table(kvm);
5312 	}
5313 
5314 	verify_lpcr(kvm, lpcr);
5315 	kvm->arch.lpcr = lpcr;
5316 
5317 	/* Initialization for future HPT resizes */
5318 	kvm->arch.resize_hpt = NULL;
5319 
5320 	/*
5321 	 * Work out how many sets the TLB has, for the use of
5322 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5323 	 */
5324 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5325 		/*
5326 		 * P10 will flush all the congruence class with a single tlbiel
5327 		 */
5328 		kvm->arch.tlb_sets = 1;
5329 	} else if (radix_enabled())
5330 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
5331 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
5332 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
5333 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5334 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
5335 	else
5336 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
5337 
5338 	/*
5339 	 * Track that we now have a HV mode VM active. This blocks secondary
5340 	 * CPU threads from coming online.
5341 	 */
5342 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5343 		kvm_hv_vm_activated();
5344 
5345 	/*
5346 	 * Initialize smt_mode depending on processor.
5347 	 * POWER8 and earlier have to use "strict" threading, where
5348 	 * all vCPUs in a vcore have to run on the same (sub)core,
5349 	 * whereas on POWER9 the threads can each run a different
5350 	 * guest.
5351 	 */
5352 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5353 		kvm->arch.smt_mode = threads_per_subcore;
5354 	else
5355 		kvm->arch.smt_mode = 1;
5356 	kvm->arch.emul_smt_mode = 1;
5357 
5358 	/*
5359 	 * Create a debugfs directory for the VM
5360 	 */
5361 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
5362 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
5363 	kvmppc_mmu_debugfs_init(kvm);
5364 	if (radix_enabled())
5365 		kvmhv_radix_debugfs_init(kvm);
5366 
5367 	return 0;
5368 }
5369 
5370 static void kvmppc_free_vcores(struct kvm *kvm)
5371 {
5372 	long int i;
5373 
5374 	for (i = 0; i < KVM_MAX_VCORES; ++i)
5375 		kfree(kvm->arch.vcores[i]);
5376 	kvm->arch.online_vcores = 0;
5377 }
5378 
5379 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5380 {
5381 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
5382 
5383 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5384 		kvm_hv_vm_deactivated();
5385 
5386 	kvmppc_free_vcores(kvm);
5387 
5388 
5389 	if (kvm_is_radix(kvm))
5390 		kvmppc_free_radix(kvm);
5391 	else
5392 		kvmppc_free_hpt(&kvm->arch.hpt);
5393 
5394 	/* Perform global invalidation and return lpid to the pool */
5395 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5396 		if (nesting_enabled(kvm))
5397 			kvmhv_release_all_nested(kvm);
5398 		kvm->arch.process_table = 0;
5399 		if (kvm->arch.secure_guest)
5400 			uv_svm_terminate(kvm->arch.lpid);
5401 		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5402 	}
5403 
5404 	kvmppc_free_lpid(kvm->arch.lpid);
5405 
5406 	kvmppc_free_pimap(kvm);
5407 }
5408 
5409 /* We don't need to emulate any privileged instructions or dcbz */
5410 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5411 				     unsigned int inst, int *advance)
5412 {
5413 	return EMULATE_FAIL;
5414 }
5415 
5416 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5417 					ulong spr_val)
5418 {
5419 	return EMULATE_FAIL;
5420 }
5421 
5422 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5423 					ulong *spr_val)
5424 {
5425 	return EMULATE_FAIL;
5426 }
5427 
5428 static int kvmppc_core_check_processor_compat_hv(void)
5429 {
5430 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
5431 	    cpu_has_feature(CPU_FTR_ARCH_206))
5432 		return 0;
5433 
5434 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
5435 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5436 		return 0;
5437 
5438 	return -EIO;
5439 }
5440 
5441 #ifdef CONFIG_KVM_XICS
5442 
5443 void kvmppc_free_pimap(struct kvm *kvm)
5444 {
5445 	kfree(kvm->arch.pimap);
5446 }
5447 
5448 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5449 {
5450 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5451 }
5452 
5453 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5454 {
5455 	struct irq_desc *desc;
5456 	struct kvmppc_irq_map *irq_map;
5457 	struct kvmppc_passthru_irqmap *pimap;
5458 	struct irq_chip *chip;
5459 	int i, rc = 0;
5460 	struct irq_data *host_data;
5461 
5462 	if (!kvm_irq_bypass)
5463 		return 1;
5464 
5465 	desc = irq_to_desc(host_irq);
5466 	if (!desc)
5467 		return -EIO;
5468 
5469 	mutex_lock(&kvm->lock);
5470 
5471 	pimap = kvm->arch.pimap;
5472 	if (pimap == NULL) {
5473 		/* First call, allocate structure to hold IRQ map */
5474 		pimap = kvmppc_alloc_pimap();
5475 		if (pimap == NULL) {
5476 			mutex_unlock(&kvm->lock);
5477 			return -ENOMEM;
5478 		}
5479 		kvm->arch.pimap = pimap;
5480 	}
5481 
5482 	/*
5483 	 * For now, we only support interrupts for which the EOI operation
5484 	 * is an OPAL call followed by a write to XIRR, since that's
5485 	 * what our real-mode EOI code does, or a XIVE interrupt
5486 	 */
5487 	chip = irq_data_get_irq_chip(&desc->irq_data);
5488 	if (!chip || !is_pnv_opal_msi(chip)) {
5489 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5490 			host_irq, guest_gsi);
5491 		mutex_unlock(&kvm->lock);
5492 		return -ENOENT;
5493 	}
5494 
5495 	/*
5496 	 * See if we already have an entry for this guest IRQ number.
5497 	 * If it's mapped to a hardware IRQ number, that's an error,
5498 	 * otherwise re-use this entry.
5499 	 */
5500 	for (i = 0; i < pimap->n_mapped; i++) {
5501 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5502 			if (pimap->mapped[i].r_hwirq) {
5503 				mutex_unlock(&kvm->lock);
5504 				return -EINVAL;
5505 			}
5506 			break;
5507 		}
5508 	}
5509 
5510 	if (i == KVMPPC_PIRQ_MAPPED) {
5511 		mutex_unlock(&kvm->lock);
5512 		return -EAGAIN;		/* table is full */
5513 	}
5514 
5515 	irq_map = &pimap->mapped[i];
5516 
5517 	irq_map->v_hwirq = guest_gsi;
5518 	irq_map->desc = desc;
5519 
5520 	/*
5521 	 * Order the above two stores before the next to serialize with
5522 	 * the KVM real mode handler.
5523 	 */
5524 	smp_wmb();
5525 
5526 	/*
5527 	 * The 'host_irq' number is mapped in the PCI-MSI domain but
5528 	 * the underlying calls, which will EOI the interrupt in real
5529 	 * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5530 	 */
5531 	host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5532 	irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5533 
5534 	if (i == pimap->n_mapped)
5535 		pimap->n_mapped++;
5536 
5537 	if (xics_on_xive())
5538 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5539 	else
5540 		kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5541 	if (rc)
5542 		irq_map->r_hwirq = 0;
5543 
5544 	mutex_unlock(&kvm->lock);
5545 
5546 	return 0;
5547 }
5548 
5549 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5550 {
5551 	struct irq_desc *desc;
5552 	struct kvmppc_passthru_irqmap *pimap;
5553 	int i, rc = 0;
5554 
5555 	if (!kvm_irq_bypass)
5556 		return 0;
5557 
5558 	desc = irq_to_desc(host_irq);
5559 	if (!desc)
5560 		return -EIO;
5561 
5562 	mutex_lock(&kvm->lock);
5563 	if (!kvm->arch.pimap)
5564 		goto unlock;
5565 
5566 	pimap = kvm->arch.pimap;
5567 
5568 	for (i = 0; i < pimap->n_mapped; i++) {
5569 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5570 			break;
5571 	}
5572 
5573 	if (i == pimap->n_mapped) {
5574 		mutex_unlock(&kvm->lock);
5575 		return -ENODEV;
5576 	}
5577 
5578 	if (xics_on_xive())
5579 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5580 	else
5581 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5582 
5583 	/* invalidate the entry (what do do on error from the above ?) */
5584 	pimap->mapped[i].r_hwirq = 0;
5585 
5586 	/*
5587 	 * We don't free this structure even when the count goes to
5588 	 * zero. The structure is freed when we destroy the VM.
5589 	 */
5590  unlock:
5591 	mutex_unlock(&kvm->lock);
5592 	return rc;
5593 }
5594 
5595 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5596 					     struct irq_bypass_producer *prod)
5597 {
5598 	int ret = 0;
5599 	struct kvm_kernel_irqfd *irqfd =
5600 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5601 
5602 	irqfd->producer = prod;
5603 
5604 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5605 	if (ret)
5606 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5607 			prod->irq, irqfd->gsi, ret);
5608 
5609 	return ret;
5610 }
5611 
5612 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5613 					      struct irq_bypass_producer *prod)
5614 {
5615 	int ret;
5616 	struct kvm_kernel_irqfd *irqfd =
5617 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5618 
5619 	irqfd->producer = NULL;
5620 
5621 	/*
5622 	 * When producer of consumer is unregistered, we change back to
5623 	 * default external interrupt handling mode - KVM real mode
5624 	 * will switch back to host.
5625 	 */
5626 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5627 	if (ret)
5628 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5629 			prod->irq, irqfd->gsi, ret);
5630 }
5631 #endif
5632 
5633 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5634 				 unsigned int ioctl, unsigned long arg)
5635 {
5636 	struct kvm *kvm __maybe_unused = filp->private_data;
5637 	void __user *argp = (void __user *)arg;
5638 	long r;
5639 
5640 	switch (ioctl) {
5641 
5642 	case KVM_PPC_ALLOCATE_HTAB: {
5643 		u32 htab_order;
5644 
5645 		/* If we're a nested hypervisor, we currently only support radix */
5646 		if (kvmhv_on_pseries()) {
5647 			r = -EOPNOTSUPP;
5648 			break;
5649 		}
5650 
5651 		r = -EFAULT;
5652 		if (get_user(htab_order, (u32 __user *)argp))
5653 			break;
5654 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5655 		if (r)
5656 			break;
5657 		r = 0;
5658 		break;
5659 	}
5660 
5661 	case KVM_PPC_GET_HTAB_FD: {
5662 		struct kvm_get_htab_fd ghf;
5663 
5664 		r = -EFAULT;
5665 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5666 			break;
5667 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5668 		break;
5669 	}
5670 
5671 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5672 		struct kvm_ppc_resize_hpt rhpt;
5673 
5674 		r = -EFAULT;
5675 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5676 			break;
5677 
5678 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5679 		break;
5680 	}
5681 
5682 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5683 		struct kvm_ppc_resize_hpt rhpt;
5684 
5685 		r = -EFAULT;
5686 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5687 			break;
5688 
5689 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5690 		break;
5691 	}
5692 
5693 	default:
5694 		r = -ENOTTY;
5695 	}
5696 
5697 	return r;
5698 }
5699 
5700 /*
5701  * List of hcall numbers to enable by default.
5702  * For compatibility with old userspace, we enable by default
5703  * all hcalls that were implemented before the hcall-enabling
5704  * facility was added.  Note this list should not include H_RTAS.
5705  */
5706 static unsigned int default_hcall_list[] = {
5707 	H_REMOVE,
5708 	H_ENTER,
5709 	H_READ,
5710 	H_PROTECT,
5711 	H_BULK_REMOVE,
5712 #ifdef CONFIG_SPAPR_TCE_IOMMU
5713 	H_GET_TCE,
5714 	H_PUT_TCE,
5715 #endif
5716 	H_SET_DABR,
5717 	H_SET_XDABR,
5718 	H_CEDE,
5719 	H_PROD,
5720 	H_CONFER,
5721 	H_REGISTER_VPA,
5722 #ifdef CONFIG_KVM_XICS
5723 	H_EOI,
5724 	H_CPPR,
5725 	H_IPI,
5726 	H_IPOLL,
5727 	H_XIRR,
5728 	H_XIRR_X,
5729 #endif
5730 	0
5731 };
5732 
5733 static void init_default_hcalls(void)
5734 {
5735 	int i;
5736 	unsigned int hcall;
5737 
5738 	for (i = 0; default_hcall_list[i]; ++i) {
5739 		hcall = default_hcall_list[i];
5740 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5741 		__set_bit(hcall / 4, default_enabled_hcalls);
5742 	}
5743 }
5744 
5745 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5746 {
5747 	unsigned long lpcr;
5748 	int radix;
5749 	int err;
5750 
5751 	/* If not on a POWER9, reject it */
5752 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5753 		return -ENODEV;
5754 
5755 	/* If any unknown flags set, reject it */
5756 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5757 		return -EINVAL;
5758 
5759 	/* GR (guest radix) bit in process_table field must match */
5760 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5761 	if (!!(cfg->process_table & PATB_GR) != radix)
5762 		return -EINVAL;
5763 
5764 	/* Process table size field must be reasonable, i.e. <= 24 */
5765 	if ((cfg->process_table & PRTS_MASK) > 24)
5766 		return -EINVAL;
5767 
5768 	/* We can change a guest to/from radix now, if the host is radix */
5769 	if (radix && !radix_enabled())
5770 		return -EINVAL;
5771 
5772 	/* If we're a nested hypervisor, we currently only support radix */
5773 	if (kvmhv_on_pseries() && !radix)
5774 		return -EINVAL;
5775 
5776 	mutex_lock(&kvm->arch.mmu_setup_lock);
5777 	if (radix != kvm_is_radix(kvm)) {
5778 		if (kvm->arch.mmu_ready) {
5779 			kvm->arch.mmu_ready = 0;
5780 			/* order mmu_ready vs. vcpus_running */
5781 			smp_mb();
5782 			if (atomic_read(&kvm->arch.vcpus_running)) {
5783 				kvm->arch.mmu_ready = 1;
5784 				err = -EBUSY;
5785 				goto out_unlock;
5786 			}
5787 		}
5788 		if (radix)
5789 			err = kvmppc_switch_mmu_to_radix(kvm);
5790 		else
5791 			err = kvmppc_switch_mmu_to_hpt(kvm);
5792 		if (err)
5793 			goto out_unlock;
5794 	}
5795 
5796 	kvm->arch.process_table = cfg->process_table;
5797 	kvmppc_setup_partition_table(kvm);
5798 
5799 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5800 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5801 	err = 0;
5802 
5803  out_unlock:
5804 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5805 	return err;
5806 }
5807 
5808 static int kvmhv_enable_nested(struct kvm *kvm)
5809 {
5810 	if (!nested)
5811 		return -EPERM;
5812 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5813 		return -ENODEV;
5814 	if (!radix_enabled())
5815 		return -ENODEV;
5816 
5817 	/* kvm == NULL means the caller is testing if the capability exists */
5818 	if (kvm)
5819 		kvm->arch.nested_enable = true;
5820 	return 0;
5821 }
5822 
5823 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5824 				 int size)
5825 {
5826 	int rc = -EINVAL;
5827 
5828 	if (kvmhv_vcpu_is_radix(vcpu)) {
5829 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5830 
5831 		if (rc > 0)
5832 			rc = -EINVAL;
5833 	}
5834 
5835 	/* For now quadrants are the only way to access nested guest memory */
5836 	if (rc && vcpu->arch.nested)
5837 		rc = -EAGAIN;
5838 
5839 	return rc;
5840 }
5841 
5842 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5843 				int size)
5844 {
5845 	int rc = -EINVAL;
5846 
5847 	if (kvmhv_vcpu_is_radix(vcpu)) {
5848 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5849 
5850 		if (rc > 0)
5851 			rc = -EINVAL;
5852 	}
5853 
5854 	/* For now quadrants are the only way to access nested guest memory */
5855 	if (rc && vcpu->arch.nested)
5856 		rc = -EAGAIN;
5857 
5858 	return rc;
5859 }
5860 
5861 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5862 {
5863 	unpin_vpa(kvm, vpa);
5864 	vpa->gpa = 0;
5865 	vpa->pinned_addr = NULL;
5866 	vpa->dirty = false;
5867 	vpa->update_pending = 0;
5868 }
5869 
5870 /*
5871  * Enable a guest to become a secure VM, or test whether
5872  * that could be enabled.
5873  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5874  * tested (kvm == NULL) or enabled (kvm != NULL).
5875  */
5876 static int kvmhv_enable_svm(struct kvm *kvm)
5877 {
5878 	if (!kvmppc_uvmem_available())
5879 		return -EINVAL;
5880 	if (kvm)
5881 		kvm->arch.svm_enabled = 1;
5882 	return 0;
5883 }
5884 
5885 /*
5886  *  IOCTL handler to turn off secure mode of guest
5887  *
5888  * - Release all device pages
5889  * - Issue ucall to terminate the guest on the UV side
5890  * - Unpin the VPA pages.
5891  * - Reinit the partition scoped page tables
5892  */
5893 static int kvmhv_svm_off(struct kvm *kvm)
5894 {
5895 	struct kvm_vcpu *vcpu;
5896 	int mmu_was_ready;
5897 	int srcu_idx;
5898 	int ret = 0;
5899 	int i;
5900 
5901 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5902 		return ret;
5903 
5904 	mutex_lock(&kvm->arch.mmu_setup_lock);
5905 	mmu_was_ready = kvm->arch.mmu_ready;
5906 	if (kvm->arch.mmu_ready) {
5907 		kvm->arch.mmu_ready = 0;
5908 		/* order mmu_ready vs. vcpus_running */
5909 		smp_mb();
5910 		if (atomic_read(&kvm->arch.vcpus_running)) {
5911 			kvm->arch.mmu_ready = 1;
5912 			ret = -EBUSY;
5913 			goto out;
5914 		}
5915 	}
5916 
5917 	srcu_idx = srcu_read_lock(&kvm->srcu);
5918 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5919 		struct kvm_memory_slot *memslot;
5920 		struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5921 
5922 		if (!slots)
5923 			continue;
5924 
5925 		kvm_for_each_memslot(memslot, slots) {
5926 			kvmppc_uvmem_drop_pages(memslot, kvm, true);
5927 			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5928 		}
5929 	}
5930 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5931 
5932 	ret = uv_svm_terminate(kvm->arch.lpid);
5933 	if (ret != U_SUCCESS) {
5934 		ret = -EINVAL;
5935 		goto out;
5936 	}
5937 
5938 	/*
5939 	 * When secure guest is reset, all the guest pages are sent
5940 	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5941 	 * chance to run and unpin their VPA pages. Unpinning of all
5942 	 * VPA pages is done here explicitly so that VPA pages
5943 	 * can be migrated to the secure side.
5944 	 *
5945 	 * This is required to for the secure SMP guest to reboot
5946 	 * correctly.
5947 	 */
5948 	kvm_for_each_vcpu(i, vcpu, kvm) {
5949 		spin_lock(&vcpu->arch.vpa_update_lock);
5950 		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5951 		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5952 		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5953 		spin_unlock(&vcpu->arch.vpa_update_lock);
5954 	}
5955 
5956 	kvmppc_setup_partition_table(kvm);
5957 	kvm->arch.secure_guest = 0;
5958 	kvm->arch.mmu_ready = mmu_was_ready;
5959 out:
5960 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5961 	return ret;
5962 }
5963 
5964 static int kvmhv_enable_dawr1(struct kvm *kvm)
5965 {
5966 	if (!cpu_has_feature(CPU_FTR_DAWR1))
5967 		return -ENODEV;
5968 
5969 	/* kvm == NULL means the caller is testing if the capability exists */
5970 	if (kvm)
5971 		kvm->arch.dawr1_enabled = true;
5972 	return 0;
5973 }
5974 
5975 static bool kvmppc_hash_v3_possible(void)
5976 {
5977 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5978 		return false;
5979 
5980 	if (!cpu_has_feature(CPU_FTR_HVMODE))
5981 		return false;
5982 
5983 	/*
5984 	 * POWER9 chips before version 2.02 can't have some threads in
5985 	 * HPT mode and some in radix mode on the same core.
5986 	 */
5987 	if (radix_enabled()) {
5988 		unsigned int pvr = mfspr(SPRN_PVR);
5989 		if ((pvr >> 16) == PVR_POWER9 &&
5990 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5991 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5992 			return false;
5993 	}
5994 
5995 	return true;
5996 }
5997 
5998 static struct kvmppc_ops kvm_ops_hv = {
5999 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6000 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6001 	.get_one_reg = kvmppc_get_one_reg_hv,
6002 	.set_one_reg = kvmppc_set_one_reg_hv,
6003 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
6004 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
6005 	.inject_interrupt = kvmppc_inject_interrupt_hv,
6006 	.set_msr     = kvmppc_set_msr_hv,
6007 	.vcpu_run    = kvmppc_vcpu_run_hv,
6008 	.vcpu_create = kvmppc_core_vcpu_create_hv,
6009 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
6010 	.check_requests = kvmppc_core_check_requests_hv,
6011 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
6012 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
6013 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6014 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
6015 	.unmap_gfn_range = kvm_unmap_gfn_range_hv,
6016 	.age_gfn = kvm_age_gfn_hv,
6017 	.test_age_gfn = kvm_test_age_gfn_hv,
6018 	.set_spte_gfn = kvm_set_spte_gfn_hv,
6019 	.free_memslot = kvmppc_core_free_memslot_hv,
6020 	.init_vm =  kvmppc_core_init_vm_hv,
6021 	.destroy_vm = kvmppc_core_destroy_vm_hv,
6022 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6023 	.emulate_op = kvmppc_core_emulate_op_hv,
6024 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6025 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6026 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6027 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
6028 	.hcall_implemented = kvmppc_hcall_impl_hv,
6029 #ifdef CONFIG_KVM_XICS
6030 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6031 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6032 #endif
6033 	.configure_mmu = kvmhv_configure_mmu,
6034 	.get_rmmu_info = kvmhv_get_rmmu_info,
6035 	.set_smt_mode = kvmhv_set_smt_mode,
6036 	.enable_nested = kvmhv_enable_nested,
6037 	.load_from_eaddr = kvmhv_load_from_eaddr,
6038 	.store_to_eaddr = kvmhv_store_to_eaddr,
6039 	.enable_svm = kvmhv_enable_svm,
6040 	.svm_off = kvmhv_svm_off,
6041 	.enable_dawr1 = kvmhv_enable_dawr1,
6042 	.hash_v3_possible = kvmppc_hash_v3_possible,
6043 };
6044 
6045 static int kvm_init_subcore_bitmap(void)
6046 {
6047 	int i, j;
6048 	int nr_cores = cpu_nr_cores();
6049 	struct sibling_subcore_state *sibling_subcore_state;
6050 
6051 	for (i = 0; i < nr_cores; i++) {
6052 		int first_cpu = i * threads_per_core;
6053 		int node = cpu_to_node(first_cpu);
6054 
6055 		/* Ignore if it is already allocated. */
6056 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
6057 			continue;
6058 
6059 		sibling_subcore_state =
6060 			kzalloc_node(sizeof(struct sibling_subcore_state),
6061 							GFP_KERNEL, node);
6062 		if (!sibling_subcore_state)
6063 			return -ENOMEM;
6064 
6065 
6066 		for (j = 0; j < threads_per_core; j++) {
6067 			int cpu = first_cpu + j;
6068 
6069 			paca_ptrs[cpu]->sibling_subcore_state =
6070 						sibling_subcore_state;
6071 		}
6072 	}
6073 	return 0;
6074 }
6075 
6076 static int kvmppc_radix_possible(void)
6077 {
6078 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6079 }
6080 
6081 static int kvmppc_book3s_init_hv(void)
6082 {
6083 	int r;
6084 
6085 	if (!tlbie_capable) {
6086 		pr_err("KVM-HV: Host does not support TLBIE\n");
6087 		return -ENODEV;
6088 	}
6089 
6090 	/*
6091 	 * FIXME!! Do we need to check on all cpus ?
6092 	 */
6093 	r = kvmppc_core_check_processor_compat_hv();
6094 	if (r < 0)
6095 		return -ENODEV;
6096 
6097 	r = kvmhv_nested_init();
6098 	if (r)
6099 		return r;
6100 
6101 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6102 		r = kvm_init_subcore_bitmap();
6103 		if (r)
6104 			return r;
6105 	}
6106 
6107 	/*
6108 	 * We need a way of accessing the XICS interrupt controller,
6109 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6110 	 * indirectly, via OPAL.
6111 	 */
6112 #ifdef CONFIG_SMP
6113 	if (!xics_on_xive() && !kvmhv_on_pseries() &&
6114 	    !local_paca->kvm_hstate.xics_phys) {
6115 		struct device_node *np;
6116 
6117 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6118 		if (!np) {
6119 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6120 			return -ENODEV;
6121 		}
6122 		/* presence of intc confirmed - node can be dropped again */
6123 		of_node_put(np);
6124 	}
6125 #endif
6126 
6127 	kvm_ops_hv.owner = THIS_MODULE;
6128 	kvmppc_hv_ops = &kvm_ops_hv;
6129 
6130 	init_default_hcalls();
6131 
6132 	init_vcore_lists();
6133 
6134 	r = kvmppc_mmu_hv_init();
6135 	if (r)
6136 		return r;
6137 
6138 	if (kvmppc_radix_possible())
6139 		r = kvmppc_radix_init();
6140 
6141 	r = kvmppc_uvmem_init();
6142 	if (r < 0)
6143 		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6144 
6145 	return r;
6146 }
6147 
6148 static void kvmppc_book3s_exit_hv(void)
6149 {
6150 	kvmppc_uvmem_free();
6151 	kvmppc_free_host_rm_ops();
6152 	if (kvmppc_radix_possible())
6153 		kvmppc_radix_exit();
6154 	kvmppc_hv_ops = NULL;
6155 	kvmhv_nested_exit();
6156 }
6157 
6158 module_init(kvmppc_book3s_init_hv);
6159 module_exit(kvmppc_book3s_exit_hv);
6160 MODULE_LICENSE("GPL");
6161 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6162 MODULE_ALIAS("devname:kvm");
6163