xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 84d517f3)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 
36 #include <asm/reg.h>
37 #include <asm/cputable.h>
38 #include <asm/cacheflush.h>
39 #include <asm/tlbflush.h>
40 #include <asm/uaccess.h>
41 #include <asm/io.h>
42 #include <asm/kvm_ppc.h>
43 #include <asm/kvm_book3s.h>
44 #include <asm/mmu_context.h>
45 #include <asm/lppaca.h>
46 #include <asm/processor.h>
47 #include <asm/cputhreads.h>
48 #include <asm/page.h>
49 #include <asm/hvcall.h>
50 #include <asm/switch_to.h>
51 #include <asm/smp.h>
52 #include <linux/gfp.h>
53 #include <linux/vmalloc.h>
54 #include <linux/highmem.h>
55 #include <linux/hugetlb.h>
56 #include <linux/module.h>
57 
58 #include "book3s.h"
59 
60 /* #define EXIT_DEBUG */
61 /* #define EXIT_DEBUG_SIMPLE */
62 /* #define EXIT_DEBUG_INT */
63 
64 /* Used to indicate that a guest page fault needs to be handled */
65 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
66 
67 /* Used as a "null" value for timebase values */
68 #define TB_NIL	(~(u64)0)
69 
70 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
71 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
72 
73 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
74 {
75 	int me;
76 	int cpu = vcpu->cpu;
77 	wait_queue_head_t *wqp;
78 
79 	wqp = kvm_arch_vcpu_wq(vcpu);
80 	if (waitqueue_active(wqp)) {
81 		wake_up_interruptible(wqp);
82 		++vcpu->stat.halt_wakeup;
83 	}
84 
85 	me = get_cpu();
86 
87 	/* CPU points to the first thread of the core */
88 	if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
89 #ifdef CONFIG_PPC_ICP_NATIVE
90 		int real_cpu = cpu + vcpu->arch.ptid;
91 		if (paca[real_cpu].kvm_hstate.xics_phys)
92 			xics_wake_cpu(real_cpu);
93 		else
94 #endif
95 		if (cpu_online(cpu))
96 			smp_send_reschedule(cpu);
97 	}
98 	put_cpu();
99 }
100 
101 /*
102  * We use the vcpu_load/put functions to measure stolen time.
103  * Stolen time is counted as time when either the vcpu is able to
104  * run as part of a virtual core, but the task running the vcore
105  * is preempted or sleeping, or when the vcpu needs something done
106  * in the kernel by the task running the vcpu, but that task is
107  * preempted or sleeping.  Those two things have to be counted
108  * separately, since one of the vcpu tasks will take on the job
109  * of running the core, and the other vcpu tasks in the vcore will
110  * sleep waiting for it to do that, but that sleep shouldn't count
111  * as stolen time.
112  *
113  * Hence we accumulate stolen time when the vcpu can run as part of
114  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
115  * needs its task to do other things in the kernel (for example,
116  * service a page fault) in busy_stolen.  We don't accumulate
117  * stolen time for a vcore when it is inactive, or for a vcpu
118  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
119  * a misnomer; it means that the vcpu task is not executing in
120  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
121  * the kernel.  We don't have any way of dividing up that time
122  * between time that the vcpu is genuinely stopped, time that
123  * the task is actively working on behalf of the vcpu, and time
124  * that the task is preempted, so we don't count any of it as
125  * stolen.
126  *
127  * Updates to busy_stolen are protected by arch.tbacct_lock;
128  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
129  * of the vcpu that has taken responsibility for running the vcore
130  * (i.e. vc->runner).  The stolen times are measured in units of
131  * timebase ticks.  (Note that the != TB_NIL checks below are
132  * purely defensive; they should never fail.)
133  */
134 
135 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
136 {
137 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
138 	unsigned long flags;
139 
140 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
141 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
142 	    vc->preempt_tb != TB_NIL) {
143 		vc->stolen_tb += mftb() - vc->preempt_tb;
144 		vc->preempt_tb = TB_NIL;
145 	}
146 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
147 	    vcpu->arch.busy_preempt != TB_NIL) {
148 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
149 		vcpu->arch.busy_preempt = TB_NIL;
150 	}
151 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
152 }
153 
154 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
155 {
156 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
157 	unsigned long flags;
158 
159 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
160 	if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
161 		vc->preempt_tb = mftb();
162 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
163 		vcpu->arch.busy_preempt = mftb();
164 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
165 }
166 
167 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
168 {
169 	vcpu->arch.shregs.msr = msr;
170 	kvmppc_end_cede(vcpu);
171 }
172 
173 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
174 {
175 	vcpu->arch.pvr = pvr;
176 }
177 
178 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
179 {
180 	unsigned long pcr = 0;
181 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
182 
183 	if (arch_compat) {
184 		if (!cpu_has_feature(CPU_FTR_ARCH_206))
185 			return -EINVAL;	/* 970 has no compat mode support */
186 
187 		switch (arch_compat) {
188 		case PVR_ARCH_205:
189 			/*
190 			 * If an arch bit is set in PCR, all the defined
191 			 * higher-order arch bits also have to be set.
192 			 */
193 			pcr = PCR_ARCH_206 | PCR_ARCH_205;
194 			break;
195 		case PVR_ARCH_206:
196 		case PVR_ARCH_206p:
197 			pcr = PCR_ARCH_206;
198 			break;
199 		case PVR_ARCH_207:
200 			break;
201 		default:
202 			return -EINVAL;
203 		}
204 
205 		if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
206 			/* POWER7 can't emulate POWER8 */
207 			if (!(pcr & PCR_ARCH_206))
208 				return -EINVAL;
209 			pcr &= ~PCR_ARCH_206;
210 		}
211 	}
212 
213 	spin_lock(&vc->lock);
214 	vc->arch_compat = arch_compat;
215 	vc->pcr = pcr;
216 	spin_unlock(&vc->lock);
217 
218 	return 0;
219 }
220 
221 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
222 {
223 	int r;
224 
225 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
226 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
227 	       vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
228 	for (r = 0; r < 16; ++r)
229 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
230 		       r, kvmppc_get_gpr(vcpu, r),
231 		       r+16, kvmppc_get_gpr(vcpu, r+16));
232 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
233 	       vcpu->arch.ctr, vcpu->arch.lr);
234 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
235 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
236 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
237 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
238 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
239 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
240 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
241 	       vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
242 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
243 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
244 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
245 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
246 	for (r = 0; r < vcpu->arch.slb_max; ++r)
247 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
248 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
249 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
250 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
251 	       vcpu->arch.last_inst);
252 }
253 
254 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
255 {
256 	int r;
257 	struct kvm_vcpu *v, *ret = NULL;
258 
259 	mutex_lock(&kvm->lock);
260 	kvm_for_each_vcpu(r, v, kvm) {
261 		if (v->vcpu_id == id) {
262 			ret = v;
263 			break;
264 		}
265 	}
266 	mutex_unlock(&kvm->lock);
267 	return ret;
268 }
269 
270 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
271 {
272 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
273 	vpa->yield_count = 1;
274 }
275 
276 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
277 		   unsigned long addr, unsigned long len)
278 {
279 	/* check address is cacheline aligned */
280 	if (addr & (L1_CACHE_BYTES - 1))
281 		return -EINVAL;
282 	spin_lock(&vcpu->arch.vpa_update_lock);
283 	if (v->next_gpa != addr || v->len != len) {
284 		v->next_gpa = addr;
285 		v->len = addr ? len : 0;
286 		v->update_pending = 1;
287 	}
288 	spin_unlock(&vcpu->arch.vpa_update_lock);
289 	return 0;
290 }
291 
292 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
293 struct reg_vpa {
294 	u32 dummy;
295 	union {
296 		u16 hword;
297 		u32 word;
298 	} length;
299 };
300 
301 static int vpa_is_registered(struct kvmppc_vpa *vpap)
302 {
303 	if (vpap->update_pending)
304 		return vpap->next_gpa != 0;
305 	return vpap->pinned_addr != NULL;
306 }
307 
308 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
309 				       unsigned long flags,
310 				       unsigned long vcpuid, unsigned long vpa)
311 {
312 	struct kvm *kvm = vcpu->kvm;
313 	unsigned long len, nb;
314 	void *va;
315 	struct kvm_vcpu *tvcpu;
316 	int err;
317 	int subfunc;
318 	struct kvmppc_vpa *vpap;
319 
320 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
321 	if (!tvcpu)
322 		return H_PARAMETER;
323 
324 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
325 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
326 	    subfunc == H_VPA_REG_SLB) {
327 		/* Registering new area - address must be cache-line aligned */
328 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
329 			return H_PARAMETER;
330 
331 		/* convert logical addr to kernel addr and read length */
332 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
333 		if (va == NULL)
334 			return H_PARAMETER;
335 		if (subfunc == H_VPA_REG_VPA)
336 			len = ((struct reg_vpa *)va)->length.hword;
337 		else
338 			len = ((struct reg_vpa *)va)->length.word;
339 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
340 
341 		/* Check length */
342 		if (len > nb || len < sizeof(struct reg_vpa))
343 			return H_PARAMETER;
344 	} else {
345 		vpa = 0;
346 		len = 0;
347 	}
348 
349 	err = H_PARAMETER;
350 	vpap = NULL;
351 	spin_lock(&tvcpu->arch.vpa_update_lock);
352 
353 	switch (subfunc) {
354 	case H_VPA_REG_VPA:		/* register VPA */
355 		if (len < sizeof(struct lppaca))
356 			break;
357 		vpap = &tvcpu->arch.vpa;
358 		err = 0;
359 		break;
360 
361 	case H_VPA_REG_DTL:		/* register DTL */
362 		if (len < sizeof(struct dtl_entry))
363 			break;
364 		len -= len % sizeof(struct dtl_entry);
365 
366 		/* Check that they have previously registered a VPA */
367 		err = H_RESOURCE;
368 		if (!vpa_is_registered(&tvcpu->arch.vpa))
369 			break;
370 
371 		vpap = &tvcpu->arch.dtl;
372 		err = 0;
373 		break;
374 
375 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
376 		/* Check that they have previously registered a VPA */
377 		err = H_RESOURCE;
378 		if (!vpa_is_registered(&tvcpu->arch.vpa))
379 			break;
380 
381 		vpap = &tvcpu->arch.slb_shadow;
382 		err = 0;
383 		break;
384 
385 	case H_VPA_DEREG_VPA:		/* deregister VPA */
386 		/* Check they don't still have a DTL or SLB buf registered */
387 		err = H_RESOURCE;
388 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
389 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
390 			break;
391 
392 		vpap = &tvcpu->arch.vpa;
393 		err = 0;
394 		break;
395 
396 	case H_VPA_DEREG_DTL:		/* deregister DTL */
397 		vpap = &tvcpu->arch.dtl;
398 		err = 0;
399 		break;
400 
401 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
402 		vpap = &tvcpu->arch.slb_shadow;
403 		err = 0;
404 		break;
405 	}
406 
407 	if (vpap) {
408 		vpap->next_gpa = vpa;
409 		vpap->len = len;
410 		vpap->update_pending = 1;
411 	}
412 
413 	spin_unlock(&tvcpu->arch.vpa_update_lock);
414 
415 	return err;
416 }
417 
418 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
419 {
420 	struct kvm *kvm = vcpu->kvm;
421 	void *va;
422 	unsigned long nb;
423 	unsigned long gpa;
424 
425 	/*
426 	 * We need to pin the page pointed to by vpap->next_gpa,
427 	 * but we can't call kvmppc_pin_guest_page under the lock
428 	 * as it does get_user_pages() and down_read().  So we
429 	 * have to drop the lock, pin the page, then get the lock
430 	 * again and check that a new area didn't get registered
431 	 * in the meantime.
432 	 */
433 	for (;;) {
434 		gpa = vpap->next_gpa;
435 		spin_unlock(&vcpu->arch.vpa_update_lock);
436 		va = NULL;
437 		nb = 0;
438 		if (gpa)
439 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
440 		spin_lock(&vcpu->arch.vpa_update_lock);
441 		if (gpa == vpap->next_gpa)
442 			break;
443 		/* sigh... unpin that one and try again */
444 		if (va)
445 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
446 	}
447 
448 	vpap->update_pending = 0;
449 	if (va && nb < vpap->len) {
450 		/*
451 		 * If it's now too short, it must be that userspace
452 		 * has changed the mappings underlying guest memory,
453 		 * so unregister the region.
454 		 */
455 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
456 		va = NULL;
457 	}
458 	if (vpap->pinned_addr)
459 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
460 					vpap->dirty);
461 	vpap->gpa = gpa;
462 	vpap->pinned_addr = va;
463 	vpap->dirty = false;
464 	if (va)
465 		vpap->pinned_end = va + vpap->len;
466 }
467 
468 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
469 {
470 	if (!(vcpu->arch.vpa.update_pending ||
471 	      vcpu->arch.slb_shadow.update_pending ||
472 	      vcpu->arch.dtl.update_pending))
473 		return;
474 
475 	spin_lock(&vcpu->arch.vpa_update_lock);
476 	if (vcpu->arch.vpa.update_pending) {
477 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
478 		if (vcpu->arch.vpa.pinned_addr)
479 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
480 	}
481 	if (vcpu->arch.dtl.update_pending) {
482 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
483 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
484 		vcpu->arch.dtl_index = 0;
485 	}
486 	if (vcpu->arch.slb_shadow.update_pending)
487 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
488 	spin_unlock(&vcpu->arch.vpa_update_lock);
489 }
490 
491 /*
492  * Return the accumulated stolen time for the vcore up until `now'.
493  * The caller should hold the vcore lock.
494  */
495 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
496 {
497 	u64 p;
498 
499 	/*
500 	 * If we are the task running the vcore, then since we hold
501 	 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
502 	 * can't be updated, so we don't need the tbacct_lock.
503 	 * If the vcore is inactive, it can't become active (since we
504 	 * hold the vcore lock), so the vcpu load/put functions won't
505 	 * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
506 	 */
507 	if (vc->vcore_state != VCORE_INACTIVE &&
508 	    vc->runner->arch.run_task != current) {
509 		spin_lock_irq(&vc->runner->arch.tbacct_lock);
510 		p = vc->stolen_tb;
511 		if (vc->preempt_tb != TB_NIL)
512 			p += now - vc->preempt_tb;
513 		spin_unlock_irq(&vc->runner->arch.tbacct_lock);
514 	} else {
515 		p = vc->stolen_tb;
516 	}
517 	return p;
518 }
519 
520 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
521 				    struct kvmppc_vcore *vc)
522 {
523 	struct dtl_entry *dt;
524 	struct lppaca *vpa;
525 	unsigned long stolen;
526 	unsigned long core_stolen;
527 	u64 now;
528 
529 	dt = vcpu->arch.dtl_ptr;
530 	vpa = vcpu->arch.vpa.pinned_addr;
531 	now = mftb();
532 	core_stolen = vcore_stolen_time(vc, now);
533 	stolen = core_stolen - vcpu->arch.stolen_logged;
534 	vcpu->arch.stolen_logged = core_stolen;
535 	spin_lock_irq(&vcpu->arch.tbacct_lock);
536 	stolen += vcpu->arch.busy_stolen;
537 	vcpu->arch.busy_stolen = 0;
538 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
539 	if (!dt || !vpa)
540 		return;
541 	memset(dt, 0, sizeof(struct dtl_entry));
542 	dt->dispatch_reason = 7;
543 	dt->processor_id = vc->pcpu + vcpu->arch.ptid;
544 	dt->timebase = now + vc->tb_offset;
545 	dt->enqueue_to_dispatch_time = stolen;
546 	dt->srr0 = kvmppc_get_pc(vcpu);
547 	dt->srr1 = vcpu->arch.shregs.msr;
548 	++dt;
549 	if (dt == vcpu->arch.dtl.pinned_end)
550 		dt = vcpu->arch.dtl.pinned_addr;
551 	vcpu->arch.dtl_ptr = dt;
552 	/* order writing *dt vs. writing vpa->dtl_idx */
553 	smp_wmb();
554 	vpa->dtl_idx = ++vcpu->arch.dtl_index;
555 	vcpu->arch.dtl.dirty = true;
556 }
557 
558 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
559 {
560 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
561 	unsigned long target, ret = H_SUCCESS;
562 	struct kvm_vcpu *tvcpu;
563 	int idx, rc;
564 
565 	switch (req) {
566 	case H_ENTER:
567 		idx = srcu_read_lock(&vcpu->kvm->srcu);
568 		ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
569 					      kvmppc_get_gpr(vcpu, 5),
570 					      kvmppc_get_gpr(vcpu, 6),
571 					      kvmppc_get_gpr(vcpu, 7));
572 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
573 		break;
574 	case H_CEDE:
575 		break;
576 	case H_PROD:
577 		target = kvmppc_get_gpr(vcpu, 4);
578 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
579 		if (!tvcpu) {
580 			ret = H_PARAMETER;
581 			break;
582 		}
583 		tvcpu->arch.prodded = 1;
584 		smp_mb();
585 		if (vcpu->arch.ceded) {
586 			if (waitqueue_active(&vcpu->wq)) {
587 				wake_up_interruptible(&vcpu->wq);
588 				vcpu->stat.halt_wakeup++;
589 			}
590 		}
591 		break;
592 	case H_CONFER:
593 		target = kvmppc_get_gpr(vcpu, 4);
594 		if (target == -1)
595 			break;
596 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
597 		if (!tvcpu) {
598 			ret = H_PARAMETER;
599 			break;
600 		}
601 		kvm_vcpu_yield_to(tvcpu);
602 		break;
603 	case H_REGISTER_VPA:
604 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
605 					kvmppc_get_gpr(vcpu, 5),
606 					kvmppc_get_gpr(vcpu, 6));
607 		break;
608 	case H_RTAS:
609 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
610 			return RESUME_HOST;
611 
612 		idx = srcu_read_lock(&vcpu->kvm->srcu);
613 		rc = kvmppc_rtas_hcall(vcpu);
614 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
615 
616 		if (rc == -ENOENT)
617 			return RESUME_HOST;
618 		else if (rc == 0)
619 			break;
620 
621 		/* Send the error out to userspace via KVM_RUN */
622 		return rc;
623 
624 	case H_XIRR:
625 	case H_CPPR:
626 	case H_EOI:
627 	case H_IPI:
628 	case H_IPOLL:
629 	case H_XIRR_X:
630 		if (kvmppc_xics_enabled(vcpu)) {
631 			ret = kvmppc_xics_hcall(vcpu, req);
632 			break;
633 		} /* fallthrough */
634 	default:
635 		return RESUME_HOST;
636 	}
637 	kvmppc_set_gpr(vcpu, 3, ret);
638 	vcpu->arch.hcall_needed = 0;
639 	return RESUME_GUEST;
640 }
641 
642 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
643 				 struct task_struct *tsk)
644 {
645 	int r = RESUME_HOST;
646 
647 	vcpu->stat.sum_exits++;
648 
649 	run->exit_reason = KVM_EXIT_UNKNOWN;
650 	run->ready_for_interrupt_injection = 1;
651 	switch (vcpu->arch.trap) {
652 	/* We're good on these - the host merely wanted to get our attention */
653 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
654 		vcpu->stat.dec_exits++;
655 		r = RESUME_GUEST;
656 		break;
657 	case BOOK3S_INTERRUPT_EXTERNAL:
658 	case BOOK3S_INTERRUPT_H_DOORBELL:
659 		vcpu->stat.ext_intr_exits++;
660 		r = RESUME_GUEST;
661 		break;
662 	case BOOK3S_INTERRUPT_PERFMON:
663 		r = RESUME_GUEST;
664 		break;
665 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
666 		/*
667 		 * Deliver a machine check interrupt to the guest.
668 		 * We have to do this, even if the host has handled the
669 		 * machine check, because machine checks use SRR0/1 and
670 		 * the interrupt might have trashed guest state in them.
671 		 */
672 		kvmppc_book3s_queue_irqprio(vcpu,
673 					    BOOK3S_INTERRUPT_MACHINE_CHECK);
674 		r = RESUME_GUEST;
675 		break;
676 	case BOOK3S_INTERRUPT_PROGRAM:
677 	{
678 		ulong flags;
679 		/*
680 		 * Normally program interrupts are delivered directly
681 		 * to the guest by the hardware, but we can get here
682 		 * as a result of a hypervisor emulation interrupt
683 		 * (e40) getting turned into a 700 by BML RTAS.
684 		 */
685 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
686 		kvmppc_core_queue_program(vcpu, flags);
687 		r = RESUME_GUEST;
688 		break;
689 	}
690 	case BOOK3S_INTERRUPT_SYSCALL:
691 	{
692 		/* hcall - punt to userspace */
693 		int i;
694 
695 		/* hypercall with MSR_PR has already been handled in rmode,
696 		 * and never reaches here.
697 		 */
698 
699 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
700 		for (i = 0; i < 9; ++i)
701 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
702 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
703 		vcpu->arch.hcall_needed = 1;
704 		r = RESUME_HOST;
705 		break;
706 	}
707 	/*
708 	 * We get these next two if the guest accesses a page which it thinks
709 	 * it has mapped but which is not actually present, either because
710 	 * it is for an emulated I/O device or because the corresonding
711 	 * host page has been paged out.  Any other HDSI/HISI interrupts
712 	 * have been handled already.
713 	 */
714 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
715 		r = RESUME_PAGE_FAULT;
716 		break;
717 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
718 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
719 		vcpu->arch.fault_dsisr = 0;
720 		r = RESUME_PAGE_FAULT;
721 		break;
722 	/*
723 	 * This occurs if the guest executes an illegal instruction.
724 	 * We just generate a program interrupt to the guest, since
725 	 * we don't emulate any guest instructions at this stage.
726 	 */
727 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
728 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
729 		r = RESUME_GUEST;
730 		break;
731 	/*
732 	 * This occurs if the guest (kernel or userspace), does something that
733 	 * is prohibited by HFSCR.  We just generate a program interrupt to
734 	 * the guest.
735 	 */
736 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
737 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
738 		r = RESUME_GUEST;
739 		break;
740 	default:
741 		kvmppc_dump_regs(vcpu);
742 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
743 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
744 			vcpu->arch.shregs.msr);
745 		run->hw.hardware_exit_reason = vcpu->arch.trap;
746 		r = RESUME_HOST;
747 		break;
748 	}
749 
750 	return r;
751 }
752 
753 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
754 					    struct kvm_sregs *sregs)
755 {
756 	int i;
757 
758 	memset(sregs, 0, sizeof(struct kvm_sregs));
759 	sregs->pvr = vcpu->arch.pvr;
760 	for (i = 0; i < vcpu->arch.slb_max; i++) {
761 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
762 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
763 	}
764 
765 	return 0;
766 }
767 
768 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
769 					    struct kvm_sregs *sregs)
770 {
771 	int i, j;
772 
773 	kvmppc_set_pvr_hv(vcpu, sregs->pvr);
774 
775 	j = 0;
776 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
777 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
778 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
779 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
780 			++j;
781 		}
782 	}
783 	vcpu->arch.slb_max = j;
784 
785 	return 0;
786 }
787 
788 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr)
789 {
790 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
791 	u64 mask;
792 
793 	spin_lock(&vc->lock);
794 	/*
795 	 * If ILE (interrupt little-endian) has changed, update the
796 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
797 	 */
798 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
799 		struct kvm *kvm = vcpu->kvm;
800 		struct kvm_vcpu *vcpu;
801 		int i;
802 
803 		mutex_lock(&kvm->lock);
804 		kvm_for_each_vcpu(i, vcpu, kvm) {
805 			if (vcpu->arch.vcore != vc)
806 				continue;
807 			if (new_lpcr & LPCR_ILE)
808 				vcpu->arch.intr_msr |= MSR_LE;
809 			else
810 				vcpu->arch.intr_msr &= ~MSR_LE;
811 		}
812 		mutex_unlock(&kvm->lock);
813 	}
814 
815 	/*
816 	 * Userspace can only modify DPFD (default prefetch depth),
817 	 * ILE (interrupt little-endian) and TC (translation control).
818 	 * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
819 	 */
820 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
821 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
822 		mask |= LPCR_AIL;
823 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
824 	spin_unlock(&vc->lock);
825 }
826 
827 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
828 				 union kvmppc_one_reg *val)
829 {
830 	int r = 0;
831 	long int i;
832 
833 	switch (id) {
834 	case KVM_REG_PPC_HIOR:
835 		*val = get_reg_val(id, 0);
836 		break;
837 	case KVM_REG_PPC_DABR:
838 		*val = get_reg_val(id, vcpu->arch.dabr);
839 		break;
840 	case KVM_REG_PPC_DABRX:
841 		*val = get_reg_val(id, vcpu->arch.dabrx);
842 		break;
843 	case KVM_REG_PPC_DSCR:
844 		*val = get_reg_val(id, vcpu->arch.dscr);
845 		break;
846 	case KVM_REG_PPC_PURR:
847 		*val = get_reg_val(id, vcpu->arch.purr);
848 		break;
849 	case KVM_REG_PPC_SPURR:
850 		*val = get_reg_val(id, vcpu->arch.spurr);
851 		break;
852 	case KVM_REG_PPC_AMR:
853 		*val = get_reg_val(id, vcpu->arch.amr);
854 		break;
855 	case KVM_REG_PPC_UAMOR:
856 		*val = get_reg_val(id, vcpu->arch.uamor);
857 		break;
858 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
859 		i = id - KVM_REG_PPC_MMCR0;
860 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
861 		break;
862 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
863 		i = id - KVM_REG_PPC_PMC1;
864 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
865 		break;
866 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
867 		i = id - KVM_REG_PPC_SPMC1;
868 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
869 		break;
870 	case KVM_REG_PPC_SIAR:
871 		*val = get_reg_val(id, vcpu->arch.siar);
872 		break;
873 	case KVM_REG_PPC_SDAR:
874 		*val = get_reg_val(id, vcpu->arch.sdar);
875 		break;
876 	case KVM_REG_PPC_SIER:
877 		*val = get_reg_val(id, vcpu->arch.sier);
878 		break;
879 	case KVM_REG_PPC_IAMR:
880 		*val = get_reg_val(id, vcpu->arch.iamr);
881 		break;
882 	case KVM_REG_PPC_PSPB:
883 		*val = get_reg_val(id, vcpu->arch.pspb);
884 		break;
885 	case KVM_REG_PPC_DPDES:
886 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
887 		break;
888 	case KVM_REG_PPC_DAWR:
889 		*val = get_reg_val(id, vcpu->arch.dawr);
890 		break;
891 	case KVM_REG_PPC_DAWRX:
892 		*val = get_reg_val(id, vcpu->arch.dawrx);
893 		break;
894 	case KVM_REG_PPC_CIABR:
895 		*val = get_reg_val(id, vcpu->arch.ciabr);
896 		break;
897 	case KVM_REG_PPC_IC:
898 		*val = get_reg_val(id, vcpu->arch.ic);
899 		break;
900 	case KVM_REG_PPC_VTB:
901 		*val = get_reg_val(id, vcpu->arch.vtb);
902 		break;
903 	case KVM_REG_PPC_CSIGR:
904 		*val = get_reg_val(id, vcpu->arch.csigr);
905 		break;
906 	case KVM_REG_PPC_TACR:
907 		*val = get_reg_val(id, vcpu->arch.tacr);
908 		break;
909 	case KVM_REG_PPC_TCSCR:
910 		*val = get_reg_val(id, vcpu->arch.tcscr);
911 		break;
912 	case KVM_REG_PPC_PID:
913 		*val = get_reg_val(id, vcpu->arch.pid);
914 		break;
915 	case KVM_REG_PPC_ACOP:
916 		*val = get_reg_val(id, vcpu->arch.acop);
917 		break;
918 	case KVM_REG_PPC_WORT:
919 		*val = get_reg_val(id, vcpu->arch.wort);
920 		break;
921 	case KVM_REG_PPC_VPA_ADDR:
922 		spin_lock(&vcpu->arch.vpa_update_lock);
923 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
924 		spin_unlock(&vcpu->arch.vpa_update_lock);
925 		break;
926 	case KVM_REG_PPC_VPA_SLB:
927 		spin_lock(&vcpu->arch.vpa_update_lock);
928 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
929 		val->vpaval.length = vcpu->arch.slb_shadow.len;
930 		spin_unlock(&vcpu->arch.vpa_update_lock);
931 		break;
932 	case KVM_REG_PPC_VPA_DTL:
933 		spin_lock(&vcpu->arch.vpa_update_lock);
934 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
935 		val->vpaval.length = vcpu->arch.dtl.len;
936 		spin_unlock(&vcpu->arch.vpa_update_lock);
937 		break;
938 	case KVM_REG_PPC_TB_OFFSET:
939 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
940 		break;
941 	case KVM_REG_PPC_LPCR:
942 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
943 		break;
944 	case KVM_REG_PPC_PPR:
945 		*val = get_reg_val(id, vcpu->arch.ppr);
946 		break;
947 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
948 	case KVM_REG_PPC_TFHAR:
949 		*val = get_reg_val(id, vcpu->arch.tfhar);
950 		break;
951 	case KVM_REG_PPC_TFIAR:
952 		*val = get_reg_val(id, vcpu->arch.tfiar);
953 		break;
954 	case KVM_REG_PPC_TEXASR:
955 		*val = get_reg_val(id, vcpu->arch.texasr);
956 		break;
957 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
958 		i = id - KVM_REG_PPC_TM_GPR0;
959 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
960 		break;
961 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
962 	{
963 		int j;
964 		i = id - KVM_REG_PPC_TM_VSR0;
965 		if (i < 32)
966 			for (j = 0; j < TS_FPRWIDTH; j++)
967 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
968 		else {
969 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
970 				val->vval = vcpu->arch.vr_tm.vr[i-32];
971 			else
972 				r = -ENXIO;
973 		}
974 		break;
975 	}
976 	case KVM_REG_PPC_TM_CR:
977 		*val = get_reg_val(id, vcpu->arch.cr_tm);
978 		break;
979 	case KVM_REG_PPC_TM_LR:
980 		*val = get_reg_val(id, vcpu->arch.lr_tm);
981 		break;
982 	case KVM_REG_PPC_TM_CTR:
983 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
984 		break;
985 	case KVM_REG_PPC_TM_FPSCR:
986 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
987 		break;
988 	case KVM_REG_PPC_TM_AMR:
989 		*val = get_reg_val(id, vcpu->arch.amr_tm);
990 		break;
991 	case KVM_REG_PPC_TM_PPR:
992 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
993 		break;
994 	case KVM_REG_PPC_TM_VRSAVE:
995 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
996 		break;
997 	case KVM_REG_PPC_TM_VSCR:
998 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
999 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1000 		else
1001 			r = -ENXIO;
1002 		break;
1003 	case KVM_REG_PPC_TM_DSCR:
1004 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1005 		break;
1006 	case KVM_REG_PPC_TM_TAR:
1007 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1008 		break;
1009 #endif
1010 	case KVM_REG_PPC_ARCH_COMPAT:
1011 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1012 		break;
1013 	default:
1014 		r = -EINVAL;
1015 		break;
1016 	}
1017 
1018 	return r;
1019 }
1020 
1021 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1022 				 union kvmppc_one_reg *val)
1023 {
1024 	int r = 0;
1025 	long int i;
1026 	unsigned long addr, len;
1027 
1028 	switch (id) {
1029 	case KVM_REG_PPC_HIOR:
1030 		/* Only allow this to be set to zero */
1031 		if (set_reg_val(id, *val))
1032 			r = -EINVAL;
1033 		break;
1034 	case KVM_REG_PPC_DABR:
1035 		vcpu->arch.dabr = set_reg_val(id, *val);
1036 		break;
1037 	case KVM_REG_PPC_DABRX:
1038 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1039 		break;
1040 	case KVM_REG_PPC_DSCR:
1041 		vcpu->arch.dscr = set_reg_val(id, *val);
1042 		break;
1043 	case KVM_REG_PPC_PURR:
1044 		vcpu->arch.purr = set_reg_val(id, *val);
1045 		break;
1046 	case KVM_REG_PPC_SPURR:
1047 		vcpu->arch.spurr = set_reg_val(id, *val);
1048 		break;
1049 	case KVM_REG_PPC_AMR:
1050 		vcpu->arch.amr = set_reg_val(id, *val);
1051 		break;
1052 	case KVM_REG_PPC_UAMOR:
1053 		vcpu->arch.uamor = set_reg_val(id, *val);
1054 		break;
1055 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1056 		i = id - KVM_REG_PPC_MMCR0;
1057 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1058 		break;
1059 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1060 		i = id - KVM_REG_PPC_PMC1;
1061 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1062 		break;
1063 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1064 		i = id - KVM_REG_PPC_SPMC1;
1065 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1066 		break;
1067 	case KVM_REG_PPC_SIAR:
1068 		vcpu->arch.siar = set_reg_val(id, *val);
1069 		break;
1070 	case KVM_REG_PPC_SDAR:
1071 		vcpu->arch.sdar = set_reg_val(id, *val);
1072 		break;
1073 	case KVM_REG_PPC_SIER:
1074 		vcpu->arch.sier = set_reg_val(id, *val);
1075 		break;
1076 	case KVM_REG_PPC_IAMR:
1077 		vcpu->arch.iamr = set_reg_val(id, *val);
1078 		break;
1079 	case KVM_REG_PPC_PSPB:
1080 		vcpu->arch.pspb = set_reg_val(id, *val);
1081 		break;
1082 	case KVM_REG_PPC_DPDES:
1083 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1084 		break;
1085 	case KVM_REG_PPC_DAWR:
1086 		vcpu->arch.dawr = set_reg_val(id, *val);
1087 		break;
1088 	case KVM_REG_PPC_DAWRX:
1089 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1090 		break;
1091 	case KVM_REG_PPC_CIABR:
1092 		vcpu->arch.ciabr = set_reg_val(id, *val);
1093 		/* Don't allow setting breakpoints in hypervisor code */
1094 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1095 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1096 		break;
1097 	case KVM_REG_PPC_IC:
1098 		vcpu->arch.ic = set_reg_val(id, *val);
1099 		break;
1100 	case KVM_REG_PPC_VTB:
1101 		vcpu->arch.vtb = set_reg_val(id, *val);
1102 		break;
1103 	case KVM_REG_PPC_CSIGR:
1104 		vcpu->arch.csigr = set_reg_val(id, *val);
1105 		break;
1106 	case KVM_REG_PPC_TACR:
1107 		vcpu->arch.tacr = set_reg_val(id, *val);
1108 		break;
1109 	case KVM_REG_PPC_TCSCR:
1110 		vcpu->arch.tcscr = set_reg_val(id, *val);
1111 		break;
1112 	case KVM_REG_PPC_PID:
1113 		vcpu->arch.pid = set_reg_val(id, *val);
1114 		break;
1115 	case KVM_REG_PPC_ACOP:
1116 		vcpu->arch.acop = set_reg_val(id, *val);
1117 		break;
1118 	case KVM_REG_PPC_WORT:
1119 		vcpu->arch.wort = set_reg_val(id, *val);
1120 		break;
1121 	case KVM_REG_PPC_VPA_ADDR:
1122 		addr = set_reg_val(id, *val);
1123 		r = -EINVAL;
1124 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1125 			      vcpu->arch.dtl.next_gpa))
1126 			break;
1127 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1128 		break;
1129 	case KVM_REG_PPC_VPA_SLB:
1130 		addr = val->vpaval.addr;
1131 		len = val->vpaval.length;
1132 		r = -EINVAL;
1133 		if (addr && !vcpu->arch.vpa.next_gpa)
1134 			break;
1135 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1136 		break;
1137 	case KVM_REG_PPC_VPA_DTL:
1138 		addr = val->vpaval.addr;
1139 		len = val->vpaval.length;
1140 		r = -EINVAL;
1141 		if (addr && (len < sizeof(struct dtl_entry) ||
1142 			     !vcpu->arch.vpa.next_gpa))
1143 			break;
1144 		len -= len % sizeof(struct dtl_entry);
1145 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1146 		break;
1147 	case KVM_REG_PPC_TB_OFFSET:
1148 		/* round up to multiple of 2^24 */
1149 		vcpu->arch.vcore->tb_offset =
1150 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1151 		break;
1152 	case KVM_REG_PPC_LPCR:
1153 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val));
1154 		break;
1155 	case KVM_REG_PPC_PPR:
1156 		vcpu->arch.ppr = set_reg_val(id, *val);
1157 		break;
1158 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1159 	case KVM_REG_PPC_TFHAR:
1160 		vcpu->arch.tfhar = set_reg_val(id, *val);
1161 		break;
1162 	case KVM_REG_PPC_TFIAR:
1163 		vcpu->arch.tfiar = set_reg_val(id, *val);
1164 		break;
1165 	case KVM_REG_PPC_TEXASR:
1166 		vcpu->arch.texasr = set_reg_val(id, *val);
1167 		break;
1168 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1169 		i = id - KVM_REG_PPC_TM_GPR0;
1170 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1171 		break;
1172 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1173 	{
1174 		int j;
1175 		i = id - KVM_REG_PPC_TM_VSR0;
1176 		if (i < 32)
1177 			for (j = 0; j < TS_FPRWIDTH; j++)
1178 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1179 		else
1180 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1181 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1182 			else
1183 				r = -ENXIO;
1184 		break;
1185 	}
1186 	case KVM_REG_PPC_TM_CR:
1187 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1188 		break;
1189 	case KVM_REG_PPC_TM_LR:
1190 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1191 		break;
1192 	case KVM_REG_PPC_TM_CTR:
1193 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1194 		break;
1195 	case KVM_REG_PPC_TM_FPSCR:
1196 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1197 		break;
1198 	case KVM_REG_PPC_TM_AMR:
1199 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1200 		break;
1201 	case KVM_REG_PPC_TM_PPR:
1202 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1203 		break;
1204 	case KVM_REG_PPC_TM_VRSAVE:
1205 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1206 		break;
1207 	case KVM_REG_PPC_TM_VSCR:
1208 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1209 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1210 		else
1211 			r = - ENXIO;
1212 		break;
1213 	case KVM_REG_PPC_TM_DSCR:
1214 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1215 		break;
1216 	case KVM_REG_PPC_TM_TAR:
1217 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1218 		break;
1219 #endif
1220 	case KVM_REG_PPC_ARCH_COMPAT:
1221 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1222 		break;
1223 	default:
1224 		r = -EINVAL;
1225 		break;
1226 	}
1227 
1228 	return r;
1229 }
1230 
1231 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1232 						   unsigned int id)
1233 {
1234 	struct kvm_vcpu *vcpu;
1235 	int err = -EINVAL;
1236 	int core;
1237 	struct kvmppc_vcore *vcore;
1238 
1239 	core = id / threads_per_core;
1240 	if (core >= KVM_MAX_VCORES)
1241 		goto out;
1242 
1243 	err = -ENOMEM;
1244 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1245 	if (!vcpu)
1246 		goto out;
1247 
1248 	err = kvm_vcpu_init(vcpu, kvm, id);
1249 	if (err)
1250 		goto free_vcpu;
1251 
1252 	vcpu->arch.shared = &vcpu->arch.shregs;
1253 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1254 	/*
1255 	 * The shared struct is never shared on HV,
1256 	 * so we can always use host endianness
1257 	 */
1258 #ifdef __BIG_ENDIAN__
1259 	vcpu->arch.shared_big_endian = true;
1260 #else
1261 	vcpu->arch.shared_big_endian = false;
1262 #endif
1263 #endif
1264 	vcpu->arch.mmcr[0] = MMCR0_FC;
1265 	vcpu->arch.ctrl = CTRL_RUNLATCH;
1266 	/* default to host PVR, since we can't spoof it */
1267 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1268 	spin_lock_init(&vcpu->arch.vpa_update_lock);
1269 	spin_lock_init(&vcpu->arch.tbacct_lock);
1270 	vcpu->arch.busy_preempt = TB_NIL;
1271 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1272 
1273 	kvmppc_mmu_book3s_hv_init(vcpu);
1274 
1275 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1276 
1277 	init_waitqueue_head(&vcpu->arch.cpu_run);
1278 
1279 	mutex_lock(&kvm->lock);
1280 	vcore = kvm->arch.vcores[core];
1281 	if (!vcore) {
1282 		vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1283 		if (vcore) {
1284 			INIT_LIST_HEAD(&vcore->runnable_threads);
1285 			spin_lock_init(&vcore->lock);
1286 			init_waitqueue_head(&vcore->wq);
1287 			vcore->preempt_tb = TB_NIL;
1288 			vcore->lpcr = kvm->arch.lpcr;
1289 			vcore->first_vcpuid = core * threads_per_core;
1290 			vcore->kvm = kvm;
1291 		}
1292 		kvm->arch.vcores[core] = vcore;
1293 		kvm->arch.online_vcores++;
1294 	}
1295 	mutex_unlock(&kvm->lock);
1296 
1297 	if (!vcore)
1298 		goto free_vcpu;
1299 
1300 	spin_lock(&vcore->lock);
1301 	++vcore->num_threads;
1302 	spin_unlock(&vcore->lock);
1303 	vcpu->arch.vcore = vcore;
1304 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1305 
1306 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
1307 	kvmppc_sanity_check(vcpu);
1308 
1309 	return vcpu;
1310 
1311 free_vcpu:
1312 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1313 out:
1314 	return ERR_PTR(err);
1315 }
1316 
1317 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1318 {
1319 	if (vpa->pinned_addr)
1320 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1321 					vpa->dirty);
1322 }
1323 
1324 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1325 {
1326 	spin_lock(&vcpu->arch.vpa_update_lock);
1327 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1328 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1329 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1330 	spin_unlock(&vcpu->arch.vpa_update_lock);
1331 	kvm_vcpu_uninit(vcpu);
1332 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1333 }
1334 
1335 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1336 {
1337 	/* Indicate we want to get back into the guest */
1338 	return 1;
1339 }
1340 
1341 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1342 {
1343 	unsigned long dec_nsec, now;
1344 
1345 	now = get_tb();
1346 	if (now > vcpu->arch.dec_expires) {
1347 		/* decrementer has already gone negative */
1348 		kvmppc_core_queue_dec(vcpu);
1349 		kvmppc_core_prepare_to_enter(vcpu);
1350 		return;
1351 	}
1352 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1353 		   / tb_ticks_per_sec;
1354 	hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1355 		      HRTIMER_MODE_REL);
1356 	vcpu->arch.timer_running = 1;
1357 }
1358 
1359 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1360 {
1361 	vcpu->arch.ceded = 0;
1362 	if (vcpu->arch.timer_running) {
1363 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1364 		vcpu->arch.timer_running = 0;
1365 	}
1366 }
1367 
1368 extern void __kvmppc_vcore_entry(void);
1369 
1370 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1371 				   struct kvm_vcpu *vcpu)
1372 {
1373 	u64 now;
1374 
1375 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1376 		return;
1377 	spin_lock_irq(&vcpu->arch.tbacct_lock);
1378 	now = mftb();
1379 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1380 		vcpu->arch.stolen_logged;
1381 	vcpu->arch.busy_preempt = now;
1382 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1383 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
1384 	--vc->n_runnable;
1385 	list_del(&vcpu->arch.run_list);
1386 }
1387 
1388 static int kvmppc_grab_hwthread(int cpu)
1389 {
1390 	struct paca_struct *tpaca;
1391 	long timeout = 1000;
1392 
1393 	tpaca = &paca[cpu];
1394 
1395 	/* Ensure the thread won't go into the kernel if it wakes */
1396 	tpaca->kvm_hstate.hwthread_req = 1;
1397 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1398 
1399 	/*
1400 	 * If the thread is already executing in the kernel (e.g. handling
1401 	 * a stray interrupt), wait for it to get back to nap mode.
1402 	 * The smp_mb() is to ensure that our setting of hwthread_req
1403 	 * is visible before we look at hwthread_state, so if this
1404 	 * races with the code at system_reset_pSeries and the thread
1405 	 * misses our setting of hwthread_req, we are sure to see its
1406 	 * setting of hwthread_state, and vice versa.
1407 	 */
1408 	smp_mb();
1409 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1410 		if (--timeout <= 0) {
1411 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
1412 			return -EBUSY;
1413 		}
1414 		udelay(1);
1415 	}
1416 	return 0;
1417 }
1418 
1419 static void kvmppc_release_hwthread(int cpu)
1420 {
1421 	struct paca_struct *tpaca;
1422 
1423 	tpaca = &paca[cpu];
1424 	tpaca->kvm_hstate.hwthread_req = 0;
1425 	tpaca->kvm_hstate.kvm_vcpu = NULL;
1426 }
1427 
1428 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1429 {
1430 	int cpu;
1431 	struct paca_struct *tpaca;
1432 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1433 
1434 	if (vcpu->arch.timer_running) {
1435 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1436 		vcpu->arch.timer_running = 0;
1437 	}
1438 	cpu = vc->pcpu + vcpu->arch.ptid;
1439 	tpaca = &paca[cpu];
1440 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
1441 	tpaca->kvm_hstate.kvm_vcore = vc;
1442 	tpaca->kvm_hstate.ptid = vcpu->arch.ptid;
1443 	vcpu->cpu = vc->pcpu;
1444 	smp_wmb();
1445 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1446 	if (cpu != smp_processor_id()) {
1447 		xics_wake_cpu(cpu);
1448 		if (vcpu->arch.ptid)
1449 			++vc->n_woken;
1450 	}
1451 #endif
1452 }
1453 
1454 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1455 {
1456 	int i;
1457 
1458 	HMT_low();
1459 	i = 0;
1460 	while (vc->nap_count < vc->n_woken) {
1461 		if (++i >= 1000000) {
1462 			pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1463 			       vc->nap_count, vc->n_woken);
1464 			break;
1465 		}
1466 		cpu_relax();
1467 	}
1468 	HMT_medium();
1469 }
1470 
1471 /*
1472  * Check that we are on thread 0 and that any other threads in
1473  * this core are off-line.  Then grab the threads so they can't
1474  * enter the kernel.
1475  */
1476 static int on_primary_thread(void)
1477 {
1478 	int cpu = smp_processor_id();
1479 	int thr = cpu_thread_in_core(cpu);
1480 
1481 	if (thr)
1482 		return 0;
1483 	while (++thr < threads_per_core)
1484 		if (cpu_online(cpu + thr))
1485 			return 0;
1486 
1487 	/* Grab all hw threads so they can't go into the kernel */
1488 	for (thr = 1; thr < threads_per_core; ++thr) {
1489 		if (kvmppc_grab_hwthread(cpu + thr)) {
1490 			/* Couldn't grab one; let the others go */
1491 			do {
1492 				kvmppc_release_hwthread(cpu + thr);
1493 			} while (--thr > 0);
1494 			return 0;
1495 		}
1496 	}
1497 	return 1;
1498 }
1499 
1500 /*
1501  * Run a set of guest threads on a physical core.
1502  * Called with vc->lock held.
1503  */
1504 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1505 {
1506 	struct kvm_vcpu *vcpu, *vnext;
1507 	long ret;
1508 	u64 now;
1509 	int i, need_vpa_update;
1510 	int srcu_idx;
1511 	struct kvm_vcpu *vcpus_to_update[threads_per_core];
1512 
1513 	/* don't start if any threads have a signal pending */
1514 	need_vpa_update = 0;
1515 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1516 		if (signal_pending(vcpu->arch.run_task))
1517 			return;
1518 		if (vcpu->arch.vpa.update_pending ||
1519 		    vcpu->arch.slb_shadow.update_pending ||
1520 		    vcpu->arch.dtl.update_pending)
1521 			vcpus_to_update[need_vpa_update++] = vcpu;
1522 	}
1523 
1524 	/*
1525 	 * Initialize *vc, in particular vc->vcore_state, so we can
1526 	 * drop the vcore lock if necessary.
1527 	 */
1528 	vc->n_woken = 0;
1529 	vc->nap_count = 0;
1530 	vc->entry_exit_count = 0;
1531 	vc->vcore_state = VCORE_STARTING;
1532 	vc->in_guest = 0;
1533 	vc->napping_threads = 0;
1534 
1535 	/*
1536 	 * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1537 	 * which can't be called with any spinlocks held.
1538 	 */
1539 	if (need_vpa_update) {
1540 		spin_unlock(&vc->lock);
1541 		for (i = 0; i < need_vpa_update; ++i)
1542 			kvmppc_update_vpas(vcpus_to_update[i]);
1543 		spin_lock(&vc->lock);
1544 	}
1545 
1546 	/*
1547 	 * Make sure we are running on thread 0, and that
1548 	 * secondary threads are offline.
1549 	 */
1550 	if (threads_per_core > 1 && !on_primary_thread()) {
1551 		list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1552 			vcpu->arch.ret = -EBUSY;
1553 		goto out;
1554 	}
1555 
1556 	vc->pcpu = smp_processor_id();
1557 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1558 		kvmppc_start_thread(vcpu);
1559 		kvmppc_create_dtl_entry(vcpu, vc);
1560 	}
1561 
1562 	/* Set this explicitly in case thread 0 doesn't have a vcpu */
1563 	get_paca()->kvm_hstate.kvm_vcore = vc;
1564 	get_paca()->kvm_hstate.ptid = 0;
1565 
1566 	vc->vcore_state = VCORE_RUNNING;
1567 	preempt_disable();
1568 	spin_unlock(&vc->lock);
1569 
1570 	kvm_guest_enter();
1571 
1572 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
1573 
1574 	__kvmppc_vcore_entry();
1575 
1576 	spin_lock(&vc->lock);
1577 	/* disable sending of IPIs on virtual external irqs */
1578 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1579 		vcpu->cpu = -1;
1580 	/* wait for secondary threads to finish writing their state to memory */
1581 	if (vc->nap_count < vc->n_woken)
1582 		kvmppc_wait_for_nap(vc);
1583 	for (i = 0; i < threads_per_core; ++i)
1584 		kvmppc_release_hwthread(vc->pcpu + i);
1585 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
1586 	vc->vcore_state = VCORE_EXITING;
1587 	spin_unlock(&vc->lock);
1588 
1589 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
1590 
1591 	/* make sure updates to secondary vcpu structs are visible now */
1592 	smp_mb();
1593 	kvm_guest_exit();
1594 
1595 	preempt_enable();
1596 	cond_resched();
1597 
1598 	spin_lock(&vc->lock);
1599 	now = get_tb();
1600 	list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1601 		/* cancel pending dec exception if dec is positive */
1602 		if (now < vcpu->arch.dec_expires &&
1603 		    kvmppc_core_pending_dec(vcpu))
1604 			kvmppc_core_dequeue_dec(vcpu);
1605 
1606 		ret = RESUME_GUEST;
1607 		if (vcpu->arch.trap)
1608 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
1609 						    vcpu->arch.run_task);
1610 
1611 		vcpu->arch.ret = ret;
1612 		vcpu->arch.trap = 0;
1613 
1614 		if (vcpu->arch.ceded) {
1615 			if (!is_kvmppc_resume_guest(ret))
1616 				kvmppc_end_cede(vcpu);
1617 			else
1618 				kvmppc_set_timer(vcpu);
1619 		}
1620 	}
1621 
1622  out:
1623 	vc->vcore_state = VCORE_INACTIVE;
1624 	list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1625 				 arch.run_list) {
1626 		if (!is_kvmppc_resume_guest(vcpu->arch.ret)) {
1627 			kvmppc_remove_runnable(vc, vcpu);
1628 			wake_up(&vcpu->arch.cpu_run);
1629 		}
1630 	}
1631 }
1632 
1633 /*
1634  * Wait for some other vcpu thread to execute us, and
1635  * wake us up when we need to handle something in the host.
1636  */
1637 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1638 {
1639 	DEFINE_WAIT(wait);
1640 
1641 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1642 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1643 		schedule();
1644 	finish_wait(&vcpu->arch.cpu_run, &wait);
1645 }
1646 
1647 /*
1648  * All the vcpus in this vcore are idle, so wait for a decrementer
1649  * or external interrupt to one of the vcpus.  vc->lock is held.
1650  */
1651 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1652 {
1653 	DEFINE_WAIT(wait);
1654 
1655 	prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1656 	vc->vcore_state = VCORE_SLEEPING;
1657 	spin_unlock(&vc->lock);
1658 	schedule();
1659 	finish_wait(&vc->wq, &wait);
1660 	spin_lock(&vc->lock);
1661 	vc->vcore_state = VCORE_INACTIVE;
1662 }
1663 
1664 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1665 {
1666 	int n_ceded;
1667 	struct kvmppc_vcore *vc;
1668 	struct kvm_vcpu *v, *vn;
1669 
1670 	kvm_run->exit_reason = 0;
1671 	vcpu->arch.ret = RESUME_GUEST;
1672 	vcpu->arch.trap = 0;
1673 	kvmppc_update_vpas(vcpu);
1674 
1675 	/*
1676 	 * Synchronize with other threads in this virtual core
1677 	 */
1678 	vc = vcpu->arch.vcore;
1679 	spin_lock(&vc->lock);
1680 	vcpu->arch.ceded = 0;
1681 	vcpu->arch.run_task = current;
1682 	vcpu->arch.kvm_run = kvm_run;
1683 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1684 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1685 	vcpu->arch.busy_preempt = TB_NIL;
1686 	list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1687 	++vc->n_runnable;
1688 
1689 	/*
1690 	 * This happens the first time this is called for a vcpu.
1691 	 * If the vcore is already running, we may be able to start
1692 	 * this thread straight away and have it join in.
1693 	 */
1694 	if (!signal_pending(current)) {
1695 		if (vc->vcore_state == VCORE_RUNNING &&
1696 		    VCORE_EXIT_COUNT(vc) == 0) {
1697 			kvmppc_create_dtl_entry(vcpu, vc);
1698 			kvmppc_start_thread(vcpu);
1699 		} else if (vc->vcore_state == VCORE_SLEEPING) {
1700 			wake_up(&vc->wq);
1701 		}
1702 
1703 	}
1704 
1705 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1706 	       !signal_pending(current)) {
1707 		if (vc->vcore_state != VCORE_INACTIVE) {
1708 			spin_unlock(&vc->lock);
1709 			kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1710 			spin_lock(&vc->lock);
1711 			continue;
1712 		}
1713 		list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1714 					 arch.run_list) {
1715 			kvmppc_core_prepare_to_enter(v);
1716 			if (signal_pending(v->arch.run_task)) {
1717 				kvmppc_remove_runnable(vc, v);
1718 				v->stat.signal_exits++;
1719 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1720 				v->arch.ret = -EINTR;
1721 				wake_up(&v->arch.cpu_run);
1722 			}
1723 		}
1724 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1725 			break;
1726 		vc->runner = vcpu;
1727 		n_ceded = 0;
1728 		list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1729 			if (!v->arch.pending_exceptions)
1730 				n_ceded += v->arch.ceded;
1731 			else
1732 				v->arch.ceded = 0;
1733 		}
1734 		if (n_ceded == vc->n_runnable)
1735 			kvmppc_vcore_blocked(vc);
1736 		else
1737 			kvmppc_run_core(vc);
1738 		vc->runner = NULL;
1739 	}
1740 
1741 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1742 	       (vc->vcore_state == VCORE_RUNNING ||
1743 		vc->vcore_state == VCORE_EXITING)) {
1744 		spin_unlock(&vc->lock);
1745 		kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1746 		spin_lock(&vc->lock);
1747 	}
1748 
1749 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1750 		kvmppc_remove_runnable(vc, vcpu);
1751 		vcpu->stat.signal_exits++;
1752 		kvm_run->exit_reason = KVM_EXIT_INTR;
1753 		vcpu->arch.ret = -EINTR;
1754 	}
1755 
1756 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1757 		/* Wake up some vcpu to run the core */
1758 		v = list_first_entry(&vc->runnable_threads,
1759 				     struct kvm_vcpu, arch.run_list);
1760 		wake_up(&v->arch.cpu_run);
1761 	}
1762 
1763 	spin_unlock(&vc->lock);
1764 	return vcpu->arch.ret;
1765 }
1766 
1767 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
1768 {
1769 	int r;
1770 	int srcu_idx;
1771 
1772 	if (!vcpu->arch.sane) {
1773 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1774 		return -EINVAL;
1775 	}
1776 
1777 	kvmppc_core_prepare_to_enter(vcpu);
1778 
1779 	/* No need to go into the guest when all we'll do is come back out */
1780 	if (signal_pending(current)) {
1781 		run->exit_reason = KVM_EXIT_INTR;
1782 		return -EINTR;
1783 	}
1784 
1785 	atomic_inc(&vcpu->kvm->arch.vcpus_running);
1786 	/* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1787 	smp_mb();
1788 
1789 	/* On the first time here, set up HTAB and VRMA or RMA */
1790 	if (!vcpu->kvm->arch.rma_setup_done) {
1791 		r = kvmppc_hv_setup_htab_rma(vcpu);
1792 		if (r)
1793 			goto out;
1794 	}
1795 
1796 	flush_fp_to_thread(current);
1797 	flush_altivec_to_thread(current);
1798 	flush_vsx_to_thread(current);
1799 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1800 	vcpu->arch.pgdir = current->mm->pgd;
1801 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1802 
1803 	do {
1804 		r = kvmppc_run_vcpu(run, vcpu);
1805 
1806 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1807 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
1808 			r = kvmppc_pseries_do_hcall(vcpu);
1809 			kvmppc_core_prepare_to_enter(vcpu);
1810 		} else if (r == RESUME_PAGE_FAULT) {
1811 			srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1812 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
1813 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1814 			srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1815 		}
1816 	} while (is_kvmppc_resume_guest(r));
1817 
1818  out:
1819 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1820 	atomic_dec(&vcpu->kvm->arch.vcpus_running);
1821 	return r;
1822 }
1823 
1824 
1825 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1826    Assumes POWER7 or PPC970. */
1827 static inline int lpcr_rmls(unsigned long rma_size)
1828 {
1829 	switch (rma_size) {
1830 	case 32ul << 20:	/* 32 MB */
1831 		if (cpu_has_feature(CPU_FTR_ARCH_206))
1832 			return 8;	/* only supported on POWER7 */
1833 		return -1;
1834 	case 64ul << 20:	/* 64 MB */
1835 		return 3;
1836 	case 128ul << 20:	/* 128 MB */
1837 		return 7;
1838 	case 256ul << 20:	/* 256 MB */
1839 		return 4;
1840 	case 1ul << 30:		/* 1 GB */
1841 		return 2;
1842 	case 16ul << 30:	/* 16 GB */
1843 		return 1;
1844 	case 256ul << 30:	/* 256 GB */
1845 		return 0;
1846 	default:
1847 		return -1;
1848 	}
1849 }
1850 
1851 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1852 {
1853 	struct page *page;
1854 	struct kvm_rma_info *ri = vma->vm_file->private_data;
1855 
1856 	if (vmf->pgoff >= kvm_rma_pages)
1857 		return VM_FAULT_SIGBUS;
1858 
1859 	page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1860 	get_page(page);
1861 	vmf->page = page;
1862 	return 0;
1863 }
1864 
1865 static const struct vm_operations_struct kvm_rma_vm_ops = {
1866 	.fault = kvm_rma_fault,
1867 };
1868 
1869 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1870 {
1871 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1872 	vma->vm_ops = &kvm_rma_vm_ops;
1873 	return 0;
1874 }
1875 
1876 static int kvm_rma_release(struct inode *inode, struct file *filp)
1877 {
1878 	struct kvm_rma_info *ri = filp->private_data;
1879 
1880 	kvm_release_rma(ri);
1881 	return 0;
1882 }
1883 
1884 static const struct file_operations kvm_rma_fops = {
1885 	.mmap           = kvm_rma_mmap,
1886 	.release	= kvm_rma_release,
1887 };
1888 
1889 static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
1890 				      struct kvm_allocate_rma *ret)
1891 {
1892 	long fd;
1893 	struct kvm_rma_info *ri;
1894 	/*
1895 	 * Only do this on PPC970 in HV mode
1896 	 */
1897 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
1898 	    !cpu_has_feature(CPU_FTR_ARCH_201))
1899 		return -EINVAL;
1900 
1901 	if (!kvm_rma_pages)
1902 		return -EINVAL;
1903 
1904 	ri = kvm_alloc_rma();
1905 	if (!ri)
1906 		return -ENOMEM;
1907 
1908 	fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
1909 	if (fd < 0)
1910 		kvm_release_rma(ri);
1911 
1912 	ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
1913 	return fd;
1914 }
1915 
1916 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1917 				     int linux_psize)
1918 {
1919 	struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1920 
1921 	if (!def->shift)
1922 		return;
1923 	(*sps)->page_shift = def->shift;
1924 	(*sps)->slb_enc = def->sllp;
1925 	(*sps)->enc[0].page_shift = def->shift;
1926 	/*
1927 	 * Only return base page encoding. We don't want to return
1928 	 * all the supporting pte_enc, because our H_ENTER doesn't
1929 	 * support MPSS yet. Once they do, we can start passing all
1930 	 * support pte_enc here
1931 	 */
1932 	(*sps)->enc[0].pte_enc = def->penc[linux_psize];
1933 	/*
1934 	 * Add 16MB MPSS support if host supports it
1935 	 */
1936 	if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
1937 		(*sps)->enc[1].page_shift = 24;
1938 		(*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
1939 	}
1940 	(*sps)++;
1941 }
1942 
1943 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
1944 					 struct kvm_ppc_smmu_info *info)
1945 {
1946 	struct kvm_ppc_one_seg_page_size *sps;
1947 
1948 	info->flags = KVM_PPC_PAGE_SIZES_REAL;
1949 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1950 		info->flags |= KVM_PPC_1T_SEGMENTS;
1951 	info->slb_size = mmu_slb_size;
1952 
1953 	/* We only support these sizes for now, and no muti-size segments */
1954 	sps = &info->sps[0];
1955 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1956 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1957 	kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1958 
1959 	return 0;
1960 }
1961 
1962 /*
1963  * Get (and clear) the dirty memory log for a memory slot.
1964  */
1965 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
1966 					 struct kvm_dirty_log *log)
1967 {
1968 	struct kvm_memory_slot *memslot;
1969 	int r;
1970 	unsigned long n;
1971 
1972 	mutex_lock(&kvm->slots_lock);
1973 
1974 	r = -EINVAL;
1975 	if (log->slot >= KVM_USER_MEM_SLOTS)
1976 		goto out;
1977 
1978 	memslot = id_to_memslot(kvm->memslots, log->slot);
1979 	r = -ENOENT;
1980 	if (!memslot->dirty_bitmap)
1981 		goto out;
1982 
1983 	n = kvm_dirty_bitmap_bytes(memslot);
1984 	memset(memslot->dirty_bitmap, 0, n);
1985 
1986 	r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1987 	if (r)
1988 		goto out;
1989 
1990 	r = -EFAULT;
1991 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1992 		goto out;
1993 
1994 	r = 0;
1995 out:
1996 	mutex_unlock(&kvm->slots_lock);
1997 	return r;
1998 }
1999 
2000 static void unpin_slot(struct kvm_memory_slot *memslot)
2001 {
2002 	unsigned long *physp;
2003 	unsigned long j, npages, pfn;
2004 	struct page *page;
2005 
2006 	physp = memslot->arch.slot_phys;
2007 	npages = memslot->npages;
2008 	if (!physp)
2009 		return;
2010 	for (j = 0; j < npages; j++) {
2011 		if (!(physp[j] & KVMPPC_GOT_PAGE))
2012 			continue;
2013 		pfn = physp[j] >> PAGE_SHIFT;
2014 		page = pfn_to_page(pfn);
2015 		SetPageDirty(page);
2016 		put_page(page);
2017 	}
2018 }
2019 
2020 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2021 					struct kvm_memory_slot *dont)
2022 {
2023 	if (!dont || free->arch.rmap != dont->arch.rmap) {
2024 		vfree(free->arch.rmap);
2025 		free->arch.rmap = NULL;
2026 	}
2027 	if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
2028 		unpin_slot(free);
2029 		vfree(free->arch.slot_phys);
2030 		free->arch.slot_phys = NULL;
2031 	}
2032 }
2033 
2034 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2035 					 unsigned long npages)
2036 {
2037 	slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2038 	if (!slot->arch.rmap)
2039 		return -ENOMEM;
2040 	slot->arch.slot_phys = NULL;
2041 
2042 	return 0;
2043 }
2044 
2045 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2046 					struct kvm_memory_slot *memslot,
2047 					struct kvm_userspace_memory_region *mem)
2048 {
2049 	unsigned long *phys;
2050 
2051 	/* Allocate a slot_phys array if needed */
2052 	phys = memslot->arch.slot_phys;
2053 	if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
2054 		phys = vzalloc(memslot->npages * sizeof(unsigned long));
2055 		if (!phys)
2056 			return -ENOMEM;
2057 		memslot->arch.slot_phys = phys;
2058 	}
2059 
2060 	return 0;
2061 }
2062 
2063 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2064 				struct kvm_userspace_memory_region *mem,
2065 				const struct kvm_memory_slot *old)
2066 {
2067 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2068 	struct kvm_memory_slot *memslot;
2069 
2070 	if (npages && old->npages) {
2071 		/*
2072 		 * If modifying a memslot, reset all the rmap dirty bits.
2073 		 * If this is a new memslot, we don't need to do anything
2074 		 * since the rmap array starts out as all zeroes,
2075 		 * i.e. no pages are dirty.
2076 		 */
2077 		memslot = id_to_memslot(kvm->memslots, mem->slot);
2078 		kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2079 	}
2080 }
2081 
2082 /*
2083  * Update LPCR values in kvm->arch and in vcores.
2084  * Caller must hold kvm->lock.
2085  */
2086 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2087 {
2088 	long int i;
2089 	u32 cores_done = 0;
2090 
2091 	if ((kvm->arch.lpcr & mask) == lpcr)
2092 		return;
2093 
2094 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2095 
2096 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
2097 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2098 		if (!vc)
2099 			continue;
2100 		spin_lock(&vc->lock);
2101 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2102 		spin_unlock(&vc->lock);
2103 		if (++cores_done >= kvm->arch.online_vcores)
2104 			break;
2105 	}
2106 }
2107 
2108 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2109 {
2110 	return;
2111 }
2112 
2113 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2114 {
2115 	int err = 0;
2116 	struct kvm *kvm = vcpu->kvm;
2117 	struct kvm_rma_info *ri = NULL;
2118 	unsigned long hva;
2119 	struct kvm_memory_slot *memslot;
2120 	struct vm_area_struct *vma;
2121 	unsigned long lpcr = 0, senc;
2122 	unsigned long lpcr_mask = 0;
2123 	unsigned long psize, porder;
2124 	unsigned long rma_size;
2125 	unsigned long rmls;
2126 	unsigned long *physp;
2127 	unsigned long i, npages;
2128 	int srcu_idx;
2129 
2130 	mutex_lock(&kvm->lock);
2131 	if (kvm->arch.rma_setup_done)
2132 		goto out;	/* another vcpu beat us to it */
2133 
2134 	/* Allocate hashed page table (if not done already) and reset it */
2135 	if (!kvm->arch.hpt_virt) {
2136 		err = kvmppc_alloc_hpt(kvm, NULL);
2137 		if (err) {
2138 			pr_err("KVM: Couldn't alloc HPT\n");
2139 			goto out;
2140 		}
2141 	}
2142 
2143 	/* Look up the memslot for guest physical address 0 */
2144 	srcu_idx = srcu_read_lock(&kvm->srcu);
2145 	memslot = gfn_to_memslot(kvm, 0);
2146 
2147 	/* We must have some memory at 0 by now */
2148 	err = -EINVAL;
2149 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2150 		goto out_srcu;
2151 
2152 	/* Look up the VMA for the start of this memory slot */
2153 	hva = memslot->userspace_addr;
2154 	down_read(&current->mm->mmap_sem);
2155 	vma = find_vma(current->mm, hva);
2156 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2157 		goto up_out;
2158 
2159 	psize = vma_kernel_pagesize(vma);
2160 	porder = __ilog2(psize);
2161 
2162 	/* Is this one of our preallocated RMAs? */
2163 	if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
2164 	    hva == vma->vm_start)
2165 		ri = vma->vm_file->private_data;
2166 
2167 	up_read(&current->mm->mmap_sem);
2168 
2169 	if (!ri) {
2170 		/* On POWER7, use VRMA; on PPC970, give up */
2171 		err = -EPERM;
2172 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2173 			pr_err("KVM: CPU requires an RMO\n");
2174 			goto out_srcu;
2175 		}
2176 
2177 		/* We can handle 4k, 64k or 16M pages in the VRMA */
2178 		err = -EINVAL;
2179 		if (!(psize == 0x1000 || psize == 0x10000 ||
2180 		      psize == 0x1000000))
2181 			goto out_srcu;
2182 
2183 		/* Update VRMASD field in the LPCR */
2184 		senc = slb_pgsize_encoding(psize);
2185 		kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2186 			(VRMA_VSID << SLB_VSID_SHIFT_1T);
2187 		lpcr_mask = LPCR_VRMASD;
2188 		/* the -4 is to account for senc values starting at 0x10 */
2189 		lpcr = senc << (LPCR_VRMASD_SH - 4);
2190 
2191 		/* Create HPTEs in the hash page table for the VRMA */
2192 		kvmppc_map_vrma(vcpu, memslot, porder);
2193 
2194 	} else {
2195 		/* Set up to use an RMO region */
2196 		rma_size = kvm_rma_pages;
2197 		if (rma_size > memslot->npages)
2198 			rma_size = memslot->npages;
2199 		rma_size <<= PAGE_SHIFT;
2200 		rmls = lpcr_rmls(rma_size);
2201 		err = -EINVAL;
2202 		if ((long)rmls < 0) {
2203 			pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
2204 			goto out_srcu;
2205 		}
2206 		atomic_inc(&ri->use_count);
2207 		kvm->arch.rma = ri;
2208 
2209 		/* Update LPCR and RMOR */
2210 		if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2211 			/* PPC970; insert RMLS value (split field) in HID4 */
2212 			lpcr_mask = (1ul << HID4_RMLS0_SH) |
2213 				(3ul << HID4_RMLS2_SH) | HID4_RMOR;
2214 			lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
2215 				((rmls & 3) << HID4_RMLS2_SH);
2216 			/* RMOR is also in HID4 */
2217 			lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
2218 				<< HID4_RMOR_SH;
2219 		} else {
2220 			/* POWER7 */
2221 			lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
2222 			lpcr = rmls << LPCR_RMLS_SH;
2223 			kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
2224 		}
2225 		pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
2226 			ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
2227 
2228 		/* Initialize phys addrs of pages in RMO */
2229 		npages = kvm_rma_pages;
2230 		porder = __ilog2(npages);
2231 		physp = memslot->arch.slot_phys;
2232 		if (physp) {
2233 			if (npages > memslot->npages)
2234 				npages = memslot->npages;
2235 			spin_lock(&kvm->arch.slot_phys_lock);
2236 			for (i = 0; i < npages; ++i)
2237 				physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
2238 					porder;
2239 			spin_unlock(&kvm->arch.slot_phys_lock);
2240 		}
2241 	}
2242 
2243 	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
2244 
2245 	/* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
2246 	smp_wmb();
2247 	kvm->arch.rma_setup_done = 1;
2248 	err = 0;
2249  out_srcu:
2250 	srcu_read_unlock(&kvm->srcu, srcu_idx);
2251  out:
2252 	mutex_unlock(&kvm->lock);
2253 	return err;
2254 
2255  up_out:
2256 	up_read(&current->mm->mmap_sem);
2257 	goto out_srcu;
2258 }
2259 
2260 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2261 {
2262 	unsigned long lpcr, lpid;
2263 
2264 	/* Allocate the guest's logical partition ID */
2265 
2266 	lpid = kvmppc_alloc_lpid();
2267 	if ((long)lpid < 0)
2268 		return -ENOMEM;
2269 	kvm->arch.lpid = lpid;
2270 
2271 	/*
2272 	 * Since we don't flush the TLB when tearing down a VM,
2273 	 * and this lpid might have previously been used,
2274 	 * make sure we flush on each core before running the new VM.
2275 	 */
2276 	cpumask_setall(&kvm->arch.need_tlb_flush);
2277 
2278 	kvm->arch.rma = NULL;
2279 
2280 	kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2281 
2282 	if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2283 		/* PPC970; HID4 is effectively the LPCR */
2284 		kvm->arch.host_lpid = 0;
2285 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
2286 		lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
2287 		lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
2288 			((lpid & 0xf) << HID4_LPID5_SH);
2289 	} else {
2290 		/* POWER7; init LPCR for virtual RMA mode */
2291 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
2292 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
2293 		lpcr &= LPCR_PECE | LPCR_LPES;
2294 		lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2295 			LPCR_VPM0 | LPCR_VPM1;
2296 		kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
2297 			(VRMA_VSID << SLB_VSID_SHIFT_1T);
2298 		/* On POWER8 turn on online bit to enable PURR/SPURR */
2299 		if (cpu_has_feature(CPU_FTR_ARCH_207S))
2300 			lpcr |= LPCR_ONL;
2301 	}
2302 	kvm->arch.lpcr = lpcr;
2303 
2304 	kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
2305 	spin_lock_init(&kvm->arch.slot_phys_lock);
2306 
2307 	/*
2308 	 * Don't allow secondary CPU threads to come online
2309 	 * while any KVM VMs exist.
2310 	 */
2311 	inhibit_secondary_onlining();
2312 
2313 	return 0;
2314 }
2315 
2316 static void kvmppc_free_vcores(struct kvm *kvm)
2317 {
2318 	long int i;
2319 
2320 	for (i = 0; i < KVM_MAX_VCORES; ++i)
2321 		kfree(kvm->arch.vcores[i]);
2322 	kvm->arch.online_vcores = 0;
2323 }
2324 
2325 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2326 {
2327 	uninhibit_secondary_onlining();
2328 
2329 	kvmppc_free_vcores(kvm);
2330 	if (kvm->arch.rma) {
2331 		kvm_release_rma(kvm->arch.rma);
2332 		kvm->arch.rma = NULL;
2333 	}
2334 
2335 	kvmppc_free_hpt(kvm);
2336 }
2337 
2338 /* We don't need to emulate any privileged instructions or dcbz */
2339 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
2340 				     unsigned int inst, int *advance)
2341 {
2342 	return EMULATE_FAIL;
2343 }
2344 
2345 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
2346 					ulong spr_val)
2347 {
2348 	return EMULATE_FAIL;
2349 }
2350 
2351 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
2352 					ulong *spr_val)
2353 {
2354 	return EMULATE_FAIL;
2355 }
2356 
2357 static int kvmppc_core_check_processor_compat_hv(void)
2358 {
2359 	if (!cpu_has_feature(CPU_FTR_HVMODE))
2360 		return -EIO;
2361 	return 0;
2362 }
2363 
2364 static long kvm_arch_vm_ioctl_hv(struct file *filp,
2365 				 unsigned int ioctl, unsigned long arg)
2366 {
2367 	struct kvm *kvm __maybe_unused = filp->private_data;
2368 	void __user *argp = (void __user *)arg;
2369 	long r;
2370 
2371 	switch (ioctl) {
2372 
2373 	case KVM_ALLOCATE_RMA: {
2374 		struct kvm_allocate_rma rma;
2375 		struct kvm *kvm = filp->private_data;
2376 
2377 		r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
2378 		if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
2379 			r = -EFAULT;
2380 		break;
2381 	}
2382 
2383 	case KVM_PPC_ALLOCATE_HTAB: {
2384 		u32 htab_order;
2385 
2386 		r = -EFAULT;
2387 		if (get_user(htab_order, (u32 __user *)argp))
2388 			break;
2389 		r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
2390 		if (r)
2391 			break;
2392 		r = -EFAULT;
2393 		if (put_user(htab_order, (u32 __user *)argp))
2394 			break;
2395 		r = 0;
2396 		break;
2397 	}
2398 
2399 	case KVM_PPC_GET_HTAB_FD: {
2400 		struct kvm_get_htab_fd ghf;
2401 
2402 		r = -EFAULT;
2403 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
2404 			break;
2405 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
2406 		break;
2407 	}
2408 
2409 	default:
2410 		r = -ENOTTY;
2411 	}
2412 
2413 	return r;
2414 }
2415 
2416 static struct kvmppc_ops kvm_ops_hv = {
2417 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
2418 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
2419 	.get_one_reg = kvmppc_get_one_reg_hv,
2420 	.set_one_reg = kvmppc_set_one_reg_hv,
2421 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
2422 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
2423 	.set_msr     = kvmppc_set_msr_hv,
2424 	.vcpu_run    = kvmppc_vcpu_run_hv,
2425 	.vcpu_create = kvmppc_core_vcpu_create_hv,
2426 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
2427 	.check_requests = kvmppc_core_check_requests_hv,
2428 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
2429 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
2430 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
2431 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
2432 	.unmap_hva = kvm_unmap_hva_hv,
2433 	.unmap_hva_range = kvm_unmap_hva_range_hv,
2434 	.age_hva  = kvm_age_hva_hv,
2435 	.test_age_hva = kvm_test_age_hva_hv,
2436 	.set_spte_hva = kvm_set_spte_hva_hv,
2437 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
2438 	.free_memslot = kvmppc_core_free_memslot_hv,
2439 	.create_memslot = kvmppc_core_create_memslot_hv,
2440 	.init_vm =  kvmppc_core_init_vm_hv,
2441 	.destroy_vm = kvmppc_core_destroy_vm_hv,
2442 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
2443 	.emulate_op = kvmppc_core_emulate_op_hv,
2444 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
2445 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
2446 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
2447 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2448 };
2449 
2450 static int kvmppc_book3s_init_hv(void)
2451 {
2452 	int r;
2453 	/*
2454 	 * FIXME!! Do we need to check on all cpus ?
2455 	 */
2456 	r = kvmppc_core_check_processor_compat_hv();
2457 	if (r < 0)
2458 		return -ENODEV;
2459 
2460 	kvm_ops_hv.owner = THIS_MODULE;
2461 	kvmppc_hv_ops = &kvm_ops_hv;
2462 
2463 	r = kvmppc_mmu_hv_init();
2464 	return r;
2465 }
2466 
2467 static void kvmppc_book3s_exit_hv(void)
2468 {
2469 	kvmppc_hv_ops = NULL;
2470 }
2471 
2472 module_init(kvmppc_book3s_init_hv);
2473 module_exit(kvmppc_book3s_exit_hv);
2474 MODULE_LICENSE("GPL");
2475 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2476 MODULE_ALIAS("devname:kvm");
2477