1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 35 #include <asm/reg.h> 36 #include <asm/cputable.h> 37 #include <asm/cacheflush.h> 38 #include <asm/tlbflush.h> 39 #include <asm/uaccess.h> 40 #include <asm/io.h> 41 #include <asm/kvm_ppc.h> 42 #include <asm/kvm_book3s.h> 43 #include <asm/mmu_context.h> 44 #include <asm/lppaca.h> 45 #include <asm/processor.h> 46 #include <asm/cputhreads.h> 47 #include <asm/page.h> 48 #include <asm/hvcall.h> 49 #include <asm/switch_to.h> 50 #include <asm/smp.h> 51 #include <linux/gfp.h> 52 #include <linux/vmalloc.h> 53 #include <linux/highmem.h> 54 #include <linux/hugetlb.h> 55 #include <linux/module.h> 56 57 #include "book3s.h" 58 59 /* #define EXIT_DEBUG */ 60 /* #define EXIT_DEBUG_SIMPLE */ 61 /* #define EXIT_DEBUG_INT */ 62 63 /* Used to indicate that a guest page fault needs to be handled */ 64 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 65 66 /* Used as a "null" value for timebase values */ 67 #define TB_NIL (~(u64)0) 68 69 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 70 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 71 72 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 73 { 74 int me; 75 int cpu = vcpu->cpu; 76 wait_queue_head_t *wqp; 77 78 wqp = kvm_arch_vcpu_wq(vcpu); 79 if (waitqueue_active(wqp)) { 80 wake_up_interruptible(wqp); 81 ++vcpu->stat.halt_wakeup; 82 } 83 84 me = get_cpu(); 85 86 /* CPU points to the first thread of the core */ 87 if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) { 88 int real_cpu = cpu + vcpu->arch.ptid; 89 if (paca[real_cpu].kvm_hstate.xics_phys) 90 xics_wake_cpu(real_cpu); 91 else if (cpu_online(cpu)) 92 smp_send_reschedule(cpu); 93 } 94 put_cpu(); 95 } 96 97 /* 98 * We use the vcpu_load/put functions to measure stolen time. 99 * Stolen time is counted as time when either the vcpu is able to 100 * run as part of a virtual core, but the task running the vcore 101 * is preempted or sleeping, or when the vcpu needs something done 102 * in the kernel by the task running the vcpu, but that task is 103 * preempted or sleeping. Those two things have to be counted 104 * separately, since one of the vcpu tasks will take on the job 105 * of running the core, and the other vcpu tasks in the vcore will 106 * sleep waiting for it to do that, but that sleep shouldn't count 107 * as stolen time. 108 * 109 * Hence we accumulate stolen time when the vcpu can run as part of 110 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 111 * needs its task to do other things in the kernel (for example, 112 * service a page fault) in busy_stolen. We don't accumulate 113 * stolen time for a vcore when it is inactive, or for a vcpu 114 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 115 * a misnomer; it means that the vcpu task is not executing in 116 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 117 * the kernel. We don't have any way of dividing up that time 118 * between time that the vcpu is genuinely stopped, time that 119 * the task is actively working on behalf of the vcpu, and time 120 * that the task is preempted, so we don't count any of it as 121 * stolen. 122 * 123 * Updates to busy_stolen are protected by arch.tbacct_lock; 124 * updates to vc->stolen_tb are protected by the arch.tbacct_lock 125 * of the vcpu that has taken responsibility for running the vcore 126 * (i.e. vc->runner). The stolen times are measured in units of 127 * timebase ticks. (Note that the != TB_NIL checks below are 128 * purely defensive; they should never fail.) 129 */ 130 131 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 132 { 133 struct kvmppc_vcore *vc = vcpu->arch.vcore; 134 unsigned long flags; 135 136 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 137 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE && 138 vc->preempt_tb != TB_NIL) { 139 vc->stolen_tb += mftb() - vc->preempt_tb; 140 vc->preempt_tb = TB_NIL; 141 } 142 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 143 vcpu->arch.busy_preempt != TB_NIL) { 144 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 145 vcpu->arch.busy_preempt = TB_NIL; 146 } 147 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 148 } 149 150 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 151 { 152 struct kvmppc_vcore *vc = vcpu->arch.vcore; 153 unsigned long flags; 154 155 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 156 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) 157 vc->preempt_tb = mftb(); 158 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 159 vcpu->arch.busy_preempt = mftb(); 160 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 161 } 162 163 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 164 { 165 vcpu->arch.shregs.msr = msr; 166 kvmppc_end_cede(vcpu); 167 } 168 169 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 170 { 171 vcpu->arch.pvr = pvr; 172 } 173 174 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 175 { 176 unsigned long pcr = 0; 177 struct kvmppc_vcore *vc = vcpu->arch.vcore; 178 179 if (arch_compat) { 180 if (!cpu_has_feature(CPU_FTR_ARCH_206)) 181 return -EINVAL; /* 970 has no compat mode support */ 182 183 switch (arch_compat) { 184 case PVR_ARCH_205: 185 pcr = PCR_ARCH_205; 186 break; 187 case PVR_ARCH_206: 188 case PVR_ARCH_206p: 189 break; 190 default: 191 return -EINVAL; 192 } 193 } 194 195 spin_lock(&vc->lock); 196 vc->arch_compat = arch_compat; 197 vc->pcr = pcr; 198 spin_unlock(&vc->lock); 199 200 return 0; 201 } 202 203 void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 204 { 205 int r; 206 207 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 208 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 209 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 210 for (r = 0; r < 16; ++r) 211 pr_err("r%2d = %.16lx r%d = %.16lx\n", 212 r, kvmppc_get_gpr(vcpu, r), 213 r+16, kvmppc_get_gpr(vcpu, r+16)); 214 pr_err("ctr = %.16lx lr = %.16lx\n", 215 vcpu->arch.ctr, vcpu->arch.lr); 216 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 217 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 218 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 219 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 220 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 221 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 222 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 223 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 224 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 225 pr_err("fault dar = %.16lx dsisr = %.8x\n", 226 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 227 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 228 for (r = 0; r < vcpu->arch.slb_max; ++r) 229 pr_err(" ESID = %.16llx VSID = %.16llx\n", 230 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 231 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 232 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 233 vcpu->arch.last_inst); 234 } 235 236 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 237 { 238 int r; 239 struct kvm_vcpu *v, *ret = NULL; 240 241 mutex_lock(&kvm->lock); 242 kvm_for_each_vcpu(r, v, kvm) { 243 if (v->vcpu_id == id) { 244 ret = v; 245 break; 246 } 247 } 248 mutex_unlock(&kvm->lock); 249 return ret; 250 } 251 252 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 253 { 254 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 255 vpa->yield_count = 1; 256 } 257 258 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 259 unsigned long addr, unsigned long len) 260 { 261 /* check address is cacheline aligned */ 262 if (addr & (L1_CACHE_BYTES - 1)) 263 return -EINVAL; 264 spin_lock(&vcpu->arch.vpa_update_lock); 265 if (v->next_gpa != addr || v->len != len) { 266 v->next_gpa = addr; 267 v->len = addr ? len : 0; 268 v->update_pending = 1; 269 } 270 spin_unlock(&vcpu->arch.vpa_update_lock); 271 return 0; 272 } 273 274 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 275 struct reg_vpa { 276 u32 dummy; 277 union { 278 u16 hword; 279 u32 word; 280 } length; 281 }; 282 283 static int vpa_is_registered(struct kvmppc_vpa *vpap) 284 { 285 if (vpap->update_pending) 286 return vpap->next_gpa != 0; 287 return vpap->pinned_addr != NULL; 288 } 289 290 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 291 unsigned long flags, 292 unsigned long vcpuid, unsigned long vpa) 293 { 294 struct kvm *kvm = vcpu->kvm; 295 unsigned long len, nb; 296 void *va; 297 struct kvm_vcpu *tvcpu; 298 int err; 299 int subfunc; 300 struct kvmppc_vpa *vpap; 301 302 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 303 if (!tvcpu) 304 return H_PARAMETER; 305 306 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 307 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 308 subfunc == H_VPA_REG_SLB) { 309 /* Registering new area - address must be cache-line aligned */ 310 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 311 return H_PARAMETER; 312 313 /* convert logical addr to kernel addr and read length */ 314 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 315 if (va == NULL) 316 return H_PARAMETER; 317 if (subfunc == H_VPA_REG_VPA) 318 len = ((struct reg_vpa *)va)->length.hword; 319 else 320 len = ((struct reg_vpa *)va)->length.word; 321 kvmppc_unpin_guest_page(kvm, va, vpa, false); 322 323 /* Check length */ 324 if (len > nb || len < sizeof(struct reg_vpa)) 325 return H_PARAMETER; 326 } else { 327 vpa = 0; 328 len = 0; 329 } 330 331 err = H_PARAMETER; 332 vpap = NULL; 333 spin_lock(&tvcpu->arch.vpa_update_lock); 334 335 switch (subfunc) { 336 case H_VPA_REG_VPA: /* register VPA */ 337 if (len < sizeof(struct lppaca)) 338 break; 339 vpap = &tvcpu->arch.vpa; 340 err = 0; 341 break; 342 343 case H_VPA_REG_DTL: /* register DTL */ 344 if (len < sizeof(struct dtl_entry)) 345 break; 346 len -= len % sizeof(struct dtl_entry); 347 348 /* Check that they have previously registered a VPA */ 349 err = H_RESOURCE; 350 if (!vpa_is_registered(&tvcpu->arch.vpa)) 351 break; 352 353 vpap = &tvcpu->arch.dtl; 354 err = 0; 355 break; 356 357 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 358 /* Check that they have previously registered a VPA */ 359 err = H_RESOURCE; 360 if (!vpa_is_registered(&tvcpu->arch.vpa)) 361 break; 362 363 vpap = &tvcpu->arch.slb_shadow; 364 err = 0; 365 break; 366 367 case H_VPA_DEREG_VPA: /* deregister VPA */ 368 /* Check they don't still have a DTL or SLB buf registered */ 369 err = H_RESOURCE; 370 if (vpa_is_registered(&tvcpu->arch.dtl) || 371 vpa_is_registered(&tvcpu->arch.slb_shadow)) 372 break; 373 374 vpap = &tvcpu->arch.vpa; 375 err = 0; 376 break; 377 378 case H_VPA_DEREG_DTL: /* deregister DTL */ 379 vpap = &tvcpu->arch.dtl; 380 err = 0; 381 break; 382 383 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 384 vpap = &tvcpu->arch.slb_shadow; 385 err = 0; 386 break; 387 } 388 389 if (vpap) { 390 vpap->next_gpa = vpa; 391 vpap->len = len; 392 vpap->update_pending = 1; 393 } 394 395 spin_unlock(&tvcpu->arch.vpa_update_lock); 396 397 return err; 398 } 399 400 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 401 { 402 struct kvm *kvm = vcpu->kvm; 403 void *va; 404 unsigned long nb; 405 unsigned long gpa; 406 407 /* 408 * We need to pin the page pointed to by vpap->next_gpa, 409 * but we can't call kvmppc_pin_guest_page under the lock 410 * as it does get_user_pages() and down_read(). So we 411 * have to drop the lock, pin the page, then get the lock 412 * again and check that a new area didn't get registered 413 * in the meantime. 414 */ 415 for (;;) { 416 gpa = vpap->next_gpa; 417 spin_unlock(&vcpu->arch.vpa_update_lock); 418 va = NULL; 419 nb = 0; 420 if (gpa) 421 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 422 spin_lock(&vcpu->arch.vpa_update_lock); 423 if (gpa == vpap->next_gpa) 424 break; 425 /* sigh... unpin that one and try again */ 426 if (va) 427 kvmppc_unpin_guest_page(kvm, va, gpa, false); 428 } 429 430 vpap->update_pending = 0; 431 if (va && nb < vpap->len) { 432 /* 433 * If it's now too short, it must be that userspace 434 * has changed the mappings underlying guest memory, 435 * so unregister the region. 436 */ 437 kvmppc_unpin_guest_page(kvm, va, gpa, false); 438 va = NULL; 439 } 440 if (vpap->pinned_addr) 441 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 442 vpap->dirty); 443 vpap->gpa = gpa; 444 vpap->pinned_addr = va; 445 vpap->dirty = false; 446 if (va) 447 vpap->pinned_end = va + vpap->len; 448 } 449 450 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 451 { 452 if (!(vcpu->arch.vpa.update_pending || 453 vcpu->arch.slb_shadow.update_pending || 454 vcpu->arch.dtl.update_pending)) 455 return; 456 457 spin_lock(&vcpu->arch.vpa_update_lock); 458 if (vcpu->arch.vpa.update_pending) { 459 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 460 if (vcpu->arch.vpa.pinned_addr) 461 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 462 } 463 if (vcpu->arch.dtl.update_pending) { 464 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 465 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 466 vcpu->arch.dtl_index = 0; 467 } 468 if (vcpu->arch.slb_shadow.update_pending) 469 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 470 spin_unlock(&vcpu->arch.vpa_update_lock); 471 } 472 473 /* 474 * Return the accumulated stolen time for the vcore up until `now'. 475 * The caller should hold the vcore lock. 476 */ 477 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 478 { 479 u64 p; 480 481 /* 482 * If we are the task running the vcore, then since we hold 483 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb 484 * can't be updated, so we don't need the tbacct_lock. 485 * If the vcore is inactive, it can't become active (since we 486 * hold the vcore lock), so the vcpu load/put functions won't 487 * update stolen_tb/preempt_tb, and we don't need tbacct_lock. 488 */ 489 if (vc->vcore_state != VCORE_INACTIVE && 490 vc->runner->arch.run_task != current) { 491 spin_lock_irq(&vc->runner->arch.tbacct_lock); 492 p = vc->stolen_tb; 493 if (vc->preempt_tb != TB_NIL) 494 p += now - vc->preempt_tb; 495 spin_unlock_irq(&vc->runner->arch.tbacct_lock); 496 } else { 497 p = vc->stolen_tb; 498 } 499 return p; 500 } 501 502 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 503 struct kvmppc_vcore *vc) 504 { 505 struct dtl_entry *dt; 506 struct lppaca *vpa; 507 unsigned long stolen; 508 unsigned long core_stolen; 509 u64 now; 510 511 dt = vcpu->arch.dtl_ptr; 512 vpa = vcpu->arch.vpa.pinned_addr; 513 now = mftb(); 514 core_stolen = vcore_stolen_time(vc, now); 515 stolen = core_stolen - vcpu->arch.stolen_logged; 516 vcpu->arch.stolen_logged = core_stolen; 517 spin_lock_irq(&vcpu->arch.tbacct_lock); 518 stolen += vcpu->arch.busy_stolen; 519 vcpu->arch.busy_stolen = 0; 520 spin_unlock_irq(&vcpu->arch.tbacct_lock); 521 if (!dt || !vpa) 522 return; 523 memset(dt, 0, sizeof(struct dtl_entry)); 524 dt->dispatch_reason = 7; 525 dt->processor_id = vc->pcpu + vcpu->arch.ptid; 526 dt->timebase = now + vc->tb_offset; 527 dt->enqueue_to_dispatch_time = stolen; 528 dt->srr0 = kvmppc_get_pc(vcpu); 529 dt->srr1 = vcpu->arch.shregs.msr; 530 ++dt; 531 if (dt == vcpu->arch.dtl.pinned_end) 532 dt = vcpu->arch.dtl.pinned_addr; 533 vcpu->arch.dtl_ptr = dt; 534 /* order writing *dt vs. writing vpa->dtl_idx */ 535 smp_wmb(); 536 vpa->dtl_idx = ++vcpu->arch.dtl_index; 537 vcpu->arch.dtl.dirty = true; 538 } 539 540 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 541 { 542 unsigned long req = kvmppc_get_gpr(vcpu, 3); 543 unsigned long target, ret = H_SUCCESS; 544 struct kvm_vcpu *tvcpu; 545 int idx, rc; 546 547 switch (req) { 548 case H_ENTER: 549 idx = srcu_read_lock(&vcpu->kvm->srcu); 550 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 551 kvmppc_get_gpr(vcpu, 5), 552 kvmppc_get_gpr(vcpu, 6), 553 kvmppc_get_gpr(vcpu, 7)); 554 srcu_read_unlock(&vcpu->kvm->srcu, idx); 555 break; 556 case H_CEDE: 557 break; 558 case H_PROD: 559 target = kvmppc_get_gpr(vcpu, 4); 560 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 561 if (!tvcpu) { 562 ret = H_PARAMETER; 563 break; 564 } 565 tvcpu->arch.prodded = 1; 566 smp_mb(); 567 if (vcpu->arch.ceded) { 568 if (waitqueue_active(&vcpu->wq)) { 569 wake_up_interruptible(&vcpu->wq); 570 vcpu->stat.halt_wakeup++; 571 } 572 } 573 break; 574 case H_CONFER: 575 target = kvmppc_get_gpr(vcpu, 4); 576 if (target == -1) 577 break; 578 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 579 if (!tvcpu) { 580 ret = H_PARAMETER; 581 break; 582 } 583 kvm_vcpu_yield_to(tvcpu); 584 break; 585 case H_REGISTER_VPA: 586 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 587 kvmppc_get_gpr(vcpu, 5), 588 kvmppc_get_gpr(vcpu, 6)); 589 break; 590 case H_RTAS: 591 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 592 return RESUME_HOST; 593 594 idx = srcu_read_lock(&vcpu->kvm->srcu); 595 rc = kvmppc_rtas_hcall(vcpu); 596 srcu_read_unlock(&vcpu->kvm->srcu, idx); 597 598 if (rc == -ENOENT) 599 return RESUME_HOST; 600 else if (rc == 0) 601 break; 602 603 /* Send the error out to userspace via KVM_RUN */ 604 return rc; 605 606 case H_XIRR: 607 case H_CPPR: 608 case H_EOI: 609 case H_IPI: 610 case H_IPOLL: 611 case H_XIRR_X: 612 if (kvmppc_xics_enabled(vcpu)) { 613 ret = kvmppc_xics_hcall(vcpu, req); 614 break; 615 } /* fallthrough */ 616 default: 617 return RESUME_HOST; 618 } 619 kvmppc_set_gpr(vcpu, 3, ret); 620 vcpu->arch.hcall_needed = 0; 621 return RESUME_GUEST; 622 } 623 624 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 625 struct task_struct *tsk) 626 { 627 int r = RESUME_HOST; 628 629 vcpu->stat.sum_exits++; 630 631 run->exit_reason = KVM_EXIT_UNKNOWN; 632 run->ready_for_interrupt_injection = 1; 633 switch (vcpu->arch.trap) { 634 /* We're good on these - the host merely wanted to get our attention */ 635 case BOOK3S_INTERRUPT_HV_DECREMENTER: 636 vcpu->stat.dec_exits++; 637 r = RESUME_GUEST; 638 break; 639 case BOOK3S_INTERRUPT_EXTERNAL: 640 vcpu->stat.ext_intr_exits++; 641 r = RESUME_GUEST; 642 break; 643 case BOOK3S_INTERRUPT_PERFMON: 644 r = RESUME_GUEST; 645 break; 646 case BOOK3S_INTERRUPT_MACHINE_CHECK: 647 /* 648 * Deliver a machine check interrupt to the guest. 649 * We have to do this, even if the host has handled the 650 * machine check, because machine checks use SRR0/1 and 651 * the interrupt might have trashed guest state in them. 652 */ 653 kvmppc_book3s_queue_irqprio(vcpu, 654 BOOK3S_INTERRUPT_MACHINE_CHECK); 655 r = RESUME_GUEST; 656 break; 657 case BOOK3S_INTERRUPT_PROGRAM: 658 { 659 ulong flags; 660 /* 661 * Normally program interrupts are delivered directly 662 * to the guest by the hardware, but we can get here 663 * as a result of a hypervisor emulation interrupt 664 * (e40) getting turned into a 700 by BML RTAS. 665 */ 666 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 667 kvmppc_core_queue_program(vcpu, flags); 668 r = RESUME_GUEST; 669 break; 670 } 671 case BOOK3S_INTERRUPT_SYSCALL: 672 { 673 /* hcall - punt to userspace */ 674 int i; 675 676 if (vcpu->arch.shregs.msr & MSR_PR) { 677 /* sc 1 from userspace - reflect to guest syscall */ 678 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL); 679 r = RESUME_GUEST; 680 break; 681 } 682 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 683 for (i = 0; i < 9; ++i) 684 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 685 run->exit_reason = KVM_EXIT_PAPR_HCALL; 686 vcpu->arch.hcall_needed = 1; 687 r = RESUME_HOST; 688 break; 689 } 690 /* 691 * We get these next two if the guest accesses a page which it thinks 692 * it has mapped but which is not actually present, either because 693 * it is for an emulated I/O device or because the corresonding 694 * host page has been paged out. Any other HDSI/HISI interrupts 695 * have been handled already. 696 */ 697 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 698 r = RESUME_PAGE_FAULT; 699 break; 700 case BOOK3S_INTERRUPT_H_INST_STORAGE: 701 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 702 vcpu->arch.fault_dsisr = 0; 703 r = RESUME_PAGE_FAULT; 704 break; 705 /* 706 * This occurs if the guest executes an illegal instruction. 707 * We just generate a program interrupt to the guest, since 708 * we don't emulate any guest instructions at this stage. 709 */ 710 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 711 kvmppc_core_queue_program(vcpu, 0x80000); 712 r = RESUME_GUEST; 713 break; 714 default: 715 kvmppc_dump_regs(vcpu); 716 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 717 vcpu->arch.trap, kvmppc_get_pc(vcpu), 718 vcpu->arch.shregs.msr); 719 run->hw.hardware_exit_reason = vcpu->arch.trap; 720 r = RESUME_HOST; 721 break; 722 } 723 724 return r; 725 } 726 727 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 728 struct kvm_sregs *sregs) 729 { 730 int i; 731 732 memset(sregs, 0, sizeof(struct kvm_sregs)); 733 sregs->pvr = vcpu->arch.pvr; 734 for (i = 0; i < vcpu->arch.slb_max; i++) { 735 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 736 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 737 } 738 739 return 0; 740 } 741 742 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 743 struct kvm_sregs *sregs) 744 { 745 int i, j; 746 747 kvmppc_set_pvr_hv(vcpu, sregs->pvr); 748 749 j = 0; 750 for (i = 0; i < vcpu->arch.slb_nr; i++) { 751 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 752 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 753 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 754 ++j; 755 } 756 } 757 vcpu->arch.slb_max = j; 758 759 return 0; 760 } 761 762 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr) 763 { 764 struct kvmppc_vcore *vc = vcpu->arch.vcore; 765 u64 mask; 766 767 spin_lock(&vc->lock); 768 /* 769 * Userspace can only modify DPFD (default prefetch depth), 770 * ILE (interrupt little-endian) and TC (translation control). 771 */ 772 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 773 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 774 spin_unlock(&vc->lock); 775 } 776 777 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 778 union kvmppc_one_reg *val) 779 { 780 int r = 0; 781 long int i; 782 783 switch (id) { 784 case KVM_REG_PPC_HIOR: 785 *val = get_reg_val(id, 0); 786 break; 787 case KVM_REG_PPC_DABR: 788 *val = get_reg_val(id, vcpu->arch.dabr); 789 break; 790 case KVM_REG_PPC_DSCR: 791 *val = get_reg_val(id, vcpu->arch.dscr); 792 break; 793 case KVM_REG_PPC_PURR: 794 *val = get_reg_val(id, vcpu->arch.purr); 795 break; 796 case KVM_REG_PPC_SPURR: 797 *val = get_reg_val(id, vcpu->arch.spurr); 798 break; 799 case KVM_REG_PPC_AMR: 800 *val = get_reg_val(id, vcpu->arch.amr); 801 break; 802 case KVM_REG_PPC_UAMOR: 803 *val = get_reg_val(id, vcpu->arch.uamor); 804 break; 805 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA: 806 i = id - KVM_REG_PPC_MMCR0; 807 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 808 break; 809 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 810 i = id - KVM_REG_PPC_PMC1; 811 *val = get_reg_val(id, vcpu->arch.pmc[i]); 812 break; 813 case KVM_REG_PPC_SIAR: 814 *val = get_reg_val(id, vcpu->arch.siar); 815 break; 816 case KVM_REG_PPC_SDAR: 817 *val = get_reg_val(id, vcpu->arch.sdar); 818 break; 819 #ifdef CONFIG_VSX 820 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31: 821 if (cpu_has_feature(CPU_FTR_VSX)) { 822 /* VSX => FP reg i is stored in arch.vsr[2*i] */ 823 long int i = id - KVM_REG_PPC_FPR0; 824 *val = get_reg_val(id, vcpu->arch.vsr[2 * i]); 825 } else { 826 /* let generic code handle it */ 827 r = -EINVAL; 828 } 829 break; 830 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: 831 if (cpu_has_feature(CPU_FTR_VSX)) { 832 long int i = id - KVM_REG_PPC_VSR0; 833 val->vsxval[0] = vcpu->arch.vsr[2 * i]; 834 val->vsxval[1] = vcpu->arch.vsr[2 * i + 1]; 835 } else { 836 r = -ENXIO; 837 } 838 break; 839 #endif /* CONFIG_VSX */ 840 case KVM_REG_PPC_VPA_ADDR: 841 spin_lock(&vcpu->arch.vpa_update_lock); 842 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 843 spin_unlock(&vcpu->arch.vpa_update_lock); 844 break; 845 case KVM_REG_PPC_VPA_SLB: 846 spin_lock(&vcpu->arch.vpa_update_lock); 847 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 848 val->vpaval.length = vcpu->arch.slb_shadow.len; 849 spin_unlock(&vcpu->arch.vpa_update_lock); 850 break; 851 case KVM_REG_PPC_VPA_DTL: 852 spin_lock(&vcpu->arch.vpa_update_lock); 853 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 854 val->vpaval.length = vcpu->arch.dtl.len; 855 spin_unlock(&vcpu->arch.vpa_update_lock); 856 break; 857 case KVM_REG_PPC_TB_OFFSET: 858 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 859 break; 860 case KVM_REG_PPC_LPCR: 861 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 862 break; 863 case KVM_REG_PPC_PPR: 864 *val = get_reg_val(id, vcpu->arch.ppr); 865 break; 866 case KVM_REG_PPC_ARCH_COMPAT: 867 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 868 break; 869 default: 870 r = -EINVAL; 871 break; 872 } 873 874 return r; 875 } 876 877 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 878 union kvmppc_one_reg *val) 879 { 880 int r = 0; 881 long int i; 882 unsigned long addr, len; 883 884 switch (id) { 885 case KVM_REG_PPC_HIOR: 886 /* Only allow this to be set to zero */ 887 if (set_reg_val(id, *val)) 888 r = -EINVAL; 889 break; 890 case KVM_REG_PPC_DABR: 891 vcpu->arch.dabr = set_reg_val(id, *val); 892 break; 893 case KVM_REG_PPC_DSCR: 894 vcpu->arch.dscr = set_reg_val(id, *val); 895 break; 896 case KVM_REG_PPC_PURR: 897 vcpu->arch.purr = set_reg_val(id, *val); 898 break; 899 case KVM_REG_PPC_SPURR: 900 vcpu->arch.spurr = set_reg_val(id, *val); 901 break; 902 case KVM_REG_PPC_AMR: 903 vcpu->arch.amr = set_reg_val(id, *val); 904 break; 905 case KVM_REG_PPC_UAMOR: 906 vcpu->arch.uamor = set_reg_val(id, *val); 907 break; 908 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA: 909 i = id - KVM_REG_PPC_MMCR0; 910 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 911 break; 912 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 913 i = id - KVM_REG_PPC_PMC1; 914 vcpu->arch.pmc[i] = set_reg_val(id, *val); 915 break; 916 case KVM_REG_PPC_SIAR: 917 vcpu->arch.siar = set_reg_val(id, *val); 918 break; 919 case KVM_REG_PPC_SDAR: 920 vcpu->arch.sdar = set_reg_val(id, *val); 921 break; 922 #ifdef CONFIG_VSX 923 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31: 924 if (cpu_has_feature(CPU_FTR_VSX)) { 925 /* VSX => FP reg i is stored in arch.vsr[2*i] */ 926 long int i = id - KVM_REG_PPC_FPR0; 927 vcpu->arch.vsr[2 * i] = set_reg_val(id, *val); 928 } else { 929 /* let generic code handle it */ 930 r = -EINVAL; 931 } 932 break; 933 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: 934 if (cpu_has_feature(CPU_FTR_VSX)) { 935 long int i = id - KVM_REG_PPC_VSR0; 936 vcpu->arch.vsr[2 * i] = val->vsxval[0]; 937 vcpu->arch.vsr[2 * i + 1] = val->vsxval[1]; 938 } else { 939 r = -ENXIO; 940 } 941 break; 942 #endif /* CONFIG_VSX */ 943 case KVM_REG_PPC_VPA_ADDR: 944 addr = set_reg_val(id, *val); 945 r = -EINVAL; 946 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 947 vcpu->arch.dtl.next_gpa)) 948 break; 949 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 950 break; 951 case KVM_REG_PPC_VPA_SLB: 952 addr = val->vpaval.addr; 953 len = val->vpaval.length; 954 r = -EINVAL; 955 if (addr && !vcpu->arch.vpa.next_gpa) 956 break; 957 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 958 break; 959 case KVM_REG_PPC_VPA_DTL: 960 addr = val->vpaval.addr; 961 len = val->vpaval.length; 962 r = -EINVAL; 963 if (addr && (len < sizeof(struct dtl_entry) || 964 !vcpu->arch.vpa.next_gpa)) 965 break; 966 len -= len % sizeof(struct dtl_entry); 967 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 968 break; 969 case KVM_REG_PPC_TB_OFFSET: 970 /* round up to multiple of 2^24 */ 971 vcpu->arch.vcore->tb_offset = 972 ALIGN(set_reg_val(id, *val), 1UL << 24); 973 break; 974 case KVM_REG_PPC_LPCR: 975 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val)); 976 break; 977 case KVM_REG_PPC_PPR: 978 vcpu->arch.ppr = set_reg_val(id, *val); 979 break; 980 case KVM_REG_PPC_ARCH_COMPAT: 981 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 982 break; 983 default: 984 r = -EINVAL; 985 break; 986 } 987 988 return r; 989 } 990 991 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 992 unsigned int id) 993 { 994 struct kvm_vcpu *vcpu; 995 int err = -EINVAL; 996 int core; 997 struct kvmppc_vcore *vcore; 998 999 core = id / threads_per_core; 1000 if (core >= KVM_MAX_VCORES) 1001 goto out; 1002 1003 err = -ENOMEM; 1004 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1005 if (!vcpu) 1006 goto out; 1007 1008 err = kvm_vcpu_init(vcpu, kvm, id); 1009 if (err) 1010 goto free_vcpu; 1011 1012 vcpu->arch.shared = &vcpu->arch.shregs; 1013 vcpu->arch.mmcr[0] = MMCR0_FC; 1014 vcpu->arch.ctrl = CTRL_RUNLATCH; 1015 /* default to host PVR, since we can't spoof it */ 1016 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1017 spin_lock_init(&vcpu->arch.vpa_update_lock); 1018 spin_lock_init(&vcpu->arch.tbacct_lock); 1019 vcpu->arch.busy_preempt = TB_NIL; 1020 1021 kvmppc_mmu_book3s_hv_init(vcpu); 1022 1023 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1024 1025 init_waitqueue_head(&vcpu->arch.cpu_run); 1026 1027 mutex_lock(&kvm->lock); 1028 vcore = kvm->arch.vcores[core]; 1029 if (!vcore) { 1030 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1031 if (vcore) { 1032 INIT_LIST_HEAD(&vcore->runnable_threads); 1033 spin_lock_init(&vcore->lock); 1034 init_waitqueue_head(&vcore->wq); 1035 vcore->preempt_tb = TB_NIL; 1036 vcore->lpcr = kvm->arch.lpcr; 1037 } 1038 kvm->arch.vcores[core] = vcore; 1039 kvm->arch.online_vcores++; 1040 } 1041 mutex_unlock(&kvm->lock); 1042 1043 if (!vcore) 1044 goto free_vcpu; 1045 1046 spin_lock(&vcore->lock); 1047 ++vcore->num_threads; 1048 spin_unlock(&vcore->lock); 1049 vcpu->arch.vcore = vcore; 1050 1051 vcpu->arch.cpu_type = KVM_CPU_3S_64; 1052 kvmppc_sanity_check(vcpu); 1053 1054 return vcpu; 1055 1056 free_vcpu: 1057 kmem_cache_free(kvm_vcpu_cache, vcpu); 1058 out: 1059 return ERR_PTR(err); 1060 } 1061 1062 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 1063 { 1064 if (vpa->pinned_addr) 1065 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 1066 vpa->dirty); 1067 } 1068 1069 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 1070 { 1071 spin_lock(&vcpu->arch.vpa_update_lock); 1072 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 1073 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 1074 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 1075 spin_unlock(&vcpu->arch.vpa_update_lock); 1076 kvm_vcpu_uninit(vcpu); 1077 kmem_cache_free(kvm_vcpu_cache, vcpu); 1078 } 1079 1080 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 1081 { 1082 /* Indicate we want to get back into the guest */ 1083 return 1; 1084 } 1085 1086 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 1087 { 1088 unsigned long dec_nsec, now; 1089 1090 now = get_tb(); 1091 if (now > vcpu->arch.dec_expires) { 1092 /* decrementer has already gone negative */ 1093 kvmppc_core_queue_dec(vcpu); 1094 kvmppc_core_prepare_to_enter(vcpu); 1095 return; 1096 } 1097 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 1098 / tb_ticks_per_sec; 1099 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 1100 HRTIMER_MODE_REL); 1101 vcpu->arch.timer_running = 1; 1102 } 1103 1104 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1105 { 1106 vcpu->arch.ceded = 0; 1107 if (vcpu->arch.timer_running) { 1108 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1109 vcpu->arch.timer_running = 0; 1110 } 1111 } 1112 1113 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu); 1114 1115 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1116 struct kvm_vcpu *vcpu) 1117 { 1118 u64 now; 1119 1120 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1121 return; 1122 spin_lock_irq(&vcpu->arch.tbacct_lock); 1123 now = mftb(); 1124 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1125 vcpu->arch.stolen_logged; 1126 vcpu->arch.busy_preempt = now; 1127 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1128 spin_unlock_irq(&vcpu->arch.tbacct_lock); 1129 --vc->n_runnable; 1130 list_del(&vcpu->arch.run_list); 1131 } 1132 1133 static int kvmppc_grab_hwthread(int cpu) 1134 { 1135 struct paca_struct *tpaca; 1136 long timeout = 1000; 1137 1138 tpaca = &paca[cpu]; 1139 1140 /* Ensure the thread won't go into the kernel if it wakes */ 1141 tpaca->kvm_hstate.hwthread_req = 1; 1142 tpaca->kvm_hstate.kvm_vcpu = NULL; 1143 1144 /* 1145 * If the thread is already executing in the kernel (e.g. handling 1146 * a stray interrupt), wait for it to get back to nap mode. 1147 * The smp_mb() is to ensure that our setting of hwthread_req 1148 * is visible before we look at hwthread_state, so if this 1149 * races with the code at system_reset_pSeries and the thread 1150 * misses our setting of hwthread_req, we are sure to see its 1151 * setting of hwthread_state, and vice versa. 1152 */ 1153 smp_mb(); 1154 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1155 if (--timeout <= 0) { 1156 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1157 return -EBUSY; 1158 } 1159 udelay(1); 1160 } 1161 return 0; 1162 } 1163 1164 static void kvmppc_release_hwthread(int cpu) 1165 { 1166 struct paca_struct *tpaca; 1167 1168 tpaca = &paca[cpu]; 1169 tpaca->kvm_hstate.hwthread_req = 0; 1170 tpaca->kvm_hstate.kvm_vcpu = NULL; 1171 } 1172 1173 static void kvmppc_start_thread(struct kvm_vcpu *vcpu) 1174 { 1175 int cpu; 1176 struct paca_struct *tpaca; 1177 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1178 1179 if (vcpu->arch.timer_running) { 1180 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1181 vcpu->arch.timer_running = 0; 1182 } 1183 cpu = vc->pcpu + vcpu->arch.ptid; 1184 tpaca = &paca[cpu]; 1185 tpaca->kvm_hstate.kvm_vcpu = vcpu; 1186 tpaca->kvm_hstate.kvm_vcore = vc; 1187 tpaca->kvm_hstate.napping = 0; 1188 vcpu->cpu = vc->pcpu; 1189 smp_wmb(); 1190 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 1191 if (vcpu->arch.ptid) { 1192 xics_wake_cpu(cpu); 1193 ++vc->n_woken; 1194 } 1195 #endif 1196 } 1197 1198 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) 1199 { 1200 int i; 1201 1202 HMT_low(); 1203 i = 0; 1204 while (vc->nap_count < vc->n_woken) { 1205 if (++i >= 1000000) { 1206 pr_err("kvmppc_wait_for_nap timeout %d %d\n", 1207 vc->nap_count, vc->n_woken); 1208 break; 1209 } 1210 cpu_relax(); 1211 } 1212 HMT_medium(); 1213 } 1214 1215 /* 1216 * Check that we are on thread 0 and that any other threads in 1217 * this core are off-line. Then grab the threads so they can't 1218 * enter the kernel. 1219 */ 1220 static int on_primary_thread(void) 1221 { 1222 int cpu = smp_processor_id(); 1223 int thr = cpu_thread_in_core(cpu); 1224 1225 if (thr) 1226 return 0; 1227 while (++thr < threads_per_core) 1228 if (cpu_online(cpu + thr)) 1229 return 0; 1230 1231 /* Grab all hw threads so they can't go into the kernel */ 1232 for (thr = 1; thr < threads_per_core; ++thr) { 1233 if (kvmppc_grab_hwthread(cpu + thr)) { 1234 /* Couldn't grab one; let the others go */ 1235 do { 1236 kvmppc_release_hwthread(cpu + thr); 1237 } while (--thr > 0); 1238 return 0; 1239 } 1240 } 1241 return 1; 1242 } 1243 1244 /* 1245 * Run a set of guest threads on a physical core. 1246 * Called with vc->lock held. 1247 */ 1248 static void kvmppc_run_core(struct kvmppc_vcore *vc) 1249 { 1250 struct kvm_vcpu *vcpu, *vcpu0, *vnext; 1251 long ret; 1252 u64 now; 1253 int ptid, i, need_vpa_update; 1254 int srcu_idx; 1255 struct kvm_vcpu *vcpus_to_update[threads_per_core]; 1256 1257 /* don't start if any threads have a signal pending */ 1258 need_vpa_update = 0; 1259 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1260 if (signal_pending(vcpu->arch.run_task)) 1261 return; 1262 if (vcpu->arch.vpa.update_pending || 1263 vcpu->arch.slb_shadow.update_pending || 1264 vcpu->arch.dtl.update_pending) 1265 vcpus_to_update[need_vpa_update++] = vcpu; 1266 } 1267 1268 /* 1269 * Initialize *vc, in particular vc->vcore_state, so we can 1270 * drop the vcore lock if necessary. 1271 */ 1272 vc->n_woken = 0; 1273 vc->nap_count = 0; 1274 vc->entry_exit_count = 0; 1275 vc->vcore_state = VCORE_STARTING; 1276 vc->in_guest = 0; 1277 vc->napping_threads = 0; 1278 1279 /* 1280 * Updating any of the vpas requires calling kvmppc_pin_guest_page, 1281 * which can't be called with any spinlocks held. 1282 */ 1283 if (need_vpa_update) { 1284 spin_unlock(&vc->lock); 1285 for (i = 0; i < need_vpa_update; ++i) 1286 kvmppc_update_vpas(vcpus_to_update[i]); 1287 spin_lock(&vc->lock); 1288 } 1289 1290 /* 1291 * Assign physical thread IDs, first to non-ceded vcpus 1292 * and then to ceded ones. 1293 */ 1294 ptid = 0; 1295 vcpu0 = NULL; 1296 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1297 if (!vcpu->arch.ceded) { 1298 if (!ptid) 1299 vcpu0 = vcpu; 1300 vcpu->arch.ptid = ptid++; 1301 } 1302 } 1303 if (!vcpu0) 1304 goto out; /* nothing to run; should never happen */ 1305 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1306 if (vcpu->arch.ceded) 1307 vcpu->arch.ptid = ptid++; 1308 1309 /* 1310 * Make sure we are running on thread 0, and that 1311 * secondary threads are offline. 1312 */ 1313 if (threads_per_core > 1 && !on_primary_thread()) { 1314 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1315 vcpu->arch.ret = -EBUSY; 1316 goto out; 1317 } 1318 1319 vc->pcpu = smp_processor_id(); 1320 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1321 kvmppc_start_thread(vcpu); 1322 kvmppc_create_dtl_entry(vcpu, vc); 1323 } 1324 1325 vc->vcore_state = VCORE_RUNNING; 1326 preempt_disable(); 1327 spin_unlock(&vc->lock); 1328 1329 kvm_guest_enter(); 1330 1331 srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu); 1332 1333 __kvmppc_vcore_entry(NULL, vcpu0); 1334 1335 spin_lock(&vc->lock); 1336 /* disable sending of IPIs on virtual external irqs */ 1337 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1338 vcpu->cpu = -1; 1339 /* wait for secondary threads to finish writing their state to memory */ 1340 if (vc->nap_count < vc->n_woken) 1341 kvmppc_wait_for_nap(vc); 1342 for (i = 0; i < threads_per_core; ++i) 1343 kvmppc_release_hwthread(vc->pcpu + i); 1344 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 1345 vc->vcore_state = VCORE_EXITING; 1346 spin_unlock(&vc->lock); 1347 1348 srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx); 1349 1350 /* make sure updates to secondary vcpu structs are visible now */ 1351 smp_mb(); 1352 kvm_guest_exit(); 1353 1354 preempt_enable(); 1355 kvm_resched(vcpu); 1356 1357 spin_lock(&vc->lock); 1358 now = get_tb(); 1359 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1360 /* cancel pending dec exception if dec is positive */ 1361 if (now < vcpu->arch.dec_expires && 1362 kvmppc_core_pending_dec(vcpu)) 1363 kvmppc_core_dequeue_dec(vcpu); 1364 1365 ret = RESUME_GUEST; 1366 if (vcpu->arch.trap) 1367 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 1368 vcpu->arch.run_task); 1369 1370 vcpu->arch.ret = ret; 1371 vcpu->arch.trap = 0; 1372 1373 if (vcpu->arch.ceded) { 1374 if (ret != RESUME_GUEST) 1375 kvmppc_end_cede(vcpu); 1376 else 1377 kvmppc_set_timer(vcpu); 1378 } 1379 } 1380 1381 out: 1382 vc->vcore_state = VCORE_INACTIVE; 1383 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 1384 arch.run_list) { 1385 if (vcpu->arch.ret != RESUME_GUEST) { 1386 kvmppc_remove_runnable(vc, vcpu); 1387 wake_up(&vcpu->arch.cpu_run); 1388 } 1389 } 1390 } 1391 1392 /* 1393 * Wait for some other vcpu thread to execute us, and 1394 * wake us up when we need to handle something in the host. 1395 */ 1396 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) 1397 { 1398 DEFINE_WAIT(wait); 1399 1400 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 1401 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) 1402 schedule(); 1403 finish_wait(&vcpu->arch.cpu_run, &wait); 1404 } 1405 1406 /* 1407 * All the vcpus in this vcore are idle, so wait for a decrementer 1408 * or external interrupt to one of the vcpus. vc->lock is held. 1409 */ 1410 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 1411 { 1412 DEFINE_WAIT(wait); 1413 1414 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 1415 vc->vcore_state = VCORE_SLEEPING; 1416 spin_unlock(&vc->lock); 1417 schedule(); 1418 finish_wait(&vc->wq, &wait); 1419 spin_lock(&vc->lock); 1420 vc->vcore_state = VCORE_INACTIVE; 1421 } 1422 1423 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 1424 { 1425 int n_ceded; 1426 struct kvmppc_vcore *vc; 1427 struct kvm_vcpu *v, *vn; 1428 1429 kvm_run->exit_reason = 0; 1430 vcpu->arch.ret = RESUME_GUEST; 1431 vcpu->arch.trap = 0; 1432 kvmppc_update_vpas(vcpu); 1433 1434 /* 1435 * Synchronize with other threads in this virtual core 1436 */ 1437 vc = vcpu->arch.vcore; 1438 spin_lock(&vc->lock); 1439 vcpu->arch.ceded = 0; 1440 vcpu->arch.run_task = current; 1441 vcpu->arch.kvm_run = kvm_run; 1442 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 1443 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 1444 vcpu->arch.busy_preempt = TB_NIL; 1445 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 1446 ++vc->n_runnable; 1447 1448 /* 1449 * This happens the first time this is called for a vcpu. 1450 * If the vcore is already running, we may be able to start 1451 * this thread straight away and have it join in. 1452 */ 1453 if (!signal_pending(current)) { 1454 if (vc->vcore_state == VCORE_RUNNING && 1455 VCORE_EXIT_COUNT(vc) == 0) { 1456 vcpu->arch.ptid = vc->n_runnable - 1; 1457 kvmppc_create_dtl_entry(vcpu, vc); 1458 kvmppc_start_thread(vcpu); 1459 } else if (vc->vcore_state == VCORE_SLEEPING) { 1460 wake_up(&vc->wq); 1461 } 1462 1463 } 1464 1465 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 1466 !signal_pending(current)) { 1467 if (vc->vcore_state != VCORE_INACTIVE) { 1468 spin_unlock(&vc->lock); 1469 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); 1470 spin_lock(&vc->lock); 1471 continue; 1472 } 1473 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 1474 arch.run_list) { 1475 kvmppc_core_prepare_to_enter(v); 1476 if (signal_pending(v->arch.run_task)) { 1477 kvmppc_remove_runnable(vc, v); 1478 v->stat.signal_exits++; 1479 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 1480 v->arch.ret = -EINTR; 1481 wake_up(&v->arch.cpu_run); 1482 } 1483 } 1484 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1485 break; 1486 vc->runner = vcpu; 1487 n_ceded = 0; 1488 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 1489 if (!v->arch.pending_exceptions) 1490 n_ceded += v->arch.ceded; 1491 else 1492 v->arch.ceded = 0; 1493 } 1494 if (n_ceded == vc->n_runnable) 1495 kvmppc_vcore_blocked(vc); 1496 else 1497 kvmppc_run_core(vc); 1498 vc->runner = NULL; 1499 } 1500 1501 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 1502 (vc->vcore_state == VCORE_RUNNING || 1503 vc->vcore_state == VCORE_EXITING)) { 1504 spin_unlock(&vc->lock); 1505 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); 1506 spin_lock(&vc->lock); 1507 } 1508 1509 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 1510 kvmppc_remove_runnable(vc, vcpu); 1511 vcpu->stat.signal_exits++; 1512 kvm_run->exit_reason = KVM_EXIT_INTR; 1513 vcpu->arch.ret = -EINTR; 1514 } 1515 1516 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 1517 /* Wake up some vcpu to run the core */ 1518 v = list_first_entry(&vc->runnable_threads, 1519 struct kvm_vcpu, arch.run_list); 1520 wake_up(&v->arch.cpu_run); 1521 } 1522 1523 spin_unlock(&vc->lock); 1524 return vcpu->arch.ret; 1525 } 1526 1527 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 1528 { 1529 int r; 1530 int srcu_idx; 1531 1532 if (!vcpu->arch.sane) { 1533 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1534 return -EINVAL; 1535 } 1536 1537 kvmppc_core_prepare_to_enter(vcpu); 1538 1539 /* No need to go into the guest when all we'll do is come back out */ 1540 if (signal_pending(current)) { 1541 run->exit_reason = KVM_EXIT_INTR; 1542 return -EINTR; 1543 } 1544 1545 atomic_inc(&vcpu->kvm->arch.vcpus_running); 1546 /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */ 1547 smp_mb(); 1548 1549 /* On the first time here, set up HTAB and VRMA or RMA */ 1550 if (!vcpu->kvm->arch.rma_setup_done) { 1551 r = kvmppc_hv_setup_htab_rma(vcpu); 1552 if (r) 1553 goto out; 1554 } 1555 1556 flush_fp_to_thread(current); 1557 flush_altivec_to_thread(current); 1558 flush_vsx_to_thread(current); 1559 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 1560 vcpu->arch.pgdir = current->mm->pgd; 1561 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1562 1563 do { 1564 r = kvmppc_run_vcpu(run, vcpu); 1565 1566 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 1567 !(vcpu->arch.shregs.msr & MSR_PR)) { 1568 r = kvmppc_pseries_do_hcall(vcpu); 1569 kvmppc_core_prepare_to_enter(vcpu); 1570 } else if (r == RESUME_PAGE_FAULT) { 1571 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1572 r = kvmppc_book3s_hv_page_fault(run, vcpu, 1573 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1574 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1575 } 1576 } while (r == RESUME_GUEST); 1577 1578 out: 1579 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1580 atomic_dec(&vcpu->kvm->arch.vcpus_running); 1581 return r; 1582 } 1583 1584 1585 /* Work out RMLS (real mode limit selector) field value for a given RMA size. 1586 Assumes POWER7 or PPC970. */ 1587 static inline int lpcr_rmls(unsigned long rma_size) 1588 { 1589 switch (rma_size) { 1590 case 32ul << 20: /* 32 MB */ 1591 if (cpu_has_feature(CPU_FTR_ARCH_206)) 1592 return 8; /* only supported on POWER7 */ 1593 return -1; 1594 case 64ul << 20: /* 64 MB */ 1595 return 3; 1596 case 128ul << 20: /* 128 MB */ 1597 return 7; 1598 case 256ul << 20: /* 256 MB */ 1599 return 4; 1600 case 1ul << 30: /* 1 GB */ 1601 return 2; 1602 case 16ul << 30: /* 16 GB */ 1603 return 1; 1604 case 256ul << 30: /* 256 GB */ 1605 return 0; 1606 default: 1607 return -1; 1608 } 1609 } 1610 1611 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1612 { 1613 struct page *page; 1614 struct kvm_rma_info *ri = vma->vm_file->private_data; 1615 1616 if (vmf->pgoff >= kvm_rma_pages) 1617 return VM_FAULT_SIGBUS; 1618 1619 page = pfn_to_page(ri->base_pfn + vmf->pgoff); 1620 get_page(page); 1621 vmf->page = page; 1622 return 0; 1623 } 1624 1625 static const struct vm_operations_struct kvm_rma_vm_ops = { 1626 .fault = kvm_rma_fault, 1627 }; 1628 1629 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) 1630 { 1631 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 1632 vma->vm_ops = &kvm_rma_vm_ops; 1633 return 0; 1634 } 1635 1636 static int kvm_rma_release(struct inode *inode, struct file *filp) 1637 { 1638 struct kvm_rma_info *ri = filp->private_data; 1639 1640 kvm_release_rma(ri); 1641 return 0; 1642 } 1643 1644 static const struct file_operations kvm_rma_fops = { 1645 .mmap = kvm_rma_mmap, 1646 .release = kvm_rma_release, 1647 }; 1648 1649 static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, 1650 struct kvm_allocate_rma *ret) 1651 { 1652 long fd; 1653 struct kvm_rma_info *ri; 1654 /* 1655 * Only do this on PPC970 in HV mode 1656 */ 1657 if (!cpu_has_feature(CPU_FTR_HVMODE) || 1658 !cpu_has_feature(CPU_FTR_ARCH_201)) 1659 return -EINVAL; 1660 1661 if (!kvm_rma_pages) 1662 return -EINVAL; 1663 1664 ri = kvm_alloc_rma(); 1665 if (!ri) 1666 return -ENOMEM; 1667 1668 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC); 1669 if (fd < 0) 1670 kvm_release_rma(ri); 1671 1672 ret->rma_size = kvm_rma_pages << PAGE_SHIFT; 1673 return fd; 1674 } 1675 1676 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 1677 int linux_psize) 1678 { 1679 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 1680 1681 if (!def->shift) 1682 return; 1683 (*sps)->page_shift = def->shift; 1684 (*sps)->slb_enc = def->sllp; 1685 (*sps)->enc[0].page_shift = def->shift; 1686 /* 1687 * Only return base page encoding. We don't want to return 1688 * all the supporting pte_enc, because our H_ENTER doesn't 1689 * support MPSS yet. Once they do, we can start passing all 1690 * support pte_enc here 1691 */ 1692 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 1693 (*sps)++; 1694 } 1695 1696 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 1697 struct kvm_ppc_smmu_info *info) 1698 { 1699 struct kvm_ppc_one_seg_page_size *sps; 1700 1701 info->flags = KVM_PPC_PAGE_SIZES_REAL; 1702 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1703 info->flags |= KVM_PPC_1T_SEGMENTS; 1704 info->slb_size = mmu_slb_size; 1705 1706 /* We only support these sizes for now, and no muti-size segments */ 1707 sps = &info->sps[0]; 1708 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 1709 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 1710 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 1711 1712 return 0; 1713 } 1714 1715 /* 1716 * Get (and clear) the dirty memory log for a memory slot. 1717 */ 1718 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 1719 struct kvm_dirty_log *log) 1720 { 1721 struct kvm_memory_slot *memslot; 1722 int r; 1723 unsigned long n; 1724 1725 mutex_lock(&kvm->slots_lock); 1726 1727 r = -EINVAL; 1728 if (log->slot >= KVM_USER_MEM_SLOTS) 1729 goto out; 1730 1731 memslot = id_to_memslot(kvm->memslots, log->slot); 1732 r = -ENOENT; 1733 if (!memslot->dirty_bitmap) 1734 goto out; 1735 1736 n = kvm_dirty_bitmap_bytes(memslot); 1737 memset(memslot->dirty_bitmap, 0, n); 1738 1739 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); 1740 if (r) 1741 goto out; 1742 1743 r = -EFAULT; 1744 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1745 goto out; 1746 1747 r = 0; 1748 out: 1749 mutex_unlock(&kvm->slots_lock); 1750 return r; 1751 } 1752 1753 static void unpin_slot(struct kvm_memory_slot *memslot) 1754 { 1755 unsigned long *physp; 1756 unsigned long j, npages, pfn; 1757 struct page *page; 1758 1759 physp = memslot->arch.slot_phys; 1760 npages = memslot->npages; 1761 if (!physp) 1762 return; 1763 for (j = 0; j < npages; j++) { 1764 if (!(physp[j] & KVMPPC_GOT_PAGE)) 1765 continue; 1766 pfn = physp[j] >> PAGE_SHIFT; 1767 page = pfn_to_page(pfn); 1768 SetPageDirty(page); 1769 put_page(page); 1770 } 1771 } 1772 1773 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 1774 struct kvm_memory_slot *dont) 1775 { 1776 if (!dont || free->arch.rmap != dont->arch.rmap) { 1777 vfree(free->arch.rmap); 1778 free->arch.rmap = NULL; 1779 } 1780 if (!dont || free->arch.slot_phys != dont->arch.slot_phys) { 1781 unpin_slot(free); 1782 vfree(free->arch.slot_phys); 1783 free->arch.slot_phys = NULL; 1784 } 1785 } 1786 1787 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 1788 unsigned long npages) 1789 { 1790 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 1791 if (!slot->arch.rmap) 1792 return -ENOMEM; 1793 slot->arch.slot_phys = NULL; 1794 1795 return 0; 1796 } 1797 1798 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 1799 struct kvm_memory_slot *memslot, 1800 struct kvm_userspace_memory_region *mem) 1801 { 1802 unsigned long *phys; 1803 1804 /* Allocate a slot_phys array if needed */ 1805 phys = memslot->arch.slot_phys; 1806 if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) { 1807 phys = vzalloc(memslot->npages * sizeof(unsigned long)); 1808 if (!phys) 1809 return -ENOMEM; 1810 memslot->arch.slot_phys = phys; 1811 } 1812 1813 return 0; 1814 } 1815 1816 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 1817 struct kvm_userspace_memory_region *mem, 1818 const struct kvm_memory_slot *old) 1819 { 1820 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 1821 struct kvm_memory_slot *memslot; 1822 1823 if (npages && old->npages) { 1824 /* 1825 * If modifying a memslot, reset all the rmap dirty bits. 1826 * If this is a new memslot, we don't need to do anything 1827 * since the rmap array starts out as all zeroes, 1828 * i.e. no pages are dirty. 1829 */ 1830 memslot = id_to_memslot(kvm->memslots, mem->slot); 1831 kvmppc_hv_get_dirty_log(kvm, memslot, NULL); 1832 } 1833 } 1834 1835 /* 1836 * Update LPCR values in kvm->arch and in vcores. 1837 * Caller must hold kvm->lock. 1838 */ 1839 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 1840 { 1841 long int i; 1842 u32 cores_done = 0; 1843 1844 if ((kvm->arch.lpcr & mask) == lpcr) 1845 return; 1846 1847 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 1848 1849 for (i = 0; i < KVM_MAX_VCORES; ++i) { 1850 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 1851 if (!vc) 1852 continue; 1853 spin_lock(&vc->lock); 1854 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 1855 spin_unlock(&vc->lock); 1856 if (++cores_done >= kvm->arch.online_vcores) 1857 break; 1858 } 1859 } 1860 1861 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 1862 { 1863 return; 1864 } 1865 1866 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 1867 { 1868 int err = 0; 1869 struct kvm *kvm = vcpu->kvm; 1870 struct kvm_rma_info *ri = NULL; 1871 unsigned long hva; 1872 struct kvm_memory_slot *memslot; 1873 struct vm_area_struct *vma; 1874 unsigned long lpcr = 0, senc; 1875 unsigned long lpcr_mask = 0; 1876 unsigned long psize, porder; 1877 unsigned long rma_size; 1878 unsigned long rmls; 1879 unsigned long *physp; 1880 unsigned long i, npages; 1881 int srcu_idx; 1882 1883 mutex_lock(&kvm->lock); 1884 if (kvm->arch.rma_setup_done) 1885 goto out; /* another vcpu beat us to it */ 1886 1887 /* Allocate hashed page table (if not done already) and reset it */ 1888 if (!kvm->arch.hpt_virt) { 1889 err = kvmppc_alloc_hpt(kvm, NULL); 1890 if (err) { 1891 pr_err("KVM: Couldn't alloc HPT\n"); 1892 goto out; 1893 } 1894 } 1895 1896 /* Look up the memslot for guest physical address 0 */ 1897 srcu_idx = srcu_read_lock(&kvm->srcu); 1898 memslot = gfn_to_memslot(kvm, 0); 1899 1900 /* We must have some memory at 0 by now */ 1901 err = -EINVAL; 1902 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1903 goto out_srcu; 1904 1905 /* Look up the VMA for the start of this memory slot */ 1906 hva = memslot->userspace_addr; 1907 down_read(¤t->mm->mmap_sem); 1908 vma = find_vma(current->mm, hva); 1909 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 1910 goto up_out; 1911 1912 psize = vma_kernel_pagesize(vma); 1913 porder = __ilog2(psize); 1914 1915 /* Is this one of our preallocated RMAs? */ 1916 if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops && 1917 hva == vma->vm_start) 1918 ri = vma->vm_file->private_data; 1919 1920 up_read(¤t->mm->mmap_sem); 1921 1922 if (!ri) { 1923 /* On POWER7, use VRMA; on PPC970, give up */ 1924 err = -EPERM; 1925 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1926 pr_err("KVM: CPU requires an RMO\n"); 1927 goto out_srcu; 1928 } 1929 1930 /* We can handle 4k, 64k or 16M pages in the VRMA */ 1931 err = -EINVAL; 1932 if (!(psize == 0x1000 || psize == 0x10000 || 1933 psize == 0x1000000)) 1934 goto out_srcu; 1935 1936 /* Update VRMASD field in the LPCR */ 1937 senc = slb_pgsize_encoding(psize); 1938 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1939 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1940 lpcr_mask = LPCR_VRMASD; 1941 /* the -4 is to account for senc values starting at 0x10 */ 1942 lpcr = senc << (LPCR_VRMASD_SH - 4); 1943 1944 /* Create HPTEs in the hash page table for the VRMA */ 1945 kvmppc_map_vrma(vcpu, memslot, porder); 1946 1947 } else { 1948 /* Set up to use an RMO region */ 1949 rma_size = kvm_rma_pages; 1950 if (rma_size > memslot->npages) 1951 rma_size = memslot->npages; 1952 rma_size <<= PAGE_SHIFT; 1953 rmls = lpcr_rmls(rma_size); 1954 err = -EINVAL; 1955 if ((long)rmls < 0) { 1956 pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size); 1957 goto out_srcu; 1958 } 1959 atomic_inc(&ri->use_count); 1960 kvm->arch.rma = ri; 1961 1962 /* Update LPCR and RMOR */ 1963 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1964 /* PPC970; insert RMLS value (split field) in HID4 */ 1965 lpcr_mask = (1ul << HID4_RMLS0_SH) | 1966 (3ul << HID4_RMLS2_SH) | HID4_RMOR; 1967 lpcr = ((rmls >> 2) << HID4_RMLS0_SH) | 1968 ((rmls & 3) << HID4_RMLS2_SH); 1969 /* RMOR is also in HID4 */ 1970 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) 1971 << HID4_RMOR_SH; 1972 } else { 1973 /* POWER7 */ 1974 lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS; 1975 lpcr = rmls << LPCR_RMLS_SH; 1976 kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT; 1977 } 1978 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n", 1979 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); 1980 1981 /* Initialize phys addrs of pages in RMO */ 1982 npages = kvm_rma_pages; 1983 porder = __ilog2(npages); 1984 physp = memslot->arch.slot_phys; 1985 if (physp) { 1986 if (npages > memslot->npages) 1987 npages = memslot->npages; 1988 spin_lock(&kvm->arch.slot_phys_lock); 1989 for (i = 0; i < npages; ++i) 1990 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + 1991 porder; 1992 spin_unlock(&kvm->arch.slot_phys_lock); 1993 } 1994 } 1995 1996 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 1997 1998 /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */ 1999 smp_wmb(); 2000 kvm->arch.rma_setup_done = 1; 2001 err = 0; 2002 out_srcu: 2003 srcu_read_unlock(&kvm->srcu, srcu_idx); 2004 out: 2005 mutex_unlock(&kvm->lock); 2006 return err; 2007 2008 up_out: 2009 up_read(¤t->mm->mmap_sem); 2010 goto out_srcu; 2011 } 2012 2013 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 2014 { 2015 unsigned long lpcr, lpid; 2016 2017 /* Allocate the guest's logical partition ID */ 2018 2019 lpid = kvmppc_alloc_lpid(); 2020 if ((long)lpid < 0) 2021 return -ENOMEM; 2022 kvm->arch.lpid = lpid; 2023 2024 /* 2025 * Since we don't flush the TLB when tearing down a VM, 2026 * and this lpid might have previously been used, 2027 * make sure we flush on each core before running the new VM. 2028 */ 2029 cpumask_setall(&kvm->arch.need_tlb_flush); 2030 2031 kvm->arch.rma = NULL; 2032 2033 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 2034 2035 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 2036 /* PPC970; HID4 is effectively the LPCR */ 2037 kvm->arch.host_lpid = 0; 2038 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); 2039 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); 2040 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | 2041 ((lpid & 0xf) << HID4_LPID5_SH); 2042 } else { 2043 /* POWER7; init LPCR for virtual RMA mode */ 2044 kvm->arch.host_lpid = mfspr(SPRN_LPID); 2045 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 2046 lpcr &= LPCR_PECE | LPCR_LPES; 2047 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 2048 LPCR_VPM0 | LPCR_VPM1; 2049 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 2050 (VRMA_VSID << SLB_VSID_SHIFT_1T); 2051 } 2052 kvm->arch.lpcr = lpcr; 2053 2054 kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206); 2055 spin_lock_init(&kvm->arch.slot_phys_lock); 2056 2057 /* 2058 * Don't allow secondary CPU threads to come online 2059 * while any KVM VMs exist. 2060 */ 2061 inhibit_secondary_onlining(); 2062 2063 return 0; 2064 } 2065 2066 static void kvmppc_free_vcores(struct kvm *kvm) 2067 { 2068 long int i; 2069 2070 for (i = 0; i < KVM_MAX_VCORES; ++i) 2071 kfree(kvm->arch.vcores[i]); 2072 kvm->arch.online_vcores = 0; 2073 } 2074 2075 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 2076 { 2077 uninhibit_secondary_onlining(); 2078 2079 kvmppc_free_vcores(kvm); 2080 if (kvm->arch.rma) { 2081 kvm_release_rma(kvm->arch.rma); 2082 kvm->arch.rma = NULL; 2083 } 2084 2085 kvmppc_free_hpt(kvm); 2086 } 2087 2088 /* We don't need to emulate any privileged instructions or dcbz */ 2089 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 2090 unsigned int inst, int *advance) 2091 { 2092 return EMULATE_FAIL; 2093 } 2094 2095 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 2096 ulong spr_val) 2097 { 2098 return EMULATE_FAIL; 2099 } 2100 2101 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 2102 ulong *spr_val) 2103 { 2104 return EMULATE_FAIL; 2105 } 2106 2107 static int kvmppc_core_check_processor_compat_hv(void) 2108 { 2109 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2110 return -EIO; 2111 return 0; 2112 } 2113 2114 static long kvm_arch_vm_ioctl_hv(struct file *filp, 2115 unsigned int ioctl, unsigned long arg) 2116 { 2117 struct kvm *kvm __maybe_unused = filp->private_data; 2118 void __user *argp = (void __user *)arg; 2119 long r; 2120 2121 switch (ioctl) { 2122 2123 case KVM_ALLOCATE_RMA: { 2124 struct kvm_allocate_rma rma; 2125 struct kvm *kvm = filp->private_data; 2126 2127 r = kvm_vm_ioctl_allocate_rma(kvm, &rma); 2128 if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma))) 2129 r = -EFAULT; 2130 break; 2131 } 2132 2133 case KVM_PPC_ALLOCATE_HTAB: { 2134 u32 htab_order; 2135 2136 r = -EFAULT; 2137 if (get_user(htab_order, (u32 __user *)argp)) 2138 break; 2139 r = kvmppc_alloc_reset_hpt(kvm, &htab_order); 2140 if (r) 2141 break; 2142 r = -EFAULT; 2143 if (put_user(htab_order, (u32 __user *)argp)) 2144 break; 2145 r = 0; 2146 break; 2147 } 2148 2149 case KVM_PPC_GET_HTAB_FD: { 2150 struct kvm_get_htab_fd ghf; 2151 2152 r = -EFAULT; 2153 if (copy_from_user(&ghf, argp, sizeof(ghf))) 2154 break; 2155 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 2156 break; 2157 } 2158 2159 default: 2160 r = -ENOTTY; 2161 } 2162 2163 return r; 2164 } 2165 2166 static struct kvmppc_ops kvm_ops_hv = { 2167 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 2168 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 2169 .get_one_reg = kvmppc_get_one_reg_hv, 2170 .set_one_reg = kvmppc_set_one_reg_hv, 2171 .vcpu_load = kvmppc_core_vcpu_load_hv, 2172 .vcpu_put = kvmppc_core_vcpu_put_hv, 2173 .set_msr = kvmppc_set_msr_hv, 2174 .vcpu_run = kvmppc_vcpu_run_hv, 2175 .vcpu_create = kvmppc_core_vcpu_create_hv, 2176 .vcpu_free = kvmppc_core_vcpu_free_hv, 2177 .check_requests = kvmppc_core_check_requests_hv, 2178 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 2179 .flush_memslot = kvmppc_core_flush_memslot_hv, 2180 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 2181 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 2182 .unmap_hva = kvm_unmap_hva_hv, 2183 .unmap_hva_range = kvm_unmap_hva_range_hv, 2184 .age_hva = kvm_age_hva_hv, 2185 .test_age_hva = kvm_test_age_hva_hv, 2186 .set_spte_hva = kvm_set_spte_hva_hv, 2187 .mmu_destroy = kvmppc_mmu_destroy_hv, 2188 .free_memslot = kvmppc_core_free_memslot_hv, 2189 .create_memslot = kvmppc_core_create_memslot_hv, 2190 .init_vm = kvmppc_core_init_vm_hv, 2191 .destroy_vm = kvmppc_core_destroy_vm_hv, 2192 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 2193 .emulate_op = kvmppc_core_emulate_op_hv, 2194 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 2195 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 2196 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 2197 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 2198 }; 2199 2200 static int kvmppc_book3s_init_hv(void) 2201 { 2202 int r; 2203 /* 2204 * FIXME!! Do we need to check on all cpus ? 2205 */ 2206 r = kvmppc_core_check_processor_compat_hv(); 2207 if (r < 0) 2208 return r; 2209 2210 kvm_ops_hv.owner = THIS_MODULE; 2211 kvmppc_hv_ops = &kvm_ops_hv; 2212 2213 r = kvmppc_mmu_hv_init(); 2214 return r; 2215 } 2216 2217 static void kvmppc_book3s_exit_hv(void) 2218 { 2219 kvmppc_hv_ops = NULL; 2220 } 2221 2222 module_init(kvmppc_book3s_init_hv); 2223 module_exit(kvmppc_book3s_exit_hv); 2224 MODULE_LICENSE("GPL"); 2225