xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 7f35e63d)
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48 
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/debug.h>
53 #include <asm/disassemble.h>
54 #include <asm/cputable.h>
55 #include <asm/cacheflush.h>
56 #include <asm/tlbflush.h>
57 #include <linux/uaccess.h>
58 #include <asm/io.h>
59 #include <asm/kvm_ppc.h>
60 #include <asm/kvm_book3s.h>
61 #include <asm/mmu_context.h>
62 #include <asm/lppaca.h>
63 #include <asm/processor.h>
64 #include <asm/cputhreads.h>
65 #include <asm/page.h>
66 #include <asm/hvcall.h>
67 #include <asm/switch_to.h>
68 #include <asm/smp.h>
69 #include <asm/dbell.h>
70 #include <asm/hmi.h>
71 #include <asm/pnv-pci.h>
72 #include <asm/mmu.h>
73 #include <asm/opal.h>
74 #include <asm/xics.h>
75 #include <asm/xive.h>
76 
77 #include "book3s.h"
78 
79 #define CREATE_TRACE_POINTS
80 #include "trace_hv.h"
81 
82 /* #define EXIT_DEBUG */
83 /* #define EXIT_DEBUG_SIMPLE */
84 /* #define EXIT_DEBUG_INT */
85 
86 /* Used to indicate that a guest page fault needs to be handled */
87 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
88 /* Used to indicate that a guest passthrough interrupt needs to be handled */
89 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
90 
91 /* Used as a "null" value for timebase values */
92 #define TB_NIL	(~(u64)0)
93 
94 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
95 
96 static int dynamic_mt_modes = 6;
97 module_param(dynamic_mt_modes, int, 0644);
98 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
99 static int target_smt_mode;
100 module_param(target_smt_mode, int, 0644);
101 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
102 
103 static bool indep_threads_mode = true;
104 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
106 
107 #ifdef CONFIG_KVM_XICS
108 static struct kernel_param_ops module_param_ops = {
109 	.set = param_set_int,
110 	.get = param_get_int,
111 };
112 
113 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
114 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
115 
116 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
117 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
118 #endif
119 
120 /* If set, the threads on each CPU core have to be in the same MMU mode */
121 static bool no_mixing_hpt_and_radix;
122 
123 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
124 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
125 
126 /*
127  * RWMR values for POWER8.  These control the rate at which PURR
128  * and SPURR count and should be set according to the number of
129  * online threads in the vcore being run.
130  */
131 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECA
132 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9
133 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECA
134 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9
135 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECA
136 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECA
137 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECA
138 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECA
139 
140 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
141 	RWMR_RPA_P8_1THREAD,
142 	RWMR_RPA_P8_1THREAD,
143 	RWMR_RPA_P8_2THREAD,
144 	RWMR_RPA_P8_3THREAD,
145 	RWMR_RPA_P8_4THREAD,
146 	RWMR_RPA_P8_5THREAD,
147 	RWMR_RPA_P8_6THREAD,
148 	RWMR_RPA_P8_7THREAD,
149 	RWMR_RPA_P8_8THREAD,
150 };
151 
152 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
153 		int *ip)
154 {
155 	int i = *ip;
156 	struct kvm_vcpu *vcpu;
157 
158 	while (++i < MAX_SMT_THREADS) {
159 		vcpu = READ_ONCE(vc->runnable_threads[i]);
160 		if (vcpu) {
161 			*ip = i;
162 			return vcpu;
163 		}
164 	}
165 	return NULL;
166 }
167 
168 /* Used to traverse the list of runnable threads for a given vcore */
169 #define for_each_runnable_thread(i, vcpu, vc) \
170 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
171 
172 static bool kvmppc_ipi_thread(int cpu)
173 {
174 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
175 
176 	/* On POWER9 we can use msgsnd to IPI any cpu */
177 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
178 		msg |= get_hard_smp_processor_id(cpu);
179 		smp_mb();
180 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
181 		return true;
182 	}
183 
184 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
185 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
186 		preempt_disable();
187 		if (cpu_first_thread_sibling(cpu) ==
188 		    cpu_first_thread_sibling(smp_processor_id())) {
189 			msg |= cpu_thread_in_core(cpu);
190 			smp_mb();
191 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
192 			preempt_enable();
193 			return true;
194 		}
195 		preempt_enable();
196 	}
197 
198 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
199 	if (cpu >= 0 && cpu < nr_cpu_ids) {
200 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
201 			xics_wake_cpu(cpu);
202 			return true;
203 		}
204 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
205 		return true;
206 	}
207 #endif
208 
209 	return false;
210 }
211 
212 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
213 {
214 	int cpu;
215 	struct swait_queue_head *wqp;
216 
217 	wqp = kvm_arch_vcpu_wq(vcpu);
218 	if (swq_has_sleeper(wqp)) {
219 		swake_up(wqp);
220 		++vcpu->stat.halt_wakeup;
221 	}
222 
223 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
224 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
225 		return;
226 
227 	/* CPU points to the first thread of the core */
228 	cpu = vcpu->cpu;
229 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
230 		smp_send_reschedule(cpu);
231 }
232 
233 /*
234  * We use the vcpu_load/put functions to measure stolen time.
235  * Stolen time is counted as time when either the vcpu is able to
236  * run as part of a virtual core, but the task running the vcore
237  * is preempted or sleeping, or when the vcpu needs something done
238  * in the kernel by the task running the vcpu, but that task is
239  * preempted or sleeping.  Those two things have to be counted
240  * separately, since one of the vcpu tasks will take on the job
241  * of running the core, and the other vcpu tasks in the vcore will
242  * sleep waiting for it to do that, but that sleep shouldn't count
243  * as stolen time.
244  *
245  * Hence we accumulate stolen time when the vcpu can run as part of
246  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
247  * needs its task to do other things in the kernel (for example,
248  * service a page fault) in busy_stolen.  We don't accumulate
249  * stolen time for a vcore when it is inactive, or for a vcpu
250  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
251  * a misnomer; it means that the vcpu task is not executing in
252  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
253  * the kernel.  We don't have any way of dividing up that time
254  * between time that the vcpu is genuinely stopped, time that
255  * the task is actively working on behalf of the vcpu, and time
256  * that the task is preempted, so we don't count any of it as
257  * stolen.
258  *
259  * Updates to busy_stolen are protected by arch.tbacct_lock;
260  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
261  * lock.  The stolen times are measured in units of timebase ticks.
262  * (Note that the != TB_NIL checks below are purely defensive;
263  * they should never fail.)
264  */
265 
266 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
267 {
268 	unsigned long flags;
269 
270 	spin_lock_irqsave(&vc->stoltb_lock, flags);
271 	vc->preempt_tb = mftb();
272 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
273 }
274 
275 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
276 {
277 	unsigned long flags;
278 
279 	spin_lock_irqsave(&vc->stoltb_lock, flags);
280 	if (vc->preempt_tb != TB_NIL) {
281 		vc->stolen_tb += mftb() - vc->preempt_tb;
282 		vc->preempt_tb = TB_NIL;
283 	}
284 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
285 }
286 
287 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
288 {
289 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
290 	unsigned long flags;
291 
292 	/*
293 	 * We can test vc->runner without taking the vcore lock,
294 	 * because only this task ever sets vc->runner to this
295 	 * vcpu, and once it is set to this vcpu, only this task
296 	 * ever sets it to NULL.
297 	 */
298 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
299 		kvmppc_core_end_stolen(vc);
300 
301 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
302 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
303 	    vcpu->arch.busy_preempt != TB_NIL) {
304 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
305 		vcpu->arch.busy_preempt = TB_NIL;
306 	}
307 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
308 }
309 
310 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
311 {
312 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
313 	unsigned long flags;
314 
315 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
316 		kvmppc_core_start_stolen(vc);
317 
318 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
320 		vcpu->arch.busy_preempt = mftb();
321 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
322 }
323 
324 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
325 {
326 	/*
327 	 * Check for illegal transactional state bit combination
328 	 * and if we find it, force the TS field to a safe state.
329 	 */
330 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
331 		msr &= ~MSR_TS_MASK;
332 	vcpu->arch.shregs.msr = msr;
333 	kvmppc_end_cede(vcpu);
334 }
335 
336 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
337 {
338 	vcpu->arch.pvr = pvr;
339 }
340 
341 /* Dummy value used in computing PCR value below */
342 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
343 
344 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
345 {
346 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
347 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
348 
349 	/* We can (emulate) our own architecture version and anything older */
350 	if (cpu_has_feature(CPU_FTR_ARCH_300))
351 		host_pcr_bit = PCR_ARCH_300;
352 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
353 		host_pcr_bit = PCR_ARCH_207;
354 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
355 		host_pcr_bit = PCR_ARCH_206;
356 	else
357 		host_pcr_bit = PCR_ARCH_205;
358 
359 	/* Determine lowest PCR bit needed to run guest in given PVR level */
360 	guest_pcr_bit = host_pcr_bit;
361 	if (arch_compat) {
362 		switch (arch_compat) {
363 		case PVR_ARCH_205:
364 			guest_pcr_bit = PCR_ARCH_205;
365 			break;
366 		case PVR_ARCH_206:
367 		case PVR_ARCH_206p:
368 			guest_pcr_bit = PCR_ARCH_206;
369 			break;
370 		case PVR_ARCH_207:
371 			guest_pcr_bit = PCR_ARCH_207;
372 			break;
373 		case PVR_ARCH_300:
374 			guest_pcr_bit = PCR_ARCH_300;
375 			break;
376 		default:
377 			return -EINVAL;
378 		}
379 	}
380 
381 	/* Check requested PCR bits don't exceed our capabilities */
382 	if (guest_pcr_bit > host_pcr_bit)
383 		return -EINVAL;
384 
385 	spin_lock(&vc->lock);
386 	vc->arch_compat = arch_compat;
387 	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
388 	vc->pcr = host_pcr_bit - guest_pcr_bit;
389 	spin_unlock(&vc->lock);
390 
391 	return 0;
392 }
393 
394 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
395 {
396 	int r;
397 
398 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
399 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
400 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
401 	for (r = 0; r < 16; ++r)
402 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
403 		       r, kvmppc_get_gpr(vcpu, r),
404 		       r+16, kvmppc_get_gpr(vcpu, r+16));
405 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
406 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
407 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
408 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
409 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
410 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
411 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
412 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
413 	pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
414 	       vcpu->arch.cr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
415 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
416 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
417 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
418 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
419 	for (r = 0; r < vcpu->arch.slb_max; ++r)
420 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
421 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
422 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
423 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
424 	       vcpu->arch.last_inst);
425 }
426 
427 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
428 {
429 	struct kvm_vcpu *ret;
430 
431 	mutex_lock(&kvm->lock);
432 	ret = kvm_get_vcpu_by_id(kvm, id);
433 	mutex_unlock(&kvm->lock);
434 	return ret;
435 }
436 
437 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
438 {
439 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
440 	vpa->yield_count = cpu_to_be32(1);
441 }
442 
443 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
444 		   unsigned long addr, unsigned long len)
445 {
446 	/* check address is cacheline aligned */
447 	if (addr & (L1_CACHE_BYTES - 1))
448 		return -EINVAL;
449 	spin_lock(&vcpu->arch.vpa_update_lock);
450 	if (v->next_gpa != addr || v->len != len) {
451 		v->next_gpa = addr;
452 		v->len = addr ? len : 0;
453 		v->update_pending = 1;
454 	}
455 	spin_unlock(&vcpu->arch.vpa_update_lock);
456 	return 0;
457 }
458 
459 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
460 struct reg_vpa {
461 	u32 dummy;
462 	union {
463 		__be16 hword;
464 		__be32 word;
465 	} length;
466 };
467 
468 static int vpa_is_registered(struct kvmppc_vpa *vpap)
469 {
470 	if (vpap->update_pending)
471 		return vpap->next_gpa != 0;
472 	return vpap->pinned_addr != NULL;
473 }
474 
475 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
476 				       unsigned long flags,
477 				       unsigned long vcpuid, unsigned long vpa)
478 {
479 	struct kvm *kvm = vcpu->kvm;
480 	unsigned long len, nb;
481 	void *va;
482 	struct kvm_vcpu *tvcpu;
483 	int err;
484 	int subfunc;
485 	struct kvmppc_vpa *vpap;
486 
487 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
488 	if (!tvcpu)
489 		return H_PARAMETER;
490 
491 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
492 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
493 	    subfunc == H_VPA_REG_SLB) {
494 		/* Registering new area - address must be cache-line aligned */
495 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
496 			return H_PARAMETER;
497 
498 		/* convert logical addr to kernel addr and read length */
499 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
500 		if (va == NULL)
501 			return H_PARAMETER;
502 		if (subfunc == H_VPA_REG_VPA)
503 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
504 		else
505 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
506 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
507 
508 		/* Check length */
509 		if (len > nb || len < sizeof(struct reg_vpa))
510 			return H_PARAMETER;
511 	} else {
512 		vpa = 0;
513 		len = 0;
514 	}
515 
516 	err = H_PARAMETER;
517 	vpap = NULL;
518 	spin_lock(&tvcpu->arch.vpa_update_lock);
519 
520 	switch (subfunc) {
521 	case H_VPA_REG_VPA:		/* register VPA */
522 		/*
523 		 * The size of our lppaca is 1kB because of the way we align
524 		 * it for the guest to avoid crossing a 4kB boundary. We only
525 		 * use 640 bytes of the structure though, so we should accept
526 		 * clients that set a size of 640.
527 		 */
528 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
529 		if (len < sizeof(struct lppaca))
530 			break;
531 		vpap = &tvcpu->arch.vpa;
532 		err = 0;
533 		break;
534 
535 	case H_VPA_REG_DTL:		/* register DTL */
536 		if (len < sizeof(struct dtl_entry))
537 			break;
538 		len -= len % sizeof(struct dtl_entry);
539 
540 		/* Check that they have previously registered a VPA */
541 		err = H_RESOURCE;
542 		if (!vpa_is_registered(&tvcpu->arch.vpa))
543 			break;
544 
545 		vpap = &tvcpu->arch.dtl;
546 		err = 0;
547 		break;
548 
549 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
550 		/* Check that they have previously registered a VPA */
551 		err = H_RESOURCE;
552 		if (!vpa_is_registered(&tvcpu->arch.vpa))
553 			break;
554 
555 		vpap = &tvcpu->arch.slb_shadow;
556 		err = 0;
557 		break;
558 
559 	case H_VPA_DEREG_VPA:		/* deregister VPA */
560 		/* Check they don't still have a DTL or SLB buf registered */
561 		err = H_RESOURCE;
562 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
563 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
564 			break;
565 
566 		vpap = &tvcpu->arch.vpa;
567 		err = 0;
568 		break;
569 
570 	case H_VPA_DEREG_DTL:		/* deregister DTL */
571 		vpap = &tvcpu->arch.dtl;
572 		err = 0;
573 		break;
574 
575 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
576 		vpap = &tvcpu->arch.slb_shadow;
577 		err = 0;
578 		break;
579 	}
580 
581 	if (vpap) {
582 		vpap->next_gpa = vpa;
583 		vpap->len = len;
584 		vpap->update_pending = 1;
585 	}
586 
587 	spin_unlock(&tvcpu->arch.vpa_update_lock);
588 
589 	return err;
590 }
591 
592 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
593 {
594 	struct kvm *kvm = vcpu->kvm;
595 	void *va;
596 	unsigned long nb;
597 	unsigned long gpa;
598 
599 	/*
600 	 * We need to pin the page pointed to by vpap->next_gpa,
601 	 * but we can't call kvmppc_pin_guest_page under the lock
602 	 * as it does get_user_pages() and down_read().  So we
603 	 * have to drop the lock, pin the page, then get the lock
604 	 * again and check that a new area didn't get registered
605 	 * in the meantime.
606 	 */
607 	for (;;) {
608 		gpa = vpap->next_gpa;
609 		spin_unlock(&vcpu->arch.vpa_update_lock);
610 		va = NULL;
611 		nb = 0;
612 		if (gpa)
613 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
614 		spin_lock(&vcpu->arch.vpa_update_lock);
615 		if (gpa == vpap->next_gpa)
616 			break;
617 		/* sigh... unpin that one and try again */
618 		if (va)
619 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
620 	}
621 
622 	vpap->update_pending = 0;
623 	if (va && nb < vpap->len) {
624 		/*
625 		 * If it's now too short, it must be that userspace
626 		 * has changed the mappings underlying guest memory,
627 		 * so unregister the region.
628 		 */
629 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
630 		va = NULL;
631 	}
632 	if (vpap->pinned_addr)
633 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
634 					vpap->dirty);
635 	vpap->gpa = gpa;
636 	vpap->pinned_addr = va;
637 	vpap->dirty = false;
638 	if (va)
639 		vpap->pinned_end = va + vpap->len;
640 }
641 
642 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
643 {
644 	if (!(vcpu->arch.vpa.update_pending ||
645 	      vcpu->arch.slb_shadow.update_pending ||
646 	      vcpu->arch.dtl.update_pending))
647 		return;
648 
649 	spin_lock(&vcpu->arch.vpa_update_lock);
650 	if (vcpu->arch.vpa.update_pending) {
651 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
652 		if (vcpu->arch.vpa.pinned_addr)
653 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
654 	}
655 	if (vcpu->arch.dtl.update_pending) {
656 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
657 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
658 		vcpu->arch.dtl_index = 0;
659 	}
660 	if (vcpu->arch.slb_shadow.update_pending)
661 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
662 	spin_unlock(&vcpu->arch.vpa_update_lock);
663 }
664 
665 /*
666  * Return the accumulated stolen time for the vcore up until `now'.
667  * The caller should hold the vcore lock.
668  */
669 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
670 {
671 	u64 p;
672 	unsigned long flags;
673 
674 	spin_lock_irqsave(&vc->stoltb_lock, flags);
675 	p = vc->stolen_tb;
676 	if (vc->vcore_state != VCORE_INACTIVE &&
677 	    vc->preempt_tb != TB_NIL)
678 		p += now - vc->preempt_tb;
679 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
680 	return p;
681 }
682 
683 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
684 				    struct kvmppc_vcore *vc)
685 {
686 	struct dtl_entry *dt;
687 	struct lppaca *vpa;
688 	unsigned long stolen;
689 	unsigned long core_stolen;
690 	u64 now;
691 	unsigned long flags;
692 
693 	dt = vcpu->arch.dtl_ptr;
694 	vpa = vcpu->arch.vpa.pinned_addr;
695 	now = mftb();
696 	core_stolen = vcore_stolen_time(vc, now);
697 	stolen = core_stolen - vcpu->arch.stolen_logged;
698 	vcpu->arch.stolen_logged = core_stolen;
699 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
700 	stolen += vcpu->arch.busy_stolen;
701 	vcpu->arch.busy_stolen = 0;
702 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
703 	if (!dt || !vpa)
704 		return;
705 	memset(dt, 0, sizeof(struct dtl_entry));
706 	dt->dispatch_reason = 7;
707 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
708 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
709 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
710 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
711 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
712 	++dt;
713 	if (dt == vcpu->arch.dtl.pinned_end)
714 		dt = vcpu->arch.dtl.pinned_addr;
715 	vcpu->arch.dtl_ptr = dt;
716 	/* order writing *dt vs. writing vpa->dtl_idx */
717 	smp_wmb();
718 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
719 	vcpu->arch.dtl.dirty = true;
720 }
721 
722 /* See if there is a doorbell interrupt pending for a vcpu */
723 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
724 {
725 	int thr;
726 	struct kvmppc_vcore *vc;
727 
728 	if (vcpu->arch.doorbell_request)
729 		return true;
730 	/*
731 	 * Ensure that the read of vcore->dpdes comes after the read
732 	 * of vcpu->doorbell_request.  This barrier matches the
733 	 * lwsync in book3s_hv_rmhandlers.S just before the
734 	 * fast_guest_return label.
735 	 */
736 	smp_rmb();
737 	vc = vcpu->arch.vcore;
738 	thr = vcpu->vcpu_id - vc->first_vcpuid;
739 	return !!(vc->dpdes & (1 << thr));
740 }
741 
742 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
743 {
744 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
745 		return true;
746 	if ((!vcpu->arch.vcore->arch_compat) &&
747 	    cpu_has_feature(CPU_FTR_ARCH_207S))
748 		return true;
749 	return false;
750 }
751 
752 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
753 			     unsigned long resource, unsigned long value1,
754 			     unsigned long value2)
755 {
756 	switch (resource) {
757 	case H_SET_MODE_RESOURCE_SET_CIABR:
758 		if (!kvmppc_power8_compatible(vcpu))
759 			return H_P2;
760 		if (value2)
761 			return H_P4;
762 		if (mflags)
763 			return H_UNSUPPORTED_FLAG_START;
764 		/* Guests can't breakpoint the hypervisor */
765 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
766 			return H_P3;
767 		vcpu->arch.ciabr  = value1;
768 		return H_SUCCESS;
769 	case H_SET_MODE_RESOURCE_SET_DAWR:
770 		if (!kvmppc_power8_compatible(vcpu))
771 			return H_P2;
772 		if (!ppc_breakpoint_available())
773 			return H_P2;
774 		if (mflags)
775 			return H_UNSUPPORTED_FLAG_START;
776 		if (value2 & DABRX_HYP)
777 			return H_P4;
778 		vcpu->arch.dawr  = value1;
779 		vcpu->arch.dawrx = value2;
780 		return H_SUCCESS;
781 	default:
782 		return H_TOO_HARD;
783 	}
784 }
785 
786 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
787 {
788 	struct kvmppc_vcore *vcore = target->arch.vcore;
789 
790 	/*
791 	 * We expect to have been called by the real mode handler
792 	 * (kvmppc_rm_h_confer()) which would have directly returned
793 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
794 	 * have useful work to do and should not confer) so we don't
795 	 * recheck that here.
796 	 */
797 
798 	spin_lock(&vcore->lock);
799 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
800 	    vcore->vcore_state != VCORE_INACTIVE &&
801 	    vcore->runner)
802 		target = vcore->runner;
803 	spin_unlock(&vcore->lock);
804 
805 	return kvm_vcpu_yield_to(target);
806 }
807 
808 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
809 {
810 	int yield_count = 0;
811 	struct lppaca *lppaca;
812 
813 	spin_lock(&vcpu->arch.vpa_update_lock);
814 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
815 	if (lppaca)
816 		yield_count = be32_to_cpu(lppaca->yield_count);
817 	spin_unlock(&vcpu->arch.vpa_update_lock);
818 	return yield_count;
819 }
820 
821 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
822 {
823 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
824 	unsigned long target, ret = H_SUCCESS;
825 	int yield_count;
826 	struct kvm_vcpu *tvcpu;
827 	int idx, rc;
828 
829 	if (req <= MAX_HCALL_OPCODE &&
830 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
831 		return RESUME_HOST;
832 
833 	switch (req) {
834 	case H_CEDE:
835 		break;
836 	case H_PROD:
837 		target = kvmppc_get_gpr(vcpu, 4);
838 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
839 		if (!tvcpu) {
840 			ret = H_PARAMETER;
841 			break;
842 		}
843 		tvcpu->arch.prodded = 1;
844 		smp_mb();
845 		if (tvcpu->arch.ceded)
846 			kvmppc_fast_vcpu_kick_hv(tvcpu);
847 		break;
848 	case H_CONFER:
849 		target = kvmppc_get_gpr(vcpu, 4);
850 		if (target == -1)
851 			break;
852 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
853 		if (!tvcpu) {
854 			ret = H_PARAMETER;
855 			break;
856 		}
857 		yield_count = kvmppc_get_gpr(vcpu, 5);
858 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
859 			break;
860 		kvm_arch_vcpu_yield_to(tvcpu);
861 		break;
862 	case H_REGISTER_VPA:
863 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
864 					kvmppc_get_gpr(vcpu, 5),
865 					kvmppc_get_gpr(vcpu, 6));
866 		break;
867 	case H_RTAS:
868 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
869 			return RESUME_HOST;
870 
871 		idx = srcu_read_lock(&vcpu->kvm->srcu);
872 		rc = kvmppc_rtas_hcall(vcpu);
873 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
874 
875 		if (rc == -ENOENT)
876 			return RESUME_HOST;
877 		else if (rc == 0)
878 			break;
879 
880 		/* Send the error out to userspace via KVM_RUN */
881 		return rc;
882 	case H_LOGICAL_CI_LOAD:
883 		ret = kvmppc_h_logical_ci_load(vcpu);
884 		if (ret == H_TOO_HARD)
885 			return RESUME_HOST;
886 		break;
887 	case H_LOGICAL_CI_STORE:
888 		ret = kvmppc_h_logical_ci_store(vcpu);
889 		if (ret == H_TOO_HARD)
890 			return RESUME_HOST;
891 		break;
892 	case H_SET_MODE:
893 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
894 					kvmppc_get_gpr(vcpu, 5),
895 					kvmppc_get_gpr(vcpu, 6),
896 					kvmppc_get_gpr(vcpu, 7));
897 		if (ret == H_TOO_HARD)
898 			return RESUME_HOST;
899 		break;
900 	case H_XIRR:
901 	case H_CPPR:
902 	case H_EOI:
903 	case H_IPI:
904 	case H_IPOLL:
905 	case H_XIRR_X:
906 		if (kvmppc_xics_enabled(vcpu)) {
907 			if (xive_enabled()) {
908 				ret = H_NOT_AVAILABLE;
909 				return RESUME_GUEST;
910 			}
911 			ret = kvmppc_xics_hcall(vcpu, req);
912 			break;
913 		}
914 		return RESUME_HOST;
915 	case H_PUT_TCE:
916 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
917 						kvmppc_get_gpr(vcpu, 5),
918 						kvmppc_get_gpr(vcpu, 6));
919 		if (ret == H_TOO_HARD)
920 			return RESUME_HOST;
921 		break;
922 	case H_PUT_TCE_INDIRECT:
923 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
924 						kvmppc_get_gpr(vcpu, 5),
925 						kvmppc_get_gpr(vcpu, 6),
926 						kvmppc_get_gpr(vcpu, 7));
927 		if (ret == H_TOO_HARD)
928 			return RESUME_HOST;
929 		break;
930 	case H_STUFF_TCE:
931 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
932 						kvmppc_get_gpr(vcpu, 5),
933 						kvmppc_get_gpr(vcpu, 6),
934 						kvmppc_get_gpr(vcpu, 7));
935 		if (ret == H_TOO_HARD)
936 			return RESUME_HOST;
937 		break;
938 	default:
939 		return RESUME_HOST;
940 	}
941 	kvmppc_set_gpr(vcpu, 3, ret);
942 	vcpu->arch.hcall_needed = 0;
943 	return RESUME_GUEST;
944 }
945 
946 static int kvmppc_hcall_impl_hv(unsigned long cmd)
947 {
948 	switch (cmd) {
949 	case H_CEDE:
950 	case H_PROD:
951 	case H_CONFER:
952 	case H_REGISTER_VPA:
953 	case H_SET_MODE:
954 	case H_LOGICAL_CI_LOAD:
955 	case H_LOGICAL_CI_STORE:
956 #ifdef CONFIG_KVM_XICS
957 	case H_XIRR:
958 	case H_CPPR:
959 	case H_EOI:
960 	case H_IPI:
961 	case H_IPOLL:
962 	case H_XIRR_X:
963 #endif
964 		return 1;
965 	}
966 
967 	/* See if it's in the real-mode table */
968 	return kvmppc_hcall_impl_hv_realmode(cmd);
969 }
970 
971 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
972 					struct kvm_vcpu *vcpu)
973 {
974 	u32 last_inst;
975 
976 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
977 					EMULATE_DONE) {
978 		/*
979 		 * Fetch failed, so return to guest and
980 		 * try executing it again.
981 		 */
982 		return RESUME_GUEST;
983 	}
984 
985 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
986 		run->exit_reason = KVM_EXIT_DEBUG;
987 		run->debug.arch.address = kvmppc_get_pc(vcpu);
988 		return RESUME_HOST;
989 	} else {
990 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
991 		return RESUME_GUEST;
992 	}
993 }
994 
995 static void do_nothing(void *x)
996 {
997 }
998 
999 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1000 {
1001 	int thr, cpu, pcpu, nthreads;
1002 	struct kvm_vcpu *v;
1003 	unsigned long dpdes;
1004 
1005 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1006 	dpdes = 0;
1007 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1008 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1009 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1010 		if (!v)
1011 			continue;
1012 		/*
1013 		 * If the vcpu is currently running on a physical cpu thread,
1014 		 * interrupt it in order to pull it out of the guest briefly,
1015 		 * which will update its vcore->dpdes value.
1016 		 */
1017 		pcpu = READ_ONCE(v->cpu);
1018 		if (pcpu >= 0)
1019 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1020 		if (kvmppc_doorbell_pending(v))
1021 			dpdes |= 1 << thr;
1022 	}
1023 	return dpdes;
1024 }
1025 
1026 /*
1027  * On POWER9, emulate doorbell-related instructions in order to
1028  * give the guest the illusion of running on a multi-threaded core.
1029  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1030  * and mfspr DPDES.
1031  */
1032 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1033 {
1034 	u32 inst, rb, thr;
1035 	unsigned long arg;
1036 	struct kvm *kvm = vcpu->kvm;
1037 	struct kvm_vcpu *tvcpu;
1038 
1039 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1040 		return RESUME_GUEST;
1041 	if (get_op(inst) != 31)
1042 		return EMULATE_FAIL;
1043 	rb = get_rb(inst);
1044 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1045 	switch (get_xop(inst)) {
1046 	case OP_31_XOP_MSGSNDP:
1047 		arg = kvmppc_get_gpr(vcpu, rb);
1048 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1049 			break;
1050 		arg &= 0x3f;
1051 		if (arg >= kvm->arch.emul_smt_mode)
1052 			break;
1053 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1054 		if (!tvcpu)
1055 			break;
1056 		if (!tvcpu->arch.doorbell_request) {
1057 			tvcpu->arch.doorbell_request = 1;
1058 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1059 		}
1060 		break;
1061 	case OP_31_XOP_MSGCLRP:
1062 		arg = kvmppc_get_gpr(vcpu, rb);
1063 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1064 			break;
1065 		vcpu->arch.vcore->dpdes = 0;
1066 		vcpu->arch.doorbell_request = 0;
1067 		break;
1068 	case OP_31_XOP_MFSPR:
1069 		switch (get_sprn(inst)) {
1070 		case SPRN_TIR:
1071 			arg = thr;
1072 			break;
1073 		case SPRN_DPDES:
1074 			arg = kvmppc_read_dpdes(vcpu);
1075 			break;
1076 		default:
1077 			return EMULATE_FAIL;
1078 		}
1079 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1080 		break;
1081 	default:
1082 		return EMULATE_FAIL;
1083 	}
1084 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1085 	return RESUME_GUEST;
1086 }
1087 
1088 /* Called with vcpu->arch.vcore->lock held */
1089 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1090 				 struct task_struct *tsk)
1091 {
1092 	int r = RESUME_HOST;
1093 
1094 	vcpu->stat.sum_exits++;
1095 
1096 	/*
1097 	 * This can happen if an interrupt occurs in the last stages
1098 	 * of guest entry or the first stages of guest exit (i.e. after
1099 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1100 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1101 	 * That can happen due to a bug, or due to a machine check
1102 	 * occurring at just the wrong time.
1103 	 */
1104 	if (vcpu->arch.shregs.msr & MSR_HV) {
1105 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1106 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1107 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1108 			vcpu->arch.shregs.msr);
1109 		kvmppc_dump_regs(vcpu);
1110 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1111 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1112 		return RESUME_HOST;
1113 	}
1114 	run->exit_reason = KVM_EXIT_UNKNOWN;
1115 	run->ready_for_interrupt_injection = 1;
1116 	switch (vcpu->arch.trap) {
1117 	/* We're good on these - the host merely wanted to get our attention */
1118 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1119 		vcpu->stat.dec_exits++;
1120 		r = RESUME_GUEST;
1121 		break;
1122 	case BOOK3S_INTERRUPT_EXTERNAL:
1123 	case BOOK3S_INTERRUPT_H_DOORBELL:
1124 	case BOOK3S_INTERRUPT_H_VIRT:
1125 		vcpu->stat.ext_intr_exits++;
1126 		r = RESUME_GUEST;
1127 		break;
1128 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1129 	case BOOK3S_INTERRUPT_HMI:
1130 	case BOOK3S_INTERRUPT_PERFMON:
1131 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1132 		r = RESUME_GUEST;
1133 		break;
1134 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1135 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1136 		run->exit_reason = KVM_EXIT_NMI;
1137 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1138 		/* Clear out the old NMI status from run->flags */
1139 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1140 		/* Now set the NMI status */
1141 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1142 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1143 		else
1144 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1145 
1146 		r = RESUME_HOST;
1147 		/* Print the MCE event to host console. */
1148 		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1149 		break;
1150 	case BOOK3S_INTERRUPT_PROGRAM:
1151 	{
1152 		ulong flags;
1153 		/*
1154 		 * Normally program interrupts are delivered directly
1155 		 * to the guest by the hardware, but we can get here
1156 		 * as a result of a hypervisor emulation interrupt
1157 		 * (e40) getting turned into a 700 by BML RTAS.
1158 		 */
1159 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1160 		kvmppc_core_queue_program(vcpu, flags);
1161 		r = RESUME_GUEST;
1162 		break;
1163 	}
1164 	case BOOK3S_INTERRUPT_SYSCALL:
1165 	{
1166 		/* hcall - punt to userspace */
1167 		int i;
1168 
1169 		/* hypercall with MSR_PR has already been handled in rmode,
1170 		 * and never reaches here.
1171 		 */
1172 
1173 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1174 		for (i = 0; i < 9; ++i)
1175 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1176 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1177 		vcpu->arch.hcall_needed = 1;
1178 		r = RESUME_HOST;
1179 		break;
1180 	}
1181 	/*
1182 	 * We get these next two if the guest accesses a page which it thinks
1183 	 * it has mapped but which is not actually present, either because
1184 	 * it is for an emulated I/O device or because the corresonding
1185 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1186 	 * have been handled already.
1187 	 */
1188 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1189 		r = RESUME_PAGE_FAULT;
1190 		break;
1191 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1192 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1193 		vcpu->arch.fault_dsisr = 0;
1194 		r = RESUME_PAGE_FAULT;
1195 		break;
1196 	/*
1197 	 * This occurs if the guest executes an illegal instruction.
1198 	 * If the guest debug is disabled, generate a program interrupt
1199 	 * to the guest. If guest debug is enabled, we need to check
1200 	 * whether the instruction is a software breakpoint instruction.
1201 	 * Accordingly return to Guest or Host.
1202 	 */
1203 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1204 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1205 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1206 				swab32(vcpu->arch.emul_inst) :
1207 				vcpu->arch.emul_inst;
1208 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1209 			/* Need vcore unlocked to call kvmppc_get_last_inst */
1210 			spin_unlock(&vcpu->arch.vcore->lock);
1211 			r = kvmppc_emulate_debug_inst(run, vcpu);
1212 			spin_lock(&vcpu->arch.vcore->lock);
1213 		} else {
1214 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1215 			r = RESUME_GUEST;
1216 		}
1217 		break;
1218 	/*
1219 	 * This occurs if the guest (kernel or userspace), does something that
1220 	 * is prohibited by HFSCR.
1221 	 * On POWER9, this could be a doorbell instruction that we need
1222 	 * to emulate.
1223 	 * Otherwise, we just generate a program interrupt to the guest.
1224 	 */
1225 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1226 		r = EMULATE_FAIL;
1227 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1228 		    cpu_has_feature(CPU_FTR_ARCH_300)) {
1229 			/* Need vcore unlocked to call kvmppc_get_last_inst */
1230 			spin_unlock(&vcpu->arch.vcore->lock);
1231 			r = kvmppc_emulate_doorbell_instr(vcpu);
1232 			spin_lock(&vcpu->arch.vcore->lock);
1233 		}
1234 		if (r == EMULATE_FAIL) {
1235 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1236 			r = RESUME_GUEST;
1237 		}
1238 		break;
1239 
1240 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1241 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1242 		/*
1243 		 * This occurs for various TM-related instructions that
1244 		 * we need to emulate on POWER9 DD2.2.  We have already
1245 		 * handled the cases where the guest was in real-suspend
1246 		 * mode and was transitioning to transactional state.
1247 		 */
1248 		r = kvmhv_p9_tm_emulation(vcpu);
1249 		break;
1250 #endif
1251 
1252 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1253 		r = RESUME_PASSTHROUGH;
1254 		break;
1255 	default:
1256 		kvmppc_dump_regs(vcpu);
1257 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1258 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1259 			vcpu->arch.shregs.msr);
1260 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1261 		r = RESUME_HOST;
1262 		break;
1263 	}
1264 
1265 	return r;
1266 }
1267 
1268 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1269 					    struct kvm_sregs *sregs)
1270 {
1271 	int i;
1272 
1273 	memset(sregs, 0, sizeof(struct kvm_sregs));
1274 	sregs->pvr = vcpu->arch.pvr;
1275 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1276 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1277 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1284 					    struct kvm_sregs *sregs)
1285 {
1286 	int i, j;
1287 
1288 	/* Only accept the same PVR as the host's, since we can't spoof it */
1289 	if (sregs->pvr != vcpu->arch.pvr)
1290 		return -EINVAL;
1291 
1292 	j = 0;
1293 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1294 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1295 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1296 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1297 			++j;
1298 		}
1299 	}
1300 	vcpu->arch.slb_max = j;
1301 
1302 	return 0;
1303 }
1304 
1305 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1306 		bool preserve_top32)
1307 {
1308 	struct kvm *kvm = vcpu->kvm;
1309 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1310 	u64 mask;
1311 
1312 	mutex_lock(&kvm->lock);
1313 	spin_lock(&vc->lock);
1314 	/*
1315 	 * If ILE (interrupt little-endian) has changed, update the
1316 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1317 	 */
1318 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1319 		struct kvm_vcpu *vcpu;
1320 		int i;
1321 
1322 		kvm_for_each_vcpu(i, vcpu, kvm) {
1323 			if (vcpu->arch.vcore != vc)
1324 				continue;
1325 			if (new_lpcr & LPCR_ILE)
1326 				vcpu->arch.intr_msr |= MSR_LE;
1327 			else
1328 				vcpu->arch.intr_msr &= ~MSR_LE;
1329 		}
1330 	}
1331 
1332 	/*
1333 	 * Userspace can only modify DPFD (default prefetch depth),
1334 	 * ILE (interrupt little-endian) and TC (translation control).
1335 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1336 	 */
1337 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1338 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1339 		mask |= LPCR_AIL;
1340 	/*
1341 	 * On POWER9, allow userspace to enable large decrementer for the
1342 	 * guest, whether or not the host has it enabled.
1343 	 */
1344 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1345 		mask |= LPCR_LD;
1346 
1347 	/* Broken 32-bit version of LPCR must not clear top bits */
1348 	if (preserve_top32)
1349 		mask &= 0xFFFFFFFF;
1350 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1351 	spin_unlock(&vc->lock);
1352 	mutex_unlock(&kvm->lock);
1353 }
1354 
1355 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1356 				 union kvmppc_one_reg *val)
1357 {
1358 	int r = 0;
1359 	long int i;
1360 
1361 	switch (id) {
1362 	case KVM_REG_PPC_DEBUG_INST:
1363 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1364 		break;
1365 	case KVM_REG_PPC_HIOR:
1366 		*val = get_reg_val(id, 0);
1367 		break;
1368 	case KVM_REG_PPC_DABR:
1369 		*val = get_reg_val(id, vcpu->arch.dabr);
1370 		break;
1371 	case KVM_REG_PPC_DABRX:
1372 		*val = get_reg_val(id, vcpu->arch.dabrx);
1373 		break;
1374 	case KVM_REG_PPC_DSCR:
1375 		*val = get_reg_val(id, vcpu->arch.dscr);
1376 		break;
1377 	case KVM_REG_PPC_PURR:
1378 		*val = get_reg_val(id, vcpu->arch.purr);
1379 		break;
1380 	case KVM_REG_PPC_SPURR:
1381 		*val = get_reg_val(id, vcpu->arch.spurr);
1382 		break;
1383 	case KVM_REG_PPC_AMR:
1384 		*val = get_reg_val(id, vcpu->arch.amr);
1385 		break;
1386 	case KVM_REG_PPC_UAMOR:
1387 		*val = get_reg_val(id, vcpu->arch.uamor);
1388 		break;
1389 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1390 		i = id - KVM_REG_PPC_MMCR0;
1391 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1392 		break;
1393 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1394 		i = id - KVM_REG_PPC_PMC1;
1395 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1396 		break;
1397 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1398 		i = id - KVM_REG_PPC_SPMC1;
1399 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1400 		break;
1401 	case KVM_REG_PPC_SIAR:
1402 		*val = get_reg_val(id, vcpu->arch.siar);
1403 		break;
1404 	case KVM_REG_PPC_SDAR:
1405 		*val = get_reg_val(id, vcpu->arch.sdar);
1406 		break;
1407 	case KVM_REG_PPC_SIER:
1408 		*val = get_reg_val(id, vcpu->arch.sier);
1409 		break;
1410 	case KVM_REG_PPC_IAMR:
1411 		*val = get_reg_val(id, vcpu->arch.iamr);
1412 		break;
1413 	case KVM_REG_PPC_PSPB:
1414 		*val = get_reg_val(id, vcpu->arch.pspb);
1415 		break;
1416 	case KVM_REG_PPC_DPDES:
1417 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1418 		break;
1419 	case KVM_REG_PPC_VTB:
1420 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1421 		break;
1422 	case KVM_REG_PPC_DAWR:
1423 		*val = get_reg_val(id, vcpu->arch.dawr);
1424 		break;
1425 	case KVM_REG_PPC_DAWRX:
1426 		*val = get_reg_val(id, vcpu->arch.dawrx);
1427 		break;
1428 	case KVM_REG_PPC_CIABR:
1429 		*val = get_reg_val(id, vcpu->arch.ciabr);
1430 		break;
1431 	case KVM_REG_PPC_CSIGR:
1432 		*val = get_reg_val(id, vcpu->arch.csigr);
1433 		break;
1434 	case KVM_REG_PPC_TACR:
1435 		*val = get_reg_val(id, vcpu->arch.tacr);
1436 		break;
1437 	case KVM_REG_PPC_TCSCR:
1438 		*val = get_reg_val(id, vcpu->arch.tcscr);
1439 		break;
1440 	case KVM_REG_PPC_PID:
1441 		*val = get_reg_val(id, vcpu->arch.pid);
1442 		break;
1443 	case KVM_REG_PPC_ACOP:
1444 		*val = get_reg_val(id, vcpu->arch.acop);
1445 		break;
1446 	case KVM_REG_PPC_WORT:
1447 		*val = get_reg_val(id, vcpu->arch.wort);
1448 		break;
1449 	case KVM_REG_PPC_TIDR:
1450 		*val = get_reg_val(id, vcpu->arch.tid);
1451 		break;
1452 	case KVM_REG_PPC_PSSCR:
1453 		*val = get_reg_val(id, vcpu->arch.psscr);
1454 		break;
1455 	case KVM_REG_PPC_VPA_ADDR:
1456 		spin_lock(&vcpu->arch.vpa_update_lock);
1457 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1458 		spin_unlock(&vcpu->arch.vpa_update_lock);
1459 		break;
1460 	case KVM_REG_PPC_VPA_SLB:
1461 		spin_lock(&vcpu->arch.vpa_update_lock);
1462 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1463 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1464 		spin_unlock(&vcpu->arch.vpa_update_lock);
1465 		break;
1466 	case KVM_REG_PPC_VPA_DTL:
1467 		spin_lock(&vcpu->arch.vpa_update_lock);
1468 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1469 		val->vpaval.length = vcpu->arch.dtl.len;
1470 		spin_unlock(&vcpu->arch.vpa_update_lock);
1471 		break;
1472 	case KVM_REG_PPC_TB_OFFSET:
1473 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1474 		break;
1475 	case KVM_REG_PPC_LPCR:
1476 	case KVM_REG_PPC_LPCR_64:
1477 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1478 		break;
1479 	case KVM_REG_PPC_PPR:
1480 		*val = get_reg_val(id, vcpu->arch.ppr);
1481 		break;
1482 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1483 	case KVM_REG_PPC_TFHAR:
1484 		*val = get_reg_val(id, vcpu->arch.tfhar);
1485 		break;
1486 	case KVM_REG_PPC_TFIAR:
1487 		*val = get_reg_val(id, vcpu->arch.tfiar);
1488 		break;
1489 	case KVM_REG_PPC_TEXASR:
1490 		*val = get_reg_val(id, vcpu->arch.texasr);
1491 		break;
1492 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1493 		i = id - KVM_REG_PPC_TM_GPR0;
1494 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1495 		break;
1496 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1497 	{
1498 		int j;
1499 		i = id - KVM_REG_PPC_TM_VSR0;
1500 		if (i < 32)
1501 			for (j = 0; j < TS_FPRWIDTH; j++)
1502 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1503 		else {
1504 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1505 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1506 			else
1507 				r = -ENXIO;
1508 		}
1509 		break;
1510 	}
1511 	case KVM_REG_PPC_TM_CR:
1512 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1513 		break;
1514 	case KVM_REG_PPC_TM_XER:
1515 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1516 		break;
1517 	case KVM_REG_PPC_TM_LR:
1518 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1519 		break;
1520 	case KVM_REG_PPC_TM_CTR:
1521 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1522 		break;
1523 	case KVM_REG_PPC_TM_FPSCR:
1524 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1525 		break;
1526 	case KVM_REG_PPC_TM_AMR:
1527 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1528 		break;
1529 	case KVM_REG_PPC_TM_PPR:
1530 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1531 		break;
1532 	case KVM_REG_PPC_TM_VRSAVE:
1533 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1534 		break;
1535 	case KVM_REG_PPC_TM_VSCR:
1536 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1537 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1538 		else
1539 			r = -ENXIO;
1540 		break;
1541 	case KVM_REG_PPC_TM_DSCR:
1542 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1543 		break;
1544 	case KVM_REG_PPC_TM_TAR:
1545 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1546 		break;
1547 #endif
1548 	case KVM_REG_PPC_ARCH_COMPAT:
1549 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1550 		break;
1551 	case KVM_REG_PPC_DEC_EXPIRY:
1552 		*val = get_reg_val(id, vcpu->arch.dec_expires +
1553 				   vcpu->arch.vcore->tb_offset);
1554 		break;
1555 	case KVM_REG_PPC_ONLINE:
1556 		*val = get_reg_val(id, vcpu->arch.online);
1557 		break;
1558 	default:
1559 		r = -EINVAL;
1560 		break;
1561 	}
1562 
1563 	return r;
1564 }
1565 
1566 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1567 				 union kvmppc_one_reg *val)
1568 {
1569 	int r = 0;
1570 	long int i;
1571 	unsigned long addr, len;
1572 
1573 	switch (id) {
1574 	case KVM_REG_PPC_HIOR:
1575 		/* Only allow this to be set to zero */
1576 		if (set_reg_val(id, *val))
1577 			r = -EINVAL;
1578 		break;
1579 	case KVM_REG_PPC_DABR:
1580 		vcpu->arch.dabr = set_reg_val(id, *val);
1581 		break;
1582 	case KVM_REG_PPC_DABRX:
1583 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1584 		break;
1585 	case KVM_REG_PPC_DSCR:
1586 		vcpu->arch.dscr = set_reg_val(id, *val);
1587 		break;
1588 	case KVM_REG_PPC_PURR:
1589 		vcpu->arch.purr = set_reg_val(id, *val);
1590 		break;
1591 	case KVM_REG_PPC_SPURR:
1592 		vcpu->arch.spurr = set_reg_val(id, *val);
1593 		break;
1594 	case KVM_REG_PPC_AMR:
1595 		vcpu->arch.amr = set_reg_val(id, *val);
1596 		break;
1597 	case KVM_REG_PPC_UAMOR:
1598 		vcpu->arch.uamor = set_reg_val(id, *val);
1599 		break;
1600 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1601 		i = id - KVM_REG_PPC_MMCR0;
1602 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1603 		break;
1604 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1605 		i = id - KVM_REG_PPC_PMC1;
1606 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1607 		break;
1608 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1609 		i = id - KVM_REG_PPC_SPMC1;
1610 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1611 		break;
1612 	case KVM_REG_PPC_SIAR:
1613 		vcpu->arch.siar = set_reg_val(id, *val);
1614 		break;
1615 	case KVM_REG_PPC_SDAR:
1616 		vcpu->arch.sdar = set_reg_val(id, *val);
1617 		break;
1618 	case KVM_REG_PPC_SIER:
1619 		vcpu->arch.sier = set_reg_val(id, *val);
1620 		break;
1621 	case KVM_REG_PPC_IAMR:
1622 		vcpu->arch.iamr = set_reg_val(id, *val);
1623 		break;
1624 	case KVM_REG_PPC_PSPB:
1625 		vcpu->arch.pspb = set_reg_val(id, *val);
1626 		break;
1627 	case KVM_REG_PPC_DPDES:
1628 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1629 		break;
1630 	case KVM_REG_PPC_VTB:
1631 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1632 		break;
1633 	case KVM_REG_PPC_DAWR:
1634 		vcpu->arch.dawr = set_reg_val(id, *val);
1635 		break;
1636 	case KVM_REG_PPC_DAWRX:
1637 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1638 		break;
1639 	case KVM_REG_PPC_CIABR:
1640 		vcpu->arch.ciabr = set_reg_val(id, *val);
1641 		/* Don't allow setting breakpoints in hypervisor code */
1642 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1643 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1644 		break;
1645 	case KVM_REG_PPC_CSIGR:
1646 		vcpu->arch.csigr = set_reg_val(id, *val);
1647 		break;
1648 	case KVM_REG_PPC_TACR:
1649 		vcpu->arch.tacr = set_reg_val(id, *val);
1650 		break;
1651 	case KVM_REG_PPC_TCSCR:
1652 		vcpu->arch.tcscr = set_reg_val(id, *val);
1653 		break;
1654 	case KVM_REG_PPC_PID:
1655 		vcpu->arch.pid = set_reg_val(id, *val);
1656 		break;
1657 	case KVM_REG_PPC_ACOP:
1658 		vcpu->arch.acop = set_reg_val(id, *val);
1659 		break;
1660 	case KVM_REG_PPC_WORT:
1661 		vcpu->arch.wort = set_reg_val(id, *val);
1662 		break;
1663 	case KVM_REG_PPC_TIDR:
1664 		vcpu->arch.tid = set_reg_val(id, *val);
1665 		break;
1666 	case KVM_REG_PPC_PSSCR:
1667 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1668 		break;
1669 	case KVM_REG_PPC_VPA_ADDR:
1670 		addr = set_reg_val(id, *val);
1671 		r = -EINVAL;
1672 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1673 			      vcpu->arch.dtl.next_gpa))
1674 			break;
1675 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1676 		break;
1677 	case KVM_REG_PPC_VPA_SLB:
1678 		addr = val->vpaval.addr;
1679 		len = val->vpaval.length;
1680 		r = -EINVAL;
1681 		if (addr && !vcpu->arch.vpa.next_gpa)
1682 			break;
1683 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1684 		break;
1685 	case KVM_REG_PPC_VPA_DTL:
1686 		addr = val->vpaval.addr;
1687 		len = val->vpaval.length;
1688 		r = -EINVAL;
1689 		if (addr && (len < sizeof(struct dtl_entry) ||
1690 			     !vcpu->arch.vpa.next_gpa))
1691 			break;
1692 		len -= len % sizeof(struct dtl_entry);
1693 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1694 		break;
1695 	case KVM_REG_PPC_TB_OFFSET:
1696 		/*
1697 		 * POWER9 DD1 has an erratum where writing TBU40 causes
1698 		 * the timebase to lose ticks.  So we don't let the
1699 		 * timebase offset be changed on P9 DD1.  (It is
1700 		 * initialized to zero.)
1701 		 */
1702 		if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1703 			break;
1704 		/* round up to multiple of 2^24 */
1705 		vcpu->arch.vcore->tb_offset =
1706 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1707 		break;
1708 	case KVM_REG_PPC_LPCR:
1709 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1710 		break;
1711 	case KVM_REG_PPC_LPCR_64:
1712 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1713 		break;
1714 	case KVM_REG_PPC_PPR:
1715 		vcpu->arch.ppr = set_reg_val(id, *val);
1716 		break;
1717 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1718 	case KVM_REG_PPC_TFHAR:
1719 		vcpu->arch.tfhar = set_reg_val(id, *val);
1720 		break;
1721 	case KVM_REG_PPC_TFIAR:
1722 		vcpu->arch.tfiar = set_reg_val(id, *val);
1723 		break;
1724 	case KVM_REG_PPC_TEXASR:
1725 		vcpu->arch.texasr = set_reg_val(id, *val);
1726 		break;
1727 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1728 		i = id - KVM_REG_PPC_TM_GPR0;
1729 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1730 		break;
1731 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1732 	{
1733 		int j;
1734 		i = id - KVM_REG_PPC_TM_VSR0;
1735 		if (i < 32)
1736 			for (j = 0; j < TS_FPRWIDTH; j++)
1737 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1738 		else
1739 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1740 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
1741 			else
1742 				r = -ENXIO;
1743 		break;
1744 	}
1745 	case KVM_REG_PPC_TM_CR:
1746 		vcpu->arch.cr_tm = set_reg_val(id, *val);
1747 		break;
1748 	case KVM_REG_PPC_TM_XER:
1749 		vcpu->arch.xer_tm = set_reg_val(id, *val);
1750 		break;
1751 	case KVM_REG_PPC_TM_LR:
1752 		vcpu->arch.lr_tm = set_reg_val(id, *val);
1753 		break;
1754 	case KVM_REG_PPC_TM_CTR:
1755 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
1756 		break;
1757 	case KVM_REG_PPC_TM_FPSCR:
1758 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1759 		break;
1760 	case KVM_REG_PPC_TM_AMR:
1761 		vcpu->arch.amr_tm = set_reg_val(id, *val);
1762 		break;
1763 	case KVM_REG_PPC_TM_PPR:
1764 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
1765 		break;
1766 	case KVM_REG_PPC_TM_VRSAVE:
1767 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1768 		break;
1769 	case KVM_REG_PPC_TM_VSCR:
1770 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1771 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1772 		else
1773 			r = - ENXIO;
1774 		break;
1775 	case KVM_REG_PPC_TM_DSCR:
1776 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
1777 		break;
1778 	case KVM_REG_PPC_TM_TAR:
1779 		vcpu->arch.tar_tm = set_reg_val(id, *val);
1780 		break;
1781 #endif
1782 	case KVM_REG_PPC_ARCH_COMPAT:
1783 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1784 		break;
1785 	case KVM_REG_PPC_DEC_EXPIRY:
1786 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
1787 			vcpu->arch.vcore->tb_offset;
1788 		break;
1789 	case KVM_REG_PPC_ONLINE:
1790 		i = set_reg_val(id, *val);
1791 		if (i && !vcpu->arch.online)
1792 			atomic_inc(&vcpu->arch.vcore->online_count);
1793 		else if (!i && vcpu->arch.online)
1794 			atomic_dec(&vcpu->arch.vcore->online_count);
1795 		vcpu->arch.online = i;
1796 		break;
1797 	default:
1798 		r = -EINVAL;
1799 		break;
1800 	}
1801 
1802 	return r;
1803 }
1804 
1805 /*
1806  * On POWER9, threads are independent and can be in different partitions.
1807  * Therefore we consider each thread to be a subcore.
1808  * There is a restriction that all threads have to be in the same
1809  * MMU mode (radix or HPT), unfortunately, but since we only support
1810  * HPT guests on a HPT host so far, that isn't an impediment yet.
1811  */
1812 static int threads_per_vcore(struct kvm *kvm)
1813 {
1814 	if (kvm->arch.threads_indep)
1815 		return 1;
1816 	return threads_per_subcore;
1817 }
1818 
1819 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1820 {
1821 	struct kvmppc_vcore *vcore;
1822 
1823 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1824 
1825 	if (vcore == NULL)
1826 		return NULL;
1827 
1828 	spin_lock_init(&vcore->lock);
1829 	spin_lock_init(&vcore->stoltb_lock);
1830 	init_swait_queue_head(&vcore->wq);
1831 	vcore->preempt_tb = TB_NIL;
1832 	vcore->lpcr = kvm->arch.lpcr;
1833 	vcore->first_vcpuid = core * kvm->arch.smt_mode;
1834 	vcore->kvm = kvm;
1835 	INIT_LIST_HEAD(&vcore->preempt_list);
1836 
1837 	return vcore;
1838 }
1839 
1840 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1841 static struct debugfs_timings_element {
1842 	const char *name;
1843 	size_t offset;
1844 } timings[] = {
1845 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
1846 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
1847 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
1848 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
1849 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
1850 };
1851 
1852 #define N_TIMINGS	(ARRAY_SIZE(timings))
1853 
1854 struct debugfs_timings_state {
1855 	struct kvm_vcpu	*vcpu;
1856 	unsigned int	buflen;
1857 	char		buf[N_TIMINGS * 100];
1858 };
1859 
1860 static int debugfs_timings_open(struct inode *inode, struct file *file)
1861 {
1862 	struct kvm_vcpu *vcpu = inode->i_private;
1863 	struct debugfs_timings_state *p;
1864 
1865 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1866 	if (!p)
1867 		return -ENOMEM;
1868 
1869 	kvm_get_kvm(vcpu->kvm);
1870 	p->vcpu = vcpu;
1871 	file->private_data = p;
1872 
1873 	return nonseekable_open(inode, file);
1874 }
1875 
1876 static int debugfs_timings_release(struct inode *inode, struct file *file)
1877 {
1878 	struct debugfs_timings_state *p = file->private_data;
1879 
1880 	kvm_put_kvm(p->vcpu->kvm);
1881 	kfree(p);
1882 	return 0;
1883 }
1884 
1885 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1886 				    size_t len, loff_t *ppos)
1887 {
1888 	struct debugfs_timings_state *p = file->private_data;
1889 	struct kvm_vcpu *vcpu = p->vcpu;
1890 	char *s, *buf_end;
1891 	struct kvmhv_tb_accumulator tb;
1892 	u64 count;
1893 	loff_t pos;
1894 	ssize_t n;
1895 	int i, loops;
1896 	bool ok;
1897 
1898 	if (!p->buflen) {
1899 		s = p->buf;
1900 		buf_end = s + sizeof(p->buf);
1901 		for (i = 0; i < N_TIMINGS; ++i) {
1902 			struct kvmhv_tb_accumulator *acc;
1903 
1904 			acc = (struct kvmhv_tb_accumulator *)
1905 				((unsigned long)vcpu + timings[i].offset);
1906 			ok = false;
1907 			for (loops = 0; loops < 1000; ++loops) {
1908 				count = acc->seqcount;
1909 				if (!(count & 1)) {
1910 					smp_rmb();
1911 					tb = *acc;
1912 					smp_rmb();
1913 					if (count == acc->seqcount) {
1914 						ok = true;
1915 						break;
1916 					}
1917 				}
1918 				udelay(1);
1919 			}
1920 			if (!ok)
1921 				snprintf(s, buf_end - s, "%s: stuck\n",
1922 					timings[i].name);
1923 			else
1924 				snprintf(s, buf_end - s,
1925 					"%s: %llu %llu %llu %llu\n",
1926 					timings[i].name, count / 2,
1927 					tb_to_ns(tb.tb_total),
1928 					tb_to_ns(tb.tb_min),
1929 					tb_to_ns(tb.tb_max));
1930 			s += strlen(s);
1931 		}
1932 		p->buflen = s - p->buf;
1933 	}
1934 
1935 	pos = *ppos;
1936 	if (pos >= p->buflen)
1937 		return 0;
1938 	if (len > p->buflen - pos)
1939 		len = p->buflen - pos;
1940 	n = copy_to_user(buf, p->buf + pos, len);
1941 	if (n) {
1942 		if (n == len)
1943 			return -EFAULT;
1944 		len -= n;
1945 	}
1946 	*ppos = pos + len;
1947 	return len;
1948 }
1949 
1950 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1951 				     size_t len, loff_t *ppos)
1952 {
1953 	return -EACCES;
1954 }
1955 
1956 static const struct file_operations debugfs_timings_ops = {
1957 	.owner	 = THIS_MODULE,
1958 	.open	 = debugfs_timings_open,
1959 	.release = debugfs_timings_release,
1960 	.read	 = debugfs_timings_read,
1961 	.write	 = debugfs_timings_write,
1962 	.llseek	 = generic_file_llseek,
1963 };
1964 
1965 /* Create a debugfs directory for the vcpu */
1966 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1967 {
1968 	char buf[16];
1969 	struct kvm *kvm = vcpu->kvm;
1970 
1971 	snprintf(buf, sizeof(buf), "vcpu%u", id);
1972 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1973 		return;
1974 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1975 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1976 		return;
1977 	vcpu->arch.debugfs_timings =
1978 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1979 				    vcpu, &debugfs_timings_ops);
1980 }
1981 
1982 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1983 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1984 {
1985 }
1986 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1987 
1988 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1989 						   unsigned int id)
1990 {
1991 	struct kvm_vcpu *vcpu;
1992 	int err;
1993 	int core;
1994 	struct kvmppc_vcore *vcore;
1995 
1996 	err = -ENOMEM;
1997 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1998 	if (!vcpu)
1999 		goto out;
2000 
2001 	err = kvm_vcpu_init(vcpu, kvm, id);
2002 	if (err)
2003 		goto free_vcpu;
2004 
2005 	vcpu->arch.shared = &vcpu->arch.shregs;
2006 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2007 	/*
2008 	 * The shared struct is never shared on HV,
2009 	 * so we can always use host endianness
2010 	 */
2011 #ifdef __BIG_ENDIAN__
2012 	vcpu->arch.shared_big_endian = true;
2013 #else
2014 	vcpu->arch.shared_big_endian = false;
2015 #endif
2016 #endif
2017 	vcpu->arch.mmcr[0] = MMCR0_FC;
2018 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2019 	/* default to host PVR, since we can't spoof it */
2020 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2021 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2022 	spin_lock_init(&vcpu->arch.tbacct_lock);
2023 	vcpu->arch.busy_preempt = TB_NIL;
2024 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2025 
2026 	/*
2027 	 * Set the default HFSCR for the guest from the host value.
2028 	 * This value is only used on POWER9.
2029 	 * On POWER9 DD1, TM doesn't work, so we make sure to
2030 	 * prevent the guest from using it.
2031 	 * On POWER9, we want to virtualize the doorbell facility, so we
2032 	 * turn off the HFSCR bit, which causes those instructions to trap.
2033 	 */
2034 	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
2035 	if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2036 		vcpu->arch.hfscr |= HFSCR_TM;
2037 	else if (!cpu_has_feature(CPU_FTR_TM_COMP))
2038 		vcpu->arch.hfscr &= ~HFSCR_TM;
2039 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2040 		vcpu->arch.hfscr &= ~HFSCR_MSGP;
2041 
2042 	kvmppc_mmu_book3s_hv_init(vcpu);
2043 
2044 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2045 
2046 	init_waitqueue_head(&vcpu->arch.cpu_run);
2047 
2048 	mutex_lock(&kvm->lock);
2049 	vcore = NULL;
2050 	err = -EINVAL;
2051 	core = id / kvm->arch.smt_mode;
2052 	if (core < KVM_MAX_VCORES) {
2053 		vcore = kvm->arch.vcores[core];
2054 		if (!vcore) {
2055 			err = -ENOMEM;
2056 			vcore = kvmppc_vcore_create(kvm, core);
2057 			kvm->arch.vcores[core] = vcore;
2058 			kvm->arch.online_vcores++;
2059 		}
2060 	}
2061 	mutex_unlock(&kvm->lock);
2062 
2063 	if (!vcore)
2064 		goto free_vcpu;
2065 
2066 	spin_lock(&vcore->lock);
2067 	++vcore->num_threads;
2068 	spin_unlock(&vcore->lock);
2069 	vcpu->arch.vcore = vcore;
2070 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2071 	vcpu->arch.thread_cpu = -1;
2072 	vcpu->arch.prev_cpu = -1;
2073 
2074 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2075 	kvmppc_sanity_check(vcpu);
2076 
2077 	debugfs_vcpu_init(vcpu, id);
2078 
2079 	return vcpu;
2080 
2081 free_vcpu:
2082 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2083 out:
2084 	return ERR_PTR(err);
2085 }
2086 
2087 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2088 			      unsigned long flags)
2089 {
2090 	int err;
2091 	int esmt = 0;
2092 
2093 	if (flags)
2094 		return -EINVAL;
2095 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2096 		return -EINVAL;
2097 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2098 		/*
2099 		 * On POWER8 (or POWER7), the threading mode is "strict",
2100 		 * so we pack smt_mode vcpus per vcore.
2101 		 */
2102 		if (smt_mode > threads_per_subcore)
2103 			return -EINVAL;
2104 	} else {
2105 		/*
2106 		 * On POWER9, the threading mode is "loose",
2107 		 * so each vcpu gets its own vcore.
2108 		 */
2109 		esmt = smt_mode;
2110 		smt_mode = 1;
2111 	}
2112 	mutex_lock(&kvm->lock);
2113 	err = -EBUSY;
2114 	if (!kvm->arch.online_vcores) {
2115 		kvm->arch.smt_mode = smt_mode;
2116 		kvm->arch.emul_smt_mode = esmt;
2117 		err = 0;
2118 	}
2119 	mutex_unlock(&kvm->lock);
2120 
2121 	return err;
2122 }
2123 
2124 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2125 {
2126 	if (vpa->pinned_addr)
2127 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2128 					vpa->dirty);
2129 }
2130 
2131 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2132 {
2133 	spin_lock(&vcpu->arch.vpa_update_lock);
2134 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2135 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2136 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2137 	spin_unlock(&vcpu->arch.vpa_update_lock);
2138 	kvm_vcpu_uninit(vcpu);
2139 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2140 }
2141 
2142 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2143 {
2144 	/* Indicate we want to get back into the guest */
2145 	return 1;
2146 }
2147 
2148 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2149 {
2150 	unsigned long dec_nsec, now;
2151 
2152 	now = get_tb();
2153 	if (now > vcpu->arch.dec_expires) {
2154 		/* decrementer has already gone negative */
2155 		kvmppc_core_queue_dec(vcpu);
2156 		kvmppc_core_prepare_to_enter(vcpu);
2157 		return;
2158 	}
2159 	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2160 		   / tb_ticks_per_sec;
2161 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2162 	vcpu->arch.timer_running = 1;
2163 }
2164 
2165 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2166 {
2167 	vcpu->arch.ceded = 0;
2168 	if (vcpu->arch.timer_running) {
2169 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2170 		vcpu->arch.timer_running = 0;
2171 	}
2172 }
2173 
2174 extern int __kvmppc_vcore_entry(void);
2175 
2176 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2177 				   struct kvm_vcpu *vcpu)
2178 {
2179 	u64 now;
2180 
2181 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2182 		return;
2183 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2184 	now = mftb();
2185 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2186 		vcpu->arch.stolen_logged;
2187 	vcpu->arch.busy_preempt = now;
2188 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2189 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2190 	--vc->n_runnable;
2191 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2192 }
2193 
2194 static int kvmppc_grab_hwthread(int cpu)
2195 {
2196 	struct paca_struct *tpaca;
2197 	long timeout = 10000;
2198 
2199 	tpaca = paca_ptrs[cpu];
2200 
2201 	/* Ensure the thread won't go into the kernel if it wakes */
2202 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2203 	tpaca->kvm_hstate.kvm_vcore = NULL;
2204 	tpaca->kvm_hstate.napping = 0;
2205 	smp_wmb();
2206 	tpaca->kvm_hstate.hwthread_req = 1;
2207 
2208 	/*
2209 	 * If the thread is already executing in the kernel (e.g. handling
2210 	 * a stray interrupt), wait for it to get back to nap mode.
2211 	 * The smp_mb() is to ensure that our setting of hwthread_req
2212 	 * is visible before we look at hwthread_state, so if this
2213 	 * races with the code at system_reset_pSeries and the thread
2214 	 * misses our setting of hwthread_req, we are sure to see its
2215 	 * setting of hwthread_state, and vice versa.
2216 	 */
2217 	smp_mb();
2218 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2219 		if (--timeout <= 0) {
2220 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2221 			return -EBUSY;
2222 		}
2223 		udelay(1);
2224 	}
2225 	return 0;
2226 }
2227 
2228 static void kvmppc_release_hwthread(int cpu)
2229 {
2230 	struct paca_struct *tpaca;
2231 
2232 	tpaca = paca_ptrs[cpu];
2233 	tpaca->kvm_hstate.hwthread_req = 0;
2234 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2235 	tpaca->kvm_hstate.kvm_vcore = NULL;
2236 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2237 }
2238 
2239 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2240 {
2241 	int i;
2242 
2243 	cpu = cpu_first_thread_sibling(cpu);
2244 	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2245 	/*
2246 	 * Make sure setting of bit in need_tlb_flush precedes
2247 	 * testing of cpu_in_guest bits.  The matching barrier on
2248 	 * the other side is the first smp_mb() in kvmppc_run_core().
2249 	 */
2250 	smp_mb();
2251 	for (i = 0; i < threads_per_core; ++i)
2252 		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2253 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2254 }
2255 
2256 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2257 {
2258 	struct kvm *kvm = vcpu->kvm;
2259 
2260 	/*
2261 	 * With radix, the guest can do TLB invalidations itself,
2262 	 * and it could choose to use the local form (tlbiel) if
2263 	 * it is invalidating a translation that has only ever been
2264 	 * used on one vcpu.  However, that doesn't mean it has
2265 	 * only ever been used on one physical cpu, since vcpus
2266 	 * can move around between pcpus.  To cope with this, when
2267 	 * a vcpu moves from one pcpu to another, we need to tell
2268 	 * any vcpus running on the same core as this vcpu previously
2269 	 * ran to flush the TLB.  The TLB is shared between threads,
2270 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2271 	 */
2272 	if (vcpu->arch.prev_cpu != pcpu) {
2273 		if (vcpu->arch.prev_cpu >= 0 &&
2274 		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2275 		    cpu_first_thread_sibling(pcpu))
2276 			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2277 		vcpu->arch.prev_cpu = pcpu;
2278 	}
2279 }
2280 
2281 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2282 {
2283 	int cpu;
2284 	struct paca_struct *tpaca;
2285 	struct kvm *kvm = vc->kvm;
2286 
2287 	cpu = vc->pcpu;
2288 	if (vcpu) {
2289 		if (vcpu->arch.timer_running) {
2290 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2291 			vcpu->arch.timer_running = 0;
2292 		}
2293 		cpu += vcpu->arch.ptid;
2294 		vcpu->cpu = vc->pcpu;
2295 		vcpu->arch.thread_cpu = cpu;
2296 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2297 	}
2298 	tpaca = paca_ptrs[cpu];
2299 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2300 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2301 	tpaca->kvm_hstate.fake_suspend = 0;
2302 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2303 	smp_wmb();
2304 	tpaca->kvm_hstate.kvm_vcore = vc;
2305 	if (cpu != smp_processor_id())
2306 		kvmppc_ipi_thread(cpu);
2307 }
2308 
2309 static void kvmppc_wait_for_nap(int n_threads)
2310 {
2311 	int cpu = smp_processor_id();
2312 	int i, loops;
2313 
2314 	if (n_threads <= 1)
2315 		return;
2316 	for (loops = 0; loops < 1000000; ++loops) {
2317 		/*
2318 		 * Check if all threads are finished.
2319 		 * We set the vcore pointer when starting a thread
2320 		 * and the thread clears it when finished, so we look
2321 		 * for any threads that still have a non-NULL vcore ptr.
2322 		 */
2323 		for (i = 1; i < n_threads; ++i)
2324 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2325 				break;
2326 		if (i == n_threads) {
2327 			HMT_medium();
2328 			return;
2329 		}
2330 		HMT_low();
2331 	}
2332 	HMT_medium();
2333 	for (i = 1; i < n_threads; ++i)
2334 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2335 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2336 }
2337 
2338 /*
2339  * Check that we are on thread 0 and that any other threads in
2340  * this core are off-line.  Then grab the threads so they can't
2341  * enter the kernel.
2342  */
2343 static int on_primary_thread(void)
2344 {
2345 	int cpu = smp_processor_id();
2346 	int thr;
2347 
2348 	/* Are we on a primary subcore? */
2349 	if (cpu_thread_in_subcore(cpu))
2350 		return 0;
2351 
2352 	thr = 0;
2353 	while (++thr < threads_per_subcore)
2354 		if (cpu_online(cpu + thr))
2355 			return 0;
2356 
2357 	/* Grab all hw threads so they can't go into the kernel */
2358 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2359 		if (kvmppc_grab_hwthread(cpu + thr)) {
2360 			/* Couldn't grab one; let the others go */
2361 			do {
2362 				kvmppc_release_hwthread(cpu + thr);
2363 			} while (--thr > 0);
2364 			return 0;
2365 		}
2366 	}
2367 	return 1;
2368 }
2369 
2370 /*
2371  * A list of virtual cores for each physical CPU.
2372  * These are vcores that could run but their runner VCPU tasks are
2373  * (or may be) preempted.
2374  */
2375 struct preempted_vcore_list {
2376 	struct list_head	list;
2377 	spinlock_t		lock;
2378 };
2379 
2380 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2381 
2382 static void init_vcore_lists(void)
2383 {
2384 	int cpu;
2385 
2386 	for_each_possible_cpu(cpu) {
2387 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2388 		spin_lock_init(&lp->lock);
2389 		INIT_LIST_HEAD(&lp->list);
2390 	}
2391 }
2392 
2393 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2394 {
2395 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2396 
2397 	vc->vcore_state = VCORE_PREEMPT;
2398 	vc->pcpu = smp_processor_id();
2399 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2400 		spin_lock(&lp->lock);
2401 		list_add_tail(&vc->preempt_list, &lp->list);
2402 		spin_unlock(&lp->lock);
2403 	}
2404 
2405 	/* Start accumulating stolen time */
2406 	kvmppc_core_start_stolen(vc);
2407 }
2408 
2409 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2410 {
2411 	struct preempted_vcore_list *lp;
2412 
2413 	kvmppc_core_end_stolen(vc);
2414 	if (!list_empty(&vc->preempt_list)) {
2415 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2416 		spin_lock(&lp->lock);
2417 		list_del_init(&vc->preempt_list);
2418 		spin_unlock(&lp->lock);
2419 	}
2420 	vc->vcore_state = VCORE_INACTIVE;
2421 }
2422 
2423 /*
2424  * This stores information about the virtual cores currently
2425  * assigned to a physical core.
2426  */
2427 struct core_info {
2428 	int		n_subcores;
2429 	int		max_subcore_threads;
2430 	int		total_threads;
2431 	int		subcore_threads[MAX_SUBCORES];
2432 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2433 };
2434 
2435 /*
2436  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2437  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2438  */
2439 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2440 
2441 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2442 {
2443 	memset(cip, 0, sizeof(*cip));
2444 	cip->n_subcores = 1;
2445 	cip->max_subcore_threads = vc->num_threads;
2446 	cip->total_threads = vc->num_threads;
2447 	cip->subcore_threads[0] = vc->num_threads;
2448 	cip->vc[0] = vc;
2449 }
2450 
2451 static bool subcore_config_ok(int n_subcores, int n_threads)
2452 {
2453 	/*
2454 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2455 	 * split-core mode, with one thread per subcore.
2456 	 */
2457 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2458 		return n_subcores <= 4 && n_threads == 1;
2459 
2460 	/* On POWER8, can only dynamically split if unsplit to begin with */
2461 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2462 		return false;
2463 	if (n_subcores > MAX_SUBCORES)
2464 		return false;
2465 	if (n_subcores > 1) {
2466 		if (!(dynamic_mt_modes & 2))
2467 			n_subcores = 4;
2468 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2469 			return false;
2470 	}
2471 
2472 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2473 }
2474 
2475 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2476 {
2477 	vc->entry_exit_map = 0;
2478 	vc->in_guest = 0;
2479 	vc->napping_threads = 0;
2480 	vc->conferring_threads = 0;
2481 	vc->tb_offset_applied = 0;
2482 }
2483 
2484 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2485 {
2486 	int n_threads = vc->num_threads;
2487 	int sub;
2488 
2489 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2490 		return false;
2491 
2492 	/* Some POWER9 chips require all threads to be in the same MMU mode */
2493 	if (no_mixing_hpt_and_radix &&
2494 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2495 		return false;
2496 
2497 	if (n_threads < cip->max_subcore_threads)
2498 		n_threads = cip->max_subcore_threads;
2499 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2500 		return false;
2501 	cip->max_subcore_threads = n_threads;
2502 
2503 	sub = cip->n_subcores;
2504 	++cip->n_subcores;
2505 	cip->total_threads += vc->num_threads;
2506 	cip->subcore_threads[sub] = vc->num_threads;
2507 	cip->vc[sub] = vc;
2508 	init_vcore_to_run(vc);
2509 	list_del_init(&vc->preempt_list);
2510 
2511 	return true;
2512 }
2513 
2514 /*
2515  * Work out whether it is possible to piggyback the execution of
2516  * vcore *pvc onto the execution of the other vcores described in *cip.
2517  */
2518 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2519 			  int target_threads)
2520 {
2521 	if (cip->total_threads + pvc->num_threads > target_threads)
2522 		return false;
2523 
2524 	return can_dynamic_split(pvc, cip);
2525 }
2526 
2527 static void prepare_threads(struct kvmppc_vcore *vc)
2528 {
2529 	int i;
2530 	struct kvm_vcpu *vcpu;
2531 
2532 	for_each_runnable_thread(i, vcpu, vc) {
2533 		if (signal_pending(vcpu->arch.run_task))
2534 			vcpu->arch.ret = -EINTR;
2535 		else if (vcpu->arch.vpa.update_pending ||
2536 			 vcpu->arch.slb_shadow.update_pending ||
2537 			 vcpu->arch.dtl.update_pending)
2538 			vcpu->arch.ret = RESUME_GUEST;
2539 		else
2540 			continue;
2541 		kvmppc_remove_runnable(vc, vcpu);
2542 		wake_up(&vcpu->arch.cpu_run);
2543 	}
2544 }
2545 
2546 static void collect_piggybacks(struct core_info *cip, int target_threads)
2547 {
2548 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2549 	struct kvmppc_vcore *pvc, *vcnext;
2550 
2551 	spin_lock(&lp->lock);
2552 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2553 		if (!spin_trylock(&pvc->lock))
2554 			continue;
2555 		prepare_threads(pvc);
2556 		if (!pvc->n_runnable) {
2557 			list_del_init(&pvc->preempt_list);
2558 			if (pvc->runner == NULL) {
2559 				pvc->vcore_state = VCORE_INACTIVE;
2560 				kvmppc_core_end_stolen(pvc);
2561 			}
2562 			spin_unlock(&pvc->lock);
2563 			continue;
2564 		}
2565 		if (!can_piggyback(pvc, cip, target_threads)) {
2566 			spin_unlock(&pvc->lock);
2567 			continue;
2568 		}
2569 		kvmppc_core_end_stolen(pvc);
2570 		pvc->vcore_state = VCORE_PIGGYBACK;
2571 		if (cip->total_threads >= target_threads)
2572 			break;
2573 	}
2574 	spin_unlock(&lp->lock);
2575 }
2576 
2577 static bool recheck_signals(struct core_info *cip)
2578 {
2579 	int sub, i;
2580 	struct kvm_vcpu *vcpu;
2581 
2582 	for (sub = 0; sub < cip->n_subcores; ++sub)
2583 		for_each_runnable_thread(i, vcpu, cip->vc[sub])
2584 			if (signal_pending(vcpu->arch.run_task))
2585 				return true;
2586 	return false;
2587 }
2588 
2589 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2590 {
2591 	int still_running = 0, i;
2592 	u64 now;
2593 	long ret;
2594 	struct kvm_vcpu *vcpu;
2595 
2596 	spin_lock(&vc->lock);
2597 	now = get_tb();
2598 	for_each_runnable_thread(i, vcpu, vc) {
2599 		/* cancel pending dec exception if dec is positive */
2600 		if (now < vcpu->arch.dec_expires &&
2601 		    kvmppc_core_pending_dec(vcpu))
2602 			kvmppc_core_dequeue_dec(vcpu);
2603 
2604 		trace_kvm_guest_exit(vcpu);
2605 
2606 		ret = RESUME_GUEST;
2607 		if (vcpu->arch.trap)
2608 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2609 						    vcpu->arch.run_task);
2610 
2611 		vcpu->arch.ret = ret;
2612 		vcpu->arch.trap = 0;
2613 
2614 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2615 			if (vcpu->arch.pending_exceptions)
2616 				kvmppc_core_prepare_to_enter(vcpu);
2617 			if (vcpu->arch.ceded)
2618 				kvmppc_set_timer(vcpu);
2619 			else
2620 				++still_running;
2621 		} else {
2622 			kvmppc_remove_runnable(vc, vcpu);
2623 			wake_up(&vcpu->arch.cpu_run);
2624 		}
2625 	}
2626 	if (!is_master) {
2627 		if (still_running > 0) {
2628 			kvmppc_vcore_preempt(vc);
2629 		} else if (vc->runner) {
2630 			vc->vcore_state = VCORE_PREEMPT;
2631 			kvmppc_core_start_stolen(vc);
2632 		} else {
2633 			vc->vcore_state = VCORE_INACTIVE;
2634 		}
2635 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2636 			/* make sure there's a candidate runner awake */
2637 			i = -1;
2638 			vcpu = next_runnable_thread(vc, &i);
2639 			wake_up(&vcpu->arch.cpu_run);
2640 		}
2641 	}
2642 	spin_unlock(&vc->lock);
2643 }
2644 
2645 /*
2646  * Clear core from the list of active host cores as we are about to
2647  * enter the guest. Only do this if it is the primary thread of the
2648  * core (not if a subcore) that is entering the guest.
2649  */
2650 static inline int kvmppc_clear_host_core(unsigned int cpu)
2651 {
2652 	int core;
2653 
2654 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2655 		return 0;
2656 	/*
2657 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2658 	 * later in kvmppc_start_thread and we need ensure that state is
2659 	 * visible to other CPUs only after we enter guest.
2660 	 */
2661 	core = cpu >> threads_shift;
2662 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2663 	return 0;
2664 }
2665 
2666 /*
2667  * Advertise this core as an active host core since we exited the guest
2668  * Only need to do this if it is the primary thread of the core that is
2669  * exiting.
2670  */
2671 static inline int kvmppc_set_host_core(unsigned int cpu)
2672 {
2673 	int core;
2674 
2675 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2676 		return 0;
2677 
2678 	/*
2679 	 * Memory barrier can be omitted here because we do a spin_unlock
2680 	 * immediately after this which provides the memory barrier.
2681 	 */
2682 	core = cpu >> threads_shift;
2683 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2684 	return 0;
2685 }
2686 
2687 static void set_irq_happened(int trap)
2688 {
2689 	switch (trap) {
2690 	case BOOK3S_INTERRUPT_EXTERNAL:
2691 		local_paca->irq_happened |= PACA_IRQ_EE;
2692 		break;
2693 	case BOOK3S_INTERRUPT_H_DOORBELL:
2694 		local_paca->irq_happened |= PACA_IRQ_DBELL;
2695 		break;
2696 	case BOOK3S_INTERRUPT_HMI:
2697 		local_paca->irq_happened |= PACA_IRQ_HMI;
2698 		break;
2699 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
2700 		replay_system_reset();
2701 		break;
2702 	}
2703 }
2704 
2705 /*
2706  * Run a set of guest threads on a physical core.
2707  * Called with vc->lock held.
2708  */
2709 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2710 {
2711 	struct kvm_vcpu *vcpu;
2712 	int i;
2713 	int srcu_idx;
2714 	struct core_info core_info;
2715 	struct kvmppc_vcore *pvc;
2716 	struct kvm_split_mode split_info, *sip;
2717 	int split, subcore_size, active;
2718 	int sub;
2719 	bool thr0_done;
2720 	unsigned long cmd_bit, stat_bit;
2721 	int pcpu, thr;
2722 	int target_threads;
2723 	int controlled_threads;
2724 	int trap;
2725 	bool is_power8;
2726 	bool hpt_on_radix;
2727 
2728 	/*
2729 	 * Remove from the list any threads that have a signal pending
2730 	 * or need a VPA update done
2731 	 */
2732 	prepare_threads(vc);
2733 
2734 	/* if the runner is no longer runnable, let the caller pick a new one */
2735 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2736 		return;
2737 
2738 	/*
2739 	 * Initialize *vc.
2740 	 */
2741 	init_vcore_to_run(vc);
2742 	vc->preempt_tb = TB_NIL;
2743 
2744 	/*
2745 	 * Number of threads that we will be controlling: the same as
2746 	 * the number of threads per subcore, except on POWER9,
2747 	 * where it's 1 because the threads are (mostly) independent.
2748 	 */
2749 	controlled_threads = threads_per_vcore(vc->kvm);
2750 
2751 	/*
2752 	 * Make sure we are running on primary threads, and that secondary
2753 	 * threads are offline.  Also check if the number of threads in this
2754 	 * guest are greater than the current system threads per guest.
2755 	 * On POWER9, we need to be not in independent-threads mode if
2756 	 * this is a HPT guest on a radix host machine where the
2757 	 * CPU threads may not be in different MMU modes.
2758 	 */
2759 	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
2760 		!kvm_is_radix(vc->kvm);
2761 	if (((controlled_threads > 1) &&
2762 	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2763 	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2764 		for_each_runnable_thread(i, vcpu, vc) {
2765 			vcpu->arch.ret = -EBUSY;
2766 			kvmppc_remove_runnable(vc, vcpu);
2767 			wake_up(&vcpu->arch.cpu_run);
2768 		}
2769 		goto out;
2770 	}
2771 
2772 	/*
2773 	 * See if we could run any other vcores on the physical core
2774 	 * along with this one.
2775 	 */
2776 	init_core_info(&core_info, vc);
2777 	pcpu = smp_processor_id();
2778 	target_threads = controlled_threads;
2779 	if (target_smt_mode && target_smt_mode < target_threads)
2780 		target_threads = target_smt_mode;
2781 	if (vc->num_threads < target_threads)
2782 		collect_piggybacks(&core_info, target_threads);
2783 
2784 	/*
2785 	 * On radix, arrange for TLB flushing if necessary.
2786 	 * This has to be done before disabling interrupts since
2787 	 * it uses smp_call_function().
2788 	 */
2789 	pcpu = smp_processor_id();
2790 	if (kvm_is_radix(vc->kvm)) {
2791 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2792 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2793 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2794 	}
2795 
2796 	/*
2797 	 * Hard-disable interrupts, and check resched flag and signals.
2798 	 * If we need to reschedule or deliver a signal, clean up
2799 	 * and return without going into the guest(s).
2800 	 * If the mmu_ready flag has been cleared, don't go into the
2801 	 * guest because that means a HPT resize operation is in progress.
2802 	 */
2803 	local_irq_disable();
2804 	hard_irq_disable();
2805 	if (lazy_irq_pending() || need_resched() ||
2806 	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2807 		local_irq_enable();
2808 		vc->vcore_state = VCORE_INACTIVE;
2809 		/* Unlock all except the primary vcore */
2810 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
2811 			pvc = core_info.vc[sub];
2812 			/* Put back on to the preempted vcores list */
2813 			kvmppc_vcore_preempt(pvc);
2814 			spin_unlock(&pvc->lock);
2815 		}
2816 		for (i = 0; i < controlled_threads; ++i)
2817 			kvmppc_release_hwthread(pcpu + i);
2818 		return;
2819 	}
2820 
2821 	kvmppc_clear_host_core(pcpu);
2822 
2823 	/* Decide on micro-threading (split-core) mode */
2824 	subcore_size = threads_per_subcore;
2825 	cmd_bit = stat_bit = 0;
2826 	split = core_info.n_subcores;
2827 	sip = NULL;
2828 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2829 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
2830 
2831 	if (split > 1 || hpt_on_radix) {
2832 		sip = &split_info;
2833 		memset(&split_info, 0, sizeof(split_info));
2834 		for (sub = 0; sub < core_info.n_subcores; ++sub)
2835 			split_info.vc[sub] = core_info.vc[sub];
2836 
2837 		if (is_power8) {
2838 			if (split == 2 && (dynamic_mt_modes & 2)) {
2839 				cmd_bit = HID0_POWER8_1TO2LPAR;
2840 				stat_bit = HID0_POWER8_2LPARMODE;
2841 			} else {
2842 				split = 4;
2843 				cmd_bit = HID0_POWER8_1TO4LPAR;
2844 				stat_bit = HID0_POWER8_4LPARMODE;
2845 			}
2846 			subcore_size = MAX_SMT_THREADS / split;
2847 			split_info.rpr = mfspr(SPRN_RPR);
2848 			split_info.pmmar = mfspr(SPRN_PMMAR);
2849 			split_info.ldbar = mfspr(SPRN_LDBAR);
2850 			split_info.subcore_size = subcore_size;
2851 		} else {
2852 			split_info.subcore_size = 1;
2853 			if (hpt_on_radix) {
2854 				/* Use the split_info for LPCR/LPIDR changes */
2855 				split_info.lpcr_req = vc->lpcr;
2856 				split_info.lpidr_req = vc->kvm->arch.lpid;
2857 				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2858 				split_info.do_set = 1;
2859 			}
2860 		}
2861 
2862 		/* order writes to split_info before kvm_split_mode pointer */
2863 		smp_wmb();
2864 	}
2865 
2866 	for (thr = 0; thr < controlled_threads; ++thr) {
2867 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
2868 
2869 		paca->kvm_hstate.tid = thr;
2870 		paca->kvm_hstate.napping = 0;
2871 		paca->kvm_hstate.kvm_split_mode = sip;
2872 	}
2873 
2874 	/* Initiate micro-threading (split-core) on POWER8 if required */
2875 	if (cmd_bit) {
2876 		unsigned long hid0 = mfspr(SPRN_HID0);
2877 
2878 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2879 		mb();
2880 		mtspr(SPRN_HID0, hid0);
2881 		isync();
2882 		for (;;) {
2883 			hid0 = mfspr(SPRN_HID0);
2884 			if (hid0 & stat_bit)
2885 				break;
2886 			cpu_relax();
2887 		}
2888 	}
2889 
2890 	/*
2891 	 * On POWER8, set RWMR register.
2892 	 * Since it only affects PURR and SPURR, it doesn't affect
2893 	 * the host, so we don't save/restore the host value.
2894 	 */
2895 	if (is_power8) {
2896 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
2897 		int n_online = atomic_read(&vc->online_count);
2898 
2899 		/*
2900 		 * Use the 8-thread value if we're doing split-core
2901 		 * or if the vcore's online count looks bogus.
2902 		 */
2903 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
2904 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
2905 			rwmr_val = p8_rwmr_values[n_online];
2906 		mtspr(SPRN_RWMR, rwmr_val);
2907 	}
2908 
2909 	/* Start all the threads */
2910 	active = 0;
2911 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
2912 		thr = is_power8 ? subcore_thread_map[sub] : sub;
2913 		thr0_done = false;
2914 		active |= 1 << thr;
2915 		pvc = core_info.vc[sub];
2916 		pvc->pcpu = pcpu + thr;
2917 		for_each_runnable_thread(i, vcpu, pvc) {
2918 			kvmppc_start_thread(vcpu, pvc);
2919 			kvmppc_create_dtl_entry(vcpu, pvc);
2920 			trace_kvm_guest_enter(vcpu);
2921 			if (!vcpu->arch.ptid)
2922 				thr0_done = true;
2923 			active |= 1 << (thr + vcpu->arch.ptid);
2924 		}
2925 		/*
2926 		 * We need to start the first thread of each subcore
2927 		 * even if it doesn't have a vcpu.
2928 		 */
2929 		if (!thr0_done)
2930 			kvmppc_start_thread(NULL, pvc);
2931 	}
2932 
2933 	/*
2934 	 * Ensure that split_info.do_nap is set after setting
2935 	 * the vcore pointer in the PACA of the secondaries.
2936 	 */
2937 	smp_mb();
2938 
2939 	/*
2940 	 * When doing micro-threading, poke the inactive threads as well.
2941 	 * This gets them to the nap instruction after kvm_do_nap,
2942 	 * which reduces the time taken to unsplit later.
2943 	 * For POWER9 HPT guest on radix host, we need all the secondary
2944 	 * threads woken up so they can do the LPCR/LPIDR change.
2945 	 */
2946 	if (cmd_bit || hpt_on_radix) {
2947 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
2948 		for (thr = 1; thr < threads_per_subcore; ++thr)
2949 			if (!(active & (1 << thr)))
2950 				kvmppc_ipi_thread(pcpu + thr);
2951 	}
2952 
2953 	vc->vcore_state = VCORE_RUNNING;
2954 	preempt_disable();
2955 
2956 	trace_kvmppc_run_core(vc, 0);
2957 
2958 	for (sub = 0; sub < core_info.n_subcores; ++sub)
2959 		spin_unlock(&core_info.vc[sub]->lock);
2960 
2961 	if (kvm_is_radix(vc->kvm)) {
2962 		int tmp = pcpu;
2963 
2964 		/*
2965 		 * Do we need to flush the process scoped TLB for the LPAR?
2966 		 *
2967 		 * On POWER9, individual threads can come in here, but the
2968 		 * TLB is shared between the 4 threads in a core, hence
2969 		 * invalidating on one thread invalidates for all.
2970 		 * Thus we make all 4 threads use the same bit here.
2971 		 *
2972 		 * Hash must be flushed in realmode in order to use tlbiel.
2973 		 */
2974 		mtspr(SPRN_LPID, vc->kvm->arch.lpid);
2975 		isync();
2976 
2977 		if (cpu_has_feature(CPU_FTR_ARCH_300))
2978 			tmp &= ~0x3UL;
2979 
2980 		if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) {
2981 			radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid);
2982 			/* Clear the bit after the TLB flush */
2983 			cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush);
2984 		}
2985 	}
2986 
2987 	/*
2988 	 * Interrupts will be enabled once we get into the guest,
2989 	 * so tell lockdep that we're about to enable interrupts.
2990 	 */
2991 	trace_hardirqs_on();
2992 
2993 	guest_enter_irqoff();
2994 
2995 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2996 
2997 	this_cpu_disable_ftrace();
2998 
2999 	trap = __kvmppc_vcore_entry();
3000 
3001 	this_cpu_enable_ftrace();
3002 
3003 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3004 
3005 	trace_hardirqs_off();
3006 	set_irq_happened(trap);
3007 
3008 	spin_lock(&vc->lock);
3009 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3010 	vc->vcore_state = VCORE_EXITING;
3011 
3012 	/* wait for secondary threads to finish writing their state to memory */
3013 	kvmppc_wait_for_nap(controlled_threads);
3014 
3015 	/* Return to whole-core mode if we split the core earlier */
3016 	if (cmd_bit) {
3017 		unsigned long hid0 = mfspr(SPRN_HID0);
3018 		unsigned long loops = 0;
3019 
3020 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3021 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3022 		mb();
3023 		mtspr(SPRN_HID0, hid0);
3024 		isync();
3025 		for (;;) {
3026 			hid0 = mfspr(SPRN_HID0);
3027 			if (!(hid0 & stat_bit))
3028 				break;
3029 			cpu_relax();
3030 			++loops;
3031 		}
3032 	} else if (hpt_on_radix) {
3033 		/* Wait for all threads to have seen final sync */
3034 		for (thr = 1; thr < controlled_threads; ++thr) {
3035 			struct paca_struct *paca = paca_ptrs[pcpu + thr];
3036 
3037 			while (paca->kvm_hstate.kvm_split_mode) {
3038 				HMT_low();
3039 				barrier();
3040 			}
3041 			HMT_medium();
3042 		}
3043 	}
3044 	split_info.do_nap = 0;
3045 
3046 	kvmppc_set_host_core(pcpu);
3047 
3048 	local_irq_enable();
3049 	guest_exit();
3050 
3051 	/* Let secondaries go back to the offline loop */
3052 	for (i = 0; i < controlled_threads; ++i) {
3053 		kvmppc_release_hwthread(pcpu + i);
3054 		if (sip && sip->napped[i])
3055 			kvmppc_ipi_thread(pcpu + i);
3056 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3057 	}
3058 
3059 	spin_unlock(&vc->lock);
3060 
3061 	/* make sure updates to secondary vcpu structs are visible now */
3062 	smp_mb();
3063 
3064 	preempt_enable();
3065 
3066 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3067 		pvc = core_info.vc[sub];
3068 		post_guest_process(pvc, pvc == vc);
3069 	}
3070 
3071 	spin_lock(&vc->lock);
3072 
3073  out:
3074 	vc->vcore_state = VCORE_INACTIVE;
3075 	trace_kvmppc_run_core(vc, 1);
3076 }
3077 
3078 /*
3079  * Wait for some other vcpu thread to execute us, and
3080  * wake us up when we need to handle something in the host.
3081  */
3082 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3083 				 struct kvm_vcpu *vcpu, int wait_state)
3084 {
3085 	DEFINE_WAIT(wait);
3086 
3087 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3088 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3089 		spin_unlock(&vc->lock);
3090 		schedule();
3091 		spin_lock(&vc->lock);
3092 	}
3093 	finish_wait(&vcpu->arch.cpu_run, &wait);
3094 }
3095 
3096 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3097 {
3098 	/* 10us base */
3099 	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
3100 		vc->halt_poll_ns = 10000;
3101 	else
3102 		vc->halt_poll_ns *= halt_poll_ns_grow;
3103 }
3104 
3105 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3106 {
3107 	if (halt_poll_ns_shrink == 0)
3108 		vc->halt_poll_ns = 0;
3109 	else
3110 		vc->halt_poll_ns /= halt_poll_ns_shrink;
3111 }
3112 
3113 #ifdef CONFIG_KVM_XICS
3114 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3115 {
3116 	if (!xive_enabled())
3117 		return false;
3118 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3119 		vcpu->arch.xive_saved_state.cppr;
3120 }
3121 #else
3122 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3123 {
3124 	return false;
3125 }
3126 #endif /* CONFIG_KVM_XICS */
3127 
3128 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3129 {
3130 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3131 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3132 		return true;
3133 
3134 	return false;
3135 }
3136 
3137 /*
3138  * Check to see if any of the runnable vcpus on the vcore have pending
3139  * exceptions or are no longer ceded
3140  */
3141 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3142 {
3143 	struct kvm_vcpu *vcpu;
3144 	int i;
3145 
3146 	for_each_runnable_thread(i, vcpu, vc) {
3147 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3148 			return 1;
3149 	}
3150 
3151 	return 0;
3152 }
3153 
3154 /*
3155  * All the vcpus in this vcore are idle, so wait for a decrementer
3156  * or external interrupt to one of the vcpus.  vc->lock is held.
3157  */
3158 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3159 {
3160 	ktime_t cur, start_poll, start_wait;
3161 	int do_sleep = 1;
3162 	u64 block_ns;
3163 	DECLARE_SWAITQUEUE(wait);
3164 
3165 	/* Poll for pending exceptions and ceded state */
3166 	cur = start_poll = ktime_get();
3167 	if (vc->halt_poll_ns) {
3168 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3169 		++vc->runner->stat.halt_attempted_poll;
3170 
3171 		vc->vcore_state = VCORE_POLLING;
3172 		spin_unlock(&vc->lock);
3173 
3174 		do {
3175 			if (kvmppc_vcore_check_block(vc)) {
3176 				do_sleep = 0;
3177 				break;
3178 			}
3179 			cur = ktime_get();
3180 		} while (single_task_running() && ktime_before(cur, stop));
3181 
3182 		spin_lock(&vc->lock);
3183 		vc->vcore_state = VCORE_INACTIVE;
3184 
3185 		if (!do_sleep) {
3186 			++vc->runner->stat.halt_successful_poll;
3187 			goto out;
3188 		}
3189 	}
3190 
3191 	prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3192 
3193 	if (kvmppc_vcore_check_block(vc)) {
3194 		finish_swait(&vc->wq, &wait);
3195 		do_sleep = 0;
3196 		/* If we polled, count this as a successful poll */
3197 		if (vc->halt_poll_ns)
3198 			++vc->runner->stat.halt_successful_poll;
3199 		goto out;
3200 	}
3201 
3202 	start_wait = ktime_get();
3203 
3204 	vc->vcore_state = VCORE_SLEEPING;
3205 	trace_kvmppc_vcore_blocked(vc, 0);
3206 	spin_unlock(&vc->lock);
3207 	schedule();
3208 	finish_swait(&vc->wq, &wait);
3209 	spin_lock(&vc->lock);
3210 	vc->vcore_state = VCORE_INACTIVE;
3211 	trace_kvmppc_vcore_blocked(vc, 1);
3212 	++vc->runner->stat.halt_successful_wait;
3213 
3214 	cur = ktime_get();
3215 
3216 out:
3217 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3218 
3219 	/* Attribute wait time */
3220 	if (do_sleep) {
3221 		vc->runner->stat.halt_wait_ns +=
3222 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3223 		/* Attribute failed poll time */
3224 		if (vc->halt_poll_ns)
3225 			vc->runner->stat.halt_poll_fail_ns +=
3226 				ktime_to_ns(start_wait) -
3227 				ktime_to_ns(start_poll);
3228 	} else {
3229 		/* Attribute successful poll time */
3230 		if (vc->halt_poll_ns)
3231 			vc->runner->stat.halt_poll_success_ns +=
3232 				ktime_to_ns(cur) -
3233 				ktime_to_ns(start_poll);
3234 	}
3235 
3236 	/* Adjust poll time */
3237 	if (halt_poll_ns) {
3238 		if (block_ns <= vc->halt_poll_ns)
3239 			;
3240 		/* We slept and blocked for longer than the max halt time */
3241 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3242 			shrink_halt_poll_ns(vc);
3243 		/* We slept and our poll time is too small */
3244 		else if (vc->halt_poll_ns < halt_poll_ns &&
3245 				block_ns < halt_poll_ns)
3246 			grow_halt_poll_ns(vc);
3247 		if (vc->halt_poll_ns > halt_poll_ns)
3248 			vc->halt_poll_ns = halt_poll_ns;
3249 	} else
3250 		vc->halt_poll_ns = 0;
3251 
3252 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3253 }
3254 
3255 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3256 {
3257 	int r = 0;
3258 	struct kvm *kvm = vcpu->kvm;
3259 
3260 	mutex_lock(&kvm->lock);
3261 	if (!kvm->arch.mmu_ready) {
3262 		if (!kvm_is_radix(kvm))
3263 			r = kvmppc_hv_setup_htab_rma(vcpu);
3264 		if (!r) {
3265 			if (cpu_has_feature(CPU_FTR_ARCH_300))
3266 				kvmppc_setup_partition_table(kvm);
3267 			kvm->arch.mmu_ready = 1;
3268 		}
3269 	}
3270 	mutex_unlock(&kvm->lock);
3271 	return r;
3272 }
3273 
3274 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3275 {
3276 	int n_ceded, i, r;
3277 	struct kvmppc_vcore *vc;
3278 	struct kvm_vcpu *v;
3279 
3280 	trace_kvmppc_run_vcpu_enter(vcpu);
3281 
3282 	kvm_run->exit_reason = 0;
3283 	vcpu->arch.ret = RESUME_GUEST;
3284 	vcpu->arch.trap = 0;
3285 	kvmppc_update_vpas(vcpu);
3286 
3287 	/*
3288 	 * Synchronize with other threads in this virtual core
3289 	 */
3290 	vc = vcpu->arch.vcore;
3291 	spin_lock(&vc->lock);
3292 	vcpu->arch.ceded = 0;
3293 	vcpu->arch.run_task = current;
3294 	vcpu->arch.kvm_run = kvm_run;
3295 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3296 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3297 	vcpu->arch.busy_preempt = TB_NIL;
3298 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3299 	++vc->n_runnable;
3300 
3301 	/*
3302 	 * This happens the first time this is called for a vcpu.
3303 	 * If the vcore is already running, we may be able to start
3304 	 * this thread straight away and have it join in.
3305 	 */
3306 	if (!signal_pending(current)) {
3307 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
3308 		     vc->vcore_state == VCORE_RUNNING) &&
3309 			   !VCORE_IS_EXITING(vc)) {
3310 			kvmppc_create_dtl_entry(vcpu, vc);
3311 			kvmppc_start_thread(vcpu, vc);
3312 			trace_kvm_guest_enter(vcpu);
3313 		} else if (vc->vcore_state == VCORE_SLEEPING) {
3314 			swake_up(&vc->wq);
3315 		}
3316 
3317 	}
3318 
3319 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3320 	       !signal_pending(current)) {
3321 		/* See if the MMU is ready to go */
3322 		if (!vcpu->kvm->arch.mmu_ready) {
3323 			spin_unlock(&vc->lock);
3324 			r = kvmhv_setup_mmu(vcpu);
3325 			spin_lock(&vc->lock);
3326 			if (r) {
3327 				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3328 				kvm_run->fail_entry.
3329 					hardware_entry_failure_reason = 0;
3330 				vcpu->arch.ret = r;
3331 				break;
3332 			}
3333 		}
3334 
3335 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3336 			kvmppc_vcore_end_preempt(vc);
3337 
3338 		if (vc->vcore_state != VCORE_INACTIVE) {
3339 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3340 			continue;
3341 		}
3342 		for_each_runnable_thread(i, v, vc) {
3343 			kvmppc_core_prepare_to_enter(v);
3344 			if (signal_pending(v->arch.run_task)) {
3345 				kvmppc_remove_runnable(vc, v);
3346 				v->stat.signal_exits++;
3347 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3348 				v->arch.ret = -EINTR;
3349 				wake_up(&v->arch.cpu_run);
3350 			}
3351 		}
3352 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3353 			break;
3354 		n_ceded = 0;
3355 		for_each_runnable_thread(i, v, vc) {
3356 			if (!kvmppc_vcpu_woken(v))
3357 				n_ceded += v->arch.ceded;
3358 			else
3359 				v->arch.ceded = 0;
3360 		}
3361 		vc->runner = vcpu;
3362 		if (n_ceded == vc->n_runnable) {
3363 			kvmppc_vcore_blocked(vc);
3364 		} else if (need_resched()) {
3365 			kvmppc_vcore_preempt(vc);
3366 			/* Let something else run */
3367 			cond_resched_lock(&vc->lock);
3368 			if (vc->vcore_state == VCORE_PREEMPT)
3369 				kvmppc_vcore_end_preempt(vc);
3370 		} else {
3371 			kvmppc_run_core(vc);
3372 		}
3373 		vc->runner = NULL;
3374 	}
3375 
3376 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3377 	       (vc->vcore_state == VCORE_RUNNING ||
3378 		vc->vcore_state == VCORE_EXITING ||
3379 		vc->vcore_state == VCORE_PIGGYBACK))
3380 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3381 
3382 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3383 		kvmppc_vcore_end_preempt(vc);
3384 
3385 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3386 		kvmppc_remove_runnable(vc, vcpu);
3387 		vcpu->stat.signal_exits++;
3388 		kvm_run->exit_reason = KVM_EXIT_INTR;
3389 		vcpu->arch.ret = -EINTR;
3390 	}
3391 
3392 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3393 		/* Wake up some vcpu to run the core */
3394 		i = -1;
3395 		v = next_runnable_thread(vc, &i);
3396 		wake_up(&v->arch.cpu_run);
3397 	}
3398 
3399 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3400 	spin_unlock(&vc->lock);
3401 	return vcpu->arch.ret;
3402 }
3403 
3404 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3405 {
3406 	int r;
3407 	int srcu_idx;
3408 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
3409 	unsigned long user_tar = 0;
3410 	unsigned int user_vrsave;
3411 	struct kvm *kvm;
3412 
3413 	if (!vcpu->arch.sane) {
3414 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3415 		return -EINVAL;
3416 	}
3417 
3418 	/*
3419 	 * Don't allow entry with a suspended transaction, because
3420 	 * the guest entry/exit code will lose it.
3421 	 * If the guest has TM enabled, save away their TM-related SPRs
3422 	 * (they will get restored by the TM unavailable interrupt).
3423 	 */
3424 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3425 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3426 	    (current->thread.regs->msr & MSR_TM)) {
3427 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3428 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3429 			run->fail_entry.hardware_entry_failure_reason = 0;
3430 			return -EINVAL;
3431 		}
3432 		/* Enable TM so we can read the TM SPRs */
3433 		mtmsr(mfmsr() | MSR_TM);
3434 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3435 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3436 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3437 		current->thread.regs->msr &= ~MSR_TM;
3438 	}
3439 #endif
3440 
3441 	/*
3442 	 * Force online to 1 for the sake of old userspace which doesn't
3443 	 * set it.
3444 	 */
3445 	if (!vcpu->arch.online) {
3446 		atomic_inc(&vcpu->arch.vcore->online_count);
3447 		vcpu->arch.online = 1;
3448 	}
3449 
3450 	kvmppc_core_prepare_to_enter(vcpu);
3451 
3452 	/* No need to go into the guest when all we'll do is come back out */
3453 	if (signal_pending(current)) {
3454 		run->exit_reason = KVM_EXIT_INTR;
3455 		return -EINTR;
3456 	}
3457 
3458 	kvm = vcpu->kvm;
3459 	atomic_inc(&kvm->arch.vcpus_running);
3460 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3461 	smp_mb();
3462 
3463 	flush_all_to_thread(current);
3464 
3465 	/* Save userspace EBB and other register values */
3466 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3467 		ebb_regs[0] = mfspr(SPRN_EBBHR);
3468 		ebb_regs[1] = mfspr(SPRN_EBBRR);
3469 		ebb_regs[2] = mfspr(SPRN_BESCR);
3470 		user_tar = mfspr(SPRN_TAR);
3471 	}
3472 	user_vrsave = mfspr(SPRN_VRSAVE);
3473 
3474 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3475 	vcpu->arch.pgdir = current->mm->pgd;
3476 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3477 
3478 	do {
3479 		r = kvmppc_run_vcpu(run, vcpu);
3480 
3481 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3482 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
3483 			trace_kvm_hcall_enter(vcpu);
3484 			r = kvmppc_pseries_do_hcall(vcpu);
3485 			trace_kvm_hcall_exit(vcpu, r);
3486 			kvmppc_core_prepare_to_enter(vcpu);
3487 		} else if (r == RESUME_PAGE_FAULT) {
3488 			srcu_idx = srcu_read_lock(&kvm->srcu);
3489 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
3490 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3491 			srcu_read_unlock(&kvm->srcu, srcu_idx);
3492 		} else if (r == RESUME_PASSTHROUGH) {
3493 			if (WARN_ON(xive_enabled()))
3494 				r = H_SUCCESS;
3495 			else
3496 				r = kvmppc_xics_rm_complete(vcpu, 0);
3497 		}
3498 	} while (is_kvmppc_resume_guest(r));
3499 
3500 	/* Restore userspace EBB and other register values */
3501 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3502 		mtspr(SPRN_EBBHR, ebb_regs[0]);
3503 		mtspr(SPRN_EBBRR, ebb_regs[1]);
3504 		mtspr(SPRN_BESCR, ebb_regs[2]);
3505 		mtspr(SPRN_TAR, user_tar);
3506 		mtspr(SPRN_FSCR, current->thread.fscr);
3507 	}
3508 	mtspr(SPRN_VRSAVE, user_vrsave);
3509 
3510 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3511 	atomic_dec(&kvm->arch.vcpus_running);
3512 	return r;
3513 }
3514 
3515 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3516 				     int shift, int sllp)
3517 {
3518 	(*sps)->page_shift = shift;
3519 	(*sps)->slb_enc = sllp;
3520 	(*sps)->enc[0].page_shift = shift;
3521 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3522 	/*
3523 	 * Add 16MB MPSS support (may get filtered out by userspace)
3524 	 */
3525 	if (shift != 24) {
3526 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3527 		if (penc != -1) {
3528 			(*sps)->enc[1].page_shift = 24;
3529 			(*sps)->enc[1].pte_enc = penc;
3530 		}
3531 	}
3532 	(*sps)++;
3533 }
3534 
3535 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3536 					 struct kvm_ppc_smmu_info *info)
3537 {
3538 	struct kvm_ppc_one_seg_page_size *sps;
3539 
3540 	/*
3541 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3542 	 * POWER7 doesn't support keys for instruction accesses,
3543 	 * POWER8 and POWER9 do.
3544 	 */
3545 	info->data_keys = 32;
3546 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3547 
3548 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3549 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3550 	info->slb_size = 32;
3551 
3552 	/* We only support these sizes for now, and no muti-size segments */
3553 	sps = &info->sps[0];
3554 	kvmppc_add_seg_page_size(&sps, 12, 0);
3555 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3556 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3557 
3558 	return 0;
3559 }
3560 
3561 /*
3562  * Get (and clear) the dirty memory log for a memory slot.
3563  */
3564 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3565 					 struct kvm_dirty_log *log)
3566 {
3567 	struct kvm_memslots *slots;
3568 	struct kvm_memory_slot *memslot;
3569 	int i, r;
3570 	unsigned long n;
3571 	unsigned long *buf, *p;
3572 	struct kvm_vcpu *vcpu;
3573 
3574 	mutex_lock(&kvm->slots_lock);
3575 
3576 	r = -EINVAL;
3577 	if (log->slot >= KVM_USER_MEM_SLOTS)
3578 		goto out;
3579 
3580 	slots = kvm_memslots(kvm);
3581 	memslot = id_to_memslot(slots, log->slot);
3582 	r = -ENOENT;
3583 	if (!memslot->dirty_bitmap)
3584 		goto out;
3585 
3586 	/*
3587 	 * Use second half of bitmap area because both HPT and radix
3588 	 * accumulate bits in the first half.
3589 	 */
3590 	n = kvm_dirty_bitmap_bytes(memslot);
3591 	buf = memslot->dirty_bitmap + n / sizeof(long);
3592 	memset(buf, 0, n);
3593 
3594 	if (kvm_is_radix(kvm))
3595 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3596 	else
3597 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3598 	if (r)
3599 		goto out;
3600 
3601 	/*
3602 	 * We accumulate dirty bits in the first half of the
3603 	 * memslot's dirty_bitmap area, for when pages are paged
3604 	 * out or modified by the host directly.  Pick up these
3605 	 * bits and add them to the map.
3606 	 */
3607 	p = memslot->dirty_bitmap;
3608 	for (i = 0; i < n / sizeof(long); ++i)
3609 		buf[i] |= xchg(&p[i], 0);
3610 
3611 	/* Harvest dirty bits from VPA and DTL updates */
3612 	/* Note: we never modify the SLB shadow buffer areas */
3613 	kvm_for_each_vcpu(i, vcpu, kvm) {
3614 		spin_lock(&vcpu->arch.vpa_update_lock);
3615 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3616 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3617 		spin_unlock(&vcpu->arch.vpa_update_lock);
3618 	}
3619 
3620 	r = -EFAULT;
3621 	if (copy_to_user(log->dirty_bitmap, buf, n))
3622 		goto out;
3623 
3624 	r = 0;
3625 out:
3626 	mutex_unlock(&kvm->slots_lock);
3627 	return r;
3628 }
3629 
3630 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3631 					struct kvm_memory_slot *dont)
3632 {
3633 	if (!dont || free->arch.rmap != dont->arch.rmap) {
3634 		vfree(free->arch.rmap);
3635 		free->arch.rmap = NULL;
3636 	}
3637 }
3638 
3639 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3640 					 unsigned long npages)
3641 {
3642 	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
3643 	if (!slot->arch.rmap)
3644 		return -ENOMEM;
3645 
3646 	return 0;
3647 }
3648 
3649 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3650 					struct kvm_memory_slot *memslot,
3651 					const struct kvm_userspace_memory_region *mem)
3652 {
3653 	return 0;
3654 }
3655 
3656 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3657 				const struct kvm_userspace_memory_region *mem,
3658 				const struct kvm_memory_slot *old,
3659 				const struct kvm_memory_slot *new)
3660 {
3661 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3662 
3663 	/*
3664 	 * If we are making a new memslot, it might make
3665 	 * some address that was previously cached as emulated
3666 	 * MMIO be no longer emulated MMIO, so invalidate
3667 	 * all the caches of emulated MMIO translations.
3668 	 */
3669 	if (npages)
3670 		atomic64_inc(&kvm->arch.mmio_update);
3671 }
3672 
3673 /*
3674  * Update LPCR values in kvm->arch and in vcores.
3675  * Caller must hold kvm->lock.
3676  */
3677 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3678 {
3679 	long int i;
3680 	u32 cores_done = 0;
3681 
3682 	if ((kvm->arch.lpcr & mask) == lpcr)
3683 		return;
3684 
3685 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3686 
3687 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
3688 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3689 		if (!vc)
3690 			continue;
3691 		spin_lock(&vc->lock);
3692 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3693 		spin_unlock(&vc->lock);
3694 		if (++cores_done >= kvm->arch.online_vcores)
3695 			break;
3696 	}
3697 }
3698 
3699 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3700 {
3701 	return;
3702 }
3703 
3704 void kvmppc_setup_partition_table(struct kvm *kvm)
3705 {
3706 	unsigned long dw0, dw1;
3707 
3708 	if (!kvm_is_radix(kvm)) {
3709 		/* PS field - page size for VRMA */
3710 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3711 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3712 		/* HTABSIZE and HTABORG fields */
3713 		dw0 |= kvm->arch.sdr1;
3714 
3715 		/* Second dword as set by userspace */
3716 		dw1 = kvm->arch.process_table;
3717 	} else {
3718 		dw0 = PATB_HR | radix__get_tree_size() |
3719 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3720 		dw1 = PATB_GR | kvm->arch.process_table;
3721 	}
3722 
3723 	mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3724 }
3725 
3726 /*
3727  * Set up HPT (hashed page table) and RMA (real-mode area).
3728  * Must be called with kvm->lock held.
3729  */
3730 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3731 {
3732 	int err = 0;
3733 	struct kvm *kvm = vcpu->kvm;
3734 	unsigned long hva;
3735 	struct kvm_memory_slot *memslot;
3736 	struct vm_area_struct *vma;
3737 	unsigned long lpcr = 0, senc;
3738 	unsigned long psize, porder;
3739 	int srcu_idx;
3740 
3741 	/* Allocate hashed page table (if not done already) and reset it */
3742 	if (!kvm->arch.hpt.virt) {
3743 		int order = KVM_DEFAULT_HPT_ORDER;
3744 		struct kvm_hpt_info info;
3745 
3746 		err = kvmppc_allocate_hpt(&info, order);
3747 		/* If we get here, it means userspace didn't specify a
3748 		 * size explicitly.  So, try successively smaller
3749 		 * sizes if the default failed. */
3750 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3751 			err  = kvmppc_allocate_hpt(&info, order);
3752 
3753 		if (err < 0) {
3754 			pr_err("KVM: Couldn't alloc HPT\n");
3755 			goto out;
3756 		}
3757 
3758 		kvmppc_set_hpt(kvm, &info);
3759 	}
3760 
3761 	/* Look up the memslot for guest physical address 0 */
3762 	srcu_idx = srcu_read_lock(&kvm->srcu);
3763 	memslot = gfn_to_memslot(kvm, 0);
3764 
3765 	/* We must have some memory at 0 by now */
3766 	err = -EINVAL;
3767 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3768 		goto out_srcu;
3769 
3770 	/* Look up the VMA for the start of this memory slot */
3771 	hva = memslot->userspace_addr;
3772 	down_read(&current->mm->mmap_sem);
3773 	vma = find_vma(current->mm, hva);
3774 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3775 		goto up_out;
3776 
3777 	psize = vma_kernel_pagesize(vma);
3778 
3779 	up_read(&current->mm->mmap_sem);
3780 
3781 	/* We can handle 4k, 64k or 16M pages in the VRMA */
3782 	if (psize >= 0x1000000)
3783 		psize = 0x1000000;
3784 	else if (psize >= 0x10000)
3785 		psize = 0x10000;
3786 	else
3787 		psize = 0x1000;
3788 	porder = __ilog2(psize);
3789 
3790 	senc = slb_pgsize_encoding(psize);
3791 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3792 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3793 	/* Create HPTEs in the hash page table for the VRMA */
3794 	kvmppc_map_vrma(vcpu, memslot, porder);
3795 
3796 	/* Update VRMASD field in the LPCR */
3797 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3798 		/* the -4 is to account for senc values starting at 0x10 */
3799 		lpcr = senc << (LPCR_VRMASD_SH - 4);
3800 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3801 	}
3802 
3803 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3804 	smp_wmb();
3805 	err = 0;
3806  out_srcu:
3807 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3808  out:
3809 	return err;
3810 
3811  up_out:
3812 	up_read(&current->mm->mmap_sem);
3813 	goto out_srcu;
3814 }
3815 
3816 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3817 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3818 {
3819 	kvmppc_free_radix(kvm);
3820 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
3821 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3822 	kvmppc_rmap_reset(kvm);
3823 	kvm->arch.radix = 0;
3824 	kvm->arch.process_table = 0;
3825 	return 0;
3826 }
3827 
3828 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3829 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3830 {
3831 	int err;
3832 
3833 	err = kvmppc_init_vm_radix(kvm);
3834 	if (err)
3835 		return err;
3836 
3837 	kvmppc_free_hpt(&kvm->arch.hpt);
3838 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3839 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3840 	kvm->arch.radix = 1;
3841 	return 0;
3842 }
3843 
3844 #ifdef CONFIG_KVM_XICS
3845 /*
3846  * Allocate a per-core structure for managing state about which cores are
3847  * running in the host versus the guest and for exchanging data between
3848  * real mode KVM and CPU running in the host.
3849  * This is only done for the first VM.
3850  * The allocated structure stays even if all VMs have stopped.
3851  * It is only freed when the kvm-hv module is unloaded.
3852  * It's OK for this routine to fail, we just don't support host
3853  * core operations like redirecting H_IPI wakeups.
3854  */
3855 void kvmppc_alloc_host_rm_ops(void)
3856 {
3857 	struct kvmppc_host_rm_ops *ops;
3858 	unsigned long l_ops;
3859 	int cpu, core;
3860 	int size;
3861 
3862 	/* Not the first time here ? */
3863 	if (kvmppc_host_rm_ops_hv != NULL)
3864 		return;
3865 
3866 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3867 	if (!ops)
3868 		return;
3869 
3870 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3871 	ops->rm_core = kzalloc(size, GFP_KERNEL);
3872 
3873 	if (!ops->rm_core) {
3874 		kfree(ops);
3875 		return;
3876 	}
3877 
3878 	cpus_read_lock();
3879 
3880 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3881 		if (!cpu_online(cpu))
3882 			continue;
3883 
3884 		core = cpu >> threads_shift;
3885 		ops->rm_core[core].rm_state.in_host = 1;
3886 	}
3887 
3888 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3889 
3890 	/*
3891 	 * Make the contents of the kvmppc_host_rm_ops structure visible
3892 	 * to other CPUs before we assign it to the global variable.
3893 	 * Do an atomic assignment (no locks used here), but if someone
3894 	 * beats us to it, just free our copy and return.
3895 	 */
3896 	smp_wmb();
3897 	l_ops = (unsigned long) ops;
3898 
3899 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3900 		cpus_read_unlock();
3901 		kfree(ops->rm_core);
3902 		kfree(ops);
3903 		return;
3904 	}
3905 
3906 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3907 					     "ppc/kvm_book3s:prepare",
3908 					     kvmppc_set_host_core,
3909 					     kvmppc_clear_host_core);
3910 	cpus_read_unlock();
3911 }
3912 
3913 void kvmppc_free_host_rm_ops(void)
3914 {
3915 	if (kvmppc_host_rm_ops_hv) {
3916 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3917 		kfree(kvmppc_host_rm_ops_hv->rm_core);
3918 		kfree(kvmppc_host_rm_ops_hv);
3919 		kvmppc_host_rm_ops_hv = NULL;
3920 	}
3921 }
3922 #endif
3923 
3924 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3925 {
3926 	unsigned long lpcr, lpid;
3927 	char buf[32];
3928 	int ret;
3929 
3930 	/* Allocate the guest's logical partition ID */
3931 
3932 	lpid = kvmppc_alloc_lpid();
3933 	if ((long)lpid < 0)
3934 		return -ENOMEM;
3935 	kvm->arch.lpid = lpid;
3936 
3937 	kvmppc_alloc_host_rm_ops();
3938 
3939 	/*
3940 	 * Since we don't flush the TLB when tearing down a VM,
3941 	 * and this lpid might have previously been used,
3942 	 * make sure we flush on each core before running the new VM.
3943 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
3944 	 * does this flush for us.
3945 	 */
3946 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3947 		cpumask_setall(&kvm->arch.need_tlb_flush);
3948 
3949 	/* Start out with the default set of hcalls enabled */
3950 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3951 	       sizeof(kvm->arch.enabled_hcalls));
3952 
3953 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
3954 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3955 
3956 	/* Init LPCR for virtual RMA mode */
3957 	kvm->arch.host_lpid = mfspr(SPRN_LPID);
3958 	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3959 	lpcr &= LPCR_PECE | LPCR_LPES;
3960 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3961 		LPCR_VPM0 | LPCR_VPM1;
3962 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3963 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
3964 	/* On POWER8 turn on online bit to enable PURR/SPURR */
3965 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
3966 		lpcr |= LPCR_ONL;
3967 	/*
3968 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3969 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
3970 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
3971 	 * be unnecessary but better safe than sorry in case we re-enable
3972 	 * EE in HV mode with this LPCR still set)
3973 	 */
3974 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3975 		lpcr &= ~LPCR_VPM0;
3976 		lpcr |= LPCR_HVICE | LPCR_HEIC;
3977 
3978 		/*
3979 		 * If xive is enabled, we route 0x500 interrupts directly
3980 		 * to the guest.
3981 		 */
3982 		if (xive_enabled())
3983 			lpcr |= LPCR_LPES;
3984 	}
3985 
3986 	/*
3987 	 * If the host uses radix, the guest starts out as radix.
3988 	 */
3989 	if (radix_enabled()) {
3990 		kvm->arch.radix = 1;
3991 		kvm->arch.mmu_ready = 1;
3992 		lpcr &= ~LPCR_VPM1;
3993 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3994 		ret = kvmppc_init_vm_radix(kvm);
3995 		if (ret) {
3996 			kvmppc_free_lpid(kvm->arch.lpid);
3997 			return ret;
3998 		}
3999 		kvmppc_setup_partition_table(kvm);
4000 	}
4001 
4002 	kvm->arch.lpcr = lpcr;
4003 
4004 	/* Initialization for future HPT resizes */
4005 	kvm->arch.resize_hpt = NULL;
4006 
4007 	/*
4008 	 * Work out how many sets the TLB has, for the use of
4009 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4010 	 */
4011 	if (radix_enabled())
4012 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
4013 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4014 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
4015 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4016 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
4017 	else
4018 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
4019 
4020 	/*
4021 	 * Track that we now have a HV mode VM active. This blocks secondary
4022 	 * CPU threads from coming online.
4023 	 * On POWER9, we only need to do this if the "indep_threads_mode"
4024 	 * module parameter has been set to N.
4025 	 */
4026 	if (cpu_has_feature(CPU_FTR_ARCH_300))
4027 		kvm->arch.threads_indep = indep_threads_mode;
4028 	if (!kvm->arch.threads_indep)
4029 		kvm_hv_vm_activated();
4030 
4031 	/*
4032 	 * Initialize smt_mode depending on processor.
4033 	 * POWER8 and earlier have to use "strict" threading, where
4034 	 * all vCPUs in a vcore have to run on the same (sub)core,
4035 	 * whereas on POWER9 the threads can each run a different
4036 	 * guest.
4037 	 */
4038 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4039 		kvm->arch.smt_mode = threads_per_subcore;
4040 	else
4041 		kvm->arch.smt_mode = 1;
4042 	kvm->arch.emul_smt_mode = 1;
4043 
4044 	/*
4045 	 * Create a debugfs directory for the VM
4046 	 */
4047 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
4048 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4049 	kvmppc_mmu_debugfs_init(kvm);
4050 
4051 	return 0;
4052 }
4053 
4054 static void kvmppc_free_vcores(struct kvm *kvm)
4055 {
4056 	long int i;
4057 
4058 	for (i = 0; i < KVM_MAX_VCORES; ++i)
4059 		kfree(kvm->arch.vcores[i]);
4060 	kvm->arch.online_vcores = 0;
4061 }
4062 
4063 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4064 {
4065 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
4066 
4067 	if (!kvm->arch.threads_indep)
4068 		kvm_hv_vm_deactivated();
4069 
4070 	kvmppc_free_vcores(kvm);
4071 
4072 	kvmppc_free_lpid(kvm->arch.lpid);
4073 
4074 	if (kvm_is_radix(kvm))
4075 		kvmppc_free_radix(kvm);
4076 	else
4077 		kvmppc_free_hpt(&kvm->arch.hpt);
4078 
4079 	kvmppc_free_pimap(kvm);
4080 }
4081 
4082 /* We don't need to emulate any privileged instructions or dcbz */
4083 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4084 				     unsigned int inst, int *advance)
4085 {
4086 	return EMULATE_FAIL;
4087 }
4088 
4089 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4090 					ulong spr_val)
4091 {
4092 	return EMULATE_FAIL;
4093 }
4094 
4095 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4096 					ulong *spr_val)
4097 {
4098 	return EMULATE_FAIL;
4099 }
4100 
4101 static int kvmppc_core_check_processor_compat_hv(void)
4102 {
4103 	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
4104 	    !cpu_has_feature(CPU_FTR_ARCH_206))
4105 		return -EIO;
4106 
4107 	return 0;
4108 }
4109 
4110 #ifdef CONFIG_KVM_XICS
4111 
4112 void kvmppc_free_pimap(struct kvm *kvm)
4113 {
4114 	kfree(kvm->arch.pimap);
4115 }
4116 
4117 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4118 {
4119 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
4120 }
4121 
4122 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4123 {
4124 	struct irq_desc *desc;
4125 	struct kvmppc_irq_map *irq_map;
4126 	struct kvmppc_passthru_irqmap *pimap;
4127 	struct irq_chip *chip;
4128 	int i, rc = 0;
4129 
4130 	if (!kvm_irq_bypass)
4131 		return 1;
4132 
4133 	desc = irq_to_desc(host_irq);
4134 	if (!desc)
4135 		return -EIO;
4136 
4137 	mutex_lock(&kvm->lock);
4138 
4139 	pimap = kvm->arch.pimap;
4140 	if (pimap == NULL) {
4141 		/* First call, allocate structure to hold IRQ map */
4142 		pimap = kvmppc_alloc_pimap();
4143 		if (pimap == NULL) {
4144 			mutex_unlock(&kvm->lock);
4145 			return -ENOMEM;
4146 		}
4147 		kvm->arch.pimap = pimap;
4148 	}
4149 
4150 	/*
4151 	 * For now, we only support interrupts for which the EOI operation
4152 	 * is an OPAL call followed by a write to XIRR, since that's
4153 	 * what our real-mode EOI code does, or a XIVE interrupt
4154 	 */
4155 	chip = irq_data_get_irq_chip(&desc->irq_data);
4156 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4157 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4158 			host_irq, guest_gsi);
4159 		mutex_unlock(&kvm->lock);
4160 		return -ENOENT;
4161 	}
4162 
4163 	/*
4164 	 * See if we already have an entry for this guest IRQ number.
4165 	 * If it's mapped to a hardware IRQ number, that's an error,
4166 	 * otherwise re-use this entry.
4167 	 */
4168 	for (i = 0; i < pimap->n_mapped; i++) {
4169 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
4170 			if (pimap->mapped[i].r_hwirq) {
4171 				mutex_unlock(&kvm->lock);
4172 				return -EINVAL;
4173 			}
4174 			break;
4175 		}
4176 	}
4177 
4178 	if (i == KVMPPC_PIRQ_MAPPED) {
4179 		mutex_unlock(&kvm->lock);
4180 		return -EAGAIN;		/* table is full */
4181 	}
4182 
4183 	irq_map = &pimap->mapped[i];
4184 
4185 	irq_map->v_hwirq = guest_gsi;
4186 	irq_map->desc = desc;
4187 
4188 	/*
4189 	 * Order the above two stores before the next to serialize with
4190 	 * the KVM real mode handler.
4191 	 */
4192 	smp_wmb();
4193 	irq_map->r_hwirq = desc->irq_data.hwirq;
4194 
4195 	if (i == pimap->n_mapped)
4196 		pimap->n_mapped++;
4197 
4198 	if (xive_enabled())
4199 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4200 	else
4201 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4202 	if (rc)
4203 		irq_map->r_hwirq = 0;
4204 
4205 	mutex_unlock(&kvm->lock);
4206 
4207 	return 0;
4208 }
4209 
4210 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4211 {
4212 	struct irq_desc *desc;
4213 	struct kvmppc_passthru_irqmap *pimap;
4214 	int i, rc = 0;
4215 
4216 	if (!kvm_irq_bypass)
4217 		return 0;
4218 
4219 	desc = irq_to_desc(host_irq);
4220 	if (!desc)
4221 		return -EIO;
4222 
4223 	mutex_lock(&kvm->lock);
4224 	if (!kvm->arch.pimap)
4225 		goto unlock;
4226 
4227 	pimap = kvm->arch.pimap;
4228 
4229 	for (i = 0; i < pimap->n_mapped; i++) {
4230 		if (guest_gsi == pimap->mapped[i].v_hwirq)
4231 			break;
4232 	}
4233 
4234 	if (i == pimap->n_mapped) {
4235 		mutex_unlock(&kvm->lock);
4236 		return -ENODEV;
4237 	}
4238 
4239 	if (xive_enabled())
4240 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4241 	else
4242 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4243 
4244 	/* invalidate the entry (what do do on error from the above ?) */
4245 	pimap->mapped[i].r_hwirq = 0;
4246 
4247 	/*
4248 	 * We don't free this structure even when the count goes to
4249 	 * zero. The structure is freed when we destroy the VM.
4250 	 */
4251  unlock:
4252 	mutex_unlock(&kvm->lock);
4253 	return rc;
4254 }
4255 
4256 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4257 					     struct irq_bypass_producer *prod)
4258 {
4259 	int ret = 0;
4260 	struct kvm_kernel_irqfd *irqfd =
4261 		container_of(cons, struct kvm_kernel_irqfd, consumer);
4262 
4263 	irqfd->producer = prod;
4264 
4265 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4266 	if (ret)
4267 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4268 			prod->irq, irqfd->gsi, ret);
4269 
4270 	return ret;
4271 }
4272 
4273 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4274 					      struct irq_bypass_producer *prod)
4275 {
4276 	int ret;
4277 	struct kvm_kernel_irqfd *irqfd =
4278 		container_of(cons, struct kvm_kernel_irqfd, consumer);
4279 
4280 	irqfd->producer = NULL;
4281 
4282 	/*
4283 	 * When producer of consumer is unregistered, we change back to
4284 	 * default external interrupt handling mode - KVM real mode
4285 	 * will switch back to host.
4286 	 */
4287 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4288 	if (ret)
4289 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4290 			prod->irq, irqfd->gsi, ret);
4291 }
4292 #endif
4293 
4294 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4295 				 unsigned int ioctl, unsigned long arg)
4296 {
4297 	struct kvm *kvm __maybe_unused = filp->private_data;
4298 	void __user *argp = (void __user *)arg;
4299 	long r;
4300 
4301 	switch (ioctl) {
4302 
4303 	case KVM_PPC_ALLOCATE_HTAB: {
4304 		u32 htab_order;
4305 
4306 		r = -EFAULT;
4307 		if (get_user(htab_order, (u32 __user *)argp))
4308 			break;
4309 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4310 		if (r)
4311 			break;
4312 		r = 0;
4313 		break;
4314 	}
4315 
4316 	case KVM_PPC_GET_HTAB_FD: {
4317 		struct kvm_get_htab_fd ghf;
4318 
4319 		r = -EFAULT;
4320 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
4321 			break;
4322 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4323 		break;
4324 	}
4325 
4326 	case KVM_PPC_RESIZE_HPT_PREPARE: {
4327 		struct kvm_ppc_resize_hpt rhpt;
4328 
4329 		r = -EFAULT;
4330 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4331 			break;
4332 
4333 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4334 		break;
4335 	}
4336 
4337 	case KVM_PPC_RESIZE_HPT_COMMIT: {
4338 		struct kvm_ppc_resize_hpt rhpt;
4339 
4340 		r = -EFAULT;
4341 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4342 			break;
4343 
4344 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4345 		break;
4346 	}
4347 
4348 	default:
4349 		r = -ENOTTY;
4350 	}
4351 
4352 	return r;
4353 }
4354 
4355 /*
4356  * List of hcall numbers to enable by default.
4357  * For compatibility with old userspace, we enable by default
4358  * all hcalls that were implemented before the hcall-enabling
4359  * facility was added.  Note this list should not include H_RTAS.
4360  */
4361 static unsigned int default_hcall_list[] = {
4362 	H_REMOVE,
4363 	H_ENTER,
4364 	H_READ,
4365 	H_PROTECT,
4366 	H_BULK_REMOVE,
4367 	H_GET_TCE,
4368 	H_PUT_TCE,
4369 	H_SET_DABR,
4370 	H_SET_XDABR,
4371 	H_CEDE,
4372 	H_PROD,
4373 	H_CONFER,
4374 	H_REGISTER_VPA,
4375 #ifdef CONFIG_KVM_XICS
4376 	H_EOI,
4377 	H_CPPR,
4378 	H_IPI,
4379 	H_IPOLL,
4380 	H_XIRR,
4381 	H_XIRR_X,
4382 #endif
4383 	0
4384 };
4385 
4386 static void init_default_hcalls(void)
4387 {
4388 	int i;
4389 	unsigned int hcall;
4390 
4391 	for (i = 0; default_hcall_list[i]; ++i) {
4392 		hcall = default_hcall_list[i];
4393 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4394 		__set_bit(hcall / 4, default_enabled_hcalls);
4395 	}
4396 }
4397 
4398 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4399 {
4400 	unsigned long lpcr;
4401 	int radix;
4402 	int err;
4403 
4404 	/* If not on a POWER9, reject it */
4405 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4406 		return -ENODEV;
4407 
4408 	/* If any unknown flags set, reject it */
4409 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4410 		return -EINVAL;
4411 
4412 	/* GR (guest radix) bit in process_table field must match */
4413 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4414 	if (!!(cfg->process_table & PATB_GR) != radix)
4415 		return -EINVAL;
4416 
4417 	/* Process table size field must be reasonable, i.e. <= 24 */
4418 	if ((cfg->process_table & PRTS_MASK) > 24)
4419 		return -EINVAL;
4420 
4421 	/* We can change a guest to/from radix now, if the host is radix */
4422 	if (radix && !radix_enabled())
4423 		return -EINVAL;
4424 
4425 	mutex_lock(&kvm->lock);
4426 	if (radix != kvm_is_radix(kvm)) {
4427 		if (kvm->arch.mmu_ready) {
4428 			kvm->arch.mmu_ready = 0;
4429 			/* order mmu_ready vs. vcpus_running */
4430 			smp_mb();
4431 			if (atomic_read(&kvm->arch.vcpus_running)) {
4432 				kvm->arch.mmu_ready = 1;
4433 				err = -EBUSY;
4434 				goto out_unlock;
4435 			}
4436 		}
4437 		if (radix)
4438 			err = kvmppc_switch_mmu_to_radix(kvm);
4439 		else
4440 			err = kvmppc_switch_mmu_to_hpt(kvm);
4441 		if (err)
4442 			goto out_unlock;
4443 	}
4444 
4445 	kvm->arch.process_table = cfg->process_table;
4446 	kvmppc_setup_partition_table(kvm);
4447 
4448 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4449 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4450 	err = 0;
4451 
4452  out_unlock:
4453 	mutex_unlock(&kvm->lock);
4454 	return err;
4455 }
4456 
4457 static struct kvmppc_ops kvm_ops_hv = {
4458 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4459 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4460 	.get_one_reg = kvmppc_get_one_reg_hv,
4461 	.set_one_reg = kvmppc_set_one_reg_hv,
4462 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
4463 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
4464 	.set_msr     = kvmppc_set_msr_hv,
4465 	.vcpu_run    = kvmppc_vcpu_run_hv,
4466 	.vcpu_create = kvmppc_core_vcpu_create_hv,
4467 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
4468 	.check_requests = kvmppc_core_check_requests_hv,
4469 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4470 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
4471 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4472 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4473 	.unmap_hva_range = kvm_unmap_hva_range_hv,
4474 	.age_hva  = kvm_age_hva_hv,
4475 	.test_age_hva = kvm_test_age_hva_hv,
4476 	.set_spte_hva = kvm_set_spte_hva_hv,
4477 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
4478 	.free_memslot = kvmppc_core_free_memslot_hv,
4479 	.create_memslot = kvmppc_core_create_memslot_hv,
4480 	.init_vm =  kvmppc_core_init_vm_hv,
4481 	.destroy_vm = kvmppc_core_destroy_vm_hv,
4482 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4483 	.emulate_op = kvmppc_core_emulate_op_hv,
4484 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4485 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4486 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4487 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4488 	.hcall_implemented = kvmppc_hcall_impl_hv,
4489 #ifdef CONFIG_KVM_XICS
4490 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4491 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4492 #endif
4493 	.configure_mmu = kvmhv_configure_mmu,
4494 	.get_rmmu_info = kvmhv_get_rmmu_info,
4495 	.set_smt_mode = kvmhv_set_smt_mode,
4496 };
4497 
4498 static int kvm_init_subcore_bitmap(void)
4499 {
4500 	int i, j;
4501 	int nr_cores = cpu_nr_cores();
4502 	struct sibling_subcore_state *sibling_subcore_state;
4503 
4504 	for (i = 0; i < nr_cores; i++) {
4505 		int first_cpu = i * threads_per_core;
4506 		int node = cpu_to_node(first_cpu);
4507 
4508 		/* Ignore if it is already allocated. */
4509 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
4510 			continue;
4511 
4512 		sibling_subcore_state =
4513 			kmalloc_node(sizeof(struct sibling_subcore_state),
4514 							GFP_KERNEL, node);
4515 		if (!sibling_subcore_state)
4516 			return -ENOMEM;
4517 
4518 		memset(sibling_subcore_state, 0,
4519 				sizeof(struct sibling_subcore_state));
4520 
4521 		for (j = 0; j < threads_per_core; j++) {
4522 			int cpu = first_cpu + j;
4523 
4524 			paca_ptrs[cpu]->sibling_subcore_state =
4525 						sibling_subcore_state;
4526 		}
4527 	}
4528 	return 0;
4529 }
4530 
4531 static int kvmppc_radix_possible(void)
4532 {
4533 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4534 }
4535 
4536 static int kvmppc_book3s_init_hv(void)
4537 {
4538 	int r;
4539 	/*
4540 	 * FIXME!! Do we need to check on all cpus ?
4541 	 */
4542 	r = kvmppc_core_check_processor_compat_hv();
4543 	if (r < 0)
4544 		return -ENODEV;
4545 
4546 	r = kvm_init_subcore_bitmap();
4547 	if (r)
4548 		return r;
4549 
4550 	/*
4551 	 * We need a way of accessing the XICS interrupt controller,
4552 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
4553 	 * indirectly, via OPAL.
4554 	 */
4555 #ifdef CONFIG_SMP
4556 	if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4557 		struct device_node *np;
4558 
4559 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4560 		if (!np) {
4561 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4562 			return -ENODEV;
4563 		}
4564 	}
4565 #endif
4566 
4567 	kvm_ops_hv.owner = THIS_MODULE;
4568 	kvmppc_hv_ops = &kvm_ops_hv;
4569 
4570 	init_default_hcalls();
4571 
4572 	init_vcore_lists();
4573 
4574 	r = kvmppc_mmu_hv_init();
4575 	if (r)
4576 		return r;
4577 
4578 	if (kvmppc_radix_possible())
4579 		r = kvmppc_radix_init();
4580 
4581 	/*
4582 	 * POWER9 chips before version 2.02 can't have some threads in
4583 	 * HPT mode and some in radix mode on the same core.
4584 	 */
4585 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4586 		unsigned int pvr = mfspr(SPRN_PVR);
4587 		if ((pvr >> 16) == PVR_POWER9 &&
4588 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
4589 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
4590 			no_mixing_hpt_and_radix = true;
4591 	}
4592 
4593 	return r;
4594 }
4595 
4596 static void kvmppc_book3s_exit_hv(void)
4597 {
4598 	kvmppc_free_host_rm_ops();
4599 	if (kvmppc_radix_possible())
4600 		kvmppc_radix_exit();
4601 	kvmppc_hv_ops = NULL;
4602 }
4603 
4604 module_init(kvmppc_book3s_init_hv);
4605 module_exit(kvmppc_book3s_exit_hv);
4606 MODULE_LICENSE("GPL");
4607 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4608 MODULE_ALIAS("devname:kvm");
4609