1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 #include <linux/irqdomain.h> 46 47 #include <asm/ftrace.h> 48 #include <asm/reg.h> 49 #include <asm/ppc-opcode.h> 50 #include <asm/asm-prototypes.h> 51 #include <asm/archrandom.h> 52 #include <asm/debug.h> 53 #include <asm/disassemble.h> 54 #include <asm/cputable.h> 55 #include <asm/cacheflush.h> 56 #include <linux/uaccess.h> 57 #include <asm/interrupt.h> 58 #include <asm/io.h> 59 #include <asm/kvm_ppc.h> 60 #include <asm/kvm_book3s.h> 61 #include <asm/mmu_context.h> 62 #include <asm/lppaca.h> 63 #include <asm/pmc.h> 64 #include <asm/processor.h> 65 #include <asm/cputhreads.h> 66 #include <asm/page.h> 67 #include <asm/hvcall.h> 68 #include <asm/switch_to.h> 69 #include <asm/smp.h> 70 #include <asm/dbell.h> 71 #include <asm/hmi.h> 72 #include <asm/pnv-pci.h> 73 #include <asm/mmu.h> 74 #include <asm/opal.h> 75 #include <asm/xics.h> 76 #include <asm/xive.h> 77 #include <asm/hw_breakpoint.h> 78 #include <asm/kvm_book3s_uvmem.h> 79 #include <asm/ultravisor.h> 80 #include <asm/dtl.h> 81 #include <asm/plpar_wrappers.h> 82 83 #include "book3s.h" 84 #include "book3s_hv.h" 85 86 #define CREATE_TRACE_POINTS 87 #include "trace_hv.h" 88 89 /* #define EXIT_DEBUG */ 90 /* #define EXIT_DEBUG_SIMPLE */ 91 /* #define EXIT_DEBUG_INT */ 92 93 /* Used to indicate that a guest page fault needs to be handled */ 94 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 95 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 96 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 97 98 /* Used as a "null" value for timebase values */ 99 #define TB_NIL (~(u64)0) 100 101 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 102 103 static int dynamic_mt_modes = 6; 104 module_param(dynamic_mt_modes, int, 0644); 105 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 106 static int target_smt_mode; 107 module_param(target_smt_mode, int, 0644); 108 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 109 110 static bool one_vm_per_core; 111 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 112 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)"); 113 114 #ifdef CONFIG_KVM_XICS 115 static const struct kernel_param_ops module_param_ops = { 116 .set = param_set_int, 117 .get = param_get_int, 118 }; 119 120 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 121 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 122 123 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 124 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 125 #endif 126 127 /* If set, guests are allowed to create and control nested guests */ 128 static bool nested = true; 129 module_param(nested, bool, S_IRUGO | S_IWUSR); 130 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 131 132 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 133 134 /* 135 * RWMR values for POWER8. These control the rate at which PURR 136 * and SPURR count and should be set according to the number of 137 * online threads in the vcore being run. 138 */ 139 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 140 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 141 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 142 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 143 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 144 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 145 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 146 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 147 148 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 149 RWMR_RPA_P8_1THREAD, 150 RWMR_RPA_P8_1THREAD, 151 RWMR_RPA_P8_2THREAD, 152 RWMR_RPA_P8_3THREAD, 153 RWMR_RPA_P8_4THREAD, 154 RWMR_RPA_P8_5THREAD, 155 RWMR_RPA_P8_6THREAD, 156 RWMR_RPA_P8_7THREAD, 157 RWMR_RPA_P8_8THREAD, 158 }; 159 160 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 161 int *ip) 162 { 163 int i = *ip; 164 struct kvm_vcpu *vcpu; 165 166 while (++i < MAX_SMT_THREADS) { 167 vcpu = READ_ONCE(vc->runnable_threads[i]); 168 if (vcpu) { 169 *ip = i; 170 return vcpu; 171 } 172 } 173 return NULL; 174 } 175 176 /* Used to traverse the list of runnable threads for a given vcore */ 177 #define for_each_runnable_thread(i, vcpu, vc) \ 178 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 179 180 static bool kvmppc_ipi_thread(int cpu) 181 { 182 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 183 184 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 185 if (kvmhv_on_pseries()) 186 return false; 187 188 /* On POWER9 we can use msgsnd to IPI any cpu */ 189 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 190 msg |= get_hard_smp_processor_id(cpu); 191 smp_mb(); 192 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 193 return true; 194 } 195 196 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 197 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 198 preempt_disable(); 199 if (cpu_first_thread_sibling(cpu) == 200 cpu_first_thread_sibling(smp_processor_id())) { 201 msg |= cpu_thread_in_core(cpu); 202 smp_mb(); 203 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 204 preempt_enable(); 205 return true; 206 } 207 preempt_enable(); 208 } 209 210 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 211 if (cpu >= 0 && cpu < nr_cpu_ids) { 212 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 213 xics_wake_cpu(cpu); 214 return true; 215 } 216 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 217 return true; 218 } 219 #endif 220 221 return false; 222 } 223 224 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 225 { 226 int cpu; 227 struct rcuwait *waitp; 228 229 /* 230 * rcuwait_wake_up contains smp_mb() which orders prior stores that 231 * create pending work vs below loads of cpu fields. The other side 232 * is the barrier in vcpu run that orders setting the cpu fields vs 233 * testing for pending work. 234 */ 235 236 waitp = kvm_arch_vcpu_get_wait(vcpu); 237 if (rcuwait_wake_up(waitp)) 238 ++vcpu->stat.generic.halt_wakeup; 239 240 cpu = READ_ONCE(vcpu->arch.thread_cpu); 241 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 242 return; 243 244 /* CPU points to the first thread of the core */ 245 cpu = vcpu->cpu; 246 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 247 smp_send_reschedule(cpu); 248 } 249 250 /* 251 * We use the vcpu_load/put functions to measure stolen time. 252 * 253 * Stolen time is counted as time when either the vcpu is able to 254 * run as part of a virtual core, but the task running the vcore 255 * is preempted or sleeping, or when the vcpu needs something done 256 * in the kernel by the task running the vcpu, but that task is 257 * preempted or sleeping. Those two things have to be counted 258 * separately, since one of the vcpu tasks will take on the job 259 * of running the core, and the other vcpu tasks in the vcore will 260 * sleep waiting for it to do that, but that sleep shouldn't count 261 * as stolen time. 262 * 263 * Hence we accumulate stolen time when the vcpu can run as part of 264 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 265 * needs its task to do other things in the kernel (for example, 266 * service a page fault) in busy_stolen. We don't accumulate 267 * stolen time for a vcore when it is inactive, or for a vcpu 268 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 269 * a misnomer; it means that the vcpu task is not executing in 270 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 271 * the kernel. We don't have any way of dividing up that time 272 * between time that the vcpu is genuinely stopped, time that 273 * the task is actively working on behalf of the vcpu, and time 274 * that the task is preempted, so we don't count any of it as 275 * stolen. 276 * 277 * Updates to busy_stolen are protected by arch.tbacct_lock; 278 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 279 * lock. The stolen times are measured in units of timebase ticks. 280 * (Note that the != TB_NIL checks below are purely defensive; 281 * they should never fail.) 282 * 283 * The POWER9 path is simpler, one vcpu per virtual core so the 284 * former case does not exist. If a vcpu is preempted when it is 285 * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate 286 * the stolen cycles in busy_stolen. RUNNING is not a preemptible 287 * state in the P9 path. 288 */ 289 290 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb) 291 { 292 unsigned long flags; 293 294 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 295 296 spin_lock_irqsave(&vc->stoltb_lock, flags); 297 vc->preempt_tb = tb; 298 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 299 } 300 301 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb) 302 { 303 unsigned long flags; 304 305 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 306 307 spin_lock_irqsave(&vc->stoltb_lock, flags); 308 if (vc->preempt_tb != TB_NIL) { 309 vc->stolen_tb += tb - vc->preempt_tb; 310 vc->preempt_tb = TB_NIL; 311 } 312 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 313 } 314 315 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 316 { 317 struct kvmppc_vcore *vc = vcpu->arch.vcore; 318 unsigned long flags; 319 u64 now; 320 321 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 322 if (vcpu->arch.busy_preempt != TB_NIL) { 323 WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST); 324 vc->stolen_tb += mftb() - vcpu->arch.busy_preempt; 325 vcpu->arch.busy_preempt = TB_NIL; 326 } 327 return; 328 } 329 330 now = mftb(); 331 332 /* 333 * We can test vc->runner without taking the vcore lock, 334 * because only this task ever sets vc->runner to this 335 * vcpu, and once it is set to this vcpu, only this task 336 * ever sets it to NULL. 337 */ 338 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 339 kvmppc_core_end_stolen(vc, now); 340 341 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 342 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 343 vcpu->arch.busy_preempt != TB_NIL) { 344 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt; 345 vcpu->arch.busy_preempt = TB_NIL; 346 } 347 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 348 } 349 350 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 351 { 352 struct kvmppc_vcore *vc = vcpu->arch.vcore; 353 unsigned long flags; 354 u64 now; 355 356 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 357 /* 358 * In the P9 path, RUNNABLE is not preemptible 359 * (nor takes host interrupts) 360 */ 361 WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE); 362 /* 363 * Account stolen time when preempted while the vcpu task is 364 * running in the kernel (but not in qemu, which is INACTIVE). 365 */ 366 if (task_is_running(current) && 367 vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 368 vcpu->arch.busy_preempt = mftb(); 369 return; 370 } 371 372 now = mftb(); 373 374 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 375 kvmppc_core_start_stolen(vc, now); 376 377 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 378 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 379 vcpu->arch.busy_preempt = now; 380 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 381 } 382 383 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 384 { 385 vcpu->arch.pvr = pvr; 386 } 387 388 /* Dummy value used in computing PCR value below */ 389 #define PCR_ARCH_31 (PCR_ARCH_300 << 1) 390 391 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 392 { 393 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 394 struct kvmppc_vcore *vc = vcpu->arch.vcore; 395 396 /* We can (emulate) our own architecture version and anything older */ 397 if (cpu_has_feature(CPU_FTR_ARCH_31)) 398 host_pcr_bit = PCR_ARCH_31; 399 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 400 host_pcr_bit = PCR_ARCH_300; 401 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 402 host_pcr_bit = PCR_ARCH_207; 403 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 404 host_pcr_bit = PCR_ARCH_206; 405 else 406 host_pcr_bit = PCR_ARCH_205; 407 408 /* Determine lowest PCR bit needed to run guest in given PVR level */ 409 guest_pcr_bit = host_pcr_bit; 410 if (arch_compat) { 411 switch (arch_compat) { 412 case PVR_ARCH_205: 413 guest_pcr_bit = PCR_ARCH_205; 414 break; 415 case PVR_ARCH_206: 416 case PVR_ARCH_206p: 417 guest_pcr_bit = PCR_ARCH_206; 418 break; 419 case PVR_ARCH_207: 420 guest_pcr_bit = PCR_ARCH_207; 421 break; 422 case PVR_ARCH_300: 423 guest_pcr_bit = PCR_ARCH_300; 424 break; 425 case PVR_ARCH_31: 426 guest_pcr_bit = PCR_ARCH_31; 427 break; 428 default: 429 return -EINVAL; 430 } 431 } 432 433 /* Check requested PCR bits don't exceed our capabilities */ 434 if (guest_pcr_bit > host_pcr_bit) 435 return -EINVAL; 436 437 spin_lock(&vc->lock); 438 vc->arch_compat = arch_compat; 439 /* 440 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 441 * Also set all reserved PCR bits 442 */ 443 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 444 spin_unlock(&vc->lock); 445 446 return 0; 447 } 448 449 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 450 { 451 int r; 452 453 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 454 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 455 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 456 for (r = 0; r < 16; ++r) 457 pr_err("r%2d = %.16lx r%d = %.16lx\n", 458 r, kvmppc_get_gpr(vcpu, r), 459 r+16, kvmppc_get_gpr(vcpu, r+16)); 460 pr_err("ctr = %.16lx lr = %.16lx\n", 461 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 462 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 463 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 464 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 465 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 466 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 467 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 468 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 469 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 470 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 471 pr_err("fault dar = %.16lx dsisr = %.8x\n", 472 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 473 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 474 for (r = 0; r < vcpu->arch.slb_max; ++r) 475 pr_err(" ESID = %.16llx VSID = %.16llx\n", 476 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 477 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 478 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 479 vcpu->arch.last_inst); 480 } 481 482 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 483 { 484 return kvm_get_vcpu_by_id(kvm, id); 485 } 486 487 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 488 { 489 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 490 vpa->yield_count = cpu_to_be32(1); 491 } 492 493 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 494 unsigned long addr, unsigned long len) 495 { 496 /* check address is cacheline aligned */ 497 if (addr & (L1_CACHE_BYTES - 1)) 498 return -EINVAL; 499 spin_lock(&vcpu->arch.vpa_update_lock); 500 if (v->next_gpa != addr || v->len != len) { 501 v->next_gpa = addr; 502 v->len = addr ? len : 0; 503 v->update_pending = 1; 504 } 505 spin_unlock(&vcpu->arch.vpa_update_lock); 506 return 0; 507 } 508 509 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 510 struct reg_vpa { 511 u32 dummy; 512 union { 513 __be16 hword; 514 __be32 word; 515 } length; 516 }; 517 518 static int vpa_is_registered(struct kvmppc_vpa *vpap) 519 { 520 if (vpap->update_pending) 521 return vpap->next_gpa != 0; 522 return vpap->pinned_addr != NULL; 523 } 524 525 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 526 unsigned long flags, 527 unsigned long vcpuid, unsigned long vpa) 528 { 529 struct kvm *kvm = vcpu->kvm; 530 unsigned long len, nb; 531 void *va; 532 struct kvm_vcpu *tvcpu; 533 int err; 534 int subfunc; 535 struct kvmppc_vpa *vpap; 536 537 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 538 if (!tvcpu) 539 return H_PARAMETER; 540 541 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 542 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 543 subfunc == H_VPA_REG_SLB) { 544 /* Registering new area - address must be cache-line aligned */ 545 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 546 return H_PARAMETER; 547 548 /* convert logical addr to kernel addr and read length */ 549 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 550 if (va == NULL) 551 return H_PARAMETER; 552 if (subfunc == H_VPA_REG_VPA) 553 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 554 else 555 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 556 kvmppc_unpin_guest_page(kvm, va, vpa, false); 557 558 /* Check length */ 559 if (len > nb || len < sizeof(struct reg_vpa)) 560 return H_PARAMETER; 561 } else { 562 vpa = 0; 563 len = 0; 564 } 565 566 err = H_PARAMETER; 567 vpap = NULL; 568 spin_lock(&tvcpu->arch.vpa_update_lock); 569 570 switch (subfunc) { 571 case H_VPA_REG_VPA: /* register VPA */ 572 /* 573 * The size of our lppaca is 1kB because of the way we align 574 * it for the guest to avoid crossing a 4kB boundary. We only 575 * use 640 bytes of the structure though, so we should accept 576 * clients that set a size of 640. 577 */ 578 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 579 if (len < sizeof(struct lppaca)) 580 break; 581 vpap = &tvcpu->arch.vpa; 582 err = 0; 583 break; 584 585 case H_VPA_REG_DTL: /* register DTL */ 586 if (len < sizeof(struct dtl_entry)) 587 break; 588 len -= len % sizeof(struct dtl_entry); 589 590 /* Check that they have previously registered a VPA */ 591 err = H_RESOURCE; 592 if (!vpa_is_registered(&tvcpu->arch.vpa)) 593 break; 594 595 vpap = &tvcpu->arch.dtl; 596 err = 0; 597 break; 598 599 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 600 /* Check that they have previously registered a VPA */ 601 err = H_RESOURCE; 602 if (!vpa_is_registered(&tvcpu->arch.vpa)) 603 break; 604 605 vpap = &tvcpu->arch.slb_shadow; 606 err = 0; 607 break; 608 609 case H_VPA_DEREG_VPA: /* deregister VPA */ 610 /* Check they don't still have a DTL or SLB buf registered */ 611 err = H_RESOURCE; 612 if (vpa_is_registered(&tvcpu->arch.dtl) || 613 vpa_is_registered(&tvcpu->arch.slb_shadow)) 614 break; 615 616 vpap = &tvcpu->arch.vpa; 617 err = 0; 618 break; 619 620 case H_VPA_DEREG_DTL: /* deregister DTL */ 621 vpap = &tvcpu->arch.dtl; 622 err = 0; 623 break; 624 625 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 626 vpap = &tvcpu->arch.slb_shadow; 627 err = 0; 628 break; 629 } 630 631 if (vpap) { 632 vpap->next_gpa = vpa; 633 vpap->len = len; 634 vpap->update_pending = 1; 635 } 636 637 spin_unlock(&tvcpu->arch.vpa_update_lock); 638 639 return err; 640 } 641 642 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 643 { 644 struct kvm *kvm = vcpu->kvm; 645 void *va; 646 unsigned long nb; 647 unsigned long gpa; 648 649 /* 650 * We need to pin the page pointed to by vpap->next_gpa, 651 * but we can't call kvmppc_pin_guest_page under the lock 652 * as it does get_user_pages() and down_read(). So we 653 * have to drop the lock, pin the page, then get the lock 654 * again and check that a new area didn't get registered 655 * in the meantime. 656 */ 657 for (;;) { 658 gpa = vpap->next_gpa; 659 spin_unlock(&vcpu->arch.vpa_update_lock); 660 va = NULL; 661 nb = 0; 662 if (gpa) 663 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 664 spin_lock(&vcpu->arch.vpa_update_lock); 665 if (gpa == vpap->next_gpa) 666 break; 667 /* sigh... unpin that one and try again */ 668 if (va) 669 kvmppc_unpin_guest_page(kvm, va, gpa, false); 670 } 671 672 vpap->update_pending = 0; 673 if (va && nb < vpap->len) { 674 /* 675 * If it's now too short, it must be that userspace 676 * has changed the mappings underlying guest memory, 677 * so unregister the region. 678 */ 679 kvmppc_unpin_guest_page(kvm, va, gpa, false); 680 va = NULL; 681 } 682 if (vpap->pinned_addr) 683 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 684 vpap->dirty); 685 vpap->gpa = gpa; 686 vpap->pinned_addr = va; 687 vpap->dirty = false; 688 if (va) 689 vpap->pinned_end = va + vpap->len; 690 } 691 692 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 693 { 694 if (!(vcpu->arch.vpa.update_pending || 695 vcpu->arch.slb_shadow.update_pending || 696 vcpu->arch.dtl.update_pending)) 697 return; 698 699 spin_lock(&vcpu->arch.vpa_update_lock); 700 if (vcpu->arch.vpa.update_pending) { 701 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 702 if (vcpu->arch.vpa.pinned_addr) 703 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 704 } 705 if (vcpu->arch.dtl.update_pending) { 706 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 707 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 708 vcpu->arch.dtl_index = 0; 709 } 710 if (vcpu->arch.slb_shadow.update_pending) 711 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 712 spin_unlock(&vcpu->arch.vpa_update_lock); 713 } 714 715 /* 716 * Return the accumulated stolen time for the vcore up until `now'. 717 * The caller should hold the vcore lock. 718 */ 719 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 720 { 721 u64 p; 722 unsigned long flags; 723 724 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 725 726 spin_lock_irqsave(&vc->stoltb_lock, flags); 727 p = vc->stolen_tb; 728 if (vc->vcore_state != VCORE_INACTIVE && 729 vc->preempt_tb != TB_NIL) 730 p += now - vc->preempt_tb; 731 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 732 return p; 733 } 734 735 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 736 struct lppaca *vpa, 737 unsigned int pcpu, u64 now, 738 unsigned long stolen) 739 { 740 struct dtl_entry *dt; 741 742 dt = vcpu->arch.dtl_ptr; 743 744 if (!dt) 745 return; 746 747 dt->dispatch_reason = 7; 748 dt->preempt_reason = 0; 749 dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid); 750 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 751 dt->ready_to_enqueue_time = 0; 752 dt->waiting_to_ready_time = 0; 753 dt->timebase = cpu_to_be64(now); 754 dt->fault_addr = 0; 755 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 756 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 757 758 ++dt; 759 if (dt == vcpu->arch.dtl.pinned_end) 760 dt = vcpu->arch.dtl.pinned_addr; 761 vcpu->arch.dtl_ptr = dt; 762 /* order writing *dt vs. writing vpa->dtl_idx */ 763 smp_wmb(); 764 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 765 766 /* vcpu->arch.dtl.dirty is set by the caller */ 767 } 768 769 static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu, 770 struct kvmppc_vcore *vc) 771 { 772 struct lppaca *vpa; 773 unsigned long stolen; 774 unsigned long core_stolen; 775 u64 now; 776 unsigned long flags; 777 778 vpa = vcpu->arch.vpa.pinned_addr; 779 if (!vpa) 780 return; 781 782 now = mftb(); 783 784 core_stolen = vcore_stolen_time(vc, now); 785 stolen = core_stolen - vcpu->arch.stolen_logged; 786 vcpu->arch.stolen_logged = core_stolen; 787 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 788 stolen += vcpu->arch.busy_stolen; 789 vcpu->arch.busy_stolen = 0; 790 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 791 792 vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen); 793 794 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + vc->tb_offset, stolen); 795 796 vcpu->arch.vpa.dirty = true; 797 } 798 799 static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu, 800 struct kvmppc_vcore *vc, 801 u64 now) 802 { 803 struct lppaca *vpa; 804 unsigned long stolen; 805 unsigned long stolen_delta; 806 807 vpa = vcpu->arch.vpa.pinned_addr; 808 if (!vpa) 809 return; 810 811 stolen = vc->stolen_tb; 812 stolen_delta = stolen - vcpu->arch.stolen_logged; 813 vcpu->arch.stolen_logged = stolen; 814 815 vpa->enqueue_dispatch_tb = cpu_to_be64(stolen); 816 817 __kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta); 818 819 vcpu->arch.vpa.dirty = true; 820 } 821 822 /* See if there is a doorbell interrupt pending for a vcpu */ 823 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 824 { 825 int thr; 826 struct kvmppc_vcore *vc; 827 828 if (vcpu->arch.doorbell_request) 829 return true; 830 if (cpu_has_feature(CPU_FTR_ARCH_300)) 831 return false; 832 /* 833 * Ensure that the read of vcore->dpdes comes after the read 834 * of vcpu->doorbell_request. This barrier matches the 835 * smp_wmb() in kvmppc_guest_entry_inject(). 836 */ 837 smp_rmb(); 838 vc = vcpu->arch.vcore; 839 thr = vcpu->vcpu_id - vc->first_vcpuid; 840 return !!(vc->dpdes & (1 << thr)); 841 } 842 843 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 844 { 845 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 846 return true; 847 if ((!vcpu->arch.vcore->arch_compat) && 848 cpu_has_feature(CPU_FTR_ARCH_207S)) 849 return true; 850 return false; 851 } 852 853 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 854 unsigned long resource, unsigned long value1, 855 unsigned long value2) 856 { 857 switch (resource) { 858 case H_SET_MODE_RESOURCE_SET_CIABR: 859 if (!kvmppc_power8_compatible(vcpu)) 860 return H_P2; 861 if (value2) 862 return H_P4; 863 if (mflags) 864 return H_UNSUPPORTED_FLAG_START; 865 /* Guests can't breakpoint the hypervisor */ 866 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 867 return H_P3; 868 vcpu->arch.ciabr = value1; 869 return H_SUCCESS; 870 case H_SET_MODE_RESOURCE_SET_DAWR0: 871 if (!kvmppc_power8_compatible(vcpu)) 872 return H_P2; 873 if (!ppc_breakpoint_available()) 874 return H_P2; 875 if (mflags) 876 return H_UNSUPPORTED_FLAG_START; 877 if (value2 & DABRX_HYP) 878 return H_P4; 879 vcpu->arch.dawr0 = value1; 880 vcpu->arch.dawrx0 = value2; 881 return H_SUCCESS; 882 case H_SET_MODE_RESOURCE_SET_DAWR1: 883 if (!kvmppc_power8_compatible(vcpu)) 884 return H_P2; 885 if (!ppc_breakpoint_available()) 886 return H_P2; 887 if (!cpu_has_feature(CPU_FTR_DAWR1)) 888 return H_P2; 889 if (!vcpu->kvm->arch.dawr1_enabled) 890 return H_FUNCTION; 891 if (mflags) 892 return H_UNSUPPORTED_FLAG_START; 893 if (value2 & DABRX_HYP) 894 return H_P4; 895 vcpu->arch.dawr1 = value1; 896 vcpu->arch.dawrx1 = value2; 897 return H_SUCCESS; 898 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 899 /* 900 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved. 901 * Keep this in synch with kvmppc_filter_guest_lpcr_hv. 902 */ 903 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 904 kvmhv_vcpu_is_radix(vcpu) && mflags == 3) 905 return H_UNSUPPORTED_FLAG_START; 906 return H_TOO_HARD; 907 default: 908 return H_TOO_HARD; 909 } 910 } 911 912 /* Copy guest memory in place - must reside within a single memslot */ 913 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 914 unsigned long len) 915 { 916 struct kvm_memory_slot *to_memslot = NULL; 917 struct kvm_memory_slot *from_memslot = NULL; 918 unsigned long to_addr, from_addr; 919 int r; 920 921 /* Get HPA for from address */ 922 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 923 if (!from_memslot) 924 return -EFAULT; 925 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 926 << PAGE_SHIFT)) 927 return -EINVAL; 928 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 929 if (kvm_is_error_hva(from_addr)) 930 return -EFAULT; 931 from_addr |= (from & (PAGE_SIZE - 1)); 932 933 /* Get HPA for to address */ 934 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 935 if (!to_memslot) 936 return -EFAULT; 937 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 938 << PAGE_SHIFT)) 939 return -EINVAL; 940 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 941 if (kvm_is_error_hva(to_addr)) 942 return -EFAULT; 943 to_addr |= (to & (PAGE_SIZE - 1)); 944 945 /* Perform copy */ 946 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 947 len); 948 if (r) 949 return -EFAULT; 950 mark_page_dirty(kvm, to >> PAGE_SHIFT); 951 return 0; 952 } 953 954 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 955 unsigned long dest, unsigned long src) 956 { 957 u64 pg_sz = SZ_4K; /* 4K page size */ 958 u64 pg_mask = SZ_4K - 1; 959 int ret; 960 961 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 962 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 963 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 964 return H_PARAMETER; 965 966 /* dest (and src if copy_page flag set) must be page aligned */ 967 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 968 return H_PARAMETER; 969 970 /* zero and/or copy the page as determined by the flags */ 971 if (flags & H_COPY_PAGE) { 972 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 973 if (ret < 0) 974 return H_PARAMETER; 975 } else if (flags & H_ZERO_PAGE) { 976 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 977 if (ret < 0) 978 return H_PARAMETER; 979 } 980 981 /* We can ignore the remaining flags */ 982 983 return H_SUCCESS; 984 } 985 986 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 987 { 988 struct kvmppc_vcore *vcore = target->arch.vcore; 989 990 /* 991 * We expect to have been called by the real mode handler 992 * (kvmppc_rm_h_confer()) which would have directly returned 993 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 994 * have useful work to do and should not confer) so we don't 995 * recheck that here. 996 * 997 * In the case of the P9 single vcpu per vcore case, the real 998 * mode handler is not called but no other threads are in the 999 * source vcore. 1000 */ 1001 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1002 spin_lock(&vcore->lock); 1003 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 1004 vcore->vcore_state != VCORE_INACTIVE && 1005 vcore->runner) 1006 target = vcore->runner; 1007 spin_unlock(&vcore->lock); 1008 } 1009 1010 return kvm_vcpu_yield_to(target); 1011 } 1012 1013 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 1014 { 1015 int yield_count = 0; 1016 struct lppaca *lppaca; 1017 1018 spin_lock(&vcpu->arch.vpa_update_lock); 1019 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 1020 if (lppaca) 1021 yield_count = be32_to_cpu(lppaca->yield_count); 1022 spin_unlock(&vcpu->arch.vpa_update_lock); 1023 return yield_count; 1024 } 1025 1026 /* 1027 * H_RPT_INVALIDATE hcall handler for nested guests. 1028 * 1029 * Handles only nested process-scoped invalidation requests in L0. 1030 */ 1031 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu) 1032 { 1033 unsigned long type = kvmppc_get_gpr(vcpu, 6); 1034 unsigned long pid, pg_sizes, start, end; 1035 1036 /* 1037 * The partition-scoped invalidations aren't handled here in L0. 1038 */ 1039 if (type & H_RPTI_TYPE_NESTED) 1040 return RESUME_HOST; 1041 1042 pid = kvmppc_get_gpr(vcpu, 4); 1043 pg_sizes = kvmppc_get_gpr(vcpu, 7); 1044 start = kvmppc_get_gpr(vcpu, 8); 1045 end = kvmppc_get_gpr(vcpu, 9); 1046 1047 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid, 1048 type, pg_sizes, start, end); 1049 1050 kvmppc_set_gpr(vcpu, 3, H_SUCCESS); 1051 return RESUME_GUEST; 1052 } 1053 1054 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu, 1055 unsigned long id, unsigned long target, 1056 unsigned long type, unsigned long pg_sizes, 1057 unsigned long start, unsigned long end) 1058 { 1059 if (!kvm_is_radix(vcpu->kvm)) 1060 return H_UNSUPPORTED; 1061 1062 if (end < start) 1063 return H_P5; 1064 1065 /* 1066 * Partition-scoped invalidation for nested guests. 1067 */ 1068 if (type & H_RPTI_TYPE_NESTED) { 1069 if (!nesting_enabled(vcpu->kvm)) 1070 return H_FUNCTION; 1071 1072 /* Support only cores as target */ 1073 if (target != H_RPTI_TARGET_CMMU) 1074 return H_P2; 1075 1076 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes, 1077 start, end); 1078 } 1079 1080 /* 1081 * Process-scoped invalidation for L1 guests. 1082 */ 1083 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid, 1084 type, pg_sizes, start, end); 1085 return H_SUCCESS; 1086 } 1087 1088 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 1089 { 1090 struct kvm *kvm = vcpu->kvm; 1091 unsigned long req = kvmppc_get_gpr(vcpu, 3); 1092 unsigned long target, ret = H_SUCCESS; 1093 int yield_count; 1094 struct kvm_vcpu *tvcpu; 1095 int idx, rc; 1096 1097 if (req <= MAX_HCALL_OPCODE && 1098 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 1099 return RESUME_HOST; 1100 1101 switch (req) { 1102 case H_REMOVE: 1103 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4), 1104 kvmppc_get_gpr(vcpu, 5), 1105 kvmppc_get_gpr(vcpu, 6)); 1106 if (ret == H_TOO_HARD) 1107 return RESUME_HOST; 1108 break; 1109 case H_ENTER: 1110 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 1111 kvmppc_get_gpr(vcpu, 5), 1112 kvmppc_get_gpr(vcpu, 6), 1113 kvmppc_get_gpr(vcpu, 7)); 1114 if (ret == H_TOO_HARD) 1115 return RESUME_HOST; 1116 break; 1117 case H_READ: 1118 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4), 1119 kvmppc_get_gpr(vcpu, 5)); 1120 if (ret == H_TOO_HARD) 1121 return RESUME_HOST; 1122 break; 1123 case H_CLEAR_MOD: 1124 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4), 1125 kvmppc_get_gpr(vcpu, 5)); 1126 if (ret == H_TOO_HARD) 1127 return RESUME_HOST; 1128 break; 1129 case H_CLEAR_REF: 1130 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4), 1131 kvmppc_get_gpr(vcpu, 5)); 1132 if (ret == H_TOO_HARD) 1133 return RESUME_HOST; 1134 break; 1135 case H_PROTECT: 1136 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4), 1137 kvmppc_get_gpr(vcpu, 5), 1138 kvmppc_get_gpr(vcpu, 6)); 1139 if (ret == H_TOO_HARD) 1140 return RESUME_HOST; 1141 break; 1142 case H_BULK_REMOVE: 1143 ret = kvmppc_h_bulk_remove(vcpu); 1144 if (ret == H_TOO_HARD) 1145 return RESUME_HOST; 1146 break; 1147 1148 case H_CEDE: 1149 break; 1150 case H_PROD: 1151 target = kvmppc_get_gpr(vcpu, 4); 1152 tvcpu = kvmppc_find_vcpu(kvm, target); 1153 if (!tvcpu) { 1154 ret = H_PARAMETER; 1155 break; 1156 } 1157 tvcpu->arch.prodded = 1; 1158 smp_mb(); /* This orders prodded store vs ceded load */ 1159 if (tvcpu->arch.ceded) 1160 kvmppc_fast_vcpu_kick_hv(tvcpu); 1161 break; 1162 case H_CONFER: 1163 target = kvmppc_get_gpr(vcpu, 4); 1164 if (target == -1) 1165 break; 1166 tvcpu = kvmppc_find_vcpu(kvm, target); 1167 if (!tvcpu) { 1168 ret = H_PARAMETER; 1169 break; 1170 } 1171 yield_count = kvmppc_get_gpr(vcpu, 5); 1172 if (kvmppc_get_yield_count(tvcpu) != yield_count) 1173 break; 1174 kvm_arch_vcpu_yield_to(tvcpu); 1175 break; 1176 case H_REGISTER_VPA: 1177 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 1178 kvmppc_get_gpr(vcpu, 5), 1179 kvmppc_get_gpr(vcpu, 6)); 1180 break; 1181 case H_RTAS: 1182 if (list_empty(&kvm->arch.rtas_tokens)) 1183 return RESUME_HOST; 1184 1185 idx = srcu_read_lock(&kvm->srcu); 1186 rc = kvmppc_rtas_hcall(vcpu); 1187 srcu_read_unlock(&kvm->srcu, idx); 1188 1189 if (rc == -ENOENT) 1190 return RESUME_HOST; 1191 else if (rc == 0) 1192 break; 1193 1194 /* Send the error out to userspace via KVM_RUN */ 1195 return rc; 1196 case H_LOGICAL_CI_LOAD: 1197 ret = kvmppc_h_logical_ci_load(vcpu); 1198 if (ret == H_TOO_HARD) 1199 return RESUME_HOST; 1200 break; 1201 case H_LOGICAL_CI_STORE: 1202 ret = kvmppc_h_logical_ci_store(vcpu); 1203 if (ret == H_TOO_HARD) 1204 return RESUME_HOST; 1205 break; 1206 case H_SET_MODE: 1207 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 1208 kvmppc_get_gpr(vcpu, 5), 1209 kvmppc_get_gpr(vcpu, 6), 1210 kvmppc_get_gpr(vcpu, 7)); 1211 if (ret == H_TOO_HARD) 1212 return RESUME_HOST; 1213 break; 1214 case H_XIRR: 1215 case H_CPPR: 1216 case H_EOI: 1217 case H_IPI: 1218 case H_IPOLL: 1219 case H_XIRR_X: 1220 if (kvmppc_xics_enabled(vcpu)) { 1221 if (xics_on_xive()) { 1222 ret = H_NOT_AVAILABLE; 1223 return RESUME_GUEST; 1224 } 1225 ret = kvmppc_xics_hcall(vcpu, req); 1226 break; 1227 } 1228 return RESUME_HOST; 1229 case H_SET_DABR: 1230 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1231 break; 1232 case H_SET_XDABR: 1233 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1234 kvmppc_get_gpr(vcpu, 5)); 1235 break; 1236 #ifdef CONFIG_SPAPR_TCE_IOMMU 1237 case H_GET_TCE: 1238 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1239 kvmppc_get_gpr(vcpu, 5)); 1240 if (ret == H_TOO_HARD) 1241 return RESUME_HOST; 1242 break; 1243 case H_PUT_TCE: 1244 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1245 kvmppc_get_gpr(vcpu, 5), 1246 kvmppc_get_gpr(vcpu, 6)); 1247 if (ret == H_TOO_HARD) 1248 return RESUME_HOST; 1249 break; 1250 case H_PUT_TCE_INDIRECT: 1251 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1252 kvmppc_get_gpr(vcpu, 5), 1253 kvmppc_get_gpr(vcpu, 6), 1254 kvmppc_get_gpr(vcpu, 7)); 1255 if (ret == H_TOO_HARD) 1256 return RESUME_HOST; 1257 break; 1258 case H_STUFF_TCE: 1259 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1260 kvmppc_get_gpr(vcpu, 5), 1261 kvmppc_get_gpr(vcpu, 6), 1262 kvmppc_get_gpr(vcpu, 7)); 1263 if (ret == H_TOO_HARD) 1264 return RESUME_HOST; 1265 break; 1266 #endif 1267 case H_RANDOM: 1268 if (!arch_get_random_seed_longs(&vcpu->arch.regs.gpr[4], 1)) 1269 ret = H_HARDWARE; 1270 break; 1271 case H_RPT_INVALIDATE: 1272 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4), 1273 kvmppc_get_gpr(vcpu, 5), 1274 kvmppc_get_gpr(vcpu, 6), 1275 kvmppc_get_gpr(vcpu, 7), 1276 kvmppc_get_gpr(vcpu, 8), 1277 kvmppc_get_gpr(vcpu, 9)); 1278 break; 1279 1280 case H_SET_PARTITION_TABLE: 1281 ret = H_FUNCTION; 1282 if (nesting_enabled(kvm)) 1283 ret = kvmhv_set_partition_table(vcpu); 1284 break; 1285 case H_ENTER_NESTED: 1286 ret = H_FUNCTION; 1287 if (!nesting_enabled(kvm)) 1288 break; 1289 ret = kvmhv_enter_nested_guest(vcpu); 1290 if (ret == H_INTERRUPT) { 1291 kvmppc_set_gpr(vcpu, 3, 0); 1292 vcpu->arch.hcall_needed = 0; 1293 return -EINTR; 1294 } else if (ret == H_TOO_HARD) { 1295 kvmppc_set_gpr(vcpu, 3, 0); 1296 vcpu->arch.hcall_needed = 0; 1297 return RESUME_HOST; 1298 } 1299 break; 1300 case H_TLB_INVALIDATE: 1301 ret = H_FUNCTION; 1302 if (nesting_enabled(kvm)) 1303 ret = kvmhv_do_nested_tlbie(vcpu); 1304 break; 1305 case H_COPY_TOFROM_GUEST: 1306 ret = H_FUNCTION; 1307 if (nesting_enabled(kvm)) 1308 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1309 break; 1310 case H_PAGE_INIT: 1311 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1312 kvmppc_get_gpr(vcpu, 5), 1313 kvmppc_get_gpr(vcpu, 6)); 1314 break; 1315 case H_SVM_PAGE_IN: 1316 ret = H_UNSUPPORTED; 1317 if (kvmppc_get_srr1(vcpu) & MSR_S) 1318 ret = kvmppc_h_svm_page_in(kvm, 1319 kvmppc_get_gpr(vcpu, 4), 1320 kvmppc_get_gpr(vcpu, 5), 1321 kvmppc_get_gpr(vcpu, 6)); 1322 break; 1323 case H_SVM_PAGE_OUT: 1324 ret = H_UNSUPPORTED; 1325 if (kvmppc_get_srr1(vcpu) & MSR_S) 1326 ret = kvmppc_h_svm_page_out(kvm, 1327 kvmppc_get_gpr(vcpu, 4), 1328 kvmppc_get_gpr(vcpu, 5), 1329 kvmppc_get_gpr(vcpu, 6)); 1330 break; 1331 case H_SVM_INIT_START: 1332 ret = H_UNSUPPORTED; 1333 if (kvmppc_get_srr1(vcpu) & MSR_S) 1334 ret = kvmppc_h_svm_init_start(kvm); 1335 break; 1336 case H_SVM_INIT_DONE: 1337 ret = H_UNSUPPORTED; 1338 if (kvmppc_get_srr1(vcpu) & MSR_S) 1339 ret = kvmppc_h_svm_init_done(kvm); 1340 break; 1341 case H_SVM_INIT_ABORT: 1342 /* 1343 * Even if that call is made by the Ultravisor, the SSR1 value 1344 * is the guest context one, with the secure bit clear as it has 1345 * not yet been secured. So we can't check it here. 1346 * Instead the kvm->arch.secure_guest flag is checked inside 1347 * kvmppc_h_svm_init_abort(). 1348 */ 1349 ret = kvmppc_h_svm_init_abort(kvm); 1350 break; 1351 1352 default: 1353 return RESUME_HOST; 1354 } 1355 WARN_ON_ONCE(ret == H_TOO_HARD); 1356 kvmppc_set_gpr(vcpu, 3, ret); 1357 vcpu->arch.hcall_needed = 0; 1358 return RESUME_GUEST; 1359 } 1360 1361 /* 1362 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall 1363 * handlers in book3s_hv_rmhandlers.S. 1364 * 1365 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1366 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1367 */ 1368 static void kvmppc_cede(struct kvm_vcpu *vcpu) 1369 { 1370 vcpu->arch.shregs.msr |= MSR_EE; 1371 vcpu->arch.ceded = 1; 1372 smp_mb(); 1373 if (vcpu->arch.prodded) { 1374 vcpu->arch.prodded = 0; 1375 smp_mb(); 1376 vcpu->arch.ceded = 0; 1377 } 1378 } 1379 1380 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1381 { 1382 switch (cmd) { 1383 case H_CEDE: 1384 case H_PROD: 1385 case H_CONFER: 1386 case H_REGISTER_VPA: 1387 case H_SET_MODE: 1388 #ifdef CONFIG_SPAPR_TCE_IOMMU 1389 case H_GET_TCE: 1390 case H_PUT_TCE: 1391 case H_PUT_TCE_INDIRECT: 1392 case H_STUFF_TCE: 1393 #endif 1394 case H_LOGICAL_CI_LOAD: 1395 case H_LOGICAL_CI_STORE: 1396 #ifdef CONFIG_KVM_XICS 1397 case H_XIRR: 1398 case H_CPPR: 1399 case H_EOI: 1400 case H_IPI: 1401 case H_IPOLL: 1402 case H_XIRR_X: 1403 #endif 1404 case H_PAGE_INIT: 1405 case H_RPT_INVALIDATE: 1406 return 1; 1407 } 1408 1409 /* See if it's in the real-mode table */ 1410 return kvmppc_hcall_impl_hv_realmode(cmd); 1411 } 1412 1413 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) 1414 { 1415 u32 last_inst; 1416 1417 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1418 EMULATE_DONE) { 1419 /* 1420 * Fetch failed, so return to guest and 1421 * try executing it again. 1422 */ 1423 return RESUME_GUEST; 1424 } 1425 1426 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1427 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 1428 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); 1429 return RESUME_HOST; 1430 } else { 1431 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1432 return RESUME_GUEST; 1433 } 1434 } 1435 1436 static void do_nothing(void *x) 1437 { 1438 } 1439 1440 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1441 { 1442 int thr, cpu, pcpu, nthreads; 1443 struct kvm_vcpu *v; 1444 unsigned long dpdes; 1445 1446 nthreads = vcpu->kvm->arch.emul_smt_mode; 1447 dpdes = 0; 1448 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1449 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1450 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1451 if (!v) 1452 continue; 1453 /* 1454 * If the vcpu is currently running on a physical cpu thread, 1455 * interrupt it in order to pull it out of the guest briefly, 1456 * which will update its vcore->dpdes value. 1457 */ 1458 pcpu = READ_ONCE(v->cpu); 1459 if (pcpu >= 0) 1460 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1461 if (kvmppc_doorbell_pending(v)) 1462 dpdes |= 1 << thr; 1463 } 1464 return dpdes; 1465 } 1466 1467 /* 1468 * On POWER9, emulate doorbell-related instructions in order to 1469 * give the guest the illusion of running on a multi-threaded core. 1470 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1471 * and mfspr DPDES. 1472 */ 1473 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1474 { 1475 u32 inst, rb, thr; 1476 unsigned long arg; 1477 struct kvm *kvm = vcpu->kvm; 1478 struct kvm_vcpu *tvcpu; 1479 1480 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1481 return RESUME_GUEST; 1482 if (get_op(inst) != 31) 1483 return EMULATE_FAIL; 1484 rb = get_rb(inst); 1485 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1486 switch (get_xop(inst)) { 1487 case OP_31_XOP_MSGSNDP: 1488 arg = kvmppc_get_gpr(vcpu, rb); 1489 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1490 break; 1491 arg &= 0x7f; 1492 if (arg >= kvm->arch.emul_smt_mode) 1493 break; 1494 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1495 if (!tvcpu) 1496 break; 1497 if (!tvcpu->arch.doorbell_request) { 1498 tvcpu->arch.doorbell_request = 1; 1499 kvmppc_fast_vcpu_kick_hv(tvcpu); 1500 } 1501 break; 1502 case OP_31_XOP_MSGCLRP: 1503 arg = kvmppc_get_gpr(vcpu, rb); 1504 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1505 break; 1506 vcpu->arch.vcore->dpdes = 0; 1507 vcpu->arch.doorbell_request = 0; 1508 break; 1509 case OP_31_XOP_MFSPR: 1510 switch (get_sprn(inst)) { 1511 case SPRN_TIR: 1512 arg = thr; 1513 break; 1514 case SPRN_DPDES: 1515 arg = kvmppc_read_dpdes(vcpu); 1516 break; 1517 default: 1518 return EMULATE_FAIL; 1519 } 1520 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1521 break; 1522 default: 1523 return EMULATE_FAIL; 1524 } 1525 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1526 return RESUME_GUEST; 1527 } 1528 1529 /* 1530 * If the lppaca had pmcregs_in_use clear when we exited the guest, then 1531 * HFSCR_PM is cleared for next entry. If the guest then tries to access 1532 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM 1533 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and 1534 * allow the guest access to continue. 1535 */ 1536 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu) 1537 { 1538 if (!(vcpu->arch.hfscr_permitted & HFSCR_PM)) 1539 return EMULATE_FAIL; 1540 1541 vcpu->arch.hfscr |= HFSCR_PM; 1542 1543 return RESUME_GUEST; 1544 } 1545 1546 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu) 1547 { 1548 if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB)) 1549 return EMULATE_FAIL; 1550 1551 vcpu->arch.hfscr |= HFSCR_EBB; 1552 1553 return RESUME_GUEST; 1554 } 1555 1556 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu) 1557 { 1558 if (!(vcpu->arch.hfscr_permitted & HFSCR_TM)) 1559 return EMULATE_FAIL; 1560 1561 vcpu->arch.hfscr |= HFSCR_TM; 1562 1563 return RESUME_GUEST; 1564 } 1565 1566 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, 1567 struct task_struct *tsk) 1568 { 1569 struct kvm_run *run = vcpu->run; 1570 int r = RESUME_HOST; 1571 1572 vcpu->stat.sum_exits++; 1573 1574 /* 1575 * This can happen if an interrupt occurs in the last stages 1576 * of guest entry or the first stages of guest exit (i.e. after 1577 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1578 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1579 * That can happen due to a bug, or due to a machine check 1580 * occurring at just the wrong time. 1581 */ 1582 if (vcpu->arch.shregs.msr & MSR_HV) { 1583 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1584 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1585 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1586 vcpu->arch.shregs.msr); 1587 kvmppc_dump_regs(vcpu); 1588 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1589 run->hw.hardware_exit_reason = vcpu->arch.trap; 1590 return RESUME_HOST; 1591 } 1592 run->exit_reason = KVM_EXIT_UNKNOWN; 1593 run->ready_for_interrupt_injection = 1; 1594 switch (vcpu->arch.trap) { 1595 /* We're good on these - the host merely wanted to get our attention */ 1596 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1597 WARN_ON_ONCE(1); /* Should never happen */ 1598 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1599 fallthrough; 1600 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1601 vcpu->stat.dec_exits++; 1602 r = RESUME_GUEST; 1603 break; 1604 case BOOK3S_INTERRUPT_EXTERNAL: 1605 case BOOK3S_INTERRUPT_H_DOORBELL: 1606 case BOOK3S_INTERRUPT_H_VIRT: 1607 vcpu->stat.ext_intr_exits++; 1608 r = RESUME_GUEST; 1609 break; 1610 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1611 case BOOK3S_INTERRUPT_HMI: 1612 case BOOK3S_INTERRUPT_PERFMON: 1613 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1614 r = RESUME_GUEST; 1615 break; 1616 case BOOK3S_INTERRUPT_MACHINE_CHECK: { 1617 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1618 DEFAULT_RATELIMIT_BURST); 1619 /* 1620 * Print the MCE event to host console. Ratelimit so the guest 1621 * can't flood the host log. 1622 */ 1623 if (__ratelimit(&rs)) 1624 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true); 1625 1626 /* 1627 * If the guest can do FWNMI, exit to userspace so it can 1628 * deliver a FWNMI to the guest. 1629 * Otherwise we synthesize a machine check for the guest 1630 * so that it knows that the machine check occurred. 1631 */ 1632 if (!vcpu->kvm->arch.fwnmi_enabled) { 1633 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1634 kvmppc_core_queue_machine_check(vcpu, flags); 1635 r = RESUME_GUEST; 1636 break; 1637 } 1638 1639 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1640 run->exit_reason = KVM_EXIT_NMI; 1641 run->hw.hardware_exit_reason = vcpu->arch.trap; 1642 /* Clear out the old NMI status from run->flags */ 1643 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1644 /* Now set the NMI status */ 1645 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1646 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1647 else 1648 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1649 1650 r = RESUME_HOST; 1651 break; 1652 } 1653 case BOOK3S_INTERRUPT_PROGRAM: 1654 { 1655 ulong flags; 1656 /* 1657 * Normally program interrupts are delivered directly 1658 * to the guest by the hardware, but we can get here 1659 * as a result of a hypervisor emulation interrupt 1660 * (e40) getting turned into a 700 by BML RTAS. 1661 */ 1662 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1663 kvmppc_core_queue_program(vcpu, flags); 1664 r = RESUME_GUEST; 1665 break; 1666 } 1667 case BOOK3S_INTERRUPT_SYSCALL: 1668 { 1669 int i; 1670 1671 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) { 1672 /* 1673 * Guest userspace executed sc 1. This can only be 1674 * reached by the P9 path because the old path 1675 * handles this case in realmode hcall handlers. 1676 */ 1677 if (!kvmhv_vcpu_is_radix(vcpu)) { 1678 /* 1679 * A guest could be running PR KVM, so this 1680 * may be a PR KVM hcall. It must be reflected 1681 * to the guest kernel as a sc interrupt. 1682 */ 1683 kvmppc_core_queue_syscall(vcpu); 1684 } else { 1685 /* 1686 * Radix guests can not run PR KVM or nested HV 1687 * hash guests which might run PR KVM, so this 1688 * is always a privilege fault. Send a program 1689 * check to guest kernel. 1690 */ 1691 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); 1692 } 1693 r = RESUME_GUEST; 1694 break; 1695 } 1696 1697 /* 1698 * hcall - gather args and set exit_reason. This will next be 1699 * handled by kvmppc_pseries_do_hcall which may be able to deal 1700 * with it and resume guest, or may punt to userspace. 1701 */ 1702 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1703 for (i = 0; i < 9; ++i) 1704 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1705 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1706 vcpu->arch.hcall_needed = 1; 1707 r = RESUME_HOST; 1708 break; 1709 } 1710 /* 1711 * We get these next two if the guest accesses a page which it thinks 1712 * it has mapped but which is not actually present, either because 1713 * it is for an emulated I/O device or because the corresonding 1714 * host page has been paged out. 1715 * 1716 * Any other HDSI/HISI interrupts have been handled already for P7/8 1717 * guests. For POWER9 hash guests not using rmhandlers, basic hash 1718 * fault handling is done here. 1719 */ 1720 case BOOK3S_INTERRUPT_H_DATA_STORAGE: { 1721 unsigned long vsid; 1722 long err; 1723 1724 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 1725 unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) { 1726 r = RESUME_GUEST; /* Just retry if it's the canary */ 1727 break; 1728 } 1729 1730 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1731 /* 1732 * Radix doesn't require anything, and pre-ISAv3.0 hash 1733 * already attempted to handle this in rmhandlers. The 1734 * hash fault handling below is v3 only (it uses ASDR 1735 * via fault_gpa). 1736 */ 1737 r = RESUME_PAGE_FAULT; 1738 break; 1739 } 1740 1741 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) { 1742 kvmppc_core_queue_data_storage(vcpu, 1743 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1744 r = RESUME_GUEST; 1745 break; 1746 } 1747 1748 if (!(vcpu->arch.shregs.msr & MSR_DR)) 1749 vsid = vcpu->kvm->arch.vrma_slb_v; 1750 else 1751 vsid = vcpu->arch.fault_gpa; 1752 1753 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1754 vsid, vcpu->arch.fault_dsisr, true); 1755 if (err == 0) { 1756 r = RESUME_GUEST; 1757 } else if (err == -1 || err == -2) { 1758 r = RESUME_PAGE_FAULT; 1759 } else { 1760 kvmppc_core_queue_data_storage(vcpu, 1761 vcpu->arch.fault_dar, err); 1762 r = RESUME_GUEST; 1763 } 1764 break; 1765 } 1766 case BOOK3S_INTERRUPT_H_INST_STORAGE: { 1767 unsigned long vsid; 1768 long err; 1769 1770 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1771 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1772 DSISR_SRR1_MATCH_64S; 1773 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1774 /* 1775 * Radix doesn't require anything, and pre-ISAv3.0 hash 1776 * already attempted to handle this in rmhandlers. The 1777 * hash fault handling below is v3 only (it uses ASDR 1778 * via fault_gpa). 1779 */ 1780 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1781 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1782 r = RESUME_PAGE_FAULT; 1783 break; 1784 } 1785 1786 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) { 1787 kvmppc_core_queue_inst_storage(vcpu, 1788 vcpu->arch.fault_dsisr); 1789 r = RESUME_GUEST; 1790 break; 1791 } 1792 1793 if (!(vcpu->arch.shregs.msr & MSR_IR)) 1794 vsid = vcpu->kvm->arch.vrma_slb_v; 1795 else 1796 vsid = vcpu->arch.fault_gpa; 1797 1798 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1799 vsid, vcpu->arch.fault_dsisr, false); 1800 if (err == 0) { 1801 r = RESUME_GUEST; 1802 } else if (err == -1) { 1803 r = RESUME_PAGE_FAULT; 1804 } else { 1805 kvmppc_core_queue_inst_storage(vcpu, err); 1806 r = RESUME_GUEST; 1807 } 1808 break; 1809 } 1810 1811 /* 1812 * This occurs if the guest executes an illegal instruction. 1813 * If the guest debug is disabled, generate a program interrupt 1814 * to the guest. If guest debug is enabled, we need to check 1815 * whether the instruction is a software breakpoint instruction. 1816 * Accordingly return to Guest or Host. 1817 */ 1818 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1819 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1820 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1821 swab32(vcpu->arch.emul_inst) : 1822 vcpu->arch.emul_inst; 1823 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1824 r = kvmppc_emulate_debug_inst(vcpu); 1825 } else { 1826 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1827 r = RESUME_GUEST; 1828 } 1829 break; 1830 1831 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1832 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1833 /* 1834 * This occurs for various TM-related instructions that 1835 * we need to emulate on POWER9 DD2.2. We have already 1836 * handled the cases where the guest was in real-suspend 1837 * mode and was transitioning to transactional state. 1838 */ 1839 r = kvmhv_p9_tm_emulation(vcpu); 1840 if (r != -1) 1841 break; 1842 fallthrough; /* go to facility unavailable handler */ 1843 #endif 1844 1845 /* 1846 * This occurs if the guest (kernel or userspace), does something that 1847 * is prohibited by HFSCR. 1848 * On POWER9, this could be a doorbell instruction that we need 1849 * to emulate. 1850 * Otherwise, we just generate a program interrupt to the guest. 1851 */ 1852 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 1853 u64 cause = vcpu->arch.hfscr >> 56; 1854 1855 r = EMULATE_FAIL; 1856 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1857 if (cause == FSCR_MSGP_LG) 1858 r = kvmppc_emulate_doorbell_instr(vcpu); 1859 if (cause == FSCR_PM_LG) 1860 r = kvmppc_pmu_unavailable(vcpu); 1861 if (cause == FSCR_EBB_LG) 1862 r = kvmppc_ebb_unavailable(vcpu); 1863 if (cause == FSCR_TM_LG) 1864 r = kvmppc_tm_unavailable(vcpu); 1865 } 1866 if (r == EMULATE_FAIL) { 1867 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1868 r = RESUME_GUEST; 1869 } 1870 break; 1871 } 1872 1873 case BOOK3S_INTERRUPT_HV_RM_HARD: 1874 r = RESUME_PASSTHROUGH; 1875 break; 1876 default: 1877 kvmppc_dump_regs(vcpu); 1878 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1879 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1880 vcpu->arch.shregs.msr); 1881 run->hw.hardware_exit_reason = vcpu->arch.trap; 1882 r = RESUME_HOST; 1883 break; 1884 } 1885 1886 return r; 1887 } 1888 1889 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) 1890 { 1891 int r; 1892 int srcu_idx; 1893 1894 vcpu->stat.sum_exits++; 1895 1896 /* 1897 * This can happen if an interrupt occurs in the last stages 1898 * of guest entry or the first stages of guest exit (i.e. after 1899 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1900 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1901 * That can happen due to a bug, or due to a machine check 1902 * occurring at just the wrong time. 1903 */ 1904 if (vcpu->arch.shregs.msr & MSR_HV) { 1905 pr_emerg("KVM trap in HV mode while nested!\n"); 1906 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1907 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1908 vcpu->arch.shregs.msr); 1909 kvmppc_dump_regs(vcpu); 1910 return RESUME_HOST; 1911 } 1912 switch (vcpu->arch.trap) { 1913 /* We're good on these - the host merely wanted to get our attention */ 1914 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1915 vcpu->stat.dec_exits++; 1916 r = RESUME_GUEST; 1917 break; 1918 case BOOK3S_INTERRUPT_EXTERNAL: 1919 vcpu->stat.ext_intr_exits++; 1920 r = RESUME_HOST; 1921 break; 1922 case BOOK3S_INTERRUPT_H_DOORBELL: 1923 case BOOK3S_INTERRUPT_H_VIRT: 1924 vcpu->stat.ext_intr_exits++; 1925 r = RESUME_GUEST; 1926 break; 1927 /* These need to go to the nested HV */ 1928 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1929 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1930 vcpu->stat.dec_exits++; 1931 r = RESUME_HOST; 1932 break; 1933 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1934 case BOOK3S_INTERRUPT_HMI: 1935 case BOOK3S_INTERRUPT_PERFMON: 1936 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1937 r = RESUME_GUEST; 1938 break; 1939 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1940 { 1941 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1942 DEFAULT_RATELIMIT_BURST); 1943 /* Pass the machine check to the L1 guest */ 1944 r = RESUME_HOST; 1945 /* Print the MCE event to host console. */ 1946 if (__ratelimit(&rs)) 1947 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1948 break; 1949 } 1950 /* 1951 * We get these next two if the guest accesses a page which it thinks 1952 * it has mapped but which is not actually present, either because 1953 * it is for an emulated I/O device or because the corresonding 1954 * host page has been paged out. 1955 */ 1956 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1957 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1958 r = kvmhv_nested_page_fault(vcpu); 1959 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1960 break; 1961 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1962 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1963 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1964 DSISR_SRR1_MATCH_64S; 1965 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1966 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1967 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1968 r = kvmhv_nested_page_fault(vcpu); 1969 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1970 break; 1971 1972 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1973 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1974 /* 1975 * This occurs for various TM-related instructions that 1976 * we need to emulate on POWER9 DD2.2. We have already 1977 * handled the cases where the guest was in real-suspend 1978 * mode and was transitioning to transactional state. 1979 */ 1980 r = kvmhv_p9_tm_emulation(vcpu); 1981 if (r != -1) 1982 break; 1983 fallthrough; /* go to facility unavailable handler */ 1984 #endif 1985 1986 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 1987 u64 cause = vcpu->arch.hfscr >> 56; 1988 1989 /* 1990 * Only pass HFU interrupts to the L1 if the facility is 1991 * permitted but disabled by the L1's HFSCR, otherwise 1992 * the interrupt does not make sense to the L1 so turn 1993 * it into a HEAI. 1994 */ 1995 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) || 1996 (vcpu->arch.nested_hfscr & (1UL << cause))) { 1997 vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST; 1998 1999 /* 2000 * If the fetch failed, return to guest and 2001 * try executing it again. 2002 */ 2003 r = kvmppc_get_last_inst(vcpu, INST_GENERIC, 2004 &vcpu->arch.emul_inst); 2005 if (r != EMULATE_DONE) 2006 r = RESUME_GUEST; 2007 else 2008 r = RESUME_HOST; 2009 } else { 2010 r = RESUME_HOST; 2011 } 2012 2013 break; 2014 } 2015 2016 case BOOK3S_INTERRUPT_HV_RM_HARD: 2017 vcpu->arch.trap = 0; 2018 r = RESUME_GUEST; 2019 if (!xics_on_xive()) 2020 kvmppc_xics_rm_complete(vcpu, 0); 2021 break; 2022 case BOOK3S_INTERRUPT_SYSCALL: 2023 { 2024 unsigned long req = kvmppc_get_gpr(vcpu, 3); 2025 2026 /* 2027 * The H_RPT_INVALIDATE hcalls issued by nested 2028 * guests for process-scoped invalidations when 2029 * GTSE=0, are handled here in L0. 2030 */ 2031 if (req == H_RPT_INVALIDATE) { 2032 r = kvmppc_nested_h_rpt_invalidate(vcpu); 2033 break; 2034 } 2035 2036 r = RESUME_HOST; 2037 break; 2038 } 2039 default: 2040 r = RESUME_HOST; 2041 break; 2042 } 2043 2044 return r; 2045 } 2046 2047 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 2048 struct kvm_sregs *sregs) 2049 { 2050 int i; 2051 2052 memset(sregs, 0, sizeof(struct kvm_sregs)); 2053 sregs->pvr = vcpu->arch.pvr; 2054 for (i = 0; i < vcpu->arch.slb_max; i++) { 2055 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 2056 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 2057 } 2058 2059 return 0; 2060 } 2061 2062 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 2063 struct kvm_sregs *sregs) 2064 { 2065 int i, j; 2066 2067 /* Only accept the same PVR as the host's, since we can't spoof it */ 2068 if (sregs->pvr != vcpu->arch.pvr) 2069 return -EINVAL; 2070 2071 j = 0; 2072 for (i = 0; i < vcpu->arch.slb_nr; i++) { 2073 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 2074 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 2075 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 2076 ++j; 2077 } 2078 } 2079 vcpu->arch.slb_max = j; 2080 2081 return 0; 2082 } 2083 2084 /* 2085 * Enforce limits on guest LPCR values based on hardware availability, 2086 * guest configuration, and possibly hypervisor support and security 2087 * concerns. 2088 */ 2089 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr) 2090 { 2091 /* LPCR_TC only applies to HPT guests */ 2092 if (kvm_is_radix(kvm)) 2093 lpcr &= ~LPCR_TC; 2094 2095 /* On POWER8 and above, userspace can modify AIL */ 2096 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2097 lpcr &= ~LPCR_AIL; 2098 if ((lpcr & LPCR_AIL) != LPCR_AIL_3) 2099 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */ 2100 /* 2101 * On some POWER9s we force AIL off for radix guests to prevent 2102 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to 2103 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to 2104 * be cached, which the host TLB management does not expect. 2105 */ 2106 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) 2107 lpcr &= ~LPCR_AIL; 2108 2109 /* 2110 * On POWER9, allow userspace to enable large decrementer for the 2111 * guest, whether or not the host has it enabled. 2112 */ 2113 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2114 lpcr &= ~LPCR_LD; 2115 2116 return lpcr; 2117 } 2118 2119 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr) 2120 { 2121 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) { 2122 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n", 2123 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr)); 2124 } 2125 } 2126 2127 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 2128 bool preserve_top32) 2129 { 2130 struct kvm *kvm = vcpu->kvm; 2131 struct kvmppc_vcore *vc = vcpu->arch.vcore; 2132 u64 mask; 2133 2134 spin_lock(&vc->lock); 2135 2136 /* 2137 * Userspace can only modify 2138 * DPFD (default prefetch depth), ILE (interrupt little-endian), 2139 * TC (translation control), AIL (alternate interrupt location), 2140 * LD (large decrementer). 2141 * These are subject to restrictions from kvmppc_filter_lcpr_hv(). 2142 */ 2143 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD; 2144 2145 /* Broken 32-bit version of LPCR must not clear top bits */ 2146 if (preserve_top32) 2147 mask &= 0xFFFFFFFF; 2148 2149 new_lpcr = kvmppc_filter_lpcr_hv(kvm, 2150 (vc->lpcr & ~mask) | (new_lpcr & mask)); 2151 2152 /* 2153 * If ILE (interrupt little-endian) has changed, update the 2154 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 2155 */ 2156 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 2157 struct kvm_vcpu *vcpu; 2158 unsigned long i; 2159 2160 kvm_for_each_vcpu(i, vcpu, kvm) { 2161 if (vcpu->arch.vcore != vc) 2162 continue; 2163 if (new_lpcr & LPCR_ILE) 2164 vcpu->arch.intr_msr |= MSR_LE; 2165 else 2166 vcpu->arch.intr_msr &= ~MSR_LE; 2167 } 2168 } 2169 2170 vc->lpcr = new_lpcr; 2171 2172 spin_unlock(&vc->lock); 2173 } 2174 2175 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2176 union kvmppc_one_reg *val) 2177 { 2178 int r = 0; 2179 long int i; 2180 2181 switch (id) { 2182 case KVM_REG_PPC_DEBUG_INST: 2183 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 2184 break; 2185 case KVM_REG_PPC_HIOR: 2186 *val = get_reg_val(id, 0); 2187 break; 2188 case KVM_REG_PPC_DABR: 2189 *val = get_reg_val(id, vcpu->arch.dabr); 2190 break; 2191 case KVM_REG_PPC_DABRX: 2192 *val = get_reg_val(id, vcpu->arch.dabrx); 2193 break; 2194 case KVM_REG_PPC_DSCR: 2195 *val = get_reg_val(id, vcpu->arch.dscr); 2196 break; 2197 case KVM_REG_PPC_PURR: 2198 *val = get_reg_val(id, vcpu->arch.purr); 2199 break; 2200 case KVM_REG_PPC_SPURR: 2201 *val = get_reg_val(id, vcpu->arch.spurr); 2202 break; 2203 case KVM_REG_PPC_AMR: 2204 *val = get_reg_val(id, vcpu->arch.amr); 2205 break; 2206 case KVM_REG_PPC_UAMOR: 2207 *val = get_reg_val(id, vcpu->arch.uamor); 2208 break; 2209 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2210 i = id - KVM_REG_PPC_MMCR0; 2211 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 2212 break; 2213 case KVM_REG_PPC_MMCR2: 2214 *val = get_reg_val(id, vcpu->arch.mmcr[2]); 2215 break; 2216 case KVM_REG_PPC_MMCRA: 2217 *val = get_reg_val(id, vcpu->arch.mmcra); 2218 break; 2219 case KVM_REG_PPC_MMCRS: 2220 *val = get_reg_val(id, vcpu->arch.mmcrs); 2221 break; 2222 case KVM_REG_PPC_MMCR3: 2223 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 2224 break; 2225 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2226 i = id - KVM_REG_PPC_PMC1; 2227 *val = get_reg_val(id, vcpu->arch.pmc[i]); 2228 break; 2229 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2230 i = id - KVM_REG_PPC_SPMC1; 2231 *val = get_reg_val(id, vcpu->arch.spmc[i]); 2232 break; 2233 case KVM_REG_PPC_SIAR: 2234 *val = get_reg_val(id, vcpu->arch.siar); 2235 break; 2236 case KVM_REG_PPC_SDAR: 2237 *val = get_reg_val(id, vcpu->arch.sdar); 2238 break; 2239 case KVM_REG_PPC_SIER: 2240 *val = get_reg_val(id, vcpu->arch.sier[0]); 2241 break; 2242 case KVM_REG_PPC_SIER2: 2243 *val = get_reg_val(id, vcpu->arch.sier[1]); 2244 break; 2245 case KVM_REG_PPC_SIER3: 2246 *val = get_reg_val(id, vcpu->arch.sier[2]); 2247 break; 2248 case KVM_REG_PPC_IAMR: 2249 *val = get_reg_val(id, vcpu->arch.iamr); 2250 break; 2251 case KVM_REG_PPC_PSPB: 2252 *val = get_reg_val(id, vcpu->arch.pspb); 2253 break; 2254 case KVM_REG_PPC_DPDES: 2255 /* 2256 * On POWER9, where we are emulating msgsndp etc., 2257 * we return 1 bit for each vcpu, which can come from 2258 * either vcore->dpdes or doorbell_request. 2259 * On POWER8, doorbell_request is 0. 2260 */ 2261 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2262 *val = get_reg_val(id, vcpu->arch.doorbell_request); 2263 else 2264 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 2265 break; 2266 case KVM_REG_PPC_VTB: 2267 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 2268 break; 2269 case KVM_REG_PPC_DAWR: 2270 *val = get_reg_val(id, vcpu->arch.dawr0); 2271 break; 2272 case KVM_REG_PPC_DAWRX: 2273 *val = get_reg_val(id, vcpu->arch.dawrx0); 2274 break; 2275 case KVM_REG_PPC_DAWR1: 2276 *val = get_reg_val(id, vcpu->arch.dawr1); 2277 break; 2278 case KVM_REG_PPC_DAWRX1: 2279 *val = get_reg_val(id, vcpu->arch.dawrx1); 2280 break; 2281 case KVM_REG_PPC_CIABR: 2282 *val = get_reg_val(id, vcpu->arch.ciabr); 2283 break; 2284 case KVM_REG_PPC_CSIGR: 2285 *val = get_reg_val(id, vcpu->arch.csigr); 2286 break; 2287 case KVM_REG_PPC_TACR: 2288 *val = get_reg_val(id, vcpu->arch.tacr); 2289 break; 2290 case KVM_REG_PPC_TCSCR: 2291 *val = get_reg_val(id, vcpu->arch.tcscr); 2292 break; 2293 case KVM_REG_PPC_PID: 2294 *val = get_reg_val(id, vcpu->arch.pid); 2295 break; 2296 case KVM_REG_PPC_ACOP: 2297 *val = get_reg_val(id, vcpu->arch.acop); 2298 break; 2299 case KVM_REG_PPC_WORT: 2300 *val = get_reg_val(id, vcpu->arch.wort); 2301 break; 2302 case KVM_REG_PPC_TIDR: 2303 *val = get_reg_val(id, vcpu->arch.tid); 2304 break; 2305 case KVM_REG_PPC_PSSCR: 2306 *val = get_reg_val(id, vcpu->arch.psscr); 2307 break; 2308 case KVM_REG_PPC_VPA_ADDR: 2309 spin_lock(&vcpu->arch.vpa_update_lock); 2310 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 2311 spin_unlock(&vcpu->arch.vpa_update_lock); 2312 break; 2313 case KVM_REG_PPC_VPA_SLB: 2314 spin_lock(&vcpu->arch.vpa_update_lock); 2315 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 2316 val->vpaval.length = vcpu->arch.slb_shadow.len; 2317 spin_unlock(&vcpu->arch.vpa_update_lock); 2318 break; 2319 case KVM_REG_PPC_VPA_DTL: 2320 spin_lock(&vcpu->arch.vpa_update_lock); 2321 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 2322 val->vpaval.length = vcpu->arch.dtl.len; 2323 spin_unlock(&vcpu->arch.vpa_update_lock); 2324 break; 2325 case KVM_REG_PPC_TB_OFFSET: 2326 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 2327 break; 2328 case KVM_REG_PPC_LPCR: 2329 case KVM_REG_PPC_LPCR_64: 2330 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 2331 break; 2332 case KVM_REG_PPC_PPR: 2333 *val = get_reg_val(id, vcpu->arch.ppr); 2334 break; 2335 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2336 case KVM_REG_PPC_TFHAR: 2337 *val = get_reg_val(id, vcpu->arch.tfhar); 2338 break; 2339 case KVM_REG_PPC_TFIAR: 2340 *val = get_reg_val(id, vcpu->arch.tfiar); 2341 break; 2342 case KVM_REG_PPC_TEXASR: 2343 *val = get_reg_val(id, vcpu->arch.texasr); 2344 break; 2345 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2346 i = id - KVM_REG_PPC_TM_GPR0; 2347 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 2348 break; 2349 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2350 { 2351 int j; 2352 i = id - KVM_REG_PPC_TM_VSR0; 2353 if (i < 32) 2354 for (j = 0; j < TS_FPRWIDTH; j++) 2355 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 2356 else { 2357 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2358 val->vval = vcpu->arch.vr_tm.vr[i-32]; 2359 else 2360 r = -ENXIO; 2361 } 2362 break; 2363 } 2364 case KVM_REG_PPC_TM_CR: 2365 *val = get_reg_val(id, vcpu->arch.cr_tm); 2366 break; 2367 case KVM_REG_PPC_TM_XER: 2368 *val = get_reg_val(id, vcpu->arch.xer_tm); 2369 break; 2370 case KVM_REG_PPC_TM_LR: 2371 *val = get_reg_val(id, vcpu->arch.lr_tm); 2372 break; 2373 case KVM_REG_PPC_TM_CTR: 2374 *val = get_reg_val(id, vcpu->arch.ctr_tm); 2375 break; 2376 case KVM_REG_PPC_TM_FPSCR: 2377 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 2378 break; 2379 case KVM_REG_PPC_TM_AMR: 2380 *val = get_reg_val(id, vcpu->arch.amr_tm); 2381 break; 2382 case KVM_REG_PPC_TM_PPR: 2383 *val = get_reg_val(id, vcpu->arch.ppr_tm); 2384 break; 2385 case KVM_REG_PPC_TM_VRSAVE: 2386 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 2387 break; 2388 case KVM_REG_PPC_TM_VSCR: 2389 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2390 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 2391 else 2392 r = -ENXIO; 2393 break; 2394 case KVM_REG_PPC_TM_DSCR: 2395 *val = get_reg_val(id, vcpu->arch.dscr_tm); 2396 break; 2397 case KVM_REG_PPC_TM_TAR: 2398 *val = get_reg_val(id, vcpu->arch.tar_tm); 2399 break; 2400 #endif 2401 case KVM_REG_PPC_ARCH_COMPAT: 2402 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 2403 break; 2404 case KVM_REG_PPC_DEC_EXPIRY: 2405 *val = get_reg_val(id, vcpu->arch.dec_expires); 2406 break; 2407 case KVM_REG_PPC_ONLINE: 2408 *val = get_reg_val(id, vcpu->arch.online); 2409 break; 2410 case KVM_REG_PPC_PTCR: 2411 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 2412 break; 2413 default: 2414 r = -EINVAL; 2415 break; 2416 } 2417 2418 return r; 2419 } 2420 2421 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2422 union kvmppc_one_reg *val) 2423 { 2424 int r = 0; 2425 long int i; 2426 unsigned long addr, len; 2427 2428 switch (id) { 2429 case KVM_REG_PPC_HIOR: 2430 /* Only allow this to be set to zero */ 2431 if (set_reg_val(id, *val)) 2432 r = -EINVAL; 2433 break; 2434 case KVM_REG_PPC_DABR: 2435 vcpu->arch.dabr = set_reg_val(id, *val); 2436 break; 2437 case KVM_REG_PPC_DABRX: 2438 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 2439 break; 2440 case KVM_REG_PPC_DSCR: 2441 vcpu->arch.dscr = set_reg_val(id, *val); 2442 break; 2443 case KVM_REG_PPC_PURR: 2444 vcpu->arch.purr = set_reg_val(id, *val); 2445 break; 2446 case KVM_REG_PPC_SPURR: 2447 vcpu->arch.spurr = set_reg_val(id, *val); 2448 break; 2449 case KVM_REG_PPC_AMR: 2450 vcpu->arch.amr = set_reg_val(id, *val); 2451 break; 2452 case KVM_REG_PPC_UAMOR: 2453 vcpu->arch.uamor = set_reg_val(id, *val); 2454 break; 2455 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2456 i = id - KVM_REG_PPC_MMCR0; 2457 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 2458 break; 2459 case KVM_REG_PPC_MMCR2: 2460 vcpu->arch.mmcr[2] = set_reg_val(id, *val); 2461 break; 2462 case KVM_REG_PPC_MMCRA: 2463 vcpu->arch.mmcra = set_reg_val(id, *val); 2464 break; 2465 case KVM_REG_PPC_MMCRS: 2466 vcpu->arch.mmcrs = set_reg_val(id, *val); 2467 break; 2468 case KVM_REG_PPC_MMCR3: 2469 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 2470 break; 2471 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2472 i = id - KVM_REG_PPC_PMC1; 2473 vcpu->arch.pmc[i] = set_reg_val(id, *val); 2474 break; 2475 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2476 i = id - KVM_REG_PPC_SPMC1; 2477 vcpu->arch.spmc[i] = set_reg_val(id, *val); 2478 break; 2479 case KVM_REG_PPC_SIAR: 2480 vcpu->arch.siar = set_reg_val(id, *val); 2481 break; 2482 case KVM_REG_PPC_SDAR: 2483 vcpu->arch.sdar = set_reg_val(id, *val); 2484 break; 2485 case KVM_REG_PPC_SIER: 2486 vcpu->arch.sier[0] = set_reg_val(id, *val); 2487 break; 2488 case KVM_REG_PPC_SIER2: 2489 vcpu->arch.sier[1] = set_reg_val(id, *val); 2490 break; 2491 case KVM_REG_PPC_SIER3: 2492 vcpu->arch.sier[2] = set_reg_val(id, *val); 2493 break; 2494 case KVM_REG_PPC_IAMR: 2495 vcpu->arch.iamr = set_reg_val(id, *val); 2496 break; 2497 case KVM_REG_PPC_PSPB: 2498 vcpu->arch.pspb = set_reg_val(id, *val); 2499 break; 2500 case KVM_REG_PPC_DPDES: 2501 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2502 vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1; 2503 else 2504 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 2505 break; 2506 case KVM_REG_PPC_VTB: 2507 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 2508 break; 2509 case KVM_REG_PPC_DAWR: 2510 vcpu->arch.dawr0 = set_reg_val(id, *val); 2511 break; 2512 case KVM_REG_PPC_DAWRX: 2513 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP; 2514 break; 2515 case KVM_REG_PPC_DAWR1: 2516 vcpu->arch.dawr1 = set_reg_val(id, *val); 2517 break; 2518 case KVM_REG_PPC_DAWRX1: 2519 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP; 2520 break; 2521 case KVM_REG_PPC_CIABR: 2522 vcpu->arch.ciabr = set_reg_val(id, *val); 2523 /* Don't allow setting breakpoints in hypervisor code */ 2524 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 2525 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 2526 break; 2527 case KVM_REG_PPC_CSIGR: 2528 vcpu->arch.csigr = set_reg_val(id, *val); 2529 break; 2530 case KVM_REG_PPC_TACR: 2531 vcpu->arch.tacr = set_reg_val(id, *val); 2532 break; 2533 case KVM_REG_PPC_TCSCR: 2534 vcpu->arch.tcscr = set_reg_val(id, *val); 2535 break; 2536 case KVM_REG_PPC_PID: 2537 vcpu->arch.pid = set_reg_val(id, *val); 2538 break; 2539 case KVM_REG_PPC_ACOP: 2540 vcpu->arch.acop = set_reg_val(id, *val); 2541 break; 2542 case KVM_REG_PPC_WORT: 2543 vcpu->arch.wort = set_reg_val(id, *val); 2544 break; 2545 case KVM_REG_PPC_TIDR: 2546 vcpu->arch.tid = set_reg_val(id, *val); 2547 break; 2548 case KVM_REG_PPC_PSSCR: 2549 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 2550 break; 2551 case KVM_REG_PPC_VPA_ADDR: 2552 addr = set_reg_val(id, *val); 2553 r = -EINVAL; 2554 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 2555 vcpu->arch.dtl.next_gpa)) 2556 break; 2557 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 2558 break; 2559 case KVM_REG_PPC_VPA_SLB: 2560 addr = val->vpaval.addr; 2561 len = val->vpaval.length; 2562 r = -EINVAL; 2563 if (addr && !vcpu->arch.vpa.next_gpa) 2564 break; 2565 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 2566 break; 2567 case KVM_REG_PPC_VPA_DTL: 2568 addr = val->vpaval.addr; 2569 len = val->vpaval.length; 2570 r = -EINVAL; 2571 if (addr && (len < sizeof(struct dtl_entry) || 2572 !vcpu->arch.vpa.next_gpa)) 2573 break; 2574 len -= len % sizeof(struct dtl_entry); 2575 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 2576 break; 2577 case KVM_REG_PPC_TB_OFFSET: 2578 { 2579 /* round up to multiple of 2^24 */ 2580 u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24); 2581 2582 /* 2583 * Now that we know the timebase offset, update the 2584 * decrementer expiry with a guest timebase value. If 2585 * the userspace does not set DEC_EXPIRY, this ensures 2586 * a migrated vcpu at least starts with an expired 2587 * decrementer, which is better than a large one that 2588 * causes a hang. 2589 */ 2590 if (!vcpu->arch.dec_expires && tb_offset) 2591 vcpu->arch.dec_expires = get_tb() + tb_offset; 2592 2593 vcpu->arch.vcore->tb_offset = tb_offset; 2594 break; 2595 } 2596 case KVM_REG_PPC_LPCR: 2597 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 2598 break; 2599 case KVM_REG_PPC_LPCR_64: 2600 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 2601 break; 2602 case KVM_REG_PPC_PPR: 2603 vcpu->arch.ppr = set_reg_val(id, *val); 2604 break; 2605 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2606 case KVM_REG_PPC_TFHAR: 2607 vcpu->arch.tfhar = set_reg_val(id, *val); 2608 break; 2609 case KVM_REG_PPC_TFIAR: 2610 vcpu->arch.tfiar = set_reg_val(id, *val); 2611 break; 2612 case KVM_REG_PPC_TEXASR: 2613 vcpu->arch.texasr = set_reg_val(id, *val); 2614 break; 2615 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2616 i = id - KVM_REG_PPC_TM_GPR0; 2617 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2618 break; 2619 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2620 { 2621 int j; 2622 i = id - KVM_REG_PPC_TM_VSR0; 2623 if (i < 32) 2624 for (j = 0; j < TS_FPRWIDTH; j++) 2625 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2626 else 2627 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2628 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2629 else 2630 r = -ENXIO; 2631 break; 2632 } 2633 case KVM_REG_PPC_TM_CR: 2634 vcpu->arch.cr_tm = set_reg_val(id, *val); 2635 break; 2636 case KVM_REG_PPC_TM_XER: 2637 vcpu->arch.xer_tm = set_reg_val(id, *val); 2638 break; 2639 case KVM_REG_PPC_TM_LR: 2640 vcpu->arch.lr_tm = set_reg_val(id, *val); 2641 break; 2642 case KVM_REG_PPC_TM_CTR: 2643 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2644 break; 2645 case KVM_REG_PPC_TM_FPSCR: 2646 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2647 break; 2648 case KVM_REG_PPC_TM_AMR: 2649 vcpu->arch.amr_tm = set_reg_val(id, *val); 2650 break; 2651 case KVM_REG_PPC_TM_PPR: 2652 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2653 break; 2654 case KVM_REG_PPC_TM_VRSAVE: 2655 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2656 break; 2657 case KVM_REG_PPC_TM_VSCR: 2658 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2659 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2660 else 2661 r = - ENXIO; 2662 break; 2663 case KVM_REG_PPC_TM_DSCR: 2664 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2665 break; 2666 case KVM_REG_PPC_TM_TAR: 2667 vcpu->arch.tar_tm = set_reg_val(id, *val); 2668 break; 2669 #endif 2670 case KVM_REG_PPC_ARCH_COMPAT: 2671 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2672 break; 2673 case KVM_REG_PPC_DEC_EXPIRY: 2674 vcpu->arch.dec_expires = set_reg_val(id, *val); 2675 break; 2676 case KVM_REG_PPC_ONLINE: 2677 i = set_reg_val(id, *val); 2678 if (i && !vcpu->arch.online) 2679 atomic_inc(&vcpu->arch.vcore->online_count); 2680 else if (!i && vcpu->arch.online) 2681 atomic_dec(&vcpu->arch.vcore->online_count); 2682 vcpu->arch.online = i; 2683 break; 2684 case KVM_REG_PPC_PTCR: 2685 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2686 break; 2687 default: 2688 r = -EINVAL; 2689 break; 2690 } 2691 2692 return r; 2693 } 2694 2695 /* 2696 * On POWER9, threads are independent and can be in different partitions. 2697 * Therefore we consider each thread to be a subcore. 2698 * There is a restriction that all threads have to be in the same 2699 * MMU mode (radix or HPT), unfortunately, but since we only support 2700 * HPT guests on a HPT host so far, that isn't an impediment yet. 2701 */ 2702 static int threads_per_vcore(struct kvm *kvm) 2703 { 2704 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2705 return 1; 2706 return threads_per_subcore; 2707 } 2708 2709 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2710 { 2711 struct kvmppc_vcore *vcore; 2712 2713 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2714 2715 if (vcore == NULL) 2716 return NULL; 2717 2718 spin_lock_init(&vcore->lock); 2719 spin_lock_init(&vcore->stoltb_lock); 2720 rcuwait_init(&vcore->wait); 2721 vcore->preempt_tb = TB_NIL; 2722 vcore->lpcr = kvm->arch.lpcr; 2723 vcore->first_vcpuid = id; 2724 vcore->kvm = kvm; 2725 INIT_LIST_HEAD(&vcore->preempt_list); 2726 2727 return vcore; 2728 } 2729 2730 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2731 static struct debugfs_timings_element { 2732 const char *name; 2733 size_t offset; 2734 } timings[] = { 2735 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING 2736 {"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)}, 2737 {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)}, 2738 {"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)}, 2739 {"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)}, 2740 {"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)}, 2741 {"hypercall", offsetof(struct kvm_vcpu, arch.hcall)}, 2742 {"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)}, 2743 #else 2744 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2745 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2746 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2747 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2748 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2749 #endif 2750 }; 2751 2752 #define N_TIMINGS (ARRAY_SIZE(timings)) 2753 2754 struct debugfs_timings_state { 2755 struct kvm_vcpu *vcpu; 2756 unsigned int buflen; 2757 char buf[N_TIMINGS * 100]; 2758 }; 2759 2760 static int debugfs_timings_open(struct inode *inode, struct file *file) 2761 { 2762 struct kvm_vcpu *vcpu = inode->i_private; 2763 struct debugfs_timings_state *p; 2764 2765 p = kzalloc(sizeof(*p), GFP_KERNEL); 2766 if (!p) 2767 return -ENOMEM; 2768 2769 kvm_get_kvm(vcpu->kvm); 2770 p->vcpu = vcpu; 2771 file->private_data = p; 2772 2773 return nonseekable_open(inode, file); 2774 } 2775 2776 static int debugfs_timings_release(struct inode *inode, struct file *file) 2777 { 2778 struct debugfs_timings_state *p = file->private_data; 2779 2780 kvm_put_kvm(p->vcpu->kvm); 2781 kfree(p); 2782 return 0; 2783 } 2784 2785 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2786 size_t len, loff_t *ppos) 2787 { 2788 struct debugfs_timings_state *p = file->private_data; 2789 struct kvm_vcpu *vcpu = p->vcpu; 2790 char *s, *buf_end; 2791 struct kvmhv_tb_accumulator tb; 2792 u64 count; 2793 loff_t pos; 2794 ssize_t n; 2795 int i, loops; 2796 bool ok; 2797 2798 if (!p->buflen) { 2799 s = p->buf; 2800 buf_end = s + sizeof(p->buf); 2801 for (i = 0; i < N_TIMINGS; ++i) { 2802 struct kvmhv_tb_accumulator *acc; 2803 2804 acc = (struct kvmhv_tb_accumulator *) 2805 ((unsigned long)vcpu + timings[i].offset); 2806 ok = false; 2807 for (loops = 0; loops < 1000; ++loops) { 2808 count = acc->seqcount; 2809 if (!(count & 1)) { 2810 smp_rmb(); 2811 tb = *acc; 2812 smp_rmb(); 2813 if (count == acc->seqcount) { 2814 ok = true; 2815 break; 2816 } 2817 } 2818 udelay(1); 2819 } 2820 if (!ok) 2821 snprintf(s, buf_end - s, "%s: stuck\n", 2822 timings[i].name); 2823 else 2824 snprintf(s, buf_end - s, 2825 "%s: %llu %llu %llu %llu\n", 2826 timings[i].name, count / 2, 2827 tb_to_ns(tb.tb_total), 2828 tb_to_ns(tb.tb_min), 2829 tb_to_ns(tb.tb_max)); 2830 s += strlen(s); 2831 } 2832 p->buflen = s - p->buf; 2833 } 2834 2835 pos = *ppos; 2836 if (pos >= p->buflen) 2837 return 0; 2838 if (len > p->buflen - pos) 2839 len = p->buflen - pos; 2840 n = copy_to_user(buf, p->buf + pos, len); 2841 if (n) { 2842 if (n == len) 2843 return -EFAULT; 2844 len -= n; 2845 } 2846 *ppos = pos + len; 2847 return len; 2848 } 2849 2850 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2851 size_t len, loff_t *ppos) 2852 { 2853 return -EACCES; 2854 } 2855 2856 static const struct file_operations debugfs_timings_ops = { 2857 .owner = THIS_MODULE, 2858 .open = debugfs_timings_open, 2859 .release = debugfs_timings_release, 2860 .read = debugfs_timings_read, 2861 .write = debugfs_timings_write, 2862 .llseek = generic_file_llseek, 2863 }; 2864 2865 /* Create a debugfs directory for the vcpu */ 2866 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2867 { 2868 if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING)) 2869 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu, 2870 &debugfs_timings_ops); 2871 return 0; 2872 } 2873 2874 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2875 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2876 { 2877 return 0; 2878 } 2879 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2880 2881 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2882 { 2883 int err; 2884 int core; 2885 struct kvmppc_vcore *vcore; 2886 struct kvm *kvm; 2887 unsigned int id; 2888 2889 kvm = vcpu->kvm; 2890 id = vcpu->vcpu_id; 2891 2892 vcpu->arch.shared = &vcpu->arch.shregs; 2893 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2894 /* 2895 * The shared struct is never shared on HV, 2896 * so we can always use host endianness 2897 */ 2898 #ifdef __BIG_ENDIAN__ 2899 vcpu->arch.shared_big_endian = true; 2900 #else 2901 vcpu->arch.shared_big_endian = false; 2902 #endif 2903 #endif 2904 vcpu->arch.mmcr[0] = MMCR0_FC; 2905 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 2906 vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT; 2907 vcpu->arch.mmcra = MMCRA_BHRB_DISABLE; 2908 } 2909 2910 vcpu->arch.ctrl = CTRL_RUNLATCH; 2911 /* default to host PVR, since we can't spoof it */ 2912 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2913 spin_lock_init(&vcpu->arch.vpa_update_lock); 2914 spin_lock_init(&vcpu->arch.tbacct_lock); 2915 vcpu->arch.busy_preempt = TB_NIL; 2916 vcpu->arch.shregs.msr = MSR_ME; 2917 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2918 2919 /* 2920 * Set the default HFSCR for the guest from the host value. 2921 * This value is only used on POWER9. 2922 * On POWER9, we want to virtualize the doorbell facility, so we 2923 * don't set the HFSCR_MSGP bit, and that causes those instructions 2924 * to trap and then we emulate them. 2925 */ 2926 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2927 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP; 2928 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2929 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2930 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2931 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2932 vcpu->arch.hfscr |= HFSCR_TM; 2933 #endif 2934 } 2935 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2936 vcpu->arch.hfscr |= HFSCR_TM; 2937 2938 vcpu->arch.hfscr_permitted = vcpu->arch.hfscr; 2939 2940 /* 2941 * PM, EBB, TM are demand-faulted so start with it clear. 2942 */ 2943 vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM); 2944 2945 kvmppc_mmu_book3s_hv_init(vcpu); 2946 2947 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2948 2949 init_waitqueue_head(&vcpu->arch.cpu_run); 2950 2951 mutex_lock(&kvm->lock); 2952 vcore = NULL; 2953 err = -EINVAL; 2954 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2955 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2956 pr_devel("KVM: VCPU ID too high\n"); 2957 core = KVM_MAX_VCORES; 2958 } else { 2959 BUG_ON(kvm->arch.smt_mode != 1); 2960 core = kvmppc_pack_vcpu_id(kvm, id); 2961 } 2962 } else { 2963 core = id / kvm->arch.smt_mode; 2964 } 2965 if (core < KVM_MAX_VCORES) { 2966 vcore = kvm->arch.vcores[core]; 2967 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2968 pr_devel("KVM: collision on id %u", id); 2969 vcore = NULL; 2970 } else if (!vcore) { 2971 /* 2972 * Take mmu_setup_lock for mutual exclusion 2973 * with kvmppc_update_lpcr(). 2974 */ 2975 err = -ENOMEM; 2976 vcore = kvmppc_vcore_create(kvm, 2977 id & ~(kvm->arch.smt_mode - 1)); 2978 mutex_lock(&kvm->arch.mmu_setup_lock); 2979 kvm->arch.vcores[core] = vcore; 2980 kvm->arch.online_vcores++; 2981 mutex_unlock(&kvm->arch.mmu_setup_lock); 2982 } 2983 } 2984 mutex_unlock(&kvm->lock); 2985 2986 if (!vcore) 2987 return err; 2988 2989 spin_lock(&vcore->lock); 2990 ++vcore->num_threads; 2991 spin_unlock(&vcore->lock); 2992 vcpu->arch.vcore = vcore; 2993 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2994 vcpu->arch.thread_cpu = -1; 2995 vcpu->arch.prev_cpu = -1; 2996 2997 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2998 kvmppc_sanity_check(vcpu); 2999 3000 return 0; 3001 } 3002 3003 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 3004 unsigned long flags) 3005 { 3006 int err; 3007 int esmt = 0; 3008 3009 if (flags) 3010 return -EINVAL; 3011 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 3012 return -EINVAL; 3013 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 3014 /* 3015 * On POWER8 (or POWER7), the threading mode is "strict", 3016 * so we pack smt_mode vcpus per vcore. 3017 */ 3018 if (smt_mode > threads_per_subcore) 3019 return -EINVAL; 3020 } else { 3021 /* 3022 * On POWER9, the threading mode is "loose", 3023 * so each vcpu gets its own vcore. 3024 */ 3025 esmt = smt_mode; 3026 smt_mode = 1; 3027 } 3028 mutex_lock(&kvm->lock); 3029 err = -EBUSY; 3030 if (!kvm->arch.online_vcores) { 3031 kvm->arch.smt_mode = smt_mode; 3032 kvm->arch.emul_smt_mode = esmt; 3033 err = 0; 3034 } 3035 mutex_unlock(&kvm->lock); 3036 3037 return err; 3038 } 3039 3040 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 3041 { 3042 if (vpa->pinned_addr) 3043 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 3044 vpa->dirty); 3045 } 3046 3047 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 3048 { 3049 spin_lock(&vcpu->arch.vpa_update_lock); 3050 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 3051 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 3052 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 3053 spin_unlock(&vcpu->arch.vpa_update_lock); 3054 } 3055 3056 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 3057 { 3058 /* Indicate we want to get back into the guest */ 3059 return 1; 3060 } 3061 3062 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 3063 { 3064 unsigned long dec_nsec, now; 3065 3066 now = get_tb(); 3067 if (now > kvmppc_dec_expires_host_tb(vcpu)) { 3068 /* decrementer has already gone negative */ 3069 kvmppc_core_queue_dec(vcpu); 3070 kvmppc_core_prepare_to_enter(vcpu); 3071 return; 3072 } 3073 dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now); 3074 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 3075 vcpu->arch.timer_running = 1; 3076 } 3077 3078 extern int __kvmppc_vcore_entry(void); 3079 3080 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 3081 struct kvm_vcpu *vcpu, u64 tb) 3082 { 3083 u64 now; 3084 3085 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3086 return; 3087 spin_lock_irq(&vcpu->arch.tbacct_lock); 3088 now = tb; 3089 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 3090 vcpu->arch.stolen_logged; 3091 vcpu->arch.busy_preempt = now; 3092 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 3093 spin_unlock_irq(&vcpu->arch.tbacct_lock); 3094 --vc->n_runnable; 3095 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 3096 } 3097 3098 static int kvmppc_grab_hwthread(int cpu) 3099 { 3100 struct paca_struct *tpaca; 3101 long timeout = 10000; 3102 3103 tpaca = paca_ptrs[cpu]; 3104 3105 /* Ensure the thread won't go into the kernel if it wakes */ 3106 tpaca->kvm_hstate.kvm_vcpu = NULL; 3107 tpaca->kvm_hstate.kvm_vcore = NULL; 3108 tpaca->kvm_hstate.napping = 0; 3109 smp_wmb(); 3110 tpaca->kvm_hstate.hwthread_req = 1; 3111 3112 /* 3113 * If the thread is already executing in the kernel (e.g. handling 3114 * a stray interrupt), wait for it to get back to nap mode. 3115 * The smp_mb() is to ensure that our setting of hwthread_req 3116 * is visible before we look at hwthread_state, so if this 3117 * races with the code at system_reset_pSeries and the thread 3118 * misses our setting of hwthread_req, we are sure to see its 3119 * setting of hwthread_state, and vice versa. 3120 */ 3121 smp_mb(); 3122 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 3123 if (--timeout <= 0) { 3124 pr_err("KVM: couldn't grab cpu %d\n", cpu); 3125 return -EBUSY; 3126 } 3127 udelay(1); 3128 } 3129 return 0; 3130 } 3131 3132 static void kvmppc_release_hwthread(int cpu) 3133 { 3134 struct paca_struct *tpaca; 3135 3136 tpaca = paca_ptrs[cpu]; 3137 tpaca->kvm_hstate.hwthread_req = 0; 3138 tpaca->kvm_hstate.kvm_vcpu = NULL; 3139 tpaca->kvm_hstate.kvm_vcore = NULL; 3140 tpaca->kvm_hstate.kvm_split_mode = NULL; 3141 } 3142 3143 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest); 3144 3145 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 3146 { 3147 struct kvm_nested_guest *nested = vcpu->arch.nested; 3148 cpumask_t *need_tlb_flush; 3149 int i; 3150 3151 if (nested) 3152 need_tlb_flush = &nested->need_tlb_flush; 3153 else 3154 need_tlb_flush = &kvm->arch.need_tlb_flush; 3155 3156 cpu = cpu_first_tlb_thread_sibling(cpu); 3157 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3158 i += cpu_tlb_thread_sibling_step()) 3159 cpumask_set_cpu(i, need_tlb_flush); 3160 3161 /* 3162 * Make sure setting of bit in need_tlb_flush precedes testing of 3163 * cpu_in_guest. The matching barrier on the other side is hwsync 3164 * when switching to guest MMU mode, which happens between 3165 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit 3166 * being tested. 3167 */ 3168 smp_mb(); 3169 3170 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3171 i += cpu_tlb_thread_sibling_step()) { 3172 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i); 3173 3174 if (running == kvm) 3175 smp_call_function_single(i, do_nothing, NULL, 1); 3176 } 3177 } 3178 3179 static void do_migrate_away_vcpu(void *arg) 3180 { 3181 struct kvm_vcpu *vcpu = arg; 3182 struct kvm *kvm = vcpu->kvm; 3183 3184 /* 3185 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync; 3186 * ptesync sequence on the old CPU before migrating to a new one, in 3187 * case we interrupted the guest between a tlbie ; eieio ; 3188 * tlbsync; ptesync sequence. 3189 * 3190 * Otherwise, ptesync is sufficient for ordering tlbiel sequences. 3191 */ 3192 if (kvm->arch.lpcr & LPCR_GTSE) 3193 asm volatile("eieio; tlbsync; ptesync"); 3194 else 3195 asm volatile("ptesync"); 3196 } 3197 3198 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 3199 { 3200 struct kvm_nested_guest *nested = vcpu->arch.nested; 3201 struct kvm *kvm = vcpu->kvm; 3202 int prev_cpu; 3203 3204 if (!cpu_has_feature(CPU_FTR_HVMODE)) 3205 return; 3206 3207 if (nested) 3208 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 3209 else 3210 prev_cpu = vcpu->arch.prev_cpu; 3211 3212 /* 3213 * With radix, the guest can do TLB invalidations itself, 3214 * and it could choose to use the local form (tlbiel) if 3215 * it is invalidating a translation that has only ever been 3216 * used on one vcpu. However, that doesn't mean it has 3217 * only ever been used on one physical cpu, since vcpus 3218 * can move around between pcpus. To cope with this, when 3219 * a vcpu moves from one pcpu to another, we need to tell 3220 * any vcpus running on the same core as this vcpu previously 3221 * ran to flush the TLB. 3222 */ 3223 if (prev_cpu != pcpu) { 3224 if (prev_cpu >= 0) { 3225 if (cpu_first_tlb_thread_sibling(prev_cpu) != 3226 cpu_first_tlb_thread_sibling(pcpu)) 3227 radix_flush_cpu(kvm, prev_cpu, vcpu); 3228 3229 smp_call_function_single(prev_cpu, 3230 do_migrate_away_vcpu, vcpu, 1); 3231 } 3232 if (nested) 3233 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 3234 else 3235 vcpu->arch.prev_cpu = pcpu; 3236 } 3237 } 3238 3239 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 3240 { 3241 int cpu; 3242 struct paca_struct *tpaca; 3243 3244 cpu = vc->pcpu; 3245 if (vcpu) { 3246 if (vcpu->arch.timer_running) { 3247 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 3248 vcpu->arch.timer_running = 0; 3249 } 3250 cpu += vcpu->arch.ptid; 3251 vcpu->cpu = vc->pcpu; 3252 vcpu->arch.thread_cpu = cpu; 3253 } 3254 tpaca = paca_ptrs[cpu]; 3255 tpaca->kvm_hstate.kvm_vcpu = vcpu; 3256 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 3257 tpaca->kvm_hstate.fake_suspend = 0; 3258 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 3259 smp_wmb(); 3260 tpaca->kvm_hstate.kvm_vcore = vc; 3261 if (cpu != smp_processor_id()) 3262 kvmppc_ipi_thread(cpu); 3263 } 3264 3265 static void kvmppc_wait_for_nap(int n_threads) 3266 { 3267 int cpu = smp_processor_id(); 3268 int i, loops; 3269 3270 if (n_threads <= 1) 3271 return; 3272 for (loops = 0; loops < 1000000; ++loops) { 3273 /* 3274 * Check if all threads are finished. 3275 * We set the vcore pointer when starting a thread 3276 * and the thread clears it when finished, so we look 3277 * for any threads that still have a non-NULL vcore ptr. 3278 */ 3279 for (i = 1; i < n_threads; ++i) 3280 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3281 break; 3282 if (i == n_threads) { 3283 HMT_medium(); 3284 return; 3285 } 3286 HMT_low(); 3287 } 3288 HMT_medium(); 3289 for (i = 1; i < n_threads; ++i) 3290 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3291 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 3292 } 3293 3294 /* 3295 * Check that we are on thread 0 and that any other threads in 3296 * this core are off-line. Then grab the threads so they can't 3297 * enter the kernel. 3298 */ 3299 static int on_primary_thread(void) 3300 { 3301 int cpu = smp_processor_id(); 3302 int thr; 3303 3304 /* Are we on a primary subcore? */ 3305 if (cpu_thread_in_subcore(cpu)) 3306 return 0; 3307 3308 thr = 0; 3309 while (++thr < threads_per_subcore) 3310 if (cpu_online(cpu + thr)) 3311 return 0; 3312 3313 /* Grab all hw threads so they can't go into the kernel */ 3314 for (thr = 1; thr < threads_per_subcore; ++thr) { 3315 if (kvmppc_grab_hwthread(cpu + thr)) { 3316 /* Couldn't grab one; let the others go */ 3317 do { 3318 kvmppc_release_hwthread(cpu + thr); 3319 } while (--thr > 0); 3320 return 0; 3321 } 3322 } 3323 return 1; 3324 } 3325 3326 /* 3327 * A list of virtual cores for each physical CPU. 3328 * These are vcores that could run but their runner VCPU tasks are 3329 * (or may be) preempted. 3330 */ 3331 struct preempted_vcore_list { 3332 struct list_head list; 3333 spinlock_t lock; 3334 }; 3335 3336 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 3337 3338 static void init_vcore_lists(void) 3339 { 3340 int cpu; 3341 3342 for_each_possible_cpu(cpu) { 3343 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 3344 spin_lock_init(&lp->lock); 3345 INIT_LIST_HEAD(&lp->list); 3346 } 3347 } 3348 3349 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 3350 { 3351 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3352 3353 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3354 3355 vc->vcore_state = VCORE_PREEMPT; 3356 vc->pcpu = smp_processor_id(); 3357 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 3358 spin_lock(&lp->lock); 3359 list_add_tail(&vc->preempt_list, &lp->list); 3360 spin_unlock(&lp->lock); 3361 } 3362 3363 /* Start accumulating stolen time */ 3364 kvmppc_core_start_stolen(vc, mftb()); 3365 } 3366 3367 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 3368 { 3369 struct preempted_vcore_list *lp; 3370 3371 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3372 3373 kvmppc_core_end_stolen(vc, mftb()); 3374 if (!list_empty(&vc->preempt_list)) { 3375 lp = &per_cpu(preempted_vcores, vc->pcpu); 3376 spin_lock(&lp->lock); 3377 list_del_init(&vc->preempt_list); 3378 spin_unlock(&lp->lock); 3379 } 3380 vc->vcore_state = VCORE_INACTIVE; 3381 } 3382 3383 /* 3384 * This stores information about the virtual cores currently 3385 * assigned to a physical core. 3386 */ 3387 struct core_info { 3388 int n_subcores; 3389 int max_subcore_threads; 3390 int total_threads; 3391 int subcore_threads[MAX_SUBCORES]; 3392 struct kvmppc_vcore *vc[MAX_SUBCORES]; 3393 }; 3394 3395 /* 3396 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 3397 * respectively in 2-way micro-threading (split-core) mode on POWER8. 3398 */ 3399 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 3400 3401 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 3402 { 3403 memset(cip, 0, sizeof(*cip)); 3404 cip->n_subcores = 1; 3405 cip->max_subcore_threads = vc->num_threads; 3406 cip->total_threads = vc->num_threads; 3407 cip->subcore_threads[0] = vc->num_threads; 3408 cip->vc[0] = vc; 3409 } 3410 3411 static bool subcore_config_ok(int n_subcores, int n_threads) 3412 { 3413 /* 3414 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 3415 * split-core mode, with one thread per subcore. 3416 */ 3417 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3418 return n_subcores <= 4 && n_threads == 1; 3419 3420 /* On POWER8, can only dynamically split if unsplit to begin with */ 3421 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 3422 return false; 3423 if (n_subcores > MAX_SUBCORES) 3424 return false; 3425 if (n_subcores > 1) { 3426 if (!(dynamic_mt_modes & 2)) 3427 n_subcores = 4; 3428 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 3429 return false; 3430 } 3431 3432 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 3433 } 3434 3435 static void init_vcore_to_run(struct kvmppc_vcore *vc) 3436 { 3437 vc->entry_exit_map = 0; 3438 vc->in_guest = 0; 3439 vc->napping_threads = 0; 3440 vc->conferring_threads = 0; 3441 vc->tb_offset_applied = 0; 3442 } 3443 3444 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 3445 { 3446 int n_threads = vc->num_threads; 3447 int sub; 3448 3449 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 3450 return false; 3451 3452 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 3453 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 3454 return false; 3455 3456 if (n_threads < cip->max_subcore_threads) 3457 n_threads = cip->max_subcore_threads; 3458 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 3459 return false; 3460 cip->max_subcore_threads = n_threads; 3461 3462 sub = cip->n_subcores; 3463 ++cip->n_subcores; 3464 cip->total_threads += vc->num_threads; 3465 cip->subcore_threads[sub] = vc->num_threads; 3466 cip->vc[sub] = vc; 3467 init_vcore_to_run(vc); 3468 list_del_init(&vc->preempt_list); 3469 3470 return true; 3471 } 3472 3473 /* 3474 * Work out whether it is possible to piggyback the execution of 3475 * vcore *pvc onto the execution of the other vcores described in *cip. 3476 */ 3477 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 3478 int target_threads) 3479 { 3480 if (cip->total_threads + pvc->num_threads > target_threads) 3481 return false; 3482 3483 return can_dynamic_split(pvc, cip); 3484 } 3485 3486 static void prepare_threads(struct kvmppc_vcore *vc) 3487 { 3488 int i; 3489 struct kvm_vcpu *vcpu; 3490 3491 for_each_runnable_thread(i, vcpu, vc) { 3492 if (signal_pending(vcpu->arch.run_task)) 3493 vcpu->arch.ret = -EINTR; 3494 else if (vcpu->arch.vpa.update_pending || 3495 vcpu->arch.slb_shadow.update_pending || 3496 vcpu->arch.dtl.update_pending) 3497 vcpu->arch.ret = RESUME_GUEST; 3498 else 3499 continue; 3500 kvmppc_remove_runnable(vc, vcpu, mftb()); 3501 wake_up(&vcpu->arch.cpu_run); 3502 } 3503 } 3504 3505 static void collect_piggybacks(struct core_info *cip, int target_threads) 3506 { 3507 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3508 struct kvmppc_vcore *pvc, *vcnext; 3509 3510 spin_lock(&lp->lock); 3511 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 3512 if (!spin_trylock(&pvc->lock)) 3513 continue; 3514 prepare_threads(pvc); 3515 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 3516 list_del_init(&pvc->preempt_list); 3517 if (pvc->runner == NULL) { 3518 pvc->vcore_state = VCORE_INACTIVE; 3519 kvmppc_core_end_stolen(pvc, mftb()); 3520 } 3521 spin_unlock(&pvc->lock); 3522 continue; 3523 } 3524 if (!can_piggyback(pvc, cip, target_threads)) { 3525 spin_unlock(&pvc->lock); 3526 continue; 3527 } 3528 kvmppc_core_end_stolen(pvc, mftb()); 3529 pvc->vcore_state = VCORE_PIGGYBACK; 3530 if (cip->total_threads >= target_threads) 3531 break; 3532 } 3533 spin_unlock(&lp->lock); 3534 } 3535 3536 static bool recheck_signals_and_mmu(struct core_info *cip) 3537 { 3538 int sub, i; 3539 struct kvm_vcpu *vcpu; 3540 struct kvmppc_vcore *vc; 3541 3542 for (sub = 0; sub < cip->n_subcores; ++sub) { 3543 vc = cip->vc[sub]; 3544 if (!vc->kvm->arch.mmu_ready) 3545 return true; 3546 for_each_runnable_thread(i, vcpu, vc) 3547 if (signal_pending(vcpu->arch.run_task)) 3548 return true; 3549 } 3550 return false; 3551 } 3552 3553 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 3554 { 3555 int still_running = 0, i; 3556 u64 now; 3557 long ret; 3558 struct kvm_vcpu *vcpu; 3559 3560 spin_lock(&vc->lock); 3561 now = get_tb(); 3562 for_each_runnable_thread(i, vcpu, vc) { 3563 /* 3564 * It's safe to unlock the vcore in the loop here, because 3565 * for_each_runnable_thread() is safe against removal of 3566 * the vcpu, and the vcore state is VCORE_EXITING here, 3567 * so any vcpus becoming runnable will have their arch.trap 3568 * set to zero and can't actually run in the guest. 3569 */ 3570 spin_unlock(&vc->lock); 3571 /* cancel pending dec exception if dec is positive */ 3572 if (now < kvmppc_dec_expires_host_tb(vcpu) && 3573 kvmppc_core_pending_dec(vcpu)) 3574 kvmppc_core_dequeue_dec(vcpu); 3575 3576 trace_kvm_guest_exit(vcpu); 3577 3578 ret = RESUME_GUEST; 3579 if (vcpu->arch.trap) 3580 ret = kvmppc_handle_exit_hv(vcpu, 3581 vcpu->arch.run_task); 3582 3583 vcpu->arch.ret = ret; 3584 vcpu->arch.trap = 0; 3585 3586 spin_lock(&vc->lock); 3587 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 3588 if (vcpu->arch.pending_exceptions) 3589 kvmppc_core_prepare_to_enter(vcpu); 3590 if (vcpu->arch.ceded) 3591 kvmppc_set_timer(vcpu); 3592 else 3593 ++still_running; 3594 } else { 3595 kvmppc_remove_runnable(vc, vcpu, mftb()); 3596 wake_up(&vcpu->arch.cpu_run); 3597 } 3598 } 3599 if (!is_master) { 3600 if (still_running > 0) { 3601 kvmppc_vcore_preempt(vc); 3602 } else if (vc->runner) { 3603 vc->vcore_state = VCORE_PREEMPT; 3604 kvmppc_core_start_stolen(vc, mftb()); 3605 } else { 3606 vc->vcore_state = VCORE_INACTIVE; 3607 } 3608 if (vc->n_runnable > 0 && vc->runner == NULL) { 3609 /* make sure there's a candidate runner awake */ 3610 i = -1; 3611 vcpu = next_runnable_thread(vc, &i); 3612 wake_up(&vcpu->arch.cpu_run); 3613 } 3614 } 3615 spin_unlock(&vc->lock); 3616 } 3617 3618 /* 3619 * Clear core from the list of active host cores as we are about to 3620 * enter the guest. Only do this if it is the primary thread of the 3621 * core (not if a subcore) that is entering the guest. 3622 */ 3623 static inline int kvmppc_clear_host_core(unsigned int cpu) 3624 { 3625 int core; 3626 3627 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3628 return 0; 3629 /* 3630 * Memory barrier can be omitted here as we will do a smp_wmb() 3631 * later in kvmppc_start_thread and we need ensure that state is 3632 * visible to other CPUs only after we enter guest. 3633 */ 3634 core = cpu >> threads_shift; 3635 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 3636 return 0; 3637 } 3638 3639 /* 3640 * Advertise this core as an active host core since we exited the guest 3641 * Only need to do this if it is the primary thread of the core that is 3642 * exiting. 3643 */ 3644 static inline int kvmppc_set_host_core(unsigned int cpu) 3645 { 3646 int core; 3647 3648 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3649 return 0; 3650 3651 /* 3652 * Memory barrier can be omitted here because we do a spin_unlock 3653 * immediately after this which provides the memory barrier. 3654 */ 3655 core = cpu >> threads_shift; 3656 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3657 return 0; 3658 } 3659 3660 static void set_irq_happened(int trap) 3661 { 3662 switch (trap) { 3663 case BOOK3S_INTERRUPT_EXTERNAL: 3664 local_paca->irq_happened |= PACA_IRQ_EE; 3665 break; 3666 case BOOK3S_INTERRUPT_H_DOORBELL: 3667 local_paca->irq_happened |= PACA_IRQ_DBELL; 3668 break; 3669 case BOOK3S_INTERRUPT_HMI: 3670 local_paca->irq_happened |= PACA_IRQ_HMI; 3671 break; 3672 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3673 replay_system_reset(); 3674 break; 3675 } 3676 } 3677 3678 /* 3679 * Run a set of guest threads on a physical core. 3680 * Called with vc->lock held. 3681 */ 3682 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3683 { 3684 struct kvm_vcpu *vcpu; 3685 int i; 3686 int srcu_idx; 3687 struct core_info core_info; 3688 struct kvmppc_vcore *pvc; 3689 struct kvm_split_mode split_info, *sip; 3690 int split, subcore_size, active; 3691 int sub; 3692 bool thr0_done; 3693 unsigned long cmd_bit, stat_bit; 3694 int pcpu, thr; 3695 int target_threads; 3696 int controlled_threads; 3697 int trap; 3698 bool is_power8; 3699 3700 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300))) 3701 return; 3702 3703 /* 3704 * Remove from the list any threads that have a signal pending 3705 * or need a VPA update done 3706 */ 3707 prepare_threads(vc); 3708 3709 /* if the runner is no longer runnable, let the caller pick a new one */ 3710 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3711 return; 3712 3713 /* 3714 * Initialize *vc. 3715 */ 3716 init_vcore_to_run(vc); 3717 vc->preempt_tb = TB_NIL; 3718 3719 /* 3720 * Number of threads that we will be controlling: the same as 3721 * the number of threads per subcore, except on POWER9, 3722 * where it's 1 because the threads are (mostly) independent. 3723 */ 3724 controlled_threads = threads_per_vcore(vc->kvm); 3725 3726 /* 3727 * Make sure we are running on primary threads, and that secondary 3728 * threads are offline. Also check if the number of threads in this 3729 * guest are greater than the current system threads per guest. 3730 */ 3731 if ((controlled_threads > 1) && 3732 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 3733 for_each_runnable_thread(i, vcpu, vc) { 3734 vcpu->arch.ret = -EBUSY; 3735 kvmppc_remove_runnable(vc, vcpu, mftb()); 3736 wake_up(&vcpu->arch.cpu_run); 3737 } 3738 goto out; 3739 } 3740 3741 /* 3742 * See if we could run any other vcores on the physical core 3743 * along with this one. 3744 */ 3745 init_core_info(&core_info, vc); 3746 pcpu = smp_processor_id(); 3747 target_threads = controlled_threads; 3748 if (target_smt_mode && target_smt_mode < target_threads) 3749 target_threads = target_smt_mode; 3750 if (vc->num_threads < target_threads) 3751 collect_piggybacks(&core_info, target_threads); 3752 3753 /* 3754 * Hard-disable interrupts, and check resched flag and signals. 3755 * If we need to reschedule or deliver a signal, clean up 3756 * and return without going into the guest(s). 3757 * If the mmu_ready flag has been cleared, don't go into the 3758 * guest because that means a HPT resize operation is in progress. 3759 */ 3760 local_irq_disable(); 3761 hard_irq_disable(); 3762 if (lazy_irq_pending() || need_resched() || 3763 recheck_signals_and_mmu(&core_info)) { 3764 local_irq_enable(); 3765 vc->vcore_state = VCORE_INACTIVE; 3766 /* Unlock all except the primary vcore */ 3767 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3768 pvc = core_info.vc[sub]; 3769 /* Put back on to the preempted vcores list */ 3770 kvmppc_vcore_preempt(pvc); 3771 spin_unlock(&pvc->lock); 3772 } 3773 for (i = 0; i < controlled_threads; ++i) 3774 kvmppc_release_hwthread(pcpu + i); 3775 return; 3776 } 3777 3778 kvmppc_clear_host_core(pcpu); 3779 3780 /* Decide on micro-threading (split-core) mode */ 3781 subcore_size = threads_per_subcore; 3782 cmd_bit = stat_bit = 0; 3783 split = core_info.n_subcores; 3784 sip = NULL; 3785 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S); 3786 3787 if (split > 1) { 3788 sip = &split_info; 3789 memset(&split_info, 0, sizeof(split_info)); 3790 for (sub = 0; sub < core_info.n_subcores; ++sub) 3791 split_info.vc[sub] = core_info.vc[sub]; 3792 3793 if (is_power8) { 3794 if (split == 2 && (dynamic_mt_modes & 2)) { 3795 cmd_bit = HID0_POWER8_1TO2LPAR; 3796 stat_bit = HID0_POWER8_2LPARMODE; 3797 } else { 3798 split = 4; 3799 cmd_bit = HID0_POWER8_1TO4LPAR; 3800 stat_bit = HID0_POWER8_4LPARMODE; 3801 } 3802 subcore_size = MAX_SMT_THREADS / split; 3803 split_info.rpr = mfspr(SPRN_RPR); 3804 split_info.pmmar = mfspr(SPRN_PMMAR); 3805 split_info.ldbar = mfspr(SPRN_LDBAR); 3806 split_info.subcore_size = subcore_size; 3807 } else { 3808 split_info.subcore_size = 1; 3809 } 3810 3811 /* order writes to split_info before kvm_split_mode pointer */ 3812 smp_wmb(); 3813 } 3814 3815 for (thr = 0; thr < controlled_threads; ++thr) { 3816 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3817 3818 paca->kvm_hstate.napping = 0; 3819 paca->kvm_hstate.kvm_split_mode = sip; 3820 } 3821 3822 /* Initiate micro-threading (split-core) on POWER8 if required */ 3823 if (cmd_bit) { 3824 unsigned long hid0 = mfspr(SPRN_HID0); 3825 3826 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3827 mb(); 3828 mtspr(SPRN_HID0, hid0); 3829 isync(); 3830 for (;;) { 3831 hid0 = mfspr(SPRN_HID0); 3832 if (hid0 & stat_bit) 3833 break; 3834 cpu_relax(); 3835 } 3836 } 3837 3838 /* 3839 * On POWER8, set RWMR register. 3840 * Since it only affects PURR and SPURR, it doesn't affect 3841 * the host, so we don't save/restore the host value. 3842 */ 3843 if (is_power8) { 3844 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3845 int n_online = atomic_read(&vc->online_count); 3846 3847 /* 3848 * Use the 8-thread value if we're doing split-core 3849 * or if the vcore's online count looks bogus. 3850 */ 3851 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3852 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3853 rwmr_val = p8_rwmr_values[n_online]; 3854 mtspr(SPRN_RWMR, rwmr_val); 3855 } 3856 3857 /* Start all the threads */ 3858 active = 0; 3859 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3860 thr = is_power8 ? subcore_thread_map[sub] : sub; 3861 thr0_done = false; 3862 active |= 1 << thr; 3863 pvc = core_info.vc[sub]; 3864 pvc->pcpu = pcpu + thr; 3865 for_each_runnable_thread(i, vcpu, pvc) { 3866 /* 3867 * XXX: is kvmppc_start_thread called too late here? 3868 * It updates vcpu->cpu and vcpu->arch.thread_cpu 3869 * which are used by kvmppc_fast_vcpu_kick_hv(), but 3870 * kick is called after new exceptions become available 3871 * and exceptions are checked earlier than here, by 3872 * kvmppc_core_prepare_to_enter. 3873 */ 3874 kvmppc_start_thread(vcpu, pvc); 3875 kvmppc_update_vpa_dispatch(vcpu, pvc); 3876 trace_kvm_guest_enter(vcpu); 3877 if (!vcpu->arch.ptid) 3878 thr0_done = true; 3879 active |= 1 << (thr + vcpu->arch.ptid); 3880 } 3881 /* 3882 * We need to start the first thread of each subcore 3883 * even if it doesn't have a vcpu. 3884 */ 3885 if (!thr0_done) 3886 kvmppc_start_thread(NULL, pvc); 3887 } 3888 3889 /* 3890 * Ensure that split_info.do_nap is set after setting 3891 * the vcore pointer in the PACA of the secondaries. 3892 */ 3893 smp_mb(); 3894 3895 /* 3896 * When doing micro-threading, poke the inactive threads as well. 3897 * This gets them to the nap instruction after kvm_do_nap, 3898 * which reduces the time taken to unsplit later. 3899 */ 3900 if (cmd_bit) { 3901 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3902 for (thr = 1; thr < threads_per_subcore; ++thr) 3903 if (!(active & (1 << thr))) 3904 kvmppc_ipi_thread(pcpu + thr); 3905 } 3906 3907 vc->vcore_state = VCORE_RUNNING; 3908 preempt_disable(); 3909 3910 trace_kvmppc_run_core(vc, 0); 3911 3912 for (sub = 0; sub < core_info.n_subcores; ++sub) 3913 spin_unlock(&core_info.vc[sub]->lock); 3914 3915 guest_timing_enter_irqoff(); 3916 3917 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3918 3919 guest_state_enter_irqoff(); 3920 this_cpu_disable_ftrace(); 3921 3922 trap = __kvmppc_vcore_entry(); 3923 3924 this_cpu_enable_ftrace(); 3925 guest_state_exit_irqoff(); 3926 3927 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3928 3929 set_irq_happened(trap); 3930 3931 spin_lock(&vc->lock); 3932 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3933 vc->vcore_state = VCORE_EXITING; 3934 3935 /* wait for secondary threads to finish writing their state to memory */ 3936 kvmppc_wait_for_nap(controlled_threads); 3937 3938 /* Return to whole-core mode if we split the core earlier */ 3939 if (cmd_bit) { 3940 unsigned long hid0 = mfspr(SPRN_HID0); 3941 unsigned long loops = 0; 3942 3943 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3944 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3945 mb(); 3946 mtspr(SPRN_HID0, hid0); 3947 isync(); 3948 for (;;) { 3949 hid0 = mfspr(SPRN_HID0); 3950 if (!(hid0 & stat_bit)) 3951 break; 3952 cpu_relax(); 3953 ++loops; 3954 } 3955 split_info.do_nap = 0; 3956 } 3957 3958 kvmppc_set_host_core(pcpu); 3959 3960 if (!vtime_accounting_enabled_this_cpu()) { 3961 local_irq_enable(); 3962 /* 3963 * Service IRQs here before guest_timing_exit_irqoff() so any 3964 * ticks that occurred while running the guest are accounted to 3965 * the guest. If vtime accounting is enabled, accounting uses 3966 * TB rather than ticks, so it can be done without enabling 3967 * interrupts here, which has the problem that it accounts 3968 * interrupt processing overhead to the host. 3969 */ 3970 local_irq_disable(); 3971 } 3972 guest_timing_exit_irqoff(); 3973 3974 local_irq_enable(); 3975 3976 /* Let secondaries go back to the offline loop */ 3977 for (i = 0; i < controlled_threads; ++i) { 3978 kvmppc_release_hwthread(pcpu + i); 3979 if (sip && sip->napped[i]) 3980 kvmppc_ipi_thread(pcpu + i); 3981 } 3982 3983 spin_unlock(&vc->lock); 3984 3985 /* make sure updates to secondary vcpu structs are visible now */ 3986 smp_mb(); 3987 3988 preempt_enable(); 3989 3990 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3991 pvc = core_info.vc[sub]; 3992 post_guest_process(pvc, pvc == vc); 3993 } 3994 3995 spin_lock(&vc->lock); 3996 3997 out: 3998 vc->vcore_state = VCORE_INACTIVE; 3999 trace_kvmppc_run_core(vc, 1); 4000 } 4001 4002 static inline bool hcall_is_xics(unsigned long req) 4003 { 4004 return req == H_EOI || req == H_CPPR || req == H_IPI || 4005 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X; 4006 } 4007 4008 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu) 4009 { 4010 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 4011 if (lp) { 4012 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 4013 lp->yield_count = cpu_to_be32(yield_count); 4014 vcpu->arch.vpa.dirty = 1; 4015 } 4016 } 4017 4018 /* call our hypervisor to load up HV regs and go */ 4019 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb) 4020 { 4021 struct kvmppc_vcore *vc = vcpu->arch.vcore; 4022 unsigned long host_psscr; 4023 unsigned long msr; 4024 struct hv_guest_state hvregs; 4025 struct p9_host_os_sprs host_os_sprs; 4026 s64 dec; 4027 int trap; 4028 4029 msr = mfmsr(); 4030 4031 save_p9_host_os_sprs(&host_os_sprs); 4032 4033 /* 4034 * We need to save and restore the guest visible part of the 4035 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 4036 * doesn't do this for us. Note only required if pseries since 4037 * this is done in kvmhv_vcpu_entry_p9() below otherwise. 4038 */ 4039 host_psscr = mfspr(SPRN_PSSCR_PR); 4040 4041 kvmppc_msr_hard_disable_set_facilities(vcpu, msr); 4042 if (lazy_irq_pending()) 4043 return 0; 4044 4045 if (unlikely(load_vcpu_state(vcpu, &host_os_sprs))) 4046 msr = mfmsr(); /* TM restore can update msr */ 4047 4048 if (vcpu->arch.psscr != host_psscr) 4049 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 4050 4051 kvmhv_save_hv_regs(vcpu, &hvregs); 4052 hvregs.lpcr = lpcr; 4053 hvregs.amor = ~0; 4054 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 4055 hvregs.version = HV_GUEST_STATE_VERSION; 4056 if (vcpu->arch.nested) { 4057 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 4058 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 4059 } else { 4060 hvregs.lpid = vcpu->kvm->arch.lpid; 4061 hvregs.vcpu_token = vcpu->vcpu_id; 4062 } 4063 hvregs.hdec_expiry = time_limit; 4064 4065 /* 4066 * When setting DEC, we must always deal with irq_work_raise 4067 * via NMI vs setting DEC. The problem occurs right as we 4068 * switch into guest mode if a NMI hits and sets pending work 4069 * and sets DEC, then that will apply to the guest and not 4070 * bring us back to the host. 4071 * 4072 * irq_work_raise could check a flag (or possibly LPCR[HDICE] 4073 * for example) and set HDEC to 1? That wouldn't solve the 4074 * nested hv case which needs to abort the hcall or zero the 4075 * time limit. 4076 * 4077 * XXX: Another day's problem. 4078 */ 4079 mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb); 4080 4081 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 4082 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 4083 switch_pmu_to_guest(vcpu, &host_os_sprs); 4084 accumulate_time(vcpu, &vcpu->arch.in_guest); 4085 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 4086 __pa(&vcpu->arch.regs)); 4087 accumulate_time(vcpu, &vcpu->arch.guest_exit); 4088 kvmhv_restore_hv_return_state(vcpu, &hvregs); 4089 switch_pmu_to_host(vcpu, &host_os_sprs); 4090 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 4091 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 4092 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 4093 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 4094 4095 store_vcpu_state(vcpu); 4096 4097 dec = mfspr(SPRN_DEC); 4098 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 4099 dec = (s32) dec; 4100 *tb = mftb(); 4101 vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset); 4102 4103 timer_rearm_host_dec(*tb); 4104 4105 restore_p9_host_os_sprs(vcpu, &host_os_sprs); 4106 if (vcpu->arch.psscr != host_psscr) 4107 mtspr(SPRN_PSSCR_PR, host_psscr); 4108 4109 return trap; 4110 } 4111 4112 /* 4113 * Guest entry for POWER9 and later CPUs. 4114 */ 4115 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 4116 unsigned long lpcr, u64 *tb) 4117 { 4118 struct kvm *kvm = vcpu->kvm; 4119 struct kvm_nested_guest *nested = vcpu->arch.nested; 4120 u64 next_timer; 4121 int trap; 4122 4123 next_timer = timer_get_next_tb(); 4124 if (*tb >= next_timer) 4125 return BOOK3S_INTERRUPT_HV_DECREMENTER; 4126 if (next_timer < time_limit) 4127 time_limit = next_timer; 4128 else if (*tb >= time_limit) /* nested time limit */ 4129 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER; 4130 4131 vcpu->arch.ceded = 0; 4132 4133 vcpu_vpa_increment_dispatch(vcpu); 4134 4135 if (kvmhv_on_pseries()) { 4136 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb); 4137 4138 /* H_CEDE has to be handled now, not later */ 4139 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested && 4140 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 4141 kvmppc_cede(vcpu); 4142 kvmppc_set_gpr(vcpu, 3, 0); 4143 trap = 0; 4144 } 4145 4146 } else if (nested) { 4147 __this_cpu_write(cpu_in_guest, kvm); 4148 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); 4149 __this_cpu_write(cpu_in_guest, NULL); 4150 4151 } else { 4152 kvmppc_xive_push_vcpu(vcpu); 4153 4154 __this_cpu_write(cpu_in_guest, kvm); 4155 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); 4156 __this_cpu_write(cpu_in_guest, NULL); 4157 4158 if (trap == BOOK3S_INTERRUPT_SYSCALL && 4159 !(vcpu->arch.shregs.msr & MSR_PR)) { 4160 unsigned long req = kvmppc_get_gpr(vcpu, 3); 4161 4162 /* 4163 * XIVE rearm and XICS hcalls must be handled 4164 * before xive context is pulled (is this 4165 * true?) 4166 */ 4167 if (req == H_CEDE) { 4168 /* H_CEDE has to be handled now */ 4169 kvmppc_cede(vcpu); 4170 if (!kvmppc_xive_rearm_escalation(vcpu)) { 4171 /* 4172 * Pending escalation so abort 4173 * the cede. 4174 */ 4175 vcpu->arch.ceded = 0; 4176 } 4177 kvmppc_set_gpr(vcpu, 3, 0); 4178 trap = 0; 4179 4180 } else if (req == H_ENTER_NESTED) { 4181 /* 4182 * L2 should not run with the L1 4183 * context so rearm and pull it. 4184 */ 4185 if (!kvmppc_xive_rearm_escalation(vcpu)) { 4186 /* 4187 * Pending escalation so abort 4188 * H_ENTER_NESTED. 4189 */ 4190 kvmppc_set_gpr(vcpu, 3, 0); 4191 trap = 0; 4192 } 4193 4194 } else if (hcall_is_xics(req)) { 4195 int ret; 4196 4197 ret = kvmppc_xive_xics_hcall(vcpu, req); 4198 if (ret != H_TOO_HARD) { 4199 kvmppc_set_gpr(vcpu, 3, ret); 4200 trap = 0; 4201 } 4202 } 4203 } 4204 kvmppc_xive_pull_vcpu(vcpu); 4205 4206 if (kvm_is_radix(kvm)) 4207 vcpu->arch.slb_max = 0; 4208 } 4209 4210 vcpu_vpa_increment_dispatch(vcpu); 4211 4212 return trap; 4213 } 4214 4215 /* 4216 * Wait for some other vcpu thread to execute us, and 4217 * wake us up when we need to handle something in the host. 4218 */ 4219 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 4220 struct kvm_vcpu *vcpu, int wait_state) 4221 { 4222 DEFINE_WAIT(wait); 4223 4224 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 4225 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4226 spin_unlock(&vc->lock); 4227 schedule(); 4228 spin_lock(&vc->lock); 4229 } 4230 finish_wait(&vcpu->arch.cpu_run, &wait); 4231 } 4232 4233 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 4234 { 4235 if (!halt_poll_ns_grow) 4236 return; 4237 4238 vc->halt_poll_ns *= halt_poll_ns_grow; 4239 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 4240 vc->halt_poll_ns = halt_poll_ns_grow_start; 4241 } 4242 4243 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 4244 { 4245 if (halt_poll_ns_shrink == 0) 4246 vc->halt_poll_ns = 0; 4247 else 4248 vc->halt_poll_ns /= halt_poll_ns_shrink; 4249 } 4250 4251 #ifdef CONFIG_KVM_XICS 4252 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4253 { 4254 if (!xics_on_xive()) 4255 return false; 4256 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 4257 vcpu->arch.xive_saved_state.cppr; 4258 } 4259 #else 4260 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4261 { 4262 return false; 4263 } 4264 #endif /* CONFIG_KVM_XICS */ 4265 4266 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 4267 { 4268 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 4269 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 4270 return true; 4271 4272 return false; 4273 } 4274 4275 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu) 4276 { 4277 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 4278 return true; 4279 return false; 4280 } 4281 4282 /* 4283 * Check to see if any of the runnable vcpus on the vcore have pending 4284 * exceptions or are no longer ceded 4285 */ 4286 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 4287 { 4288 struct kvm_vcpu *vcpu; 4289 int i; 4290 4291 for_each_runnable_thread(i, vcpu, vc) { 4292 if (kvmppc_vcpu_check_block(vcpu)) 4293 return 1; 4294 } 4295 4296 return 0; 4297 } 4298 4299 /* 4300 * All the vcpus in this vcore are idle, so wait for a decrementer 4301 * or external interrupt to one of the vcpus. vc->lock is held. 4302 */ 4303 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 4304 { 4305 ktime_t cur, start_poll, start_wait; 4306 int do_sleep = 1; 4307 u64 block_ns; 4308 4309 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 4310 4311 /* Poll for pending exceptions and ceded state */ 4312 cur = start_poll = ktime_get(); 4313 if (vc->halt_poll_ns) { 4314 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 4315 ++vc->runner->stat.generic.halt_attempted_poll; 4316 4317 vc->vcore_state = VCORE_POLLING; 4318 spin_unlock(&vc->lock); 4319 4320 do { 4321 if (kvmppc_vcore_check_block(vc)) { 4322 do_sleep = 0; 4323 break; 4324 } 4325 cur = ktime_get(); 4326 } while (kvm_vcpu_can_poll(cur, stop)); 4327 4328 spin_lock(&vc->lock); 4329 vc->vcore_state = VCORE_INACTIVE; 4330 4331 if (!do_sleep) { 4332 ++vc->runner->stat.generic.halt_successful_poll; 4333 goto out; 4334 } 4335 } 4336 4337 prepare_to_rcuwait(&vc->wait); 4338 set_current_state(TASK_INTERRUPTIBLE); 4339 if (kvmppc_vcore_check_block(vc)) { 4340 finish_rcuwait(&vc->wait); 4341 do_sleep = 0; 4342 /* If we polled, count this as a successful poll */ 4343 if (vc->halt_poll_ns) 4344 ++vc->runner->stat.generic.halt_successful_poll; 4345 goto out; 4346 } 4347 4348 start_wait = ktime_get(); 4349 4350 vc->vcore_state = VCORE_SLEEPING; 4351 trace_kvmppc_vcore_blocked(vc->runner, 0); 4352 spin_unlock(&vc->lock); 4353 schedule(); 4354 finish_rcuwait(&vc->wait); 4355 spin_lock(&vc->lock); 4356 vc->vcore_state = VCORE_INACTIVE; 4357 trace_kvmppc_vcore_blocked(vc->runner, 1); 4358 ++vc->runner->stat.halt_successful_wait; 4359 4360 cur = ktime_get(); 4361 4362 out: 4363 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 4364 4365 /* Attribute wait time */ 4366 if (do_sleep) { 4367 vc->runner->stat.generic.halt_wait_ns += 4368 ktime_to_ns(cur) - ktime_to_ns(start_wait); 4369 KVM_STATS_LOG_HIST_UPDATE( 4370 vc->runner->stat.generic.halt_wait_hist, 4371 ktime_to_ns(cur) - ktime_to_ns(start_wait)); 4372 /* Attribute failed poll time */ 4373 if (vc->halt_poll_ns) { 4374 vc->runner->stat.generic.halt_poll_fail_ns += 4375 ktime_to_ns(start_wait) - 4376 ktime_to_ns(start_poll); 4377 KVM_STATS_LOG_HIST_UPDATE( 4378 vc->runner->stat.generic.halt_poll_fail_hist, 4379 ktime_to_ns(start_wait) - 4380 ktime_to_ns(start_poll)); 4381 } 4382 } else { 4383 /* Attribute successful poll time */ 4384 if (vc->halt_poll_ns) { 4385 vc->runner->stat.generic.halt_poll_success_ns += 4386 ktime_to_ns(cur) - 4387 ktime_to_ns(start_poll); 4388 KVM_STATS_LOG_HIST_UPDATE( 4389 vc->runner->stat.generic.halt_poll_success_hist, 4390 ktime_to_ns(cur) - ktime_to_ns(start_poll)); 4391 } 4392 } 4393 4394 /* Adjust poll time */ 4395 if (halt_poll_ns) { 4396 if (block_ns <= vc->halt_poll_ns) 4397 ; 4398 /* We slept and blocked for longer than the max halt time */ 4399 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 4400 shrink_halt_poll_ns(vc); 4401 /* We slept and our poll time is too small */ 4402 else if (vc->halt_poll_ns < halt_poll_ns && 4403 block_ns < halt_poll_ns) 4404 grow_halt_poll_ns(vc); 4405 if (vc->halt_poll_ns > halt_poll_ns) 4406 vc->halt_poll_ns = halt_poll_ns; 4407 } else 4408 vc->halt_poll_ns = 0; 4409 4410 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 4411 } 4412 4413 /* 4414 * This never fails for a radix guest, as none of the operations it does 4415 * for a radix guest can fail or have a way to report failure. 4416 */ 4417 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 4418 { 4419 int r = 0; 4420 struct kvm *kvm = vcpu->kvm; 4421 4422 mutex_lock(&kvm->arch.mmu_setup_lock); 4423 if (!kvm->arch.mmu_ready) { 4424 if (!kvm_is_radix(kvm)) 4425 r = kvmppc_hv_setup_htab_rma(vcpu); 4426 if (!r) { 4427 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4428 kvmppc_setup_partition_table(kvm); 4429 kvm->arch.mmu_ready = 1; 4430 } 4431 } 4432 mutex_unlock(&kvm->arch.mmu_setup_lock); 4433 return r; 4434 } 4435 4436 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) 4437 { 4438 struct kvm_run *run = vcpu->run; 4439 int n_ceded, i, r; 4440 struct kvmppc_vcore *vc; 4441 struct kvm_vcpu *v; 4442 4443 trace_kvmppc_run_vcpu_enter(vcpu); 4444 4445 run->exit_reason = 0; 4446 vcpu->arch.ret = RESUME_GUEST; 4447 vcpu->arch.trap = 0; 4448 kvmppc_update_vpas(vcpu); 4449 4450 /* 4451 * Synchronize with other threads in this virtual core 4452 */ 4453 vc = vcpu->arch.vcore; 4454 spin_lock(&vc->lock); 4455 vcpu->arch.ceded = 0; 4456 vcpu->arch.run_task = current; 4457 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4458 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4459 vcpu->arch.busy_preempt = TB_NIL; 4460 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 4461 ++vc->n_runnable; 4462 4463 /* 4464 * This happens the first time this is called for a vcpu. 4465 * If the vcore is already running, we may be able to start 4466 * this thread straight away and have it join in. 4467 */ 4468 if (!signal_pending(current)) { 4469 if ((vc->vcore_state == VCORE_PIGGYBACK || 4470 vc->vcore_state == VCORE_RUNNING) && 4471 !VCORE_IS_EXITING(vc)) { 4472 kvmppc_update_vpa_dispatch(vcpu, vc); 4473 kvmppc_start_thread(vcpu, vc); 4474 trace_kvm_guest_enter(vcpu); 4475 } else if (vc->vcore_state == VCORE_SLEEPING) { 4476 rcuwait_wake_up(&vc->wait); 4477 } 4478 4479 } 4480 4481 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4482 !signal_pending(current)) { 4483 /* See if the MMU is ready to go */ 4484 if (!vcpu->kvm->arch.mmu_ready) { 4485 spin_unlock(&vc->lock); 4486 r = kvmhv_setup_mmu(vcpu); 4487 spin_lock(&vc->lock); 4488 if (r) { 4489 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4490 run->fail_entry. 4491 hardware_entry_failure_reason = 0; 4492 vcpu->arch.ret = r; 4493 break; 4494 } 4495 } 4496 4497 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4498 kvmppc_vcore_end_preempt(vc); 4499 4500 if (vc->vcore_state != VCORE_INACTIVE) { 4501 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 4502 continue; 4503 } 4504 for_each_runnable_thread(i, v, vc) { 4505 kvmppc_core_prepare_to_enter(v); 4506 if (signal_pending(v->arch.run_task)) { 4507 kvmppc_remove_runnable(vc, v, mftb()); 4508 v->stat.signal_exits++; 4509 v->run->exit_reason = KVM_EXIT_INTR; 4510 v->arch.ret = -EINTR; 4511 wake_up(&v->arch.cpu_run); 4512 } 4513 } 4514 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 4515 break; 4516 n_ceded = 0; 4517 for_each_runnable_thread(i, v, vc) { 4518 if (!kvmppc_vcpu_woken(v)) 4519 n_ceded += v->arch.ceded; 4520 else 4521 v->arch.ceded = 0; 4522 } 4523 vc->runner = vcpu; 4524 if (n_ceded == vc->n_runnable) { 4525 kvmppc_vcore_blocked(vc); 4526 } else if (need_resched()) { 4527 kvmppc_vcore_preempt(vc); 4528 /* Let something else run */ 4529 cond_resched_lock(&vc->lock); 4530 if (vc->vcore_state == VCORE_PREEMPT) 4531 kvmppc_vcore_end_preempt(vc); 4532 } else { 4533 kvmppc_run_core(vc); 4534 } 4535 vc->runner = NULL; 4536 } 4537 4538 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4539 (vc->vcore_state == VCORE_RUNNING || 4540 vc->vcore_state == VCORE_EXITING || 4541 vc->vcore_state == VCORE_PIGGYBACK)) 4542 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4543 4544 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4545 kvmppc_vcore_end_preempt(vc); 4546 4547 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4548 kvmppc_remove_runnable(vc, vcpu, mftb()); 4549 vcpu->stat.signal_exits++; 4550 run->exit_reason = KVM_EXIT_INTR; 4551 vcpu->arch.ret = -EINTR; 4552 } 4553 4554 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4555 /* Wake up some vcpu to run the core */ 4556 i = -1; 4557 v = next_runnable_thread(vc, &i); 4558 wake_up(&v->arch.cpu_run); 4559 } 4560 4561 trace_kvmppc_run_vcpu_exit(vcpu); 4562 spin_unlock(&vc->lock); 4563 return vcpu->arch.ret; 4564 } 4565 4566 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, 4567 unsigned long lpcr) 4568 { 4569 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 4570 struct kvm_run *run = vcpu->run; 4571 int trap, r, pcpu; 4572 int srcu_idx; 4573 struct kvmppc_vcore *vc; 4574 struct kvm *kvm = vcpu->kvm; 4575 struct kvm_nested_guest *nested = vcpu->arch.nested; 4576 unsigned long flags; 4577 u64 tb; 4578 4579 trace_kvmppc_run_vcpu_enter(vcpu); 4580 4581 run->exit_reason = 0; 4582 vcpu->arch.ret = RESUME_GUEST; 4583 vcpu->arch.trap = 0; 4584 4585 vc = vcpu->arch.vcore; 4586 vcpu->arch.ceded = 0; 4587 vcpu->arch.run_task = current; 4588 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4589 4590 /* See if the MMU is ready to go */ 4591 if (unlikely(!kvm->arch.mmu_ready)) { 4592 r = kvmhv_setup_mmu(vcpu); 4593 if (r) { 4594 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4595 run->fail_entry.hardware_entry_failure_reason = 0; 4596 vcpu->arch.ret = r; 4597 return r; 4598 } 4599 } 4600 4601 if (need_resched()) 4602 cond_resched(); 4603 4604 kvmppc_update_vpas(vcpu); 4605 4606 preempt_disable(); 4607 pcpu = smp_processor_id(); 4608 if (kvm_is_radix(kvm)) 4609 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4610 4611 /* flags save not required, but irq_pmu has no disable/enable API */ 4612 powerpc_local_irq_pmu_save(flags); 4613 4614 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4615 4616 if (signal_pending(current)) 4617 goto sigpend; 4618 if (need_resched() || !kvm->arch.mmu_ready) 4619 goto out; 4620 4621 vcpu->cpu = pcpu; 4622 vcpu->arch.thread_cpu = pcpu; 4623 vc->pcpu = pcpu; 4624 local_paca->kvm_hstate.kvm_vcpu = vcpu; 4625 local_paca->kvm_hstate.ptid = 0; 4626 local_paca->kvm_hstate.fake_suspend = 0; 4627 4628 /* 4629 * Orders set cpu/thread_cpu vs testing for pending interrupts and 4630 * doorbells below. The other side is when these fields are set vs 4631 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to 4632 * kick a vCPU to notice the pending interrupt. 4633 */ 4634 smp_mb(); 4635 4636 if (!nested) { 4637 kvmppc_core_prepare_to_enter(vcpu); 4638 if (vcpu->arch.shregs.msr & MSR_EE) { 4639 if (xive_interrupt_pending(vcpu)) 4640 kvmppc_inject_interrupt_hv(vcpu, 4641 BOOK3S_INTERRUPT_EXTERNAL, 0); 4642 } else if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4643 &vcpu->arch.pending_exceptions)) { 4644 lpcr |= LPCR_MER; 4645 } 4646 } else if (vcpu->arch.pending_exceptions || 4647 vcpu->arch.doorbell_request || 4648 xive_interrupt_pending(vcpu)) { 4649 vcpu->arch.ret = RESUME_HOST; 4650 goto out; 4651 } 4652 4653 if (vcpu->arch.timer_running) { 4654 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 4655 vcpu->arch.timer_running = 0; 4656 } 4657 4658 tb = mftb(); 4659 4660 kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + vc->tb_offset); 4661 4662 trace_kvm_guest_enter(vcpu); 4663 4664 guest_timing_enter_irqoff(); 4665 4666 srcu_idx = srcu_read_lock(&kvm->srcu); 4667 4668 guest_state_enter_irqoff(); 4669 this_cpu_disable_ftrace(); 4670 4671 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb); 4672 vcpu->arch.trap = trap; 4673 4674 this_cpu_enable_ftrace(); 4675 guest_state_exit_irqoff(); 4676 4677 srcu_read_unlock(&kvm->srcu, srcu_idx); 4678 4679 set_irq_happened(trap); 4680 4681 vcpu->cpu = -1; 4682 vcpu->arch.thread_cpu = -1; 4683 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4684 4685 if (!vtime_accounting_enabled_this_cpu()) { 4686 powerpc_local_irq_pmu_restore(flags); 4687 /* 4688 * Service IRQs here before guest_timing_exit_irqoff() so any 4689 * ticks that occurred while running the guest are accounted to 4690 * the guest. If vtime accounting is enabled, accounting uses 4691 * TB rather than ticks, so it can be done without enabling 4692 * interrupts here, which has the problem that it accounts 4693 * interrupt processing overhead to the host. 4694 */ 4695 powerpc_local_irq_pmu_save(flags); 4696 } 4697 guest_timing_exit_irqoff(); 4698 4699 powerpc_local_irq_pmu_restore(flags); 4700 4701 preempt_enable(); 4702 4703 /* 4704 * cancel pending decrementer exception if DEC is now positive, or if 4705 * entering a nested guest in which case the decrementer is now owned 4706 * by L2 and the L1 decrementer is provided in hdec_expires 4707 */ 4708 if (kvmppc_core_pending_dec(vcpu) && 4709 ((tb < kvmppc_dec_expires_host_tb(vcpu)) || 4710 (trap == BOOK3S_INTERRUPT_SYSCALL && 4711 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4712 kvmppc_core_dequeue_dec(vcpu); 4713 4714 trace_kvm_guest_exit(vcpu); 4715 r = RESUME_GUEST; 4716 if (trap) { 4717 if (!nested) 4718 r = kvmppc_handle_exit_hv(vcpu, current); 4719 else 4720 r = kvmppc_handle_nested_exit(vcpu); 4721 } 4722 vcpu->arch.ret = r; 4723 4724 if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) { 4725 kvmppc_set_timer(vcpu); 4726 4727 prepare_to_rcuwait(wait); 4728 for (;;) { 4729 set_current_state(TASK_INTERRUPTIBLE); 4730 if (signal_pending(current)) { 4731 vcpu->stat.signal_exits++; 4732 run->exit_reason = KVM_EXIT_INTR; 4733 vcpu->arch.ret = -EINTR; 4734 break; 4735 } 4736 4737 if (kvmppc_vcpu_check_block(vcpu)) 4738 break; 4739 4740 trace_kvmppc_vcore_blocked(vcpu, 0); 4741 schedule(); 4742 trace_kvmppc_vcore_blocked(vcpu, 1); 4743 } 4744 finish_rcuwait(wait); 4745 } 4746 vcpu->arch.ceded = 0; 4747 4748 done: 4749 trace_kvmppc_run_vcpu_exit(vcpu); 4750 4751 return vcpu->arch.ret; 4752 4753 sigpend: 4754 vcpu->stat.signal_exits++; 4755 run->exit_reason = KVM_EXIT_INTR; 4756 vcpu->arch.ret = -EINTR; 4757 out: 4758 vcpu->cpu = -1; 4759 vcpu->arch.thread_cpu = -1; 4760 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4761 powerpc_local_irq_pmu_restore(flags); 4762 preempt_enable(); 4763 goto done; 4764 } 4765 4766 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) 4767 { 4768 struct kvm_run *run = vcpu->run; 4769 int r; 4770 int srcu_idx; 4771 struct kvm *kvm; 4772 unsigned long msr; 4773 4774 start_timing(vcpu, &vcpu->arch.vcpu_entry); 4775 4776 if (!vcpu->arch.sane) { 4777 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4778 return -EINVAL; 4779 } 4780 4781 /* No need to go into the guest when all we'll do is come back out */ 4782 if (signal_pending(current)) { 4783 run->exit_reason = KVM_EXIT_INTR; 4784 return -EINTR; 4785 } 4786 4787 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4788 /* 4789 * Don't allow entry with a suspended transaction, because 4790 * the guest entry/exit code will lose it. 4791 */ 4792 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4793 (current->thread.regs->msr & MSR_TM)) { 4794 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4795 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4796 run->fail_entry.hardware_entry_failure_reason = 0; 4797 return -EINVAL; 4798 } 4799 } 4800 #endif 4801 4802 /* 4803 * Force online to 1 for the sake of old userspace which doesn't 4804 * set it. 4805 */ 4806 if (!vcpu->arch.online) { 4807 atomic_inc(&vcpu->arch.vcore->online_count); 4808 vcpu->arch.online = 1; 4809 } 4810 4811 kvmppc_core_prepare_to_enter(vcpu); 4812 4813 kvm = vcpu->kvm; 4814 atomic_inc(&kvm->arch.vcpus_running); 4815 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4816 smp_mb(); 4817 4818 msr = 0; 4819 if (IS_ENABLED(CONFIG_PPC_FPU)) 4820 msr |= MSR_FP; 4821 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 4822 msr |= MSR_VEC; 4823 if (cpu_has_feature(CPU_FTR_VSX)) 4824 msr |= MSR_VSX; 4825 if ((cpu_has_feature(CPU_FTR_TM) || 4826 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) && 4827 (vcpu->arch.hfscr & HFSCR_TM)) 4828 msr |= MSR_TM; 4829 msr = msr_check_and_set(msr); 4830 4831 kvmppc_save_user_regs(); 4832 4833 kvmppc_save_current_sprs(); 4834 4835 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4836 vcpu->arch.waitp = &vcpu->arch.vcore->wait; 4837 vcpu->arch.pgdir = kvm->mm->pgd; 4838 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4839 4840 do { 4841 accumulate_time(vcpu, &vcpu->arch.guest_entry); 4842 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4843 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, 4844 vcpu->arch.vcore->lpcr); 4845 else 4846 r = kvmppc_run_vcpu(vcpu); 4847 4848 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) { 4849 accumulate_time(vcpu, &vcpu->arch.hcall); 4850 4851 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) { 4852 /* 4853 * These should have been caught reflected 4854 * into the guest by now. Final sanity check: 4855 * don't allow userspace to execute hcalls in 4856 * the hypervisor. 4857 */ 4858 r = RESUME_GUEST; 4859 continue; 4860 } 4861 trace_kvm_hcall_enter(vcpu); 4862 r = kvmppc_pseries_do_hcall(vcpu); 4863 trace_kvm_hcall_exit(vcpu, r); 4864 kvmppc_core_prepare_to_enter(vcpu); 4865 } else if (r == RESUME_PAGE_FAULT) { 4866 accumulate_time(vcpu, &vcpu->arch.pg_fault); 4867 srcu_idx = srcu_read_lock(&kvm->srcu); 4868 r = kvmppc_book3s_hv_page_fault(vcpu, 4869 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4870 srcu_read_unlock(&kvm->srcu, srcu_idx); 4871 } else if (r == RESUME_PASSTHROUGH) { 4872 if (WARN_ON(xics_on_xive())) 4873 r = H_SUCCESS; 4874 else 4875 r = kvmppc_xics_rm_complete(vcpu, 0); 4876 } 4877 } while (is_kvmppc_resume_guest(r)); 4878 accumulate_time(vcpu, &vcpu->arch.vcpu_exit); 4879 4880 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4881 atomic_dec(&kvm->arch.vcpus_running); 4882 4883 srr_regs_clobbered(); 4884 4885 end_timing(vcpu); 4886 4887 return r; 4888 } 4889 4890 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4891 int shift, int sllp) 4892 { 4893 (*sps)->page_shift = shift; 4894 (*sps)->slb_enc = sllp; 4895 (*sps)->enc[0].page_shift = shift; 4896 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4897 /* 4898 * Add 16MB MPSS support (may get filtered out by userspace) 4899 */ 4900 if (shift != 24) { 4901 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4902 if (penc != -1) { 4903 (*sps)->enc[1].page_shift = 24; 4904 (*sps)->enc[1].pte_enc = penc; 4905 } 4906 } 4907 (*sps)++; 4908 } 4909 4910 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4911 struct kvm_ppc_smmu_info *info) 4912 { 4913 struct kvm_ppc_one_seg_page_size *sps; 4914 4915 /* 4916 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4917 * POWER7 doesn't support keys for instruction accesses, 4918 * POWER8 and POWER9 do. 4919 */ 4920 info->data_keys = 32; 4921 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4922 4923 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4924 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4925 info->slb_size = 32; 4926 4927 /* We only support these sizes for now, and no muti-size segments */ 4928 sps = &info->sps[0]; 4929 kvmppc_add_seg_page_size(&sps, 12, 0); 4930 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4931 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4932 4933 /* If running as a nested hypervisor, we don't support HPT guests */ 4934 if (kvmhv_on_pseries()) 4935 info->flags |= KVM_PPC_NO_HASH; 4936 4937 return 0; 4938 } 4939 4940 /* 4941 * Get (and clear) the dirty memory log for a memory slot. 4942 */ 4943 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4944 struct kvm_dirty_log *log) 4945 { 4946 struct kvm_memslots *slots; 4947 struct kvm_memory_slot *memslot; 4948 int r; 4949 unsigned long n, i; 4950 unsigned long *buf, *p; 4951 struct kvm_vcpu *vcpu; 4952 4953 mutex_lock(&kvm->slots_lock); 4954 4955 r = -EINVAL; 4956 if (log->slot >= KVM_USER_MEM_SLOTS) 4957 goto out; 4958 4959 slots = kvm_memslots(kvm); 4960 memslot = id_to_memslot(slots, log->slot); 4961 r = -ENOENT; 4962 if (!memslot || !memslot->dirty_bitmap) 4963 goto out; 4964 4965 /* 4966 * Use second half of bitmap area because both HPT and radix 4967 * accumulate bits in the first half. 4968 */ 4969 n = kvm_dirty_bitmap_bytes(memslot); 4970 buf = memslot->dirty_bitmap + n / sizeof(long); 4971 memset(buf, 0, n); 4972 4973 if (kvm_is_radix(kvm)) 4974 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4975 else 4976 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4977 if (r) 4978 goto out; 4979 4980 /* 4981 * We accumulate dirty bits in the first half of the 4982 * memslot's dirty_bitmap area, for when pages are paged 4983 * out or modified by the host directly. Pick up these 4984 * bits and add them to the map. 4985 */ 4986 p = memslot->dirty_bitmap; 4987 for (i = 0; i < n / sizeof(long); ++i) 4988 buf[i] |= xchg(&p[i], 0); 4989 4990 /* Harvest dirty bits from VPA and DTL updates */ 4991 /* Note: we never modify the SLB shadow buffer areas */ 4992 kvm_for_each_vcpu(i, vcpu, kvm) { 4993 spin_lock(&vcpu->arch.vpa_update_lock); 4994 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4995 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4996 spin_unlock(&vcpu->arch.vpa_update_lock); 4997 } 4998 4999 r = -EFAULT; 5000 if (copy_to_user(log->dirty_bitmap, buf, n)) 5001 goto out; 5002 5003 r = 0; 5004 out: 5005 mutex_unlock(&kvm->slots_lock); 5006 return r; 5007 } 5008 5009 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) 5010 { 5011 vfree(slot->arch.rmap); 5012 slot->arch.rmap = NULL; 5013 } 5014 5015 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 5016 const struct kvm_memory_slot *old, 5017 struct kvm_memory_slot *new, 5018 enum kvm_mr_change change) 5019 { 5020 if (change == KVM_MR_CREATE) { 5021 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap)); 5022 5023 if ((size >> PAGE_SHIFT) > totalram_pages()) 5024 return -ENOMEM; 5025 5026 new->arch.rmap = vzalloc(size); 5027 if (!new->arch.rmap) 5028 return -ENOMEM; 5029 } else if (change != KVM_MR_DELETE) { 5030 new->arch.rmap = old->arch.rmap; 5031 } 5032 5033 return 0; 5034 } 5035 5036 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 5037 struct kvm_memory_slot *old, 5038 const struct kvm_memory_slot *new, 5039 enum kvm_mr_change change) 5040 { 5041 /* 5042 * If we are creating or modifying a memslot, it might make 5043 * some address that was previously cached as emulated 5044 * MMIO be no longer emulated MMIO, so invalidate 5045 * all the caches of emulated MMIO translations. 5046 */ 5047 if (change != KVM_MR_DELETE) 5048 atomic64_inc(&kvm->arch.mmio_update); 5049 5050 /* 5051 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 5052 * have already called kvm_arch_flush_shadow_memslot() to 5053 * flush shadow mappings. For KVM_MR_CREATE we have no 5054 * previous mappings. So the only case to handle is 5055 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 5056 * has been changed. 5057 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 5058 * to get rid of any THP PTEs in the partition-scoped page tables 5059 * so we can track dirtiness at the page level; we flush when 5060 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 5061 * using THP PTEs. 5062 */ 5063 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 5064 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 5065 kvmppc_radix_flush_memslot(kvm, old); 5066 /* 5067 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 5068 */ 5069 if (!kvm->arch.secure_guest) 5070 return; 5071 5072 switch (change) { 5073 case KVM_MR_CREATE: 5074 /* 5075 * @TODO kvmppc_uvmem_memslot_create() can fail and 5076 * return error. Fix this. 5077 */ 5078 kvmppc_uvmem_memslot_create(kvm, new); 5079 break; 5080 case KVM_MR_DELETE: 5081 kvmppc_uvmem_memslot_delete(kvm, old); 5082 break; 5083 default: 5084 /* TODO: Handle KVM_MR_MOVE */ 5085 break; 5086 } 5087 } 5088 5089 /* 5090 * Update LPCR values in kvm->arch and in vcores. 5091 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 5092 * of kvm->arch.lpcr update). 5093 */ 5094 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 5095 { 5096 long int i; 5097 u32 cores_done = 0; 5098 5099 if ((kvm->arch.lpcr & mask) == lpcr) 5100 return; 5101 5102 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 5103 5104 for (i = 0; i < KVM_MAX_VCORES; ++i) { 5105 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 5106 if (!vc) 5107 continue; 5108 5109 spin_lock(&vc->lock); 5110 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 5111 verify_lpcr(kvm, vc->lpcr); 5112 spin_unlock(&vc->lock); 5113 if (++cores_done >= kvm->arch.online_vcores) 5114 break; 5115 } 5116 } 5117 5118 void kvmppc_setup_partition_table(struct kvm *kvm) 5119 { 5120 unsigned long dw0, dw1; 5121 5122 if (!kvm_is_radix(kvm)) { 5123 /* PS field - page size for VRMA */ 5124 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 5125 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 5126 /* HTABSIZE and HTABORG fields */ 5127 dw0 |= kvm->arch.sdr1; 5128 5129 /* Second dword as set by userspace */ 5130 dw1 = kvm->arch.process_table; 5131 } else { 5132 dw0 = PATB_HR | radix__get_tree_size() | 5133 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 5134 dw1 = PATB_GR | kvm->arch.process_table; 5135 } 5136 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 5137 } 5138 5139 /* 5140 * Set up HPT (hashed page table) and RMA (real-mode area). 5141 * Must be called with kvm->arch.mmu_setup_lock held. 5142 */ 5143 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 5144 { 5145 int err = 0; 5146 struct kvm *kvm = vcpu->kvm; 5147 unsigned long hva; 5148 struct kvm_memory_slot *memslot; 5149 struct vm_area_struct *vma; 5150 unsigned long lpcr = 0, senc; 5151 unsigned long psize, porder; 5152 int srcu_idx; 5153 5154 /* Allocate hashed page table (if not done already) and reset it */ 5155 if (!kvm->arch.hpt.virt) { 5156 int order = KVM_DEFAULT_HPT_ORDER; 5157 struct kvm_hpt_info info; 5158 5159 err = kvmppc_allocate_hpt(&info, order); 5160 /* If we get here, it means userspace didn't specify a 5161 * size explicitly. So, try successively smaller 5162 * sizes if the default failed. */ 5163 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 5164 err = kvmppc_allocate_hpt(&info, order); 5165 5166 if (err < 0) { 5167 pr_err("KVM: Couldn't alloc HPT\n"); 5168 goto out; 5169 } 5170 5171 kvmppc_set_hpt(kvm, &info); 5172 } 5173 5174 /* Look up the memslot for guest physical address 0 */ 5175 srcu_idx = srcu_read_lock(&kvm->srcu); 5176 memslot = gfn_to_memslot(kvm, 0); 5177 5178 /* We must have some memory at 0 by now */ 5179 err = -EINVAL; 5180 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 5181 goto out_srcu; 5182 5183 /* Look up the VMA for the start of this memory slot */ 5184 hva = memslot->userspace_addr; 5185 mmap_read_lock(kvm->mm); 5186 vma = vma_lookup(kvm->mm, hva); 5187 if (!vma || (vma->vm_flags & VM_IO)) 5188 goto up_out; 5189 5190 psize = vma_kernel_pagesize(vma); 5191 5192 mmap_read_unlock(kvm->mm); 5193 5194 /* We can handle 4k, 64k or 16M pages in the VRMA */ 5195 if (psize >= 0x1000000) 5196 psize = 0x1000000; 5197 else if (psize >= 0x10000) 5198 psize = 0x10000; 5199 else 5200 psize = 0x1000; 5201 porder = __ilog2(psize); 5202 5203 senc = slb_pgsize_encoding(psize); 5204 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 5205 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5206 /* Create HPTEs in the hash page table for the VRMA */ 5207 kvmppc_map_vrma(vcpu, memslot, porder); 5208 5209 /* Update VRMASD field in the LPCR */ 5210 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 5211 /* the -4 is to account for senc values starting at 0x10 */ 5212 lpcr = senc << (LPCR_VRMASD_SH - 4); 5213 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 5214 } 5215 5216 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 5217 smp_wmb(); 5218 err = 0; 5219 out_srcu: 5220 srcu_read_unlock(&kvm->srcu, srcu_idx); 5221 out: 5222 return err; 5223 5224 up_out: 5225 mmap_read_unlock(kvm->mm); 5226 goto out_srcu; 5227 } 5228 5229 /* 5230 * Must be called with kvm->arch.mmu_setup_lock held and 5231 * mmu_ready = 0 and no vcpus running. 5232 */ 5233 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 5234 { 5235 unsigned long lpcr, lpcr_mask; 5236 5237 if (nesting_enabled(kvm)) 5238 kvmhv_release_all_nested(kvm); 5239 kvmppc_rmap_reset(kvm); 5240 kvm->arch.process_table = 0; 5241 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5242 spin_lock(&kvm->mmu_lock); 5243 kvm->arch.radix = 0; 5244 spin_unlock(&kvm->mmu_lock); 5245 kvmppc_free_radix(kvm); 5246 5247 lpcr = LPCR_VPM1; 5248 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5249 if (cpu_has_feature(CPU_FTR_ARCH_31)) 5250 lpcr_mask |= LPCR_HAIL; 5251 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5252 5253 return 0; 5254 } 5255 5256 /* 5257 * Must be called with kvm->arch.mmu_setup_lock held and 5258 * mmu_ready = 0 and no vcpus running. 5259 */ 5260 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 5261 { 5262 unsigned long lpcr, lpcr_mask; 5263 int err; 5264 5265 err = kvmppc_init_vm_radix(kvm); 5266 if (err) 5267 return err; 5268 kvmppc_rmap_reset(kvm); 5269 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5270 spin_lock(&kvm->mmu_lock); 5271 kvm->arch.radix = 1; 5272 spin_unlock(&kvm->mmu_lock); 5273 kvmppc_free_hpt(&kvm->arch.hpt); 5274 5275 lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5276 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5277 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5278 lpcr_mask |= LPCR_HAIL; 5279 if (cpu_has_feature(CPU_FTR_HVMODE) && 5280 (kvm->arch.host_lpcr & LPCR_HAIL)) 5281 lpcr |= LPCR_HAIL; 5282 } 5283 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5284 5285 return 0; 5286 } 5287 5288 #ifdef CONFIG_KVM_XICS 5289 /* 5290 * Allocate a per-core structure for managing state about which cores are 5291 * running in the host versus the guest and for exchanging data between 5292 * real mode KVM and CPU running in the host. 5293 * This is only done for the first VM. 5294 * The allocated structure stays even if all VMs have stopped. 5295 * It is only freed when the kvm-hv module is unloaded. 5296 * It's OK for this routine to fail, we just don't support host 5297 * core operations like redirecting H_IPI wakeups. 5298 */ 5299 void kvmppc_alloc_host_rm_ops(void) 5300 { 5301 struct kvmppc_host_rm_ops *ops; 5302 unsigned long l_ops; 5303 int cpu, core; 5304 int size; 5305 5306 if (cpu_has_feature(CPU_FTR_ARCH_300)) 5307 return; 5308 5309 /* Not the first time here ? */ 5310 if (kvmppc_host_rm_ops_hv != NULL) 5311 return; 5312 5313 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 5314 if (!ops) 5315 return; 5316 5317 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 5318 ops->rm_core = kzalloc(size, GFP_KERNEL); 5319 5320 if (!ops->rm_core) { 5321 kfree(ops); 5322 return; 5323 } 5324 5325 cpus_read_lock(); 5326 5327 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 5328 if (!cpu_online(cpu)) 5329 continue; 5330 5331 core = cpu >> threads_shift; 5332 ops->rm_core[core].rm_state.in_host = 1; 5333 } 5334 5335 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 5336 5337 /* 5338 * Make the contents of the kvmppc_host_rm_ops structure visible 5339 * to other CPUs before we assign it to the global variable. 5340 * Do an atomic assignment (no locks used here), but if someone 5341 * beats us to it, just free our copy and return. 5342 */ 5343 smp_wmb(); 5344 l_ops = (unsigned long) ops; 5345 5346 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 5347 cpus_read_unlock(); 5348 kfree(ops->rm_core); 5349 kfree(ops); 5350 return; 5351 } 5352 5353 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 5354 "ppc/kvm_book3s:prepare", 5355 kvmppc_set_host_core, 5356 kvmppc_clear_host_core); 5357 cpus_read_unlock(); 5358 } 5359 5360 void kvmppc_free_host_rm_ops(void) 5361 { 5362 if (kvmppc_host_rm_ops_hv) { 5363 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 5364 kfree(kvmppc_host_rm_ops_hv->rm_core); 5365 kfree(kvmppc_host_rm_ops_hv); 5366 kvmppc_host_rm_ops_hv = NULL; 5367 } 5368 } 5369 #endif 5370 5371 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 5372 { 5373 unsigned long lpcr, lpid; 5374 int ret; 5375 5376 mutex_init(&kvm->arch.uvmem_lock); 5377 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 5378 mutex_init(&kvm->arch.mmu_setup_lock); 5379 5380 /* Allocate the guest's logical partition ID */ 5381 5382 lpid = kvmppc_alloc_lpid(); 5383 if ((long)lpid < 0) 5384 return -ENOMEM; 5385 kvm->arch.lpid = lpid; 5386 5387 kvmppc_alloc_host_rm_ops(); 5388 5389 kvmhv_vm_nested_init(kvm); 5390 5391 /* 5392 * Since we don't flush the TLB when tearing down a VM, 5393 * and this lpid might have previously been used, 5394 * make sure we flush on each core before running the new VM. 5395 * On POWER9, the tlbie in mmu_partition_table_set_entry() 5396 * does this flush for us. 5397 */ 5398 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5399 cpumask_setall(&kvm->arch.need_tlb_flush); 5400 5401 /* Start out with the default set of hcalls enabled */ 5402 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 5403 sizeof(kvm->arch.enabled_hcalls)); 5404 5405 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5406 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 5407 5408 /* Init LPCR for virtual RMA mode */ 5409 if (cpu_has_feature(CPU_FTR_HVMODE)) { 5410 kvm->arch.host_lpid = mfspr(SPRN_LPID); 5411 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 5412 lpcr &= LPCR_PECE | LPCR_LPES; 5413 } else { 5414 /* 5415 * The L2 LPES mode will be set by the L0 according to whether 5416 * or not it needs to take external interrupts in HV mode. 5417 */ 5418 lpcr = 0; 5419 } 5420 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 5421 LPCR_VPM0 | LPCR_VPM1; 5422 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 5423 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5424 /* On POWER8 turn on online bit to enable PURR/SPURR */ 5425 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5426 lpcr |= LPCR_ONL; 5427 /* 5428 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 5429 * Set HVICE bit to enable hypervisor virtualization interrupts. 5430 * Set HEIC to prevent OS interrupts to go to hypervisor (should 5431 * be unnecessary but better safe than sorry in case we re-enable 5432 * EE in HV mode with this LPCR still set) 5433 */ 5434 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5435 lpcr &= ~LPCR_VPM0; 5436 lpcr |= LPCR_HVICE | LPCR_HEIC; 5437 5438 /* 5439 * If xive is enabled, we route 0x500 interrupts directly 5440 * to the guest. 5441 */ 5442 if (xics_on_xive()) 5443 lpcr |= LPCR_LPES; 5444 } 5445 5446 /* 5447 * If the host uses radix, the guest starts out as radix. 5448 */ 5449 if (radix_enabled()) { 5450 kvm->arch.radix = 1; 5451 kvm->arch.mmu_ready = 1; 5452 lpcr &= ~LPCR_VPM1; 5453 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5454 if (cpu_has_feature(CPU_FTR_HVMODE) && 5455 cpu_has_feature(CPU_FTR_ARCH_31) && 5456 (kvm->arch.host_lpcr & LPCR_HAIL)) 5457 lpcr |= LPCR_HAIL; 5458 ret = kvmppc_init_vm_radix(kvm); 5459 if (ret) { 5460 kvmppc_free_lpid(kvm->arch.lpid); 5461 return ret; 5462 } 5463 kvmppc_setup_partition_table(kvm); 5464 } 5465 5466 verify_lpcr(kvm, lpcr); 5467 kvm->arch.lpcr = lpcr; 5468 5469 /* Initialization for future HPT resizes */ 5470 kvm->arch.resize_hpt = NULL; 5471 5472 /* 5473 * Work out how many sets the TLB has, for the use of 5474 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 5475 */ 5476 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5477 /* 5478 * P10 will flush all the congruence class with a single tlbiel 5479 */ 5480 kvm->arch.tlb_sets = 1; 5481 } else if (radix_enabled()) 5482 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 5483 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 5484 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 5485 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5486 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 5487 else 5488 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 5489 5490 /* 5491 * Track that we now have a HV mode VM active. This blocks secondary 5492 * CPU threads from coming online. 5493 */ 5494 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5495 kvm_hv_vm_activated(); 5496 5497 /* 5498 * Initialize smt_mode depending on processor. 5499 * POWER8 and earlier have to use "strict" threading, where 5500 * all vCPUs in a vcore have to run on the same (sub)core, 5501 * whereas on POWER9 the threads can each run a different 5502 * guest. 5503 */ 5504 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5505 kvm->arch.smt_mode = threads_per_subcore; 5506 else 5507 kvm->arch.smt_mode = 1; 5508 kvm->arch.emul_smt_mode = 1; 5509 5510 return 0; 5511 } 5512 5513 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm) 5514 { 5515 kvmppc_mmu_debugfs_init(kvm); 5516 if (radix_enabled()) 5517 kvmhv_radix_debugfs_init(kvm); 5518 return 0; 5519 } 5520 5521 static void kvmppc_free_vcores(struct kvm *kvm) 5522 { 5523 long int i; 5524 5525 for (i = 0; i < KVM_MAX_VCORES; ++i) 5526 kfree(kvm->arch.vcores[i]); 5527 kvm->arch.online_vcores = 0; 5528 } 5529 5530 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 5531 { 5532 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5533 kvm_hv_vm_deactivated(); 5534 5535 kvmppc_free_vcores(kvm); 5536 5537 5538 if (kvm_is_radix(kvm)) 5539 kvmppc_free_radix(kvm); 5540 else 5541 kvmppc_free_hpt(&kvm->arch.hpt); 5542 5543 /* Perform global invalidation and return lpid to the pool */ 5544 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5545 if (nesting_enabled(kvm)) 5546 kvmhv_release_all_nested(kvm); 5547 kvm->arch.process_table = 0; 5548 if (kvm->arch.secure_guest) 5549 uv_svm_terminate(kvm->arch.lpid); 5550 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 5551 } 5552 5553 kvmppc_free_lpid(kvm->arch.lpid); 5554 5555 kvmppc_free_pimap(kvm); 5556 } 5557 5558 /* We don't need to emulate any privileged instructions or dcbz */ 5559 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, 5560 unsigned int inst, int *advance) 5561 { 5562 return EMULATE_FAIL; 5563 } 5564 5565 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 5566 ulong spr_val) 5567 { 5568 return EMULATE_FAIL; 5569 } 5570 5571 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 5572 ulong *spr_val) 5573 { 5574 return EMULATE_FAIL; 5575 } 5576 5577 static int kvmppc_core_check_processor_compat_hv(void) 5578 { 5579 if (cpu_has_feature(CPU_FTR_HVMODE) && 5580 cpu_has_feature(CPU_FTR_ARCH_206)) 5581 return 0; 5582 5583 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5584 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5585 return 0; 5586 5587 return -EIO; 5588 } 5589 5590 #ifdef CONFIG_KVM_XICS 5591 5592 void kvmppc_free_pimap(struct kvm *kvm) 5593 { 5594 kfree(kvm->arch.pimap); 5595 } 5596 5597 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5598 { 5599 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5600 } 5601 5602 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5603 { 5604 struct irq_desc *desc; 5605 struct kvmppc_irq_map *irq_map; 5606 struct kvmppc_passthru_irqmap *pimap; 5607 struct irq_chip *chip; 5608 int i, rc = 0; 5609 struct irq_data *host_data; 5610 5611 if (!kvm_irq_bypass) 5612 return 1; 5613 5614 desc = irq_to_desc(host_irq); 5615 if (!desc) 5616 return -EIO; 5617 5618 mutex_lock(&kvm->lock); 5619 5620 pimap = kvm->arch.pimap; 5621 if (pimap == NULL) { 5622 /* First call, allocate structure to hold IRQ map */ 5623 pimap = kvmppc_alloc_pimap(); 5624 if (pimap == NULL) { 5625 mutex_unlock(&kvm->lock); 5626 return -ENOMEM; 5627 } 5628 kvm->arch.pimap = pimap; 5629 } 5630 5631 /* 5632 * For now, we only support interrupts for which the EOI operation 5633 * is an OPAL call followed by a write to XIRR, since that's 5634 * what our real-mode EOI code does, or a XIVE interrupt 5635 */ 5636 chip = irq_data_get_irq_chip(&desc->irq_data); 5637 if (!chip || !is_pnv_opal_msi(chip)) { 5638 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5639 host_irq, guest_gsi); 5640 mutex_unlock(&kvm->lock); 5641 return -ENOENT; 5642 } 5643 5644 /* 5645 * See if we already have an entry for this guest IRQ number. 5646 * If it's mapped to a hardware IRQ number, that's an error, 5647 * otherwise re-use this entry. 5648 */ 5649 for (i = 0; i < pimap->n_mapped; i++) { 5650 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5651 if (pimap->mapped[i].r_hwirq) { 5652 mutex_unlock(&kvm->lock); 5653 return -EINVAL; 5654 } 5655 break; 5656 } 5657 } 5658 5659 if (i == KVMPPC_PIRQ_MAPPED) { 5660 mutex_unlock(&kvm->lock); 5661 return -EAGAIN; /* table is full */ 5662 } 5663 5664 irq_map = &pimap->mapped[i]; 5665 5666 irq_map->v_hwirq = guest_gsi; 5667 irq_map->desc = desc; 5668 5669 /* 5670 * Order the above two stores before the next to serialize with 5671 * the KVM real mode handler. 5672 */ 5673 smp_wmb(); 5674 5675 /* 5676 * The 'host_irq' number is mapped in the PCI-MSI domain but 5677 * the underlying calls, which will EOI the interrupt in real 5678 * mode, need an HW IRQ number mapped in the XICS IRQ domain. 5679 */ 5680 host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq); 5681 irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data); 5682 5683 if (i == pimap->n_mapped) 5684 pimap->n_mapped++; 5685 5686 if (xics_on_xive()) 5687 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq); 5688 else 5689 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq); 5690 if (rc) 5691 irq_map->r_hwirq = 0; 5692 5693 mutex_unlock(&kvm->lock); 5694 5695 return 0; 5696 } 5697 5698 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5699 { 5700 struct irq_desc *desc; 5701 struct kvmppc_passthru_irqmap *pimap; 5702 int i, rc = 0; 5703 5704 if (!kvm_irq_bypass) 5705 return 0; 5706 5707 desc = irq_to_desc(host_irq); 5708 if (!desc) 5709 return -EIO; 5710 5711 mutex_lock(&kvm->lock); 5712 if (!kvm->arch.pimap) 5713 goto unlock; 5714 5715 pimap = kvm->arch.pimap; 5716 5717 for (i = 0; i < pimap->n_mapped; i++) { 5718 if (guest_gsi == pimap->mapped[i].v_hwirq) 5719 break; 5720 } 5721 5722 if (i == pimap->n_mapped) { 5723 mutex_unlock(&kvm->lock); 5724 return -ENODEV; 5725 } 5726 5727 if (xics_on_xive()) 5728 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq); 5729 else 5730 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5731 5732 /* invalidate the entry (what to do on error from the above ?) */ 5733 pimap->mapped[i].r_hwirq = 0; 5734 5735 /* 5736 * We don't free this structure even when the count goes to 5737 * zero. The structure is freed when we destroy the VM. 5738 */ 5739 unlock: 5740 mutex_unlock(&kvm->lock); 5741 return rc; 5742 } 5743 5744 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5745 struct irq_bypass_producer *prod) 5746 { 5747 int ret = 0; 5748 struct kvm_kernel_irqfd *irqfd = 5749 container_of(cons, struct kvm_kernel_irqfd, consumer); 5750 5751 irqfd->producer = prod; 5752 5753 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5754 if (ret) 5755 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5756 prod->irq, irqfd->gsi, ret); 5757 5758 return ret; 5759 } 5760 5761 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5762 struct irq_bypass_producer *prod) 5763 { 5764 int ret; 5765 struct kvm_kernel_irqfd *irqfd = 5766 container_of(cons, struct kvm_kernel_irqfd, consumer); 5767 5768 irqfd->producer = NULL; 5769 5770 /* 5771 * When producer of consumer is unregistered, we change back to 5772 * default external interrupt handling mode - KVM real mode 5773 * will switch back to host. 5774 */ 5775 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5776 if (ret) 5777 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5778 prod->irq, irqfd->gsi, ret); 5779 } 5780 #endif 5781 5782 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5783 unsigned int ioctl, unsigned long arg) 5784 { 5785 struct kvm *kvm __maybe_unused = filp->private_data; 5786 void __user *argp = (void __user *)arg; 5787 long r; 5788 5789 switch (ioctl) { 5790 5791 case KVM_PPC_ALLOCATE_HTAB: { 5792 u32 htab_order; 5793 5794 /* If we're a nested hypervisor, we currently only support radix */ 5795 if (kvmhv_on_pseries()) { 5796 r = -EOPNOTSUPP; 5797 break; 5798 } 5799 5800 r = -EFAULT; 5801 if (get_user(htab_order, (u32 __user *)argp)) 5802 break; 5803 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5804 if (r) 5805 break; 5806 r = 0; 5807 break; 5808 } 5809 5810 case KVM_PPC_GET_HTAB_FD: { 5811 struct kvm_get_htab_fd ghf; 5812 5813 r = -EFAULT; 5814 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5815 break; 5816 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5817 break; 5818 } 5819 5820 case KVM_PPC_RESIZE_HPT_PREPARE: { 5821 struct kvm_ppc_resize_hpt rhpt; 5822 5823 r = -EFAULT; 5824 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5825 break; 5826 5827 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5828 break; 5829 } 5830 5831 case KVM_PPC_RESIZE_HPT_COMMIT: { 5832 struct kvm_ppc_resize_hpt rhpt; 5833 5834 r = -EFAULT; 5835 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5836 break; 5837 5838 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5839 break; 5840 } 5841 5842 default: 5843 r = -ENOTTY; 5844 } 5845 5846 return r; 5847 } 5848 5849 /* 5850 * List of hcall numbers to enable by default. 5851 * For compatibility with old userspace, we enable by default 5852 * all hcalls that were implemented before the hcall-enabling 5853 * facility was added. Note this list should not include H_RTAS. 5854 */ 5855 static unsigned int default_hcall_list[] = { 5856 H_REMOVE, 5857 H_ENTER, 5858 H_READ, 5859 H_PROTECT, 5860 H_BULK_REMOVE, 5861 #ifdef CONFIG_SPAPR_TCE_IOMMU 5862 H_GET_TCE, 5863 H_PUT_TCE, 5864 #endif 5865 H_SET_DABR, 5866 H_SET_XDABR, 5867 H_CEDE, 5868 H_PROD, 5869 H_CONFER, 5870 H_REGISTER_VPA, 5871 #ifdef CONFIG_KVM_XICS 5872 H_EOI, 5873 H_CPPR, 5874 H_IPI, 5875 H_IPOLL, 5876 H_XIRR, 5877 H_XIRR_X, 5878 #endif 5879 0 5880 }; 5881 5882 static void init_default_hcalls(void) 5883 { 5884 int i; 5885 unsigned int hcall; 5886 5887 for (i = 0; default_hcall_list[i]; ++i) { 5888 hcall = default_hcall_list[i]; 5889 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5890 __set_bit(hcall / 4, default_enabled_hcalls); 5891 } 5892 } 5893 5894 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5895 { 5896 unsigned long lpcr; 5897 int radix; 5898 int err; 5899 5900 /* If not on a POWER9, reject it */ 5901 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5902 return -ENODEV; 5903 5904 /* If any unknown flags set, reject it */ 5905 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5906 return -EINVAL; 5907 5908 /* GR (guest radix) bit in process_table field must match */ 5909 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5910 if (!!(cfg->process_table & PATB_GR) != radix) 5911 return -EINVAL; 5912 5913 /* Process table size field must be reasonable, i.e. <= 24 */ 5914 if ((cfg->process_table & PRTS_MASK) > 24) 5915 return -EINVAL; 5916 5917 /* We can change a guest to/from radix now, if the host is radix */ 5918 if (radix && !radix_enabled()) 5919 return -EINVAL; 5920 5921 /* If we're a nested hypervisor, we currently only support radix */ 5922 if (kvmhv_on_pseries() && !radix) 5923 return -EINVAL; 5924 5925 mutex_lock(&kvm->arch.mmu_setup_lock); 5926 if (radix != kvm_is_radix(kvm)) { 5927 if (kvm->arch.mmu_ready) { 5928 kvm->arch.mmu_ready = 0; 5929 /* order mmu_ready vs. vcpus_running */ 5930 smp_mb(); 5931 if (atomic_read(&kvm->arch.vcpus_running)) { 5932 kvm->arch.mmu_ready = 1; 5933 err = -EBUSY; 5934 goto out_unlock; 5935 } 5936 } 5937 if (radix) 5938 err = kvmppc_switch_mmu_to_radix(kvm); 5939 else 5940 err = kvmppc_switch_mmu_to_hpt(kvm); 5941 if (err) 5942 goto out_unlock; 5943 } 5944 5945 kvm->arch.process_table = cfg->process_table; 5946 kvmppc_setup_partition_table(kvm); 5947 5948 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5949 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5950 err = 0; 5951 5952 out_unlock: 5953 mutex_unlock(&kvm->arch.mmu_setup_lock); 5954 return err; 5955 } 5956 5957 static int kvmhv_enable_nested(struct kvm *kvm) 5958 { 5959 if (!nested) 5960 return -EPERM; 5961 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5962 return -ENODEV; 5963 if (!radix_enabled()) 5964 return -ENODEV; 5965 5966 /* kvm == NULL means the caller is testing if the capability exists */ 5967 if (kvm) 5968 kvm->arch.nested_enable = true; 5969 return 0; 5970 } 5971 5972 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5973 int size) 5974 { 5975 int rc = -EINVAL; 5976 5977 if (kvmhv_vcpu_is_radix(vcpu)) { 5978 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5979 5980 if (rc > 0) 5981 rc = -EINVAL; 5982 } 5983 5984 /* For now quadrants are the only way to access nested guest memory */ 5985 if (rc && vcpu->arch.nested) 5986 rc = -EAGAIN; 5987 5988 return rc; 5989 } 5990 5991 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5992 int size) 5993 { 5994 int rc = -EINVAL; 5995 5996 if (kvmhv_vcpu_is_radix(vcpu)) { 5997 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5998 5999 if (rc > 0) 6000 rc = -EINVAL; 6001 } 6002 6003 /* For now quadrants are the only way to access nested guest memory */ 6004 if (rc && vcpu->arch.nested) 6005 rc = -EAGAIN; 6006 6007 return rc; 6008 } 6009 6010 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 6011 { 6012 unpin_vpa(kvm, vpa); 6013 vpa->gpa = 0; 6014 vpa->pinned_addr = NULL; 6015 vpa->dirty = false; 6016 vpa->update_pending = 0; 6017 } 6018 6019 /* 6020 * Enable a guest to become a secure VM, or test whether 6021 * that could be enabled. 6022 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is 6023 * tested (kvm == NULL) or enabled (kvm != NULL). 6024 */ 6025 static int kvmhv_enable_svm(struct kvm *kvm) 6026 { 6027 if (!kvmppc_uvmem_available()) 6028 return -EINVAL; 6029 if (kvm) 6030 kvm->arch.svm_enabled = 1; 6031 return 0; 6032 } 6033 6034 /* 6035 * IOCTL handler to turn off secure mode of guest 6036 * 6037 * - Release all device pages 6038 * - Issue ucall to terminate the guest on the UV side 6039 * - Unpin the VPA pages. 6040 * - Reinit the partition scoped page tables 6041 */ 6042 static int kvmhv_svm_off(struct kvm *kvm) 6043 { 6044 struct kvm_vcpu *vcpu; 6045 int mmu_was_ready; 6046 int srcu_idx; 6047 int ret = 0; 6048 unsigned long i; 6049 6050 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 6051 return ret; 6052 6053 mutex_lock(&kvm->arch.mmu_setup_lock); 6054 mmu_was_ready = kvm->arch.mmu_ready; 6055 if (kvm->arch.mmu_ready) { 6056 kvm->arch.mmu_ready = 0; 6057 /* order mmu_ready vs. vcpus_running */ 6058 smp_mb(); 6059 if (atomic_read(&kvm->arch.vcpus_running)) { 6060 kvm->arch.mmu_ready = 1; 6061 ret = -EBUSY; 6062 goto out; 6063 } 6064 } 6065 6066 srcu_idx = srcu_read_lock(&kvm->srcu); 6067 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6068 struct kvm_memory_slot *memslot; 6069 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 6070 int bkt; 6071 6072 if (!slots) 6073 continue; 6074 6075 kvm_for_each_memslot(memslot, bkt, slots) { 6076 kvmppc_uvmem_drop_pages(memslot, kvm, true); 6077 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 6078 } 6079 } 6080 srcu_read_unlock(&kvm->srcu, srcu_idx); 6081 6082 ret = uv_svm_terminate(kvm->arch.lpid); 6083 if (ret != U_SUCCESS) { 6084 ret = -EINVAL; 6085 goto out; 6086 } 6087 6088 /* 6089 * When secure guest is reset, all the guest pages are sent 6090 * to UV via UV_PAGE_IN before the non-boot vcpus get a 6091 * chance to run and unpin their VPA pages. Unpinning of all 6092 * VPA pages is done here explicitly so that VPA pages 6093 * can be migrated to the secure side. 6094 * 6095 * This is required to for the secure SMP guest to reboot 6096 * correctly. 6097 */ 6098 kvm_for_each_vcpu(i, vcpu, kvm) { 6099 spin_lock(&vcpu->arch.vpa_update_lock); 6100 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 6101 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 6102 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 6103 spin_unlock(&vcpu->arch.vpa_update_lock); 6104 } 6105 6106 kvmppc_setup_partition_table(kvm); 6107 kvm->arch.secure_guest = 0; 6108 kvm->arch.mmu_ready = mmu_was_ready; 6109 out: 6110 mutex_unlock(&kvm->arch.mmu_setup_lock); 6111 return ret; 6112 } 6113 6114 static int kvmhv_enable_dawr1(struct kvm *kvm) 6115 { 6116 if (!cpu_has_feature(CPU_FTR_DAWR1)) 6117 return -ENODEV; 6118 6119 /* kvm == NULL means the caller is testing if the capability exists */ 6120 if (kvm) 6121 kvm->arch.dawr1_enabled = true; 6122 return 0; 6123 } 6124 6125 static bool kvmppc_hash_v3_possible(void) 6126 { 6127 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 6128 return false; 6129 6130 if (!cpu_has_feature(CPU_FTR_HVMODE)) 6131 return false; 6132 6133 /* 6134 * POWER9 chips before version 2.02 can't have some threads in 6135 * HPT mode and some in radix mode on the same core. 6136 */ 6137 if (radix_enabled()) { 6138 unsigned int pvr = mfspr(SPRN_PVR); 6139 if ((pvr >> 16) == PVR_POWER9 && 6140 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 6141 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 6142 return false; 6143 } 6144 6145 return true; 6146 } 6147 6148 static struct kvmppc_ops kvm_ops_hv = { 6149 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 6150 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 6151 .get_one_reg = kvmppc_get_one_reg_hv, 6152 .set_one_reg = kvmppc_set_one_reg_hv, 6153 .vcpu_load = kvmppc_core_vcpu_load_hv, 6154 .vcpu_put = kvmppc_core_vcpu_put_hv, 6155 .inject_interrupt = kvmppc_inject_interrupt_hv, 6156 .set_msr = kvmppc_set_msr_hv, 6157 .vcpu_run = kvmppc_vcpu_run_hv, 6158 .vcpu_create = kvmppc_core_vcpu_create_hv, 6159 .vcpu_free = kvmppc_core_vcpu_free_hv, 6160 .check_requests = kvmppc_core_check_requests_hv, 6161 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 6162 .flush_memslot = kvmppc_core_flush_memslot_hv, 6163 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 6164 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 6165 .unmap_gfn_range = kvm_unmap_gfn_range_hv, 6166 .age_gfn = kvm_age_gfn_hv, 6167 .test_age_gfn = kvm_test_age_gfn_hv, 6168 .set_spte_gfn = kvm_set_spte_gfn_hv, 6169 .free_memslot = kvmppc_core_free_memslot_hv, 6170 .init_vm = kvmppc_core_init_vm_hv, 6171 .destroy_vm = kvmppc_core_destroy_vm_hv, 6172 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 6173 .emulate_op = kvmppc_core_emulate_op_hv, 6174 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 6175 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 6176 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 6177 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 6178 .hcall_implemented = kvmppc_hcall_impl_hv, 6179 #ifdef CONFIG_KVM_XICS 6180 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 6181 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 6182 #endif 6183 .configure_mmu = kvmhv_configure_mmu, 6184 .get_rmmu_info = kvmhv_get_rmmu_info, 6185 .set_smt_mode = kvmhv_set_smt_mode, 6186 .enable_nested = kvmhv_enable_nested, 6187 .load_from_eaddr = kvmhv_load_from_eaddr, 6188 .store_to_eaddr = kvmhv_store_to_eaddr, 6189 .enable_svm = kvmhv_enable_svm, 6190 .svm_off = kvmhv_svm_off, 6191 .enable_dawr1 = kvmhv_enable_dawr1, 6192 .hash_v3_possible = kvmppc_hash_v3_possible, 6193 .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv, 6194 .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv, 6195 }; 6196 6197 static int kvm_init_subcore_bitmap(void) 6198 { 6199 int i, j; 6200 int nr_cores = cpu_nr_cores(); 6201 struct sibling_subcore_state *sibling_subcore_state; 6202 6203 for (i = 0; i < nr_cores; i++) { 6204 int first_cpu = i * threads_per_core; 6205 int node = cpu_to_node(first_cpu); 6206 6207 /* Ignore if it is already allocated. */ 6208 if (paca_ptrs[first_cpu]->sibling_subcore_state) 6209 continue; 6210 6211 sibling_subcore_state = 6212 kzalloc_node(sizeof(struct sibling_subcore_state), 6213 GFP_KERNEL, node); 6214 if (!sibling_subcore_state) 6215 return -ENOMEM; 6216 6217 6218 for (j = 0; j < threads_per_core; j++) { 6219 int cpu = first_cpu + j; 6220 6221 paca_ptrs[cpu]->sibling_subcore_state = 6222 sibling_subcore_state; 6223 } 6224 } 6225 return 0; 6226 } 6227 6228 static int kvmppc_radix_possible(void) 6229 { 6230 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 6231 } 6232 6233 static int kvmppc_book3s_init_hv(void) 6234 { 6235 int r; 6236 6237 if (!tlbie_capable) { 6238 pr_err("KVM-HV: Host does not support TLBIE\n"); 6239 return -ENODEV; 6240 } 6241 6242 /* 6243 * FIXME!! Do we need to check on all cpus ? 6244 */ 6245 r = kvmppc_core_check_processor_compat_hv(); 6246 if (r < 0) 6247 return -ENODEV; 6248 6249 r = kvmhv_nested_init(); 6250 if (r) 6251 return r; 6252 6253 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 6254 r = kvm_init_subcore_bitmap(); 6255 if (r) 6256 goto err; 6257 } 6258 6259 /* 6260 * We need a way of accessing the XICS interrupt controller, 6261 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 6262 * indirectly, via OPAL. 6263 */ 6264 #ifdef CONFIG_SMP 6265 if (!xics_on_xive() && !kvmhv_on_pseries() && 6266 !local_paca->kvm_hstate.xics_phys) { 6267 struct device_node *np; 6268 6269 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 6270 if (!np) { 6271 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 6272 r = -ENODEV; 6273 goto err; 6274 } 6275 /* presence of intc confirmed - node can be dropped again */ 6276 of_node_put(np); 6277 } 6278 #endif 6279 6280 init_default_hcalls(); 6281 6282 init_vcore_lists(); 6283 6284 r = kvmppc_mmu_hv_init(); 6285 if (r) 6286 goto err; 6287 6288 if (kvmppc_radix_possible()) { 6289 r = kvmppc_radix_init(); 6290 if (r) 6291 goto err; 6292 } 6293 6294 r = kvmppc_uvmem_init(); 6295 if (r < 0) { 6296 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 6297 return r; 6298 } 6299 6300 kvm_ops_hv.owner = THIS_MODULE; 6301 kvmppc_hv_ops = &kvm_ops_hv; 6302 6303 return 0; 6304 6305 err: 6306 kvmhv_nested_exit(); 6307 kvmppc_radix_exit(); 6308 6309 return r; 6310 } 6311 6312 static void kvmppc_book3s_exit_hv(void) 6313 { 6314 kvmppc_uvmem_free(); 6315 kvmppc_free_host_rm_ops(); 6316 if (kvmppc_radix_possible()) 6317 kvmppc_radix_exit(); 6318 kvmppc_hv_ops = NULL; 6319 kvmhv_nested_exit(); 6320 } 6321 6322 module_init(kvmppc_book3s_init_hv); 6323 module_exit(kvmppc_book3s_exit_hv); 6324 MODULE_LICENSE("GPL"); 6325 MODULE_ALIAS_MISCDEV(KVM_MINOR); 6326 MODULE_ALIAS("devname:kvm"); 6327