1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 36 #include <asm/reg.h> 37 #include <asm/cputable.h> 38 #include <asm/cacheflush.h> 39 #include <asm/tlbflush.h> 40 #include <asm/uaccess.h> 41 #include <asm/io.h> 42 #include <asm/kvm_ppc.h> 43 #include <asm/kvm_book3s.h> 44 #include <asm/mmu_context.h> 45 #include <asm/lppaca.h> 46 #include <asm/processor.h> 47 #include <asm/cputhreads.h> 48 #include <asm/page.h> 49 #include <asm/hvcall.h> 50 #include <asm/switch_to.h> 51 #include <asm/smp.h> 52 #include <linux/gfp.h> 53 #include <linux/vmalloc.h> 54 #include <linux/highmem.h> 55 #include <linux/hugetlb.h> 56 #include <linux/module.h> 57 58 #include "book3s.h" 59 60 /* #define EXIT_DEBUG */ 61 /* #define EXIT_DEBUG_SIMPLE */ 62 /* #define EXIT_DEBUG_INT */ 63 64 /* Used to indicate that a guest page fault needs to be handled */ 65 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 66 67 /* Used as a "null" value for timebase values */ 68 #define TB_NIL (~(u64)0) 69 70 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 71 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 72 73 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 74 { 75 int me; 76 int cpu = vcpu->cpu; 77 wait_queue_head_t *wqp; 78 79 wqp = kvm_arch_vcpu_wq(vcpu); 80 if (waitqueue_active(wqp)) { 81 wake_up_interruptible(wqp); 82 ++vcpu->stat.halt_wakeup; 83 } 84 85 me = get_cpu(); 86 87 /* CPU points to the first thread of the core */ 88 if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) { 89 #ifdef CONFIG_KVM_XICS 90 int real_cpu = cpu + vcpu->arch.ptid; 91 if (paca[real_cpu].kvm_hstate.xics_phys) 92 xics_wake_cpu(real_cpu); 93 else 94 #endif 95 if (cpu_online(cpu)) 96 smp_send_reschedule(cpu); 97 } 98 put_cpu(); 99 } 100 101 /* 102 * We use the vcpu_load/put functions to measure stolen time. 103 * Stolen time is counted as time when either the vcpu is able to 104 * run as part of a virtual core, but the task running the vcore 105 * is preempted or sleeping, or when the vcpu needs something done 106 * in the kernel by the task running the vcpu, but that task is 107 * preempted or sleeping. Those two things have to be counted 108 * separately, since one of the vcpu tasks will take on the job 109 * of running the core, and the other vcpu tasks in the vcore will 110 * sleep waiting for it to do that, but that sleep shouldn't count 111 * as stolen time. 112 * 113 * Hence we accumulate stolen time when the vcpu can run as part of 114 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 115 * needs its task to do other things in the kernel (for example, 116 * service a page fault) in busy_stolen. We don't accumulate 117 * stolen time for a vcore when it is inactive, or for a vcpu 118 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 119 * a misnomer; it means that the vcpu task is not executing in 120 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 121 * the kernel. We don't have any way of dividing up that time 122 * between time that the vcpu is genuinely stopped, time that 123 * the task is actively working on behalf of the vcpu, and time 124 * that the task is preempted, so we don't count any of it as 125 * stolen. 126 * 127 * Updates to busy_stolen are protected by arch.tbacct_lock; 128 * updates to vc->stolen_tb are protected by the arch.tbacct_lock 129 * of the vcpu that has taken responsibility for running the vcore 130 * (i.e. vc->runner). The stolen times are measured in units of 131 * timebase ticks. (Note that the != TB_NIL checks below are 132 * purely defensive; they should never fail.) 133 */ 134 135 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 136 { 137 struct kvmppc_vcore *vc = vcpu->arch.vcore; 138 unsigned long flags; 139 140 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 141 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE && 142 vc->preempt_tb != TB_NIL) { 143 vc->stolen_tb += mftb() - vc->preempt_tb; 144 vc->preempt_tb = TB_NIL; 145 } 146 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 147 vcpu->arch.busy_preempt != TB_NIL) { 148 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 149 vcpu->arch.busy_preempt = TB_NIL; 150 } 151 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 152 } 153 154 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 155 { 156 struct kvmppc_vcore *vc = vcpu->arch.vcore; 157 unsigned long flags; 158 159 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 160 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) 161 vc->preempt_tb = mftb(); 162 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 163 vcpu->arch.busy_preempt = mftb(); 164 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 165 } 166 167 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 168 { 169 vcpu->arch.shregs.msr = msr; 170 kvmppc_end_cede(vcpu); 171 } 172 173 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 174 { 175 vcpu->arch.pvr = pvr; 176 } 177 178 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 179 { 180 unsigned long pcr = 0; 181 struct kvmppc_vcore *vc = vcpu->arch.vcore; 182 183 if (arch_compat) { 184 if (!cpu_has_feature(CPU_FTR_ARCH_206)) 185 return -EINVAL; /* 970 has no compat mode support */ 186 187 switch (arch_compat) { 188 case PVR_ARCH_205: 189 /* 190 * If an arch bit is set in PCR, all the defined 191 * higher-order arch bits also have to be set. 192 */ 193 pcr = PCR_ARCH_206 | PCR_ARCH_205; 194 break; 195 case PVR_ARCH_206: 196 case PVR_ARCH_206p: 197 pcr = PCR_ARCH_206; 198 break; 199 case PVR_ARCH_207: 200 break; 201 default: 202 return -EINVAL; 203 } 204 205 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) { 206 /* POWER7 can't emulate POWER8 */ 207 if (!(pcr & PCR_ARCH_206)) 208 return -EINVAL; 209 pcr &= ~PCR_ARCH_206; 210 } 211 } 212 213 spin_lock(&vc->lock); 214 vc->arch_compat = arch_compat; 215 vc->pcr = pcr; 216 spin_unlock(&vc->lock); 217 218 return 0; 219 } 220 221 void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 222 { 223 int r; 224 225 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 226 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 227 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 228 for (r = 0; r < 16; ++r) 229 pr_err("r%2d = %.16lx r%d = %.16lx\n", 230 r, kvmppc_get_gpr(vcpu, r), 231 r+16, kvmppc_get_gpr(vcpu, r+16)); 232 pr_err("ctr = %.16lx lr = %.16lx\n", 233 vcpu->arch.ctr, vcpu->arch.lr); 234 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 235 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 236 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 237 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 238 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 239 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 240 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 241 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 242 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 243 pr_err("fault dar = %.16lx dsisr = %.8x\n", 244 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 245 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 246 for (r = 0; r < vcpu->arch.slb_max; ++r) 247 pr_err(" ESID = %.16llx VSID = %.16llx\n", 248 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 249 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 250 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 251 vcpu->arch.last_inst); 252 } 253 254 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 255 { 256 int r; 257 struct kvm_vcpu *v, *ret = NULL; 258 259 mutex_lock(&kvm->lock); 260 kvm_for_each_vcpu(r, v, kvm) { 261 if (v->vcpu_id == id) { 262 ret = v; 263 break; 264 } 265 } 266 mutex_unlock(&kvm->lock); 267 return ret; 268 } 269 270 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 271 { 272 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 273 vpa->yield_count = 1; 274 } 275 276 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 277 unsigned long addr, unsigned long len) 278 { 279 /* check address is cacheline aligned */ 280 if (addr & (L1_CACHE_BYTES - 1)) 281 return -EINVAL; 282 spin_lock(&vcpu->arch.vpa_update_lock); 283 if (v->next_gpa != addr || v->len != len) { 284 v->next_gpa = addr; 285 v->len = addr ? len : 0; 286 v->update_pending = 1; 287 } 288 spin_unlock(&vcpu->arch.vpa_update_lock); 289 return 0; 290 } 291 292 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 293 struct reg_vpa { 294 u32 dummy; 295 union { 296 u16 hword; 297 u32 word; 298 } length; 299 }; 300 301 static int vpa_is_registered(struct kvmppc_vpa *vpap) 302 { 303 if (vpap->update_pending) 304 return vpap->next_gpa != 0; 305 return vpap->pinned_addr != NULL; 306 } 307 308 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 309 unsigned long flags, 310 unsigned long vcpuid, unsigned long vpa) 311 { 312 struct kvm *kvm = vcpu->kvm; 313 unsigned long len, nb; 314 void *va; 315 struct kvm_vcpu *tvcpu; 316 int err; 317 int subfunc; 318 struct kvmppc_vpa *vpap; 319 320 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 321 if (!tvcpu) 322 return H_PARAMETER; 323 324 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 325 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 326 subfunc == H_VPA_REG_SLB) { 327 /* Registering new area - address must be cache-line aligned */ 328 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 329 return H_PARAMETER; 330 331 /* convert logical addr to kernel addr and read length */ 332 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 333 if (va == NULL) 334 return H_PARAMETER; 335 if (subfunc == H_VPA_REG_VPA) 336 len = ((struct reg_vpa *)va)->length.hword; 337 else 338 len = ((struct reg_vpa *)va)->length.word; 339 kvmppc_unpin_guest_page(kvm, va, vpa, false); 340 341 /* Check length */ 342 if (len > nb || len < sizeof(struct reg_vpa)) 343 return H_PARAMETER; 344 } else { 345 vpa = 0; 346 len = 0; 347 } 348 349 err = H_PARAMETER; 350 vpap = NULL; 351 spin_lock(&tvcpu->arch.vpa_update_lock); 352 353 switch (subfunc) { 354 case H_VPA_REG_VPA: /* register VPA */ 355 if (len < sizeof(struct lppaca)) 356 break; 357 vpap = &tvcpu->arch.vpa; 358 err = 0; 359 break; 360 361 case H_VPA_REG_DTL: /* register DTL */ 362 if (len < sizeof(struct dtl_entry)) 363 break; 364 len -= len % sizeof(struct dtl_entry); 365 366 /* Check that they have previously registered a VPA */ 367 err = H_RESOURCE; 368 if (!vpa_is_registered(&tvcpu->arch.vpa)) 369 break; 370 371 vpap = &tvcpu->arch.dtl; 372 err = 0; 373 break; 374 375 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 376 /* Check that they have previously registered a VPA */ 377 err = H_RESOURCE; 378 if (!vpa_is_registered(&tvcpu->arch.vpa)) 379 break; 380 381 vpap = &tvcpu->arch.slb_shadow; 382 err = 0; 383 break; 384 385 case H_VPA_DEREG_VPA: /* deregister VPA */ 386 /* Check they don't still have a DTL or SLB buf registered */ 387 err = H_RESOURCE; 388 if (vpa_is_registered(&tvcpu->arch.dtl) || 389 vpa_is_registered(&tvcpu->arch.slb_shadow)) 390 break; 391 392 vpap = &tvcpu->arch.vpa; 393 err = 0; 394 break; 395 396 case H_VPA_DEREG_DTL: /* deregister DTL */ 397 vpap = &tvcpu->arch.dtl; 398 err = 0; 399 break; 400 401 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 402 vpap = &tvcpu->arch.slb_shadow; 403 err = 0; 404 break; 405 } 406 407 if (vpap) { 408 vpap->next_gpa = vpa; 409 vpap->len = len; 410 vpap->update_pending = 1; 411 } 412 413 spin_unlock(&tvcpu->arch.vpa_update_lock); 414 415 return err; 416 } 417 418 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 419 { 420 struct kvm *kvm = vcpu->kvm; 421 void *va; 422 unsigned long nb; 423 unsigned long gpa; 424 425 /* 426 * We need to pin the page pointed to by vpap->next_gpa, 427 * but we can't call kvmppc_pin_guest_page under the lock 428 * as it does get_user_pages() and down_read(). So we 429 * have to drop the lock, pin the page, then get the lock 430 * again and check that a new area didn't get registered 431 * in the meantime. 432 */ 433 for (;;) { 434 gpa = vpap->next_gpa; 435 spin_unlock(&vcpu->arch.vpa_update_lock); 436 va = NULL; 437 nb = 0; 438 if (gpa) 439 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 440 spin_lock(&vcpu->arch.vpa_update_lock); 441 if (gpa == vpap->next_gpa) 442 break; 443 /* sigh... unpin that one and try again */ 444 if (va) 445 kvmppc_unpin_guest_page(kvm, va, gpa, false); 446 } 447 448 vpap->update_pending = 0; 449 if (va && nb < vpap->len) { 450 /* 451 * If it's now too short, it must be that userspace 452 * has changed the mappings underlying guest memory, 453 * so unregister the region. 454 */ 455 kvmppc_unpin_guest_page(kvm, va, gpa, false); 456 va = NULL; 457 } 458 if (vpap->pinned_addr) 459 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 460 vpap->dirty); 461 vpap->gpa = gpa; 462 vpap->pinned_addr = va; 463 vpap->dirty = false; 464 if (va) 465 vpap->pinned_end = va + vpap->len; 466 } 467 468 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 469 { 470 if (!(vcpu->arch.vpa.update_pending || 471 vcpu->arch.slb_shadow.update_pending || 472 vcpu->arch.dtl.update_pending)) 473 return; 474 475 spin_lock(&vcpu->arch.vpa_update_lock); 476 if (vcpu->arch.vpa.update_pending) { 477 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 478 if (vcpu->arch.vpa.pinned_addr) 479 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 480 } 481 if (vcpu->arch.dtl.update_pending) { 482 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 483 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 484 vcpu->arch.dtl_index = 0; 485 } 486 if (vcpu->arch.slb_shadow.update_pending) 487 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 488 spin_unlock(&vcpu->arch.vpa_update_lock); 489 } 490 491 /* 492 * Return the accumulated stolen time for the vcore up until `now'. 493 * The caller should hold the vcore lock. 494 */ 495 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 496 { 497 u64 p; 498 499 /* 500 * If we are the task running the vcore, then since we hold 501 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb 502 * can't be updated, so we don't need the tbacct_lock. 503 * If the vcore is inactive, it can't become active (since we 504 * hold the vcore lock), so the vcpu load/put functions won't 505 * update stolen_tb/preempt_tb, and we don't need tbacct_lock. 506 */ 507 if (vc->vcore_state != VCORE_INACTIVE && 508 vc->runner->arch.run_task != current) { 509 spin_lock_irq(&vc->runner->arch.tbacct_lock); 510 p = vc->stolen_tb; 511 if (vc->preempt_tb != TB_NIL) 512 p += now - vc->preempt_tb; 513 spin_unlock_irq(&vc->runner->arch.tbacct_lock); 514 } else { 515 p = vc->stolen_tb; 516 } 517 return p; 518 } 519 520 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 521 struct kvmppc_vcore *vc) 522 { 523 struct dtl_entry *dt; 524 struct lppaca *vpa; 525 unsigned long stolen; 526 unsigned long core_stolen; 527 u64 now; 528 529 dt = vcpu->arch.dtl_ptr; 530 vpa = vcpu->arch.vpa.pinned_addr; 531 now = mftb(); 532 core_stolen = vcore_stolen_time(vc, now); 533 stolen = core_stolen - vcpu->arch.stolen_logged; 534 vcpu->arch.stolen_logged = core_stolen; 535 spin_lock_irq(&vcpu->arch.tbacct_lock); 536 stolen += vcpu->arch.busy_stolen; 537 vcpu->arch.busy_stolen = 0; 538 spin_unlock_irq(&vcpu->arch.tbacct_lock); 539 if (!dt || !vpa) 540 return; 541 memset(dt, 0, sizeof(struct dtl_entry)); 542 dt->dispatch_reason = 7; 543 dt->processor_id = vc->pcpu + vcpu->arch.ptid; 544 dt->timebase = now + vc->tb_offset; 545 dt->enqueue_to_dispatch_time = stolen; 546 dt->srr0 = kvmppc_get_pc(vcpu); 547 dt->srr1 = vcpu->arch.shregs.msr; 548 ++dt; 549 if (dt == vcpu->arch.dtl.pinned_end) 550 dt = vcpu->arch.dtl.pinned_addr; 551 vcpu->arch.dtl_ptr = dt; 552 /* order writing *dt vs. writing vpa->dtl_idx */ 553 smp_wmb(); 554 vpa->dtl_idx = ++vcpu->arch.dtl_index; 555 vcpu->arch.dtl.dirty = true; 556 } 557 558 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 559 { 560 unsigned long req = kvmppc_get_gpr(vcpu, 3); 561 unsigned long target, ret = H_SUCCESS; 562 struct kvm_vcpu *tvcpu; 563 int idx, rc; 564 565 switch (req) { 566 case H_ENTER: 567 idx = srcu_read_lock(&vcpu->kvm->srcu); 568 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 569 kvmppc_get_gpr(vcpu, 5), 570 kvmppc_get_gpr(vcpu, 6), 571 kvmppc_get_gpr(vcpu, 7)); 572 srcu_read_unlock(&vcpu->kvm->srcu, idx); 573 break; 574 case H_CEDE: 575 break; 576 case H_PROD: 577 target = kvmppc_get_gpr(vcpu, 4); 578 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 579 if (!tvcpu) { 580 ret = H_PARAMETER; 581 break; 582 } 583 tvcpu->arch.prodded = 1; 584 smp_mb(); 585 if (vcpu->arch.ceded) { 586 if (waitqueue_active(&vcpu->wq)) { 587 wake_up_interruptible(&vcpu->wq); 588 vcpu->stat.halt_wakeup++; 589 } 590 } 591 break; 592 case H_CONFER: 593 target = kvmppc_get_gpr(vcpu, 4); 594 if (target == -1) 595 break; 596 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 597 if (!tvcpu) { 598 ret = H_PARAMETER; 599 break; 600 } 601 kvm_vcpu_yield_to(tvcpu); 602 break; 603 case H_REGISTER_VPA: 604 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 605 kvmppc_get_gpr(vcpu, 5), 606 kvmppc_get_gpr(vcpu, 6)); 607 break; 608 case H_RTAS: 609 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 610 return RESUME_HOST; 611 612 idx = srcu_read_lock(&vcpu->kvm->srcu); 613 rc = kvmppc_rtas_hcall(vcpu); 614 srcu_read_unlock(&vcpu->kvm->srcu, idx); 615 616 if (rc == -ENOENT) 617 return RESUME_HOST; 618 else if (rc == 0) 619 break; 620 621 /* Send the error out to userspace via KVM_RUN */ 622 return rc; 623 624 case H_XIRR: 625 case H_CPPR: 626 case H_EOI: 627 case H_IPI: 628 case H_IPOLL: 629 case H_XIRR_X: 630 if (kvmppc_xics_enabled(vcpu)) { 631 ret = kvmppc_xics_hcall(vcpu, req); 632 break; 633 } /* fallthrough */ 634 default: 635 return RESUME_HOST; 636 } 637 kvmppc_set_gpr(vcpu, 3, ret); 638 vcpu->arch.hcall_needed = 0; 639 return RESUME_GUEST; 640 } 641 642 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 643 struct task_struct *tsk) 644 { 645 int r = RESUME_HOST; 646 647 vcpu->stat.sum_exits++; 648 649 run->exit_reason = KVM_EXIT_UNKNOWN; 650 run->ready_for_interrupt_injection = 1; 651 switch (vcpu->arch.trap) { 652 /* We're good on these - the host merely wanted to get our attention */ 653 case BOOK3S_INTERRUPT_HV_DECREMENTER: 654 vcpu->stat.dec_exits++; 655 r = RESUME_GUEST; 656 break; 657 case BOOK3S_INTERRUPT_EXTERNAL: 658 case BOOK3S_INTERRUPT_H_DOORBELL: 659 vcpu->stat.ext_intr_exits++; 660 r = RESUME_GUEST; 661 break; 662 case BOOK3S_INTERRUPT_PERFMON: 663 r = RESUME_GUEST; 664 break; 665 case BOOK3S_INTERRUPT_MACHINE_CHECK: 666 /* 667 * Deliver a machine check interrupt to the guest. 668 * We have to do this, even if the host has handled the 669 * machine check, because machine checks use SRR0/1 and 670 * the interrupt might have trashed guest state in them. 671 */ 672 kvmppc_book3s_queue_irqprio(vcpu, 673 BOOK3S_INTERRUPT_MACHINE_CHECK); 674 r = RESUME_GUEST; 675 break; 676 case BOOK3S_INTERRUPT_PROGRAM: 677 { 678 ulong flags; 679 /* 680 * Normally program interrupts are delivered directly 681 * to the guest by the hardware, but we can get here 682 * as a result of a hypervisor emulation interrupt 683 * (e40) getting turned into a 700 by BML RTAS. 684 */ 685 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 686 kvmppc_core_queue_program(vcpu, flags); 687 r = RESUME_GUEST; 688 break; 689 } 690 case BOOK3S_INTERRUPT_SYSCALL: 691 { 692 /* hcall - punt to userspace */ 693 int i; 694 695 /* hypercall with MSR_PR has already been handled in rmode, 696 * and never reaches here. 697 */ 698 699 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 700 for (i = 0; i < 9; ++i) 701 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 702 run->exit_reason = KVM_EXIT_PAPR_HCALL; 703 vcpu->arch.hcall_needed = 1; 704 r = RESUME_HOST; 705 break; 706 } 707 /* 708 * We get these next two if the guest accesses a page which it thinks 709 * it has mapped but which is not actually present, either because 710 * it is for an emulated I/O device or because the corresonding 711 * host page has been paged out. Any other HDSI/HISI interrupts 712 * have been handled already. 713 */ 714 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 715 r = RESUME_PAGE_FAULT; 716 break; 717 case BOOK3S_INTERRUPT_H_INST_STORAGE: 718 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 719 vcpu->arch.fault_dsisr = 0; 720 r = RESUME_PAGE_FAULT; 721 break; 722 /* 723 * This occurs if the guest executes an illegal instruction. 724 * We just generate a program interrupt to the guest, since 725 * we don't emulate any guest instructions at this stage. 726 */ 727 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 728 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 729 r = RESUME_GUEST; 730 break; 731 /* 732 * This occurs if the guest (kernel or userspace), does something that 733 * is prohibited by HFSCR. We just generate a program interrupt to 734 * the guest. 735 */ 736 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 737 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 738 r = RESUME_GUEST; 739 break; 740 default: 741 kvmppc_dump_regs(vcpu); 742 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 743 vcpu->arch.trap, kvmppc_get_pc(vcpu), 744 vcpu->arch.shregs.msr); 745 run->hw.hardware_exit_reason = vcpu->arch.trap; 746 r = RESUME_HOST; 747 break; 748 } 749 750 return r; 751 } 752 753 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 754 struct kvm_sregs *sregs) 755 { 756 int i; 757 758 memset(sregs, 0, sizeof(struct kvm_sregs)); 759 sregs->pvr = vcpu->arch.pvr; 760 for (i = 0; i < vcpu->arch.slb_max; i++) { 761 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 762 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 763 } 764 765 return 0; 766 } 767 768 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 769 struct kvm_sregs *sregs) 770 { 771 int i, j; 772 773 kvmppc_set_pvr_hv(vcpu, sregs->pvr); 774 775 j = 0; 776 for (i = 0; i < vcpu->arch.slb_nr; i++) { 777 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 778 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 779 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 780 ++j; 781 } 782 } 783 vcpu->arch.slb_max = j; 784 785 return 0; 786 } 787 788 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr) 789 { 790 struct kvmppc_vcore *vc = vcpu->arch.vcore; 791 u64 mask; 792 793 spin_lock(&vc->lock); 794 /* 795 * If ILE (interrupt little-endian) has changed, update the 796 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 797 */ 798 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 799 struct kvm *kvm = vcpu->kvm; 800 struct kvm_vcpu *vcpu; 801 int i; 802 803 mutex_lock(&kvm->lock); 804 kvm_for_each_vcpu(i, vcpu, kvm) { 805 if (vcpu->arch.vcore != vc) 806 continue; 807 if (new_lpcr & LPCR_ILE) 808 vcpu->arch.intr_msr |= MSR_LE; 809 else 810 vcpu->arch.intr_msr &= ~MSR_LE; 811 } 812 mutex_unlock(&kvm->lock); 813 } 814 815 /* 816 * Userspace can only modify DPFD (default prefetch depth), 817 * ILE (interrupt little-endian) and TC (translation control). 818 * On POWER8 userspace can also modify AIL (alt. interrupt loc.) 819 */ 820 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 821 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 822 mask |= LPCR_AIL; 823 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 824 spin_unlock(&vc->lock); 825 } 826 827 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 828 union kvmppc_one_reg *val) 829 { 830 int r = 0; 831 long int i; 832 833 switch (id) { 834 case KVM_REG_PPC_HIOR: 835 *val = get_reg_val(id, 0); 836 break; 837 case KVM_REG_PPC_DABR: 838 *val = get_reg_val(id, vcpu->arch.dabr); 839 break; 840 case KVM_REG_PPC_DABRX: 841 *val = get_reg_val(id, vcpu->arch.dabrx); 842 break; 843 case KVM_REG_PPC_DSCR: 844 *val = get_reg_val(id, vcpu->arch.dscr); 845 break; 846 case KVM_REG_PPC_PURR: 847 *val = get_reg_val(id, vcpu->arch.purr); 848 break; 849 case KVM_REG_PPC_SPURR: 850 *val = get_reg_val(id, vcpu->arch.spurr); 851 break; 852 case KVM_REG_PPC_AMR: 853 *val = get_reg_val(id, vcpu->arch.amr); 854 break; 855 case KVM_REG_PPC_UAMOR: 856 *val = get_reg_val(id, vcpu->arch.uamor); 857 break; 858 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 859 i = id - KVM_REG_PPC_MMCR0; 860 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 861 break; 862 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 863 i = id - KVM_REG_PPC_PMC1; 864 *val = get_reg_val(id, vcpu->arch.pmc[i]); 865 break; 866 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 867 i = id - KVM_REG_PPC_SPMC1; 868 *val = get_reg_val(id, vcpu->arch.spmc[i]); 869 break; 870 case KVM_REG_PPC_SIAR: 871 *val = get_reg_val(id, vcpu->arch.siar); 872 break; 873 case KVM_REG_PPC_SDAR: 874 *val = get_reg_val(id, vcpu->arch.sdar); 875 break; 876 case KVM_REG_PPC_SIER: 877 *val = get_reg_val(id, vcpu->arch.sier); 878 break; 879 case KVM_REG_PPC_IAMR: 880 *val = get_reg_val(id, vcpu->arch.iamr); 881 break; 882 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 883 case KVM_REG_PPC_TFHAR: 884 *val = get_reg_val(id, vcpu->arch.tfhar); 885 break; 886 case KVM_REG_PPC_TFIAR: 887 *val = get_reg_val(id, vcpu->arch.tfiar); 888 break; 889 case KVM_REG_PPC_TEXASR: 890 *val = get_reg_val(id, vcpu->arch.texasr); 891 break; 892 #endif 893 case KVM_REG_PPC_FSCR: 894 *val = get_reg_val(id, vcpu->arch.fscr); 895 break; 896 case KVM_REG_PPC_PSPB: 897 *val = get_reg_val(id, vcpu->arch.pspb); 898 break; 899 case KVM_REG_PPC_EBBHR: 900 *val = get_reg_val(id, vcpu->arch.ebbhr); 901 break; 902 case KVM_REG_PPC_EBBRR: 903 *val = get_reg_val(id, vcpu->arch.ebbrr); 904 break; 905 case KVM_REG_PPC_BESCR: 906 *val = get_reg_val(id, vcpu->arch.bescr); 907 break; 908 case KVM_REG_PPC_TAR: 909 *val = get_reg_val(id, vcpu->arch.tar); 910 break; 911 case KVM_REG_PPC_DPDES: 912 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 913 break; 914 case KVM_REG_PPC_DAWR: 915 *val = get_reg_val(id, vcpu->arch.dawr); 916 break; 917 case KVM_REG_PPC_DAWRX: 918 *val = get_reg_val(id, vcpu->arch.dawrx); 919 break; 920 case KVM_REG_PPC_CIABR: 921 *val = get_reg_val(id, vcpu->arch.ciabr); 922 break; 923 case KVM_REG_PPC_IC: 924 *val = get_reg_val(id, vcpu->arch.ic); 925 break; 926 case KVM_REG_PPC_VTB: 927 *val = get_reg_val(id, vcpu->arch.vtb); 928 break; 929 case KVM_REG_PPC_CSIGR: 930 *val = get_reg_val(id, vcpu->arch.csigr); 931 break; 932 case KVM_REG_PPC_TACR: 933 *val = get_reg_val(id, vcpu->arch.tacr); 934 break; 935 case KVM_REG_PPC_TCSCR: 936 *val = get_reg_val(id, vcpu->arch.tcscr); 937 break; 938 case KVM_REG_PPC_PID: 939 *val = get_reg_val(id, vcpu->arch.pid); 940 break; 941 case KVM_REG_PPC_ACOP: 942 *val = get_reg_val(id, vcpu->arch.acop); 943 break; 944 case KVM_REG_PPC_WORT: 945 *val = get_reg_val(id, vcpu->arch.wort); 946 break; 947 case KVM_REG_PPC_VPA_ADDR: 948 spin_lock(&vcpu->arch.vpa_update_lock); 949 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 950 spin_unlock(&vcpu->arch.vpa_update_lock); 951 break; 952 case KVM_REG_PPC_VPA_SLB: 953 spin_lock(&vcpu->arch.vpa_update_lock); 954 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 955 val->vpaval.length = vcpu->arch.slb_shadow.len; 956 spin_unlock(&vcpu->arch.vpa_update_lock); 957 break; 958 case KVM_REG_PPC_VPA_DTL: 959 spin_lock(&vcpu->arch.vpa_update_lock); 960 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 961 val->vpaval.length = vcpu->arch.dtl.len; 962 spin_unlock(&vcpu->arch.vpa_update_lock); 963 break; 964 case KVM_REG_PPC_TB_OFFSET: 965 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 966 break; 967 case KVM_REG_PPC_LPCR: 968 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 969 break; 970 case KVM_REG_PPC_PPR: 971 *val = get_reg_val(id, vcpu->arch.ppr); 972 break; 973 case KVM_REG_PPC_ARCH_COMPAT: 974 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 975 break; 976 default: 977 r = -EINVAL; 978 break; 979 } 980 981 return r; 982 } 983 984 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 985 union kvmppc_one_reg *val) 986 { 987 int r = 0; 988 long int i; 989 unsigned long addr, len; 990 991 switch (id) { 992 case KVM_REG_PPC_HIOR: 993 /* Only allow this to be set to zero */ 994 if (set_reg_val(id, *val)) 995 r = -EINVAL; 996 break; 997 case KVM_REG_PPC_DABR: 998 vcpu->arch.dabr = set_reg_val(id, *val); 999 break; 1000 case KVM_REG_PPC_DABRX: 1001 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1002 break; 1003 case KVM_REG_PPC_DSCR: 1004 vcpu->arch.dscr = set_reg_val(id, *val); 1005 break; 1006 case KVM_REG_PPC_PURR: 1007 vcpu->arch.purr = set_reg_val(id, *val); 1008 break; 1009 case KVM_REG_PPC_SPURR: 1010 vcpu->arch.spurr = set_reg_val(id, *val); 1011 break; 1012 case KVM_REG_PPC_AMR: 1013 vcpu->arch.amr = set_reg_val(id, *val); 1014 break; 1015 case KVM_REG_PPC_UAMOR: 1016 vcpu->arch.uamor = set_reg_val(id, *val); 1017 break; 1018 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1019 i = id - KVM_REG_PPC_MMCR0; 1020 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1021 break; 1022 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1023 i = id - KVM_REG_PPC_PMC1; 1024 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1025 break; 1026 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1027 i = id - KVM_REG_PPC_SPMC1; 1028 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1029 break; 1030 case KVM_REG_PPC_SIAR: 1031 vcpu->arch.siar = set_reg_val(id, *val); 1032 break; 1033 case KVM_REG_PPC_SDAR: 1034 vcpu->arch.sdar = set_reg_val(id, *val); 1035 break; 1036 case KVM_REG_PPC_SIER: 1037 vcpu->arch.sier = set_reg_val(id, *val); 1038 break; 1039 case KVM_REG_PPC_IAMR: 1040 vcpu->arch.iamr = set_reg_val(id, *val); 1041 break; 1042 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1043 case KVM_REG_PPC_TFHAR: 1044 vcpu->arch.tfhar = set_reg_val(id, *val); 1045 break; 1046 case KVM_REG_PPC_TFIAR: 1047 vcpu->arch.tfiar = set_reg_val(id, *val); 1048 break; 1049 case KVM_REG_PPC_TEXASR: 1050 vcpu->arch.texasr = set_reg_val(id, *val); 1051 break; 1052 #endif 1053 case KVM_REG_PPC_FSCR: 1054 vcpu->arch.fscr = set_reg_val(id, *val); 1055 break; 1056 case KVM_REG_PPC_PSPB: 1057 vcpu->arch.pspb = set_reg_val(id, *val); 1058 break; 1059 case KVM_REG_PPC_EBBHR: 1060 vcpu->arch.ebbhr = set_reg_val(id, *val); 1061 break; 1062 case KVM_REG_PPC_EBBRR: 1063 vcpu->arch.ebbrr = set_reg_val(id, *val); 1064 break; 1065 case KVM_REG_PPC_BESCR: 1066 vcpu->arch.bescr = set_reg_val(id, *val); 1067 break; 1068 case KVM_REG_PPC_TAR: 1069 vcpu->arch.tar = set_reg_val(id, *val); 1070 break; 1071 case KVM_REG_PPC_DPDES: 1072 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1073 break; 1074 case KVM_REG_PPC_DAWR: 1075 vcpu->arch.dawr = set_reg_val(id, *val); 1076 break; 1077 case KVM_REG_PPC_DAWRX: 1078 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1079 break; 1080 case KVM_REG_PPC_CIABR: 1081 vcpu->arch.ciabr = set_reg_val(id, *val); 1082 /* Don't allow setting breakpoints in hypervisor code */ 1083 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1084 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1085 break; 1086 case KVM_REG_PPC_IC: 1087 vcpu->arch.ic = set_reg_val(id, *val); 1088 break; 1089 case KVM_REG_PPC_VTB: 1090 vcpu->arch.vtb = set_reg_val(id, *val); 1091 break; 1092 case KVM_REG_PPC_CSIGR: 1093 vcpu->arch.csigr = set_reg_val(id, *val); 1094 break; 1095 case KVM_REG_PPC_TACR: 1096 vcpu->arch.tacr = set_reg_val(id, *val); 1097 break; 1098 case KVM_REG_PPC_TCSCR: 1099 vcpu->arch.tcscr = set_reg_val(id, *val); 1100 break; 1101 case KVM_REG_PPC_PID: 1102 vcpu->arch.pid = set_reg_val(id, *val); 1103 break; 1104 case KVM_REG_PPC_ACOP: 1105 vcpu->arch.acop = set_reg_val(id, *val); 1106 break; 1107 case KVM_REG_PPC_WORT: 1108 vcpu->arch.wort = set_reg_val(id, *val); 1109 break; 1110 case KVM_REG_PPC_VPA_ADDR: 1111 addr = set_reg_val(id, *val); 1112 r = -EINVAL; 1113 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1114 vcpu->arch.dtl.next_gpa)) 1115 break; 1116 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1117 break; 1118 case KVM_REG_PPC_VPA_SLB: 1119 addr = val->vpaval.addr; 1120 len = val->vpaval.length; 1121 r = -EINVAL; 1122 if (addr && !vcpu->arch.vpa.next_gpa) 1123 break; 1124 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1125 break; 1126 case KVM_REG_PPC_VPA_DTL: 1127 addr = val->vpaval.addr; 1128 len = val->vpaval.length; 1129 r = -EINVAL; 1130 if (addr && (len < sizeof(struct dtl_entry) || 1131 !vcpu->arch.vpa.next_gpa)) 1132 break; 1133 len -= len % sizeof(struct dtl_entry); 1134 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1135 break; 1136 case KVM_REG_PPC_TB_OFFSET: 1137 /* round up to multiple of 2^24 */ 1138 vcpu->arch.vcore->tb_offset = 1139 ALIGN(set_reg_val(id, *val), 1UL << 24); 1140 break; 1141 case KVM_REG_PPC_LPCR: 1142 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val)); 1143 break; 1144 case KVM_REG_PPC_PPR: 1145 vcpu->arch.ppr = set_reg_val(id, *val); 1146 break; 1147 case KVM_REG_PPC_ARCH_COMPAT: 1148 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1149 break; 1150 default: 1151 r = -EINVAL; 1152 break; 1153 } 1154 1155 return r; 1156 } 1157 1158 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1159 unsigned int id) 1160 { 1161 struct kvm_vcpu *vcpu; 1162 int err = -EINVAL; 1163 int core; 1164 struct kvmppc_vcore *vcore; 1165 1166 core = id / threads_per_core; 1167 if (core >= KVM_MAX_VCORES) 1168 goto out; 1169 1170 err = -ENOMEM; 1171 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1172 if (!vcpu) 1173 goto out; 1174 1175 err = kvm_vcpu_init(vcpu, kvm, id); 1176 if (err) 1177 goto free_vcpu; 1178 1179 vcpu->arch.shared = &vcpu->arch.shregs; 1180 vcpu->arch.mmcr[0] = MMCR0_FC; 1181 vcpu->arch.ctrl = CTRL_RUNLATCH; 1182 /* default to host PVR, since we can't spoof it */ 1183 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1184 spin_lock_init(&vcpu->arch.vpa_update_lock); 1185 spin_lock_init(&vcpu->arch.tbacct_lock); 1186 vcpu->arch.busy_preempt = TB_NIL; 1187 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1188 1189 kvmppc_mmu_book3s_hv_init(vcpu); 1190 1191 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1192 1193 init_waitqueue_head(&vcpu->arch.cpu_run); 1194 1195 mutex_lock(&kvm->lock); 1196 vcore = kvm->arch.vcores[core]; 1197 if (!vcore) { 1198 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1199 if (vcore) { 1200 INIT_LIST_HEAD(&vcore->runnable_threads); 1201 spin_lock_init(&vcore->lock); 1202 init_waitqueue_head(&vcore->wq); 1203 vcore->preempt_tb = TB_NIL; 1204 vcore->lpcr = kvm->arch.lpcr; 1205 vcore->first_vcpuid = core * threads_per_core; 1206 vcore->kvm = kvm; 1207 } 1208 kvm->arch.vcores[core] = vcore; 1209 kvm->arch.online_vcores++; 1210 } 1211 mutex_unlock(&kvm->lock); 1212 1213 if (!vcore) 1214 goto free_vcpu; 1215 1216 spin_lock(&vcore->lock); 1217 ++vcore->num_threads; 1218 spin_unlock(&vcore->lock); 1219 vcpu->arch.vcore = vcore; 1220 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 1221 1222 vcpu->arch.cpu_type = KVM_CPU_3S_64; 1223 kvmppc_sanity_check(vcpu); 1224 1225 return vcpu; 1226 1227 free_vcpu: 1228 kmem_cache_free(kvm_vcpu_cache, vcpu); 1229 out: 1230 return ERR_PTR(err); 1231 } 1232 1233 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 1234 { 1235 if (vpa->pinned_addr) 1236 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 1237 vpa->dirty); 1238 } 1239 1240 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 1241 { 1242 spin_lock(&vcpu->arch.vpa_update_lock); 1243 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 1244 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 1245 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 1246 spin_unlock(&vcpu->arch.vpa_update_lock); 1247 kvm_vcpu_uninit(vcpu); 1248 kmem_cache_free(kvm_vcpu_cache, vcpu); 1249 } 1250 1251 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 1252 { 1253 /* Indicate we want to get back into the guest */ 1254 return 1; 1255 } 1256 1257 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 1258 { 1259 unsigned long dec_nsec, now; 1260 1261 now = get_tb(); 1262 if (now > vcpu->arch.dec_expires) { 1263 /* decrementer has already gone negative */ 1264 kvmppc_core_queue_dec(vcpu); 1265 kvmppc_core_prepare_to_enter(vcpu); 1266 return; 1267 } 1268 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 1269 / tb_ticks_per_sec; 1270 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 1271 HRTIMER_MODE_REL); 1272 vcpu->arch.timer_running = 1; 1273 } 1274 1275 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1276 { 1277 vcpu->arch.ceded = 0; 1278 if (vcpu->arch.timer_running) { 1279 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1280 vcpu->arch.timer_running = 0; 1281 } 1282 } 1283 1284 extern void __kvmppc_vcore_entry(void); 1285 1286 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1287 struct kvm_vcpu *vcpu) 1288 { 1289 u64 now; 1290 1291 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1292 return; 1293 spin_lock_irq(&vcpu->arch.tbacct_lock); 1294 now = mftb(); 1295 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1296 vcpu->arch.stolen_logged; 1297 vcpu->arch.busy_preempt = now; 1298 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1299 spin_unlock_irq(&vcpu->arch.tbacct_lock); 1300 --vc->n_runnable; 1301 list_del(&vcpu->arch.run_list); 1302 } 1303 1304 static int kvmppc_grab_hwthread(int cpu) 1305 { 1306 struct paca_struct *tpaca; 1307 long timeout = 1000; 1308 1309 tpaca = &paca[cpu]; 1310 1311 /* Ensure the thread won't go into the kernel if it wakes */ 1312 tpaca->kvm_hstate.hwthread_req = 1; 1313 tpaca->kvm_hstate.kvm_vcpu = NULL; 1314 1315 /* 1316 * If the thread is already executing in the kernel (e.g. handling 1317 * a stray interrupt), wait for it to get back to nap mode. 1318 * The smp_mb() is to ensure that our setting of hwthread_req 1319 * is visible before we look at hwthread_state, so if this 1320 * races with the code at system_reset_pSeries and the thread 1321 * misses our setting of hwthread_req, we are sure to see its 1322 * setting of hwthread_state, and vice versa. 1323 */ 1324 smp_mb(); 1325 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1326 if (--timeout <= 0) { 1327 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1328 return -EBUSY; 1329 } 1330 udelay(1); 1331 } 1332 return 0; 1333 } 1334 1335 static void kvmppc_release_hwthread(int cpu) 1336 { 1337 struct paca_struct *tpaca; 1338 1339 tpaca = &paca[cpu]; 1340 tpaca->kvm_hstate.hwthread_req = 0; 1341 tpaca->kvm_hstate.kvm_vcpu = NULL; 1342 } 1343 1344 static void kvmppc_start_thread(struct kvm_vcpu *vcpu) 1345 { 1346 int cpu; 1347 struct paca_struct *tpaca; 1348 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1349 1350 if (vcpu->arch.timer_running) { 1351 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1352 vcpu->arch.timer_running = 0; 1353 } 1354 cpu = vc->pcpu + vcpu->arch.ptid; 1355 tpaca = &paca[cpu]; 1356 tpaca->kvm_hstate.kvm_vcpu = vcpu; 1357 tpaca->kvm_hstate.kvm_vcore = vc; 1358 tpaca->kvm_hstate.ptid = vcpu->arch.ptid; 1359 vcpu->cpu = vc->pcpu; 1360 smp_wmb(); 1361 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 1362 if (cpu != smp_processor_id()) { 1363 #ifdef CONFIG_KVM_XICS 1364 xics_wake_cpu(cpu); 1365 #endif 1366 if (vcpu->arch.ptid) 1367 ++vc->n_woken; 1368 } 1369 #endif 1370 } 1371 1372 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) 1373 { 1374 int i; 1375 1376 HMT_low(); 1377 i = 0; 1378 while (vc->nap_count < vc->n_woken) { 1379 if (++i >= 1000000) { 1380 pr_err("kvmppc_wait_for_nap timeout %d %d\n", 1381 vc->nap_count, vc->n_woken); 1382 break; 1383 } 1384 cpu_relax(); 1385 } 1386 HMT_medium(); 1387 } 1388 1389 /* 1390 * Check that we are on thread 0 and that any other threads in 1391 * this core are off-line. Then grab the threads so they can't 1392 * enter the kernel. 1393 */ 1394 static int on_primary_thread(void) 1395 { 1396 int cpu = smp_processor_id(); 1397 int thr = cpu_thread_in_core(cpu); 1398 1399 if (thr) 1400 return 0; 1401 while (++thr < threads_per_core) 1402 if (cpu_online(cpu + thr)) 1403 return 0; 1404 1405 /* Grab all hw threads so they can't go into the kernel */ 1406 for (thr = 1; thr < threads_per_core; ++thr) { 1407 if (kvmppc_grab_hwthread(cpu + thr)) { 1408 /* Couldn't grab one; let the others go */ 1409 do { 1410 kvmppc_release_hwthread(cpu + thr); 1411 } while (--thr > 0); 1412 return 0; 1413 } 1414 } 1415 return 1; 1416 } 1417 1418 /* 1419 * Run a set of guest threads on a physical core. 1420 * Called with vc->lock held. 1421 */ 1422 static void kvmppc_run_core(struct kvmppc_vcore *vc) 1423 { 1424 struct kvm_vcpu *vcpu, *vnext; 1425 long ret; 1426 u64 now; 1427 int i, need_vpa_update; 1428 int srcu_idx; 1429 struct kvm_vcpu *vcpus_to_update[threads_per_core]; 1430 1431 /* don't start if any threads have a signal pending */ 1432 need_vpa_update = 0; 1433 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1434 if (signal_pending(vcpu->arch.run_task)) 1435 return; 1436 if (vcpu->arch.vpa.update_pending || 1437 vcpu->arch.slb_shadow.update_pending || 1438 vcpu->arch.dtl.update_pending) 1439 vcpus_to_update[need_vpa_update++] = vcpu; 1440 } 1441 1442 /* 1443 * Initialize *vc, in particular vc->vcore_state, so we can 1444 * drop the vcore lock if necessary. 1445 */ 1446 vc->n_woken = 0; 1447 vc->nap_count = 0; 1448 vc->entry_exit_count = 0; 1449 vc->vcore_state = VCORE_STARTING; 1450 vc->in_guest = 0; 1451 vc->napping_threads = 0; 1452 1453 /* 1454 * Updating any of the vpas requires calling kvmppc_pin_guest_page, 1455 * which can't be called with any spinlocks held. 1456 */ 1457 if (need_vpa_update) { 1458 spin_unlock(&vc->lock); 1459 for (i = 0; i < need_vpa_update; ++i) 1460 kvmppc_update_vpas(vcpus_to_update[i]); 1461 spin_lock(&vc->lock); 1462 } 1463 1464 /* 1465 * Make sure we are running on thread 0, and that 1466 * secondary threads are offline. 1467 */ 1468 if (threads_per_core > 1 && !on_primary_thread()) { 1469 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1470 vcpu->arch.ret = -EBUSY; 1471 goto out; 1472 } 1473 1474 vc->pcpu = smp_processor_id(); 1475 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1476 kvmppc_start_thread(vcpu); 1477 kvmppc_create_dtl_entry(vcpu, vc); 1478 } 1479 1480 /* Set this explicitly in case thread 0 doesn't have a vcpu */ 1481 get_paca()->kvm_hstate.kvm_vcore = vc; 1482 get_paca()->kvm_hstate.ptid = 0; 1483 1484 vc->vcore_state = VCORE_RUNNING; 1485 preempt_disable(); 1486 spin_unlock(&vc->lock); 1487 1488 kvm_guest_enter(); 1489 1490 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 1491 1492 __kvmppc_vcore_entry(); 1493 1494 spin_lock(&vc->lock); 1495 /* disable sending of IPIs on virtual external irqs */ 1496 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1497 vcpu->cpu = -1; 1498 /* wait for secondary threads to finish writing their state to memory */ 1499 if (vc->nap_count < vc->n_woken) 1500 kvmppc_wait_for_nap(vc); 1501 for (i = 0; i < threads_per_core; ++i) 1502 kvmppc_release_hwthread(vc->pcpu + i); 1503 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 1504 vc->vcore_state = VCORE_EXITING; 1505 spin_unlock(&vc->lock); 1506 1507 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 1508 1509 /* make sure updates to secondary vcpu structs are visible now */ 1510 smp_mb(); 1511 kvm_guest_exit(); 1512 1513 preempt_enable(); 1514 cond_resched(); 1515 1516 spin_lock(&vc->lock); 1517 now = get_tb(); 1518 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1519 /* cancel pending dec exception if dec is positive */ 1520 if (now < vcpu->arch.dec_expires && 1521 kvmppc_core_pending_dec(vcpu)) 1522 kvmppc_core_dequeue_dec(vcpu); 1523 1524 ret = RESUME_GUEST; 1525 if (vcpu->arch.trap) 1526 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 1527 vcpu->arch.run_task); 1528 1529 vcpu->arch.ret = ret; 1530 vcpu->arch.trap = 0; 1531 1532 if (vcpu->arch.ceded) { 1533 if (ret != RESUME_GUEST) 1534 kvmppc_end_cede(vcpu); 1535 else 1536 kvmppc_set_timer(vcpu); 1537 } 1538 } 1539 1540 out: 1541 vc->vcore_state = VCORE_INACTIVE; 1542 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 1543 arch.run_list) { 1544 if (vcpu->arch.ret != RESUME_GUEST) { 1545 kvmppc_remove_runnable(vc, vcpu); 1546 wake_up(&vcpu->arch.cpu_run); 1547 } 1548 } 1549 } 1550 1551 /* 1552 * Wait for some other vcpu thread to execute us, and 1553 * wake us up when we need to handle something in the host. 1554 */ 1555 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) 1556 { 1557 DEFINE_WAIT(wait); 1558 1559 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 1560 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) 1561 schedule(); 1562 finish_wait(&vcpu->arch.cpu_run, &wait); 1563 } 1564 1565 /* 1566 * All the vcpus in this vcore are idle, so wait for a decrementer 1567 * or external interrupt to one of the vcpus. vc->lock is held. 1568 */ 1569 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 1570 { 1571 DEFINE_WAIT(wait); 1572 1573 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 1574 vc->vcore_state = VCORE_SLEEPING; 1575 spin_unlock(&vc->lock); 1576 schedule(); 1577 finish_wait(&vc->wq, &wait); 1578 spin_lock(&vc->lock); 1579 vc->vcore_state = VCORE_INACTIVE; 1580 } 1581 1582 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 1583 { 1584 int n_ceded; 1585 struct kvmppc_vcore *vc; 1586 struct kvm_vcpu *v, *vn; 1587 1588 kvm_run->exit_reason = 0; 1589 vcpu->arch.ret = RESUME_GUEST; 1590 vcpu->arch.trap = 0; 1591 kvmppc_update_vpas(vcpu); 1592 1593 /* 1594 * Synchronize with other threads in this virtual core 1595 */ 1596 vc = vcpu->arch.vcore; 1597 spin_lock(&vc->lock); 1598 vcpu->arch.ceded = 0; 1599 vcpu->arch.run_task = current; 1600 vcpu->arch.kvm_run = kvm_run; 1601 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 1602 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 1603 vcpu->arch.busy_preempt = TB_NIL; 1604 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 1605 ++vc->n_runnable; 1606 1607 /* 1608 * This happens the first time this is called for a vcpu. 1609 * If the vcore is already running, we may be able to start 1610 * this thread straight away and have it join in. 1611 */ 1612 if (!signal_pending(current)) { 1613 if (vc->vcore_state == VCORE_RUNNING && 1614 VCORE_EXIT_COUNT(vc) == 0) { 1615 kvmppc_create_dtl_entry(vcpu, vc); 1616 kvmppc_start_thread(vcpu); 1617 } else if (vc->vcore_state == VCORE_SLEEPING) { 1618 wake_up(&vc->wq); 1619 } 1620 1621 } 1622 1623 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 1624 !signal_pending(current)) { 1625 if (vc->vcore_state != VCORE_INACTIVE) { 1626 spin_unlock(&vc->lock); 1627 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); 1628 spin_lock(&vc->lock); 1629 continue; 1630 } 1631 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 1632 arch.run_list) { 1633 kvmppc_core_prepare_to_enter(v); 1634 if (signal_pending(v->arch.run_task)) { 1635 kvmppc_remove_runnable(vc, v); 1636 v->stat.signal_exits++; 1637 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 1638 v->arch.ret = -EINTR; 1639 wake_up(&v->arch.cpu_run); 1640 } 1641 } 1642 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1643 break; 1644 vc->runner = vcpu; 1645 n_ceded = 0; 1646 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 1647 if (!v->arch.pending_exceptions) 1648 n_ceded += v->arch.ceded; 1649 else 1650 v->arch.ceded = 0; 1651 } 1652 if (n_ceded == vc->n_runnable) 1653 kvmppc_vcore_blocked(vc); 1654 else 1655 kvmppc_run_core(vc); 1656 vc->runner = NULL; 1657 } 1658 1659 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 1660 (vc->vcore_state == VCORE_RUNNING || 1661 vc->vcore_state == VCORE_EXITING)) { 1662 spin_unlock(&vc->lock); 1663 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); 1664 spin_lock(&vc->lock); 1665 } 1666 1667 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 1668 kvmppc_remove_runnable(vc, vcpu); 1669 vcpu->stat.signal_exits++; 1670 kvm_run->exit_reason = KVM_EXIT_INTR; 1671 vcpu->arch.ret = -EINTR; 1672 } 1673 1674 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 1675 /* Wake up some vcpu to run the core */ 1676 v = list_first_entry(&vc->runnable_threads, 1677 struct kvm_vcpu, arch.run_list); 1678 wake_up(&v->arch.cpu_run); 1679 } 1680 1681 spin_unlock(&vc->lock); 1682 return vcpu->arch.ret; 1683 } 1684 1685 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 1686 { 1687 int r; 1688 int srcu_idx; 1689 1690 if (!vcpu->arch.sane) { 1691 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1692 return -EINVAL; 1693 } 1694 1695 kvmppc_core_prepare_to_enter(vcpu); 1696 1697 /* No need to go into the guest when all we'll do is come back out */ 1698 if (signal_pending(current)) { 1699 run->exit_reason = KVM_EXIT_INTR; 1700 return -EINTR; 1701 } 1702 1703 atomic_inc(&vcpu->kvm->arch.vcpus_running); 1704 /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */ 1705 smp_mb(); 1706 1707 /* On the first time here, set up HTAB and VRMA or RMA */ 1708 if (!vcpu->kvm->arch.rma_setup_done) { 1709 r = kvmppc_hv_setup_htab_rma(vcpu); 1710 if (r) 1711 goto out; 1712 } 1713 1714 flush_fp_to_thread(current); 1715 flush_altivec_to_thread(current); 1716 flush_vsx_to_thread(current); 1717 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 1718 vcpu->arch.pgdir = current->mm->pgd; 1719 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1720 1721 do { 1722 r = kvmppc_run_vcpu(run, vcpu); 1723 1724 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 1725 !(vcpu->arch.shregs.msr & MSR_PR)) { 1726 r = kvmppc_pseries_do_hcall(vcpu); 1727 kvmppc_core_prepare_to_enter(vcpu); 1728 } else if (r == RESUME_PAGE_FAULT) { 1729 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1730 r = kvmppc_book3s_hv_page_fault(run, vcpu, 1731 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1732 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1733 } 1734 } while (r == RESUME_GUEST); 1735 1736 out: 1737 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1738 atomic_dec(&vcpu->kvm->arch.vcpus_running); 1739 return r; 1740 } 1741 1742 1743 /* Work out RMLS (real mode limit selector) field value for a given RMA size. 1744 Assumes POWER7 or PPC970. */ 1745 static inline int lpcr_rmls(unsigned long rma_size) 1746 { 1747 switch (rma_size) { 1748 case 32ul << 20: /* 32 MB */ 1749 if (cpu_has_feature(CPU_FTR_ARCH_206)) 1750 return 8; /* only supported on POWER7 */ 1751 return -1; 1752 case 64ul << 20: /* 64 MB */ 1753 return 3; 1754 case 128ul << 20: /* 128 MB */ 1755 return 7; 1756 case 256ul << 20: /* 256 MB */ 1757 return 4; 1758 case 1ul << 30: /* 1 GB */ 1759 return 2; 1760 case 16ul << 30: /* 16 GB */ 1761 return 1; 1762 case 256ul << 30: /* 256 GB */ 1763 return 0; 1764 default: 1765 return -1; 1766 } 1767 } 1768 1769 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1770 { 1771 struct page *page; 1772 struct kvm_rma_info *ri = vma->vm_file->private_data; 1773 1774 if (vmf->pgoff >= kvm_rma_pages) 1775 return VM_FAULT_SIGBUS; 1776 1777 page = pfn_to_page(ri->base_pfn + vmf->pgoff); 1778 get_page(page); 1779 vmf->page = page; 1780 return 0; 1781 } 1782 1783 static const struct vm_operations_struct kvm_rma_vm_ops = { 1784 .fault = kvm_rma_fault, 1785 }; 1786 1787 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) 1788 { 1789 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 1790 vma->vm_ops = &kvm_rma_vm_ops; 1791 return 0; 1792 } 1793 1794 static int kvm_rma_release(struct inode *inode, struct file *filp) 1795 { 1796 struct kvm_rma_info *ri = filp->private_data; 1797 1798 kvm_release_rma(ri); 1799 return 0; 1800 } 1801 1802 static const struct file_operations kvm_rma_fops = { 1803 .mmap = kvm_rma_mmap, 1804 .release = kvm_rma_release, 1805 }; 1806 1807 static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, 1808 struct kvm_allocate_rma *ret) 1809 { 1810 long fd; 1811 struct kvm_rma_info *ri; 1812 /* 1813 * Only do this on PPC970 in HV mode 1814 */ 1815 if (!cpu_has_feature(CPU_FTR_HVMODE) || 1816 !cpu_has_feature(CPU_FTR_ARCH_201)) 1817 return -EINVAL; 1818 1819 if (!kvm_rma_pages) 1820 return -EINVAL; 1821 1822 ri = kvm_alloc_rma(); 1823 if (!ri) 1824 return -ENOMEM; 1825 1826 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC); 1827 if (fd < 0) 1828 kvm_release_rma(ri); 1829 1830 ret->rma_size = kvm_rma_pages << PAGE_SHIFT; 1831 return fd; 1832 } 1833 1834 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 1835 int linux_psize) 1836 { 1837 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 1838 1839 if (!def->shift) 1840 return; 1841 (*sps)->page_shift = def->shift; 1842 (*sps)->slb_enc = def->sllp; 1843 (*sps)->enc[0].page_shift = def->shift; 1844 /* 1845 * Only return base page encoding. We don't want to return 1846 * all the supporting pte_enc, because our H_ENTER doesn't 1847 * support MPSS yet. Once they do, we can start passing all 1848 * support pte_enc here 1849 */ 1850 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 1851 (*sps)++; 1852 } 1853 1854 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 1855 struct kvm_ppc_smmu_info *info) 1856 { 1857 struct kvm_ppc_one_seg_page_size *sps; 1858 1859 info->flags = KVM_PPC_PAGE_SIZES_REAL; 1860 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1861 info->flags |= KVM_PPC_1T_SEGMENTS; 1862 info->slb_size = mmu_slb_size; 1863 1864 /* We only support these sizes for now, and no muti-size segments */ 1865 sps = &info->sps[0]; 1866 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 1867 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 1868 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 1869 1870 return 0; 1871 } 1872 1873 /* 1874 * Get (and clear) the dirty memory log for a memory slot. 1875 */ 1876 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 1877 struct kvm_dirty_log *log) 1878 { 1879 struct kvm_memory_slot *memslot; 1880 int r; 1881 unsigned long n; 1882 1883 mutex_lock(&kvm->slots_lock); 1884 1885 r = -EINVAL; 1886 if (log->slot >= KVM_USER_MEM_SLOTS) 1887 goto out; 1888 1889 memslot = id_to_memslot(kvm->memslots, log->slot); 1890 r = -ENOENT; 1891 if (!memslot->dirty_bitmap) 1892 goto out; 1893 1894 n = kvm_dirty_bitmap_bytes(memslot); 1895 memset(memslot->dirty_bitmap, 0, n); 1896 1897 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); 1898 if (r) 1899 goto out; 1900 1901 r = -EFAULT; 1902 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1903 goto out; 1904 1905 r = 0; 1906 out: 1907 mutex_unlock(&kvm->slots_lock); 1908 return r; 1909 } 1910 1911 static void unpin_slot(struct kvm_memory_slot *memslot) 1912 { 1913 unsigned long *physp; 1914 unsigned long j, npages, pfn; 1915 struct page *page; 1916 1917 physp = memslot->arch.slot_phys; 1918 npages = memslot->npages; 1919 if (!physp) 1920 return; 1921 for (j = 0; j < npages; j++) { 1922 if (!(physp[j] & KVMPPC_GOT_PAGE)) 1923 continue; 1924 pfn = physp[j] >> PAGE_SHIFT; 1925 page = pfn_to_page(pfn); 1926 SetPageDirty(page); 1927 put_page(page); 1928 } 1929 } 1930 1931 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 1932 struct kvm_memory_slot *dont) 1933 { 1934 if (!dont || free->arch.rmap != dont->arch.rmap) { 1935 vfree(free->arch.rmap); 1936 free->arch.rmap = NULL; 1937 } 1938 if (!dont || free->arch.slot_phys != dont->arch.slot_phys) { 1939 unpin_slot(free); 1940 vfree(free->arch.slot_phys); 1941 free->arch.slot_phys = NULL; 1942 } 1943 } 1944 1945 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 1946 unsigned long npages) 1947 { 1948 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 1949 if (!slot->arch.rmap) 1950 return -ENOMEM; 1951 slot->arch.slot_phys = NULL; 1952 1953 return 0; 1954 } 1955 1956 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 1957 struct kvm_memory_slot *memslot, 1958 struct kvm_userspace_memory_region *mem) 1959 { 1960 unsigned long *phys; 1961 1962 /* Allocate a slot_phys array if needed */ 1963 phys = memslot->arch.slot_phys; 1964 if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) { 1965 phys = vzalloc(memslot->npages * sizeof(unsigned long)); 1966 if (!phys) 1967 return -ENOMEM; 1968 memslot->arch.slot_phys = phys; 1969 } 1970 1971 return 0; 1972 } 1973 1974 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 1975 struct kvm_userspace_memory_region *mem, 1976 const struct kvm_memory_slot *old) 1977 { 1978 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 1979 struct kvm_memory_slot *memslot; 1980 1981 if (npages && old->npages) { 1982 /* 1983 * If modifying a memslot, reset all the rmap dirty bits. 1984 * If this is a new memslot, we don't need to do anything 1985 * since the rmap array starts out as all zeroes, 1986 * i.e. no pages are dirty. 1987 */ 1988 memslot = id_to_memslot(kvm->memslots, mem->slot); 1989 kvmppc_hv_get_dirty_log(kvm, memslot, NULL); 1990 } 1991 } 1992 1993 /* 1994 * Update LPCR values in kvm->arch and in vcores. 1995 * Caller must hold kvm->lock. 1996 */ 1997 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 1998 { 1999 long int i; 2000 u32 cores_done = 0; 2001 2002 if ((kvm->arch.lpcr & mask) == lpcr) 2003 return; 2004 2005 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 2006 2007 for (i = 0; i < KVM_MAX_VCORES; ++i) { 2008 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 2009 if (!vc) 2010 continue; 2011 spin_lock(&vc->lock); 2012 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 2013 spin_unlock(&vc->lock); 2014 if (++cores_done >= kvm->arch.online_vcores) 2015 break; 2016 } 2017 } 2018 2019 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 2020 { 2021 return; 2022 } 2023 2024 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 2025 { 2026 int err = 0; 2027 struct kvm *kvm = vcpu->kvm; 2028 struct kvm_rma_info *ri = NULL; 2029 unsigned long hva; 2030 struct kvm_memory_slot *memslot; 2031 struct vm_area_struct *vma; 2032 unsigned long lpcr = 0, senc; 2033 unsigned long lpcr_mask = 0; 2034 unsigned long psize, porder; 2035 unsigned long rma_size; 2036 unsigned long rmls; 2037 unsigned long *physp; 2038 unsigned long i, npages; 2039 int srcu_idx; 2040 2041 mutex_lock(&kvm->lock); 2042 if (kvm->arch.rma_setup_done) 2043 goto out; /* another vcpu beat us to it */ 2044 2045 /* Allocate hashed page table (if not done already) and reset it */ 2046 if (!kvm->arch.hpt_virt) { 2047 err = kvmppc_alloc_hpt(kvm, NULL); 2048 if (err) { 2049 pr_err("KVM: Couldn't alloc HPT\n"); 2050 goto out; 2051 } 2052 } 2053 2054 /* Look up the memslot for guest physical address 0 */ 2055 srcu_idx = srcu_read_lock(&kvm->srcu); 2056 memslot = gfn_to_memslot(kvm, 0); 2057 2058 /* We must have some memory at 0 by now */ 2059 err = -EINVAL; 2060 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 2061 goto out_srcu; 2062 2063 /* Look up the VMA for the start of this memory slot */ 2064 hva = memslot->userspace_addr; 2065 down_read(¤t->mm->mmap_sem); 2066 vma = find_vma(current->mm, hva); 2067 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 2068 goto up_out; 2069 2070 psize = vma_kernel_pagesize(vma); 2071 porder = __ilog2(psize); 2072 2073 /* Is this one of our preallocated RMAs? */ 2074 if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops && 2075 hva == vma->vm_start) 2076 ri = vma->vm_file->private_data; 2077 2078 up_read(¤t->mm->mmap_sem); 2079 2080 if (!ri) { 2081 /* On POWER7, use VRMA; on PPC970, give up */ 2082 err = -EPERM; 2083 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 2084 pr_err("KVM: CPU requires an RMO\n"); 2085 goto out_srcu; 2086 } 2087 2088 /* We can handle 4k, 64k or 16M pages in the VRMA */ 2089 err = -EINVAL; 2090 if (!(psize == 0x1000 || psize == 0x10000 || 2091 psize == 0x1000000)) 2092 goto out_srcu; 2093 2094 /* Update VRMASD field in the LPCR */ 2095 senc = slb_pgsize_encoding(psize); 2096 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 2097 (VRMA_VSID << SLB_VSID_SHIFT_1T); 2098 lpcr_mask = LPCR_VRMASD; 2099 /* the -4 is to account for senc values starting at 0x10 */ 2100 lpcr = senc << (LPCR_VRMASD_SH - 4); 2101 2102 /* Create HPTEs in the hash page table for the VRMA */ 2103 kvmppc_map_vrma(vcpu, memslot, porder); 2104 2105 } else { 2106 /* Set up to use an RMO region */ 2107 rma_size = kvm_rma_pages; 2108 if (rma_size > memslot->npages) 2109 rma_size = memslot->npages; 2110 rma_size <<= PAGE_SHIFT; 2111 rmls = lpcr_rmls(rma_size); 2112 err = -EINVAL; 2113 if ((long)rmls < 0) { 2114 pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size); 2115 goto out_srcu; 2116 } 2117 atomic_inc(&ri->use_count); 2118 kvm->arch.rma = ri; 2119 2120 /* Update LPCR and RMOR */ 2121 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 2122 /* PPC970; insert RMLS value (split field) in HID4 */ 2123 lpcr_mask = (1ul << HID4_RMLS0_SH) | 2124 (3ul << HID4_RMLS2_SH) | HID4_RMOR; 2125 lpcr = ((rmls >> 2) << HID4_RMLS0_SH) | 2126 ((rmls & 3) << HID4_RMLS2_SH); 2127 /* RMOR is also in HID4 */ 2128 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) 2129 << HID4_RMOR_SH; 2130 } else { 2131 /* POWER7 */ 2132 lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS; 2133 lpcr = rmls << LPCR_RMLS_SH; 2134 kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT; 2135 } 2136 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n", 2137 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); 2138 2139 /* Initialize phys addrs of pages in RMO */ 2140 npages = kvm_rma_pages; 2141 porder = __ilog2(npages); 2142 physp = memslot->arch.slot_phys; 2143 if (physp) { 2144 if (npages > memslot->npages) 2145 npages = memslot->npages; 2146 spin_lock(&kvm->arch.slot_phys_lock); 2147 for (i = 0; i < npages; ++i) 2148 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + 2149 porder; 2150 spin_unlock(&kvm->arch.slot_phys_lock); 2151 } 2152 } 2153 2154 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 2155 2156 /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */ 2157 smp_wmb(); 2158 kvm->arch.rma_setup_done = 1; 2159 err = 0; 2160 out_srcu: 2161 srcu_read_unlock(&kvm->srcu, srcu_idx); 2162 out: 2163 mutex_unlock(&kvm->lock); 2164 return err; 2165 2166 up_out: 2167 up_read(¤t->mm->mmap_sem); 2168 goto out_srcu; 2169 } 2170 2171 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 2172 { 2173 unsigned long lpcr, lpid; 2174 2175 /* Allocate the guest's logical partition ID */ 2176 2177 lpid = kvmppc_alloc_lpid(); 2178 if ((long)lpid < 0) 2179 return -ENOMEM; 2180 kvm->arch.lpid = lpid; 2181 2182 /* 2183 * Since we don't flush the TLB when tearing down a VM, 2184 * and this lpid might have previously been used, 2185 * make sure we flush on each core before running the new VM. 2186 */ 2187 cpumask_setall(&kvm->arch.need_tlb_flush); 2188 2189 kvm->arch.rma = NULL; 2190 2191 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 2192 2193 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 2194 /* PPC970; HID4 is effectively the LPCR */ 2195 kvm->arch.host_lpid = 0; 2196 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); 2197 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); 2198 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | 2199 ((lpid & 0xf) << HID4_LPID5_SH); 2200 } else { 2201 /* POWER7; init LPCR for virtual RMA mode */ 2202 kvm->arch.host_lpid = mfspr(SPRN_LPID); 2203 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 2204 lpcr &= LPCR_PECE | LPCR_LPES; 2205 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 2206 LPCR_VPM0 | LPCR_VPM1; 2207 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 2208 (VRMA_VSID << SLB_VSID_SHIFT_1T); 2209 /* On POWER8 turn on online bit to enable PURR/SPURR */ 2210 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 2211 lpcr |= LPCR_ONL; 2212 } 2213 kvm->arch.lpcr = lpcr; 2214 2215 kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206); 2216 spin_lock_init(&kvm->arch.slot_phys_lock); 2217 2218 /* 2219 * Don't allow secondary CPU threads to come online 2220 * while any KVM VMs exist. 2221 */ 2222 inhibit_secondary_onlining(); 2223 2224 return 0; 2225 } 2226 2227 static void kvmppc_free_vcores(struct kvm *kvm) 2228 { 2229 long int i; 2230 2231 for (i = 0; i < KVM_MAX_VCORES; ++i) 2232 kfree(kvm->arch.vcores[i]); 2233 kvm->arch.online_vcores = 0; 2234 } 2235 2236 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 2237 { 2238 uninhibit_secondary_onlining(); 2239 2240 kvmppc_free_vcores(kvm); 2241 if (kvm->arch.rma) { 2242 kvm_release_rma(kvm->arch.rma); 2243 kvm->arch.rma = NULL; 2244 } 2245 2246 kvmppc_free_hpt(kvm); 2247 } 2248 2249 /* We don't need to emulate any privileged instructions or dcbz */ 2250 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 2251 unsigned int inst, int *advance) 2252 { 2253 return EMULATE_FAIL; 2254 } 2255 2256 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 2257 ulong spr_val) 2258 { 2259 return EMULATE_FAIL; 2260 } 2261 2262 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 2263 ulong *spr_val) 2264 { 2265 return EMULATE_FAIL; 2266 } 2267 2268 static int kvmppc_core_check_processor_compat_hv(void) 2269 { 2270 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2271 return -EIO; 2272 return 0; 2273 } 2274 2275 static long kvm_arch_vm_ioctl_hv(struct file *filp, 2276 unsigned int ioctl, unsigned long arg) 2277 { 2278 struct kvm *kvm __maybe_unused = filp->private_data; 2279 void __user *argp = (void __user *)arg; 2280 long r; 2281 2282 switch (ioctl) { 2283 2284 case KVM_ALLOCATE_RMA: { 2285 struct kvm_allocate_rma rma; 2286 struct kvm *kvm = filp->private_data; 2287 2288 r = kvm_vm_ioctl_allocate_rma(kvm, &rma); 2289 if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma))) 2290 r = -EFAULT; 2291 break; 2292 } 2293 2294 case KVM_PPC_ALLOCATE_HTAB: { 2295 u32 htab_order; 2296 2297 r = -EFAULT; 2298 if (get_user(htab_order, (u32 __user *)argp)) 2299 break; 2300 r = kvmppc_alloc_reset_hpt(kvm, &htab_order); 2301 if (r) 2302 break; 2303 r = -EFAULT; 2304 if (put_user(htab_order, (u32 __user *)argp)) 2305 break; 2306 r = 0; 2307 break; 2308 } 2309 2310 case KVM_PPC_GET_HTAB_FD: { 2311 struct kvm_get_htab_fd ghf; 2312 2313 r = -EFAULT; 2314 if (copy_from_user(&ghf, argp, sizeof(ghf))) 2315 break; 2316 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 2317 break; 2318 } 2319 2320 default: 2321 r = -ENOTTY; 2322 } 2323 2324 return r; 2325 } 2326 2327 static struct kvmppc_ops kvm_ops_hv = { 2328 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 2329 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 2330 .get_one_reg = kvmppc_get_one_reg_hv, 2331 .set_one_reg = kvmppc_set_one_reg_hv, 2332 .vcpu_load = kvmppc_core_vcpu_load_hv, 2333 .vcpu_put = kvmppc_core_vcpu_put_hv, 2334 .set_msr = kvmppc_set_msr_hv, 2335 .vcpu_run = kvmppc_vcpu_run_hv, 2336 .vcpu_create = kvmppc_core_vcpu_create_hv, 2337 .vcpu_free = kvmppc_core_vcpu_free_hv, 2338 .check_requests = kvmppc_core_check_requests_hv, 2339 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 2340 .flush_memslot = kvmppc_core_flush_memslot_hv, 2341 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 2342 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 2343 .unmap_hva = kvm_unmap_hva_hv, 2344 .unmap_hva_range = kvm_unmap_hva_range_hv, 2345 .age_hva = kvm_age_hva_hv, 2346 .test_age_hva = kvm_test_age_hva_hv, 2347 .set_spte_hva = kvm_set_spte_hva_hv, 2348 .mmu_destroy = kvmppc_mmu_destroy_hv, 2349 .free_memslot = kvmppc_core_free_memslot_hv, 2350 .create_memslot = kvmppc_core_create_memslot_hv, 2351 .init_vm = kvmppc_core_init_vm_hv, 2352 .destroy_vm = kvmppc_core_destroy_vm_hv, 2353 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 2354 .emulate_op = kvmppc_core_emulate_op_hv, 2355 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 2356 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 2357 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 2358 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 2359 }; 2360 2361 static int kvmppc_book3s_init_hv(void) 2362 { 2363 int r; 2364 /* 2365 * FIXME!! Do we need to check on all cpus ? 2366 */ 2367 r = kvmppc_core_check_processor_compat_hv(); 2368 if (r < 0) 2369 return r; 2370 2371 kvm_ops_hv.owner = THIS_MODULE; 2372 kvmppc_hv_ops = &kvm_ops_hv; 2373 2374 r = kvmppc_mmu_hv_init(); 2375 return r; 2376 } 2377 2378 static void kvmppc_book3s_exit_hv(void) 2379 { 2380 kvmppc_hv_ops = NULL; 2381 } 2382 2383 module_init(kvmppc_book3s_init_hv); 2384 module_exit(kvmppc_book3s_exit_hv); 2385 MODULE_LICENSE("GPL"); 2386 MODULE_ALIAS_MISCDEV(KVM_MINOR); 2387 MODULE_ALIAS("devname:kvm"); 2388