1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 #include <linux/irqdomain.h> 46 47 #include <asm/ftrace.h> 48 #include <asm/reg.h> 49 #include <asm/ppc-opcode.h> 50 #include <asm/asm-prototypes.h> 51 #include <asm/archrandom.h> 52 #include <asm/debug.h> 53 #include <asm/disassemble.h> 54 #include <asm/cputable.h> 55 #include <asm/cacheflush.h> 56 #include <linux/uaccess.h> 57 #include <asm/interrupt.h> 58 #include <asm/io.h> 59 #include <asm/kvm_ppc.h> 60 #include <asm/kvm_book3s.h> 61 #include <asm/mmu_context.h> 62 #include <asm/lppaca.h> 63 #include <asm/pmc.h> 64 #include <asm/processor.h> 65 #include <asm/cputhreads.h> 66 #include <asm/page.h> 67 #include <asm/hvcall.h> 68 #include <asm/switch_to.h> 69 #include <asm/smp.h> 70 #include <asm/dbell.h> 71 #include <asm/hmi.h> 72 #include <asm/pnv-pci.h> 73 #include <asm/mmu.h> 74 #include <asm/opal.h> 75 #include <asm/xics.h> 76 #include <asm/xive.h> 77 #include <asm/hw_breakpoint.h> 78 #include <asm/kvm_book3s_uvmem.h> 79 #include <asm/ultravisor.h> 80 #include <asm/dtl.h> 81 #include <asm/plpar_wrappers.h> 82 83 #include "book3s.h" 84 #include "book3s_hv.h" 85 86 #define CREATE_TRACE_POINTS 87 #include "trace_hv.h" 88 89 /* #define EXIT_DEBUG */ 90 /* #define EXIT_DEBUG_SIMPLE */ 91 /* #define EXIT_DEBUG_INT */ 92 93 /* Used to indicate that a guest page fault needs to be handled */ 94 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 95 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 96 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 97 98 /* Used as a "null" value for timebase values */ 99 #define TB_NIL (~(u64)0) 100 101 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 102 103 static int dynamic_mt_modes = 6; 104 module_param(dynamic_mt_modes, int, 0644); 105 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 106 static int target_smt_mode; 107 module_param(target_smt_mode, int, 0644); 108 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 109 110 static bool one_vm_per_core; 111 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 112 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)"); 113 114 #ifdef CONFIG_KVM_XICS 115 static const struct kernel_param_ops module_param_ops = { 116 .set = param_set_int, 117 .get = param_get_int, 118 }; 119 120 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 121 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 122 123 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 124 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 125 #endif 126 127 /* If set, guests are allowed to create and control nested guests */ 128 static bool nested = true; 129 module_param(nested, bool, S_IRUGO | S_IWUSR); 130 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 131 132 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 133 134 /* 135 * RWMR values for POWER8. These control the rate at which PURR 136 * and SPURR count and should be set according to the number of 137 * online threads in the vcore being run. 138 */ 139 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 140 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 141 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 142 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 143 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 144 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 145 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 146 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 147 148 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 149 RWMR_RPA_P8_1THREAD, 150 RWMR_RPA_P8_1THREAD, 151 RWMR_RPA_P8_2THREAD, 152 RWMR_RPA_P8_3THREAD, 153 RWMR_RPA_P8_4THREAD, 154 RWMR_RPA_P8_5THREAD, 155 RWMR_RPA_P8_6THREAD, 156 RWMR_RPA_P8_7THREAD, 157 RWMR_RPA_P8_8THREAD, 158 }; 159 160 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 161 int *ip) 162 { 163 int i = *ip; 164 struct kvm_vcpu *vcpu; 165 166 while (++i < MAX_SMT_THREADS) { 167 vcpu = READ_ONCE(vc->runnable_threads[i]); 168 if (vcpu) { 169 *ip = i; 170 return vcpu; 171 } 172 } 173 return NULL; 174 } 175 176 /* Used to traverse the list of runnable threads for a given vcore */ 177 #define for_each_runnable_thread(i, vcpu, vc) \ 178 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 179 180 static bool kvmppc_ipi_thread(int cpu) 181 { 182 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 183 184 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 185 if (kvmhv_on_pseries()) 186 return false; 187 188 /* On POWER9 we can use msgsnd to IPI any cpu */ 189 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 190 msg |= get_hard_smp_processor_id(cpu); 191 smp_mb(); 192 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 193 return true; 194 } 195 196 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 197 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 198 preempt_disable(); 199 if (cpu_first_thread_sibling(cpu) == 200 cpu_first_thread_sibling(smp_processor_id())) { 201 msg |= cpu_thread_in_core(cpu); 202 smp_mb(); 203 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 204 preempt_enable(); 205 return true; 206 } 207 preempt_enable(); 208 } 209 210 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 211 if (cpu >= 0 && cpu < nr_cpu_ids) { 212 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 213 xics_wake_cpu(cpu); 214 return true; 215 } 216 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 217 return true; 218 } 219 #endif 220 221 return false; 222 } 223 224 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 225 { 226 int cpu; 227 struct rcuwait *waitp; 228 229 /* 230 * rcuwait_wake_up contains smp_mb() which orders prior stores that 231 * create pending work vs below loads of cpu fields. The other side 232 * is the barrier in vcpu run that orders setting the cpu fields vs 233 * testing for pending work. 234 */ 235 236 waitp = kvm_arch_vcpu_get_wait(vcpu); 237 if (rcuwait_wake_up(waitp)) 238 ++vcpu->stat.generic.halt_wakeup; 239 240 cpu = READ_ONCE(vcpu->arch.thread_cpu); 241 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 242 return; 243 244 /* CPU points to the first thread of the core */ 245 cpu = vcpu->cpu; 246 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 247 smp_send_reschedule(cpu); 248 } 249 250 /* 251 * We use the vcpu_load/put functions to measure stolen time. 252 * Stolen time is counted as time when either the vcpu is able to 253 * run as part of a virtual core, but the task running the vcore 254 * is preempted or sleeping, or when the vcpu needs something done 255 * in the kernel by the task running the vcpu, but that task is 256 * preempted or sleeping. Those two things have to be counted 257 * separately, since one of the vcpu tasks will take on the job 258 * of running the core, and the other vcpu tasks in the vcore will 259 * sleep waiting for it to do that, but that sleep shouldn't count 260 * as stolen time. 261 * 262 * Hence we accumulate stolen time when the vcpu can run as part of 263 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 264 * needs its task to do other things in the kernel (for example, 265 * service a page fault) in busy_stolen. We don't accumulate 266 * stolen time for a vcore when it is inactive, or for a vcpu 267 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 268 * a misnomer; it means that the vcpu task is not executing in 269 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 270 * the kernel. We don't have any way of dividing up that time 271 * between time that the vcpu is genuinely stopped, time that 272 * the task is actively working on behalf of the vcpu, and time 273 * that the task is preempted, so we don't count any of it as 274 * stolen. 275 * 276 * Updates to busy_stolen are protected by arch.tbacct_lock; 277 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 278 * lock. The stolen times are measured in units of timebase ticks. 279 * (Note that the != TB_NIL checks below are purely defensive; 280 * they should never fail.) 281 */ 282 283 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb) 284 { 285 unsigned long flags; 286 287 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 288 289 spin_lock_irqsave(&vc->stoltb_lock, flags); 290 vc->preempt_tb = tb; 291 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 292 } 293 294 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb) 295 { 296 unsigned long flags; 297 298 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 299 300 spin_lock_irqsave(&vc->stoltb_lock, flags); 301 if (vc->preempt_tb != TB_NIL) { 302 vc->stolen_tb += tb - vc->preempt_tb; 303 vc->preempt_tb = TB_NIL; 304 } 305 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 306 } 307 308 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 309 { 310 struct kvmppc_vcore *vc = vcpu->arch.vcore; 311 unsigned long flags; 312 u64 now; 313 314 if (cpu_has_feature(CPU_FTR_ARCH_300)) 315 return; 316 317 now = mftb(); 318 319 /* 320 * We can test vc->runner without taking the vcore lock, 321 * because only this task ever sets vc->runner to this 322 * vcpu, and once it is set to this vcpu, only this task 323 * ever sets it to NULL. 324 */ 325 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 326 kvmppc_core_end_stolen(vc, now); 327 328 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 329 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 330 vcpu->arch.busy_preempt != TB_NIL) { 331 vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt; 332 vcpu->arch.busy_preempt = TB_NIL; 333 } 334 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 335 } 336 337 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 338 { 339 struct kvmppc_vcore *vc = vcpu->arch.vcore; 340 unsigned long flags; 341 u64 now; 342 343 if (cpu_has_feature(CPU_FTR_ARCH_300)) 344 return; 345 346 now = mftb(); 347 348 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 349 kvmppc_core_start_stolen(vc, now); 350 351 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 352 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 353 vcpu->arch.busy_preempt = now; 354 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 355 } 356 357 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 358 { 359 vcpu->arch.pvr = pvr; 360 } 361 362 /* Dummy value used in computing PCR value below */ 363 #define PCR_ARCH_31 (PCR_ARCH_300 << 1) 364 365 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 366 { 367 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 368 struct kvmppc_vcore *vc = vcpu->arch.vcore; 369 370 /* We can (emulate) our own architecture version and anything older */ 371 if (cpu_has_feature(CPU_FTR_ARCH_31)) 372 host_pcr_bit = PCR_ARCH_31; 373 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 374 host_pcr_bit = PCR_ARCH_300; 375 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 376 host_pcr_bit = PCR_ARCH_207; 377 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 378 host_pcr_bit = PCR_ARCH_206; 379 else 380 host_pcr_bit = PCR_ARCH_205; 381 382 /* Determine lowest PCR bit needed to run guest in given PVR level */ 383 guest_pcr_bit = host_pcr_bit; 384 if (arch_compat) { 385 switch (arch_compat) { 386 case PVR_ARCH_205: 387 guest_pcr_bit = PCR_ARCH_205; 388 break; 389 case PVR_ARCH_206: 390 case PVR_ARCH_206p: 391 guest_pcr_bit = PCR_ARCH_206; 392 break; 393 case PVR_ARCH_207: 394 guest_pcr_bit = PCR_ARCH_207; 395 break; 396 case PVR_ARCH_300: 397 guest_pcr_bit = PCR_ARCH_300; 398 break; 399 case PVR_ARCH_31: 400 guest_pcr_bit = PCR_ARCH_31; 401 break; 402 default: 403 return -EINVAL; 404 } 405 } 406 407 /* Check requested PCR bits don't exceed our capabilities */ 408 if (guest_pcr_bit > host_pcr_bit) 409 return -EINVAL; 410 411 spin_lock(&vc->lock); 412 vc->arch_compat = arch_compat; 413 /* 414 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 415 * Also set all reserved PCR bits 416 */ 417 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 418 spin_unlock(&vc->lock); 419 420 return 0; 421 } 422 423 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 424 { 425 int r; 426 427 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 428 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 429 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 430 for (r = 0; r < 16; ++r) 431 pr_err("r%2d = %.16lx r%d = %.16lx\n", 432 r, kvmppc_get_gpr(vcpu, r), 433 r+16, kvmppc_get_gpr(vcpu, r+16)); 434 pr_err("ctr = %.16lx lr = %.16lx\n", 435 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 436 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 437 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 438 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 439 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 440 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 441 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 442 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 443 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 444 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 445 pr_err("fault dar = %.16lx dsisr = %.8x\n", 446 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 447 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 448 for (r = 0; r < vcpu->arch.slb_max; ++r) 449 pr_err(" ESID = %.16llx VSID = %.16llx\n", 450 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 451 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 452 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 453 vcpu->arch.last_inst); 454 } 455 456 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 457 { 458 return kvm_get_vcpu_by_id(kvm, id); 459 } 460 461 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 462 { 463 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 464 vpa->yield_count = cpu_to_be32(1); 465 } 466 467 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 468 unsigned long addr, unsigned long len) 469 { 470 /* check address is cacheline aligned */ 471 if (addr & (L1_CACHE_BYTES - 1)) 472 return -EINVAL; 473 spin_lock(&vcpu->arch.vpa_update_lock); 474 if (v->next_gpa != addr || v->len != len) { 475 v->next_gpa = addr; 476 v->len = addr ? len : 0; 477 v->update_pending = 1; 478 } 479 spin_unlock(&vcpu->arch.vpa_update_lock); 480 return 0; 481 } 482 483 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 484 struct reg_vpa { 485 u32 dummy; 486 union { 487 __be16 hword; 488 __be32 word; 489 } length; 490 }; 491 492 static int vpa_is_registered(struct kvmppc_vpa *vpap) 493 { 494 if (vpap->update_pending) 495 return vpap->next_gpa != 0; 496 return vpap->pinned_addr != NULL; 497 } 498 499 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 500 unsigned long flags, 501 unsigned long vcpuid, unsigned long vpa) 502 { 503 struct kvm *kvm = vcpu->kvm; 504 unsigned long len, nb; 505 void *va; 506 struct kvm_vcpu *tvcpu; 507 int err; 508 int subfunc; 509 struct kvmppc_vpa *vpap; 510 511 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 512 if (!tvcpu) 513 return H_PARAMETER; 514 515 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 516 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 517 subfunc == H_VPA_REG_SLB) { 518 /* Registering new area - address must be cache-line aligned */ 519 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 520 return H_PARAMETER; 521 522 /* convert logical addr to kernel addr and read length */ 523 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 524 if (va == NULL) 525 return H_PARAMETER; 526 if (subfunc == H_VPA_REG_VPA) 527 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 528 else 529 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 530 kvmppc_unpin_guest_page(kvm, va, vpa, false); 531 532 /* Check length */ 533 if (len > nb || len < sizeof(struct reg_vpa)) 534 return H_PARAMETER; 535 } else { 536 vpa = 0; 537 len = 0; 538 } 539 540 err = H_PARAMETER; 541 vpap = NULL; 542 spin_lock(&tvcpu->arch.vpa_update_lock); 543 544 switch (subfunc) { 545 case H_VPA_REG_VPA: /* register VPA */ 546 /* 547 * The size of our lppaca is 1kB because of the way we align 548 * it for the guest to avoid crossing a 4kB boundary. We only 549 * use 640 bytes of the structure though, so we should accept 550 * clients that set a size of 640. 551 */ 552 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 553 if (len < sizeof(struct lppaca)) 554 break; 555 vpap = &tvcpu->arch.vpa; 556 err = 0; 557 break; 558 559 case H_VPA_REG_DTL: /* register DTL */ 560 if (len < sizeof(struct dtl_entry)) 561 break; 562 len -= len % sizeof(struct dtl_entry); 563 564 /* Check that they have previously registered a VPA */ 565 err = H_RESOURCE; 566 if (!vpa_is_registered(&tvcpu->arch.vpa)) 567 break; 568 569 vpap = &tvcpu->arch.dtl; 570 err = 0; 571 break; 572 573 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 574 /* Check that they have previously registered a VPA */ 575 err = H_RESOURCE; 576 if (!vpa_is_registered(&tvcpu->arch.vpa)) 577 break; 578 579 vpap = &tvcpu->arch.slb_shadow; 580 err = 0; 581 break; 582 583 case H_VPA_DEREG_VPA: /* deregister VPA */ 584 /* Check they don't still have a DTL or SLB buf registered */ 585 err = H_RESOURCE; 586 if (vpa_is_registered(&tvcpu->arch.dtl) || 587 vpa_is_registered(&tvcpu->arch.slb_shadow)) 588 break; 589 590 vpap = &tvcpu->arch.vpa; 591 err = 0; 592 break; 593 594 case H_VPA_DEREG_DTL: /* deregister DTL */ 595 vpap = &tvcpu->arch.dtl; 596 err = 0; 597 break; 598 599 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 600 vpap = &tvcpu->arch.slb_shadow; 601 err = 0; 602 break; 603 } 604 605 if (vpap) { 606 vpap->next_gpa = vpa; 607 vpap->len = len; 608 vpap->update_pending = 1; 609 } 610 611 spin_unlock(&tvcpu->arch.vpa_update_lock); 612 613 return err; 614 } 615 616 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 617 { 618 struct kvm *kvm = vcpu->kvm; 619 void *va; 620 unsigned long nb; 621 unsigned long gpa; 622 623 /* 624 * We need to pin the page pointed to by vpap->next_gpa, 625 * but we can't call kvmppc_pin_guest_page under the lock 626 * as it does get_user_pages() and down_read(). So we 627 * have to drop the lock, pin the page, then get the lock 628 * again and check that a new area didn't get registered 629 * in the meantime. 630 */ 631 for (;;) { 632 gpa = vpap->next_gpa; 633 spin_unlock(&vcpu->arch.vpa_update_lock); 634 va = NULL; 635 nb = 0; 636 if (gpa) 637 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 638 spin_lock(&vcpu->arch.vpa_update_lock); 639 if (gpa == vpap->next_gpa) 640 break; 641 /* sigh... unpin that one and try again */ 642 if (va) 643 kvmppc_unpin_guest_page(kvm, va, gpa, false); 644 } 645 646 vpap->update_pending = 0; 647 if (va && nb < vpap->len) { 648 /* 649 * If it's now too short, it must be that userspace 650 * has changed the mappings underlying guest memory, 651 * so unregister the region. 652 */ 653 kvmppc_unpin_guest_page(kvm, va, gpa, false); 654 va = NULL; 655 } 656 if (vpap->pinned_addr) 657 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 658 vpap->dirty); 659 vpap->gpa = gpa; 660 vpap->pinned_addr = va; 661 vpap->dirty = false; 662 if (va) 663 vpap->pinned_end = va + vpap->len; 664 } 665 666 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 667 { 668 if (!(vcpu->arch.vpa.update_pending || 669 vcpu->arch.slb_shadow.update_pending || 670 vcpu->arch.dtl.update_pending)) 671 return; 672 673 spin_lock(&vcpu->arch.vpa_update_lock); 674 if (vcpu->arch.vpa.update_pending) { 675 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 676 if (vcpu->arch.vpa.pinned_addr) 677 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 678 } 679 if (vcpu->arch.dtl.update_pending) { 680 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 681 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 682 vcpu->arch.dtl_index = 0; 683 } 684 if (vcpu->arch.slb_shadow.update_pending) 685 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 686 spin_unlock(&vcpu->arch.vpa_update_lock); 687 } 688 689 /* 690 * Return the accumulated stolen time for the vcore up until `now'. 691 * The caller should hold the vcore lock. 692 */ 693 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 694 { 695 u64 p; 696 unsigned long flags; 697 698 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 699 700 spin_lock_irqsave(&vc->stoltb_lock, flags); 701 p = vc->stolen_tb; 702 if (vc->vcore_state != VCORE_INACTIVE && 703 vc->preempt_tb != TB_NIL) 704 p += now - vc->preempt_tb; 705 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 706 return p; 707 } 708 709 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 710 unsigned int pcpu, u64 now, 711 unsigned long stolen) 712 { 713 struct dtl_entry *dt; 714 struct lppaca *vpa; 715 716 dt = vcpu->arch.dtl_ptr; 717 vpa = vcpu->arch.vpa.pinned_addr; 718 719 if (!dt || !vpa) 720 return; 721 722 dt->dispatch_reason = 7; 723 dt->preempt_reason = 0; 724 dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid); 725 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 726 dt->ready_to_enqueue_time = 0; 727 dt->waiting_to_ready_time = 0; 728 dt->timebase = cpu_to_be64(now); 729 dt->fault_addr = 0; 730 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 731 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 732 733 ++dt; 734 if (dt == vcpu->arch.dtl.pinned_end) 735 dt = vcpu->arch.dtl.pinned_addr; 736 vcpu->arch.dtl_ptr = dt; 737 /* order writing *dt vs. writing vpa->dtl_idx */ 738 smp_wmb(); 739 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 740 vcpu->arch.dtl.dirty = true; 741 } 742 743 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 744 struct kvmppc_vcore *vc) 745 { 746 unsigned long stolen; 747 unsigned long core_stolen; 748 u64 now; 749 unsigned long flags; 750 751 now = mftb(); 752 753 core_stolen = vcore_stolen_time(vc, now); 754 stolen = core_stolen - vcpu->arch.stolen_logged; 755 vcpu->arch.stolen_logged = core_stolen; 756 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 757 stolen += vcpu->arch.busy_stolen; 758 vcpu->arch.busy_stolen = 0; 759 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 760 761 __kvmppc_create_dtl_entry(vcpu, vc->pcpu, now + vc->tb_offset, stolen); 762 } 763 764 /* See if there is a doorbell interrupt pending for a vcpu */ 765 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 766 { 767 int thr; 768 struct kvmppc_vcore *vc; 769 770 if (vcpu->arch.doorbell_request) 771 return true; 772 if (cpu_has_feature(CPU_FTR_ARCH_300)) 773 return false; 774 /* 775 * Ensure that the read of vcore->dpdes comes after the read 776 * of vcpu->doorbell_request. This barrier matches the 777 * smp_wmb() in kvmppc_guest_entry_inject(). 778 */ 779 smp_rmb(); 780 vc = vcpu->arch.vcore; 781 thr = vcpu->vcpu_id - vc->first_vcpuid; 782 return !!(vc->dpdes & (1 << thr)); 783 } 784 785 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 786 { 787 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 788 return true; 789 if ((!vcpu->arch.vcore->arch_compat) && 790 cpu_has_feature(CPU_FTR_ARCH_207S)) 791 return true; 792 return false; 793 } 794 795 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 796 unsigned long resource, unsigned long value1, 797 unsigned long value2) 798 { 799 switch (resource) { 800 case H_SET_MODE_RESOURCE_SET_CIABR: 801 if (!kvmppc_power8_compatible(vcpu)) 802 return H_P2; 803 if (value2) 804 return H_P4; 805 if (mflags) 806 return H_UNSUPPORTED_FLAG_START; 807 /* Guests can't breakpoint the hypervisor */ 808 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 809 return H_P3; 810 vcpu->arch.ciabr = value1; 811 return H_SUCCESS; 812 case H_SET_MODE_RESOURCE_SET_DAWR0: 813 if (!kvmppc_power8_compatible(vcpu)) 814 return H_P2; 815 if (!ppc_breakpoint_available()) 816 return H_P2; 817 if (mflags) 818 return H_UNSUPPORTED_FLAG_START; 819 if (value2 & DABRX_HYP) 820 return H_P4; 821 vcpu->arch.dawr0 = value1; 822 vcpu->arch.dawrx0 = value2; 823 return H_SUCCESS; 824 case H_SET_MODE_RESOURCE_SET_DAWR1: 825 if (!kvmppc_power8_compatible(vcpu)) 826 return H_P2; 827 if (!ppc_breakpoint_available()) 828 return H_P2; 829 if (!cpu_has_feature(CPU_FTR_DAWR1)) 830 return H_P2; 831 if (!vcpu->kvm->arch.dawr1_enabled) 832 return H_FUNCTION; 833 if (mflags) 834 return H_UNSUPPORTED_FLAG_START; 835 if (value2 & DABRX_HYP) 836 return H_P4; 837 vcpu->arch.dawr1 = value1; 838 vcpu->arch.dawrx1 = value2; 839 return H_SUCCESS; 840 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 841 /* 842 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved. 843 * Keep this in synch with kvmppc_filter_guest_lpcr_hv. 844 */ 845 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 846 kvmhv_vcpu_is_radix(vcpu) && mflags == 3) 847 return H_UNSUPPORTED_FLAG_START; 848 return H_TOO_HARD; 849 default: 850 return H_TOO_HARD; 851 } 852 } 853 854 /* Copy guest memory in place - must reside within a single memslot */ 855 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 856 unsigned long len) 857 { 858 struct kvm_memory_slot *to_memslot = NULL; 859 struct kvm_memory_slot *from_memslot = NULL; 860 unsigned long to_addr, from_addr; 861 int r; 862 863 /* Get HPA for from address */ 864 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 865 if (!from_memslot) 866 return -EFAULT; 867 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 868 << PAGE_SHIFT)) 869 return -EINVAL; 870 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 871 if (kvm_is_error_hva(from_addr)) 872 return -EFAULT; 873 from_addr |= (from & (PAGE_SIZE - 1)); 874 875 /* Get HPA for to address */ 876 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 877 if (!to_memslot) 878 return -EFAULT; 879 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 880 << PAGE_SHIFT)) 881 return -EINVAL; 882 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 883 if (kvm_is_error_hva(to_addr)) 884 return -EFAULT; 885 to_addr |= (to & (PAGE_SIZE - 1)); 886 887 /* Perform copy */ 888 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 889 len); 890 if (r) 891 return -EFAULT; 892 mark_page_dirty(kvm, to >> PAGE_SHIFT); 893 return 0; 894 } 895 896 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 897 unsigned long dest, unsigned long src) 898 { 899 u64 pg_sz = SZ_4K; /* 4K page size */ 900 u64 pg_mask = SZ_4K - 1; 901 int ret; 902 903 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 904 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 905 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 906 return H_PARAMETER; 907 908 /* dest (and src if copy_page flag set) must be page aligned */ 909 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 910 return H_PARAMETER; 911 912 /* zero and/or copy the page as determined by the flags */ 913 if (flags & H_COPY_PAGE) { 914 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 915 if (ret < 0) 916 return H_PARAMETER; 917 } else if (flags & H_ZERO_PAGE) { 918 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 919 if (ret < 0) 920 return H_PARAMETER; 921 } 922 923 /* We can ignore the remaining flags */ 924 925 return H_SUCCESS; 926 } 927 928 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 929 { 930 struct kvmppc_vcore *vcore = target->arch.vcore; 931 932 /* 933 * We expect to have been called by the real mode handler 934 * (kvmppc_rm_h_confer()) which would have directly returned 935 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 936 * have useful work to do and should not confer) so we don't 937 * recheck that here. 938 * 939 * In the case of the P9 single vcpu per vcore case, the real 940 * mode handler is not called but no other threads are in the 941 * source vcore. 942 */ 943 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 944 spin_lock(&vcore->lock); 945 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 946 vcore->vcore_state != VCORE_INACTIVE && 947 vcore->runner) 948 target = vcore->runner; 949 spin_unlock(&vcore->lock); 950 } 951 952 return kvm_vcpu_yield_to(target); 953 } 954 955 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 956 { 957 int yield_count = 0; 958 struct lppaca *lppaca; 959 960 spin_lock(&vcpu->arch.vpa_update_lock); 961 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 962 if (lppaca) 963 yield_count = be32_to_cpu(lppaca->yield_count); 964 spin_unlock(&vcpu->arch.vpa_update_lock); 965 return yield_count; 966 } 967 968 /* 969 * H_RPT_INVALIDATE hcall handler for nested guests. 970 * 971 * Handles only nested process-scoped invalidation requests in L0. 972 */ 973 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu) 974 { 975 unsigned long type = kvmppc_get_gpr(vcpu, 6); 976 unsigned long pid, pg_sizes, start, end; 977 978 /* 979 * The partition-scoped invalidations aren't handled here in L0. 980 */ 981 if (type & H_RPTI_TYPE_NESTED) 982 return RESUME_HOST; 983 984 pid = kvmppc_get_gpr(vcpu, 4); 985 pg_sizes = kvmppc_get_gpr(vcpu, 7); 986 start = kvmppc_get_gpr(vcpu, 8); 987 end = kvmppc_get_gpr(vcpu, 9); 988 989 do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid, 990 type, pg_sizes, start, end); 991 992 kvmppc_set_gpr(vcpu, 3, H_SUCCESS); 993 return RESUME_GUEST; 994 } 995 996 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu, 997 unsigned long id, unsigned long target, 998 unsigned long type, unsigned long pg_sizes, 999 unsigned long start, unsigned long end) 1000 { 1001 if (!kvm_is_radix(vcpu->kvm)) 1002 return H_UNSUPPORTED; 1003 1004 if (end < start) 1005 return H_P5; 1006 1007 /* 1008 * Partition-scoped invalidation for nested guests. 1009 */ 1010 if (type & H_RPTI_TYPE_NESTED) { 1011 if (!nesting_enabled(vcpu->kvm)) 1012 return H_FUNCTION; 1013 1014 /* Support only cores as target */ 1015 if (target != H_RPTI_TARGET_CMMU) 1016 return H_P2; 1017 1018 return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes, 1019 start, end); 1020 } 1021 1022 /* 1023 * Process-scoped invalidation for L1 guests. 1024 */ 1025 do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid, 1026 type, pg_sizes, start, end); 1027 return H_SUCCESS; 1028 } 1029 1030 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 1031 { 1032 struct kvm *kvm = vcpu->kvm; 1033 unsigned long req = kvmppc_get_gpr(vcpu, 3); 1034 unsigned long target, ret = H_SUCCESS; 1035 int yield_count; 1036 struct kvm_vcpu *tvcpu; 1037 int idx, rc; 1038 1039 if (req <= MAX_HCALL_OPCODE && 1040 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 1041 return RESUME_HOST; 1042 1043 switch (req) { 1044 case H_REMOVE: 1045 ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4), 1046 kvmppc_get_gpr(vcpu, 5), 1047 kvmppc_get_gpr(vcpu, 6)); 1048 if (ret == H_TOO_HARD) 1049 return RESUME_HOST; 1050 break; 1051 case H_ENTER: 1052 ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 1053 kvmppc_get_gpr(vcpu, 5), 1054 kvmppc_get_gpr(vcpu, 6), 1055 kvmppc_get_gpr(vcpu, 7)); 1056 if (ret == H_TOO_HARD) 1057 return RESUME_HOST; 1058 break; 1059 case H_READ: 1060 ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4), 1061 kvmppc_get_gpr(vcpu, 5)); 1062 if (ret == H_TOO_HARD) 1063 return RESUME_HOST; 1064 break; 1065 case H_CLEAR_MOD: 1066 ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4), 1067 kvmppc_get_gpr(vcpu, 5)); 1068 if (ret == H_TOO_HARD) 1069 return RESUME_HOST; 1070 break; 1071 case H_CLEAR_REF: 1072 ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4), 1073 kvmppc_get_gpr(vcpu, 5)); 1074 if (ret == H_TOO_HARD) 1075 return RESUME_HOST; 1076 break; 1077 case H_PROTECT: 1078 ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4), 1079 kvmppc_get_gpr(vcpu, 5), 1080 kvmppc_get_gpr(vcpu, 6)); 1081 if (ret == H_TOO_HARD) 1082 return RESUME_HOST; 1083 break; 1084 case H_BULK_REMOVE: 1085 ret = kvmppc_h_bulk_remove(vcpu); 1086 if (ret == H_TOO_HARD) 1087 return RESUME_HOST; 1088 break; 1089 1090 case H_CEDE: 1091 break; 1092 case H_PROD: 1093 target = kvmppc_get_gpr(vcpu, 4); 1094 tvcpu = kvmppc_find_vcpu(kvm, target); 1095 if (!tvcpu) { 1096 ret = H_PARAMETER; 1097 break; 1098 } 1099 tvcpu->arch.prodded = 1; 1100 smp_mb(); /* This orders prodded store vs ceded load */ 1101 if (tvcpu->arch.ceded) 1102 kvmppc_fast_vcpu_kick_hv(tvcpu); 1103 break; 1104 case H_CONFER: 1105 target = kvmppc_get_gpr(vcpu, 4); 1106 if (target == -1) 1107 break; 1108 tvcpu = kvmppc_find_vcpu(kvm, target); 1109 if (!tvcpu) { 1110 ret = H_PARAMETER; 1111 break; 1112 } 1113 yield_count = kvmppc_get_gpr(vcpu, 5); 1114 if (kvmppc_get_yield_count(tvcpu) != yield_count) 1115 break; 1116 kvm_arch_vcpu_yield_to(tvcpu); 1117 break; 1118 case H_REGISTER_VPA: 1119 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 1120 kvmppc_get_gpr(vcpu, 5), 1121 kvmppc_get_gpr(vcpu, 6)); 1122 break; 1123 case H_RTAS: 1124 if (list_empty(&kvm->arch.rtas_tokens)) 1125 return RESUME_HOST; 1126 1127 idx = srcu_read_lock(&kvm->srcu); 1128 rc = kvmppc_rtas_hcall(vcpu); 1129 srcu_read_unlock(&kvm->srcu, idx); 1130 1131 if (rc == -ENOENT) 1132 return RESUME_HOST; 1133 else if (rc == 0) 1134 break; 1135 1136 /* Send the error out to userspace via KVM_RUN */ 1137 return rc; 1138 case H_LOGICAL_CI_LOAD: 1139 ret = kvmppc_h_logical_ci_load(vcpu); 1140 if (ret == H_TOO_HARD) 1141 return RESUME_HOST; 1142 break; 1143 case H_LOGICAL_CI_STORE: 1144 ret = kvmppc_h_logical_ci_store(vcpu); 1145 if (ret == H_TOO_HARD) 1146 return RESUME_HOST; 1147 break; 1148 case H_SET_MODE: 1149 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 1150 kvmppc_get_gpr(vcpu, 5), 1151 kvmppc_get_gpr(vcpu, 6), 1152 kvmppc_get_gpr(vcpu, 7)); 1153 if (ret == H_TOO_HARD) 1154 return RESUME_HOST; 1155 break; 1156 case H_XIRR: 1157 case H_CPPR: 1158 case H_EOI: 1159 case H_IPI: 1160 case H_IPOLL: 1161 case H_XIRR_X: 1162 if (kvmppc_xics_enabled(vcpu)) { 1163 if (xics_on_xive()) { 1164 ret = H_NOT_AVAILABLE; 1165 return RESUME_GUEST; 1166 } 1167 ret = kvmppc_xics_hcall(vcpu, req); 1168 break; 1169 } 1170 return RESUME_HOST; 1171 case H_SET_DABR: 1172 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1173 break; 1174 case H_SET_XDABR: 1175 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1176 kvmppc_get_gpr(vcpu, 5)); 1177 break; 1178 #ifdef CONFIG_SPAPR_TCE_IOMMU 1179 case H_GET_TCE: 1180 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1181 kvmppc_get_gpr(vcpu, 5)); 1182 if (ret == H_TOO_HARD) 1183 return RESUME_HOST; 1184 break; 1185 case H_PUT_TCE: 1186 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1187 kvmppc_get_gpr(vcpu, 5), 1188 kvmppc_get_gpr(vcpu, 6)); 1189 if (ret == H_TOO_HARD) 1190 return RESUME_HOST; 1191 break; 1192 case H_PUT_TCE_INDIRECT: 1193 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1194 kvmppc_get_gpr(vcpu, 5), 1195 kvmppc_get_gpr(vcpu, 6), 1196 kvmppc_get_gpr(vcpu, 7)); 1197 if (ret == H_TOO_HARD) 1198 return RESUME_HOST; 1199 break; 1200 case H_STUFF_TCE: 1201 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1202 kvmppc_get_gpr(vcpu, 5), 1203 kvmppc_get_gpr(vcpu, 6), 1204 kvmppc_get_gpr(vcpu, 7)); 1205 if (ret == H_TOO_HARD) 1206 return RESUME_HOST; 1207 break; 1208 #endif 1209 case H_RANDOM: 1210 if (!arch_get_random_seed_longs(&vcpu->arch.regs.gpr[4], 1)) 1211 ret = H_HARDWARE; 1212 break; 1213 case H_RPT_INVALIDATE: 1214 ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4), 1215 kvmppc_get_gpr(vcpu, 5), 1216 kvmppc_get_gpr(vcpu, 6), 1217 kvmppc_get_gpr(vcpu, 7), 1218 kvmppc_get_gpr(vcpu, 8), 1219 kvmppc_get_gpr(vcpu, 9)); 1220 break; 1221 1222 case H_SET_PARTITION_TABLE: 1223 ret = H_FUNCTION; 1224 if (nesting_enabled(kvm)) 1225 ret = kvmhv_set_partition_table(vcpu); 1226 break; 1227 case H_ENTER_NESTED: 1228 ret = H_FUNCTION; 1229 if (!nesting_enabled(kvm)) 1230 break; 1231 ret = kvmhv_enter_nested_guest(vcpu); 1232 if (ret == H_INTERRUPT) { 1233 kvmppc_set_gpr(vcpu, 3, 0); 1234 vcpu->arch.hcall_needed = 0; 1235 return -EINTR; 1236 } else if (ret == H_TOO_HARD) { 1237 kvmppc_set_gpr(vcpu, 3, 0); 1238 vcpu->arch.hcall_needed = 0; 1239 return RESUME_HOST; 1240 } 1241 break; 1242 case H_TLB_INVALIDATE: 1243 ret = H_FUNCTION; 1244 if (nesting_enabled(kvm)) 1245 ret = kvmhv_do_nested_tlbie(vcpu); 1246 break; 1247 case H_COPY_TOFROM_GUEST: 1248 ret = H_FUNCTION; 1249 if (nesting_enabled(kvm)) 1250 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1251 break; 1252 case H_PAGE_INIT: 1253 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1254 kvmppc_get_gpr(vcpu, 5), 1255 kvmppc_get_gpr(vcpu, 6)); 1256 break; 1257 case H_SVM_PAGE_IN: 1258 ret = H_UNSUPPORTED; 1259 if (kvmppc_get_srr1(vcpu) & MSR_S) 1260 ret = kvmppc_h_svm_page_in(kvm, 1261 kvmppc_get_gpr(vcpu, 4), 1262 kvmppc_get_gpr(vcpu, 5), 1263 kvmppc_get_gpr(vcpu, 6)); 1264 break; 1265 case H_SVM_PAGE_OUT: 1266 ret = H_UNSUPPORTED; 1267 if (kvmppc_get_srr1(vcpu) & MSR_S) 1268 ret = kvmppc_h_svm_page_out(kvm, 1269 kvmppc_get_gpr(vcpu, 4), 1270 kvmppc_get_gpr(vcpu, 5), 1271 kvmppc_get_gpr(vcpu, 6)); 1272 break; 1273 case H_SVM_INIT_START: 1274 ret = H_UNSUPPORTED; 1275 if (kvmppc_get_srr1(vcpu) & MSR_S) 1276 ret = kvmppc_h_svm_init_start(kvm); 1277 break; 1278 case H_SVM_INIT_DONE: 1279 ret = H_UNSUPPORTED; 1280 if (kvmppc_get_srr1(vcpu) & MSR_S) 1281 ret = kvmppc_h_svm_init_done(kvm); 1282 break; 1283 case H_SVM_INIT_ABORT: 1284 /* 1285 * Even if that call is made by the Ultravisor, the SSR1 value 1286 * is the guest context one, with the secure bit clear as it has 1287 * not yet been secured. So we can't check it here. 1288 * Instead the kvm->arch.secure_guest flag is checked inside 1289 * kvmppc_h_svm_init_abort(). 1290 */ 1291 ret = kvmppc_h_svm_init_abort(kvm); 1292 break; 1293 1294 default: 1295 return RESUME_HOST; 1296 } 1297 WARN_ON_ONCE(ret == H_TOO_HARD); 1298 kvmppc_set_gpr(vcpu, 3, ret); 1299 vcpu->arch.hcall_needed = 0; 1300 return RESUME_GUEST; 1301 } 1302 1303 /* 1304 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall 1305 * handlers in book3s_hv_rmhandlers.S. 1306 * 1307 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1308 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1309 */ 1310 static void kvmppc_cede(struct kvm_vcpu *vcpu) 1311 { 1312 vcpu->arch.shregs.msr |= MSR_EE; 1313 vcpu->arch.ceded = 1; 1314 smp_mb(); 1315 if (vcpu->arch.prodded) { 1316 vcpu->arch.prodded = 0; 1317 smp_mb(); 1318 vcpu->arch.ceded = 0; 1319 } 1320 } 1321 1322 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1323 { 1324 switch (cmd) { 1325 case H_CEDE: 1326 case H_PROD: 1327 case H_CONFER: 1328 case H_REGISTER_VPA: 1329 case H_SET_MODE: 1330 #ifdef CONFIG_SPAPR_TCE_IOMMU 1331 case H_GET_TCE: 1332 case H_PUT_TCE: 1333 case H_PUT_TCE_INDIRECT: 1334 case H_STUFF_TCE: 1335 #endif 1336 case H_LOGICAL_CI_LOAD: 1337 case H_LOGICAL_CI_STORE: 1338 #ifdef CONFIG_KVM_XICS 1339 case H_XIRR: 1340 case H_CPPR: 1341 case H_EOI: 1342 case H_IPI: 1343 case H_IPOLL: 1344 case H_XIRR_X: 1345 #endif 1346 case H_PAGE_INIT: 1347 case H_RPT_INVALIDATE: 1348 return 1; 1349 } 1350 1351 /* See if it's in the real-mode table */ 1352 return kvmppc_hcall_impl_hv_realmode(cmd); 1353 } 1354 1355 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) 1356 { 1357 u32 last_inst; 1358 1359 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1360 EMULATE_DONE) { 1361 /* 1362 * Fetch failed, so return to guest and 1363 * try executing it again. 1364 */ 1365 return RESUME_GUEST; 1366 } 1367 1368 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1369 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 1370 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); 1371 return RESUME_HOST; 1372 } else { 1373 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1374 return RESUME_GUEST; 1375 } 1376 } 1377 1378 static void do_nothing(void *x) 1379 { 1380 } 1381 1382 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1383 { 1384 int thr, cpu, pcpu, nthreads; 1385 struct kvm_vcpu *v; 1386 unsigned long dpdes; 1387 1388 nthreads = vcpu->kvm->arch.emul_smt_mode; 1389 dpdes = 0; 1390 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1391 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1392 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1393 if (!v) 1394 continue; 1395 /* 1396 * If the vcpu is currently running on a physical cpu thread, 1397 * interrupt it in order to pull it out of the guest briefly, 1398 * which will update its vcore->dpdes value. 1399 */ 1400 pcpu = READ_ONCE(v->cpu); 1401 if (pcpu >= 0) 1402 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1403 if (kvmppc_doorbell_pending(v)) 1404 dpdes |= 1 << thr; 1405 } 1406 return dpdes; 1407 } 1408 1409 /* 1410 * On POWER9, emulate doorbell-related instructions in order to 1411 * give the guest the illusion of running on a multi-threaded core. 1412 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1413 * and mfspr DPDES. 1414 */ 1415 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1416 { 1417 u32 inst, rb, thr; 1418 unsigned long arg; 1419 struct kvm *kvm = vcpu->kvm; 1420 struct kvm_vcpu *tvcpu; 1421 1422 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1423 return RESUME_GUEST; 1424 if (get_op(inst) != 31) 1425 return EMULATE_FAIL; 1426 rb = get_rb(inst); 1427 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1428 switch (get_xop(inst)) { 1429 case OP_31_XOP_MSGSNDP: 1430 arg = kvmppc_get_gpr(vcpu, rb); 1431 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1432 break; 1433 arg &= 0x7f; 1434 if (arg >= kvm->arch.emul_smt_mode) 1435 break; 1436 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1437 if (!tvcpu) 1438 break; 1439 if (!tvcpu->arch.doorbell_request) { 1440 tvcpu->arch.doorbell_request = 1; 1441 kvmppc_fast_vcpu_kick_hv(tvcpu); 1442 } 1443 break; 1444 case OP_31_XOP_MSGCLRP: 1445 arg = kvmppc_get_gpr(vcpu, rb); 1446 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1447 break; 1448 vcpu->arch.vcore->dpdes = 0; 1449 vcpu->arch.doorbell_request = 0; 1450 break; 1451 case OP_31_XOP_MFSPR: 1452 switch (get_sprn(inst)) { 1453 case SPRN_TIR: 1454 arg = thr; 1455 break; 1456 case SPRN_DPDES: 1457 arg = kvmppc_read_dpdes(vcpu); 1458 break; 1459 default: 1460 return EMULATE_FAIL; 1461 } 1462 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1463 break; 1464 default: 1465 return EMULATE_FAIL; 1466 } 1467 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1468 return RESUME_GUEST; 1469 } 1470 1471 /* 1472 * If the lppaca had pmcregs_in_use clear when we exited the guest, then 1473 * HFSCR_PM is cleared for next entry. If the guest then tries to access 1474 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM 1475 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and 1476 * allow the guest access to continue. 1477 */ 1478 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu) 1479 { 1480 if (!(vcpu->arch.hfscr_permitted & HFSCR_PM)) 1481 return EMULATE_FAIL; 1482 1483 vcpu->arch.hfscr |= HFSCR_PM; 1484 1485 return RESUME_GUEST; 1486 } 1487 1488 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu) 1489 { 1490 if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB)) 1491 return EMULATE_FAIL; 1492 1493 vcpu->arch.hfscr |= HFSCR_EBB; 1494 1495 return RESUME_GUEST; 1496 } 1497 1498 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu) 1499 { 1500 if (!(vcpu->arch.hfscr_permitted & HFSCR_TM)) 1501 return EMULATE_FAIL; 1502 1503 vcpu->arch.hfscr |= HFSCR_TM; 1504 1505 return RESUME_GUEST; 1506 } 1507 1508 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, 1509 struct task_struct *tsk) 1510 { 1511 struct kvm_run *run = vcpu->run; 1512 int r = RESUME_HOST; 1513 1514 vcpu->stat.sum_exits++; 1515 1516 /* 1517 * This can happen if an interrupt occurs in the last stages 1518 * of guest entry or the first stages of guest exit (i.e. after 1519 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1520 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1521 * That can happen due to a bug, or due to a machine check 1522 * occurring at just the wrong time. 1523 */ 1524 if (vcpu->arch.shregs.msr & MSR_HV) { 1525 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1526 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1527 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1528 vcpu->arch.shregs.msr); 1529 kvmppc_dump_regs(vcpu); 1530 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1531 run->hw.hardware_exit_reason = vcpu->arch.trap; 1532 return RESUME_HOST; 1533 } 1534 run->exit_reason = KVM_EXIT_UNKNOWN; 1535 run->ready_for_interrupt_injection = 1; 1536 switch (vcpu->arch.trap) { 1537 /* We're good on these - the host merely wanted to get our attention */ 1538 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1539 WARN_ON_ONCE(1); /* Should never happen */ 1540 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1541 fallthrough; 1542 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1543 vcpu->stat.dec_exits++; 1544 r = RESUME_GUEST; 1545 break; 1546 case BOOK3S_INTERRUPT_EXTERNAL: 1547 case BOOK3S_INTERRUPT_H_DOORBELL: 1548 case BOOK3S_INTERRUPT_H_VIRT: 1549 vcpu->stat.ext_intr_exits++; 1550 r = RESUME_GUEST; 1551 break; 1552 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1553 case BOOK3S_INTERRUPT_HMI: 1554 case BOOK3S_INTERRUPT_PERFMON: 1555 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1556 r = RESUME_GUEST; 1557 break; 1558 case BOOK3S_INTERRUPT_MACHINE_CHECK: { 1559 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1560 DEFAULT_RATELIMIT_BURST); 1561 /* 1562 * Print the MCE event to host console. Ratelimit so the guest 1563 * can't flood the host log. 1564 */ 1565 if (__ratelimit(&rs)) 1566 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true); 1567 1568 /* 1569 * If the guest can do FWNMI, exit to userspace so it can 1570 * deliver a FWNMI to the guest. 1571 * Otherwise we synthesize a machine check for the guest 1572 * so that it knows that the machine check occurred. 1573 */ 1574 if (!vcpu->kvm->arch.fwnmi_enabled) { 1575 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1576 kvmppc_core_queue_machine_check(vcpu, flags); 1577 r = RESUME_GUEST; 1578 break; 1579 } 1580 1581 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1582 run->exit_reason = KVM_EXIT_NMI; 1583 run->hw.hardware_exit_reason = vcpu->arch.trap; 1584 /* Clear out the old NMI status from run->flags */ 1585 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1586 /* Now set the NMI status */ 1587 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1588 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1589 else 1590 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1591 1592 r = RESUME_HOST; 1593 break; 1594 } 1595 case BOOK3S_INTERRUPT_PROGRAM: 1596 { 1597 ulong flags; 1598 /* 1599 * Normally program interrupts are delivered directly 1600 * to the guest by the hardware, but we can get here 1601 * as a result of a hypervisor emulation interrupt 1602 * (e40) getting turned into a 700 by BML RTAS. 1603 */ 1604 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1605 kvmppc_core_queue_program(vcpu, flags); 1606 r = RESUME_GUEST; 1607 break; 1608 } 1609 case BOOK3S_INTERRUPT_SYSCALL: 1610 { 1611 int i; 1612 1613 if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) { 1614 /* 1615 * Guest userspace executed sc 1. This can only be 1616 * reached by the P9 path because the old path 1617 * handles this case in realmode hcall handlers. 1618 */ 1619 if (!kvmhv_vcpu_is_radix(vcpu)) { 1620 /* 1621 * A guest could be running PR KVM, so this 1622 * may be a PR KVM hcall. It must be reflected 1623 * to the guest kernel as a sc interrupt. 1624 */ 1625 kvmppc_core_queue_syscall(vcpu); 1626 } else { 1627 /* 1628 * Radix guests can not run PR KVM or nested HV 1629 * hash guests which might run PR KVM, so this 1630 * is always a privilege fault. Send a program 1631 * check to guest kernel. 1632 */ 1633 kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV); 1634 } 1635 r = RESUME_GUEST; 1636 break; 1637 } 1638 1639 /* 1640 * hcall - gather args and set exit_reason. This will next be 1641 * handled by kvmppc_pseries_do_hcall which may be able to deal 1642 * with it and resume guest, or may punt to userspace. 1643 */ 1644 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1645 for (i = 0; i < 9; ++i) 1646 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1647 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1648 vcpu->arch.hcall_needed = 1; 1649 r = RESUME_HOST; 1650 break; 1651 } 1652 /* 1653 * We get these next two if the guest accesses a page which it thinks 1654 * it has mapped but which is not actually present, either because 1655 * it is for an emulated I/O device or because the corresonding 1656 * host page has been paged out. 1657 * 1658 * Any other HDSI/HISI interrupts have been handled already for P7/8 1659 * guests. For POWER9 hash guests not using rmhandlers, basic hash 1660 * fault handling is done here. 1661 */ 1662 case BOOK3S_INTERRUPT_H_DATA_STORAGE: { 1663 unsigned long vsid; 1664 long err; 1665 1666 if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) && 1667 unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) { 1668 r = RESUME_GUEST; /* Just retry if it's the canary */ 1669 break; 1670 } 1671 1672 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1673 /* 1674 * Radix doesn't require anything, and pre-ISAv3.0 hash 1675 * already attempted to handle this in rmhandlers. The 1676 * hash fault handling below is v3 only (it uses ASDR 1677 * via fault_gpa). 1678 */ 1679 r = RESUME_PAGE_FAULT; 1680 break; 1681 } 1682 1683 if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) { 1684 kvmppc_core_queue_data_storage(vcpu, 1685 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1686 r = RESUME_GUEST; 1687 break; 1688 } 1689 1690 if (!(vcpu->arch.shregs.msr & MSR_DR)) 1691 vsid = vcpu->kvm->arch.vrma_slb_v; 1692 else 1693 vsid = vcpu->arch.fault_gpa; 1694 1695 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1696 vsid, vcpu->arch.fault_dsisr, true); 1697 if (err == 0) { 1698 r = RESUME_GUEST; 1699 } else if (err == -1 || err == -2) { 1700 r = RESUME_PAGE_FAULT; 1701 } else { 1702 kvmppc_core_queue_data_storage(vcpu, 1703 vcpu->arch.fault_dar, err); 1704 r = RESUME_GUEST; 1705 } 1706 break; 1707 } 1708 case BOOK3S_INTERRUPT_H_INST_STORAGE: { 1709 unsigned long vsid; 1710 long err; 1711 1712 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1713 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1714 DSISR_SRR1_MATCH_64S; 1715 if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) { 1716 /* 1717 * Radix doesn't require anything, and pre-ISAv3.0 hash 1718 * already attempted to handle this in rmhandlers. The 1719 * hash fault handling below is v3 only (it uses ASDR 1720 * via fault_gpa). 1721 */ 1722 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1723 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1724 r = RESUME_PAGE_FAULT; 1725 break; 1726 } 1727 1728 if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) { 1729 kvmppc_core_queue_inst_storage(vcpu, 1730 vcpu->arch.fault_dsisr); 1731 r = RESUME_GUEST; 1732 break; 1733 } 1734 1735 if (!(vcpu->arch.shregs.msr & MSR_IR)) 1736 vsid = vcpu->kvm->arch.vrma_slb_v; 1737 else 1738 vsid = vcpu->arch.fault_gpa; 1739 1740 err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar, 1741 vsid, vcpu->arch.fault_dsisr, false); 1742 if (err == 0) { 1743 r = RESUME_GUEST; 1744 } else if (err == -1) { 1745 r = RESUME_PAGE_FAULT; 1746 } else { 1747 kvmppc_core_queue_inst_storage(vcpu, err); 1748 r = RESUME_GUEST; 1749 } 1750 break; 1751 } 1752 1753 /* 1754 * This occurs if the guest executes an illegal instruction. 1755 * If the guest debug is disabled, generate a program interrupt 1756 * to the guest. If guest debug is enabled, we need to check 1757 * whether the instruction is a software breakpoint instruction. 1758 * Accordingly return to Guest or Host. 1759 */ 1760 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1761 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1762 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1763 swab32(vcpu->arch.emul_inst) : 1764 vcpu->arch.emul_inst; 1765 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1766 r = kvmppc_emulate_debug_inst(vcpu); 1767 } else { 1768 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1769 r = RESUME_GUEST; 1770 } 1771 break; 1772 1773 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1774 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1775 /* 1776 * This occurs for various TM-related instructions that 1777 * we need to emulate on POWER9 DD2.2. We have already 1778 * handled the cases where the guest was in real-suspend 1779 * mode and was transitioning to transactional state. 1780 */ 1781 r = kvmhv_p9_tm_emulation(vcpu); 1782 if (r != -1) 1783 break; 1784 fallthrough; /* go to facility unavailable handler */ 1785 #endif 1786 1787 /* 1788 * This occurs if the guest (kernel or userspace), does something that 1789 * is prohibited by HFSCR. 1790 * On POWER9, this could be a doorbell instruction that we need 1791 * to emulate. 1792 * Otherwise, we just generate a program interrupt to the guest. 1793 */ 1794 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 1795 u64 cause = vcpu->arch.hfscr >> 56; 1796 1797 r = EMULATE_FAIL; 1798 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 1799 if (cause == FSCR_MSGP_LG) 1800 r = kvmppc_emulate_doorbell_instr(vcpu); 1801 if (cause == FSCR_PM_LG) 1802 r = kvmppc_pmu_unavailable(vcpu); 1803 if (cause == FSCR_EBB_LG) 1804 r = kvmppc_ebb_unavailable(vcpu); 1805 if (cause == FSCR_TM_LG) 1806 r = kvmppc_tm_unavailable(vcpu); 1807 } 1808 if (r == EMULATE_FAIL) { 1809 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1810 r = RESUME_GUEST; 1811 } 1812 break; 1813 } 1814 1815 case BOOK3S_INTERRUPT_HV_RM_HARD: 1816 r = RESUME_PASSTHROUGH; 1817 break; 1818 default: 1819 kvmppc_dump_regs(vcpu); 1820 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1821 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1822 vcpu->arch.shregs.msr); 1823 run->hw.hardware_exit_reason = vcpu->arch.trap; 1824 r = RESUME_HOST; 1825 break; 1826 } 1827 1828 return r; 1829 } 1830 1831 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) 1832 { 1833 int r; 1834 int srcu_idx; 1835 1836 vcpu->stat.sum_exits++; 1837 1838 /* 1839 * This can happen if an interrupt occurs in the last stages 1840 * of guest entry or the first stages of guest exit (i.e. after 1841 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1842 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1843 * That can happen due to a bug, or due to a machine check 1844 * occurring at just the wrong time. 1845 */ 1846 if (vcpu->arch.shregs.msr & MSR_HV) { 1847 pr_emerg("KVM trap in HV mode while nested!\n"); 1848 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1849 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1850 vcpu->arch.shregs.msr); 1851 kvmppc_dump_regs(vcpu); 1852 return RESUME_HOST; 1853 } 1854 switch (vcpu->arch.trap) { 1855 /* We're good on these - the host merely wanted to get our attention */ 1856 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1857 vcpu->stat.dec_exits++; 1858 r = RESUME_GUEST; 1859 break; 1860 case BOOK3S_INTERRUPT_EXTERNAL: 1861 vcpu->stat.ext_intr_exits++; 1862 r = RESUME_HOST; 1863 break; 1864 case BOOK3S_INTERRUPT_H_DOORBELL: 1865 case BOOK3S_INTERRUPT_H_VIRT: 1866 vcpu->stat.ext_intr_exits++; 1867 r = RESUME_GUEST; 1868 break; 1869 /* These need to go to the nested HV */ 1870 case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER: 1871 vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER; 1872 vcpu->stat.dec_exits++; 1873 r = RESUME_HOST; 1874 break; 1875 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1876 case BOOK3S_INTERRUPT_HMI: 1877 case BOOK3S_INTERRUPT_PERFMON: 1878 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1879 r = RESUME_GUEST; 1880 break; 1881 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1882 { 1883 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1884 DEFAULT_RATELIMIT_BURST); 1885 /* Pass the machine check to the L1 guest */ 1886 r = RESUME_HOST; 1887 /* Print the MCE event to host console. */ 1888 if (__ratelimit(&rs)) 1889 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1890 break; 1891 } 1892 /* 1893 * We get these next two if the guest accesses a page which it thinks 1894 * it has mapped but which is not actually present, either because 1895 * it is for an emulated I/O device or because the corresonding 1896 * host page has been paged out. 1897 */ 1898 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1899 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1900 r = kvmhv_nested_page_fault(vcpu); 1901 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1902 break; 1903 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1904 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1905 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1906 DSISR_SRR1_MATCH_64S; 1907 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1908 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1909 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1910 r = kvmhv_nested_page_fault(vcpu); 1911 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1912 break; 1913 1914 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1915 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1916 /* 1917 * This occurs for various TM-related instructions that 1918 * we need to emulate on POWER9 DD2.2. We have already 1919 * handled the cases where the guest was in real-suspend 1920 * mode and was transitioning to transactional state. 1921 */ 1922 r = kvmhv_p9_tm_emulation(vcpu); 1923 if (r != -1) 1924 break; 1925 fallthrough; /* go to facility unavailable handler */ 1926 #endif 1927 1928 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: { 1929 u64 cause = vcpu->arch.hfscr >> 56; 1930 1931 /* 1932 * Only pass HFU interrupts to the L1 if the facility is 1933 * permitted but disabled by the L1's HFSCR, otherwise 1934 * the interrupt does not make sense to the L1 so turn 1935 * it into a HEAI. 1936 */ 1937 if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) || 1938 (vcpu->arch.nested_hfscr & (1UL << cause))) { 1939 vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST; 1940 1941 /* 1942 * If the fetch failed, return to guest and 1943 * try executing it again. 1944 */ 1945 r = kvmppc_get_last_inst(vcpu, INST_GENERIC, 1946 &vcpu->arch.emul_inst); 1947 if (r != EMULATE_DONE) 1948 r = RESUME_GUEST; 1949 else 1950 r = RESUME_HOST; 1951 } else { 1952 r = RESUME_HOST; 1953 } 1954 1955 break; 1956 } 1957 1958 case BOOK3S_INTERRUPT_HV_RM_HARD: 1959 vcpu->arch.trap = 0; 1960 r = RESUME_GUEST; 1961 if (!xics_on_xive()) 1962 kvmppc_xics_rm_complete(vcpu, 0); 1963 break; 1964 case BOOK3S_INTERRUPT_SYSCALL: 1965 { 1966 unsigned long req = kvmppc_get_gpr(vcpu, 3); 1967 1968 /* 1969 * The H_RPT_INVALIDATE hcalls issued by nested 1970 * guests for process-scoped invalidations when 1971 * GTSE=0, are handled here in L0. 1972 */ 1973 if (req == H_RPT_INVALIDATE) { 1974 r = kvmppc_nested_h_rpt_invalidate(vcpu); 1975 break; 1976 } 1977 1978 r = RESUME_HOST; 1979 break; 1980 } 1981 default: 1982 r = RESUME_HOST; 1983 break; 1984 } 1985 1986 return r; 1987 } 1988 1989 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1990 struct kvm_sregs *sregs) 1991 { 1992 int i; 1993 1994 memset(sregs, 0, sizeof(struct kvm_sregs)); 1995 sregs->pvr = vcpu->arch.pvr; 1996 for (i = 0; i < vcpu->arch.slb_max; i++) { 1997 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1998 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1999 } 2000 2001 return 0; 2002 } 2003 2004 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 2005 struct kvm_sregs *sregs) 2006 { 2007 int i, j; 2008 2009 /* Only accept the same PVR as the host's, since we can't spoof it */ 2010 if (sregs->pvr != vcpu->arch.pvr) 2011 return -EINVAL; 2012 2013 j = 0; 2014 for (i = 0; i < vcpu->arch.slb_nr; i++) { 2015 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 2016 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 2017 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 2018 ++j; 2019 } 2020 } 2021 vcpu->arch.slb_max = j; 2022 2023 return 0; 2024 } 2025 2026 /* 2027 * Enforce limits on guest LPCR values based on hardware availability, 2028 * guest configuration, and possibly hypervisor support and security 2029 * concerns. 2030 */ 2031 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr) 2032 { 2033 /* LPCR_TC only applies to HPT guests */ 2034 if (kvm_is_radix(kvm)) 2035 lpcr &= ~LPCR_TC; 2036 2037 /* On POWER8 and above, userspace can modify AIL */ 2038 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2039 lpcr &= ~LPCR_AIL; 2040 if ((lpcr & LPCR_AIL) != LPCR_AIL_3) 2041 lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */ 2042 /* 2043 * On some POWER9s we force AIL off for radix guests to prevent 2044 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to 2045 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to 2046 * be cached, which the host TLB management does not expect. 2047 */ 2048 if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) 2049 lpcr &= ~LPCR_AIL; 2050 2051 /* 2052 * On POWER9, allow userspace to enable large decrementer for the 2053 * guest, whether or not the host has it enabled. 2054 */ 2055 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2056 lpcr &= ~LPCR_LD; 2057 2058 return lpcr; 2059 } 2060 2061 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr) 2062 { 2063 if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) { 2064 WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n", 2065 lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr)); 2066 } 2067 } 2068 2069 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 2070 bool preserve_top32) 2071 { 2072 struct kvm *kvm = vcpu->kvm; 2073 struct kvmppc_vcore *vc = vcpu->arch.vcore; 2074 u64 mask; 2075 2076 spin_lock(&vc->lock); 2077 2078 /* 2079 * Userspace can only modify 2080 * DPFD (default prefetch depth), ILE (interrupt little-endian), 2081 * TC (translation control), AIL (alternate interrupt location), 2082 * LD (large decrementer). 2083 * These are subject to restrictions from kvmppc_filter_lcpr_hv(). 2084 */ 2085 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD; 2086 2087 /* Broken 32-bit version of LPCR must not clear top bits */ 2088 if (preserve_top32) 2089 mask &= 0xFFFFFFFF; 2090 2091 new_lpcr = kvmppc_filter_lpcr_hv(kvm, 2092 (vc->lpcr & ~mask) | (new_lpcr & mask)); 2093 2094 /* 2095 * If ILE (interrupt little-endian) has changed, update the 2096 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 2097 */ 2098 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 2099 struct kvm_vcpu *vcpu; 2100 unsigned long i; 2101 2102 kvm_for_each_vcpu(i, vcpu, kvm) { 2103 if (vcpu->arch.vcore != vc) 2104 continue; 2105 if (new_lpcr & LPCR_ILE) 2106 vcpu->arch.intr_msr |= MSR_LE; 2107 else 2108 vcpu->arch.intr_msr &= ~MSR_LE; 2109 } 2110 } 2111 2112 vc->lpcr = new_lpcr; 2113 2114 spin_unlock(&vc->lock); 2115 } 2116 2117 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2118 union kvmppc_one_reg *val) 2119 { 2120 int r = 0; 2121 long int i; 2122 2123 switch (id) { 2124 case KVM_REG_PPC_DEBUG_INST: 2125 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 2126 break; 2127 case KVM_REG_PPC_HIOR: 2128 *val = get_reg_val(id, 0); 2129 break; 2130 case KVM_REG_PPC_DABR: 2131 *val = get_reg_val(id, vcpu->arch.dabr); 2132 break; 2133 case KVM_REG_PPC_DABRX: 2134 *val = get_reg_val(id, vcpu->arch.dabrx); 2135 break; 2136 case KVM_REG_PPC_DSCR: 2137 *val = get_reg_val(id, vcpu->arch.dscr); 2138 break; 2139 case KVM_REG_PPC_PURR: 2140 *val = get_reg_val(id, vcpu->arch.purr); 2141 break; 2142 case KVM_REG_PPC_SPURR: 2143 *val = get_reg_val(id, vcpu->arch.spurr); 2144 break; 2145 case KVM_REG_PPC_AMR: 2146 *val = get_reg_val(id, vcpu->arch.amr); 2147 break; 2148 case KVM_REG_PPC_UAMOR: 2149 *val = get_reg_val(id, vcpu->arch.uamor); 2150 break; 2151 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2152 i = id - KVM_REG_PPC_MMCR0; 2153 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 2154 break; 2155 case KVM_REG_PPC_MMCR2: 2156 *val = get_reg_val(id, vcpu->arch.mmcr[2]); 2157 break; 2158 case KVM_REG_PPC_MMCRA: 2159 *val = get_reg_val(id, vcpu->arch.mmcra); 2160 break; 2161 case KVM_REG_PPC_MMCRS: 2162 *val = get_reg_val(id, vcpu->arch.mmcrs); 2163 break; 2164 case KVM_REG_PPC_MMCR3: 2165 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 2166 break; 2167 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2168 i = id - KVM_REG_PPC_PMC1; 2169 *val = get_reg_val(id, vcpu->arch.pmc[i]); 2170 break; 2171 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2172 i = id - KVM_REG_PPC_SPMC1; 2173 *val = get_reg_val(id, vcpu->arch.spmc[i]); 2174 break; 2175 case KVM_REG_PPC_SIAR: 2176 *val = get_reg_val(id, vcpu->arch.siar); 2177 break; 2178 case KVM_REG_PPC_SDAR: 2179 *val = get_reg_val(id, vcpu->arch.sdar); 2180 break; 2181 case KVM_REG_PPC_SIER: 2182 *val = get_reg_val(id, vcpu->arch.sier[0]); 2183 break; 2184 case KVM_REG_PPC_SIER2: 2185 *val = get_reg_val(id, vcpu->arch.sier[1]); 2186 break; 2187 case KVM_REG_PPC_SIER3: 2188 *val = get_reg_val(id, vcpu->arch.sier[2]); 2189 break; 2190 case KVM_REG_PPC_IAMR: 2191 *val = get_reg_val(id, vcpu->arch.iamr); 2192 break; 2193 case KVM_REG_PPC_PSPB: 2194 *val = get_reg_val(id, vcpu->arch.pspb); 2195 break; 2196 case KVM_REG_PPC_DPDES: 2197 /* 2198 * On POWER9, where we are emulating msgsndp etc., 2199 * we return 1 bit for each vcpu, which can come from 2200 * either vcore->dpdes or doorbell_request. 2201 * On POWER8, doorbell_request is 0. 2202 */ 2203 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2204 *val = get_reg_val(id, vcpu->arch.doorbell_request); 2205 else 2206 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 2207 break; 2208 case KVM_REG_PPC_VTB: 2209 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 2210 break; 2211 case KVM_REG_PPC_DAWR: 2212 *val = get_reg_val(id, vcpu->arch.dawr0); 2213 break; 2214 case KVM_REG_PPC_DAWRX: 2215 *val = get_reg_val(id, vcpu->arch.dawrx0); 2216 break; 2217 case KVM_REG_PPC_DAWR1: 2218 *val = get_reg_val(id, vcpu->arch.dawr1); 2219 break; 2220 case KVM_REG_PPC_DAWRX1: 2221 *val = get_reg_val(id, vcpu->arch.dawrx1); 2222 break; 2223 case KVM_REG_PPC_CIABR: 2224 *val = get_reg_val(id, vcpu->arch.ciabr); 2225 break; 2226 case KVM_REG_PPC_CSIGR: 2227 *val = get_reg_val(id, vcpu->arch.csigr); 2228 break; 2229 case KVM_REG_PPC_TACR: 2230 *val = get_reg_val(id, vcpu->arch.tacr); 2231 break; 2232 case KVM_REG_PPC_TCSCR: 2233 *val = get_reg_val(id, vcpu->arch.tcscr); 2234 break; 2235 case KVM_REG_PPC_PID: 2236 *val = get_reg_val(id, vcpu->arch.pid); 2237 break; 2238 case KVM_REG_PPC_ACOP: 2239 *val = get_reg_val(id, vcpu->arch.acop); 2240 break; 2241 case KVM_REG_PPC_WORT: 2242 *val = get_reg_val(id, vcpu->arch.wort); 2243 break; 2244 case KVM_REG_PPC_TIDR: 2245 *val = get_reg_val(id, vcpu->arch.tid); 2246 break; 2247 case KVM_REG_PPC_PSSCR: 2248 *val = get_reg_val(id, vcpu->arch.psscr); 2249 break; 2250 case KVM_REG_PPC_VPA_ADDR: 2251 spin_lock(&vcpu->arch.vpa_update_lock); 2252 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 2253 spin_unlock(&vcpu->arch.vpa_update_lock); 2254 break; 2255 case KVM_REG_PPC_VPA_SLB: 2256 spin_lock(&vcpu->arch.vpa_update_lock); 2257 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 2258 val->vpaval.length = vcpu->arch.slb_shadow.len; 2259 spin_unlock(&vcpu->arch.vpa_update_lock); 2260 break; 2261 case KVM_REG_PPC_VPA_DTL: 2262 spin_lock(&vcpu->arch.vpa_update_lock); 2263 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 2264 val->vpaval.length = vcpu->arch.dtl.len; 2265 spin_unlock(&vcpu->arch.vpa_update_lock); 2266 break; 2267 case KVM_REG_PPC_TB_OFFSET: 2268 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 2269 break; 2270 case KVM_REG_PPC_LPCR: 2271 case KVM_REG_PPC_LPCR_64: 2272 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 2273 break; 2274 case KVM_REG_PPC_PPR: 2275 *val = get_reg_val(id, vcpu->arch.ppr); 2276 break; 2277 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2278 case KVM_REG_PPC_TFHAR: 2279 *val = get_reg_val(id, vcpu->arch.tfhar); 2280 break; 2281 case KVM_REG_PPC_TFIAR: 2282 *val = get_reg_val(id, vcpu->arch.tfiar); 2283 break; 2284 case KVM_REG_PPC_TEXASR: 2285 *val = get_reg_val(id, vcpu->arch.texasr); 2286 break; 2287 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2288 i = id - KVM_REG_PPC_TM_GPR0; 2289 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 2290 break; 2291 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2292 { 2293 int j; 2294 i = id - KVM_REG_PPC_TM_VSR0; 2295 if (i < 32) 2296 for (j = 0; j < TS_FPRWIDTH; j++) 2297 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 2298 else { 2299 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2300 val->vval = vcpu->arch.vr_tm.vr[i-32]; 2301 else 2302 r = -ENXIO; 2303 } 2304 break; 2305 } 2306 case KVM_REG_PPC_TM_CR: 2307 *val = get_reg_val(id, vcpu->arch.cr_tm); 2308 break; 2309 case KVM_REG_PPC_TM_XER: 2310 *val = get_reg_val(id, vcpu->arch.xer_tm); 2311 break; 2312 case KVM_REG_PPC_TM_LR: 2313 *val = get_reg_val(id, vcpu->arch.lr_tm); 2314 break; 2315 case KVM_REG_PPC_TM_CTR: 2316 *val = get_reg_val(id, vcpu->arch.ctr_tm); 2317 break; 2318 case KVM_REG_PPC_TM_FPSCR: 2319 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 2320 break; 2321 case KVM_REG_PPC_TM_AMR: 2322 *val = get_reg_val(id, vcpu->arch.amr_tm); 2323 break; 2324 case KVM_REG_PPC_TM_PPR: 2325 *val = get_reg_val(id, vcpu->arch.ppr_tm); 2326 break; 2327 case KVM_REG_PPC_TM_VRSAVE: 2328 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 2329 break; 2330 case KVM_REG_PPC_TM_VSCR: 2331 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2332 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 2333 else 2334 r = -ENXIO; 2335 break; 2336 case KVM_REG_PPC_TM_DSCR: 2337 *val = get_reg_val(id, vcpu->arch.dscr_tm); 2338 break; 2339 case KVM_REG_PPC_TM_TAR: 2340 *val = get_reg_val(id, vcpu->arch.tar_tm); 2341 break; 2342 #endif 2343 case KVM_REG_PPC_ARCH_COMPAT: 2344 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 2345 break; 2346 case KVM_REG_PPC_DEC_EXPIRY: 2347 *val = get_reg_val(id, vcpu->arch.dec_expires); 2348 break; 2349 case KVM_REG_PPC_ONLINE: 2350 *val = get_reg_val(id, vcpu->arch.online); 2351 break; 2352 case KVM_REG_PPC_PTCR: 2353 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 2354 break; 2355 default: 2356 r = -EINVAL; 2357 break; 2358 } 2359 2360 return r; 2361 } 2362 2363 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 2364 union kvmppc_one_reg *val) 2365 { 2366 int r = 0; 2367 long int i; 2368 unsigned long addr, len; 2369 2370 switch (id) { 2371 case KVM_REG_PPC_HIOR: 2372 /* Only allow this to be set to zero */ 2373 if (set_reg_val(id, *val)) 2374 r = -EINVAL; 2375 break; 2376 case KVM_REG_PPC_DABR: 2377 vcpu->arch.dabr = set_reg_val(id, *val); 2378 break; 2379 case KVM_REG_PPC_DABRX: 2380 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 2381 break; 2382 case KVM_REG_PPC_DSCR: 2383 vcpu->arch.dscr = set_reg_val(id, *val); 2384 break; 2385 case KVM_REG_PPC_PURR: 2386 vcpu->arch.purr = set_reg_val(id, *val); 2387 break; 2388 case KVM_REG_PPC_SPURR: 2389 vcpu->arch.spurr = set_reg_val(id, *val); 2390 break; 2391 case KVM_REG_PPC_AMR: 2392 vcpu->arch.amr = set_reg_val(id, *val); 2393 break; 2394 case KVM_REG_PPC_UAMOR: 2395 vcpu->arch.uamor = set_reg_val(id, *val); 2396 break; 2397 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 2398 i = id - KVM_REG_PPC_MMCR0; 2399 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 2400 break; 2401 case KVM_REG_PPC_MMCR2: 2402 vcpu->arch.mmcr[2] = set_reg_val(id, *val); 2403 break; 2404 case KVM_REG_PPC_MMCRA: 2405 vcpu->arch.mmcra = set_reg_val(id, *val); 2406 break; 2407 case KVM_REG_PPC_MMCRS: 2408 vcpu->arch.mmcrs = set_reg_val(id, *val); 2409 break; 2410 case KVM_REG_PPC_MMCR3: 2411 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 2412 break; 2413 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 2414 i = id - KVM_REG_PPC_PMC1; 2415 vcpu->arch.pmc[i] = set_reg_val(id, *val); 2416 break; 2417 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 2418 i = id - KVM_REG_PPC_SPMC1; 2419 vcpu->arch.spmc[i] = set_reg_val(id, *val); 2420 break; 2421 case KVM_REG_PPC_SIAR: 2422 vcpu->arch.siar = set_reg_val(id, *val); 2423 break; 2424 case KVM_REG_PPC_SDAR: 2425 vcpu->arch.sdar = set_reg_val(id, *val); 2426 break; 2427 case KVM_REG_PPC_SIER: 2428 vcpu->arch.sier[0] = set_reg_val(id, *val); 2429 break; 2430 case KVM_REG_PPC_SIER2: 2431 vcpu->arch.sier[1] = set_reg_val(id, *val); 2432 break; 2433 case KVM_REG_PPC_SIER3: 2434 vcpu->arch.sier[2] = set_reg_val(id, *val); 2435 break; 2436 case KVM_REG_PPC_IAMR: 2437 vcpu->arch.iamr = set_reg_val(id, *val); 2438 break; 2439 case KVM_REG_PPC_PSPB: 2440 vcpu->arch.pspb = set_reg_val(id, *val); 2441 break; 2442 case KVM_REG_PPC_DPDES: 2443 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2444 vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1; 2445 else 2446 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 2447 break; 2448 case KVM_REG_PPC_VTB: 2449 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 2450 break; 2451 case KVM_REG_PPC_DAWR: 2452 vcpu->arch.dawr0 = set_reg_val(id, *val); 2453 break; 2454 case KVM_REG_PPC_DAWRX: 2455 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP; 2456 break; 2457 case KVM_REG_PPC_DAWR1: 2458 vcpu->arch.dawr1 = set_reg_val(id, *val); 2459 break; 2460 case KVM_REG_PPC_DAWRX1: 2461 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP; 2462 break; 2463 case KVM_REG_PPC_CIABR: 2464 vcpu->arch.ciabr = set_reg_val(id, *val); 2465 /* Don't allow setting breakpoints in hypervisor code */ 2466 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 2467 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 2468 break; 2469 case KVM_REG_PPC_CSIGR: 2470 vcpu->arch.csigr = set_reg_val(id, *val); 2471 break; 2472 case KVM_REG_PPC_TACR: 2473 vcpu->arch.tacr = set_reg_val(id, *val); 2474 break; 2475 case KVM_REG_PPC_TCSCR: 2476 vcpu->arch.tcscr = set_reg_val(id, *val); 2477 break; 2478 case KVM_REG_PPC_PID: 2479 vcpu->arch.pid = set_reg_val(id, *val); 2480 break; 2481 case KVM_REG_PPC_ACOP: 2482 vcpu->arch.acop = set_reg_val(id, *val); 2483 break; 2484 case KVM_REG_PPC_WORT: 2485 vcpu->arch.wort = set_reg_val(id, *val); 2486 break; 2487 case KVM_REG_PPC_TIDR: 2488 vcpu->arch.tid = set_reg_val(id, *val); 2489 break; 2490 case KVM_REG_PPC_PSSCR: 2491 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 2492 break; 2493 case KVM_REG_PPC_VPA_ADDR: 2494 addr = set_reg_val(id, *val); 2495 r = -EINVAL; 2496 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 2497 vcpu->arch.dtl.next_gpa)) 2498 break; 2499 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 2500 break; 2501 case KVM_REG_PPC_VPA_SLB: 2502 addr = val->vpaval.addr; 2503 len = val->vpaval.length; 2504 r = -EINVAL; 2505 if (addr && !vcpu->arch.vpa.next_gpa) 2506 break; 2507 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 2508 break; 2509 case KVM_REG_PPC_VPA_DTL: 2510 addr = val->vpaval.addr; 2511 len = val->vpaval.length; 2512 r = -EINVAL; 2513 if (addr && (len < sizeof(struct dtl_entry) || 2514 !vcpu->arch.vpa.next_gpa)) 2515 break; 2516 len -= len % sizeof(struct dtl_entry); 2517 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 2518 break; 2519 case KVM_REG_PPC_TB_OFFSET: 2520 /* round up to multiple of 2^24 */ 2521 vcpu->arch.vcore->tb_offset = 2522 ALIGN(set_reg_val(id, *val), 1UL << 24); 2523 break; 2524 case KVM_REG_PPC_LPCR: 2525 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 2526 break; 2527 case KVM_REG_PPC_LPCR_64: 2528 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 2529 break; 2530 case KVM_REG_PPC_PPR: 2531 vcpu->arch.ppr = set_reg_val(id, *val); 2532 break; 2533 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2534 case KVM_REG_PPC_TFHAR: 2535 vcpu->arch.tfhar = set_reg_val(id, *val); 2536 break; 2537 case KVM_REG_PPC_TFIAR: 2538 vcpu->arch.tfiar = set_reg_val(id, *val); 2539 break; 2540 case KVM_REG_PPC_TEXASR: 2541 vcpu->arch.texasr = set_reg_val(id, *val); 2542 break; 2543 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2544 i = id - KVM_REG_PPC_TM_GPR0; 2545 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2546 break; 2547 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2548 { 2549 int j; 2550 i = id - KVM_REG_PPC_TM_VSR0; 2551 if (i < 32) 2552 for (j = 0; j < TS_FPRWIDTH; j++) 2553 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2554 else 2555 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2556 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2557 else 2558 r = -ENXIO; 2559 break; 2560 } 2561 case KVM_REG_PPC_TM_CR: 2562 vcpu->arch.cr_tm = set_reg_val(id, *val); 2563 break; 2564 case KVM_REG_PPC_TM_XER: 2565 vcpu->arch.xer_tm = set_reg_val(id, *val); 2566 break; 2567 case KVM_REG_PPC_TM_LR: 2568 vcpu->arch.lr_tm = set_reg_val(id, *val); 2569 break; 2570 case KVM_REG_PPC_TM_CTR: 2571 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2572 break; 2573 case KVM_REG_PPC_TM_FPSCR: 2574 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2575 break; 2576 case KVM_REG_PPC_TM_AMR: 2577 vcpu->arch.amr_tm = set_reg_val(id, *val); 2578 break; 2579 case KVM_REG_PPC_TM_PPR: 2580 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2581 break; 2582 case KVM_REG_PPC_TM_VRSAVE: 2583 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2584 break; 2585 case KVM_REG_PPC_TM_VSCR: 2586 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2587 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2588 else 2589 r = - ENXIO; 2590 break; 2591 case KVM_REG_PPC_TM_DSCR: 2592 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2593 break; 2594 case KVM_REG_PPC_TM_TAR: 2595 vcpu->arch.tar_tm = set_reg_val(id, *val); 2596 break; 2597 #endif 2598 case KVM_REG_PPC_ARCH_COMPAT: 2599 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2600 break; 2601 case KVM_REG_PPC_DEC_EXPIRY: 2602 vcpu->arch.dec_expires = set_reg_val(id, *val); 2603 break; 2604 case KVM_REG_PPC_ONLINE: 2605 i = set_reg_val(id, *val); 2606 if (i && !vcpu->arch.online) 2607 atomic_inc(&vcpu->arch.vcore->online_count); 2608 else if (!i && vcpu->arch.online) 2609 atomic_dec(&vcpu->arch.vcore->online_count); 2610 vcpu->arch.online = i; 2611 break; 2612 case KVM_REG_PPC_PTCR: 2613 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2614 break; 2615 default: 2616 r = -EINVAL; 2617 break; 2618 } 2619 2620 return r; 2621 } 2622 2623 /* 2624 * On POWER9, threads are independent and can be in different partitions. 2625 * Therefore we consider each thread to be a subcore. 2626 * There is a restriction that all threads have to be in the same 2627 * MMU mode (radix or HPT), unfortunately, but since we only support 2628 * HPT guests on a HPT host so far, that isn't an impediment yet. 2629 */ 2630 static int threads_per_vcore(struct kvm *kvm) 2631 { 2632 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2633 return 1; 2634 return threads_per_subcore; 2635 } 2636 2637 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2638 { 2639 struct kvmppc_vcore *vcore; 2640 2641 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2642 2643 if (vcore == NULL) 2644 return NULL; 2645 2646 spin_lock_init(&vcore->lock); 2647 spin_lock_init(&vcore->stoltb_lock); 2648 rcuwait_init(&vcore->wait); 2649 vcore->preempt_tb = TB_NIL; 2650 vcore->lpcr = kvm->arch.lpcr; 2651 vcore->first_vcpuid = id; 2652 vcore->kvm = kvm; 2653 INIT_LIST_HEAD(&vcore->preempt_list); 2654 2655 return vcore; 2656 } 2657 2658 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2659 static struct debugfs_timings_element { 2660 const char *name; 2661 size_t offset; 2662 } timings[] = { 2663 #ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING 2664 {"vcpu_entry", offsetof(struct kvm_vcpu, arch.vcpu_entry)}, 2665 {"guest_entry", offsetof(struct kvm_vcpu, arch.guest_entry)}, 2666 {"in_guest", offsetof(struct kvm_vcpu, arch.in_guest)}, 2667 {"guest_exit", offsetof(struct kvm_vcpu, arch.guest_exit)}, 2668 {"vcpu_exit", offsetof(struct kvm_vcpu, arch.vcpu_exit)}, 2669 {"hypercall", offsetof(struct kvm_vcpu, arch.hcall)}, 2670 {"page_fault", offsetof(struct kvm_vcpu, arch.pg_fault)}, 2671 #else 2672 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2673 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2674 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2675 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2676 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2677 #endif 2678 }; 2679 2680 #define N_TIMINGS (ARRAY_SIZE(timings)) 2681 2682 struct debugfs_timings_state { 2683 struct kvm_vcpu *vcpu; 2684 unsigned int buflen; 2685 char buf[N_TIMINGS * 100]; 2686 }; 2687 2688 static int debugfs_timings_open(struct inode *inode, struct file *file) 2689 { 2690 struct kvm_vcpu *vcpu = inode->i_private; 2691 struct debugfs_timings_state *p; 2692 2693 p = kzalloc(sizeof(*p), GFP_KERNEL); 2694 if (!p) 2695 return -ENOMEM; 2696 2697 kvm_get_kvm(vcpu->kvm); 2698 p->vcpu = vcpu; 2699 file->private_data = p; 2700 2701 return nonseekable_open(inode, file); 2702 } 2703 2704 static int debugfs_timings_release(struct inode *inode, struct file *file) 2705 { 2706 struct debugfs_timings_state *p = file->private_data; 2707 2708 kvm_put_kvm(p->vcpu->kvm); 2709 kfree(p); 2710 return 0; 2711 } 2712 2713 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2714 size_t len, loff_t *ppos) 2715 { 2716 struct debugfs_timings_state *p = file->private_data; 2717 struct kvm_vcpu *vcpu = p->vcpu; 2718 char *s, *buf_end; 2719 struct kvmhv_tb_accumulator tb; 2720 u64 count; 2721 loff_t pos; 2722 ssize_t n; 2723 int i, loops; 2724 bool ok; 2725 2726 if (!p->buflen) { 2727 s = p->buf; 2728 buf_end = s + sizeof(p->buf); 2729 for (i = 0; i < N_TIMINGS; ++i) { 2730 struct kvmhv_tb_accumulator *acc; 2731 2732 acc = (struct kvmhv_tb_accumulator *) 2733 ((unsigned long)vcpu + timings[i].offset); 2734 ok = false; 2735 for (loops = 0; loops < 1000; ++loops) { 2736 count = acc->seqcount; 2737 if (!(count & 1)) { 2738 smp_rmb(); 2739 tb = *acc; 2740 smp_rmb(); 2741 if (count == acc->seqcount) { 2742 ok = true; 2743 break; 2744 } 2745 } 2746 udelay(1); 2747 } 2748 if (!ok) 2749 snprintf(s, buf_end - s, "%s: stuck\n", 2750 timings[i].name); 2751 else 2752 snprintf(s, buf_end - s, 2753 "%s: %llu %llu %llu %llu\n", 2754 timings[i].name, count / 2, 2755 tb_to_ns(tb.tb_total), 2756 tb_to_ns(tb.tb_min), 2757 tb_to_ns(tb.tb_max)); 2758 s += strlen(s); 2759 } 2760 p->buflen = s - p->buf; 2761 } 2762 2763 pos = *ppos; 2764 if (pos >= p->buflen) 2765 return 0; 2766 if (len > p->buflen - pos) 2767 len = p->buflen - pos; 2768 n = copy_to_user(buf, p->buf + pos, len); 2769 if (n) { 2770 if (n == len) 2771 return -EFAULT; 2772 len -= n; 2773 } 2774 *ppos = pos + len; 2775 return len; 2776 } 2777 2778 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2779 size_t len, loff_t *ppos) 2780 { 2781 return -EACCES; 2782 } 2783 2784 static const struct file_operations debugfs_timings_ops = { 2785 .owner = THIS_MODULE, 2786 .open = debugfs_timings_open, 2787 .release = debugfs_timings_release, 2788 .read = debugfs_timings_read, 2789 .write = debugfs_timings_write, 2790 .llseek = generic_file_llseek, 2791 }; 2792 2793 /* Create a debugfs directory for the vcpu */ 2794 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2795 { 2796 if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING)) 2797 debugfs_create_file("timings", 0444, debugfs_dentry, vcpu, 2798 &debugfs_timings_ops); 2799 return 0; 2800 } 2801 2802 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2803 static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry) 2804 { 2805 return 0; 2806 } 2807 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2808 2809 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2810 { 2811 int err; 2812 int core; 2813 struct kvmppc_vcore *vcore; 2814 struct kvm *kvm; 2815 unsigned int id; 2816 2817 kvm = vcpu->kvm; 2818 id = vcpu->vcpu_id; 2819 2820 vcpu->arch.shared = &vcpu->arch.shregs; 2821 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2822 /* 2823 * The shared struct is never shared on HV, 2824 * so we can always use host endianness 2825 */ 2826 #ifdef __BIG_ENDIAN__ 2827 vcpu->arch.shared_big_endian = true; 2828 #else 2829 vcpu->arch.shared_big_endian = false; 2830 #endif 2831 #endif 2832 vcpu->arch.mmcr[0] = MMCR0_FC; 2833 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 2834 vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT; 2835 vcpu->arch.mmcra = MMCRA_BHRB_DISABLE; 2836 } 2837 2838 vcpu->arch.ctrl = CTRL_RUNLATCH; 2839 /* default to host PVR, since we can't spoof it */ 2840 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2841 spin_lock_init(&vcpu->arch.vpa_update_lock); 2842 spin_lock_init(&vcpu->arch.tbacct_lock); 2843 vcpu->arch.busy_preempt = TB_NIL; 2844 vcpu->arch.shregs.msr = MSR_ME; 2845 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2846 2847 /* 2848 * Set the default HFSCR for the guest from the host value. 2849 * This value is only used on POWER9. 2850 * On POWER9, we want to virtualize the doorbell facility, so we 2851 * don't set the HFSCR_MSGP bit, and that causes those instructions 2852 * to trap and then we emulate them. 2853 */ 2854 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2855 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP; 2856 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2857 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2858 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2859 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2860 vcpu->arch.hfscr |= HFSCR_TM; 2861 #endif 2862 } 2863 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2864 vcpu->arch.hfscr |= HFSCR_TM; 2865 2866 vcpu->arch.hfscr_permitted = vcpu->arch.hfscr; 2867 2868 /* 2869 * PM, EBB, TM are demand-faulted so start with it clear. 2870 */ 2871 vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM); 2872 2873 kvmppc_mmu_book3s_hv_init(vcpu); 2874 2875 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2876 2877 init_waitqueue_head(&vcpu->arch.cpu_run); 2878 2879 mutex_lock(&kvm->lock); 2880 vcore = NULL; 2881 err = -EINVAL; 2882 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2883 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2884 pr_devel("KVM: VCPU ID too high\n"); 2885 core = KVM_MAX_VCORES; 2886 } else { 2887 BUG_ON(kvm->arch.smt_mode != 1); 2888 core = kvmppc_pack_vcpu_id(kvm, id); 2889 } 2890 } else { 2891 core = id / kvm->arch.smt_mode; 2892 } 2893 if (core < KVM_MAX_VCORES) { 2894 vcore = kvm->arch.vcores[core]; 2895 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2896 pr_devel("KVM: collision on id %u", id); 2897 vcore = NULL; 2898 } else if (!vcore) { 2899 /* 2900 * Take mmu_setup_lock for mutual exclusion 2901 * with kvmppc_update_lpcr(). 2902 */ 2903 err = -ENOMEM; 2904 vcore = kvmppc_vcore_create(kvm, 2905 id & ~(kvm->arch.smt_mode - 1)); 2906 mutex_lock(&kvm->arch.mmu_setup_lock); 2907 kvm->arch.vcores[core] = vcore; 2908 kvm->arch.online_vcores++; 2909 mutex_unlock(&kvm->arch.mmu_setup_lock); 2910 } 2911 } 2912 mutex_unlock(&kvm->lock); 2913 2914 if (!vcore) 2915 return err; 2916 2917 spin_lock(&vcore->lock); 2918 ++vcore->num_threads; 2919 spin_unlock(&vcore->lock); 2920 vcpu->arch.vcore = vcore; 2921 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2922 vcpu->arch.thread_cpu = -1; 2923 vcpu->arch.prev_cpu = -1; 2924 2925 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2926 kvmppc_sanity_check(vcpu); 2927 2928 return 0; 2929 } 2930 2931 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2932 unsigned long flags) 2933 { 2934 int err; 2935 int esmt = 0; 2936 2937 if (flags) 2938 return -EINVAL; 2939 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2940 return -EINVAL; 2941 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2942 /* 2943 * On POWER8 (or POWER7), the threading mode is "strict", 2944 * so we pack smt_mode vcpus per vcore. 2945 */ 2946 if (smt_mode > threads_per_subcore) 2947 return -EINVAL; 2948 } else { 2949 /* 2950 * On POWER9, the threading mode is "loose", 2951 * so each vcpu gets its own vcore. 2952 */ 2953 esmt = smt_mode; 2954 smt_mode = 1; 2955 } 2956 mutex_lock(&kvm->lock); 2957 err = -EBUSY; 2958 if (!kvm->arch.online_vcores) { 2959 kvm->arch.smt_mode = smt_mode; 2960 kvm->arch.emul_smt_mode = esmt; 2961 err = 0; 2962 } 2963 mutex_unlock(&kvm->lock); 2964 2965 return err; 2966 } 2967 2968 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2969 { 2970 if (vpa->pinned_addr) 2971 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2972 vpa->dirty); 2973 } 2974 2975 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2976 { 2977 spin_lock(&vcpu->arch.vpa_update_lock); 2978 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2979 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2980 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2981 spin_unlock(&vcpu->arch.vpa_update_lock); 2982 } 2983 2984 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2985 { 2986 /* Indicate we want to get back into the guest */ 2987 return 1; 2988 } 2989 2990 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2991 { 2992 unsigned long dec_nsec, now; 2993 2994 now = get_tb(); 2995 if (now > kvmppc_dec_expires_host_tb(vcpu)) { 2996 /* decrementer has already gone negative */ 2997 kvmppc_core_queue_dec(vcpu); 2998 kvmppc_core_prepare_to_enter(vcpu); 2999 return; 3000 } 3001 dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now); 3002 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 3003 vcpu->arch.timer_running = 1; 3004 } 3005 3006 extern int __kvmppc_vcore_entry(void); 3007 3008 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 3009 struct kvm_vcpu *vcpu, u64 tb) 3010 { 3011 u64 now; 3012 3013 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3014 return; 3015 spin_lock_irq(&vcpu->arch.tbacct_lock); 3016 now = tb; 3017 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 3018 vcpu->arch.stolen_logged; 3019 vcpu->arch.busy_preempt = now; 3020 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 3021 spin_unlock_irq(&vcpu->arch.tbacct_lock); 3022 --vc->n_runnable; 3023 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 3024 } 3025 3026 static int kvmppc_grab_hwthread(int cpu) 3027 { 3028 struct paca_struct *tpaca; 3029 long timeout = 10000; 3030 3031 tpaca = paca_ptrs[cpu]; 3032 3033 /* Ensure the thread won't go into the kernel if it wakes */ 3034 tpaca->kvm_hstate.kvm_vcpu = NULL; 3035 tpaca->kvm_hstate.kvm_vcore = NULL; 3036 tpaca->kvm_hstate.napping = 0; 3037 smp_wmb(); 3038 tpaca->kvm_hstate.hwthread_req = 1; 3039 3040 /* 3041 * If the thread is already executing in the kernel (e.g. handling 3042 * a stray interrupt), wait for it to get back to nap mode. 3043 * The smp_mb() is to ensure that our setting of hwthread_req 3044 * is visible before we look at hwthread_state, so if this 3045 * races with the code at system_reset_pSeries and the thread 3046 * misses our setting of hwthread_req, we are sure to see its 3047 * setting of hwthread_state, and vice versa. 3048 */ 3049 smp_mb(); 3050 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 3051 if (--timeout <= 0) { 3052 pr_err("KVM: couldn't grab cpu %d\n", cpu); 3053 return -EBUSY; 3054 } 3055 udelay(1); 3056 } 3057 return 0; 3058 } 3059 3060 static void kvmppc_release_hwthread(int cpu) 3061 { 3062 struct paca_struct *tpaca; 3063 3064 tpaca = paca_ptrs[cpu]; 3065 tpaca->kvm_hstate.hwthread_req = 0; 3066 tpaca->kvm_hstate.kvm_vcpu = NULL; 3067 tpaca->kvm_hstate.kvm_vcore = NULL; 3068 tpaca->kvm_hstate.kvm_split_mode = NULL; 3069 } 3070 3071 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest); 3072 3073 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 3074 { 3075 struct kvm_nested_guest *nested = vcpu->arch.nested; 3076 cpumask_t *need_tlb_flush; 3077 int i; 3078 3079 if (nested) 3080 need_tlb_flush = &nested->need_tlb_flush; 3081 else 3082 need_tlb_flush = &kvm->arch.need_tlb_flush; 3083 3084 cpu = cpu_first_tlb_thread_sibling(cpu); 3085 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3086 i += cpu_tlb_thread_sibling_step()) 3087 cpumask_set_cpu(i, need_tlb_flush); 3088 3089 /* 3090 * Make sure setting of bit in need_tlb_flush precedes testing of 3091 * cpu_in_guest. The matching barrier on the other side is hwsync 3092 * when switching to guest MMU mode, which happens between 3093 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit 3094 * being tested. 3095 */ 3096 smp_mb(); 3097 3098 for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu); 3099 i += cpu_tlb_thread_sibling_step()) { 3100 struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i); 3101 3102 if (running == kvm) 3103 smp_call_function_single(i, do_nothing, NULL, 1); 3104 } 3105 } 3106 3107 static void do_migrate_away_vcpu(void *arg) 3108 { 3109 struct kvm_vcpu *vcpu = arg; 3110 struct kvm *kvm = vcpu->kvm; 3111 3112 /* 3113 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync; 3114 * ptesync sequence on the old CPU before migrating to a new one, in 3115 * case we interrupted the guest between a tlbie ; eieio ; 3116 * tlbsync; ptesync sequence. 3117 * 3118 * Otherwise, ptesync is sufficient for ordering tlbiel sequences. 3119 */ 3120 if (kvm->arch.lpcr & LPCR_GTSE) 3121 asm volatile("eieio; tlbsync; ptesync"); 3122 else 3123 asm volatile("ptesync"); 3124 } 3125 3126 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 3127 { 3128 struct kvm_nested_guest *nested = vcpu->arch.nested; 3129 struct kvm *kvm = vcpu->kvm; 3130 int prev_cpu; 3131 3132 if (!cpu_has_feature(CPU_FTR_HVMODE)) 3133 return; 3134 3135 if (nested) 3136 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 3137 else 3138 prev_cpu = vcpu->arch.prev_cpu; 3139 3140 /* 3141 * With radix, the guest can do TLB invalidations itself, 3142 * and it could choose to use the local form (tlbiel) if 3143 * it is invalidating a translation that has only ever been 3144 * used on one vcpu. However, that doesn't mean it has 3145 * only ever been used on one physical cpu, since vcpus 3146 * can move around between pcpus. To cope with this, when 3147 * a vcpu moves from one pcpu to another, we need to tell 3148 * any vcpus running on the same core as this vcpu previously 3149 * ran to flush the TLB. 3150 */ 3151 if (prev_cpu != pcpu) { 3152 if (prev_cpu >= 0) { 3153 if (cpu_first_tlb_thread_sibling(prev_cpu) != 3154 cpu_first_tlb_thread_sibling(pcpu)) 3155 radix_flush_cpu(kvm, prev_cpu, vcpu); 3156 3157 smp_call_function_single(prev_cpu, 3158 do_migrate_away_vcpu, vcpu, 1); 3159 } 3160 if (nested) 3161 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 3162 else 3163 vcpu->arch.prev_cpu = pcpu; 3164 } 3165 } 3166 3167 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 3168 { 3169 int cpu; 3170 struct paca_struct *tpaca; 3171 3172 cpu = vc->pcpu; 3173 if (vcpu) { 3174 if (vcpu->arch.timer_running) { 3175 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 3176 vcpu->arch.timer_running = 0; 3177 } 3178 cpu += vcpu->arch.ptid; 3179 vcpu->cpu = vc->pcpu; 3180 vcpu->arch.thread_cpu = cpu; 3181 } 3182 tpaca = paca_ptrs[cpu]; 3183 tpaca->kvm_hstate.kvm_vcpu = vcpu; 3184 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 3185 tpaca->kvm_hstate.fake_suspend = 0; 3186 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 3187 smp_wmb(); 3188 tpaca->kvm_hstate.kvm_vcore = vc; 3189 if (cpu != smp_processor_id()) 3190 kvmppc_ipi_thread(cpu); 3191 } 3192 3193 static void kvmppc_wait_for_nap(int n_threads) 3194 { 3195 int cpu = smp_processor_id(); 3196 int i, loops; 3197 3198 if (n_threads <= 1) 3199 return; 3200 for (loops = 0; loops < 1000000; ++loops) { 3201 /* 3202 * Check if all threads are finished. 3203 * We set the vcore pointer when starting a thread 3204 * and the thread clears it when finished, so we look 3205 * for any threads that still have a non-NULL vcore ptr. 3206 */ 3207 for (i = 1; i < n_threads; ++i) 3208 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3209 break; 3210 if (i == n_threads) { 3211 HMT_medium(); 3212 return; 3213 } 3214 HMT_low(); 3215 } 3216 HMT_medium(); 3217 for (i = 1; i < n_threads; ++i) 3218 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 3219 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 3220 } 3221 3222 /* 3223 * Check that we are on thread 0 and that any other threads in 3224 * this core are off-line. Then grab the threads so they can't 3225 * enter the kernel. 3226 */ 3227 static int on_primary_thread(void) 3228 { 3229 int cpu = smp_processor_id(); 3230 int thr; 3231 3232 /* Are we on a primary subcore? */ 3233 if (cpu_thread_in_subcore(cpu)) 3234 return 0; 3235 3236 thr = 0; 3237 while (++thr < threads_per_subcore) 3238 if (cpu_online(cpu + thr)) 3239 return 0; 3240 3241 /* Grab all hw threads so they can't go into the kernel */ 3242 for (thr = 1; thr < threads_per_subcore; ++thr) { 3243 if (kvmppc_grab_hwthread(cpu + thr)) { 3244 /* Couldn't grab one; let the others go */ 3245 do { 3246 kvmppc_release_hwthread(cpu + thr); 3247 } while (--thr > 0); 3248 return 0; 3249 } 3250 } 3251 return 1; 3252 } 3253 3254 /* 3255 * A list of virtual cores for each physical CPU. 3256 * These are vcores that could run but their runner VCPU tasks are 3257 * (or may be) preempted. 3258 */ 3259 struct preempted_vcore_list { 3260 struct list_head list; 3261 spinlock_t lock; 3262 }; 3263 3264 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 3265 3266 static void init_vcore_lists(void) 3267 { 3268 int cpu; 3269 3270 for_each_possible_cpu(cpu) { 3271 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 3272 spin_lock_init(&lp->lock); 3273 INIT_LIST_HEAD(&lp->list); 3274 } 3275 } 3276 3277 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 3278 { 3279 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3280 3281 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3282 3283 vc->vcore_state = VCORE_PREEMPT; 3284 vc->pcpu = smp_processor_id(); 3285 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 3286 spin_lock(&lp->lock); 3287 list_add_tail(&vc->preempt_list, &lp->list); 3288 spin_unlock(&lp->lock); 3289 } 3290 3291 /* Start accumulating stolen time */ 3292 kvmppc_core_start_stolen(vc, mftb()); 3293 } 3294 3295 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 3296 { 3297 struct preempted_vcore_list *lp; 3298 3299 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 3300 3301 kvmppc_core_end_stolen(vc, mftb()); 3302 if (!list_empty(&vc->preempt_list)) { 3303 lp = &per_cpu(preempted_vcores, vc->pcpu); 3304 spin_lock(&lp->lock); 3305 list_del_init(&vc->preempt_list); 3306 spin_unlock(&lp->lock); 3307 } 3308 vc->vcore_state = VCORE_INACTIVE; 3309 } 3310 3311 /* 3312 * This stores information about the virtual cores currently 3313 * assigned to a physical core. 3314 */ 3315 struct core_info { 3316 int n_subcores; 3317 int max_subcore_threads; 3318 int total_threads; 3319 int subcore_threads[MAX_SUBCORES]; 3320 struct kvmppc_vcore *vc[MAX_SUBCORES]; 3321 }; 3322 3323 /* 3324 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 3325 * respectively in 2-way micro-threading (split-core) mode on POWER8. 3326 */ 3327 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 3328 3329 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 3330 { 3331 memset(cip, 0, sizeof(*cip)); 3332 cip->n_subcores = 1; 3333 cip->max_subcore_threads = vc->num_threads; 3334 cip->total_threads = vc->num_threads; 3335 cip->subcore_threads[0] = vc->num_threads; 3336 cip->vc[0] = vc; 3337 } 3338 3339 static bool subcore_config_ok(int n_subcores, int n_threads) 3340 { 3341 /* 3342 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 3343 * split-core mode, with one thread per subcore. 3344 */ 3345 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3346 return n_subcores <= 4 && n_threads == 1; 3347 3348 /* On POWER8, can only dynamically split if unsplit to begin with */ 3349 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 3350 return false; 3351 if (n_subcores > MAX_SUBCORES) 3352 return false; 3353 if (n_subcores > 1) { 3354 if (!(dynamic_mt_modes & 2)) 3355 n_subcores = 4; 3356 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 3357 return false; 3358 } 3359 3360 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 3361 } 3362 3363 static void init_vcore_to_run(struct kvmppc_vcore *vc) 3364 { 3365 vc->entry_exit_map = 0; 3366 vc->in_guest = 0; 3367 vc->napping_threads = 0; 3368 vc->conferring_threads = 0; 3369 vc->tb_offset_applied = 0; 3370 } 3371 3372 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 3373 { 3374 int n_threads = vc->num_threads; 3375 int sub; 3376 3377 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 3378 return false; 3379 3380 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 3381 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 3382 return false; 3383 3384 if (n_threads < cip->max_subcore_threads) 3385 n_threads = cip->max_subcore_threads; 3386 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 3387 return false; 3388 cip->max_subcore_threads = n_threads; 3389 3390 sub = cip->n_subcores; 3391 ++cip->n_subcores; 3392 cip->total_threads += vc->num_threads; 3393 cip->subcore_threads[sub] = vc->num_threads; 3394 cip->vc[sub] = vc; 3395 init_vcore_to_run(vc); 3396 list_del_init(&vc->preempt_list); 3397 3398 return true; 3399 } 3400 3401 /* 3402 * Work out whether it is possible to piggyback the execution of 3403 * vcore *pvc onto the execution of the other vcores described in *cip. 3404 */ 3405 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 3406 int target_threads) 3407 { 3408 if (cip->total_threads + pvc->num_threads > target_threads) 3409 return false; 3410 3411 return can_dynamic_split(pvc, cip); 3412 } 3413 3414 static void prepare_threads(struct kvmppc_vcore *vc) 3415 { 3416 int i; 3417 struct kvm_vcpu *vcpu; 3418 3419 for_each_runnable_thread(i, vcpu, vc) { 3420 if (signal_pending(vcpu->arch.run_task)) 3421 vcpu->arch.ret = -EINTR; 3422 else if (vcpu->arch.vpa.update_pending || 3423 vcpu->arch.slb_shadow.update_pending || 3424 vcpu->arch.dtl.update_pending) 3425 vcpu->arch.ret = RESUME_GUEST; 3426 else 3427 continue; 3428 kvmppc_remove_runnable(vc, vcpu, mftb()); 3429 wake_up(&vcpu->arch.cpu_run); 3430 } 3431 } 3432 3433 static void collect_piggybacks(struct core_info *cip, int target_threads) 3434 { 3435 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 3436 struct kvmppc_vcore *pvc, *vcnext; 3437 3438 spin_lock(&lp->lock); 3439 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 3440 if (!spin_trylock(&pvc->lock)) 3441 continue; 3442 prepare_threads(pvc); 3443 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 3444 list_del_init(&pvc->preempt_list); 3445 if (pvc->runner == NULL) { 3446 pvc->vcore_state = VCORE_INACTIVE; 3447 kvmppc_core_end_stolen(pvc, mftb()); 3448 } 3449 spin_unlock(&pvc->lock); 3450 continue; 3451 } 3452 if (!can_piggyback(pvc, cip, target_threads)) { 3453 spin_unlock(&pvc->lock); 3454 continue; 3455 } 3456 kvmppc_core_end_stolen(pvc, mftb()); 3457 pvc->vcore_state = VCORE_PIGGYBACK; 3458 if (cip->total_threads >= target_threads) 3459 break; 3460 } 3461 spin_unlock(&lp->lock); 3462 } 3463 3464 static bool recheck_signals_and_mmu(struct core_info *cip) 3465 { 3466 int sub, i; 3467 struct kvm_vcpu *vcpu; 3468 struct kvmppc_vcore *vc; 3469 3470 for (sub = 0; sub < cip->n_subcores; ++sub) { 3471 vc = cip->vc[sub]; 3472 if (!vc->kvm->arch.mmu_ready) 3473 return true; 3474 for_each_runnable_thread(i, vcpu, vc) 3475 if (signal_pending(vcpu->arch.run_task)) 3476 return true; 3477 } 3478 return false; 3479 } 3480 3481 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 3482 { 3483 int still_running = 0, i; 3484 u64 now; 3485 long ret; 3486 struct kvm_vcpu *vcpu; 3487 3488 spin_lock(&vc->lock); 3489 now = get_tb(); 3490 for_each_runnable_thread(i, vcpu, vc) { 3491 /* 3492 * It's safe to unlock the vcore in the loop here, because 3493 * for_each_runnable_thread() is safe against removal of 3494 * the vcpu, and the vcore state is VCORE_EXITING here, 3495 * so any vcpus becoming runnable will have their arch.trap 3496 * set to zero and can't actually run in the guest. 3497 */ 3498 spin_unlock(&vc->lock); 3499 /* cancel pending dec exception if dec is positive */ 3500 if (now < kvmppc_dec_expires_host_tb(vcpu) && 3501 kvmppc_core_pending_dec(vcpu)) 3502 kvmppc_core_dequeue_dec(vcpu); 3503 3504 trace_kvm_guest_exit(vcpu); 3505 3506 ret = RESUME_GUEST; 3507 if (vcpu->arch.trap) 3508 ret = kvmppc_handle_exit_hv(vcpu, 3509 vcpu->arch.run_task); 3510 3511 vcpu->arch.ret = ret; 3512 vcpu->arch.trap = 0; 3513 3514 spin_lock(&vc->lock); 3515 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 3516 if (vcpu->arch.pending_exceptions) 3517 kvmppc_core_prepare_to_enter(vcpu); 3518 if (vcpu->arch.ceded) 3519 kvmppc_set_timer(vcpu); 3520 else 3521 ++still_running; 3522 } else { 3523 kvmppc_remove_runnable(vc, vcpu, mftb()); 3524 wake_up(&vcpu->arch.cpu_run); 3525 } 3526 } 3527 if (!is_master) { 3528 if (still_running > 0) { 3529 kvmppc_vcore_preempt(vc); 3530 } else if (vc->runner) { 3531 vc->vcore_state = VCORE_PREEMPT; 3532 kvmppc_core_start_stolen(vc, mftb()); 3533 } else { 3534 vc->vcore_state = VCORE_INACTIVE; 3535 } 3536 if (vc->n_runnable > 0 && vc->runner == NULL) { 3537 /* make sure there's a candidate runner awake */ 3538 i = -1; 3539 vcpu = next_runnable_thread(vc, &i); 3540 wake_up(&vcpu->arch.cpu_run); 3541 } 3542 } 3543 spin_unlock(&vc->lock); 3544 } 3545 3546 /* 3547 * Clear core from the list of active host cores as we are about to 3548 * enter the guest. Only do this if it is the primary thread of the 3549 * core (not if a subcore) that is entering the guest. 3550 */ 3551 static inline int kvmppc_clear_host_core(unsigned int cpu) 3552 { 3553 int core; 3554 3555 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3556 return 0; 3557 /* 3558 * Memory barrier can be omitted here as we will do a smp_wmb() 3559 * later in kvmppc_start_thread and we need ensure that state is 3560 * visible to other CPUs only after we enter guest. 3561 */ 3562 core = cpu >> threads_shift; 3563 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 3564 return 0; 3565 } 3566 3567 /* 3568 * Advertise this core as an active host core since we exited the guest 3569 * Only need to do this if it is the primary thread of the core that is 3570 * exiting. 3571 */ 3572 static inline int kvmppc_set_host_core(unsigned int cpu) 3573 { 3574 int core; 3575 3576 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3577 return 0; 3578 3579 /* 3580 * Memory barrier can be omitted here because we do a spin_unlock 3581 * immediately after this which provides the memory barrier. 3582 */ 3583 core = cpu >> threads_shift; 3584 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3585 return 0; 3586 } 3587 3588 static void set_irq_happened(int trap) 3589 { 3590 switch (trap) { 3591 case BOOK3S_INTERRUPT_EXTERNAL: 3592 local_paca->irq_happened |= PACA_IRQ_EE; 3593 break; 3594 case BOOK3S_INTERRUPT_H_DOORBELL: 3595 local_paca->irq_happened |= PACA_IRQ_DBELL; 3596 break; 3597 case BOOK3S_INTERRUPT_HMI: 3598 local_paca->irq_happened |= PACA_IRQ_HMI; 3599 break; 3600 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3601 replay_system_reset(); 3602 break; 3603 } 3604 } 3605 3606 /* 3607 * Run a set of guest threads on a physical core. 3608 * Called with vc->lock held. 3609 */ 3610 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3611 { 3612 struct kvm_vcpu *vcpu; 3613 int i; 3614 int srcu_idx; 3615 struct core_info core_info; 3616 struct kvmppc_vcore *pvc; 3617 struct kvm_split_mode split_info, *sip; 3618 int split, subcore_size, active; 3619 int sub; 3620 bool thr0_done; 3621 unsigned long cmd_bit, stat_bit; 3622 int pcpu, thr; 3623 int target_threads; 3624 int controlled_threads; 3625 int trap; 3626 bool is_power8; 3627 3628 if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300))) 3629 return; 3630 3631 /* 3632 * Remove from the list any threads that have a signal pending 3633 * or need a VPA update done 3634 */ 3635 prepare_threads(vc); 3636 3637 /* if the runner is no longer runnable, let the caller pick a new one */ 3638 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3639 return; 3640 3641 /* 3642 * Initialize *vc. 3643 */ 3644 init_vcore_to_run(vc); 3645 vc->preempt_tb = TB_NIL; 3646 3647 /* 3648 * Number of threads that we will be controlling: the same as 3649 * the number of threads per subcore, except on POWER9, 3650 * where it's 1 because the threads are (mostly) independent. 3651 */ 3652 controlled_threads = threads_per_vcore(vc->kvm); 3653 3654 /* 3655 * Make sure we are running on primary threads, and that secondary 3656 * threads are offline. Also check if the number of threads in this 3657 * guest are greater than the current system threads per guest. 3658 */ 3659 if ((controlled_threads > 1) && 3660 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 3661 for_each_runnable_thread(i, vcpu, vc) { 3662 vcpu->arch.ret = -EBUSY; 3663 kvmppc_remove_runnable(vc, vcpu, mftb()); 3664 wake_up(&vcpu->arch.cpu_run); 3665 } 3666 goto out; 3667 } 3668 3669 /* 3670 * See if we could run any other vcores on the physical core 3671 * along with this one. 3672 */ 3673 init_core_info(&core_info, vc); 3674 pcpu = smp_processor_id(); 3675 target_threads = controlled_threads; 3676 if (target_smt_mode && target_smt_mode < target_threads) 3677 target_threads = target_smt_mode; 3678 if (vc->num_threads < target_threads) 3679 collect_piggybacks(&core_info, target_threads); 3680 3681 /* 3682 * Hard-disable interrupts, and check resched flag and signals. 3683 * If we need to reschedule or deliver a signal, clean up 3684 * and return without going into the guest(s). 3685 * If the mmu_ready flag has been cleared, don't go into the 3686 * guest because that means a HPT resize operation is in progress. 3687 */ 3688 local_irq_disable(); 3689 hard_irq_disable(); 3690 if (lazy_irq_pending() || need_resched() || 3691 recheck_signals_and_mmu(&core_info)) { 3692 local_irq_enable(); 3693 vc->vcore_state = VCORE_INACTIVE; 3694 /* Unlock all except the primary vcore */ 3695 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3696 pvc = core_info.vc[sub]; 3697 /* Put back on to the preempted vcores list */ 3698 kvmppc_vcore_preempt(pvc); 3699 spin_unlock(&pvc->lock); 3700 } 3701 for (i = 0; i < controlled_threads; ++i) 3702 kvmppc_release_hwthread(pcpu + i); 3703 return; 3704 } 3705 3706 kvmppc_clear_host_core(pcpu); 3707 3708 /* Decide on micro-threading (split-core) mode */ 3709 subcore_size = threads_per_subcore; 3710 cmd_bit = stat_bit = 0; 3711 split = core_info.n_subcores; 3712 sip = NULL; 3713 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S); 3714 3715 if (split > 1) { 3716 sip = &split_info; 3717 memset(&split_info, 0, sizeof(split_info)); 3718 for (sub = 0; sub < core_info.n_subcores; ++sub) 3719 split_info.vc[sub] = core_info.vc[sub]; 3720 3721 if (is_power8) { 3722 if (split == 2 && (dynamic_mt_modes & 2)) { 3723 cmd_bit = HID0_POWER8_1TO2LPAR; 3724 stat_bit = HID0_POWER8_2LPARMODE; 3725 } else { 3726 split = 4; 3727 cmd_bit = HID0_POWER8_1TO4LPAR; 3728 stat_bit = HID0_POWER8_4LPARMODE; 3729 } 3730 subcore_size = MAX_SMT_THREADS / split; 3731 split_info.rpr = mfspr(SPRN_RPR); 3732 split_info.pmmar = mfspr(SPRN_PMMAR); 3733 split_info.ldbar = mfspr(SPRN_LDBAR); 3734 split_info.subcore_size = subcore_size; 3735 } else { 3736 split_info.subcore_size = 1; 3737 } 3738 3739 /* order writes to split_info before kvm_split_mode pointer */ 3740 smp_wmb(); 3741 } 3742 3743 for (thr = 0; thr < controlled_threads; ++thr) { 3744 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3745 3746 paca->kvm_hstate.napping = 0; 3747 paca->kvm_hstate.kvm_split_mode = sip; 3748 } 3749 3750 /* Initiate micro-threading (split-core) on POWER8 if required */ 3751 if (cmd_bit) { 3752 unsigned long hid0 = mfspr(SPRN_HID0); 3753 3754 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3755 mb(); 3756 mtspr(SPRN_HID0, hid0); 3757 isync(); 3758 for (;;) { 3759 hid0 = mfspr(SPRN_HID0); 3760 if (hid0 & stat_bit) 3761 break; 3762 cpu_relax(); 3763 } 3764 } 3765 3766 /* 3767 * On POWER8, set RWMR register. 3768 * Since it only affects PURR and SPURR, it doesn't affect 3769 * the host, so we don't save/restore the host value. 3770 */ 3771 if (is_power8) { 3772 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3773 int n_online = atomic_read(&vc->online_count); 3774 3775 /* 3776 * Use the 8-thread value if we're doing split-core 3777 * or if the vcore's online count looks bogus. 3778 */ 3779 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3780 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3781 rwmr_val = p8_rwmr_values[n_online]; 3782 mtspr(SPRN_RWMR, rwmr_val); 3783 } 3784 3785 /* Start all the threads */ 3786 active = 0; 3787 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3788 thr = is_power8 ? subcore_thread_map[sub] : sub; 3789 thr0_done = false; 3790 active |= 1 << thr; 3791 pvc = core_info.vc[sub]; 3792 pvc->pcpu = pcpu + thr; 3793 for_each_runnable_thread(i, vcpu, pvc) { 3794 /* 3795 * XXX: is kvmppc_start_thread called too late here? 3796 * It updates vcpu->cpu and vcpu->arch.thread_cpu 3797 * which are used by kvmppc_fast_vcpu_kick_hv(), but 3798 * kick is called after new exceptions become available 3799 * and exceptions are checked earlier than here, by 3800 * kvmppc_core_prepare_to_enter. 3801 */ 3802 kvmppc_start_thread(vcpu, pvc); 3803 kvmppc_create_dtl_entry(vcpu, pvc); 3804 trace_kvm_guest_enter(vcpu); 3805 if (!vcpu->arch.ptid) 3806 thr0_done = true; 3807 active |= 1 << (thr + vcpu->arch.ptid); 3808 } 3809 /* 3810 * We need to start the first thread of each subcore 3811 * even if it doesn't have a vcpu. 3812 */ 3813 if (!thr0_done) 3814 kvmppc_start_thread(NULL, pvc); 3815 } 3816 3817 /* 3818 * Ensure that split_info.do_nap is set after setting 3819 * the vcore pointer in the PACA of the secondaries. 3820 */ 3821 smp_mb(); 3822 3823 /* 3824 * When doing micro-threading, poke the inactive threads as well. 3825 * This gets them to the nap instruction after kvm_do_nap, 3826 * which reduces the time taken to unsplit later. 3827 */ 3828 if (cmd_bit) { 3829 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3830 for (thr = 1; thr < threads_per_subcore; ++thr) 3831 if (!(active & (1 << thr))) 3832 kvmppc_ipi_thread(pcpu + thr); 3833 } 3834 3835 vc->vcore_state = VCORE_RUNNING; 3836 preempt_disable(); 3837 3838 trace_kvmppc_run_core(vc, 0); 3839 3840 for (sub = 0; sub < core_info.n_subcores; ++sub) 3841 spin_unlock(&core_info.vc[sub]->lock); 3842 3843 guest_enter_irqoff(); 3844 3845 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3846 3847 this_cpu_disable_ftrace(); 3848 3849 /* 3850 * Interrupts will be enabled once we get into the guest, 3851 * so tell lockdep that we're about to enable interrupts. 3852 */ 3853 trace_hardirqs_on(); 3854 3855 trap = __kvmppc_vcore_entry(); 3856 3857 trace_hardirqs_off(); 3858 3859 this_cpu_enable_ftrace(); 3860 3861 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3862 3863 set_irq_happened(trap); 3864 3865 spin_lock(&vc->lock); 3866 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3867 vc->vcore_state = VCORE_EXITING; 3868 3869 /* wait for secondary threads to finish writing their state to memory */ 3870 kvmppc_wait_for_nap(controlled_threads); 3871 3872 /* Return to whole-core mode if we split the core earlier */ 3873 if (cmd_bit) { 3874 unsigned long hid0 = mfspr(SPRN_HID0); 3875 unsigned long loops = 0; 3876 3877 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3878 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3879 mb(); 3880 mtspr(SPRN_HID0, hid0); 3881 isync(); 3882 for (;;) { 3883 hid0 = mfspr(SPRN_HID0); 3884 if (!(hid0 & stat_bit)) 3885 break; 3886 cpu_relax(); 3887 ++loops; 3888 } 3889 split_info.do_nap = 0; 3890 } 3891 3892 kvmppc_set_host_core(pcpu); 3893 3894 context_tracking_guest_exit(); 3895 if (!vtime_accounting_enabled_this_cpu()) { 3896 local_irq_enable(); 3897 /* 3898 * Service IRQs here before vtime_account_guest_exit() so any 3899 * ticks that occurred while running the guest are accounted to 3900 * the guest. If vtime accounting is enabled, accounting uses 3901 * TB rather than ticks, so it can be done without enabling 3902 * interrupts here, which has the problem that it accounts 3903 * interrupt processing overhead to the host. 3904 */ 3905 local_irq_disable(); 3906 } 3907 vtime_account_guest_exit(); 3908 3909 local_irq_enable(); 3910 3911 /* Let secondaries go back to the offline loop */ 3912 for (i = 0; i < controlled_threads; ++i) { 3913 kvmppc_release_hwthread(pcpu + i); 3914 if (sip && sip->napped[i]) 3915 kvmppc_ipi_thread(pcpu + i); 3916 } 3917 3918 spin_unlock(&vc->lock); 3919 3920 /* make sure updates to secondary vcpu structs are visible now */ 3921 smp_mb(); 3922 3923 preempt_enable(); 3924 3925 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3926 pvc = core_info.vc[sub]; 3927 post_guest_process(pvc, pvc == vc); 3928 } 3929 3930 spin_lock(&vc->lock); 3931 3932 out: 3933 vc->vcore_state = VCORE_INACTIVE; 3934 trace_kvmppc_run_core(vc, 1); 3935 } 3936 3937 static inline bool hcall_is_xics(unsigned long req) 3938 { 3939 return req == H_EOI || req == H_CPPR || req == H_IPI || 3940 req == H_IPOLL || req == H_XIRR || req == H_XIRR_X; 3941 } 3942 3943 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu) 3944 { 3945 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3946 if (lp) { 3947 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3948 lp->yield_count = cpu_to_be32(yield_count); 3949 vcpu->arch.vpa.dirty = 1; 3950 } 3951 } 3952 3953 /* call our hypervisor to load up HV regs and go */ 3954 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb) 3955 { 3956 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3957 unsigned long host_psscr; 3958 unsigned long msr; 3959 struct hv_guest_state hvregs; 3960 struct p9_host_os_sprs host_os_sprs; 3961 s64 dec; 3962 int trap; 3963 3964 msr = mfmsr(); 3965 3966 save_p9_host_os_sprs(&host_os_sprs); 3967 3968 /* 3969 * We need to save and restore the guest visible part of the 3970 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 3971 * doesn't do this for us. Note only required if pseries since 3972 * this is done in kvmhv_vcpu_entry_p9() below otherwise. 3973 */ 3974 host_psscr = mfspr(SPRN_PSSCR_PR); 3975 3976 kvmppc_msr_hard_disable_set_facilities(vcpu, msr); 3977 if (lazy_irq_pending()) 3978 return 0; 3979 3980 if (unlikely(load_vcpu_state(vcpu, &host_os_sprs))) 3981 msr = mfmsr(); /* TM restore can update msr */ 3982 3983 if (vcpu->arch.psscr != host_psscr) 3984 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 3985 3986 kvmhv_save_hv_regs(vcpu, &hvregs); 3987 hvregs.lpcr = lpcr; 3988 hvregs.amor = ~0; 3989 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 3990 hvregs.version = HV_GUEST_STATE_VERSION; 3991 if (vcpu->arch.nested) { 3992 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 3993 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 3994 } else { 3995 hvregs.lpid = vcpu->kvm->arch.lpid; 3996 hvregs.vcpu_token = vcpu->vcpu_id; 3997 } 3998 hvregs.hdec_expiry = time_limit; 3999 4000 /* 4001 * When setting DEC, we must always deal with irq_work_raise 4002 * via NMI vs setting DEC. The problem occurs right as we 4003 * switch into guest mode if a NMI hits and sets pending work 4004 * and sets DEC, then that will apply to the guest and not 4005 * bring us back to the host. 4006 * 4007 * irq_work_raise could check a flag (or possibly LPCR[HDICE] 4008 * for example) and set HDEC to 1? That wouldn't solve the 4009 * nested hv case which needs to abort the hcall or zero the 4010 * time limit. 4011 * 4012 * XXX: Another day's problem. 4013 */ 4014 mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb); 4015 4016 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 4017 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 4018 switch_pmu_to_guest(vcpu, &host_os_sprs); 4019 accumulate_time(vcpu, &vcpu->arch.in_guest); 4020 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 4021 __pa(&vcpu->arch.regs)); 4022 accumulate_time(vcpu, &vcpu->arch.guest_exit); 4023 kvmhv_restore_hv_return_state(vcpu, &hvregs); 4024 switch_pmu_to_host(vcpu, &host_os_sprs); 4025 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 4026 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 4027 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 4028 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 4029 4030 store_vcpu_state(vcpu); 4031 4032 dec = mfspr(SPRN_DEC); 4033 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 4034 dec = (s32) dec; 4035 *tb = mftb(); 4036 vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset); 4037 4038 timer_rearm_host_dec(*tb); 4039 4040 restore_p9_host_os_sprs(vcpu, &host_os_sprs); 4041 if (vcpu->arch.psscr != host_psscr) 4042 mtspr(SPRN_PSSCR_PR, host_psscr); 4043 4044 return trap; 4045 } 4046 4047 /* 4048 * Guest entry for POWER9 and later CPUs. 4049 */ 4050 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 4051 unsigned long lpcr, u64 *tb) 4052 { 4053 struct kvm *kvm = vcpu->kvm; 4054 struct kvm_nested_guest *nested = vcpu->arch.nested; 4055 u64 next_timer; 4056 int trap; 4057 4058 next_timer = timer_get_next_tb(); 4059 if (*tb >= next_timer) 4060 return BOOK3S_INTERRUPT_HV_DECREMENTER; 4061 if (next_timer < time_limit) 4062 time_limit = next_timer; 4063 else if (*tb >= time_limit) /* nested time limit */ 4064 return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER; 4065 4066 vcpu->arch.ceded = 0; 4067 4068 vcpu_vpa_increment_dispatch(vcpu); 4069 4070 if (kvmhv_on_pseries()) { 4071 trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb); 4072 4073 /* H_CEDE has to be handled now, not later */ 4074 if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested && 4075 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 4076 kvmppc_cede(vcpu); 4077 kvmppc_set_gpr(vcpu, 3, 0); 4078 trap = 0; 4079 } 4080 4081 } else if (nested) { 4082 __this_cpu_write(cpu_in_guest, kvm); 4083 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); 4084 __this_cpu_write(cpu_in_guest, NULL); 4085 4086 } else { 4087 kvmppc_xive_push_vcpu(vcpu); 4088 4089 __this_cpu_write(cpu_in_guest, kvm); 4090 trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb); 4091 __this_cpu_write(cpu_in_guest, NULL); 4092 4093 if (trap == BOOK3S_INTERRUPT_SYSCALL && 4094 !(vcpu->arch.shregs.msr & MSR_PR)) { 4095 unsigned long req = kvmppc_get_gpr(vcpu, 3); 4096 4097 /* 4098 * XIVE rearm and XICS hcalls must be handled 4099 * before xive context is pulled (is this 4100 * true?) 4101 */ 4102 if (req == H_CEDE) { 4103 /* H_CEDE has to be handled now */ 4104 kvmppc_cede(vcpu); 4105 if (!kvmppc_xive_rearm_escalation(vcpu)) { 4106 /* 4107 * Pending escalation so abort 4108 * the cede. 4109 */ 4110 vcpu->arch.ceded = 0; 4111 } 4112 kvmppc_set_gpr(vcpu, 3, 0); 4113 trap = 0; 4114 4115 } else if (req == H_ENTER_NESTED) { 4116 /* 4117 * L2 should not run with the L1 4118 * context so rearm and pull it. 4119 */ 4120 if (!kvmppc_xive_rearm_escalation(vcpu)) { 4121 /* 4122 * Pending escalation so abort 4123 * H_ENTER_NESTED. 4124 */ 4125 kvmppc_set_gpr(vcpu, 3, 0); 4126 trap = 0; 4127 } 4128 4129 } else if (hcall_is_xics(req)) { 4130 int ret; 4131 4132 ret = kvmppc_xive_xics_hcall(vcpu, req); 4133 if (ret != H_TOO_HARD) { 4134 kvmppc_set_gpr(vcpu, 3, ret); 4135 trap = 0; 4136 } 4137 } 4138 } 4139 kvmppc_xive_pull_vcpu(vcpu); 4140 4141 if (kvm_is_radix(kvm)) 4142 vcpu->arch.slb_max = 0; 4143 } 4144 4145 vcpu_vpa_increment_dispatch(vcpu); 4146 4147 return trap; 4148 } 4149 4150 /* 4151 * Wait for some other vcpu thread to execute us, and 4152 * wake us up when we need to handle something in the host. 4153 */ 4154 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 4155 struct kvm_vcpu *vcpu, int wait_state) 4156 { 4157 DEFINE_WAIT(wait); 4158 4159 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 4160 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4161 spin_unlock(&vc->lock); 4162 schedule(); 4163 spin_lock(&vc->lock); 4164 } 4165 finish_wait(&vcpu->arch.cpu_run, &wait); 4166 } 4167 4168 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 4169 { 4170 if (!halt_poll_ns_grow) 4171 return; 4172 4173 vc->halt_poll_ns *= halt_poll_ns_grow; 4174 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 4175 vc->halt_poll_ns = halt_poll_ns_grow_start; 4176 } 4177 4178 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 4179 { 4180 if (halt_poll_ns_shrink == 0) 4181 vc->halt_poll_ns = 0; 4182 else 4183 vc->halt_poll_ns /= halt_poll_ns_shrink; 4184 } 4185 4186 #ifdef CONFIG_KVM_XICS 4187 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4188 { 4189 if (!xics_on_xive()) 4190 return false; 4191 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 4192 vcpu->arch.xive_saved_state.cppr; 4193 } 4194 #else 4195 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 4196 { 4197 return false; 4198 } 4199 #endif /* CONFIG_KVM_XICS */ 4200 4201 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 4202 { 4203 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 4204 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 4205 return true; 4206 4207 return false; 4208 } 4209 4210 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu) 4211 { 4212 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 4213 return true; 4214 return false; 4215 } 4216 4217 /* 4218 * Check to see if any of the runnable vcpus on the vcore have pending 4219 * exceptions or are no longer ceded 4220 */ 4221 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 4222 { 4223 struct kvm_vcpu *vcpu; 4224 int i; 4225 4226 for_each_runnable_thread(i, vcpu, vc) { 4227 if (kvmppc_vcpu_check_block(vcpu)) 4228 return 1; 4229 } 4230 4231 return 0; 4232 } 4233 4234 /* 4235 * All the vcpus in this vcore are idle, so wait for a decrementer 4236 * or external interrupt to one of the vcpus. vc->lock is held. 4237 */ 4238 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 4239 { 4240 ktime_t cur, start_poll, start_wait; 4241 int do_sleep = 1; 4242 u64 block_ns; 4243 4244 WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)); 4245 4246 /* Poll for pending exceptions and ceded state */ 4247 cur = start_poll = ktime_get(); 4248 if (vc->halt_poll_ns) { 4249 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 4250 ++vc->runner->stat.generic.halt_attempted_poll; 4251 4252 vc->vcore_state = VCORE_POLLING; 4253 spin_unlock(&vc->lock); 4254 4255 do { 4256 if (kvmppc_vcore_check_block(vc)) { 4257 do_sleep = 0; 4258 break; 4259 } 4260 cur = ktime_get(); 4261 } while (kvm_vcpu_can_poll(cur, stop)); 4262 4263 spin_lock(&vc->lock); 4264 vc->vcore_state = VCORE_INACTIVE; 4265 4266 if (!do_sleep) { 4267 ++vc->runner->stat.generic.halt_successful_poll; 4268 goto out; 4269 } 4270 } 4271 4272 prepare_to_rcuwait(&vc->wait); 4273 set_current_state(TASK_INTERRUPTIBLE); 4274 if (kvmppc_vcore_check_block(vc)) { 4275 finish_rcuwait(&vc->wait); 4276 do_sleep = 0; 4277 /* If we polled, count this as a successful poll */ 4278 if (vc->halt_poll_ns) 4279 ++vc->runner->stat.generic.halt_successful_poll; 4280 goto out; 4281 } 4282 4283 start_wait = ktime_get(); 4284 4285 vc->vcore_state = VCORE_SLEEPING; 4286 trace_kvmppc_vcore_blocked(vc->runner, 0); 4287 spin_unlock(&vc->lock); 4288 schedule(); 4289 finish_rcuwait(&vc->wait); 4290 spin_lock(&vc->lock); 4291 vc->vcore_state = VCORE_INACTIVE; 4292 trace_kvmppc_vcore_blocked(vc->runner, 1); 4293 ++vc->runner->stat.halt_successful_wait; 4294 4295 cur = ktime_get(); 4296 4297 out: 4298 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 4299 4300 /* Attribute wait time */ 4301 if (do_sleep) { 4302 vc->runner->stat.generic.halt_wait_ns += 4303 ktime_to_ns(cur) - ktime_to_ns(start_wait); 4304 KVM_STATS_LOG_HIST_UPDATE( 4305 vc->runner->stat.generic.halt_wait_hist, 4306 ktime_to_ns(cur) - ktime_to_ns(start_wait)); 4307 /* Attribute failed poll time */ 4308 if (vc->halt_poll_ns) { 4309 vc->runner->stat.generic.halt_poll_fail_ns += 4310 ktime_to_ns(start_wait) - 4311 ktime_to_ns(start_poll); 4312 KVM_STATS_LOG_HIST_UPDATE( 4313 vc->runner->stat.generic.halt_poll_fail_hist, 4314 ktime_to_ns(start_wait) - 4315 ktime_to_ns(start_poll)); 4316 } 4317 } else { 4318 /* Attribute successful poll time */ 4319 if (vc->halt_poll_ns) { 4320 vc->runner->stat.generic.halt_poll_success_ns += 4321 ktime_to_ns(cur) - 4322 ktime_to_ns(start_poll); 4323 KVM_STATS_LOG_HIST_UPDATE( 4324 vc->runner->stat.generic.halt_poll_success_hist, 4325 ktime_to_ns(cur) - ktime_to_ns(start_poll)); 4326 } 4327 } 4328 4329 /* Adjust poll time */ 4330 if (halt_poll_ns) { 4331 if (block_ns <= vc->halt_poll_ns) 4332 ; 4333 /* We slept and blocked for longer than the max halt time */ 4334 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 4335 shrink_halt_poll_ns(vc); 4336 /* We slept and our poll time is too small */ 4337 else if (vc->halt_poll_ns < halt_poll_ns && 4338 block_ns < halt_poll_ns) 4339 grow_halt_poll_ns(vc); 4340 if (vc->halt_poll_ns > halt_poll_ns) 4341 vc->halt_poll_ns = halt_poll_ns; 4342 } else 4343 vc->halt_poll_ns = 0; 4344 4345 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 4346 } 4347 4348 /* 4349 * This never fails for a radix guest, as none of the operations it does 4350 * for a radix guest can fail or have a way to report failure. 4351 */ 4352 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 4353 { 4354 int r = 0; 4355 struct kvm *kvm = vcpu->kvm; 4356 4357 mutex_lock(&kvm->arch.mmu_setup_lock); 4358 if (!kvm->arch.mmu_ready) { 4359 if (!kvm_is_radix(kvm)) 4360 r = kvmppc_hv_setup_htab_rma(vcpu); 4361 if (!r) { 4362 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4363 kvmppc_setup_partition_table(kvm); 4364 kvm->arch.mmu_ready = 1; 4365 } 4366 } 4367 mutex_unlock(&kvm->arch.mmu_setup_lock); 4368 return r; 4369 } 4370 4371 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) 4372 { 4373 struct kvm_run *run = vcpu->run; 4374 int n_ceded, i, r; 4375 struct kvmppc_vcore *vc; 4376 struct kvm_vcpu *v; 4377 4378 trace_kvmppc_run_vcpu_enter(vcpu); 4379 4380 run->exit_reason = 0; 4381 vcpu->arch.ret = RESUME_GUEST; 4382 vcpu->arch.trap = 0; 4383 kvmppc_update_vpas(vcpu); 4384 4385 /* 4386 * Synchronize with other threads in this virtual core 4387 */ 4388 vc = vcpu->arch.vcore; 4389 spin_lock(&vc->lock); 4390 vcpu->arch.ceded = 0; 4391 vcpu->arch.run_task = current; 4392 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4393 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4394 vcpu->arch.busy_preempt = TB_NIL; 4395 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 4396 ++vc->n_runnable; 4397 4398 /* 4399 * This happens the first time this is called for a vcpu. 4400 * If the vcore is already running, we may be able to start 4401 * this thread straight away and have it join in. 4402 */ 4403 if (!signal_pending(current)) { 4404 if ((vc->vcore_state == VCORE_PIGGYBACK || 4405 vc->vcore_state == VCORE_RUNNING) && 4406 !VCORE_IS_EXITING(vc)) { 4407 kvmppc_create_dtl_entry(vcpu, vc); 4408 kvmppc_start_thread(vcpu, vc); 4409 trace_kvm_guest_enter(vcpu); 4410 } else if (vc->vcore_state == VCORE_SLEEPING) { 4411 rcuwait_wake_up(&vc->wait); 4412 } 4413 4414 } 4415 4416 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4417 !signal_pending(current)) { 4418 /* See if the MMU is ready to go */ 4419 if (!vcpu->kvm->arch.mmu_ready) { 4420 spin_unlock(&vc->lock); 4421 r = kvmhv_setup_mmu(vcpu); 4422 spin_lock(&vc->lock); 4423 if (r) { 4424 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4425 run->fail_entry. 4426 hardware_entry_failure_reason = 0; 4427 vcpu->arch.ret = r; 4428 break; 4429 } 4430 } 4431 4432 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4433 kvmppc_vcore_end_preempt(vc); 4434 4435 if (vc->vcore_state != VCORE_INACTIVE) { 4436 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 4437 continue; 4438 } 4439 for_each_runnable_thread(i, v, vc) { 4440 kvmppc_core_prepare_to_enter(v); 4441 if (signal_pending(v->arch.run_task)) { 4442 kvmppc_remove_runnable(vc, v, mftb()); 4443 v->stat.signal_exits++; 4444 v->run->exit_reason = KVM_EXIT_INTR; 4445 v->arch.ret = -EINTR; 4446 wake_up(&v->arch.cpu_run); 4447 } 4448 } 4449 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 4450 break; 4451 n_ceded = 0; 4452 for_each_runnable_thread(i, v, vc) { 4453 if (!kvmppc_vcpu_woken(v)) 4454 n_ceded += v->arch.ceded; 4455 else 4456 v->arch.ceded = 0; 4457 } 4458 vc->runner = vcpu; 4459 if (n_ceded == vc->n_runnable) { 4460 kvmppc_vcore_blocked(vc); 4461 } else if (need_resched()) { 4462 kvmppc_vcore_preempt(vc); 4463 /* Let something else run */ 4464 cond_resched_lock(&vc->lock); 4465 if (vc->vcore_state == VCORE_PREEMPT) 4466 kvmppc_vcore_end_preempt(vc); 4467 } else { 4468 kvmppc_run_core(vc); 4469 } 4470 vc->runner = NULL; 4471 } 4472 4473 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4474 (vc->vcore_state == VCORE_RUNNING || 4475 vc->vcore_state == VCORE_EXITING || 4476 vc->vcore_state == VCORE_PIGGYBACK)) 4477 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4478 4479 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4480 kvmppc_vcore_end_preempt(vc); 4481 4482 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4483 kvmppc_remove_runnable(vc, vcpu, mftb()); 4484 vcpu->stat.signal_exits++; 4485 run->exit_reason = KVM_EXIT_INTR; 4486 vcpu->arch.ret = -EINTR; 4487 } 4488 4489 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4490 /* Wake up some vcpu to run the core */ 4491 i = -1; 4492 v = next_runnable_thread(vc, &i); 4493 wake_up(&v->arch.cpu_run); 4494 } 4495 4496 trace_kvmppc_run_vcpu_exit(vcpu); 4497 spin_unlock(&vc->lock); 4498 return vcpu->arch.ret; 4499 } 4500 4501 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, 4502 unsigned long lpcr) 4503 { 4504 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 4505 struct kvm_run *run = vcpu->run; 4506 int trap, r, pcpu; 4507 int srcu_idx; 4508 struct kvmppc_vcore *vc; 4509 struct kvm *kvm = vcpu->kvm; 4510 struct kvm_nested_guest *nested = vcpu->arch.nested; 4511 unsigned long flags; 4512 u64 tb; 4513 4514 trace_kvmppc_run_vcpu_enter(vcpu); 4515 4516 run->exit_reason = 0; 4517 vcpu->arch.ret = RESUME_GUEST; 4518 vcpu->arch.trap = 0; 4519 4520 vc = vcpu->arch.vcore; 4521 vcpu->arch.ceded = 0; 4522 vcpu->arch.run_task = current; 4523 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4524 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4525 4526 /* See if the MMU is ready to go */ 4527 if (unlikely(!kvm->arch.mmu_ready)) { 4528 r = kvmhv_setup_mmu(vcpu); 4529 if (r) { 4530 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4531 run->fail_entry.hardware_entry_failure_reason = 0; 4532 vcpu->arch.ret = r; 4533 return r; 4534 } 4535 } 4536 4537 if (need_resched()) 4538 cond_resched(); 4539 4540 kvmppc_update_vpas(vcpu); 4541 4542 preempt_disable(); 4543 pcpu = smp_processor_id(); 4544 if (kvm_is_radix(kvm)) 4545 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4546 4547 /* flags save not required, but irq_pmu has no disable/enable API */ 4548 powerpc_local_irq_pmu_save(flags); 4549 4550 if (signal_pending(current)) 4551 goto sigpend; 4552 if (need_resched() || !kvm->arch.mmu_ready) 4553 goto out; 4554 4555 vcpu->cpu = pcpu; 4556 vcpu->arch.thread_cpu = pcpu; 4557 vc->pcpu = pcpu; 4558 local_paca->kvm_hstate.kvm_vcpu = vcpu; 4559 local_paca->kvm_hstate.ptid = 0; 4560 local_paca->kvm_hstate.fake_suspend = 0; 4561 4562 /* 4563 * Orders set cpu/thread_cpu vs testing for pending interrupts and 4564 * doorbells below. The other side is when these fields are set vs 4565 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to 4566 * kick a vCPU to notice the pending interrupt. 4567 */ 4568 smp_mb(); 4569 4570 if (!nested) { 4571 kvmppc_core_prepare_to_enter(vcpu); 4572 if (vcpu->arch.shregs.msr & MSR_EE) { 4573 if (xive_interrupt_pending(vcpu)) 4574 kvmppc_inject_interrupt_hv(vcpu, 4575 BOOK3S_INTERRUPT_EXTERNAL, 0); 4576 } else if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4577 &vcpu->arch.pending_exceptions)) { 4578 lpcr |= LPCR_MER; 4579 } 4580 } else if (vcpu->arch.pending_exceptions || 4581 vcpu->arch.doorbell_request || 4582 xive_interrupt_pending(vcpu)) { 4583 vcpu->arch.ret = RESUME_HOST; 4584 goto out; 4585 } 4586 4587 if (vcpu->arch.timer_running) { 4588 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 4589 vcpu->arch.timer_running = 0; 4590 } 4591 4592 tb = mftb(); 4593 4594 __kvmppc_create_dtl_entry(vcpu, pcpu, tb + vc->tb_offset, 0); 4595 4596 trace_kvm_guest_enter(vcpu); 4597 4598 guest_enter_irqoff(); 4599 4600 srcu_idx = srcu_read_lock(&kvm->srcu); 4601 4602 this_cpu_disable_ftrace(); 4603 4604 /* Tell lockdep that we're about to enable interrupts */ 4605 trace_hardirqs_on(); 4606 4607 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb); 4608 vcpu->arch.trap = trap; 4609 4610 trace_hardirqs_off(); 4611 4612 this_cpu_enable_ftrace(); 4613 4614 srcu_read_unlock(&kvm->srcu, srcu_idx); 4615 4616 set_irq_happened(trap); 4617 4618 context_tracking_guest_exit(); 4619 if (!vtime_accounting_enabled_this_cpu()) { 4620 local_irq_enable(); 4621 /* 4622 * Service IRQs here before vtime_account_guest_exit() so any 4623 * ticks that occurred while running the guest are accounted to 4624 * the guest. If vtime accounting is enabled, accounting uses 4625 * TB rather than ticks, so it can be done without enabling 4626 * interrupts here, which has the problem that it accounts 4627 * interrupt processing overhead to the host. 4628 */ 4629 local_irq_disable(); 4630 } 4631 vtime_account_guest_exit(); 4632 4633 vcpu->cpu = -1; 4634 vcpu->arch.thread_cpu = -1; 4635 4636 powerpc_local_irq_pmu_restore(flags); 4637 4638 preempt_enable(); 4639 4640 /* 4641 * cancel pending decrementer exception if DEC is now positive, or if 4642 * entering a nested guest in which case the decrementer is now owned 4643 * by L2 and the L1 decrementer is provided in hdec_expires 4644 */ 4645 if (kvmppc_core_pending_dec(vcpu) && 4646 ((tb < kvmppc_dec_expires_host_tb(vcpu)) || 4647 (trap == BOOK3S_INTERRUPT_SYSCALL && 4648 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4649 kvmppc_core_dequeue_dec(vcpu); 4650 4651 trace_kvm_guest_exit(vcpu); 4652 r = RESUME_GUEST; 4653 if (trap) { 4654 if (!nested) 4655 r = kvmppc_handle_exit_hv(vcpu, current); 4656 else 4657 r = kvmppc_handle_nested_exit(vcpu); 4658 } 4659 vcpu->arch.ret = r; 4660 4661 if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) { 4662 kvmppc_set_timer(vcpu); 4663 4664 prepare_to_rcuwait(wait); 4665 for (;;) { 4666 set_current_state(TASK_INTERRUPTIBLE); 4667 if (signal_pending(current)) { 4668 vcpu->stat.signal_exits++; 4669 run->exit_reason = KVM_EXIT_INTR; 4670 vcpu->arch.ret = -EINTR; 4671 break; 4672 } 4673 4674 if (kvmppc_vcpu_check_block(vcpu)) 4675 break; 4676 4677 trace_kvmppc_vcore_blocked(vcpu, 0); 4678 schedule(); 4679 trace_kvmppc_vcore_blocked(vcpu, 1); 4680 } 4681 finish_rcuwait(wait); 4682 } 4683 vcpu->arch.ceded = 0; 4684 4685 done: 4686 trace_kvmppc_run_vcpu_exit(vcpu); 4687 4688 return vcpu->arch.ret; 4689 4690 sigpend: 4691 vcpu->stat.signal_exits++; 4692 run->exit_reason = KVM_EXIT_INTR; 4693 vcpu->arch.ret = -EINTR; 4694 out: 4695 vcpu->cpu = -1; 4696 vcpu->arch.thread_cpu = -1; 4697 powerpc_local_irq_pmu_restore(flags); 4698 preempt_enable(); 4699 goto done; 4700 } 4701 4702 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) 4703 { 4704 struct kvm_run *run = vcpu->run; 4705 int r; 4706 int srcu_idx; 4707 struct kvm *kvm; 4708 unsigned long msr; 4709 4710 start_timing(vcpu, &vcpu->arch.vcpu_entry); 4711 4712 if (!vcpu->arch.sane) { 4713 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4714 return -EINVAL; 4715 } 4716 4717 /* No need to go into the guest when all we'll do is come back out */ 4718 if (signal_pending(current)) { 4719 run->exit_reason = KVM_EXIT_INTR; 4720 return -EINTR; 4721 } 4722 4723 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4724 /* 4725 * Don't allow entry with a suspended transaction, because 4726 * the guest entry/exit code will lose it. 4727 */ 4728 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4729 (current->thread.regs->msr & MSR_TM)) { 4730 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4731 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4732 run->fail_entry.hardware_entry_failure_reason = 0; 4733 return -EINVAL; 4734 } 4735 } 4736 #endif 4737 4738 /* 4739 * Force online to 1 for the sake of old userspace which doesn't 4740 * set it. 4741 */ 4742 if (!vcpu->arch.online) { 4743 atomic_inc(&vcpu->arch.vcore->online_count); 4744 vcpu->arch.online = 1; 4745 } 4746 4747 kvmppc_core_prepare_to_enter(vcpu); 4748 4749 kvm = vcpu->kvm; 4750 atomic_inc(&kvm->arch.vcpus_running); 4751 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4752 smp_mb(); 4753 4754 msr = 0; 4755 if (IS_ENABLED(CONFIG_PPC_FPU)) 4756 msr |= MSR_FP; 4757 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 4758 msr |= MSR_VEC; 4759 if (cpu_has_feature(CPU_FTR_VSX)) 4760 msr |= MSR_VSX; 4761 if ((cpu_has_feature(CPU_FTR_TM) || 4762 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) && 4763 (vcpu->arch.hfscr & HFSCR_TM)) 4764 msr |= MSR_TM; 4765 msr = msr_check_and_set(msr); 4766 4767 kvmppc_save_user_regs(); 4768 4769 kvmppc_save_current_sprs(); 4770 4771 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4772 vcpu->arch.waitp = &vcpu->arch.vcore->wait; 4773 vcpu->arch.pgdir = kvm->mm->pgd; 4774 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4775 4776 do { 4777 accumulate_time(vcpu, &vcpu->arch.guest_entry); 4778 if (cpu_has_feature(CPU_FTR_ARCH_300)) 4779 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, 4780 vcpu->arch.vcore->lpcr); 4781 else 4782 r = kvmppc_run_vcpu(vcpu); 4783 4784 if (run->exit_reason == KVM_EXIT_PAPR_HCALL) { 4785 accumulate_time(vcpu, &vcpu->arch.hcall); 4786 4787 if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) { 4788 /* 4789 * These should have been caught reflected 4790 * into the guest by now. Final sanity check: 4791 * don't allow userspace to execute hcalls in 4792 * the hypervisor. 4793 */ 4794 r = RESUME_GUEST; 4795 continue; 4796 } 4797 trace_kvm_hcall_enter(vcpu); 4798 r = kvmppc_pseries_do_hcall(vcpu); 4799 trace_kvm_hcall_exit(vcpu, r); 4800 kvmppc_core_prepare_to_enter(vcpu); 4801 } else if (r == RESUME_PAGE_FAULT) { 4802 accumulate_time(vcpu, &vcpu->arch.pg_fault); 4803 srcu_idx = srcu_read_lock(&kvm->srcu); 4804 r = kvmppc_book3s_hv_page_fault(vcpu, 4805 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4806 srcu_read_unlock(&kvm->srcu, srcu_idx); 4807 } else if (r == RESUME_PASSTHROUGH) { 4808 if (WARN_ON(xics_on_xive())) 4809 r = H_SUCCESS; 4810 else 4811 r = kvmppc_xics_rm_complete(vcpu, 0); 4812 } 4813 } while (is_kvmppc_resume_guest(r)); 4814 accumulate_time(vcpu, &vcpu->arch.vcpu_exit); 4815 4816 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4817 atomic_dec(&kvm->arch.vcpus_running); 4818 4819 srr_regs_clobbered(); 4820 4821 end_timing(vcpu); 4822 4823 return r; 4824 } 4825 4826 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4827 int shift, int sllp) 4828 { 4829 (*sps)->page_shift = shift; 4830 (*sps)->slb_enc = sllp; 4831 (*sps)->enc[0].page_shift = shift; 4832 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4833 /* 4834 * Add 16MB MPSS support (may get filtered out by userspace) 4835 */ 4836 if (shift != 24) { 4837 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4838 if (penc != -1) { 4839 (*sps)->enc[1].page_shift = 24; 4840 (*sps)->enc[1].pte_enc = penc; 4841 } 4842 } 4843 (*sps)++; 4844 } 4845 4846 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4847 struct kvm_ppc_smmu_info *info) 4848 { 4849 struct kvm_ppc_one_seg_page_size *sps; 4850 4851 /* 4852 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4853 * POWER7 doesn't support keys for instruction accesses, 4854 * POWER8 and POWER9 do. 4855 */ 4856 info->data_keys = 32; 4857 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4858 4859 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4860 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4861 info->slb_size = 32; 4862 4863 /* We only support these sizes for now, and no muti-size segments */ 4864 sps = &info->sps[0]; 4865 kvmppc_add_seg_page_size(&sps, 12, 0); 4866 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4867 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4868 4869 /* If running as a nested hypervisor, we don't support HPT guests */ 4870 if (kvmhv_on_pseries()) 4871 info->flags |= KVM_PPC_NO_HASH; 4872 4873 return 0; 4874 } 4875 4876 /* 4877 * Get (and clear) the dirty memory log for a memory slot. 4878 */ 4879 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4880 struct kvm_dirty_log *log) 4881 { 4882 struct kvm_memslots *slots; 4883 struct kvm_memory_slot *memslot; 4884 int r; 4885 unsigned long n, i; 4886 unsigned long *buf, *p; 4887 struct kvm_vcpu *vcpu; 4888 4889 mutex_lock(&kvm->slots_lock); 4890 4891 r = -EINVAL; 4892 if (log->slot >= KVM_USER_MEM_SLOTS) 4893 goto out; 4894 4895 slots = kvm_memslots(kvm); 4896 memslot = id_to_memslot(slots, log->slot); 4897 r = -ENOENT; 4898 if (!memslot || !memslot->dirty_bitmap) 4899 goto out; 4900 4901 /* 4902 * Use second half of bitmap area because both HPT and radix 4903 * accumulate bits in the first half. 4904 */ 4905 n = kvm_dirty_bitmap_bytes(memslot); 4906 buf = memslot->dirty_bitmap + n / sizeof(long); 4907 memset(buf, 0, n); 4908 4909 if (kvm_is_radix(kvm)) 4910 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4911 else 4912 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4913 if (r) 4914 goto out; 4915 4916 /* 4917 * We accumulate dirty bits in the first half of the 4918 * memslot's dirty_bitmap area, for when pages are paged 4919 * out or modified by the host directly. Pick up these 4920 * bits and add them to the map. 4921 */ 4922 p = memslot->dirty_bitmap; 4923 for (i = 0; i < n / sizeof(long); ++i) 4924 buf[i] |= xchg(&p[i], 0); 4925 4926 /* Harvest dirty bits from VPA and DTL updates */ 4927 /* Note: we never modify the SLB shadow buffer areas */ 4928 kvm_for_each_vcpu(i, vcpu, kvm) { 4929 spin_lock(&vcpu->arch.vpa_update_lock); 4930 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4931 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4932 spin_unlock(&vcpu->arch.vpa_update_lock); 4933 } 4934 4935 r = -EFAULT; 4936 if (copy_to_user(log->dirty_bitmap, buf, n)) 4937 goto out; 4938 4939 r = 0; 4940 out: 4941 mutex_unlock(&kvm->slots_lock); 4942 return r; 4943 } 4944 4945 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) 4946 { 4947 vfree(slot->arch.rmap); 4948 slot->arch.rmap = NULL; 4949 } 4950 4951 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 4952 const struct kvm_memory_slot *old, 4953 struct kvm_memory_slot *new, 4954 enum kvm_mr_change change) 4955 { 4956 if (change == KVM_MR_CREATE) { 4957 unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap)); 4958 4959 if ((size >> PAGE_SHIFT) > totalram_pages()) 4960 return -ENOMEM; 4961 4962 new->arch.rmap = vzalloc(size); 4963 if (!new->arch.rmap) 4964 return -ENOMEM; 4965 } else if (change != KVM_MR_DELETE) { 4966 new->arch.rmap = old->arch.rmap; 4967 } 4968 4969 return 0; 4970 } 4971 4972 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 4973 struct kvm_memory_slot *old, 4974 const struct kvm_memory_slot *new, 4975 enum kvm_mr_change change) 4976 { 4977 /* 4978 * If we are creating or modifying a memslot, it might make 4979 * some address that was previously cached as emulated 4980 * MMIO be no longer emulated MMIO, so invalidate 4981 * all the caches of emulated MMIO translations. 4982 */ 4983 if (change != KVM_MR_DELETE) 4984 atomic64_inc(&kvm->arch.mmio_update); 4985 4986 /* 4987 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 4988 * have already called kvm_arch_flush_shadow_memslot() to 4989 * flush shadow mappings. For KVM_MR_CREATE we have no 4990 * previous mappings. So the only case to handle is 4991 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 4992 * has been changed. 4993 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 4994 * to get rid of any THP PTEs in the partition-scoped page tables 4995 * so we can track dirtiness at the page level; we flush when 4996 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 4997 * using THP PTEs. 4998 */ 4999 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 5000 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 5001 kvmppc_radix_flush_memslot(kvm, old); 5002 /* 5003 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 5004 */ 5005 if (!kvm->arch.secure_guest) 5006 return; 5007 5008 switch (change) { 5009 case KVM_MR_CREATE: 5010 /* 5011 * @TODO kvmppc_uvmem_memslot_create() can fail and 5012 * return error. Fix this. 5013 */ 5014 kvmppc_uvmem_memslot_create(kvm, new); 5015 break; 5016 case KVM_MR_DELETE: 5017 kvmppc_uvmem_memslot_delete(kvm, old); 5018 break; 5019 default: 5020 /* TODO: Handle KVM_MR_MOVE */ 5021 break; 5022 } 5023 } 5024 5025 /* 5026 * Update LPCR values in kvm->arch and in vcores. 5027 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 5028 * of kvm->arch.lpcr update). 5029 */ 5030 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 5031 { 5032 long int i; 5033 u32 cores_done = 0; 5034 5035 if ((kvm->arch.lpcr & mask) == lpcr) 5036 return; 5037 5038 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 5039 5040 for (i = 0; i < KVM_MAX_VCORES; ++i) { 5041 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 5042 if (!vc) 5043 continue; 5044 5045 spin_lock(&vc->lock); 5046 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 5047 verify_lpcr(kvm, vc->lpcr); 5048 spin_unlock(&vc->lock); 5049 if (++cores_done >= kvm->arch.online_vcores) 5050 break; 5051 } 5052 } 5053 5054 void kvmppc_setup_partition_table(struct kvm *kvm) 5055 { 5056 unsigned long dw0, dw1; 5057 5058 if (!kvm_is_radix(kvm)) { 5059 /* PS field - page size for VRMA */ 5060 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 5061 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 5062 /* HTABSIZE and HTABORG fields */ 5063 dw0 |= kvm->arch.sdr1; 5064 5065 /* Second dword as set by userspace */ 5066 dw1 = kvm->arch.process_table; 5067 } else { 5068 dw0 = PATB_HR | radix__get_tree_size() | 5069 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 5070 dw1 = PATB_GR | kvm->arch.process_table; 5071 } 5072 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 5073 } 5074 5075 /* 5076 * Set up HPT (hashed page table) and RMA (real-mode area). 5077 * Must be called with kvm->arch.mmu_setup_lock held. 5078 */ 5079 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 5080 { 5081 int err = 0; 5082 struct kvm *kvm = vcpu->kvm; 5083 unsigned long hva; 5084 struct kvm_memory_slot *memslot; 5085 struct vm_area_struct *vma; 5086 unsigned long lpcr = 0, senc; 5087 unsigned long psize, porder; 5088 int srcu_idx; 5089 5090 /* Allocate hashed page table (if not done already) and reset it */ 5091 if (!kvm->arch.hpt.virt) { 5092 int order = KVM_DEFAULT_HPT_ORDER; 5093 struct kvm_hpt_info info; 5094 5095 err = kvmppc_allocate_hpt(&info, order); 5096 /* If we get here, it means userspace didn't specify a 5097 * size explicitly. So, try successively smaller 5098 * sizes if the default failed. */ 5099 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 5100 err = kvmppc_allocate_hpt(&info, order); 5101 5102 if (err < 0) { 5103 pr_err("KVM: Couldn't alloc HPT\n"); 5104 goto out; 5105 } 5106 5107 kvmppc_set_hpt(kvm, &info); 5108 } 5109 5110 /* Look up the memslot for guest physical address 0 */ 5111 srcu_idx = srcu_read_lock(&kvm->srcu); 5112 memslot = gfn_to_memslot(kvm, 0); 5113 5114 /* We must have some memory at 0 by now */ 5115 err = -EINVAL; 5116 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 5117 goto out_srcu; 5118 5119 /* Look up the VMA for the start of this memory slot */ 5120 hva = memslot->userspace_addr; 5121 mmap_read_lock(kvm->mm); 5122 vma = vma_lookup(kvm->mm, hva); 5123 if (!vma || (vma->vm_flags & VM_IO)) 5124 goto up_out; 5125 5126 psize = vma_kernel_pagesize(vma); 5127 5128 mmap_read_unlock(kvm->mm); 5129 5130 /* We can handle 4k, 64k or 16M pages in the VRMA */ 5131 if (psize >= 0x1000000) 5132 psize = 0x1000000; 5133 else if (psize >= 0x10000) 5134 psize = 0x10000; 5135 else 5136 psize = 0x1000; 5137 porder = __ilog2(psize); 5138 5139 senc = slb_pgsize_encoding(psize); 5140 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 5141 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5142 /* Create HPTEs in the hash page table for the VRMA */ 5143 kvmppc_map_vrma(vcpu, memslot, porder); 5144 5145 /* Update VRMASD field in the LPCR */ 5146 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 5147 /* the -4 is to account for senc values starting at 0x10 */ 5148 lpcr = senc << (LPCR_VRMASD_SH - 4); 5149 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 5150 } 5151 5152 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 5153 smp_wmb(); 5154 err = 0; 5155 out_srcu: 5156 srcu_read_unlock(&kvm->srcu, srcu_idx); 5157 out: 5158 return err; 5159 5160 up_out: 5161 mmap_read_unlock(kvm->mm); 5162 goto out_srcu; 5163 } 5164 5165 /* 5166 * Must be called with kvm->arch.mmu_setup_lock held and 5167 * mmu_ready = 0 and no vcpus running. 5168 */ 5169 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 5170 { 5171 unsigned long lpcr, lpcr_mask; 5172 5173 if (nesting_enabled(kvm)) 5174 kvmhv_release_all_nested(kvm); 5175 kvmppc_rmap_reset(kvm); 5176 kvm->arch.process_table = 0; 5177 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5178 spin_lock(&kvm->mmu_lock); 5179 kvm->arch.radix = 0; 5180 spin_unlock(&kvm->mmu_lock); 5181 kvmppc_free_radix(kvm); 5182 5183 lpcr = LPCR_VPM1; 5184 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5185 if (cpu_has_feature(CPU_FTR_ARCH_31)) 5186 lpcr_mask |= LPCR_HAIL; 5187 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5188 5189 return 0; 5190 } 5191 5192 /* 5193 * Must be called with kvm->arch.mmu_setup_lock held and 5194 * mmu_ready = 0 and no vcpus running. 5195 */ 5196 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 5197 { 5198 unsigned long lpcr, lpcr_mask; 5199 int err; 5200 5201 err = kvmppc_init_vm_radix(kvm); 5202 if (err) 5203 return err; 5204 kvmppc_rmap_reset(kvm); 5205 /* Mutual exclusion with kvm_unmap_gfn_range etc. */ 5206 spin_lock(&kvm->mmu_lock); 5207 kvm->arch.radix = 1; 5208 spin_unlock(&kvm->mmu_lock); 5209 kvmppc_free_hpt(&kvm->arch.hpt); 5210 5211 lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5212 lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5213 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5214 lpcr_mask |= LPCR_HAIL; 5215 if (cpu_has_feature(CPU_FTR_HVMODE) && 5216 (kvm->arch.host_lpcr & LPCR_HAIL)) 5217 lpcr |= LPCR_HAIL; 5218 } 5219 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 5220 5221 return 0; 5222 } 5223 5224 #ifdef CONFIG_KVM_XICS 5225 /* 5226 * Allocate a per-core structure for managing state about which cores are 5227 * running in the host versus the guest and for exchanging data between 5228 * real mode KVM and CPU running in the host. 5229 * This is only done for the first VM. 5230 * The allocated structure stays even if all VMs have stopped. 5231 * It is only freed when the kvm-hv module is unloaded. 5232 * It's OK for this routine to fail, we just don't support host 5233 * core operations like redirecting H_IPI wakeups. 5234 */ 5235 void kvmppc_alloc_host_rm_ops(void) 5236 { 5237 struct kvmppc_host_rm_ops *ops; 5238 unsigned long l_ops; 5239 int cpu, core; 5240 int size; 5241 5242 if (cpu_has_feature(CPU_FTR_ARCH_300)) 5243 return; 5244 5245 /* Not the first time here ? */ 5246 if (kvmppc_host_rm_ops_hv != NULL) 5247 return; 5248 5249 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 5250 if (!ops) 5251 return; 5252 5253 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 5254 ops->rm_core = kzalloc(size, GFP_KERNEL); 5255 5256 if (!ops->rm_core) { 5257 kfree(ops); 5258 return; 5259 } 5260 5261 cpus_read_lock(); 5262 5263 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 5264 if (!cpu_online(cpu)) 5265 continue; 5266 5267 core = cpu >> threads_shift; 5268 ops->rm_core[core].rm_state.in_host = 1; 5269 } 5270 5271 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 5272 5273 /* 5274 * Make the contents of the kvmppc_host_rm_ops structure visible 5275 * to other CPUs before we assign it to the global variable. 5276 * Do an atomic assignment (no locks used here), but if someone 5277 * beats us to it, just free our copy and return. 5278 */ 5279 smp_wmb(); 5280 l_ops = (unsigned long) ops; 5281 5282 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 5283 cpus_read_unlock(); 5284 kfree(ops->rm_core); 5285 kfree(ops); 5286 return; 5287 } 5288 5289 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 5290 "ppc/kvm_book3s:prepare", 5291 kvmppc_set_host_core, 5292 kvmppc_clear_host_core); 5293 cpus_read_unlock(); 5294 } 5295 5296 void kvmppc_free_host_rm_ops(void) 5297 { 5298 if (kvmppc_host_rm_ops_hv) { 5299 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 5300 kfree(kvmppc_host_rm_ops_hv->rm_core); 5301 kfree(kvmppc_host_rm_ops_hv); 5302 kvmppc_host_rm_ops_hv = NULL; 5303 } 5304 } 5305 #endif 5306 5307 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 5308 { 5309 unsigned long lpcr, lpid; 5310 int ret; 5311 5312 mutex_init(&kvm->arch.uvmem_lock); 5313 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 5314 mutex_init(&kvm->arch.mmu_setup_lock); 5315 5316 /* Allocate the guest's logical partition ID */ 5317 5318 lpid = kvmppc_alloc_lpid(); 5319 if ((long)lpid < 0) 5320 return -ENOMEM; 5321 kvm->arch.lpid = lpid; 5322 5323 kvmppc_alloc_host_rm_ops(); 5324 5325 kvmhv_vm_nested_init(kvm); 5326 5327 /* 5328 * Since we don't flush the TLB when tearing down a VM, 5329 * and this lpid might have previously been used, 5330 * make sure we flush on each core before running the new VM. 5331 * On POWER9, the tlbie in mmu_partition_table_set_entry() 5332 * does this flush for us. 5333 */ 5334 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5335 cpumask_setall(&kvm->arch.need_tlb_flush); 5336 5337 /* Start out with the default set of hcalls enabled */ 5338 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 5339 sizeof(kvm->arch.enabled_hcalls)); 5340 5341 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5342 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 5343 5344 /* Init LPCR for virtual RMA mode */ 5345 if (cpu_has_feature(CPU_FTR_HVMODE)) { 5346 kvm->arch.host_lpid = mfspr(SPRN_LPID); 5347 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 5348 lpcr &= LPCR_PECE | LPCR_LPES; 5349 } else { 5350 /* 5351 * The L2 LPES mode will be set by the L0 according to whether 5352 * or not it needs to take external interrupts in HV mode. 5353 */ 5354 lpcr = 0; 5355 } 5356 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 5357 LPCR_VPM0 | LPCR_VPM1; 5358 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 5359 (VRMA_VSID << SLB_VSID_SHIFT_1T); 5360 /* On POWER8 turn on online bit to enable PURR/SPURR */ 5361 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5362 lpcr |= LPCR_ONL; 5363 /* 5364 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 5365 * Set HVICE bit to enable hypervisor virtualization interrupts. 5366 * Set HEIC to prevent OS interrupts to go to hypervisor (should 5367 * be unnecessary but better safe than sorry in case we re-enable 5368 * EE in HV mode with this LPCR still set) 5369 */ 5370 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5371 lpcr &= ~LPCR_VPM0; 5372 lpcr |= LPCR_HVICE | LPCR_HEIC; 5373 5374 /* 5375 * If xive is enabled, we route 0x500 interrupts directly 5376 * to the guest. 5377 */ 5378 if (xics_on_xive()) 5379 lpcr |= LPCR_LPES; 5380 } 5381 5382 /* 5383 * If the host uses radix, the guest starts out as radix. 5384 */ 5385 if (radix_enabled()) { 5386 kvm->arch.radix = 1; 5387 kvm->arch.mmu_ready = 1; 5388 lpcr &= ~LPCR_VPM1; 5389 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 5390 if (cpu_has_feature(CPU_FTR_HVMODE) && 5391 cpu_has_feature(CPU_FTR_ARCH_31) && 5392 (kvm->arch.host_lpcr & LPCR_HAIL)) 5393 lpcr |= LPCR_HAIL; 5394 ret = kvmppc_init_vm_radix(kvm); 5395 if (ret) { 5396 kvmppc_free_lpid(kvm->arch.lpid); 5397 return ret; 5398 } 5399 kvmppc_setup_partition_table(kvm); 5400 } 5401 5402 verify_lpcr(kvm, lpcr); 5403 kvm->arch.lpcr = lpcr; 5404 5405 /* Initialization for future HPT resizes */ 5406 kvm->arch.resize_hpt = NULL; 5407 5408 /* 5409 * Work out how many sets the TLB has, for the use of 5410 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 5411 */ 5412 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 5413 /* 5414 * P10 will flush all the congruence class with a single tlbiel 5415 */ 5416 kvm->arch.tlb_sets = 1; 5417 } else if (radix_enabled()) 5418 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 5419 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 5420 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 5421 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 5422 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 5423 else 5424 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 5425 5426 /* 5427 * Track that we now have a HV mode VM active. This blocks secondary 5428 * CPU threads from coming online. 5429 */ 5430 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5431 kvm_hv_vm_activated(); 5432 5433 /* 5434 * Initialize smt_mode depending on processor. 5435 * POWER8 and earlier have to use "strict" threading, where 5436 * all vCPUs in a vcore have to run on the same (sub)core, 5437 * whereas on POWER9 the threads can each run a different 5438 * guest. 5439 */ 5440 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5441 kvm->arch.smt_mode = threads_per_subcore; 5442 else 5443 kvm->arch.smt_mode = 1; 5444 kvm->arch.emul_smt_mode = 1; 5445 5446 return 0; 5447 } 5448 5449 static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm) 5450 { 5451 kvmppc_mmu_debugfs_init(kvm); 5452 if (radix_enabled()) 5453 kvmhv_radix_debugfs_init(kvm); 5454 return 0; 5455 } 5456 5457 static void kvmppc_free_vcores(struct kvm *kvm) 5458 { 5459 long int i; 5460 5461 for (i = 0; i < KVM_MAX_VCORES; ++i) 5462 kfree(kvm->arch.vcores[i]); 5463 kvm->arch.online_vcores = 0; 5464 } 5465 5466 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 5467 { 5468 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5469 kvm_hv_vm_deactivated(); 5470 5471 kvmppc_free_vcores(kvm); 5472 5473 5474 if (kvm_is_radix(kvm)) 5475 kvmppc_free_radix(kvm); 5476 else 5477 kvmppc_free_hpt(&kvm->arch.hpt); 5478 5479 /* Perform global invalidation and return lpid to the pool */ 5480 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5481 if (nesting_enabled(kvm)) 5482 kvmhv_release_all_nested(kvm); 5483 kvm->arch.process_table = 0; 5484 if (kvm->arch.secure_guest) 5485 uv_svm_terminate(kvm->arch.lpid); 5486 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 5487 } 5488 5489 kvmppc_free_lpid(kvm->arch.lpid); 5490 5491 kvmppc_free_pimap(kvm); 5492 } 5493 5494 /* We don't need to emulate any privileged instructions or dcbz */ 5495 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, 5496 unsigned int inst, int *advance) 5497 { 5498 return EMULATE_FAIL; 5499 } 5500 5501 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 5502 ulong spr_val) 5503 { 5504 return EMULATE_FAIL; 5505 } 5506 5507 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 5508 ulong *spr_val) 5509 { 5510 return EMULATE_FAIL; 5511 } 5512 5513 static int kvmppc_core_check_processor_compat_hv(void) 5514 { 5515 if (cpu_has_feature(CPU_FTR_HVMODE) && 5516 cpu_has_feature(CPU_FTR_ARCH_206)) 5517 return 0; 5518 5519 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5520 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5521 return 0; 5522 5523 return -EIO; 5524 } 5525 5526 #ifdef CONFIG_KVM_XICS 5527 5528 void kvmppc_free_pimap(struct kvm *kvm) 5529 { 5530 kfree(kvm->arch.pimap); 5531 } 5532 5533 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5534 { 5535 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5536 } 5537 5538 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5539 { 5540 struct irq_desc *desc; 5541 struct kvmppc_irq_map *irq_map; 5542 struct kvmppc_passthru_irqmap *pimap; 5543 struct irq_chip *chip; 5544 int i, rc = 0; 5545 struct irq_data *host_data; 5546 5547 if (!kvm_irq_bypass) 5548 return 1; 5549 5550 desc = irq_to_desc(host_irq); 5551 if (!desc) 5552 return -EIO; 5553 5554 mutex_lock(&kvm->lock); 5555 5556 pimap = kvm->arch.pimap; 5557 if (pimap == NULL) { 5558 /* First call, allocate structure to hold IRQ map */ 5559 pimap = kvmppc_alloc_pimap(); 5560 if (pimap == NULL) { 5561 mutex_unlock(&kvm->lock); 5562 return -ENOMEM; 5563 } 5564 kvm->arch.pimap = pimap; 5565 } 5566 5567 /* 5568 * For now, we only support interrupts for which the EOI operation 5569 * is an OPAL call followed by a write to XIRR, since that's 5570 * what our real-mode EOI code does, or a XIVE interrupt 5571 */ 5572 chip = irq_data_get_irq_chip(&desc->irq_data); 5573 if (!chip || !is_pnv_opal_msi(chip)) { 5574 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5575 host_irq, guest_gsi); 5576 mutex_unlock(&kvm->lock); 5577 return -ENOENT; 5578 } 5579 5580 /* 5581 * See if we already have an entry for this guest IRQ number. 5582 * If it's mapped to a hardware IRQ number, that's an error, 5583 * otherwise re-use this entry. 5584 */ 5585 for (i = 0; i < pimap->n_mapped; i++) { 5586 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5587 if (pimap->mapped[i].r_hwirq) { 5588 mutex_unlock(&kvm->lock); 5589 return -EINVAL; 5590 } 5591 break; 5592 } 5593 } 5594 5595 if (i == KVMPPC_PIRQ_MAPPED) { 5596 mutex_unlock(&kvm->lock); 5597 return -EAGAIN; /* table is full */ 5598 } 5599 5600 irq_map = &pimap->mapped[i]; 5601 5602 irq_map->v_hwirq = guest_gsi; 5603 irq_map->desc = desc; 5604 5605 /* 5606 * Order the above two stores before the next to serialize with 5607 * the KVM real mode handler. 5608 */ 5609 smp_wmb(); 5610 5611 /* 5612 * The 'host_irq' number is mapped in the PCI-MSI domain but 5613 * the underlying calls, which will EOI the interrupt in real 5614 * mode, need an HW IRQ number mapped in the XICS IRQ domain. 5615 */ 5616 host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq); 5617 irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data); 5618 5619 if (i == pimap->n_mapped) 5620 pimap->n_mapped++; 5621 5622 if (xics_on_xive()) 5623 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq); 5624 else 5625 kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq); 5626 if (rc) 5627 irq_map->r_hwirq = 0; 5628 5629 mutex_unlock(&kvm->lock); 5630 5631 return 0; 5632 } 5633 5634 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5635 { 5636 struct irq_desc *desc; 5637 struct kvmppc_passthru_irqmap *pimap; 5638 int i, rc = 0; 5639 5640 if (!kvm_irq_bypass) 5641 return 0; 5642 5643 desc = irq_to_desc(host_irq); 5644 if (!desc) 5645 return -EIO; 5646 5647 mutex_lock(&kvm->lock); 5648 if (!kvm->arch.pimap) 5649 goto unlock; 5650 5651 pimap = kvm->arch.pimap; 5652 5653 for (i = 0; i < pimap->n_mapped; i++) { 5654 if (guest_gsi == pimap->mapped[i].v_hwirq) 5655 break; 5656 } 5657 5658 if (i == pimap->n_mapped) { 5659 mutex_unlock(&kvm->lock); 5660 return -ENODEV; 5661 } 5662 5663 if (xics_on_xive()) 5664 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq); 5665 else 5666 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5667 5668 /* invalidate the entry (what to do on error from the above ?) */ 5669 pimap->mapped[i].r_hwirq = 0; 5670 5671 /* 5672 * We don't free this structure even when the count goes to 5673 * zero. The structure is freed when we destroy the VM. 5674 */ 5675 unlock: 5676 mutex_unlock(&kvm->lock); 5677 return rc; 5678 } 5679 5680 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5681 struct irq_bypass_producer *prod) 5682 { 5683 int ret = 0; 5684 struct kvm_kernel_irqfd *irqfd = 5685 container_of(cons, struct kvm_kernel_irqfd, consumer); 5686 5687 irqfd->producer = prod; 5688 5689 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5690 if (ret) 5691 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5692 prod->irq, irqfd->gsi, ret); 5693 5694 return ret; 5695 } 5696 5697 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5698 struct irq_bypass_producer *prod) 5699 { 5700 int ret; 5701 struct kvm_kernel_irqfd *irqfd = 5702 container_of(cons, struct kvm_kernel_irqfd, consumer); 5703 5704 irqfd->producer = NULL; 5705 5706 /* 5707 * When producer of consumer is unregistered, we change back to 5708 * default external interrupt handling mode - KVM real mode 5709 * will switch back to host. 5710 */ 5711 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5712 if (ret) 5713 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5714 prod->irq, irqfd->gsi, ret); 5715 } 5716 #endif 5717 5718 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5719 unsigned int ioctl, unsigned long arg) 5720 { 5721 struct kvm *kvm __maybe_unused = filp->private_data; 5722 void __user *argp = (void __user *)arg; 5723 long r; 5724 5725 switch (ioctl) { 5726 5727 case KVM_PPC_ALLOCATE_HTAB: { 5728 u32 htab_order; 5729 5730 /* If we're a nested hypervisor, we currently only support radix */ 5731 if (kvmhv_on_pseries()) { 5732 r = -EOPNOTSUPP; 5733 break; 5734 } 5735 5736 r = -EFAULT; 5737 if (get_user(htab_order, (u32 __user *)argp)) 5738 break; 5739 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5740 if (r) 5741 break; 5742 r = 0; 5743 break; 5744 } 5745 5746 case KVM_PPC_GET_HTAB_FD: { 5747 struct kvm_get_htab_fd ghf; 5748 5749 r = -EFAULT; 5750 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5751 break; 5752 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5753 break; 5754 } 5755 5756 case KVM_PPC_RESIZE_HPT_PREPARE: { 5757 struct kvm_ppc_resize_hpt rhpt; 5758 5759 r = -EFAULT; 5760 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5761 break; 5762 5763 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5764 break; 5765 } 5766 5767 case KVM_PPC_RESIZE_HPT_COMMIT: { 5768 struct kvm_ppc_resize_hpt rhpt; 5769 5770 r = -EFAULT; 5771 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5772 break; 5773 5774 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5775 break; 5776 } 5777 5778 default: 5779 r = -ENOTTY; 5780 } 5781 5782 return r; 5783 } 5784 5785 /* 5786 * List of hcall numbers to enable by default. 5787 * For compatibility with old userspace, we enable by default 5788 * all hcalls that were implemented before the hcall-enabling 5789 * facility was added. Note this list should not include H_RTAS. 5790 */ 5791 static unsigned int default_hcall_list[] = { 5792 H_REMOVE, 5793 H_ENTER, 5794 H_READ, 5795 H_PROTECT, 5796 H_BULK_REMOVE, 5797 #ifdef CONFIG_SPAPR_TCE_IOMMU 5798 H_GET_TCE, 5799 H_PUT_TCE, 5800 #endif 5801 H_SET_DABR, 5802 H_SET_XDABR, 5803 H_CEDE, 5804 H_PROD, 5805 H_CONFER, 5806 H_REGISTER_VPA, 5807 #ifdef CONFIG_KVM_XICS 5808 H_EOI, 5809 H_CPPR, 5810 H_IPI, 5811 H_IPOLL, 5812 H_XIRR, 5813 H_XIRR_X, 5814 #endif 5815 0 5816 }; 5817 5818 static void init_default_hcalls(void) 5819 { 5820 int i; 5821 unsigned int hcall; 5822 5823 for (i = 0; default_hcall_list[i]; ++i) { 5824 hcall = default_hcall_list[i]; 5825 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5826 __set_bit(hcall / 4, default_enabled_hcalls); 5827 } 5828 } 5829 5830 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5831 { 5832 unsigned long lpcr; 5833 int radix; 5834 int err; 5835 5836 /* If not on a POWER9, reject it */ 5837 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5838 return -ENODEV; 5839 5840 /* If any unknown flags set, reject it */ 5841 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5842 return -EINVAL; 5843 5844 /* GR (guest radix) bit in process_table field must match */ 5845 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5846 if (!!(cfg->process_table & PATB_GR) != radix) 5847 return -EINVAL; 5848 5849 /* Process table size field must be reasonable, i.e. <= 24 */ 5850 if ((cfg->process_table & PRTS_MASK) > 24) 5851 return -EINVAL; 5852 5853 /* We can change a guest to/from radix now, if the host is radix */ 5854 if (radix && !radix_enabled()) 5855 return -EINVAL; 5856 5857 /* If we're a nested hypervisor, we currently only support radix */ 5858 if (kvmhv_on_pseries() && !radix) 5859 return -EINVAL; 5860 5861 mutex_lock(&kvm->arch.mmu_setup_lock); 5862 if (radix != kvm_is_radix(kvm)) { 5863 if (kvm->arch.mmu_ready) { 5864 kvm->arch.mmu_ready = 0; 5865 /* order mmu_ready vs. vcpus_running */ 5866 smp_mb(); 5867 if (atomic_read(&kvm->arch.vcpus_running)) { 5868 kvm->arch.mmu_ready = 1; 5869 err = -EBUSY; 5870 goto out_unlock; 5871 } 5872 } 5873 if (radix) 5874 err = kvmppc_switch_mmu_to_radix(kvm); 5875 else 5876 err = kvmppc_switch_mmu_to_hpt(kvm); 5877 if (err) 5878 goto out_unlock; 5879 } 5880 5881 kvm->arch.process_table = cfg->process_table; 5882 kvmppc_setup_partition_table(kvm); 5883 5884 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5885 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5886 err = 0; 5887 5888 out_unlock: 5889 mutex_unlock(&kvm->arch.mmu_setup_lock); 5890 return err; 5891 } 5892 5893 static int kvmhv_enable_nested(struct kvm *kvm) 5894 { 5895 if (!nested) 5896 return -EPERM; 5897 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5898 return -ENODEV; 5899 if (!radix_enabled()) 5900 return -ENODEV; 5901 5902 /* kvm == NULL means the caller is testing if the capability exists */ 5903 if (kvm) 5904 kvm->arch.nested_enable = true; 5905 return 0; 5906 } 5907 5908 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5909 int size) 5910 { 5911 int rc = -EINVAL; 5912 5913 if (kvmhv_vcpu_is_radix(vcpu)) { 5914 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5915 5916 if (rc > 0) 5917 rc = -EINVAL; 5918 } 5919 5920 /* For now quadrants are the only way to access nested guest memory */ 5921 if (rc && vcpu->arch.nested) 5922 rc = -EAGAIN; 5923 5924 return rc; 5925 } 5926 5927 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5928 int size) 5929 { 5930 int rc = -EINVAL; 5931 5932 if (kvmhv_vcpu_is_radix(vcpu)) { 5933 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5934 5935 if (rc > 0) 5936 rc = -EINVAL; 5937 } 5938 5939 /* For now quadrants are the only way to access nested guest memory */ 5940 if (rc && vcpu->arch.nested) 5941 rc = -EAGAIN; 5942 5943 return rc; 5944 } 5945 5946 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 5947 { 5948 unpin_vpa(kvm, vpa); 5949 vpa->gpa = 0; 5950 vpa->pinned_addr = NULL; 5951 vpa->dirty = false; 5952 vpa->update_pending = 0; 5953 } 5954 5955 /* 5956 * Enable a guest to become a secure VM, or test whether 5957 * that could be enabled. 5958 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is 5959 * tested (kvm == NULL) or enabled (kvm != NULL). 5960 */ 5961 static int kvmhv_enable_svm(struct kvm *kvm) 5962 { 5963 if (!kvmppc_uvmem_available()) 5964 return -EINVAL; 5965 if (kvm) 5966 kvm->arch.svm_enabled = 1; 5967 return 0; 5968 } 5969 5970 /* 5971 * IOCTL handler to turn off secure mode of guest 5972 * 5973 * - Release all device pages 5974 * - Issue ucall to terminate the guest on the UV side 5975 * - Unpin the VPA pages. 5976 * - Reinit the partition scoped page tables 5977 */ 5978 static int kvmhv_svm_off(struct kvm *kvm) 5979 { 5980 struct kvm_vcpu *vcpu; 5981 int mmu_was_ready; 5982 int srcu_idx; 5983 int ret = 0; 5984 unsigned long i; 5985 5986 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 5987 return ret; 5988 5989 mutex_lock(&kvm->arch.mmu_setup_lock); 5990 mmu_was_ready = kvm->arch.mmu_ready; 5991 if (kvm->arch.mmu_ready) { 5992 kvm->arch.mmu_ready = 0; 5993 /* order mmu_ready vs. vcpus_running */ 5994 smp_mb(); 5995 if (atomic_read(&kvm->arch.vcpus_running)) { 5996 kvm->arch.mmu_ready = 1; 5997 ret = -EBUSY; 5998 goto out; 5999 } 6000 } 6001 6002 srcu_idx = srcu_read_lock(&kvm->srcu); 6003 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 6004 struct kvm_memory_slot *memslot; 6005 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 6006 int bkt; 6007 6008 if (!slots) 6009 continue; 6010 6011 kvm_for_each_memslot(memslot, bkt, slots) { 6012 kvmppc_uvmem_drop_pages(memslot, kvm, true); 6013 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 6014 } 6015 } 6016 srcu_read_unlock(&kvm->srcu, srcu_idx); 6017 6018 ret = uv_svm_terminate(kvm->arch.lpid); 6019 if (ret != U_SUCCESS) { 6020 ret = -EINVAL; 6021 goto out; 6022 } 6023 6024 /* 6025 * When secure guest is reset, all the guest pages are sent 6026 * to UV via UV_PAGE_IN before the non-boot vcpus get a 6027 * chance to run and unpin their VPA pages. Unpinning of all 6028 * VPA pages is done here explicitly so that VPA pages 6029 * can be migrated to the secure side. 6030 * 6031 * This is required to for the secure SMP guest to reboot 6032 * correctly. 6033 */ 6034 kvm_for_each_vcpu(i, vcpu, kvm) { 6035 spin_lock(&vcpu->arch.vpa_update_lock); 6036 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 6037 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 6038 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 6039 spin_unlock(&vcpu->arch.vpa_update_lock); 6040 } 6041 6042 kvmppc_setup_partition_table(kvm); 6043 kvm->arch.secure_guest = 0; 6044 kvm->arch.mmu_ready = mmu_was_ready; 6045 out: 6046 mutex_unlock(&kvm->arch.mmu_setup_lock); 6047 return ret; 6048 } 6049 6050 static int kvmhv_enable_dawr1(struct kvm *kvm) 6051 { 6052 if (!cpu_has_feature(CPU_FTR_DAWR1)) 6053 return -ENODEV; 6054 6055 /* kvm == NULL means the caller is testing if the capability exists */ 6056 if (kvm) 6057 kvm->arch.dawr1_enabled = true; 6058 return 0; 6059 } 6060 6061 static bool kvmppc_hash_v3_possible(void) 6062 { 6063 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 6064 return false; 6065 6066 if (!cpu_has_feature(CPU_FTR_HVMODE)) 6067 return false; 6068 6069 /* 6070 * POWER9 chips before version 2.02 can't have some threads in 6071 * HPT mode and some in radix mode on the same core. 6072 */ 6073 if (radix_enabled()) { 6074 unsigned int pvr = mfspr(SPRN_PVR); 6075 if ((pvr >> 16) == PVR_POWER9 && 6076 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 6077 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 6078 return false; 6079 } 6080 6081 return true; 6082 } 6083 6084 static struct kvmppc_ops kvm_ops_hv = { 6085 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 6086 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 6087 .get_one_reg = kvmppc_get_one_reg_hv, 6088 .set_one_reg = kvmppc_set_one_reg_hv, 6089 .vcpu_load = kvmppc_core_vcpu_load_hv, 6090 .vcpu_put = kvmppc_core_vcpu_put_hv, 6091 .inject_interrupt = kvmppc_inject_interrupt_hv, 6092 .set_msr = kvmppc_set_msr_hv, 6093 .vcpu_run = kvmppc_vcpu_run_hv, 6094 .vcpu_create = kvmppc_core_vcpu_create_hv, 6095 .vcpu_free = kvmppc_core_vcpu_free_hv, 6096 .check_requests = kvmppc_core_check_requests_hv, 6097 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 6098 .flush_memslot = kvmppc_core_flush_memslot_hv, 6099 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 6100 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 6101 .unmap_gfn_range = kvm_unmap_gfn_range_hv, 6102 .age_gfn = kvm_age_gfn_hv, 6103 .test_age_gfn = kvm_test_age_gfn_hv, 6104 .set_spte_gfn = kvm_set_spte_gfn_hv, 6105 .free_memslot = kvmppc_core_free_memslot_hv, 6106 .init_vm = kvmppc_core_init_vm_hv, 6107 .destroy_vm = kvmppc_core_destroy_vm_hv, 6108 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 6109 .emulate_op = kvmppc_core_emulate_op_hv, 6110 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 6111 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 6112 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 6113 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 6114 .hcall_implemented = kvmppc_hcall_impl_hv, 6115 #ifdef CONFIG_KVM_XICS 6116 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 6117 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 6118 #endif 6119 .configure_mmu = kvmhv_configure_mmu, 6120 .get_rmmu_info = kvmhv_get_rmmu_info, 6121 .set_smt_mode = kvmhv_set_smt_mode, 6122 .enable_nested = kvmhv_enable_nested, 6123 .load_from_eaddr = kvmhv_load_from_eaddr, 6124 .store_to_eaddr = kvmhv_store_to_eaddr, 6125 .enable_svm = kvmhv_enable_svm, 6126 .svm_off = kvmhv_svm_off, 6127 .enable_dawr1 = kvmhv_enable_dawr1, 6128 .hash_v3_possible = kvmppc_hash_v3_possible, 6129 .create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv, 6130 .create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv, 6131 }; 6132 6133 static int kvm_init_subcore_bitmap(void) 6134 { 6135 int i, j; 6136 int nr_cores = cpu_nr_cores(); 6137 struct sibling_subcore_state *sibling_subcore_state; 6138 6139 for (i = 0; i < nr_cores; i++) { 6140 int first_cpu = i * threads_per_core; 6141 int node = cpu_to_node(first_cpu); 6142 6143 /* Ignore if it is already allocated. */ 6144 if (paca_ptrs[first_cpu]->sibling_subcore_state) 6145 continue; 6146 6147 sibling_subcore_state = 6148 kzalloc_node(sizeof(struct sibling_subcore_state), 6149 GFP_KERNEL, node); 6150 if (!sibling_subcore_state) 6151 return -ENOMEM; 6152 6153 6154 for (j = 0; j < threads_per_core; j++) { 6155 int cpu = first_cpu + j; 6156 6157 paca_ptrs[cpu]->sibling_subcore_state = 6158 sibling_subcore_state; 6159 } 6160 } 6161 return 0; 6162 } 6163 6164 static int kvmppc_radix_possible(void) 6165 { 6166 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 6167 } 6168 6169 static int kvmppc_book3s_init_hv(void) 6170 { 6171 int r; 6172 6173 if (!tlbie_capable) { 6174 pr_err("KVM-HV: Host does not support TLBIE\n"); 6175 return -ENODEV; 6176 } 6177 6178 /* 6179 * FIXME!! Do we need to check on all cpus ? 6180 */ 6181 r = kvmppc_core_check_processor_compat_hv(); 6182 if (r < 0) 6183 return -ENODEV; 6184 6185 r = kvmhv_nested_init(); 6186 if (r) 6187 return r; 6188 6189 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 6190 r = kvm_init_subcore_bitmap(); 6191 if (r) 6192 goto err; 6193 } 6194 6195 /* 6196 * We need a way of accessing the XICS interrupt controller, 6197 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 6198 * indirectly, via OPAL. 6199 */ 6200 #ifdef CONFIG_SMP 6201 if (!xics_on_xive() && !kvmhv_on_pseries() && 6202 !local_paca->kvm_hstate.xics_phys) { 6203 struct device_node *np; 6204 6205 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 6206 if (!np) { 6207 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 6208 r = -ENODEV; 6209 goto err; 6210 } 6211 /* presence of intc confirmed - node can be dropped again */ 6212 of_node_put(np); 6213 } 6214 #endif 6215 6216 init_default_hcalls(); 6217 6218 init_vcore_lists(); 6219 6220 r = kvmppc_mmu_hv_init(); 6221 if (r) 6222 goto err; 6223 6224 if (kvmppc_radix_possible()) { 6225 r = kvmppc_radix_init(); 6226 if (r) 6227 goto err; 6228 } 6229 6230 r = kvmppc_uvmem_init(); 6231 if (r < 0) { 6232 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 6233 return r; 6234 } 6235 6236 kvm_ops_hv.owner = THIS_MODULE; 6237 kvmppc_hv_ops = &kvm_ops_hv; 6238 6239 return 0; 6240 6241 err: 6242 kvmhv_nested_exit(); 6243 kvmppc_radix_exit(); 6244 6245 return r; 6246 } 6247 6248 static void kvmppc_book3s_exit_hv(void) 6249 { 6250 kvmppc_uvmem_free(); 6251 kvmppc_free_host_rm_ops(); 6252 if (kvmppc_radix_possible()) 6253 kvmppc_radix_exit(); 6254 kvmppc_hv_ops = NULL; 6255 kvmhv_nested_exit(); 6256 } 6257 6258 module_init(kvmppc_book3s_init_hv); 6259 module_exit(kvmppc_book3s_exit_hv); 6260 MODULE_LICENSE("GPL"); 6261 MODULE_ALIAS_MISCDEV(KVM_MINOR); 6262 MODULE_ALIAS("devname:kvm"); 6263