xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 8c0b9ee8)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 
36 #include <asm/reg.h>
37 #include <asm/cputable.h>
38 #include <asm/cache.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/kvm_book3s.h>
45 #include <asm/mmu_context.h>
46 #include <asm/lppaca.h>
47 #include <asm/processor.h>
48 #include <asm/cputhreads.h>
49 #include <asm/page.h>
50 #include <asm/hvcall.h>
51 #include <asm/switch_to.h>
52 #include <asm/smp.h>
53 #include <linux/gfp.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56 #include <linux/hugetlb.h>
57 #include <linux/module.h>
58 
59 #include "book3s.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include "trace_hv.h"
63 
64 /* #define EXIT_DEBUG */
65 /* #define EXIT_DEBUG_SIMPLE */
66 /* #define EXIT_DEBUG_INT */
67 
68 /* Used to indicate that a guest page fault needs to be handled */
69 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
70 
71 /* Used as a "null" value for timebase values */
72 #define TB_NIL	(~(u64)0)
73 
74 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
75 
76 #if defined(CONFIG_PPC_64K_PAGES)
77 #define MPP_BUFFER_ORDER	0
78 #elif defined(CONFIG_PPC_4K_PAGES)
79 #define MPP_BUFFER_ORDER	3
80 #endif
81 
82 
83 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
84 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
85 
86 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
87 {
88 	int me;
89 	int cpu = vcpu->cpu;
90 	wait_queue_head_t *wqp;
91 
92 	wqp = kvm_arch_vcpu_wq(vcpu);
93 	if (waitqueue_active(wqp)) {
94 		wake_up_interruptible(wqp);
95 		++vcpu->stat.halt_wakeup;
96 	}
97 
98 	me = get_cpu();
99 
100 	/* CPU points to the first thread of the core */
101 	if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
102 #ifdef CONFIG_PPC_ICP_NATIVE
103 		int real_cpu = cpu + vcpu->arch.ptid;
104 		if (paca[real_cpu].kvm_hstate.xics_phys)
105 			xics_wake_cpu(real_cpu);
106 		else
107 #endif
108 		if (cpu_online(cpu))
109 			smp_send_reschedule(cpu);
110 	}
111 	put_cpu();
112 }
113 
114 /*
115  * We use the vcpu_load/put functions to measure stolen time.
116  * Stolen time is counted as time when either the vcpu is able to
117  * run as part of a virtual core, but the task running the vcore
118  * is preempted or sleeping, or when the vcpu needs something done
119  * in the kernel by the task running the vcpu, but that task is
120  * preempted or sleeping.  Those two things have to be counted
121  * separately, since one of the vcpu tasks will take on the job
122  * of running the core, and the other vcpu tasks in the vcore will
123  * sleep waiting for it to do that, but that sleep shouldn't count
124  * as stolen time.
125  *
126  * Hence we accumulate stolen time when the vcpu can run as part of
127  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
128  * needs its task to do other things in the kernel (for example,
129  * service a page fault) in busy_stolen.  We don't accumulate
130  * stolen time for a vcore when it is inactive, or for a vcpu
131  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
132  * a misnomer; it means that the vcpu task is not executing in
133  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
134  * the kernel.  We don't have any way of dividing up that time
135  * between time that the vcpu is genuinely stopped, time that
136  * the task is actively working on behalf of the vcpu, and time
137  * that the task is preempted, so we don't count any of it as
138  * stolen.
139  *
140  * Updates to busy_stolen are protected by arch.tbacct_lock;
141  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
142  * lock.  The stolen times are measured in units of timebase ticks.
143  * (Note that the != TB_NIL checks below are purely defensive;
144  * they should never fail.)
145  */
146 
147 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
148 {
149 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
150 	unsigned long flags;
151 
152 	/*
153 	 * We can test vc->runner without taking the vcore lock,
154 	 * because only this task ever sets vc->runner to this
155 	 * vcpu, and once it is set to this vcpu, only this task
156 	 * ever sets it to NULL.
157 	 */
158 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) {
159 		spin_lock_irqsave(&vc->stoltb_lock, flags);
160 		if (vc->preempt_tb != TB_NIL) {
161 			vc->stolen_tb += mftb() - vc->preempt_tb;
162 			vc->preempt_tb = TB_NIL;
163 		}
164 		spin_unlock_irqrestore(&vc->stoltb_lock, flags);
165 	}
166 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
167 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
168 	    vcpu->arch.busy_preempt != TB_NIL) {
169 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
170 		vcpu->arch.busy_preempt = TB_NIL;
171 	}
172 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
173 }
174 
175 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
176 {
177 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
178 	unsigned long flags;
179 
180 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) {
181 		spin_lock_irqsave(&vc->stoltb_lock, flags);
182 		vc->preempt_tb = mftb();
183 		spin_unlock_irqrestore(&vc->stoltb_lock, flags);
184 	}
185 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
186 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
187 		vcpu->arch.busy_preempt = mftb();
188 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
189 }
190 
191 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
192 {
193 	vcpu->arch.shregs.msr = msr;
194 	kvmppc_end_cede(vcpu);
195 }
196 
197 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
198 {
199 	vcpu->arch.pvr = pvr;
200 }
201 
202 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
203 {
204 	unsigned long pcr = 0;
205 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
206 
207 	if (arch_compat) {
208 		switch (arch_compat) {
209 		case PVR_ARCH_205:
210 			/*
211 			 * If an arch bit is set in PCR, all the defined
212 			 * higher-order arch bits also have to be set.
213 			 */
214 			pcr = PCR_ARCH_206 | PCR_ARCH_205;
215 			break;
216 		case PVR_ARCH_206:
217 		case PVR_ARCH_206p:
218 			pcr = PCR_ARCH_206;
219 			break;
220 		case PVR_ARCH_207:
221 			break;
222 		default:
223 			return -EINVAL;
224 		}
225 
226 		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
227 			/* POWER7 can't emulate POWER8 */
228 			if (!(pcr & PCR_ARCH_206))
229 				return -EINVAL;
230 			pcr &= ~PCR_ARCH_206;
231 		}
232 	}
233 
234 	spin_lock(&vc->lock);
235 	vc->arch_compat = arch_compat;
236 	vc->pcr = pcr;
237 	spin_unlock(&vc->lock);
238 
239 	return 0;
240 }
241 
242 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
243 {
244 	int r;
245 
246 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
247 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
248 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
249 	for (r = 0; r < 16; ++r)
250 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
251 		       r, kvmppc_get_gpr(vcpu, r),
252 		       r+16, kvmppc_get_gpr(vcpu, r+16));
253 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
254 	       vcpu->arch.ctr, vcpu->arch.lr);
255 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
256 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
257 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
258 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
259 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
260 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
261 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
262 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
263 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
264 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
265 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
266 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
267 	for (r = 0; r < vcpu->arch.slb_max; ++r)
268 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
269 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
270 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
271 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
272 	       vcpu->arch.last_inst);
273 }
274 
275 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
276 {
277 	int r;
278 	struct kvm_vcpu *v, *ret = NULL;
279 
280 	mutex_lock(&kvm->lock);
281 	kvm_for_each_vcpu(r, v, kvm) {
282 		if (v->vcpu_id == id) {
283 			ret = v;
284 			break;
285 		}
286 	}
287 	mutex_unlock(&kvm->lock);
288 	return ret;
289 }
290 
291 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
292 {
293 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
294 	vpa->yield_count = cpu_to_be32(1);
295 }
296 
297 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
298 		   unsigned long addr, unsigned long len)
299 {
300 	/* check address is cacheline aligned */
301 	if (addr & (L1_CACHE_BYTES - 1))
302 		return -EINVAL;
303 	spin_lock(&vcpu->arch.vpa_update_lock);
304 	if (v->next_gpa != addr || v->len != len) {
305 		v->next_gpa = addr;
306 		v->len = addr ? len : 0;
307 		v->update_pending = 1;
308 	}
309 	spin_unlock(&vcpu->arch.vpa_update_lock);
310 	return 0;
311 }
312 
313 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
314 struct reg_vpa {
315 	u32 dummy;
316 	union {
317 		__be16 hword;
318 		__be32 word;
319 	} length;
320 };
321 
322 static int vpa_is_registered(struct kvmppc_vpa *vpap)
323 {
324 	if (vpap->update_pending)
325 		return vpap->next_gpa != 0;
326 	return vpap->pinned_addr != NULL;
327 }
328 
329 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
330 				       unsigned long flags,
331 				       unsigned long vcpuid, unsigned long vpa)
332 {
333 	struct kvm *kvm = vcpu->kvm;
334 	unsigned long len, nb;
335 	void *va;
336 	struct kvm_vcpu *tvcpu;
337 	int err;
338 	int subfunc;
339 	struct kvmppc_vpa *vpap;
340 
341 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
342 	if (!tvcpu)
343 		return H_PARAMETER;
344 
345 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
346 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
347 	    subfunc == H_VPA_REG_SLB) {
348 		/* Registering new area - address must be cache-line aligned */
349 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
350 			return H_PARAMETER;
351 
352 		/* convert logical addr to kernel addr and read length */
353 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
354 		if (va == NULL)
355 			return H_PARAMETER;
356 		if (subfunc == H_VPA_REG_VPA)
357 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
358 		else
359 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
360 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
361 
362 		/* Check length */
363 		if (len > nb || len < sizeof(struct reg_vpa))
364 			return H_PARAMETER;
365 	} else {
366 		vpa = 0;
367 		len = 0;
368 	}
369 
370 	err = H_PARAMETER;
371 	vpap = NULL;
372 	spin_lock(&tvcpu->arch.vpa_update_lock);
373 
374 	switch (subfunc) {
375 	case H_VPA_REG_VPA:		/* register VPA */
376 		if (len < sizeof(struct lppaca))
377 			break;
378 		vpap = &tvcpu->arch.vpa;
379 		err = 0;
380 		break;
381 
382 	case H_VPA_REG_DTL:		/* register DTL */
383 		if (len < sizeof(struct dtl_entry))
384 			break;
385 		len -= len % sizeof(struct dtl_entry);
386 
387 		/* Check that they have previously registered a VPA */
388 		err = H_RESOURCE;
389 		if (!vpa_is_registered(&tvcpu->arch.vpa))
390 			break;
391 
392 		vpap = &tvcpu->arch.dtl;
393 		err = 0;
394 		break;
395 
396 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
397 		/* Check that they have previously registered a VPA */
398 		err = H_RESOURCE;
399 		if (!vpa_is_registered(&tvcpu->arch.vpa))
400 			break;
401 
402 		vpap = &tvcpu->arch.slb_shadow;
403 		err = 0;
404 		break;
405 
406 	case H_VPA_DEREG_VPA:		/* deregister VPA */
407 		/* Check they don't still have a DTL or SLB buf registered */
408 		err = H_RESOURCE;
409 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
410 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
411 			break;
412 
413 		vpap = &tvcpu->arch.vpa;
414 		err = 0;
415 		break;
416 
417 	case H_VPA_DEREG_DTL:		/* deregister DTL */
418 		vpap = &tvcpu->arch.dtl;
419 		err = 0;
420 		break;
421 
422 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
423 		vpap = &tvcpu->arch.slb_shadow;
424 		err = 0;
425 		break;
426 	}
427 
428 	if (vpap) {
429 		vpap->next_gpa = vpa;
430 		vpap->len = len;
431 		vpap->update_pending = 1;
432 	}
433 
434 	spin_unlock(&tvcpu->arch.vpa_update_lock);
435 
436 	return err;
437 }
438 
439 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
440 {
441 	struct kvm *kvm = vcpu->kvm;
442 	void *va;
443 	unsigned long nb;
444 	unsigned long gpa;
445 
446 	/*
447 	 * We need to pin the page pointed to by vpap->next_gpa,
448 	 * but we can't call kvmppc_pin_guest_page under the lock
449 	 * as it does get_user_pages() and down_read().  So we
450 	 * have to drop the lock, pin the page, then get the lock
451 	 * again and check that a new area didn't get registered
452 	 * in the meantime.
453 	 */
454 	for (;;) {
455 		gpa = vpap->next_gpa;
456 		spin_unlock(&vcpu->arch.vpa_update_lock);
457 		va = NULL;
458 		nb = 0;
459 		if (gpa)
460 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
461 		spin_lock(&vcpu->arch.vpa_update_lock);
462 		if (gpa == vpap->next_gpa)
463 			break;
464 		/* sigh... unpin that one and try again */
465 		if (va)
466 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
467 	}
468 
469 	vpap->update_pending = 0;
470 	if (va && nb < vpap->len) {
471 		/*
472 		 * If it's now too short, it must be that userspace
473 		 * has changed the mappings underlying guest memory,
474 		 * so unregister the region.
475 		 */
476 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
477 		va = NULL;
478 	}
479 	if (vpap->pinned_addr)
480 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
481 					vpap->dirty);
482 	vpap->gpa = gpa;
483 	vpap->pinned_addr = va;
484 	vpap->dirty = false;
485 	if (va)
486 		vpap->pinned_end = va + vpap->len;
487 }
488 
489 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
490 {
491 	if (!(vcpu->arch.vpa.update_pending ||
492 	      vcpu->arch.slb_shadow.update_pending ||
493 	      vcpu->arch.dtl.update_pending))
494 		return;
495 
496 	spin_lock(&vcpu->arch.vpa_update_lock);
497 	if (vcpu->arch.vpa.update_pending) {
498 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
499 		if (vcpu->arch.vpa.pinned_addr)
500 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
501 	}
502 	if (vcpu->arch.dtl.update_pending) {
503 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
504 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
505 		vcpu->arch.dtl_index = 0;
506 	}
507 	if (vcpu->arch.slb_shadow.update_pending)
508 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
509 	spin_unlock(&vcpu->arch.vpa_update_lock);
510 }
511 
512 /*
513  * Return the accumulated stolen time for the vcore up until `now'.
514  * The caller should hold the vcore lock.
515  */
516 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
517 {
518 	u64 p;
519 	unsigned long flags;
520 
521 	spin_lock_irqsave(&vc->stoltb_lock, flags);
522 	p = vc->stolen_tb;
523 	if (vc->vcore_state != VCORE_INACTIVE &&
524 	    vc->preempt_tb != TB_NIL)
525 		p += now - vc->preempt_tb;
526 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
527 	return p;
528 }
529 
530 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
531 				    struct kvmppc_vcore *vc)
532 {
533 	struct dtl_entry *dt;
534 	struct lppaca *vpa;
535 	unsigned long stolen;
536 	unsigned long core_stolen;
537 	u64 now;
538 
539 	dt = vcpu->arch.dtl_ptr;
540 	vpa = vcpu->arch.vpa.pinned_addr;
541 	now = mftb();
542 	core_stolen = vcore_stolen_time(vc, now);
543 	stolen = core_stolen - vcpu->arch.stolen_logged;
544 	vcpu->arch.stolen_logged = core_stolen;
545 	spin_lock_irq(&vcpu->arch.tbacct_lock);
546 	stolen += vcpu->arch.busy_stolen;
547 	vcpu->arch.busy_stolen = 0;
548 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
549 	if (!dt || !vpa)
550 		return;
551 	memset(dt, 0, sizeof(struct dtl_entry));
552 	dt->dispatch_reason = 7;
553 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
554 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
555 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
556 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
557 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
558 	++dt;
559 	if (dt == vcpu->arch.dtl.pinned_end)
560 		dt = vcpu->arch.dtl.pinned_addr;
561 	vcpu->arch.dtl_ptr = dt;
562 	/* order writing *dt vs. writing vpa->dtl_idx */
563 	smp_wmb();
564 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
565 	vcpu->arch.dtl.dirty = true;
566 }
567 
568 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
569 {
570 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
571 		return true;
572 	if ((!vcpu->arch.vcore->arch_compat) &&
573 	    cpu_has_feature(CPU_FTR_ARCH_207S))
574 		return true;
575 	return false;
576 }
577 
578 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
579 			     unsigned long resource, unsigned long value1,
580 			     unsigned long value2)
581 {
582 	switch (resource) {
583 	case H_SET_MODE_RESOURCE_SET_CIABR:
584 		if (!kvmppc_power8_compatible(vcpu))
585 			return H_P2;
586 		if (value2)
587 			return H_P4;
588 		if (mflags)
589 			return H_UNSUPPORTED_FLAG_START;
590 		/* Guests can't breakpoint the hypervisor */
591 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
592 			return H_P3;
593 		vcpu->arch.ciabr  = value1;
594 		return H_SUCCESS;
595 	case H_SET_MODE_RESOURCE_SET_DAWR:
596 		if (!kvmppc_power8_compatible(vcpu))
597 			return H_P2;
598 		if (mflags)
599 			return H_UNSUPPORTED_FLAG_START;
600 		if (value2 & DABRX_HYP)
601 			return H_P4;
602 		vcpu->arch.dawr  = value1;
603 		vcpu->arch.dawrx = value2;
604 		return H_SUCCESS;
605 	default:
606 		return H_TOO_HARD;
607 	}
608 }
609 
610 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
611 {
612 	struct kvmppc_vcore *vcore = target->arch.vcore;
613 
614 	/*
615 	 * We expect to have been called by the real mode handler
616 	 * (kvmppc_rm_h_confer()) which would have directly returned
617 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
618 	 * have useful work to do and should not confer) so we don't
619 	 * recheck that here.
620 	 */
621 
622 	spin_lock(&vcore->lock);
623 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
624 	    vcore->vcore_state != VCORE_INACTIVE)
625 		target = vcore->runner;
626 	spin_unlock(&vcore->lock);
627 
628 	return kvm_vcpu_yield_to(target);
629 }
630 
631 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
632 {
633 	int yield_count = 0;
634 	struct lppaca *lppaca;
635 
636 	spin_lock(&vcpu->arch.vpa_update_lock);
637 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
638 	if (lppaca)
639 		yield_count = lppaca->yield_count;
640 	spin_unlock(&vcpu->arch.vpa_update_lock);
641 	return yield_count;
642 }
643 
644 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
645 {
646 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
647 	unsigned long target, ret = H_SUCCESS;
648 	int yield_count;
649 	struct kvm_vcpu *tvcpu;
650 	int idx, rc;
651 
652 	if (req <= MAX_HCALL_OPCODE &&
653 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
654 		return RESUME_HOST;
655 
656 	switch (req) {
657 	case H_CEDE:
658 		break;
659 	case H_PROD:
660 		target = kvmppc_get_gpr(vcpu, 4);
661 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
662 		if (!tvcpu) {
663 			ret = H_PARAMETER;
664 			break;
665 		}
666 		tvcpu->arch.prodded = 1;
667 		smp_mb();
668 		if (vcpu->arch.ceded) {
669 			if (waitqueue_active(&vcpu->wq)) {
670 				wake_up_interruptible(&vcpu->wq);
671 				vcpu->stat.halt_wakeup++;
672 			}
673 		}
674 		break;
675 	case H_CONFER:
676 		target = kvmppc_get_gpr(vcpu, 4);
677 		if (target == -1)
678 			break;
679 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
680 		if (!tvcpu) {
681 			ret = H_PARAMETER;
682 			break;
683 		}
684 		yield_count = kvmppc_get_gpr(vcpu, 5);
685 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
686 			break;
687 		kvm_arch_vcpu_yield_to(tvcpu);
688 		break;
689 	case H_REGISTER_VPA:
690 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
691 					kvmppc_get_gpr(vcpu, 5),
692 					kvmppc_get_gpr(vcpu, 6));
693 		break;
694 	case H_RTAS:
695 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
696 			return RESUME_HOST;
697 
698 		idx = srcu_read_lock(&vcpu->kvm->srcu);
699 		rc = kvmppc_rtas_hcall(vcpu);
700 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
701 
702 		if (rc == -ENOENT)
703 			return RESUME_HOST;
704 		else if (rc == 0)
705 			break;
706 
707 		/* Send the error out to userspace via KVM_RUN */
708 		return rc;
709 	case H_SET_MODE:
710 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
711 					kvmppc_get_gpr(vcpu, 5),
712 					kvmppc_get_gpr(vcpu, 6),
713 					kvmppc_get_gpr(vcpu, 7));
714 		if (ret == H_TOO_HARD)
715 			return RESUME_HOST;
716 		break;
717 	case H_XIRR:
718 	case H_CPPR:
719 	case H_EOI:
720 	case H_IPI:
721 	case H_IPOLL:
722 	case H_XIRR_X:
723 		if (kvmppc_xics_enabled(vcpu)) {
724 			ret = kvmppc_xics_hcall(vcpu, req);
725 			break;
726 		} /* fallthrough */
727 	default:
728 		return RESUME_HOST;
729 	}
730 	kvmppc_set_gpr(vcpu, 3, ret);
731 	vcpu->arch.hcall_needed = 0;
732 	return RESUME_GUEST;
733 }
734 
735 static int kvmppc_hcall_impl_hv(unsigned long cmd)
736 {
737 	switch (cmd) {
738 	case H_CEDE:
739 	case H_PROD:
740 	case H_CONFER:
741 	case H_REGISTER_VPA:
742 	case H_SET_MODE:
743 #ifdef CONFIG_KVM_XICS
744 	case H_XIRR:
745 	case H_CPPR:
746 	case H_EOI:
747 	case H_IPI:
748 	case H_IPOLL:
749 	case H_XIRR_X:
750 #endif
751 		return 1;
752 	}
753 
754 	/* See if it's in the real-mode table */
755 	return kvmppc_hcall_impl_hv_realmode(cmd);
756 }
757 
758 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
759 					struct kvm_vcpu *vcpu)
760 {
761 	u32 last_inst;
762 
763 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
764 					EMULATE_DONE) {
765 		/*
766 		 * Fetch failed, so return to guest and
767 		 * try executing it again.
768 		 */
769 		return RESUME_GUEST;
770 	}
771 
772 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
773 		run->exit_reason = KVM_EXIT_DEBUG;
774 		run->debug.arch.address = kvmppc_get_pc(vcpu);
775 		return RESUME_HOST;
776 	} else {
777 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
778 		return RESUME_GUEST;
779 	}
780 }
781 
782 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
783 				 struct task_struct *tsk)
784 {
785 	int r = RESUME_HOST;
786 
787 	vcpu->stat.sum_exits++;
788 
789 	run->exit_reason = KVM_EXIT_UNKNOWN;
790 	run->ready_for_interrupt_injection = 1;
791 	switch (vcpu->arch.trap) {
792 	/* We're good on these - the host merely wanted to get our attention */
793 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
794 		vcpu->stat.dec_exits++;
795 		r = RESUME_GUEST;
796 		break;
797 	case BOOK3S_INTERRUPT_EXTERNAL:
798 	case BOOK3S_INTERRUPT_H_DOORBELL:
799 		vcpu->stat.ext_intr_exits++;
800 		r = RESUME_GUEST;
801 		break;
802 	/* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
803 	case BOOK3S_INTERRUPT_HMI:
804 	case BOOK3S_INTERRUPT_PERFMON:
805 		r = RESUME_GUEST;
806 		break;
807 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
808 		/*
809 		 * Deliver a machine check interrupt to the guest.
810 		 * We have to do this, even if the host has handled the
811 		 * machine check, because machine checks use SRR0/1 and
812 		 * the interrupt might have trashed guest state in them.
813 		 */
814 		kvmppc_book3s_queue_irqprio(vcpu,
815 					    BOOK3S_INTERRUPT_MACHINE_CHECK);
816 		r = RESUME_GUEST;
817 		break;
818 	case BOOK3S_INTERRUPT_PROGRAM:
819 	{
820 		ulong flags;
821 		/*
822 		 * Normally program interrupts are delivered directly
823 		 * to the guest by the hardware, but we can get here
824 		 * as a result of a hypervisor emulation interrupt
825 		 * (e40) getting turned into a 700 by BML RTAS.
826 		 */
827 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
828 		kvmppc_core_queue_program(vcpu, flags);
829 		r = RESUME_GUEST;
830 		break;
831 	}
832 	case BOOK3S_INTERRUPT_SYSCALL:
833 	{
834 		/* hcall - punt to userspace */
835 		int i;
836 
837 		/* hypercall with MSR_PR has already been handled in rmode,
838 		 * and never reaches here.
839 		 */
840 
841 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
842 		for (i = 0; i < 9; ++i)
843 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
844 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
845 		vcpu->arch.hcall_needed = 1;
846 		r = RESUME_HOST;
847 		break;
848 	}
849 	/*
850 	 * We get these next two if the guest accesses a page which it thinks
851 	 * it has mapped but which is not actually present, either because
852 	 * it is for an emulated I/O device or because the corresonding
853 	 * host page has been paged out.  Any other HDSI/HISI interrupts
854 	 * have been handled already.
855 	 */
856 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
857 		r = RESUME_PAGE_FAULT;
858 		break;
859 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
860 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
861 		vcpu->arch.fault_dsisr = 0;
862 		r = RESUME_PAGE_FAULT;
863 		break;
864 	/*
865 	 * This occurs if the guest executes an illegal instruction.
866 	 * If the guest debug is disabled, generate a program interrupt
867 	 * to the guest. If guest debug is enabled, we need to check
868 	 * whether the instruction is a software breakpoint instruction.
869 	 * Accordingly return to Guest or Host.
870 	 */
871 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
872 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
873 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
874 				swab32(vcpu->arch.emul_inst) :
875 				vcpu->arch.emul_inst;
876 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
877 			r = kvmppc_emulate_debug_inst(run, vcpu);
878 		} else {
879 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
880 			r = RESUME_GUEST;
881 		}
882 		break;
883 	/*
884 	 * This occurs if the guest (kernel or userspace), does something that
885 	 * is prohibited by HFSCR.  We just generate a program interrupt to
886 	 * the guest.
887 	 */
888 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
889 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
890 		r = RESUME_GUEST;
891 		break;
892 	default:
893 		kvmppc_dump_regs(vcpu);
894 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
895 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
896 			vcpu->arch.shregs.msr);
897 		run->hw.hardware_exit_reason = vcpu->arch.trap;
898 		r = RESUME_HOST;
899 		break;
900 	}
901 
902 	return r;
903 }
904 
905 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
906 					    struct kvm_sregs *sregs)
907 {
908 	int i;
909 
910 	memset(sregs, 0, sizeof(struct kvm_sregs));
911 	sregs->pvr = vcpu->arch.pvr;
912 	for (i = 0; i < vcpu->arch.slb_max; i++) {
913 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
914 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
915 	}
916 
917 	return 0;
918 }
919 
920 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
921 					    struct kvm_sregs *sregs)
922 {
923 	int i, j;
924 
925 	/* Only accept the same PVR as the host's, since we can't spoof it */
926 	if (sregs->pvr != vcpu->arch.pvr)
927 		return -EINVAL;
928 
929 	j = 0;
930 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
931 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
932 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
933 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
934 			++j;
935 		}
936 	}
937 	vcpu->arch.slb_max = j;
938 
939 	return 0;
940 }
941 
942 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
943 		bool preserve_top32)
944 {
945 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
946 	u64 mask;
947 
948 	spin_lock(&vc->lock);
949 	/*
950 	 * If ILE (interrupt little-endian) has changed, update the
951 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
952 	 */
953 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
954 		struct kvm *kvm = vcpu->kvm;
955 		struct kvm_vcpu *vcpu;
956 		int i;
957 
958 		mutex_lock(&kvm->lock);
959 		kvm_for_each_vcpu(i, vcpu, kvm) {
960 			if (vcpu->arch.vcore != vc)
961 				continue;
962 			if (new_lpcr & LPCR_ILE)
963 				vcpu->arch.intr_msr |= MSR_LE;
964 			else
965 				vcpu->arch.intr_msr &= ~MSR_LE;
966 		}
967 		mutex_unlock(&kvm->lock);
968 	}
969 
970 	/*
971 	 * Userspace can only modify DPFD (default prefetch depth),
972 	 * ILE (interrupt little-endian) and TC (translation control).
973 	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
974 	 */
975 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
976 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
977 		mask |= LPCR_AIL;
978 
979 	/* Broken 32-bit version of LPCR must not clear top bits */
980 	if (preserve_top32)
981 		mask &= 0xFFFFFFFF;
982 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
983 	spin_unlock(&vc->lock);
984 }
985 
986 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
987 				 union kvmppc_one_reg *val)
988 {
989 	int r = 0;
990 	long int i;
991 
992 	switch (id) {
993 	case KVM_REG_PPC_DEBUG_INST:
994 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
995 		break;
996 	case KVM_REG_PPC_HIOR:
997 		*val = get_reg_val(id, 0);
998 		break;
999 	case KVM_REG_PPC_DABR:
1000 		*val = get_reg_val(id, vcpu->arch.dabr);
1001 		break;
1002 	case KVM_REG_PPC_DABRX:
1003 		*val = get_reg_val(id, vcpu->arch.dabrx);
1004 		break;
1005 	case KVM_REG_PPC_DSCR:
1006 		*val = get_reg_val(id, vcpu->arch.dscr);
1007 		break;
1008 	case KVM_REG_PPC_PURR:
1009 		*val = get_reg_val(id, vcpu->arch.purr);
1010 		break;
1011 	case KVM_REG_PPC_SPURR:
1012 		*val = get_reg_val(id, vcpu->arch.spurr);
1013 		break;
1014 	case KVM_REG_PPC_AMR:
1015 		*val = get_reg_val(id, vcpu->arch.amr);
1016 		break;
1017 	case KVM_REG_PPC_UAMOR:
1018 		*val = get_reg_val(id, vcpu->arch.uamor);
1019 		break;
1020 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1021 		i = id - KVM_REG_PPC_MMCR0;
1022 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1023 		break;
1024 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1025 		i = id - KVM_REG_PPC_PMC1;
1026 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1027 		break;
1028 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1029 		i = id - KVM_REG_PPC_SPMC1;
1030 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1031 		break;
1032 	case KVM_REG_PPC_SIAR:
1033 		*val = get_reg_val(id, vcpu->arch.siar);
1034 		break;
1035 	case KVM_REG_PPC_SDAR:
1036 		*val = get_reg_val(id, vcpu->arch.sdar);
1037 		break;
1038 	case KVM_REG_PPC_SIER:
1039 		*val = get_reg_val(id, vcpu->arch.sier);
1040 		break;
1041 	case KVM_REG_PPC_IAMR:
1042 		*val = get_reg_val(id, vcpu->arch.iamr);
1043 		break;
1044 	case KVM_REG_PPC_PSPB:
1045 		*val = get_reg_val(id, vcpu->arch.pspb);
1046 		break;
1047 	case KVM_REG_PPC_DPDES:
1048 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1049 		break;
1050 	case KVM_REG_PPC_DAWR:
1051 		*val = get_reg_val(id, vcpu->arch.dawr);
1052 		break;
1053 	case KVM_REG_PPC_DAWRX:
1054 		*val = get_reg_val(id, vcpu->arch.dawrx);
1055 		break;
1056 	case KVM_REG_PPC_CIABR:
1057 		*val = get_reg_val(id, vcpu->arch.ciabr);
1058 		break;
1059 	case KVM_REG_PPC_CSIGR:
1060 		*val = get_reg_val(id, vcpu->arch.csigr);
1061 		break;
1062 	case KVM_REG_PPC_TACR:
1063 		*val = get_reg_val(id, vcpu->arch.tacr);
1064 		break;
1065 	case KVM_REG_PPC_TCSCR:
1066 		*val = get_reg_val(id, vcpu->arch.tcscr);
1067 		break;
1068 	case KVM_REG_PPC_PID:
1069 		*val = get_reg_val(id, vcpu->arch.pid);
1070 		break;
1071 	case KVM_REG_PPC_ACOP:
1072 		*val = get_reg_val(id, vcpu->arch.acop);
1073 		break;
1074 	case KVM_REG_PPC_WORT:
1075 		*val = get_reg_val(id, vcpu->arch.wort);
1076 		break;
1077 	case KVM_REG_PPC_VPA_ADDR:
1078 		spin_lock(&vcpu->arch.vpa_update_lock);
1079 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1080 		spin_unlock(&vcpu->arch.vpa_update_lock);
1081 		break;
1082 	case KVM_REG_PPC_VPA_SLB:
1083 		spin_lock(&vcpu->arch.vpa_update_lock);
1084 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1085 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1086 		spin_unlock(&vcpu->arch.vpa_update_lock);
1087 		break;
1088 	case KVM_REG_PPC_VPA_DTL:
1089 		spin_lock(&vcpu->arch.vpa_update_lock);
1090 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1091 		val->vpaval.length = vcpu->arch.dtl.len;
1092 		spin_unlock(&vcpu->arch.vpa_update_lock);
1093 		break;
1094 	case KVM_REG_PPC_TB_OFFSET:
1095 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1096 		break;
1097 	case KVM_REG_PPC_LPCR:
1098 	case KVM_REG_PPC_LPCR_64:
1099 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1100 		break;
1101 	case KVM_REG_PPC_PPR:
1102 		*val = get_reg_val(id, vcpu->arch.ppr);
1103 		break;
1104 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1105 	case KVM_REG_PPC_TFHAR:
1106 		*val = get_reg_val(id, vcpu->arch.tfhar);
1107 		break;
1108 	case KVM_REG_PPC_TFIAR:
1109 		*val = get_reg_val(id, vcpu->arch.tfiar);
1110 		break;
1111 	case KVM_REG_PPC_TEXASR:
1112 		*val = get_reg_val(id, vcpu->arch.texasr);
1113 		break;
1114 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1115 		i = id - KVM_REG_PPC_TM_GPR0;
1116 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1117 		break;
1118 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1119 	{
1120 		int j;
1121 		i = id - KVM_REG_PPC_TM_VSR0;
1122 		if (i < 32)
1123 			for (j = 0; j < TS_FPRWIDTH; j++)
1124 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1125 		else {
1126 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1127 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1128 			else
1129 				r = -ENXIO;
1130 		}
1131 		break;
1132 	}
1133 	case KVM_REG_PPC_TM_CR:
1134 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1135 		break;
1136 	case KVM_REG_PPC_TM_LR:
1137 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1138 		break;
1139 	case KVM_REG_PPC_TM_CTR:
1140 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1141 		break;
1142 	case KVM_REG_PPC_TM_FPSCR:
1143 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1144 		break;
1145 	case KVM_REG_PPC_TM_AMR:
1146 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1147 		break;
1148 	case KVM_REG_PPC_TM_PPR:
1149 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1150 		break;
1151 	case KVM_REG_PPC_TM_VRSAVE:
1152 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1153 		break;
1154 	case KVM_REG_PPC_TM_VSCR:
1155 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1156 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1157 		else
1158 			r = -ENXIO;
1159 		break;
1160 	case KVM_REG_PPC_TM_DSCR:
1161 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1162 		break;
1163 	case KVM_REG_PPC_TM_TAR:
1164 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1165 		break;
1166 #endif
1167 	case KVM_REG_PPC_ARCH_COMPAT:
1168 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1169 		break;
1170 	default:
1171 		r = -EINVAL;
1172 		break;
1173 	}
1174 
1175 	return r;
1176 }
1177 
1178 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1179 				 union kvmppc_one_reg *val)
1180 {
1181 	int r = 0;
1182 	long int i;
1183 	unsigned long addr, len;
1184 
1185 	switch (id) {
1186 	case KVM_REG_PPC_HIOR:
1187 		/* Only allow this to be set to zero */
1188 		if (set_reg_val(id, *val))
1189 			r = -EINVAL;
1190 		break;
1191 	case KVM_REG_PPC_DABR:
1192 		vcpu->arch.dabr = set_reg_val(id, *val);
1193 		break;
1194 	case KVM_REG_PPC_DABRX:
1195 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1196 		break;
1197 	case KVM_REG_PPC_DSCR:
1198 		vcpu->arch.dscr = set_reg_val(id, *val);
1199 		break;
1200 	case KVM_REG_PPC_PURR:
1201 		vcpu->arch.purr = set_reg_val(id, *val);
1202 		break;
1203 	case KVM_REG_PPC_SPURR:
1204 		vcpu->arch.spurr = set_reg_val(id, *val);
1205 		break;
1206 	case KVM_REG_PPC_AMR:
1207 		vcpu->arch.amr = set_reg_val(id, *val);
1208 		break;
1209 	case KVM_REG_PPC_UAMOR:
1210 		vcpu->arch.uamor = set_reg_val(id, *val);
1211 		break;
1212 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1213 		i = id - KVM_REG_PPC_MMCR0;
1214 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1215 		break;
1216 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1217 		i = id - KVM_REG_PPC_PMC1;
1218 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1219 		break;
1220 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1221 		i = id - KVM_REG_PPC_SPMC1;
1222 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1223 		break;
1224 	case KVM_REG_PPC_SIAR:
1225 		vcpu->arch.siar = set_reg_val(id, *val);
1226 		break;
1227 	case KVM_REG_PPC_SDAR:
1228 		vcpu->arch.sdar = set_reg_val(id, *val);
1229 		break;
1230 	case KVM_REG_PPC_SIER:
1231 		vcpu->arch.sier = set_reg_val(id, *val);
1232 		break;
1233 	case KVM_REG_PPC_IAMR:
1234 		vcpu->arch.iamr = set_reg_val(id, *val);
1235 		break;
1236 	case KVM_REG_PPC_PSPB:
1237 		vcpu->arch.pspb = set_reg_val(id, *val);
1238 		break;
1239 	case KVM_REG_PPC_DPDES:
1240 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1241 		break;
1242 	case KVM_REG_PPC_DAWR:
1243 		vcpu->arch.dawr = set_reg_val(id, *val);
1244 		break;
1245 	case KVM_REG_PPC_DAWRX:
1246 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1247 		break;
1248 	case KVM_REG_PPC_CIABR:
1249 		vcpu->arch.ciabr = set_reg_val(id, *val);
1250 		/* Don't allow setting breakpoints in hypervisor code */
1251 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1252 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1253 		break;
1254 	case KVM_REG_PPC_CSIGR:
1255 		vcpu->arch.csigr = set_reg_val(id, *val);
1256 		break;
1257 	case KVM_REG_PPC_TACR:
1258 		vcpu->arch.tacr = set_reg_val(id, *val);
1259 		break;
1260 	case KVM_REG_PPC_TCSCR:
1261 		vcpu->arch.tcscr = set_reg_val(id, *val);
1262 		break;
1263 	case KVM_REG_PPC_PID:
1264 		vcpu->arch.pid = set_reg_val(id, *val);
1265 		break;
1266 	case KVM_REG_PPC_ACOP:
1267 		vcpu->arch.acop = set_reg_val(id, *val);
1268 		break;
1269 	case KVM_REG_PPC_WORT:
1270 		vcpu->arch.wort = set_reg_val(id, *val);
1271 		break;
1272 	case KVM_REG_PPC_VPA_ADDR:
1273 		addr = set_reg_val(id, *val);
1274 		r = -EINVAL;
1275 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1276 			      vcpu->arch.dtl.next_gpa))
1277 			break;
1278 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1279 		break;
1280 	case KVM_REG_PPC_VPA_SLB:
1281 		addr = val->vpaval.addr;
1282 		len = val->vpaval.length;
1283 		r = -EINVAL;
1284 		if (addr && !vcpu->arch.vpa.next_gpa)
1285 			break;
1286 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1287 		break;
1288 	case KVM_REG_PPC_VPA_DTL:
1289 		addr = val->vpaval.addr;
1290 		len = val->vpaval.length;
1291 		r = -EINVAL;
1292 		if (addr && (len < sizeof(struct dtl_entry) ||
1293 			     !vcpu->arch.vpa.next_gpa))
1294 			break;
1295 		len -= len % sizeof(struct dtl_entry);
1296 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1297 		break;
1298 	case KVM_REG_PPC_TB_OFFSET:
1299 		/* round up to multiple of 2^24 */
1300 		vcpu->arch.vcore->tb_offset =
1301 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1302 		break;
1303 	case KVM_REG_PPC_LPCR:
1304 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1305 		break;
1306 	case KVM_REG_PPC_LPCR_64:
1307 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1308 		break;
1309 	case KVM_REG_PPC_PPR:
1310 		vcpu->arch.ppr = set_reg_val(id, *val);
1311 		break;
1312 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1313 	case KVM_REG_PPC_TFHAR:
1314 		vcpu->arch.tfhar = set_reg_val(id, *val);
1315 		break;
1316 	case KVM_REG_PPC_TFIAR:
1317 		vcpu->arch.tfiar = set_reg_val(id, *val);
1318 		break;
1319 	case KVM_REG_PPC_TEXASR:
1320 		vcpu->arch.texasr = set_reg_val(id, *val);
1321 		break;
1322 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1323 		i = id - KVM_REG_PPC_TM_GPR0;
1324 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1325 		break;
1326 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1327 	{
1328 		int j;
1329 		i = id - KVM_REG_PPC_TM_VSR0;
1330 		if (i < 32)
1331 			for (j = 0; j < TS_FPRWIDTH; j++)
1332 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1333 		else
1334 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1335 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1336 			else
1337 				r = -ENXIO;
1338 		break;
1339 	}
1340 	case KVM_REG_PPC_TM_CR:
1341 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1342 		break;
1343 	case KVM_REG_PPC_TM_LR:
1344 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1345 		break;
1346 	case KVM_REG_PPC_TM_CTR:
1347 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1348 		break;
1349 	case KVM_REG_PPC_TM_FPSCR:
1350 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1351 		break;
1352 	case KVM_REG_PPC_TM_AMR:
1353 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1354 		break;
1355 	case KVM_REG_PPC_TM_PPR:
1356 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1357 		break;
1358 	case KVM_REG_PPC_TM_VRSAVE:
1359 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1360 		break;
1361 	case KVM_REG_PPC_TM_VSCR:
1362 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1363 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1364 		else
1365 			r = - ENXIO;
1366 		break;
1367 	case KVM_REG_PPC_TM_DSCR:
1368 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1369 		break;
1370 	case KVM_REG_PPC_TM_TAR:
1371 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1372 		break;
1373 #endif
1374 	case KVM_REG_PPC_ARCH_COMPAT:
1375 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1376 		break;
1377 	default:
1378 		r = -EINVAL;
1379 		break;
1380 	}
1381 
1382 	return r;
1383 }
1384 
1385 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1386 {
1387 	struct kvmppc_vcore *vcore;
1388 
1389 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1390 
1391 	if (vcore == NULL)
1392 		return NULL;
1393 
1394 	INIT_LIST_HEAD(&vcore->runnable_threads);
1395 	spin_lock_init(&vcore->lock);
1396 	spin_lock_init(&vcore->stoltb_lock);
1397 	init_waitqueue_head(&vcore->wq);
1398 	vcore->preempt_tb = TB_NIL;
1399 	vcore->lpcr = kvm->arch.lpcr;
1400 	vcore->first_vcpuid = core * threads_per_subcore;
1401 	vcore->kvm = kvm;
1402 
1403 	vcore->mpp_buffer_is_valid = false;
1404 
1405 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1406 		vcore->mpp_buffer = (void *)__get_free_pages(
1407 			GFP_KERNEL|__GFP_ZERO,
1408 			MPP_BUFFER_ORDER);
1409 
1410 	return vcore;
1411 }
1412 
1413 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1414 						   unsigned int id)
1415 {
1416 	struct kvm_vcpu *vcpu;
1417 	int err = -EINVAL;
1418 	int core;
1419 	struct kvmppc_vcore *vcore;
1420 
1421 	core = id / threads_per_subcore;
1422 	if (core >= KVM_MAX_VCORES)
1423 		goto out;
1424 
1425 	err = -ENOMEM;
1426 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1427 	if (!vcpu)
1428 		goto out;
1429 
1430 	err = kvm_vcpu_init(vcpu, kvm, id);
1431 	if (err)
1432 		goto free_vcpu;
1433 
1434 	vcpu->arch.shared = &vcpu->arch.shregs;
1435 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1436 	/*
1437 	 * The shared struct is never shared on HV,
1438 	 * so we can always use host endianness
1439 	 */
1440 #ifdef __BIG_ENDIAN__
1441 	vcpu->arch.shared_big_endian = true;
1442 #else
1443 	vcpu->arch.shared_big_endian = false;
1444 #endif
1445 #endif
1446 	vcpu->arch.mmcr[0] = MMCR0_FC;
1447 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1448 	/* default to host PVR, since we can't spoof it */
1449 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1450 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1451 	spin_lock_init(&vcpu->arch.tbacct_lock);
1452 	vcpu->arch.busy_preempt = TB_NIL;
1453 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1454 
1455 	kvmppc_mmu_book3s_hv_init(vcpu);
1456 
1457 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1458 
1459 	init_waitqueue_head(&vcpu->arch.cpu_run);
1460 
1461 	mutex_lock(&kvm->lock);
1462 	vcore = kvm->arch.vcores[core];
1463 	if (!vcore) {
1464 		vcore = kvmppc_vcore_create(kvm, core);
1465 		kvm->arch.vcores[core] = vcore;
1466 		kvm->arch.online_vcores++;
1467 	}
1468 	mutex_unlock(&kvm->lock);
1469 
1470 	if (!vcore)
1471 		goto free_vcpu;
1472 
1473 	spin_lock(&vcore->lock);
1474 	++vcore->num_threads;
1475 	spin_unlock(&vcore->lock);
1476 	vcpu->arch.vcore = vcore;
1477 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1478 
1479 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
1480 	kvmppc_sanity_check(vcpu);
1481 
1482 	return vcpu;
1483 
1484 free_vcpu:
1485 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1486 out:
1487 	return ERR_PTR(err);
1488 }
1489 
1490 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1491 {
1492 	if (vpa->pinned_addr)
1493 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1494 					vpa->dirty);
1495 }
1496 
1497 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1498 {
1499 	spin_lock(&vcpu->arch.vpa_update_lock);
1500 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1501 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1502 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1503 	spin_unlock(&vcpu->arch.vpa_update_lock);
1504 	kvm_vcpu_uninit(vcpu);
1505 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1506 }
1507 
1508 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1509 {
1510 	/* Indicate we want to get back into the guest */
1511 	return 1;
1512 }
1513 
1514 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1515 {
1516 	unsigned long dec_nsec, now;
1517 
1518 	now = get_tb();
1519 	if (now > vcpu->arch.dec_expires) {
1520 		/* decrementer has already gone negative */
1521 		kvmppc_core_queue_dec(vcpu);
1522 		kvmppc_core_prepare_to_enter(vcpu);
1523 		return;
1524 	}
1525 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1526 		   / tb_ticks_per_sec;
1527 	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1528 		      HRTIMER_MODE_REL);
1529 	vcpu->arch.timer_running = 1;
1530 }
1531 
1532 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1533 {
1534 	vcpu->arch.ceded = 0;
1535 	if (vcpu->arch.timer_running) {
1536 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1537 		vcpu->arch.timer_running = 0;
1538 	}
1539 }
1540 
1541 extern void __kvmppc_vcore_entry(void);
1542 
1543 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1544 				   struct kvm_vcpu *vcpu)
1545 {
1546 	u64 now;
1547 
1548 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1549 		return;
1550 	spin_lock_irq(&vcpu->arch.tbacct_lock);
1551 	now = mftb();
1552 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1553 		vcpu->arch.stolen_logged;
1554 	vcpu->arch.busy_preempt = now;
1555 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1556 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1557 	--vc->n_runnable;
1558 	list_del(&vcpu->arch.run_list);
1559 }
1560 
1561 static int kvmppc_grab_hwthread(int cpu)
1562 {
1563 	struct paca_struct *tpaca;
1564 	long timeout = 10000;
1565 
1566 	tpaca = &paca[cpu];
1567 
1568 	/* Ensure the thread won't go into the kernel if it wakes */
1569 	tpaca->kvm_hstate.hwthread_req = 1;
1570 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1571 
1572 	/*
1573 	 * If the thread is already executing in the kernel (e.g. handling
1574 	 * a stray interrupt), wait for it to get back to nap mode.
1575 	 * The smp_mb() is to ensure that our setting of hwthread_req
1576 	 * is visible before we look at hwthread_state, so if this
1577 	 * races with the code at system_reset_pSeries and the thread
1578 	 * misses our setting of hwthread_req, we are sure to see its
1579 	 * setting of hwthread_state, and vice versa.
1580 	 */
1581 	smp_mb();
1582 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1583 		if (--timeout <= 0) {
1584 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
1585 			return -EBUSY;
1586 		}
1587 		udelay(1);
1588 	}
1589 	return 0;
1590 }
1591 
1592 static void kvmppc_release_hwthread(int cpu)
1593 {
1594 	struct paca_struct *tpaca;
1595 
1596 	tpaca = &paca[cpu];
1597 	tpaca->kvm_hstate.hwthread_req = 0;
1598 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1599 }
1600 
1601 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1602 {
1603 	int cpu;
1604 	struct paca_struct *tpaca;
1605 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1606 
1607 	if (vcpu->arch.timer_running) {
1608 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1609 		vcpu->arch.timer_running = 0;
1610 	}
1611 	cpu = vc->pcpu + vcpu->arch.ptid;
1612 	tpaca = &paca[cpu];
1613 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1614 	tpaca->kvm_hstate.kvm_vcore = vc;
1615 	tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1616 	vcpu->cpu = vc->pcpu;
1617 	smp_wmb();
1618 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1619 	if (cpu != smp_processor_id()) {
1620 		xics_wake_cpu(cpu);
1621 		if (vcpu->arch.ptid)
1622 			++vc->n_woken;
1623 	}
1624 #endif
1625 }
1626 
1627 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1628 {
1629 	int i;
1630 
1631 	HMT_low();
1632 	i = 0;
1633 	while (vc->nap_count < vc->n_woken) {
1634 		if (++i >= 1000000) {
1635 			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1636 			       vc->nap_count, vc->n_woken);
1637 			break;
1638 		}
1639 		cpu_relax();
1640 	}
1641 	HMT_medium();
1642 }
1643 
1644 /*
1645  * Check that we are on thread 0 and that any other threads in
1646  * this core are off-line.  Then grab the threads so they can't
1647  * enter the kernel.
1648  */
1649 static int on_primary_thread(void)
1650 {
1651 	int cpu = smp_processor_id();
1652 	int thr;
1653 
1654 	/* Are we on a primary subcore? */
1655 	if (cpu_thread_in_subcore(cpu))
1656 		return 0;
1657 
1658 	thr = 0;
1659 	while (++thr < threads_per_subcore)
1660 		if (cpu_online(cpu + thr))
1661 			return 0;
1662 
1663 	/* Grab all hw threads so they can't go into the kernel */
1664 	for (thr = 1; thr < threads_per_subcore; ++thr) {
1665 		if (kvmppc_grab_hwthread(cpu + thr)) {
1666 			/* Couldn't grab one; let the others go */
1667 			do {
1668 				kvmppc_release_hwthread(cpu + thr);
1669 			} while (--thr > 0);
1670 			return 0;
1671 		}
1672 	}
1673 	return 1;
1674 }
1675 
1676 static void kvmppc_start_saving_l2_cache(struct kvmppc_vcore *vc)
1677 {
1678 	phys_addr_t phy_addr, mpp_addr;
1679 
1680 	phy_addr = (phys_addr_t)virt_to_phys(vc->mpp_buffer);
1681 	mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1682 
1683 	mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_ABORT);
1684 	logmpp(mpp_addr | PPC_LOGMPP_LOG_L2);
1685 
1686 	vc->mpp_buffer_is_valid = true;
1687 }
1688 
1689 static void kvmppc_start_restoring_l2_cache(const struct kvmppc_vcore *vc)
1690 {
1691 	phys_addr_t phy_addr, mpp_addr;
1692 
1693 	phy_addr = virt_to_phys(vc->mpp_buffer);
1694 	mpp_addr = phy_addr & PPC_MPPE_ADDRESS_MASK;
1695 
1696 	/* We must abort any in-progress save operations to ensure
1697 	 * the table is valid so that prefetch engine knows when to
1698 	 * stop prefetching. */
1699 	logmpp(mpp_addr | PPC_LOGMPP_LOG_ABORT);
1700 	mtspr(SPRN_MPPR, mpp_addr | PPC_MPPR_FETCH_WHOLE_TABLE);
1701 }
1702 
1703 /*
1704  * Run a set of guest threads on a physical core.
1705  * Called with vc->lock held.
1706  */
1707 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1708 {
1709 	struct kvm_vcpu *vcpu, *vnext;
1710 	long ret;
1711 	u64 now;
1712 	int i, need_vpa_update;
1713 	int srcu_idx;
1714 	struct kvm_vcpu *vcpus_to_update[threads_per_core];
1715 
1716 	/* don't start if any threads have a signal pending */
1717 	need_vpa_update = 0;
1718 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1719 		if (signal_pending(vcpu->arch.run_task))
1720 			return;
1721 		if (vcpu->arch.vpa.update_pending ||
1722 		    vcpu->arch.slb_shadow.update_pending ||
1723 		    vcpu->arch.dtl.update_pending)
1724 			vcpus_to_update[need_vpa_update++] = vcpu;
1725 	}
1726 
1727 	/*
1728 	 * Initialize *vc, in particular vc->vcore_state, so we can
1729 	 * drop the vcore lock if necessary.
1730 	 */
1731 	vc->n_woken = 0;
1732 	vc->nap_count = 0;
1733 	vc->entry_exit_count = 0;
1734 	vc->preempt_tb = TB_NIL;
1735 	vc->vcore_state = VCORE_STARTING;
1736 	vc->in_guest = 0;
1737 	vc->napping_threads = 0;
1738 	vc->conferring_threads = 0;
1739 
1740 	/*
1741 	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1742 	 * which can't be called with any spinlocks held.
1743 	 */
1744 	if (need_vpa_update) {
1745 		spin_unlock(&vc->lock);
1746 		for (i = 0; i < need_vpa_update; ++i)
1747 			kvmppc_update_vpas(vcpus_to_update[i]);
1748 		spin_lock(&vc->lock);
1749 	}
1750 
1751 	/*
1752 	 * Make sure we are running on primary threads, and that secondary
1753 	 * threads are offline.  Also check if the number of threads in this
1754 	 * guest are greater than the current system threads per guest.
1755 	 */
1756 	if ((threads_per_core > 1) &&
1757 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
1758 		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1759 			vcpu->arch.ret = -EBUSY;
1760 		goto out;
1761 	}
1762 
1763 
1764 	vc->pcpu = smp_processor_id();
1765 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1766 		kvmppc_start_thread(vcpu);
1767 		kvmppc_create_dtl_entry(vcpu, vc);
1768 		trace_kvm_guest_enter(vcpu);
1769 	}
1770 
1771 	/* Set this explicitly in case thread 0 doesn't have a vcpu */
1772 	get_paca()->kvm_hstate.kvm_vcore = vc;
1773 	get_paca()->kvm_hstate.ptid = 0;
1774 
1775 	vc->vcore_state = VCORE_RUNNING;
1776 	preempt_disable();
1777 
1778 	trace_kvmppc_run_core(vc, 0);
1779 
1780 	spin_unlock(&vc->lock);
1781 
1782 	kvm_guest_enter();
1783 
1784 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
1785 
1786 	if (vc->mpp_buffer_is_valid)
1787 		kvmppc_start_restoring_l2_cache(vc);
1788 
1789 	__kvmppc_vcore_entry();
1790 
1791 	spin_lock(&vc->lock);
1792 
1793 	if (vc->mpp_buffer)
1794 		kvmppc_start_saving_l2_cache(vc);
1795 
1796 	/* disable sending of IPIs on virtual external irqs */
1797 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1798 		vcpu->cpu = -1;
1799 	/* wait for secondary threads to finish writing their state to memory */
1800 	if (vc->nap_count < vc->n_woken)
1801 		kvmppc_wait_for_nap(vc);
1802 	for (i = 0; i < threads_per_subcore; ++i)
1803 		kvmppc_release_hwthread(vc->pcpu + i);
1804 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1805 	vc->vcore_state = VCORE_EXITING;
1806 	spin_unlock(&vc->lock);
1807 
1808 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
1809 
1810 	/* make sure updates to secondary vcpu structs are visible now */
1811 	smp_mb();
1812 	kvm_guest_exit();
1813 
1814 	preempt_enable();
1815 	cond_resched();
1816 
1817 	spin_lock(&vc->lock);
1818 	now = get_tb();
1819 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1820 		/* cancel pending dec exception if dec is positive */
1821 		if (now < vcpu->arch.dec_expires &&
1822 		    kvmppc_core_pending_dec(vcpu))
1823 			kvmppc_core_dequeue_dec(vcpu);
1824 
1825 		trace_kvm_guest_exit(vcpu);
1826 
1827 		ret = RESUME_GUEST;
1828 		if (vcpu->arch.trap)
1829 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
1830 						    vcpu->arch.run_task);
1831 
1832 		vcpu->arch.ret = ret;
1833 		vcpu->arch.trap = 0;
1834 
1835 		if (vcpu->arch.ceded) {
1836 			if (!is_kvmppc_resume_guest(ret))
1837 				kvmppc_end_cede(vcpu);
1838 			else
1839 				kvmppc_set_timer(vcpu);
1840 		}
1841 	}
1842 
1843  out:
1844 	vc->vcore_state = VCORE_INACTIVE;
1845 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1846 				 arch.run_list) {
1847 		if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
1848 			kvmppc_remove_runnable(vc, vcpu);
1849 			wake_up(&vcpu->arch.cpu_run);
1850 		}
1851 	}
1852 
1853 	trace_kvmppc_run_core(vc, 1);
1854 }
1855 
1856 /*
1857  * Wait for some other vcpu thread to execute us, and
1858  * wake us up when we need to handle something in the host.
1859  */
1860 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1861 {
1862 	DEFINE_WAIT(wait);
1863 
1864 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1865 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1866 		schedule();
1867 	finish_wait(&vcpu->arch.cpu_run, &wait);
1868 }
1869 
1870 /*
1871  * All the vcpus in this vcore are idle, so wait for a decrementer
1872  * or external interrupt to one of the vcpus.  vc->lock is held.
1873  */
1874 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1875 {
1876 	struct kvm_vcpu *vcpu;
1877 	int do_sleep = 1;
1878 
1879 	DEFINE_WAIT(wait);
1880 
1881 	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1882 
1883 	/*
1884 	 * Check one last time for pending exceptions and ceded state after
1885 	 * we put ourselves on the wait queue
1886 	 */
1887 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1888 		if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
1889 			do_sleep = 0;
1890 			break;
1891 		}
1892 	}
1893 
1894 	if (!do_sleep) {
1895 		finish_wait(&vc->wq, &wait);
1896 		return;
1897 	}
1898 
1899 	vc->vcore_state = VCORE_SLEEPING;
1900 	trace_kvmppc_vcore_blocked(vc, 0);
1901 	spin_unlock(&vc->lock);
1902 	schedule();
1903 	finish_wait(&vc->wq, &wait);
1904 	spin_lock(&vc->lock);
1905 	vc->vcore_state = VCORE_INACTIVE;
1906 	trace_kvmppc_vcore_blocked(vc, 1);
1907 }
1908 
1909 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1910 {
1911 	int n_ceded;
1912 	struct kvmppc_vcore *vc;
1913 	struct kvm_vcpu *v, *vn;
1914 
1915 	trace_kvmppc_run_vcpu_enter(vcpu);
1916 
1917 	kvm_run->exit_reason = 0;
1918 	vcpu->arch.ret = RESUME_GUEST;
1919 	vcpu->arch.trap = 0;
1920 	kvmppc_update_vpas(vcpu);
1921 
1922 	/*
1923 	 * Synchronize with other threads in this virtual core
1924 	 */
1925 	vc = vcpu->arch.vcore;
1926 	spin_lock(&vc->lock);
1927 	vcpu->arch.ceded = 0;
1928 	vcpu->arch.run_task = current;
1929 	vcpu->arch.kvm_run = kvm_run;
1930 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1931 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1932 	vcpu->arch.busy_preempt = TB_NIL;
1933 	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1934 	++vc->n_runnable;
1935 
1936 	/*
1937 	 * This happens the first time this is called for a vcpu.
1938 	 * If the vcore is already running, we may be able to start
1939 	 * this thread straight away and have it join in.
1940 	 */
1941 	if (!signal_pending(current)) {
1942 		if (vc->vcore_state == VCORE_RUNNING &&
1943 		    VCORE_EXIT_COUNT(vc) == 0) {
1944 			kvmppc_create_dtl_entry(vcpu, vc);
1945 			kvmppc_start_thread(vcpu);
1946 			trace_kvm_guest_enter(vcpu);
1947 		} else if (vc->vcore_state == VCORE_SLEEPING) {
1948 			wake_up(&vc->wq);
1949 		}
1950 
1951 	}
1952 
1953 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1954 	       !signal_pending(current)) {
1955 		if (vc->vcore_state != VCORE_INACTIVE) {
1956 			spin_unlock(&vc->lock);
1957 			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1958 			spin_lock(&vc->lock);
1959 			continue;
1960 		}
1961 		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1962 					 arch.run_list) {
1963 			kvmppc_core_prepare_to_enter(v);
1964 			if (signal_pending(v->arch.run_task)) {
1965 				kvmppc_remove_runnable(vc, v);
1966 				v->stat.signal_exits++;
1967 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1968 				v->arch.ret = -EINTR;
1969 				wake_up(&v->arch.cpu_run);
1970 			}
1971 		}
1972 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1973 			break;
1974 		vc->runner = vcpu;
1975 		n_ceded = 0;
1976 		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1977 			if (!v->arch.pending_exceptions)
1978 				n_ceded += v->arch.ceded;
1979 			else
1980 				v->arch.ceded = 0;
1981 		}
1982 		if (n_ceded == vc->n_runnable)
1983 			kvmppc_vcore_blocked(vc);
1984 		else
1985 			kvmppc_run_core(vc);
1986 		vc->runner = NULL;
1987 	}
1988 
1989 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1990 	       (vc->vcore_state == VCORE_RUNNING ||
1991 		vc->vcore_state == VCORE_EXITING)) {
1992 		spin_unlock(&vc->lock);
1993 		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1994 		spin_lock(&vc->lock);
1995 	}
1996 
1997 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1998 		kvmppc_remove_runnable(vc, vcpu);
1999 		vcpu->stat.signal_exits++;
2000 		kvm_run->exit_reason = KVM_EXIT_INTR;
2001 		vcpu->arch.ret = -EINTR;
2002 	}
2003 
2004 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2005 		/* Wake up some vcpu to run the core */
2006 		v = list_first_entry(&vc->runnable_threads,
2007 				     struct kvm_vcpu, arch.run_list);
2008 		wake_up(&v->arch.cpu_run);
2009 	}
2010 
2011 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2012 	spin_unlock(&vc->lock);
2013 	return vcpu->arch.ret;
2014 }
2015 
2016 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2017 {
2018 	int r;
2019 	int srcu_idx;
2020 
2021 	if (!vcpu->arch.sane) {
2022 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2023 		return -EINVAL;
2024 	}
2025 
2026 	kvmppc_core_prepare_to_enter(vcpu);
2027 
2028 	/* No need to go into the guest when all we'll do is come back out */
2029 	if (signal_pending(current)) {
2030 		run->exit_reason = KVM_EXIT_INTR;
2031 		return -EINTR;
2032 	}
2033 
2034 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
2035 	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
2036 	smp_mb();
2037 
2038 	/* On the first time here, set up HTAB and VRMA */
2039 	if (!vcpu->kvm->arch.rma_setup_done) {
2040 		r = kvmppc_hv_setup_htab_rma(vcpu);
2041 		if (r)
2042 			goto out;
2043 	}
2044 
2045 	flush_fp_to_thread(current);
2046 	flush_altivec_to_thread(current);
2047 	flush_vsx_to_thread(current);
2048 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2049 	vcpu->arch.pgdir = current->mm->pgd;
2050 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2051 
2052 	do {
2053 		r = kvmppc_run_vcpu(run, vcpu);
2054 
2055 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2056 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
2057 			trace_kvm_hcall_enter(vcpu);
2058 			r = kvmppc_pseries_do_hcall(vcpu);
2059 			trace_kvm_hcall_exit(vcpu, r);
2060 			kvmppc_core_prepare_to_enter(vcpu);
2061 		} else if (r == RESUME_PAGE_FAULT) {
2062 			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2063 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
2064 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2065 			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2066 		}
2067 	} while (is_kvmppc_resume_guest(r));
2068 
2069  out:
2070 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2071 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
2072 	return r;
2073 }
2074 
2075 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2076 				     int linux_psize)
2077 {
2078 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2079 
2080 	if (!def->shift)
2081 		return;
2082 	(*sps)->page_shift = def->shift;
2083 	(*sps)->slb_enc = def->sllp;
2084 	(*sps)->enc[0].page_shift = def->shift;
2085 	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
2086 	/*
2087 	 * Add 16MB MPSS support if host supports it
2088 	 */
2089 	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2090 		(*sps)->enc[1].page_shift = 24;
2091 		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2092 	}
2093 	(*sps)++;
2094 }
2095 
2096 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2097 					 struct kvm_ppc_smmu_info *info)
2098 {
2099 	struct kvm_ppc_one_seg_page_size *sps;
2100 
2101 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
2102 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2103 		info->flags |= KVM_PPC_1T_SEGMENTS;
2104 	info->slb_size = mmu_slb_size;
2105 
2106 	/* We only support these sizes for now, and no muti-size segments */
2107 	sps = &info->sps[0];
2108 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2109 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2110 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2111 
2112 	return 0;
2113 }
2114 
2115 /*
2116  * Get (and clear) the dirty memory log for a memory slot.
2117  */
2118 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2119 					 struct kvm_dirty_log *log)
2120 {
2121 	struct kvm_memory_slot *memslot;
2122 	int r;
2123 	unsigned long n;
2124 
2125 	mutex_lock(&kvm->slots_lock);
2126 
2127 	r = -EINVAL;
2128 	if (log->slot >= KVM_USER_MEM_SLOTS)
2129 		goto out;
2130 
2131 	memslot = id_to_memslot(kvm->memslots, log->slot);
2132 	r = -ENOENT;
2133 	if (!memslot->dirty_bitmap)
2134 		goto out;
2135 
2136 	n = kvm_dirty_bitmap_bytes(memslot);
2137 	memset(memslot->dirty_bitmap, 0, n);
2138 
2139 	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2140 	if (r)
2141 		goto out;
2142 
2143 	r = -EFAULT;
2144 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2145 		goto out;
2146 
2147 	r = 0;
2148 out:
2149 	mutex_unlock(&kvm->slots_lock);
2150 	return r;
2151 }
2152 
2153 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2154 					struct kvm_memory_slot *dont)
2155 {
2156 	if (!dont || free->arch.rmap != dont->arch.rmap) {
2157 		vfree(free->arch.rmap);
2158 		free->arch.rmap = NULL;
2159 	}
2160 }
2161 
2162 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2163 					 unsigned long npages)
2164 {
2165 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2166 	if (!slot->arch.rmap)
2167 		return -ENOMEM;
2168 
2169 	return 0;
2170 }
2171 
2172 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2173 					struct kvm_memory_slot *memslot,
2174 					struct kvm_userspace_memory_region *mem)
2175 {
2176 	return 0;
2177 }
2178 
2179 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2180 				struct kvm_userspace_memory_region *mem,
2181 				const struct kvm_memory_slot *old)
2182 {
2183 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2184 	struct kvm_memory_slot *memslot;
2185 
2186 	if (npages && old->npages) {
2187 		/*
2188 		 * If modifying a memslot, reset all the rmap dirty bits.
2189 		 * If this is a new memslot, we don't need to do anything
2190 		 * since the rmap array starts out as all zeroes,
2191 		 * i.e. no pages are dirty.
2192 		 */
2193 		memslot = id_to_memslot(kvm->memslots, mem->slot);
2194 		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2195 	}
2196 }
2197 
2198 /*
2199  * Update LPCR values in kvm->arch and in vcores.
2200  * Caller must hold kvm->lock.
2201  */
2202 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2203 {
2204 	long int i;
2205 	u32 cores_done = 0;
2206 
2207 	if ((kvm->arch.lpcr & mask) == lpcr)
2208 		return;
2209 
2210 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2211 
2212 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
2213 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2214 		if (!vc)
2215 			continue;
2216 		spin_lock(&vc->lock);
2217 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2218 		spin_unlock(&vc->lock);
2219 		if (++cores_done >= kvm->arch.online_vcores)
2220 			break;
2221 	}
2222 }
2223 
2224 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2225 {
2226 	return;
2227 }
2228 
2229 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2230 {
2231 	int err = 0;
2232 	struct kvm *kvm = vcpu->kvm;
2233 	unsigned long hva;
2234 	struct kvm_memory_slot *memslot;
2235 	struct vm_area_struct *vma;
2236 	unsigned long lpcr = 0, senc;
2237 	unsigned long psize, porder;
2238 	int srcu_idx;
2239 
2240 	mutex_lock(&kvm->lock);
2241 	if (kvm->arch.rma_setup_done)
2242 		goto out;	/* another vcpu beat us to it */
2243 
2244 	/* Allocate hashed page table (if not done already) and reset it */
2245 	if (!kvm->arch.hpt_virt) {
2246 		err = kvmppc_alloc_hpt(kvm, NULL);
2247 		if (err) {
2248 			pr_err("KVM: Couldn't alloc HPT\n");
2249 			goto out;
2250 		}
2251 	}
2252 
2253 	/* Look up the memslot for guest physical address 0 */
2254 	srcu_idx = srcu_read_lock(&kvm->srcu);
2255 	memslot = gfn_to_memslot(kvm, 0);
2256 
2257 	/* We must have some memory at 0 by now */
2258 	err = -EINVAL;
2259 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2260 		goto out_srcu;
2261 
2262 	/* Look up the VMA for the start of this memory slot */
2263 	hva = memslot->userspace_addr;
2264 	down_read(&current->mm->mmap_sem);
2265 	vma = find_vma(current->mm, hva);
2266 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2267 		goto up_out;
2268 
2269 	psize = vma_kernel_pagesize(vma);
2270 	porder = __ilog2(psize);
2271 
2272 	up_read(&current->mm->mmap_sem);
2273 
2274 	/* We can handle 4k, 64k or 16M pages in the VRMA */
2275 	err = -EINVAL;
2276 	if (!(psize == 0x1000 || psize == 0x10000 ||
2277 	      psize == 0x1000000))
2278 		goto out_srcu;
2279 
2280 	/* Update VRMASD field in the LPCR */
2281 	senc = slb_pgsize_encoding(psize);
2282 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2283 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
2284 	/* the -4 is to account for senc values starting at 0x10 */
2285 	lpcr = senc << (LPCR_VRMASD_SH - 4);
2286 
2287 	/* Create HPTEs in the hash page table for the VRMA */
2288 	kvmppc_map_vrma(vcpu, memslot, porder);
2289 
2290 	kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
2291 
2292 	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
2293 	smp_wmb();
2294 	kvm->arch.rma_setup_done = 1;
2295 	err = 0;
2296  out_srcu:
2297 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2298  out:
2299 	mutex_unlock(&kvm->lock);
2300 	return err;
2301 
2302  up_out:
2303 	up_read(&current->mm->mmap_sem);
2304 	goto out_srcu;
2305 }
2306 
2307 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2308 {
2309 	unsigned long lpcr, lpid;
2310 
2311 	/* Allocate the guest's logical partition ID */
2312 
2313 	lpid = kvmppc_alloc_lpid();
2314 	if ((long)lpid < 0)
2315 		return -ENOMEM;
2316 	kvm->arch.lpid = lpid;
2317 
2318 	/*
2319 	 * Since we don't flush the TLB when tearing down a VM,
2320 	 * and this lpid might have previously been used,
2321 	 * make sure we flush on each core before running the new VM.
2322 	 */
2323 	cpumask_setall(&kvm->arch.need_tlb_flush);
2324 
2325 	/* Start out with the default set of hcalls enabled */
2326 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
2327 	       sizeof(kvm->arch.enabled_hcalls));
2328 
2329 	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2330 
2331 	/* Init LPCR for virtual RMA mode */
2332 	kvm->arch.host_lpid = mfspr(SPRN_LPID);
2333 	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
2334 	lpcr &= LPCR_PECE | LPCR_LPES;
2335 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2336 		LPCR_VPM0 | LPCR_VPM1;
2337 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
2338 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
2339 	/* On POWER8 turn on online bit to enable PURR/SPURR */
2340 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
2341 		lpcr |= LPCR_ONL;
2342 	kvm->arch.lpcr = lpcr;
2343 
2344 	/*
2345 	 * Track that we now have a HV mode VM active. This blocks secondary
2346 	 * CPU threads from coming online.
2347 	 */
2348 	kvm_hv_vm_activated();
2349 
2350 	return 0;
2351 }
2352 
2353 static void kvmppc_free_vcores(struct kvm *kvm)
2354 {
2355 	long int i;
2356 
2357 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
2358 		if (kvm->arch.vcores[i] && kvm->arch.vcores[i]->mpp_buffer) {
2359 			struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2360 			free_pages((unsigned long)vc->mpp_buffer,
2361 				   MPP_BUFFER_ORDER);
2362 		}
2363 		kfree(kvm->arch.vcores[i]);
2364 	}
2365 	kvm->arch.online_vcores = 0;
2366 }
2367 
2368 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2369 {
2370 	kvm_hv_vm_deactivated();
2371 
2372 	kvmppc_free_vcores(kvm);
2373 
2374 	kvmppc_free_hpt(kvm);
2375 }
2376 
2377 /* We don't need to emulate any privileged instructions or dcbz */
2378 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
2379 				     unsigned int inst, int *advance)
2380 {
2381 	return EMULATE_FAIL;
2382 }
2383 
2384 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
2385 					ulong spr_val)
2386 {
2387 	return EMULATE_FAIL;
2388 }
2389 
2390 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
2391 					ulong *spr_val)
2392 {
2393 	return EMULATE_FAIL;
2394 }
2395 
2396 static int kvmppc_core_check_processor_compat_hv(void)
2397 {
2398 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
2399 	    !cpu_has_feature(CPU_FTR_ARCH_206))
2400 		return -EIO;
2401 	return 0;
2402 }
2403 
2404 static long kvm_arch_vm_ioctl_hv(struct file *filp,
2405 				 unsigned int ioctl, unsigned long arg)
2406 {
2407 	struct kvm *kvm __maybe_unused = filp->private_data;
2408 	void __user *argp = (void __user *)arg;
2409 	long r;
2410 
2411 	switch (ioctl) {
2412 
2413 	case KVM_PPC_ALLOCATE_HTAB: {
2414 		u32 htab_order;
2415 
2416 		r = -EFAULT;
2417 		if (get_user(htab_order, (u32 __user *)argp))
2418 			break;
2419 		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
2420 		if (r)
2421 			break;
2422 		r = -EFAULT;
2423 		if (put_user(htab_order, (u32 __user *)argp))
2424 			break;
2425 		r = 0;
2426 		break;
2427 	}
2428 
2429 	case KVM_PPC_GET_HTAB_FD: {
2430 		struct kvm_get_htab_fd ghf;
2431 
2432 		r = -EFAULT;
2433 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
2434 			break;
2435 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
2436 		break;
2437 	}
2438 
2439 	default:
2440 		r = -ENOTTY;
2441 	}
2442 
2443 	return r;
2444 }
2445 
2446 /*
2447  * List of hcall numbers to enable by default.
2448  * For compatibility with old userspace, we enable by default
2449  * all hcalls that were implemented before the hcall-enabling
2450  * facility was added.  Note this list should not include H_RTAS.
2451  */
2452 static unsigned int default_hcall_list[] = {
2453 	H_REMOVE,
2454 	H_ENTER,
2455 	H_READ,
2456 	H_PROTECT,
2457 	H_BULK_REMOVE,
2458 	H_GET_TCE,
2459 	H_PUT_TCE,
2460 	H_SET_DABR,
2461 	H_SET_XDABR,
2462 	H_CEDE,
2463 	H_PROD,
2464 	H_CONFER,
2465 	H_REGISTER_VPA,
2466 #ifdef CONFIG_KVM_XICS
2467 	H_EOI,
2468 	H_CPPR,
2469 	H_IPI,
2470 	H_IPOLL,
2471 	H_XIRR,
2472 	H_XIRR_X,
2473 #endif
2474 	0
2475 };
2476 
2477 static void init_default_hcalls(void)
2478 {
2479 	int i;
2480 	unsigned int hcall;
2481 
2482 	for (i = 0; default_hcall_list[i]; ++i) {
2483 		hcall = default_hcall_list[i];
2484 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
2485 		__set_bit(hcall / 4, default_enabled_hcalls);
2486 	}
2487 }
2488 
2489 static struct kvmppc_ops kvm_ops_hv = {
2490 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
2491 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
2492 	.get_one_reg = kvmppc_get_one_reg_hv,
2493 	.set_one_reg = kvmppc_set_one_reg_hv,
2494 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
2495 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
2496 	.set_msr     = kvmppc_set_msr_hv,
2497 	.vcpu_run    = kvmppc_vcpu_run_hv,
2498 	.vcpu_create = kvmppc_core_vcpu_create_hv,
2499 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
2500 	.check_requests = kvmppc_core_check_requests_hv,
2501 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
2502 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
2503 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
2504 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
2505 	.unmap_hva = kvm_unmap_hva_hv,
2506 	.unmap_hva_range = kvm_unmap_hva_range_hv,
2507 	.age_hva  = kvm_age_hva_hv,
2508 	.test_age_hva = kvm_test_age_hva_hv,
2509 	.set_spte_hva = kvm_set_spte_hva_hv,
2510 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
2511 	.free_memslot = kvmppc_core_free_memslot_hv,
2512 	.create_memslot = kvmppc_core_create_memslot_hv,
2513 	.init_vm =  kvmppc_core_init_vm_hv,
2514 	.destroy_vm = kvmppc_core_destroy_vm_hv,
2515 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
2516 	.emulate_op = kvmppc_core_emulate_op_hv,
2517 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
2518 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
2519 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
2520 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2521 	.hcall_implemented = kvmppc_hcall_impl_hv,
2522 };
2523 
2524 static int kvmppc_book3s_init_hv(void)
2525 {
2526 	int r;
2527 	/*
2528 	 * FIXME!! Do we need to check on all cpus ?
2529 	 */
2530 	r = kvmppc_core_check_processor_compat_hv();
2531 	if (r < 0)
2532 		return -ENODEV;
2533 
2534 	kvm_ops_hv.owner = THIS_MODULE;
2535 	kvmppc_hv_ops = &kvm_ops_hv;
2536 
2537 	init_default_hcalls();
2538 
2539 	r = kvmppc_mmu_hv_init();
2540 	return r;
2541 }
2542 
2543 static void kvmppc_book3s_exit_hv(void)
2544 {
2545 	kvmppc_hv_ops = NULL;
2546 }
2547 
2548 module_init(kvmppc_book3s_init_hv);
2549 module_exit(kvmppc_book3s_exit_hv);
2550 MODULE_LICENSE("GPL");
2551 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2552 MODULE_ALIAS("devname:kvm");
2553