1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpu.h> 31 #include <linux/cpumask.h> 32 #include <linux/spinlock.h> 33 #include <linux/page-flags.h> 34 #include <linux/srcu.h> 35 #include <linux/miscdevice.h> 36 #include <linux/debugfs.h> 37 38 #include <asm/reg.h> 39 #include <asm/cputable.h> 40 #include <asm/cacheflush.h> 41 #include <asm/tlbflush.h> 42 #include <asm/uaccess.h> 43 #include <asm/io.h> 44 #include <asm/kvm_ppc.h> 45 #include <asm/kvm_book3s.h> 46 #include <asm/mmu_context.h> 47 #include <asm/lppaca.h> 48 #include <asm/processor.h> 49 #include <asm/cputhreads.h> 50 #include <asm/page.h> 51 #include <asm/hvcall.h> 52 #include <asm/switch_to.h> 53 #include <asm/smp.h> 54 #include <asm/dbell.h> 55 #include <linux/gfp.h> 56 #include <linux/vmalloc.h> 57 #include <linux/highmem.h> 58 #include <linux/hugetlb.h> 59 #include <linux/module.h> 60 61 #include "book3s.h" 62 63 #define CREATE_TRACE_POINTS 64 #include "trace_hv.h" 65 66 /* #define EXIT_DEBUG */ 67 /* #define EXIT_DEBUG_SIMPLE */ 68 /* #define EXIT_DEBUG_INT */ 69 70 /* Used to indicate that a guest page fault needs to be handled */ 71 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 72 73 /* Used as a "null" value for timebase values */ 74 #define TB_NIL (~(u64)0) 75 76 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 77 78 static int dynamic_mt_modes = 6; 79 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR); 80 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 81 static int target_smt_mode; 82 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR); 83 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 84 85 #ifdef CONFIG_KVM_XICS 86 static struct kernel_param_ops module_param_ops = { 87 .set = param_set_int, 88 .get = param_get_int, 89 }; 90 91 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 92 S_IRUGO | S_IWUSR); 93 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 94 #endif 95 96 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 97 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 98 99 static bool kvmppc_ipi_thread(int cpu) 100 { 101 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 102 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 103 preempt_disable(); 104 if (cpu_first_thread_sibling(cpu) == 105 cpu_first_thread_sibling(smp_processor_id())) { 106 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 107 msg |= cpu_thread_in_core(cpu); 108 smp_mb(); 109 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 110 preempt_enable(); 111 return true; 112 } 113 preempt_enable(); 114 } 115 116 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 117 if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) { 118 xics_wake_cpu(cpu); 119 return true; 120 } 121 #endif 122 123 return false; 124 } 125 126 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 127 { 128 int cpu; 129 struct swait_queue_head *wqp; 130 131 wqp = kvm_arch_vcpu_wq(vcpu); 132 if (swait_active(wqp)) { 133 swake_up(wqp); 134 ++vcpu->stat.halt_wakeup; 135 } 136 137 if (kvmppc_ipi_thread(vcpu->arch.thread_cpu)) 138 return; 139 140 /* CPU points to the first thread of the core */ 141 cpu = vcpu->cpu; 142 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 143 smp_send_reschedule(cpu); 144 } 145 146 /* 147 * We use the vcpu_load/put functions to measure stolen time. 148 * Stolen time is counted as time when either the vcpu is able to 149 * run as part of a virtual core, but the task running the vcore 150 * is preempted or sleeping, or when the vcpu needs something done 151 * in the kernel by the task running the vcpu, but that task is 152 * preempted or sleeping. Those two things have to be counted 153 * separately, since one of the vcpu tasks will take on the job 154 * of running the core, and the other vcpu tasks in the vcore will 155 * sleep waiting for it to do that, but that sleep shouldn't count 156 * as stolen time. 157 * 158 * Hence we accumulate stolen time when the vcpu can run as part of 159 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 160 * needs its task to do other things in the kernel (for example, 161 * service a page fault) in busy_stolen. We don't accumulate 162 * stolen time for a vcore when it is inactive, or for a vcpu 163 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 164 * a misnomer; it means that the vcpu task is not executing in 165 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 166 * the kernel. We don't have any way of dividing up that time 167 * between time that the vcpu is genuinely stopped, time that 168 * the task is actively working on behalf of the vcpu, and time 169 * that the task is preempted, so we don't count any of it as 170 * stolen. 171 * 172 * Updates to busy_stolen are protected by arch.tbacct_lock; 173 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 174 * lock. The stolen times are measured in units of timebase ticks. 175 * (Note that the != TB_NIL checks below are purely defensive; 176 * they should never fail.) 177 */ 178 179 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 180 { 181 unsigned long flags; 182 183 spin_lock_irqsave(&vc->stoltb_lock, flags); 184 vc->preempt_tb = mftb(); 185 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 186 } 187 188 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 189 { 190 unsigned long flags; 191 192 spin_lock_irqsave(&vc->stoltb_lock, flags); 193 if (vc->preempt_tb != TB_NIL) { 194 vc->stolen_tb += mftb() - vc->preempt_tb; 195 vc->preempt_tb = TB_NIL; 196 } 197 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 198 } 199 200 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 201 { 202 struct kvmppc_vcore *vc = vcpu->arch.vcore; 203 unsigned long flags; 204 205 /* 206 * We can test vc->runner without taking the vcore lock, 207 * because only this task ever sets vc->runner to this 208 * vcpu, and once it is set to this vcpu, only this task 209 * ever sets it to NULL. 210 */ 211 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 212 kvmppc_core_end_stolen(vc); 213 214 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 215 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 216 vcpu->arch.busy_preempt != TB_NIL) { 217 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 218 vcpu->arch.busy_preempt = TB_NIL; 219 } 220 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 221 } 222 223 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 224 { 225 struct kvmppc_vcore *vc = vcpu->arch.vcore; 226 unsigned long flags; 227 228 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 229 kvmppc_core_start_stolen(vc); 230 231 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 232 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 233 vcpu->arch.busy_preempt = mftb(); 234 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 235 } 236 237 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 238 { 239 /* 240 * Check for illegal transactional state bit combination 241 * and if we find it, force the TS field to a safe state. 242 */ 243 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 244 msr &= ~MSR_TS_MASK; 245 vcpu->arch.shregs.msr = msr; 246 kvmppc_end_cede(vcpu); 247 } 248 249 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 250 { 251 vcpu->arch.pvr = pvr; 252 } 253 254 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 255 { 256 unsigned long pcr = 0; 257 struct kvmppc_vcore *vc = vcpu->arch.vcore; 258 259 if (arch_compat) { 260 switch (arch_compat) { 261 case PVR_ARCH_205: 262 /* 263 * If an arch bit is set in PCR, all the defined 264 * higher-order arch bits also have to be set. 265 */ 266 pcr = PCR_ARCH_206 | PCR_ARCH_205; 267 break; 268 case PVR_ARCH_206: 269 case PVR_ARCH_206p: 270 pcr = PCR_ARCH_206; 271 break; 272 case PVR_ARCH_207: 273 break; 274 default: 275 return -EINVAL; 276 } 277 278 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) { 279 /* POWER7 can't emulate POWER8 */ 280 if (!(pcr & PCR_ARCH_206)) 281 return -EINVAL; 282 pcr &= ~PCR_ARCH_206; 283 } 284 } 285 286 spin_lock(&vc->lock); 287 vc->arch_compat = arch_compat; 288 vc->pcr = pcr; 289 spin_unlock(&vc->lock); 290 291 return 0; 292 } 293 294 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 295 { 296 int r; 297 298 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 299 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 300 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 301 for (r = 0; r < 16; ++r) 302 pr_err("r%2d = %.16lx r%d = %.16lx\n", 303 r, kvmppc_get_gpr(vcpu, r), 304 r+16, kvmppc_get_gpr(vcpu, r+16)); 305 pr_err("ctr = %.16lx lr = %.16lx\n", 306 vcpu->arch.ctr, vcpu->arch.lr); 307 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 308 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 309 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 310 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 311 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 312 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 313 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 314 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 315 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 316 pr_err("fault dar = %.16lx dsisr = %.8x\n", 317 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 318 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 319 for (r = 0; r < vcpu->arch.slb_max; ++r) 320 pr_err(" ESID = %.16llx VSID = %.16llx\n", 321 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 322 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 323 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 324 vcpu->arch.last_inst); 325 } 326 327 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 328 { 329 struct kvm_vcpu *ret; 330 331 mutex_lock(&kvm->lock); 332 ret = kvm_get_vcpu_by_id(kvm, id); 333 mutex_unlock(&kvm->lock); 334 return ret; 335 } 336 337 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 338 { 339 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 340 vpa->yield_count = cpu_to_be32(1); 341 } 342 343 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 344 unsigned long addr, unsigned long len) 345 { 346 /* check address is cacheline aligned */ 347 if (addr & (L1_CACHE_BYTES - 1)) 348 return -EINVAL; 349 spin_lock(&vcpu->arch.vpa_update_lock); 350 if (v->next_gpa != addr || v->len != len) { 351 v->next_gpa = addr; 352 v->len = addr ? len : 0; 353 v->update_pending = 1; 354 } 355 spin_unlock(&vcpu->arch.vpa_update_lock); 356 return 0; 357 } 358 359 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 360 struct reg_vpa { 361 u32 dummy; 362 union { 363 __be16 hword; 364 __be32 word; 365 } length; 366 }; 367 368 static int vpa_is_registered(struct kvmppc_vpa *vpap) 369 { 370 if (vpap->update_pending) 371 return vpap->next_gpa != 0; 372 return vpap->pinned_addr != NULL; 373 } 374 375 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 376 unsigned long flags, 377 unsigned long vcpuid, unsigned long vpa) 378 { 379 struct kvm *kvm = vcpu->kvm; 380 unsigned long len, nb; 381 void *va; 382 struct kvm_vcpu *tvcpu; 383 int err; 384 int subfunc; 385 struct kvmppc_vpa *vpap; 386 387 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 388 if (!tvcpu) 389 return H_PARAMETER; 390 391 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 392 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 393 subfunc == H_VPA_REG_SLB) { 394 /* Registering new area - address must be cache-line aligned */ 395 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 396 return H_PARAMETER; 397 398 /* convert logical addr to kernel addr and read length */ 399 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 400 if (va == NULL) 401 return H_PARAMETER; 402 if (subfunc == H_VPA_REG_VPA) 403 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 404 else 405 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 406 kvmppc_unpin_guest_page(kvm, va, vpa, false); 407 408 /* Check length */ 409 if (len > nb || len < sizeof(struct reg_vpa)) 410 return H_PARAMETER; 411 } else { 412 vpa = 0; 413 len = 0; 414 } 415 416 err = H_PARAMETER; 417 vpap = NULL; 418 spin_lock(&tvcpu->arch.vpa_update_lock); 419 420 switch (subfunc) { 421 case H_VPA_REG_VPA: /* register VPA */ 422 if (len < sizeof(struct lppaca)) 423 break; 424 vpap = &tvcpu->arch.vpa; 425 err = 0; 426 break; 427 428 case H_VPA_REG_DTL: /* register DTL */ 429 if (len < sizeof(struct dtl_entry)) 430 break; 431 len -= len % sizeof(struct dtl_entry); 432 433 /* Check that they have previously registered a VPA */ 434 err = H_RESOURCE; 435 if (!vpa_is_registered(&tvcpu->arch.vpa)) 436 break; 437 438 vpap = &tvcpu->arch.dtl; 439 err = 0; 440 break; 441 442 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 443 /* Check that they have previously registered a VPA */ 444 err = H_RESOURCE; 445 if (!vpa_is_registered(&tvcpu->arch.vpa)) 446 break; 447 448 vpap = &tvcpu->arch.slb_shadow; 449 err = 0; 450 break; 451 452 case H_VPA_DEREG_VPA: /* deregister VPA */ 453 /* Check they don't still have a DTL or SLB buf registered */ 454 err = H_RESOURCE; 455 if (vpa_is_registered(&tvcpu->arch.dtl) || 456 vpa_is_registered(&tvcpu->arch.slb_shadow)) 457 break; 458 459 vpap = &tvcpu->arch.vpa; 460 err = 0; 461 break; 462 463 case H_VPA_DEREG_DTL: /* deregister DTL */ 464 vpap = &tvcpu->arch.dtl; 465 err = 0; 466 break; 467 468 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 469 vpap = &tvcpu->arch.slb_shadow; 470 err = 0; 471 break; 472 } 473 474 if (vpap) { 475 vpap->next_gpa = vpa; 476 vpap->len = len; 477 vpap->update_pending = 1; 478 } 479 480 spin_unlock(&tvcpu->arch.vpa_update_lock); 481 482 return err; 483 } 484 485 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 486 { 487 struct kvm *kvm = vcpu->kvm; 488 void *va; 489 unsigned long nb; 490 unsigned long gpa; 491 492 /* 493 * We need to pin the page pointed to by vpap->next_gpa, 494 * but we can't call kvmppc_pin_guest_page under the lock 495 * as it does get_user_pages() and down_read(). So we 496 * have to drop the lock, pin the page, then get the lock 497 * again and check that a new area didn't get registered 498 * in the meantime. 499 */ 500 for (;;) { 501 gpa = vpap->next_gpa; 502 spin_unlock(&vcpu->arch.vpa_update_lock); 503 va = NULL; 504 nb = 0; 505 if (gpa) 506 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 507 spin_lock(&vcpu->arch.vpa_update_lock); 508 if (gpa == vpap->next_gpa) 509 break; 510 /* sigh... unpin that one and try again */ 511 if (va) 512 kvmppc_unpin_guest_page(kvm, va, gpa, false); 513 } 514 515 vpap->update_pending = 0; 516 if (va && nb < vpap->len) { 517 /* 518 * If it's now too short, it must be that userspace 519 * has changed the mappings underlying guest memory, 520 * so unregister the region. 521 */ 522 kvmppc_unpin_guest_page(kvm, va, gpa, false); 523 va = NULL; 524 } 525 if (vpap->pinned_addr) 526 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 527 vpap->dirty); 528 vpap->gpa = gpa; 529 vpap->pinned_addr = va; 530 vpap->dirty = false; 531 if (va) 532 vpap->pinned_end = va + vpap->len; 533 } 534 535 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 536 { 537 if (!(vcpu->arch.vpa.update_pending || 538 vcpu->arch.slb_shadow.update_pending || 539 vcpu->arch.dtl.update_pending)) 540 return; 541 542 spin_lock(&vcpu->arch.vpa_update_lock); 543 if (vcpu->arch.vpa.update_pending) { 544 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 545 if (vcpu->arch.vpa.pinned_addr) 546 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 547 } 548 if (vcpu->arch.dtl.update_pending) { 549 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 550 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 551 vcpu->arch.dtl_index = 0; 552 } 553 if (vcpu->arch.slb_shadow.update_pending) 554 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 555 spin_unlock(&vcpu->arch.vpa_update_lock); 556 } 557 558 /* 559 * Return the accumulated stolen time for the vcore up until `now'. 560 * The caller should hold the vcore lock. 561 */ 562 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 563 { 564 u64 p; 565 unsigned long flags; 566 567 spin_lock_irqsave(&vc->stoltb_lock, flags); 568 p = vc->stolen_tb; 569 if (vc->vcore_state != VCORE_INACTIVE && 570 vc->preempt_tb != TB_NIL) 571 p += now - vc->preempt_tb; 572 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 573 return p; 574 } 575 576 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 577 struct kvmppc_vcore *vc) 578 { 579 struct dtl_entry *dt; 580 struct lppaca *vpa; 581 unsigned long stolen; 582 unsigned long core_stolen; 583 u64 now; 584 585 dt = vcpu->arch.dtl_ptr; 586 vpa = vcpu->arch.vpa.pinned_addr; 587 now = mftb(); 588 core_stolen = vcore_stolen_time(vc, now); 589 stolen = core_stolen - vcpu->arch.stolen_logged; 590 vcpu->arch.stolen_logged = core_stolen; 591 spin_lock_irq(&vcpu->arch.tbacct_lock); 592 stolen += vcpu->arch.busy_stolen; 593 vcpu->arch.busy_stolen = 0; 594 spin_unlock_irq(&vcpu->arch.tbacct_lock); 595 if (!dt || !vpa) 596 return; 597 memset(dt, 0, sizeof(struct dtl_entry)); 598 dt->dispatch_reason = 7; 599 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 600 dt->timebase = cpu_to_be64(now + vc->tb_offset); 601 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 602 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 603 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 604 ++dt; 605 if (dt == vcpu->arch.dtl.pinned_end) 606 dt = vcpu->arch.dtl.pinned_addr; 607 vcpu->arch.dtl_ptr = dt; 608 /* order writing *dt vs. writing vpa->dtl_idx */ 609 smp_wmb(); 610 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 611 vcpu->arch.dtl.dirty = true; 612 } 613 614 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 615 { 616 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 617 return true; 618 if ((!vcpu->arch.vcore->arch_compat) && 619 cpu_has_feature(CPU_FTR_ARCH_207S)) 620 return true; 621 return false; 622 } 623 624 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 625 unsigned long resource, unsigned long value1, 626 unsigned long value2) 627 { 628 switch (resource) { 629 case H_SET_MODE_RESOURCE_SET_CIABR: 630 if (!kvmppc_power8_compatible(vcpu)) 631 return H_P2; 632 if (value2) 633 return H_P4; 634 if (mflags) 635 return H_UNSUPPORTED_FLAG_START; 636 /* Guests can't breakpoint the hypervisor */ 637 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 638 return H_P3; 639 vcpu->arch.ciabr = value1; 640 return H_SUCCESS; 641 case H_SET_MODE_RESOURCE_SET_DAWR: 642 if (!kvmppc_power8_compatible(vcpu)) 643 return H_P2; 644 if (mflags) 645 return H_UNSUPPORTED_FLAG_START; 646 if (value2 & DABRX_HYP) 647 return H_P4; 648 vcpu->arch.dawr = value1; 649 vcpu->arch.dawrx = value2; 650 return H_SUCCESS; 651 default: 652 return H_TOO_HARD; 653 } 654 } 655 656 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 657 { 658 struct kvmppc_vcore *vcore = target->arch.vcore; 659 660 /* 661 * We expect to have been called by the real mode handler 662 * (kvmppc_rm_h_confer()) which would have directly returned 663 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 664 * have useful work to do and should not confer) so we don't 665 * recheck that here. 666 */ 667 668 spin_lock(&vcore->lock); 669 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 670 vcore->vcore_state != VCORE_INACTIVE && 671 vcore->runner) 672 target = vcore->runner; 673 spin_unlock(&vcore->lock); 674 675 return kvm_vcpu_yield_to(target); 676 } 677 678 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 679 { 680 int yield_count = 0; 681 struct lppaca *lppaca; 682 683 spin_lock(&vcpu->arch.vpa_update_lock); 684 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 685 if (lppaca) 686 yield_count = be32_to_cpu(lppaca->yield_count); 687 spin_unlock(&vcpu->arch.vpa_update_lock); 688 return yield_count; 689 } 690 691 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 692 { 693 unsigned long req = kvmppc_get_gpr(vcpu, 3); 694 unsigned long target, ret = H_SUCCESS; 695 int yield_count; 696 struct kvm_vcpu *tvcpu; 697 int idx, rc; 698 699 if (req <= MAX_HCALL_OPCODE && 700 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 701 return RESUME_HOST; 702 703 switch (req) { 704 case H_CEDE: 705 break; 706 case H_PROD: 707 target = kvmppc_get_gpr(vcpu, 4); 708 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 709 if (!tvcpu) { 710 ret = H_PARAMETER; 711 break; 712 } 713 tvcpu->arch.prodded = 1; 714 smp_mb(); 715 if (vcpu->arch.ceded) { 716 if (swait_active(&vcpu->wq)) { 717 swake_up(&vcpu->wq); 718 vcpu->stat.halt_wakeup++; 719 } 720 } 721 break; 722 case H_CONFER: 723 target = kvmppc_get_gpr(vcpu, 4); 724 if (target == -1) 725 break; 726 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 727 if (!tvcpu) { 728 ret = H_PARAMETER; 729 break; 730 } 731 yield_count = kvmppc_get_gpr(vcpu, 5); 732 if (kvmppc_get_yield_count(tvcpu) != yield_count) 733 break; 734 kvm_arch_vcpu_yield_to(tvcpu); 735 break; 736 case H_REGISTER_VPA: 737 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 738 kvmppc_get_gpr(vcpu, 5), 739 kvmppc_get_gpr(vcpu, 6)); 740 break; 741 case H_RTAS: 742 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 743 return RESUME_HOST; 744 745 idx = srcu_read_lock(&vcpu->kvm->srcu); 746 rc = kvmppc_rtas_hcall(vcpu); 747 srcu_read_unlock(&vcpu->kvm->srcu, idx); 748 749 if (rc == -ENOENT) 750 return RESUME_HOST; 751 else if (rc == 0) 752 break; 753 754 /* Send the error out to userspace via KVM_RUN */ 755 return rc; 756 case H_LOGICAL_CI_LOAD: 757 ret = kvmppc_h_logical_ci_load(vcpu); 758 if (ret == H_TOO_HARD) 759 return RESUME_HOST; 760 break; 761 case H_LOGICAL_CI_STORE: 762 ret = kvmppc_h_logical_ci_store(vcpu); 763 if (ret == H_TOO_HARD) 764 return RESUME_HOST; 765 break; 766 case H_SET_MODE: 767 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 768 kvmppc_get_gpr(vcpu, 5), 769 kvmppc_get_gpr(vcpu, 6), 770 kvmppc_get_gpr(vcpu, 7)); 771 if (ret == H_TOO_HARD) 772 return RESUME_HOST; 773 break; 774 case H_XIRR: 775 case H_CPPR: 776 case H_EOI: 777 case H_IPI: 778 case H_IPOLL: 779 case H_XIRR_X: 780 if (kvmppc_xics_enabled(vcpu)) { 781 ret = kvmppc_xics_hcall(vcpu, req); 782 break; 783 } 784 return RESUME_HOST; 785 case H_PUT_TCE: 786 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 787 kvmppc_get_gpr(vcpu, 5), 788 kvmppc_get_gpr(vcpu, 6)); 789 if (ret == H_TOO_HARD) 790 return RESUME_HOST; 791 break; 792 case H_PUT_TCE_INDIRECT: 793 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 794 kvmppc_get_gpr(vcpu, 5), 795 kvmppc_get_gpr(vcpu, 6), 796 kvmppc_get_gpr(vcpu, 7)); 797 if (ret == H_TOO_HARD) 798 return RESUME_HOST; 799 break; 800 case H_STUFF_TCE: 801 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 802 kvmppc_get_gpr(vcpu, 5), 803 kvmppc_get_gpr(vcpu, 6), 804 kvmppc_get_gpr(vcpu, 7)); 805 if (ret == H_TOO_HARD) 806 return RESUME_HOST; 807 break; 808 default: 809 return RESUME_HOST; 810 } 811 kvmppc_set_gpr(vcpu, 3, ret); 812 vcpu->arch.hcall_needed = 0; 813 return RESUME_GUEST; 814 } 815 816 static int kvmppc_hcall_impl_hv(unsigned long cmd) 817 { 818 switch (cmd) { 819 case H_CEDE: 820 case H_PROD: 821 case H_CONFER: 822 case H_REGISTER_VPA: 823 case H_SET_MODE: 824 case H_LOGICAL_CI_LOAD: 825 case H_LOGICAL_CI_STORE: 826 #ifdef CONFIG_KVM_XICS 827 case H_XIRR: 828 case H_CPPR: 829 case H_EOI: 830 case H_IPI: 831 case H_IPOLL: 832 case H_XIRR_X: 833 #endif 834 return 1; 835 } 836 837 /* See if it's in the real-mode table */ 838 return kvmppc_hcall_impl_hv_realmode(cmd); 839 } 840 841 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 842 struct kvm_vcpu *vcpu) 843 { 844 u32 last_inst; 845 846 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 847 EMULATE_DONE) { 848 /* 849 * Fetch failed, so return to guest and 850 * try executing it again. 851 */ 852 return RESUME_GUEST; 853 } 854 855 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 856 run->exit_reason = KVM_EXIT_DEBUG; 857 run->debug.arch.address = kvmppc_get_pc(vcpu); 858 return RESUME_HOST; 859 } else { 860 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 861 return RESUME_GUEST; 862 } 863 } 864 865 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 866 struct task_struct *tsk) 867 { 868 int r = RESUME_HOST; 869 870 vcpu->stat.sum_exits++; 871 872 /* 873 * This can happen if an interrupt occurs in the last stages 874 * of guest entry or the first stages of guest exit (i.e. after 875 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 876 * and before setting it to KVM_GUEST_MODE_HOST_HV). 877 * That can happen due to a bug, or due to a machine check 878 * occurring at just the wrong time. 879 */ 880 if (vcpu->arch.shregs.msr & MSR_HV) { 881 printk(KERN_EMERG "KVM trap in HV mode!\n"); 882 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 883 vcpu->arch.trap, kvmppc_get_pc(vcpu), 884 vcpu->arch.shregs.msr); 885 kvmppc_dump_regs(vcpu); 886 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 887 run->hw.hardware_exit_reason = vcpu->arch.trap; 888 return RESUME_HOST; 889 } 890 run->exit_reason = KVM_EXIT_UNKNOWN; 891 run->ready_for_interrupt_injection = 1; 892 switch (vcpu->arch.trap) { 893 /* We're good on these - the host merely wanted to get our attention */ 894 case BOOK3S_INTERRUPT_HV_DECREMENTER: 895 vcpu->stat.dec_exits++; 896 r = RESUME_GUEST; 897 break; 898 case BOOK3S_INTERRUPT_EXTERNAL: 899 case BOOK3S_INTERRUPT_H_DOORBELL: 900 vcpu->stat.ext_intr_exits++; 901 r = RESUME_GUEST; 902 break; 903 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/ 904 case BOOK3S_INTERRUPT_HMI: 905 case BOOK3S_INTERRUPT_PERFMON: 906 r = RESUME_GUEST; 907 break; 908 case BOOK3S_INTERRUPT_MACHINE_CHECK: 909 /* 910 * Deliver a machine check interrupt to the guest. 911 * We have to do this, even if the host has handled the 912 * machine check, because machine checks use SRR0/1 and 913 * the interrupt might have trashed guest state in them. 914 */ 915 kvmppc_book3s_queue_irqprio(vcpu, 916 BOOK3S_INTERRUPT_MACHINE_CHECK); 917 r = RESUME_GUEST; 918 break; 919 case BOOK3S_INTERRUPT_PROGRAM: 920 { 921 ulong flags; 922 /* 923 * Normally program interrupts are delivered directly 924 * to the guest by the hardware, but we can get here 925 * as a result of a hypervisor emulation interrupt 926 * (e40) getting turned into a 700 by BML RTAS. 927 */ 928 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 929 kvmppc_core_queue_program(vcpu, flags); 930 r = RESUME_GUEST; 931 break; 932 } 933 case BOOK3S_INTERRUPT_SYSCALL: 934 { 935 /* hcall - punt to userspace */ 936 int i; 937 938 /* hypercall with MSR_PR has already been handled in rmode, 939 * and never reaches here. 940 */ 941 942 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 943 for (i = 0; i < 9; ++i) 944 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 945 run->exit_reason = KVM_EXIT_PAPR_HCALL; 946 vcpu->arch.hcall_needed = 1; 947 r = RESUME_HOST; 948 break; 949 } 950 /* 951 * We get these next two if the guest accesses a page which it thinks 952 * it has mapped but which is not actually present, either because 953 * it is for an emulated I/O device or because the corresonding 954 * host page has been paged out. Any other HDSI/HISI interrupts 955 * have been handled already. 956 */ 957 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 958 r = RESUME_PAGE_FAULT; 959 break; 960 case BOOK3S_INTERRUPT_H_INST_STORAGE: 961 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 962 vcpu->arch.fault_dsisr = 0; 963 r = RESUME_PAGE_FAULT; 964 break; 965 /* 966 * This occurs if the guest executes an illegal instruction. 967 * If the guest debug is disabled, generate a program interrupt 968 * to the guest. If guest debug is enabled, we need to check 969 * whether the instruction is a software breakpoint instruction. 970 * Accordingly return to Guest or Host. 971 */ 972 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 973 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 974 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 975 swab32(vcpu->arch.emul_inst) : 976 vcpu->arch.emul_inst; 977 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 978 r = kvmppc_emulate_debug_inst(run, vcpu); 979 } else { 980 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 981 r = RESUME_GUEST; 982 } 983 break; 984 /* 985 * This occurs if the guest (kernel or userspace), does something that 986 * is prohibited by HFSCR. We just generate a program interrupt to 987 * the guest. 988 */ 989 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 990 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 991 r = RESUME_GUEST; 992 break; 993 default: 994 kvmppc_dump_regs(vcpu); 995 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 996 vcpu->arch.trap, kvmppc_get_pc(vcpu), 997 vcpu->arch.shregs.msr); 998 run->hw.hardware_exit_reason = vcpu->arch.trap; 999 r = RESUME_HOST; 1000 break; 1001 } 1002 1003 return r; 1004 } 1005 1006 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1007 struct kvm_sregs *sregs) 1008 { 1009 int i; 1010 1011 memset(sregs, 0, sizeof(struct kvm_sregs)); 1012 sregs->pvr = vcpu->arch.pvr; 1013 for (i = 0; i < vcpu->arch.slb_max; i++) { 1014 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1015 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1016 } 1017 1018 return 0; 1019 } 1020 1021 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1022 struct kvm_sregs *sregs) 1023 { 1024 int i, j; 1025 1026 /* Only accept the same PVR as the host's, since we can't spoof it */ 1027 if (sregs->pvr != vcpu->arch.pvr) 1028 return -EINVAL; 1029 1030 j = 0; 1031 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1032 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1033 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1034 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1035 ++j; 1036 } 1037 } 1038 vcpu->arch.slb_max = j; 1039 1040 return 0; 1041 } 1042 1043 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1044 bool preserve_top32) 1045 { 1046 struct kvm *kvm = vcpu->kvm; 1047 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1048 u64 mask; 1049 1050 mutex_lock(&kvm->lock); 1051 spin_lock(&vc->lock); 1052 /* 1053 * If ILE (interrupt little-endian) has changed, update the 1054 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1055 */ 1056 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1057 struct kvm_vcpu *vcpu; 1058 int i; 1059 1060 kvm_for_each_vcpu(i, vcpu, kvm) { 1061 if (vcpu->arch.vcore != vc) 1062 continue; 1063 if (new_lpcr & LPCR_ILE) 1064 vcpu->arch.intr_msr |= MSR_LE; 1065 else 1066 vcpu->arch.intr_msr &= ~MSR_LE; 1067 } 1068 } 1069 1070 /* 1071 * Userspace can only modify DPFD (default prefetch depth), 1072 * ILE (interrupt little-endian) and TC (translation control). 1073 * On POWER8 userspace can also modify AIL (alt. interrupt loc.) 1074 */ 1075 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1076 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1077 mask |= LPCR_AIL; 1078 1079 /* Broken 32-bit version of LPCR must not clear top bits */ 1080 if (preserve_top32) 1081 mask &= 0xFFFFFFFF; 1082 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1083 spin_unlock(&vc->lock); 1084 mutex_unlock(&kvm->lock); 1085 } 1086 1087 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1088 union kvmppc_one_reg *val) 1089 { 1090 int r = 0; 1091 long int i; 1092 1093 switch (id) { 1094 case KVM_REG_PPC_DEBUG_INST: 1095 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1096 break; 1097 case KVM_REG_PPC_HIOR: 1098 *val = get_reg_val(id, 0); 1099 break; 1100 case KVM_REG_PPC_DABR: 1101 *val = get_reg_val(id, vcpu->arch.dabr); 1102 break; 1103 case KVM_REG_PPC_DABRX: 1104 *val = get_reg_val(id, vcpu->arch.dabrx); 1105 break; 1106 case KVM_REG_PPC_DSCR: 1107 *val = get_reg_val(id, vcpu->arch.dscr); 1108 break; 1109 case KVM_REG_PPC_PURR: 1110 *val = get_reg_val(id, vcpu->arch.purr); 1111 break; 1112 case KVM_REG_PPC_SPURR: 1113 *val = get_reg_val(id, vcpu->arch.spurr); 1114 break; 1115 case KVM_REG_PPC_AMR: 1116 *val = get_reg_val(id, vcpu->arch.amr); 1117 break; 1118 case KVM_REG_PPC_UAMOR: 1119 *val = get_reg_val(id, vcpu->arch.uamor); 1120 break; 1121 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1122 i = id - KVM_REG_PPC_MMCR0; 1123 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1124 break; 1125 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1126 i = id - KVM_REG_PPC_PMC1; 1127 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1128 break; 1129 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1130 i = id - KVM_REG_PPC_SPMC1; 1131 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1132 break; 1133 case KVM_REG_PPC_SIAR: 1134 *val = get_reg_val(id, vcpu->arch.siar); 1135 break; 1136 case KVM_REG_PPC_SDAR: 1137 *val = get_reg_val(id, vcpu->arch.sdar); 1138 break; 1139 case KVM_REG_PPC_SIER: 1140 *val = get_reg_val(id, vcpu->arch.sier); 1141 break; 1142 case KVM_REG_PPC_IAMR: 1143 *val = get_reg_val(id, vcpu->arch.iamr); 1144 break; 1145 case KVM_REG_PPC_PSPB: 1146 *val = get_reg_val(id, vcpu->arch.pspb); 1147 break; 1148 case KVM_REG_PPC_DPDES: 1149 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1150 break; 1151 case KVM_REG_PPC_DAWR: 1152 *val = get_reg_val(id, vcpu->arch.dawr); 1153 break; 1154 case KVM_REG_PPC_DAWRX: 1155 *val = get_reg_val(id, vcpu->arch.dawrx); 1156 break; 1157 case KVM_REG_PPC_CIABR: 1158 *val = get_reg_val(id, vcpu->arch.ciabr); 1159 break; 1160 case KVM_REG_PPC_CSIGR: 1161 *val = get_reg_val(id, vcpu->arch.csigr); 1162 break; 1163 case KVM_REG_PPC_TACR: 1164 *val = get_reg_val(id, vcpu->arch.tacr); 1165 break; 1166 case KVM_REG_PPC_TCSCR: 1167 *val = get_reg_val(id, vcpu->arch.tcscr); 1168 break; 1169 case KVM_REG_PPC_PID: 1170 *val = get_reg_val(id, vcpu->arch.pid); 1171 break; 1172 case KVM_REG_PPC_ACOP: 1173 *val = get_reg_val(id, vcpu->arch.acop); 1174 break; 1175 case KVM_REG_PPC_WORT: 1176 *val = get_reg_val(id, vcpu->arch.wort); 1177 break; 1178 case KVM_REG_PPC_VPA_ADDR: 1179 spin_lock(&vcpu->arch.vpa_update_lock); 1180 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1181 spin_unlock(&vcpu->arch.vpa_update_lock); 1182 break; 1183 case KVM_REG_PPC_VPA_SLB: 1184 spin_lock(&vcpu->arch.vpa_update_lock); 1185 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1186 val->vpaval.length = vcpu->arch.slb_shadow.len; 1187 spin_unlock(&vcpu->arch.vpa_update_lock); 1188 break; 1189 case KVM_REG_PPC_VPA_DTL: 1190 spin_lock(&vcpu->arch.vpa_update_lock); 1191 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1192 val->vpaval.length = vcpu->arch.dtl.len; 1193 spin_unlock(&vcpu->arch.vpa_update_lock); 1194 break; 1195 case KVM_REG_PPC_TB_OFFSET: 1196 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1197 break; 1198 case KVM_REG_PPC_LPCR: 1199 case KVM_REG_PPC_LPCR_64: 1200 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1201 break; 1202 case KVM_REG_PPC_PPR: 1203 *val = get_reg_val(id, vcpu->arch.ppr); 1204 break; 1205 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1206 case KVM_REG_PPC_TFHAR: 1207 *val = get_reg_val(id, vcpu->arch.tfhar); 1208 break; 1209 case KVM_REG_PPC_TFIAR: 1210 *val = get_reg_val(id, vcpu->arch.tfiar); 1211 break; 1212 case KVM_REG_PPC_TEXASR: 1213 *val = get_reg_val(id, vcpu->arch.texasr); 1214 break; 1215 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1216 i = id - KVM_REG_PPC_TM_GPR0; 1217 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1218 break; 1219 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1220 { 1221 int j; 1222 i = id - KVM_REG_PPC_TM_VSR0; 1223 if (i < 32) 1224 for (j = 0; j < TS_FPRWIDTH; j++) 1225 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1226 else { 1227 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1228 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1229 else 1230 r = -ENXIO; 1231 } 1232 break; 1233 } 1234 case KVM_REG_PPC_TM_CR: 1235 *val = get_reg_val(id, vcpu->arch.cr_tm); 1236 break; 1237 case KVM_REG_PPC_TM_LR: 1238 *val = get_reg_val(id, vcpu->arch.lr_tm); 1239 break; 1240 case KVM_REG_PPC_TM_CTR: 1241 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1242 break; 1243 case KVM_REG_PPC_TM_FPSCR: 1244 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1245 break; 1246 case KVM_REG_PPC_TM_AMR: 1247 *val = get_reg_val(id, vcpu->arch.amr_tm); 1248 break; 1249 case KVM_REG_PPC_TM_PPR: 1250 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1251 break; 1252 case KVM_REG_PPC_TM_VRSAVE: 1253 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1254 break; 1255 case KVM_REG_PPC_TM_VSCR: 1256 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1257 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1258 else 1259 r = -ENXIO; 1260 break; 1261 case KVM_REG_PPC_TM_DSCR: 1262 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1263 break; 1264 case KVM_REG_PPC_TM_TAR: 1265 *val = get_reg_val(id, vcpu->arch.tar_tm); 1266 break; 1267 #endif 1268 case KVM_REG_PPC_ARCH_COMPAT: 1269 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1270 break; 1271 default: 1272 r = -EINVAL; 1273 break; 1274 } 1275 1276 return r; 1277 } 1278 1279 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1280 union kvmppc_one_reg *val) 1281 { 1282 int r = 0; 1283 long int i; 1284 unsigned long addr, len; 1285 1286 switch (id) { 1287 case KVM_REG_PPC_HIOR: 1288 /* Only allow this to be set to zero */ 1289 if (set_reg_val(id, *val)) 1290 r = -EINVAL; 1291 break; 1292 case KVM_REG_PPC_DABR: 1293 vcpu->arch.dabr = set_reg_val(id, *val); 1294 break; 1295 case KVM_REG_PPC_DABRX: 1296 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1297 break; 1298 case KVM_REG_PPC_DSCR: 1299 vcpu->arch.dscr = set_reg_val(id, *val); 1300 break; 1301 case KVM_REG_PPC_PURR: 1302 vcpu->arch.purr = set_reg_val(id, *val); 1303 break; 1304 case KVM_REG_PPC_SPURR: 1305 vcpu->arch.spurr = set_reg_val(id, *val); 1306 break; 1307 case KVM_REG_PPC_AMR: 1308 vcpu->arch.amr = set_reg_val(id, *val); 1309 break; 1310 case KVM_REG_PPC_UAMOR: 1311 vcpu->arch.uamor = set_reg_val(id, *val); 1312 break; 1313 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1314 i = id - KVM_REG_PPC_MMCR0; 1315 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1316 break; 1317 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1318 i = id - KVM_REG_PPC_PMC1; 1319 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1320 break; 1321 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1322 i = id - KVM_REG_PPC_SPMC1; 1323 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1324 break; 1325 case KVM_REG_PPC_SIAR: 1326 vcpu->arch.siar = set_reg_val(id, *val); 1327 break; 1328 case KVM_REG_PPC_SDAR: 1329 vcpu->arch.sdar = set_reg_val(id, *val); 1330 break; 1331 case KVM_REG_PPC_SIER: 1332 vcpu->arch.sier = set_reg_val(id, *val); 1333 break; 1334 case KVM_REG_PPC_IAMR: 1335 vcpu->arch.iamr = set_reg_val(id, *val); 1336 break; 1337 case KVM_REG_PPC_PSPB: 1338 vcpu->arch.pspb = set_reg_val(id, *val); 1339 break; 1340 case KVM_REG_PPC_DPDES: 1341 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1342 break; 1343 case KVM_REG_PPC_DAWR: 1344 vcpu->arch.dawr = set_reg_val(id, *val); 1345 break; 1346 case KVM_REG_PPC_DAWRX: 1347 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1348 break; 1349 case KVM_REG_PPC_CIABR: 1350 vcpu->arch.ciabr = set_reg_val(id, *val); 1351 /* Don't allow setting breakpoints in hypervisor code */ 1352 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1353 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1354 break; 1355 case KVM_REG_PPC_CSIGR: 1356 vcpu->arch.csigr = set_reg_val(id, *val); 1357 break; 1358 case KVM_REG_PPC_TACR: 1359 vcpu->arch.tacr = set_reg_val(id, *val); 1360 break; 1361 case KVM_REG_PPC_TCSCR: 1362 vcpu->arch.tcscr = set_reg_val(id, *val); 1363 break; 1364 case KVM_REG_PPC_PID: 1365 vcpu->arch.pid = set_reg_val(id, *val); 1366 break; 1367 case KVM_REG_PPC_ACOP: 1368 vcpu->arch.acop = set_reg_val(id, *val); 1369 break; 1370 case KVM_REG_PPC_WORT: 1371 vcpu->arch.wort = set_reg_val(id, *val); 1372 break; 1373 case KVM_REG_PPC_VPA_ADDR: 1374 addr = set_reg_val(id, *val); 1375 r = -EINVAL; 1376 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1377 vcpu->arch.dtl.next_gpa)) 1378 break; 1379 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1380 break; 1381 case KVM_REG_PPC_VPA_SLB: 1382 addr = val->vpaval.addr; 1383 len = val->vpaval.length; 1384 r = -EINVAL; 1385 if (addr && !vcpu->arch.vpa.next_gpa) 1386 break; 1387 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1388 break; 1389 case KVM_REG_PPC_VPA_DTL: 1390 addr = val->vpaval.addr; 1391 len = val->vpaval.length; 1392 r = -EINVAL; 1393 if (addr && (len < sizeof(struct dtl_entry) || 1394 !vcpu->arch.vpa.next_gpa)) 1395 break; 1396 len -= len % sizeof(struct dtl_entry); 1397 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1398 break; 1399 case KVM_REG_PPC_TB_OFFSET: 1400 /* round up to multiple of 2^24 */ 1401 vcpu->arch.vcore->tb_offset = 1402 ALIGN(set_reg_val(id, *val), 1UL << 24); 1403 break; 1404 case KVM_REG_PPC_LPCR: 1405 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1406 break; 1407 case KVM_REG_PPC_LPCR_64: 1408 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1409 break; 1410 case KVM_REG_PPC_PPR: 1411 vcpu->arch.ppr = set_reg_val(id, *val); 1412 break; 1413 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1414 case KVM_REG_PPC_TFHAR: 1415 vcpu->arch.tfhar = set_reg_val(id, *val); 1416 break; 1417 case KVM_REG_PPC_TFIAR: 1418 vcpu->arch.tfiar = set_reg_val(id, *val); 1419 break; 1420 case KVM_REG_PPC_TEXASR: 1421 vcpu->arch.texasr = set_reg_val(id, *val); 1422 break; 1423 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1424 i = id - KVM_REG_PPC_TM_GPR0; 1425 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1426 break; 1427 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1428 { 1429 int j; 1430 i = id - KVM_REG_PPC_TM_VSR0; 1431 if (i < 32) 1432 for (j = 0; j < TS_FPRWIDTH; j++) 1433 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1434 else 1435 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1436 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1437 else 1438 r = -ENXIO; 1439 break; 1440 } 1441 case KVM_REG_PPC_TM_CR: 1442 vcpu->arch.cr_tm = set_reg_val(id, *val); 1443 break; 1444 case KVM_REG_PPC_TM_LR: 1445 vcpu->arch.lr_tm = set_reg_val(id, *val); 1446 break; 1447 case KVM_REG_PPC_TM_CTR: 1448 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1449 break; 1450 case KVM_REG_PPC_TM_FPSCR: 1451 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1452 break; 1453 case KVM_REG_PPC_TM_AMR: 1454 vcpu->arch.amr_tm = set_reg_val(id, *val); 1455 break; 1456 case KVM_REG_PPC_TM_PPR: 1457 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1458 break; 1459 case KVM_REG_PPC_TM_VRSAVE: 1460 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1461 break; 1462 case KVM_REG_PPC_TM_VSCR: 1463 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1464 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1465 else 1466 r = - ENXIO; 1467 break; 1468 case KVM_REG_PPC_TM_DSCR: 1469 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1470 break; 1471 case KVM_REG_PPC_TM_TAR: 1472 vcpu->arch.tar_tm = set_reg_val(id, *val); 1473 break; 1474 #endif 1475 case KVM_REG_PPC_ARCH_COMPAT: 1476 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1477 break; 1478 default: 1479 r = -EINVAL; 1480 break; 1481 } 1482 1483 return r; 1484 } 1485 1486 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) 1487 { 1488 struct kvmppc_vcore *vcore; 1489 1490 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1491 1492 if (vcore == NULL) 1493 return NULL; 1494 1495 INIT_LIST_HEAD(&vcore->runnable_threads); 1496 spin_lock_init(&vcore->lock); 1497 spin_lock_init(&vcore->stoltb_lock); 1498 init_swait_queue_head(&vcore->wq); 1499 vcore->preempt_tb = TB_NIL; 1500 vcore->lpcr = kvm->arch.lpcr; 1501 vcore->first_vcpuid = core * threads_per_subcore; 1502 vcore->kvm = kvm; 1503 INIT_LIST_HEAD(&vcore->preempt_list); 1504 1505 return vcore; 1506 } 1507 1508 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 1509 static struct debugfs_timings_element { 1510 const char *name; 1511 size_t offset; 1512 } timings[] = { 1513 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 1514 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 1515 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 1516 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 1517 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 1518 }; 1519 1520 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0])) 1521 1522 struct debugfs_timings_state { 1523 struct kvm_vcpu *vcpu; 1524 unsigned int buflen; 1525 char buf[N_TIMINGS * 100]; 1526 }; 1527 1528 static int debugfs_timings_open(struct inode *inode, struct file *file) 1529 { 1530 struct kvm_vcpu *vcpu = inode->i_private; 1531 struct debugfs_timings_state *p; 1532 1533 p = kzalloc(sizeof(*p), GFP_KERNEL); 1534 if (!p) 1535 return -ENOMEM; 1536 1537 kvm_get_kvm(vcpu->kvm); 1538 p->vcpu = vcpu; 1539 file->private_data = p; 1540 1541 return nonseekable_open(inode, file); 1542 } 1543 1544 static int debugfs_timings_release(struct inode *inode, struct file *file) 1545 { 1546 struct debugfs_timings_state *p = file->private_data; 1547 1548 kvm_put_kvm(p->vcpu->kvm); 1549 kfree(p); 1550 return 0; 1551 } 1552 1553 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 1554 size_t len, loff_t *ppos) 1555 { 1556 struct debugfs_timings_state *p = file->private_data; 1557 struct kvm_vcpu *vcpu = p->vcpu; 1558 char *s, *buf_end; 1559 struct kvmhv_tb_accumulator tb; 1560 u64 count; 1561 loff_t pos; 1562 ssize_t n; 1563 int i, loops; 1564 bool ok; 1565 1566 if (!p->buflen) { 1567 s = p->buf; 1568 buf_end = s + sizeof(p->buf); 1569 for (i = 0; i < N_TIMINGS; ++i) { 1570 struct kvmhv_tb_accumulator *acc; 1571 1572 acc = (struct kvmhv_tb_accumulator *) 1573 ((unsigned long)vcpu + timings[i].offset); 1574 ok = false; 1575 for (loops = 0; loops < 1000; ++loops) { 1576 count = acc->seqcount; 1577 if (!(count & 1)) { 1578 smp_rmb(); 1579 tb = *acc; 1580 smp_rmb(); 1581 if (count == acc->seqcount) { 1582 ok = true; 1583 break; 1584 } 1585 } 1586 udelay(1); 1587 } 1588 if (!ok) 1589 snprintf(s, buf_end - s, "%s: stuck\n", 1590 timings[i].name); 1591 else 1592 snprintf(s, buf_end - s, 1593 "%s: %llu %llu %llu %llu\n", 1594 timings[i].name, count / 2, 1595 tb_to_ns(tb.tb_total), 1596 tb_to_ns(tb.tb_min), 1597 tb_to_ns(tb.tb_max)); 1598 s += strlen(s); 1599 } 1600 p->buflen = s - p->buf; 1601 } 1602 1603 pos = *ppos; 1604 if (pos >= p->buflen) 1605 return 0; 1606 if (len > p->buflen - pos) 1607 len = p->buflen - pos; 1608 n = copy_to_user(buf, p->buf + pos, len); 1609 if (n) { 1610 if (n == len) 1611 return -EFAULT; 1612 len -= n; 1613 } 1614 *ppos = pos + len; 1615 return len; 1616 } 1617 1618 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 1619 size_t len, loff_t *ppos) 1620 { 1621 return -EACCES; 1622 } 1623 1624 static const struct file_operations debugfs_timings_ops = { 1625 .owner = THIS_MODULE, 1626 .open = debugfs_timings_open, 1627 .release = debugfs_timings_release, 1628 .read = debugfs_timings_read, 1629 .write = debugfs_timings_write, 1630 .llseek = generic_file_llseek, 1631 }; 1632 1633 /* Create a debugfs directory for the vcpu */ 1634 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1635 { 1636 char buf[16]; 1637 struct kvm *kvm = vcpu->kvm; 1638 1639 snprintf(buf, sizeof(buf), "vcpu%u", id); 1640 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 1641 return; 1642 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 1643 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 1644 return; 1645 vcpu->arch.debugfs_timings = 1646 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 1647 vcpu, &debugfs_timings_ops); 1648 } 1649 1650 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1651 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1652 { 1653 } 1654 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1655 1656 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1657 unsigned int id) 1658 { 1659 struct kvm_vcpu *vcpu; 1660 int err = -EINVAL; 1661 int core; 1662 struct kvmppc_vcore *vcore; 1663 1664 core = id / threads_per_subcore; 1665 if (core >= KVM_MAX_VCORES) 1666 goto out; 1667 1668 err = -ENOMEM; 1669 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1670 if (!vcpu) 1671 goto out; 1672 1673 err = kvm_vcpu_init(vcpu, kvm, id); 1674 if (err) 1675 goto free_vcpu; 1676 1677 vcpu->arch.shared = &vcpu->arch.shregs; 1678 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1679 /* 1680 * The shared struct is never shared on HV, 1681 * so we can always use host endianness 1682 */ 1683 #ifdef __BIG_ENDIAN__ 1684 vcpu->arch.shared_big_endian = true; 1685 #else 1686 vcpu->arch.shared_big_endian = false; 1687 #endif 1688 #endif 1689 vcpu->arch.mmcr[0] = MMCR0_FC; 1690 vcpu->arch.ctrl = CTRL_RUNLATCH; 1691 /* default to host PVR, since we can't spoof it */ 1692 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1693 spin_lock_init(&vcpu->arch.vpa_update_lock); 1694 spin_lock_init(&vcpu->arch.tbacct_lock); 1695 vcpu->arch.busy_preempt = TB_NIL; 1696 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1697 1698 kvmppc_mmu_book3s_hv_init(vcpu); 1699 1700 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1701 1702 init_waitqueue_head(&vcpu->arch.cpu_run); 1703 1704 mutex_lock(&kvm->lock); 1705 vcore = kvm->arch.vcores[core]; 1706 if (!vcore) { 1707 vcore = kvmppc_vcore_create(kvm, core); 1708 kvm->arch.vcores[core] = vcore; 1709 kvm->arch.online_vcores++; 1710 } 1711 mutex_unlock(&kvm->lock); 1712 1713 if (!vcore) 1714 goto free_vcpu; 1715 1716 spin_lock(&vcore->lock); 1717 ++vcore->num_threads; 1718 spin_unlock(&vcore->lock); 1719 vcpu->arch.vcore = vcore; 1720 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 1721 vcpu->arch.thread_cpu = -1; 1722 1723 vcpu->arch.cpu_type = KVM_CPU_3S_64; 1724 kvmppc_sanity_check(vcpu); 1725 1726 debugfs_vcpu_init(vcpu, id); 1727 1728 return vcpu; 1729 1730 free_vcpu: 1731 kmem_cache_free(kvm_vcpu_cache, vcpu); 1732 out: 1733 return ERR_PTR(err); 1734 } 1735 1736 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 1737 { 1738 if (vpa->pinned_addr) 1739 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 1740 vpa->dirty); 1741 } 1742 1743 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 1744 { 1745 spin_lock(&vcpu->arch.vpa_update_lock); 1746 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 1747 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 1748 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 1749 spin_unlock(&vcpu->arch.vpa_update_lock); 1750 kvm_vcpu_uninit(vcpu); 1751 kmem_cache_free(kvm_vcpu_cache, vcpu); 1752 } 1753 1754 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 1755 { 1756 /* Indicate we want to get back into the guest */ 1757 return 1; 1758 } 1759 1760 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 1761 { 1762 unsigned long dec_nsec, now; 1763 1764 now = get_tb(); 1765 if (now > vcpu->arch.dec_expires) { 1766 /* decrementer has already gone negative */ 1767 kvmppc_core_queue_dec(vcpu); 1768 kvmppc_core_prepare_to_enter(vcpu); 1769 return; 1770 } 1771 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 1772 / tb_ticks_per_sec; 1773 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 1774 HRTIMER_MODE_REL); 1775 vcpu->arch.timer_running = 1; 1776 } 1777 1778 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1779 { 1780 vcpu->arch.ceded = 0; 1781 if (vcpu->arch.timer_running) { 1782 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1783 vcpu->arch.timer_running = 0; 1784 } 1785 } 1786 1787 extern void __kvmppc_vcore_entry(void); 1788 1789 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1790 struct kvm_vcpu *vcpu) 1791 { 1792 u64 now; 1793 1794 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1795 return; 1796 spin_lock_irq(&vcpu->arch.tbacct_lock); 1797 now = mftb(); 1798 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1799 vcpu->arch.stolen_logged; 1800 vcpu->arch.busy_preempt = now; 1801 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1802 spin_unlock_irq(&vcpu->arch.tbacct_lock); 1803 --vc->n_runnable; 1804 list_del(&vcpu->arch.run_list); 1805 } 1806 1807 static int kvmppc_grab_hwthread(int cpu) 1808 { 1809 struct paca_struct *tpaca; 1810 long timeout = 10000; 1811 1812 tpaca = &paca[cpu]; 1813 1814 /* Ensure the thread won't go into the kernel if it wakes */ 1815 tpaca->kvm_hstate.kvm_vcpu = NULL; 1816 tpaca->kvm_hstate.kvm_vcore = NULL; 1817 tpaca->kvm_hstate.napping = 0; 1818 smp_wmb(); 1819 tpaca->kvm_hstate.hwthread_req = 1; 1820 1821 /* 1822 * If the thread is already executing in the kernel (e.g. handling 1823 * a stray interrupt), wait for it to get back to nap mode. 1824 * The smp_mb() is to ensure that our setting of hwthread_req 1825 * is visible before we look at hwthread_state, so if this 1826 * races with the code at system_reset_pSeries and the thread 1827 * misses our setting of hwthread_req, we are sure to see its 1828 * setting of hwthread_state, and vice versa. 1829 */ 1830 smp_mb(); 1831 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1832 if (--timeout <= 0) { 1833 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1834 return -EBUSY; 1835 } 1836 udelay(1); 1837 } 1838 return 0; 1839 } 1840 1841 static void kvmppc_release_hwthread(int cpu) 1842 { 1843 struct paca_struct *tpaca; 1844 1845 tpaca = &paca[cpu]; 1846 tpaca->kvm_hstate.hwthread_req = 0; 1847 tpaca->kvm_hstate.kvm_vcpu = NULL; 1848 tpaca->kvm_hstate.kvm_vcore = NULL; 1849 tpaca->kvm_hstate.kvm_split_mode = NULL; 1850 } 1851 1852 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 1853 { 1854 int cpu; 1855 struct paca_struct *tpaca; 1856 struct kvmppc_vcore *mvc = vc->master_vcore; 1857 1858 cpu = vc->pcpu; 1859 if (vcpu) { 1860 if (vcpu->arch.timer_running) { 1861 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1862 vcpu->arch.timer_running = 0; 1863 } 1864 cpu += vcpu->arch.ptid; 1865 vcpu->cpu = mvc->pcpu; 1866 vcpu->arch.thread_cpu = cpu; 1867 } 1868 tpaca = &paca[cpu]; 1869 tpaca->kvm_hstate.kvm_vcpu = vcpu; 1870 tpaca->kvm_hstate.ptid = cpu - mvc->pcpu; 1871 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 1872 smp_wmb(); 1873 tpaca->kvm_hstate.kvm_vcore = mvc; 1874 if (cpu != smp_processor_id()) 1875 kvmppc_ipi_thread(cpu); 1876 } 1877 1878 static void kvmppc_wait_for_nap(void) 1879 { 1880 int cpu = smp_processor_id(); 1881 int i, loops; 1882 1883 for (loops = 0; loops < 1000000; ++loops) { 1884 /* 1885 * Check if all threads are finished. 1886 * We set the vcore pointer when starting a thread 1887 * and the thread clears it when finished, so we look 1888 * for any threads that still have a non-NULL vcore ptr. 1889 */ 1890 for (i = 1; i < threads_per_subcore; ++i) 1891 if (paca[cpu + i].kvm_hstate.kvm_vcore) 1892 break; 1893 if (i == threads_per_subcore) { 1894 HMT_medium(); 1895 return; 1896 } 1897 HMT_low(); 1898 } 1899 HMT_medium(); 1900 for (i = 1; i < threads_per_subcore; ++i) 1901 if (paca[cpu + i].kvm_hstate.kvm_vcore) 1902 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 1903 } 1904 1905 /* 1906 * Check that we are on thread 0 and that any other threads in 1907 * this core are off-line. Then grab the threads so they can't 1908 * enter the kernel. 1909 */ 1910 static int on_primary_thread(void) 1911 { 1912 int cpu = smp_processor_id(); 1913 int thr; 1914 1915 /* Are we on a primary subcore? */ 1916 if (cpu_thread_in_subcore(cpu)) 1917 return 0; 1918 1919 thr = 0; 1920 while (++thr < threads_per_subcore) 1921 if (cpu_online(cpu + thr)) 1922 return 0; 1923 1924 /* Grab all hw threads so they can't go into the kernel */ 1925 for (thr = 1; thr < threads_per_subcore; ++thr) { 1926 if (kvmppc_grab_hwthread(cpu + thr)) { 1927 /* Couldn't grab one; let the others go */ 1928 do { 1929 kvmppc_release_hwthread(cpu + thr); 1930 } while (--thr > 0); 1931 return 0; 1932 } 1933 } 1934 return 1; 1935 } 1936 1937 /* 1938 * A list of virtual cores for each physical CPU. 1939 * These are vcores that could run but their runner VCPU tasks are 1940 * (or may be) preempted. 1941 */ 1942 struct preempted_vcore_list { 1943 struct list_head list; 1944 spinlock_t lock; 1945 }; 1946 1947 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 1948 1949 static void init_vcore_lists(void) 1950 { 1951 int cpu; 1952 1953 for_each_possible_cpu(cpu) { 1954 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 1955 spin_lock_init(&lp->lock); 1956 INIT_LIST_HEAD(&lp->list); 1957 } 1958 } 1959 1960 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 1961 { 1962 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 1963 1964 vc->vcore_state = VCORE_PREEMPT; 1965 vc->pcpu = smp_processor_id(); 1966 if (vc->num_threads < threads_per_subcore) { 1967 spin_lock(&lp->lock); 1968 list_add_tail(&vc->preempt_list, &lp->list); 1969 spin_unlock(&lp->lock); 1970 } 1971 1972 /* Start accumulating stolen time */ 1973 kvmppc_core_start_stolen(vc); 1974 } 1975 1976 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 1977 { 1978 struct preempted_vcore_list *lp; 1979 1980 kvmppc_core_end_stolen(vc); 1981 if (!list_empty(&vc->preempt_list)) { 1982 lp = &per_cpu(preempted_vcores, vc->pcpu); 1983 spin_lock(&lp->lock); 1984 list_del_init(&vc->preempt_list); 1985 spin_unlock(&lp->lock); 1986 } 1987 vc->vcore_state = VCORE_INACTIVE; 1988 } 1989 1990 /* 1991 * This stores information about the virtual cores currently 1992 * assigned to a physical core. 1993 */ 1994 struct core_info { 1995 int n_subcores; 1996 int max_subcore_threads; 1997 int total_threads; 1998 int subcore_threads[MAX_SUBCORES]; 1999 struct kvm *subcore_vm[MAX_SUBCORES]; 2000 struct list_head vcs[MAX_SUBCORES]; 2001 }; 2002 2003 /* 2004 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2005 * respectively in 2-way micro-threading (split-core) mode. 2006 */ 2007 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2008 2009 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2010 { 2011 int sub; 2012 2013 memset(cip, 0, sizeof(*cip)); 2014 cip->n_subcores = 1; 2015 cip->max_subcore_threads = vc->num_threads; 2016 cip->total_threads = vc->num_threads; 2017 cip->subcore_threads[0] = vc->num_threads; 2018 cip->subcore_vm[0] = vc->kvm; 2019 for (sub = 0; sub < MAX_SUBCORES; ++sub) 2020 INIT_LIST_HEAD(&cip->vcs[sub]); 2021 list_add_tail(&vc->preempt_list, &cip->vcs[0]); 2022 } 2023 2024 static bool subcore_config_ok(int n_subcores, int n_threads) 2025 { 2026 /* Can only dynamically split if unsplit to begin with */ 2027 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2028 return false; 2029 if (n_subcores > MAX_SUBCORES) 2030 return false; 2031 if (n_subcores > 1) { 2032 if (!(dynamic_mt_modes & 2)) 2033 n_subcores = 4; 2034 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2035 return false; 2036 } 2037 2038 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2039 } 2040 2041 static void init_master_vcore(struct kvmppc_vcore *vc) 2042 { 2043 vc->master_vcore = vc; 2044 vc->entry_exit_map = 0; 2045 vc->in_guest = 0; 2046 vc->napping_threads = 0; 2047 vc->conferring_threads = 0; 2048 } 2049 2050 /* 2051 * See if the existing subcores can be split into 3 (or fewer) subcores 2052 * of at most two threads each, so we can fit in another vcore. This 2053 * assumes there are at most two subcores and at most 6 threads in total. 2054 */ 2055 static bool can_split_piggybacked_subcores(struct core_info *cip) 2056 { 2057 int sub, new_sub; 2058 int large_sub = -1; 2059 int thr; 2060 int n_subcores = cip->n_subcores; 2061 struct kvmppc_vcore *vc, *vcnext; 2062 struct kvmppc_vcore *master_vc = NULL; 2063 2064 for (sub = 0; sub < cip->n_subcores; ++sub) { 2065 if (cip->subcore_threads[sub] <= 2) 2066 continue; 2067 if (large_sub >= 0) 2068 return false; 2069 large_sub = sub; 2070 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore, 2071 preempt_list); 2072 if (vc->num_threads > 2) 2073 return false; 2074 n_subcores += (cip->subcore_threads[sub] - 1) >> 1; 2075 } 2076 if (large_sub < 0 || !subcore_config_ok(n_subcores + 1, 2)) 2077 return false; 2078 2079 /* 2080 * Seems feasible, so go through and move vcores to new subcores. 2081 * Note that when we have two or more vcores in one subcore, 2082 * all those vcores must have only one thread each. 2083 */ 2084 new_sub = cip->n_subcores; 2085 thr = 0; 2086 sub = large_sub; 2087 list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) { 2088 if (thr >= 2) { 2089 list_del(&vc->preempt_list); 2090 list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]); 2091 /* vc->num_threads must be 1 */ 2092 if (++cip->subcore_threads[new_sub] == 1) { 2093 cip->subcore_vm[new_sub] = vc->kvm; 2094 init_master_vcore(vc); 2095 master_vc = vc; 2096 ++cip->n_subcores; 2097 } else { 2098 vc->master_vcore = master_vc; 2099 ++new_sub; 2100 } 2101 } 2102 thr += vc->num_threads; 2103 } 2104 cip->subcore_threads[large_sub] = 2; 2105 cip->max_subcore_threads = 2; 2106 2107 return true; 2108 } 2109 2110 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2111 { 2112 int n_threads = vc->num_threads; 2113 int sub; 2114 2115 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2116 return false; 2117 2118 if (n_threads < cip->max_subcore_threads) 2119 n_threads = cip->max_subcore_threads; 2120 if (subcore_config_ok(cip->n_subcores + 1, n_threads)) { 2121 cip->max_subcore_threads = n_threads; 2122 } else if (cip->n_subcores <= 2 && cip->total_threads <= 6 && 2123 vc->num_threads <= 2) { 2124 /* 2125 * We may be able to fit another subcore in by 2126 * splitting an existing subcore with 3 or 4 2127 * threads into two 2-thread subcores, or one 2128 * with 5 or 6 threads into three subcores. 2129 * We can only do this if those subcores have 2130 * piggybacked virtual cores. 2131 */ 2132 if (!can_split_piggybacked_subcores(cip)) 2133 return false; 2134 } else { 2135 return false; 2136 } 2137 2138 sub = cip->n_subcores; 2139 ++cip->n_subcores; 2140 cip->total_threads += vc->num_threads; 2141 cip->subcore_threads[sub] = vc->num_threads; 2142 cip->subcore_vm[sub] = vc->kvm; 2143 init_master_vcore(vc); 2144 list_del(&vc->preempt_list); 2145 list_add_tail(&vc->preempt_list, &cip->vcs[sub]); 2146 2147 return true; 2148 } 2149 2150 static bool can_piggyback_subcore(struct kvmppc_vcore *pvc, 2151 struct core_info *cip, int sub) 2152 { 2153 struct kvmppc_vcore *vc; 2154 int n_thr; 2155 2156 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore, 2157 preempt_list); 2158 2159 /* require same VM and same per-core reg values */ 2160 if (pvc->kvm != vc->kvm || 2161 pvc->tb_offset != vc->tb_offset || 2162 pvc->pcr != vc->pcr || 2163 pvc->lpcr != vc->lpcr) 2164 return false; 2165 2166 /* P8 guest with > 1 thread per core would see wrong TIR value */ 2167 if (cpu_has_feature(CPU_FTR_ARCH_207S) && 2168 (vc->num_threads > 1 || pvc->num_threads > 1)) 2169 return false; 2170 2171 n_thr = cip->subcore_threads[sub] + pvc->num_threads; 2172 if (n_thr > cip->max_subcore_threads) { 2173 if (!subcore_config_ok(cip->n_subcores, n_thr)) 2174 return false; 2175 cip->max_subcore_threads = n_thr; 2176 } 2177 2178 cip->total_threads += pvc->num_threads; 2179 cip->subcore_threads[sub] = n_thr; 2180 pvc->master_vcore = vc; 2181 list_del(&pvc->preempt_list); 2182 list_add_tail(&pvc->preempt_list, &cip->vcs[sub]); 2183 2184 return true; 2185 } 2186 2187 /* 2188 * Work out whether it is possible to piggyback the execution of 2189 * vcore *pvc onto the execution of the other vcores described in *cip. 2190 */ 2191 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2192 int target_threads) 2193 { 2194 int sub; 2195 2196 if (cip->total_threads + pvc->num_threads > target_threads) 2197 return false; 2198 for (sub = 0; sub < cip->n_subcores; ++sub) 2199 if (cip->subcore_threads[sub] && 2200 can_piggyback_subcore(pvc, cip, sub)) 2201 return true; 2202 2203 if (can_dynamic_split(pvc, cip)) 2204 return true; 2205 2206 return false; 2207 } 2208 2209 static void prepare_threads(struct kvmppc_vcore *vc) 2210 { 2211 struct kvm_vcpu *vcpu, *vnext; 2212 2213 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 2214 arch.run_list) { 2215 if (signal_pending(vcpu->arch.run_task)) 2216 vcpu->arch.ret = -EINTR; 2217 else if (vcpu->arch.vpa.update_pending || 2218 vcpu->arch.slb_shadow.update_pending || 2219 vcpu->arch.dtl.update_pending) 2220 vcpu->arch.ret = RESUME_GUEST; 2221 else 2222 continue; 2223 kvmppc_remove_runnable(vc, vcpu); 2224 wake_up(&vcpu->arch.cpu_run); 2225 } 2226 } 2227 2228 static void collect_piggybacks(struct core_info *cip, int target_threads) 2229 { 2230 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2231 struct kvmppc_vcore *pvc, *vcnext; 2232 2233 spin_lock(&lp->lock); 2234 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2235 if (!spin_trylock(&pvc->lock)) 2236 continue; 2237 prepare_threads(pvc); 2238 if (!pvc->n_runnable) { 2239 list_del_init(&pvc->preempt_list); 2240 if (pvc->runner == NULL) { 2241 pvc->vcore_state = VCORE_INACTIVE; 2242 kvmppc_core_end_stolen(pvc); 2243 } 2244 spin_unlock(&pvc->lock); 2245 continue; 2246 } 2247 if (!can_piggyback(pvc, cip, target_threads)) { 2248 spin_unlock(&pvc->lock); 2249 continue; 2250 } 2251 kvmppc_core_end_stolen(pvc); 2252 pvc->vcore_state = VCORE_PIGGYBACK; 2253 if (cip->total_threads >= target_threads) 2254 break; 2255 } 2256 spin_unlock(&lp->lock); 2257 } 2258 2259 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2260 { 2261 int still_running = 0; 2262 u64 now; 2263 long ret; 2264 struct kvm_vcpu *vcpu, *vnext; 2265 2266 spin_lock(&vc->lock); 2267 now = get_tb(); 2268 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 2269 arch.run_list) { 2270 /* cancel pending dec exception if dec is positive */ 2271 if (now < vcpu->arch.dec_expires && 2272 kvmppc_core_pending_dec(vcpu)) 2273 kvmppc_core_dequeue_dec(vcpu); 2274 2275 trace_kvm_guest_exit(vcpu); 2276 2277 ret = RESUME_GUEST; 2278 if (vcpu->arch.trap) 2279 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2280 vcpu->arch.run_task); 2281 2282 vcpu->arch.ret = ret; 2283 vcpu->arch.trap = 0; 2284 2285 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2286 if (vcpu->arch.pending_exceptions) 2287 kvmppc_core_prepare_to_enter(vcpu); 2288 if (vcpu->arch.ceded) 2289 kvmppc_set_timer(vcpu); 2290 else 2291 ++still_running; 2292 } else { 2293 kvmppc_remove_runnable(vc, vcpu); 2294 wake_up(&vcpu->arch.cpu_run); 2295 } 2296 } 2297 list_del_init(&vc->preempt_list); 2298 if (!is_master) { 2299 if (still_running > 0) { 2300 kvmppc_vcore_preempt(vc); 2301 } else if (vc->runner) { 2302 vc->vcore_state = VCORE_PREEMPT; 2303 kvmppc_core_start_stolen(vc); 2304 } else { 2305 vc->vcore_state = VCORE_INACTIVE; 2306 } 2307 if (vc->n_runnable > 0 && vc->runner == NULL) { 2308 /* make sure there's a candidate runner awake */ 2309 vcpu = list_first_entry(&vc->runnable_threads, 2310 struct kvm_vcpu, arch.run_list); 2311 wake_up(&vcpu->arch.cpu_run); 2312 } 2313 } 2314 spin_unlock(&vc->lock); 2315 } 2316 2317 /* 2318 * Clear core from the list of active host cores as we are about to 2319 * enter the guest. Only do this if it is the primary thread of the 2320 * core (not if a subcore) that is entering the guest. 2321 */ 2322 static inline void kvmppc_clear_host_core(int cpu) 2323 { 2324 int core; 2325 2326 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2327 return; 2328 /* 2329 * Memory barrier can be omitted here as we will do a smp_wmb() 2330 * later in kvmppc_start_thread and we need ensure that state is 2331 * visible to other CPUs only after we enter guest. 2332 */ 2333 core = cpu >> threads_shift; 2334 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2335 } 2336 2337 /* 2338 * Advertise this core as an active host core since we exited the guest 2339 * Only need to do this if it is the primary thread of the core that is 2340 * exiting. 2341 */ 2342 static inline void kvmppc_set_host_core(int cpu) 2343 { 2344 int core; 2345 2346 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2347 return; 2348 2349 /* 2350 * Memory barrier can be omitted here because we do a spin_unlock 2351 * immediately after this which provides the memory barrier. 2352 */ 2353 core = cpu >> threads_shift; 2354 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 2355 } 2356 2357 /* 2358 * Run a set of guest threads on a physical core. 2359 * Called with vc->lock held. 2360 */ 2361 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 2362 { 2363 struct kvm_vcpu *vcpu, *vnext; 2364 int i; 2365 int srcu_idx; 2366 struct core_info core_info; 2367 struct kvmppc_vcore *pvc, *vcnext; 2368 struct kvm_split_mode split_info, *sip; 2369 int split, subcore_size, active; 2370 int sub; 2371 bool thr0_done; 2372 unsigned long cmd_bit, stat_bit; 2373 int pcpu, thr; 2374 int target_threads; 2375 2376 /* 2377 * Remove from the list any threads that have a signal pending 2378 * or need a VPA update done 2379 */ 2380 prepare_threads(vc); 2381 2382 /* if the runner is no longer runnable, let the caller pick a new one */ 2383 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 2384 return; 2385 2386 /* 2387 * Initialize *vc. 2388 */ 2389 init_master_vcore(vc); 2390 vc->preempt_tb = TB_NIL; 2391 2392 /* 2393 * Make sure we are running on primary threads, and that secondary 2394 * threads are offline. Also check if the number of threads in this 2395 * guest are greater than the current system threads per guest. 2396 */ 2397 if ((threads_per_core > 1) && 2398 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 2399 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 2400 arch.run_list) { 2401 vcpu->arch.ret = -EBUSY; 2402 kvmppc_remove_runnable(vc, vcpu); 2403 wake_up(&vcpu->arch.cpu_run); 2404 } 2405 goto out; 2406 } 2407 2408 /* 2409 * See if we could run any other vcores on the physical core 2410 * along with this one. 2411 */ 2412 init_core_info(&core_info, vc); 2413 pcpu = smp_processor_id(); 2414 target_threads = threads_per_subcore; 2415 if (target_smt_mode && target_smt_mode < target_threads) 2416 target_threads = target_smt_mode; 2417 if (vc->num_threads < target_threads) 2418 collect_piggybacks(&core_info, target_threads); 2419 2420 /* Decide on micro-threading (split-core) mode */ 2421 subcore_size = threads_per_subcore; 2422 cmd_bit = stat_bit = 0; 2423 split = core_info.n_subcores; 2424 sip = NULL; 2425 if (split > 1) { 2426 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */ 2427 if (split == 2 && (dynamic_mt_modes & 2)) { 2428 cmd_bit = HID0_POWER8_1TO2LPAR; 2429 stat_bit = HID0_POWER8_2LPARMODE; 2430 } else { 2431 split = 4; 2432 cmd_bit = HID0_POWER8_1TO4LPAR; 2433 stat_bit = HID0_POWER8_4LPARMODE; 2434 } 2435 subcore_size = MAX_SMT_THREADS / split; 2436 sip = &split_info; 2437 memset(&split_info, 0, sizeof(split_info)); 2438 split_info.rpr = mfspr(SPRN_RPR); 2439 split_info.pmmar = mfspr(SPRN_PMMAR); 2440 split_info.ldbar = mfspr(SPRN_LDBAR); 2441 split_info.subcore_size = subcore_size; 2442 for (sub = 0; sub < core_info.n_subcores; ++sub) 2443 split_info.master_vcs[sub] = 2444 list_first_entry(&core_info.vcs[sub], 2445 struct kvmppc_vcore, preempt_list); 2446 /* order writes to split_info before kvm_split_mode pointer */ 2447 smp_wmb(); 2448 } 2449 pcpu = smp_processor_id(); 2450 for (thr = 0; thr < threads_per_subcore; ++thr) 2451 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip; 2452 2453 /* Initiate micro-threading (split-core) if required */ 2454 if (cmd_bit) { 2455 unsigned long hid0 = mfspr(SPRN_HID0); 2456 2457 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 2458 mb(); 2459 mtspr(SPRN_HID0, hid0); 2460 isync(); 2461 for (;;) { 2462 hid0 = mfspr(SPRN_HID0); 2463 if (hid0 & stat_bit) 2464 break; 2465 cpu_relax(); 2466 } 2467 } 2468 2469 kvmppc_clear_host_core(pcpu); 2470 2471 /* Start all the threads */ 2472 active = 0; 2473 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2474 thr = subcore_thread_map[sub]; 2475 thr0_done = false; 2476 active |= 1 << thr; 2477 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) { 2478 pvc->pcpu = pcpu + thr; 2479 list_for_each_entry(vcpu, &pvc->runnable_threads, 2480 arch.run_list) { 2481 kvmppc_start_thread(vcpu, pvc); 2482 kvmppc_create_dtl_entry(vcpu, pvc); 2483 trace_kvm_guest_enter(vcpu); 2484 if (!vcpu->arch.ptid) 2485 thr0_done = true; 2486 active |= 1 << (thr + vcpu->arch.ptid); 2487 } 2488 /* 2489 * We need to start the first thread of each subcore 2490 * even if it doesn't have a vcpu. 2491 */ 2492 if (pvc->master_vcore == pvc && !thr0_done) 2493 kvmppc_start_thread(NULL, pvc); 2494 thr += pvc->num_threads; 2495 } 2496 } 2497 2498 /* 2499 * Ensure that split_info.do_nap is set after setting 2500 * the vcore pointer in the PACA of the secondaries. 2501 */ 2502 smp_mb(); 2503 if (cmd_bit) 2504 split_info.do_nap = 1; /* ask secondaries to nap when done */ 2505 2506 /* 2507 * When doing micro-threading, poke the inactive threads as well. 2508 * This gets them to the nap instruction after kvm_do_nap, 2509 * which reduces the time taken to unsplit later. 2510 */ 2511 if (split > 1) 2512 for (thr = 1; thr < threads_per_subcore; ++thr) 2513 if (!(active & (1 << thr))) 2514 kvmppc_ipi_thread(pcpu + thr); 2515 2516 vc->vcore_state = VCORE_RUNNING; 2517 preempt_disable(); 2518 2519 trace_kvmppc_run_core(vc, 0); 2520 2521 for (sub = 0; sub < core_info.n_subcores; ++sub) 2522 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) 2523 spin_unlock(&pvc->lock); 2524 2525 kvm_guest_enter(); 2526 2527 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 2528 2529 __kvmppc_vcore_entry(); 2530 2531 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 2532 2533 spin_lock(&vc->lock); 2534 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 2535 vc->vcore_state = VCORE_EXITING; 2536 2537 /* wait for secondary threads to finish writing their state to memory */ 2538 kvmppc_wait_for_nap(); 2539 2540 /* Return to whole-core mode if we split the core earlier */ 2541 if (split > 1) { 2542 unsigned long hid0 = mfspr(SPRN_HID0); 2543 unsigned long loops = 0; 2544 2545 hid0 &= ~HID0_POWER8_DYNLPARDIS; 2546 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 2547 mb(); 2548 mtspr(SPRN_HID0, hid0); 2549 isync(); 2550 for (;;) { 2551 hid0 = mfspr(SPRN_HID0); 2552 if (!(hid0 & stat_bit)) 2553 break; 2554 cpu_relax(); 2555 ++loops; 2556 } 2557 split_info.do_nap = 0; 2558 } 2559 2560 /* Let secondaries go back to the offline loop */ 2561 for (i = 0; i < threads_per_subcore; ++i) { 2562 kvmppc_release_hwthread(pcpu + i); 2563 if (sip && sip->napped[i]) 2564 kvmppc_ipi_thread(pcpu + i); 2565 } 2566 2567 kvmppc_set_host_core(pcpu); 2568 2569 spin_unlock(&vc->lock); 2570 2571 /* make sure updates to secondary vcpu structs are visible now */ 2572 smp_mb(); 2573 kvm_guest_exit(); 2574 2575 for (sub = 0; sub < core_info.n_subcores; ++sub) 2576 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub], 2577 preempt_list) 2578 post_guest_process(pvc, pvc == vc); 2579 2580 spin_lock(&vc->lock); 2581 preempt_enable(); 2582 2583 out: 2584 vc->vcore_state = VCORE_INACTIVE; 2585 trace_kvmppc_run_core(vc, 1); 2586 } 2587 2588 /* 2589 * Wait for some other vcpu thread to execute us, and 2590 * wake us up when we need to handle something in the host. 2591 */ 2592 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 2593 struct kvm_vcpu *vcpu, int wait_state) 2594 { 2595 DEFINE_WAIT(wait); 2596 2597 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 2598 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2599 spin_unlock(&vc->lock); 2600 schedule(); 2601 spin_lock(&vc->lock); 2602 } 2603 finish_wait(&vcpu->arch.cpu_run, &wait); 2604 } 2605 2606 /* 2607 * All the vcpus in this vcore are idle, so wait for a decrementer 2608 * or external interrupt to one of the vcpus. vc->lock is held. 2609 */ 2610 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 2611 { 2612 struct kvm_vcpu *vcpu; 2613 int do_sleep = 1; 2614 DECLARE_SWAITQUEUE(wait); 2615 2616 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 2617 2618 /* 2619 * Check one last time for pending exceptions and ceded state after 2620 * we put ourselves on the wait queue 2621 */ 2622 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 2623 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) { 2624 do_sleep = 0; 2625 break; 2626 } 2627 } 2628 2629 if (!do_sleep) { 2630 finish_swait(&vc->wq, &wait); 2631 return; 2632 } 2633 2634 vc->vcore_state = VCORE_SLEEPING; 2635 trace_kvmppc_vcore_blocked(vc, 0); 2636 spin_unlock(&vc->lock); 2637 schedule(); 2638 finish_swait(&vc->wq, &wait); 2639 spin_lock(&vc->lock); 2640 vc->vcore_state = VCORE_INACTIVE; 2641 trace_kvmppc_vcore_blocked(vc, 1); 2642 } 2643 2644 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 2645 { 2646 int n_ceded; 2647 struct kvmppc_vcore *vc; 2648 struct kvm_vcpu *v, *vn; 2649 2650 trace_kvmppc_run_vcpu_enter(vcpu); 2651 2652 kvm_run->exit_reason = 0; 2653 vcpu->arch.ret = RESUME_GUEST; 2654 vcpu->arch.trap = 0; 2655 kvmppc_update_vpas(vcpu); 2656 2657 /* 2658 * Synchronize with other threads in this virtual core 2659 */ 2660 vc = vcpu->arch.vcore; 2661 spin_lock(&vc->lock); 2662 vcpu->arch.ceded = 0; 2663 vcpu->arch.run_task = current; 2664 vcpu->arch.kvm_run = kvm_run; 2665 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 2666 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 2667 vcpu->arch.busy_preempt = TB_NIL; 2668 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 2669 ++vc->n_runnable; 2670 2671 /* 2672 * This happens the first time this is called for a vcpu. 2673 * If the vcore is already running, we may be able to start 2674 * this thread straight away and have it join in. 2675 */ 2676 if (!signal_pending(current)) { 2677 if (vc->vcore_state == VCORE_PIGGYBACK) { 2678 struct kvmppc_vcore *mvc = vc->master_vcore; 2679 if (spin_trylock(&mvc->lock)) { 2680 if (mvc->vcore_state == VCORE_RUNNING && 2681 !VCORE_IS_EXITING(mvc)) { 2682 kvmppc_create_dtl_entry(vcpu, vc); 2683 kvmppc_start_thread(vcpu, vc); 2684 trace_kvm_guest_enter(vcpu); 2685 } 2686 spin_unlock(&mvc->lock); 2687 } 2688 } else if (vc->vcore_state == VCORE_RUNNING && 2689 !VCORE_IS_EXITING(vc)) { 2690 kvmppc_create_dtl_entry(vcpu, vc); 2691 kvmppc_start_thread(vcpu, vc); 2692 trace_kvm_guest_enter(vcpu); 2693 } else if (vc->vcore_state == VCORE_SLEEPING) { 2694 swake_up(&vc->wq); 2695 } 2696 2697 } 2698 2699 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2700 !signal_pending(current)) { 2701 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 2702 kvmppc_vcore_end_preempt(vc); 2703 2704 if (vc->vcore_state != VCORE_INACTIVE) { 2705 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 2706 continue; 2707 } 2708 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 2709 arch.run_list) { 2710 kvmppc_core_prepare_to_enter(v); 2711 if (signal_pending(v->arch.run_task)) { 2712 kvmppc_remove_runnable(vc, v); 2713 v->stat.signal_exits++; 2714 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 2715 v->arch.ret = -EINTR; 2716 wake_up(&v->arch.cpu_run); 2717 } 2718 } 2719 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2720 break; 2721 n_ceded = 0; 2722 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 2723 if (!v->arch.pending_exceptions) 2724 n_ceded += v->arch.ceded; 2725 else 2726 v->arch.ceded = 0; 2727 } 2728 vc->runner = vcpu; 2729 if (n_ceded == vc->n_runnable) { 2730 kvmppc_vcore_blocked(vc); 2731 } else if (need_resched()) { 2732 kvmppc_vcore_preempt(vc); 2733 /* Let something else run */ 2734 cond_resched_lock(&vc->lock); 2735 if (vc->vcore_state == VCORE_PREEMPT) 2736 kvmppc_vcore_end_preempt(vc); 2737 } else { 2738 kvmppc_run_core(vc); 2739 } 2740 vc->runner = NULL; 2741 } 2742 2743 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 2744 (vc->vcore_state == VCORE_RUNNING || 2745 vc->vcore_state == VCORE_EXITING || 2746 vc->vcore_state == VCORE_PIGGYBACK)) 2747 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 2748 2749 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 2750 kvmppc_vcore_end_preempt(vc); 2751 2752 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2753 kvmppc_remove_runnable(vc, vcpu); 2754 vcpu->stat.signal_exits++; 2755 kvm_run->exit_reason = KVM_EXIT_INTR; 2756 vcpu->arch.ret = -EINTR; 2757 } 2758 2759 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 2760 /* Wake up some vcpu to run the core */ 2761 v = list_first_entry(&vc->runnable_threads, 2762 struct kvm_vcpu, arch.run_list); 2763 wake_up(&v->arch.cpu_run); 2764 } 2765 2766 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 2767 spin_unlock(&vc->lock); 2768 return vcpu->arch.ret; 2769 } 2770 2771 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 2772 { 2773 int r; 2774 int srcu_idx; 2775 2776 if (!vcpu->arch.sane) { 2777 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 2778 return -EINVAL; 2779 } 2780 2781 kvmppc_core_prepare_to_enter(vcpu); 2782 2783 /* No need to go into the guest when all we'll do is come back out */ 2784 if (signal_pending(current)) { 2785 run->exit_reason = KVM_EXIT_INTR; 2786 return -EINTR; 2787 } 2788 2789 atomic_inc(&vcpu->kvm->arch.vcpus_running); 2790 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */ 2791 smp_mb(); 2792 2793 /* On the first time here, set up HTAB and VRMA */ 2794 if (!vcpu->kvm->arch.hpte_setup_done) { 2795 r = kvmppc_hv_setup_htab_rma(vcpu); 2796 if (r) 2797 goto out; 2798 } 2799 2800 flush_all_to_thread(current); 2801 2802 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 2803 vcpu->arch.pgdir = current->mm->pgd; 2804 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2805 2806 do { 2807 r = kvmppc_run_vcpu(run, vcpu); 2808 2809 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 2810 !(vcpu->arch.shregs.msr & MSR_PR)) { 2811 trace_kvm_hcall_enter(vcpu); 2812 r = kvmppc_pseries_do_hcall(vcpu); 2813 trace_kvm_hcall_exit(vcpu, r); 2814 kvmppc_core_prepare_to_enter(vcpu); 2815 } else if (r == RESUME_PAGE_FAULT) { 2816 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2817 r = kvmppc_book3s_hv_page_fault(run, vcpu, 2818 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 2819 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 2820 } 2821 } while (is_kvmppc_resume_guest(r)); 2822 2823 out: 2824 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2825 atomic_dec(&vcpu->kvm->arch.vcpus_running); 2826 return r; 2827 } 2828 2829 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 2830 int linux_psize) 2831 { 2832 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 2833 2834 if (!def->shift) 2835 return; 2836 (*sps)->page_shift = def->shift; 2837 (*sps)->slb_enc = def->sllp; 2838 (*sps)->enc[0].page_shift = def->shift; 2839 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 2840 /* 2841 * Add 16MB MPSS support if host supports it 2842 */ 2843 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) { 2844 (*sps)->enc[1].page_shift = 24; 2845 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M]; 2846 } 2847 (*sps)++; 2848 } 2849 2850 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 2851 struct kvm_ppc_smmu_info *info) 2852 { 2853 struct kvm_ppc_one_seg_page_size *sps; 2854 2855 info->flags = KVM_PPC_PAGE_SIZES_REAL; 2856 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 2857 info->flags |= KVM_PPC_1T_SEGMENTS; 2858 info->slb_size = mmu_slb_size; 2859 2860 /* We only support these sizes for now, and no muti-size segments */ 2861 sps = &info->sps[0]; 2862 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 2863 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 2864 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 2865 2866 return 0; 2867 } 2868 2869 /* 2870 * Get (and clear) the dirty memory log for a memory slot. 2871 */ 2872 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 2873 struct kvm_dirty_log *log) 2874 { 2875 struct kvm_memslots *slots; 2876 struct kvm_memory_slot *memslot; 2877 int r; 2878 unsigned long n; 2879 2880 mutex_lock(&kvm->slots_lock); 2881 2882 r = -EINVAL; 2883 if (log->slot >= KVM_USER_MEM_SLOTS) 2884 goto out; 2885 2886 slots = kvm_memslots(kvm); 2887 memslot = id_to_memslot(slots, log->slot); 2888 r = -ENOENT; 2889 if (!memslot->dirty_bitmap) 2890 goto out; 2891 2892 n = kvm_dirty_bitmap_bytes(memslot); 2893 memset(memslot->dirty_bitmap, 0, n); 2894 2895 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); 2896 if (r) 2897 goto out; 2898 2899 r = -EFAULT; 2900 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 2901 goto out; 2902 2903 r = 0; 2904 out: 2905 mutex_unlock(&kvm->slots_lock); 2906 return r; 2907 } 2908 2909 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 2910 struct kvm_memory_slot *dont) 2911 { 2912 if (!dont || free->arch.rmap != dont->arch.rmap) { 2913 vfree(free->arch.rmap); 2914 free->arch.rmap = NULL; 2915 } 2916 } 2917 2918 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 2919 unsigned long npages) 2920 { 2921 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 2922 if (!slot->arch.rmap) 2923 return -ENOMEM; 2924 2925 return 0; 2926 } 2927 2928 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 2929 struct kvm_memory_slot *memslot, 2930 const struct kvm_userspace_memory_region *mem) 2931 { 2932 return 0; 2933 } 2934 2935 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 2936 const struct kvm_userspace_memory_region *mem, 2937 const struct kvm_memory_slot *old, 2938 const struct kvm_memory_slot *new) 2939 { 2940 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 2941 struct kvm_memslots *slots; 2942 struct kvm_memory_slot *memslot; 2943 2944 if (npages && old->npages) { 2945 /* 2946 * If modifying a memslot, reset all the rmap dirty bits. 2947 * If this is a new memslot, we don't need to do anything 2948 * since the rmap array starts out as all zeroes, 2949 * i.e. no pages are dirty. 2950 */ 2951 slots = kvm_memslots(kvm); 2952 memslot = id_to_memslot(slots, mem->slot); 2953 kvmppc_hv_get_dirty_log(kvm, memslot, NULL); 2954 } 2955 } 2956 2957 /* 2958 * Update LPCR values in kvm->arch and in vcores. 2959 * Caller must hold kvm->lock. 2960 */ 2961 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 2962 { 2963 long int i; 2964 u32 cores_done = 0; 2965 2966 if ((kvm->arch.lpcr & mask) == lpcr) 2967 return; 2968 2969 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 2970 2971 for (i = 0; i < KVM_MAX_VCORES; ++i) { 2972 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 2973 if (!vc) 2974 continue; 2975 spin_lock(&vc->lock); 2976 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 2977 spin_unlock(&vc->lock); 2978 if (++cores_done >= kvm->arch.online_vcores) 2979 break; 2980 } 2981 } 2982 2983 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 2984 { 2985 return; 2986 } 2987 2988 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 2989 { 2990 int err = 0; 2991 struct kvm *kvm = vcpu->kvm; 2992 unsigned long hva; 2993 struct kvm_memory_slot *memslot; 2994 struct vm_area_struct *vma; 2995 unsigned long lpcr = 0, senc; 2996 unsigned long psize, porder; 2997 int srcu_idx; 2998 2999 mutex_lock(&kvm->lock); 3000 if (kvm->arch.hpte_setup_done) 3001 goto out; /* another vcpu beat us to it */ 3002 3003 /* Allocate hashed page table (if not done already) and reset it */ 3004 if (!kvm->arch.hpt_virt) { 3005 err = kvmppc_alloc_hpt(kvm, NULL); 3006 if (err) { 3007 pr_err("KVM: Couldn't alloc HPT\n"); 3008 goto out; 3009 } 3010 } 3011 3012 /* Look up the memslot for guest physical address 0 */ 3013 srcu_idx = srcu_read_lock(&kvm->srcu); 3014 memslot = gfn_to_memslot(kvm, 0); 3015 3016 /* We must have some memory at 0 by now */ 3017 err = -EINVAL; 3018 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 3019 goto out_srcu; 3020 3021 /* Look up the VMA for the start of this memory slot */ 3022 hva = memslot->userspace_addr; 3023 down_read(¤t->mm->mmap_sem); 3024 vma = find_vma(current->mm, hva); 3025 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 3026 goto up_out; 3027 3028 psize = vma_kernel_pagesize(vma); 3029 porder = __ilog2(psize); 3030 3031 up_read(¤t->mm->mmap_sem); 3032 3033 /* We can handle 4k, 64k or 16M pages in the VRMA */ 3034 err = -EINVAL; 3035 if (!(psize == 0x1000 || psize == 0x10000 || 3036 psize == 0x1000000)) 3037 goto out_srcu; 3038 3039 /* Update VRMASD field in the LPCR */ 3040 senc = slb_pgsize_encoding(psize); 3041 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 3042 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3043 /* the -4 is to account for senc values starting at 0x10 */ 3044 lpcr = senc << (LPCR_VRMASD_SH - 4); 3045 3046 /* Create HPTEs in the hash page table for the VRMA */ 3047 kvmppc_map_vrma(vcpu, memslot, porder); 3048 3049 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 3050 3051 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */ 3052 smp_wmb(); 3053 kvm->arch.hpte_setup_done = 1; 3054 err = 0; 3055 out_srcu: 3056 srcu_read_unlock(&kvm->srcu, srcu_idx); 3057 out: 3058 mutex_unlock(&kvm->lock); 3059 return err; 3060 3061 up_out: 3062 up_read(¤t->mm->mmap_sem); 3063 goto out_srcu; 3064 } 3065 3066 #ifdef CONFIG_KVM_XICS 3067 static int kvmppc_cpu_notify(struct notifier_block *self, unsigned long action, 3068 void *hcpu) 3069 { 3070 unsigned long cpu = (long)hcpu; 3071 3072 switch (action) { 3073 case CPU_UP_PREPARE: 3074 case CPU_UP_PREPARE_FROZEN: 3075 kvmppc_set_host_core(cpu); 3076 break; 3077 3078 #ifdef CONFIG_HOTPLUG_CPU 3079 case CPU_DEAD: 3080 case CPU_DEAD_FROZEN: 3081 case CPU_UP_CANCELED: 3082 case CPU_UP_CANCELED_FROZEN: 3083 kvmppc_clear_host_core(cpu); 3084 break; 3085 #endif 3086 default: 3087 break; 3088 } 3089 3090 return NOTIFY_OK; 3091 } 3092 3093 static struct notifier_block kvmppc_cpu_notifier = { 3094 .notifier_call = kvmppc_cpu_notify, 3095 }; 3096 3097 /* 3098 * Allocate a per-core structure for managing state about which cores are 3099 * running in the host versus the guest and for exchanging data between 3100 * real mode KVM and CPU running in the host. 3101 * This is only done for the first VM. 3102 * The allocated structure stays even if all VMs have stopped. 3103 * It is only freed when the kvm-hv module is unloaded. 3104 * It's OK for this routine to fail, we just don't support host 3105 * core operations like redirecting H_IPI wakeups. 3106 */ 3107 void kvmppc_alloc_host_rm_ops(void) 3108 { 3109 struct kvmppc_host_rm_ops *ops; 3110 unsigned long l_ops; 3111 int cpu, core; 3112 int size; 3113 3114 /* Not the first time here ? */ 3115 if (kvmppc_host_rm_ops_hv != NULL) 3116 return; 3117 3118 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 3119 if (!ops) 3120 return; 3121 3122 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 3123 ops->rm_core = kzalloc(size, GFP_KERNEL); 3124 3125 if (!ops->rm_core) { 3126 kfree(ops); 3127 return; 3128 } 3129 3130 get_online_cpus(); 3131 3132 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 3133 if (!cpu_online(cpu)) 3134 continue; 3135 3136 core = cpu >> threads_shift; 3137 ops->rm_core[core].rm_state.in_host = 1; 3138 } 3139 3140 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 3141 3142 /* 3143 * Make the contents of the kvmppc_host_rm_ops structure visible 3144 * to other CPUs before we assign it to the global variable. 3145 * Do an atomic assignment (no locks used here), but if someone 3146 * beats us to it, just free our copy and return. 3147 */ 3148 smp_wmb(); 3149 l_ops = (unsigned long) ops; 3150 3151 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 3152 put_online_cpus(); 3153 kfree(ops->rm_core); 3154 kfree(ops); 3155 return; 3156 } 3157 3158 register_cpu_notifier(&kvmppc_cpu_notifier); 3159 3160 put_online_cpus(); 3161 } 3162 3163 void kvmppc_free_host_rm_ops(void) 3164 { 3165 if (kvmppc_host_rm_ops_hv) { 3166 unregister_cpu_notifier(&kvmppc_cpu_notifier); 3167 kfree(kvmppc_host_rm_ops_hv->rm_core); 3168 kfree(kvmppc_host_rm_ops_hv); 3169 kvmppc_host_rm_ops_hv = NULL; 3170 } 3171 } 3172 #endif 3173 3174 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 3175 { 3176 unsigned long lpcr, lpid; 3177 char buf[32]; 3178 3179 /* Allocate the guest's logical partition ID */ 3180 3181 lpid = kvmppc_alloc_lpid(); 3182 if ((long)lpid < 0) 3183 return -ENOMEM; 3184 kvm->arch.lpid = lpid; 3185 3186 kvmppc_alloc_host_rm_ops(); 3187 3188 /* 3189 * Since we don't flush the TLB when tearing down a VM, 3190 * and this lpid might have previously been used, 3191 * make sure we flush on each core before running the new VM. 3192 */ 3193 cpumask_setall(&kvm->arch.need_tlb_flush); 3194 3195 /* Start out with the default set of hcalls enabled */ 3196 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 3197 sizeof(kvm->arch.enabled_hcalls)); 3198 3199 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 3200 3201 /* Init LPCR for virtual RMA mode */ 3202 kvm->arch.host_lpid = mfspr(SPRN_LPID); 3203 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 3204 lpcr &= LPCR_PECE | LPCR_LPES; 3205 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 3206 LPCR_VPM0 | LPCR_VPM1; 3207 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 3208 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3209 /* On POWER8 turn on online bit to enable PURR/SPURR */ 3210 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3211 lpcr |= LPCR_ONL; 3212 kvm->arch.lpcr = lpcr; 3213 3214 /* 3215 * Track that we now have a HV mode VM active. This blocks secondary 3216 * CPU threads from coming online. 3217 */ 3218 kvm_hv_vm_activated(); 3219 3220 /* 3221 * Create a debugfs directory for the VM 3222 */ 3223 snprintf(buf, sizeof(buf), "vm%d", current->pid); 3224 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 3225 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 3226 kvmppc_mmu_debugfs_init(kvm); 3227 3228 return 0; 3229 } 3230 3231 static void kvmppc_free_vcores(struct kvm *kvm) 3232 { 3233 long int i; 3234 3235 for (i = 0; i < KVM_MAX_VCORES; ++i) 3236 kfree(kvm->arch.vcores[i]); 3237 kvm->arch.online_vcores = 0; 3238 } 3239 3240 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 3241 { 3242 debugfs_remove_recursive(kvm->arch.debugfs_dir); 3243 3244 kvm_hv_vm_deactivated(); 3245 3246 kvmppc_free_vcores(kvm); 3247 3248 kvmppc_free_hpt(kvm); 3249 } 3250 3251 /* We don't need to emulate any privileged instructions or dcbz */ 3252 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 3253 unsigned int inst, int *advance) 3254 { 3255 return EMULATE_FAIL; 3256 } 3257 3258 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 3259 ulong spr_val) 3260 { 3261 return EMULATE_FAIL; 3262 } 3263 3264 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 3265 ulong *spr_val) 3266 { 3267 return EMULATE_FAIL; 3268 } 3269 3270 static int kvmppc_core_check_processor_compat_hv(void) 3271 { 3272 if (!cpu_has_feature(CPU_FTR_HVMODE) || 3273 !cpu_has_feature(CPU_FTR_ARCH_206)) 3274 return -EIO; 3275 /* 3276 * Disable KVM for Power9, untill the required bits merged. 3277 */ 3278 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3279 return -EIO; 3280 3281 return 0; 3282 } 3283 3284 static long kvm_arch_vm_ioctl_hv(struct file *filp, 3285 unsigned int ioctl, unsigned long arg) 3286 { 3287 struct kvm *kvm __maybe_unused = filp->private_data; 3288 void __user *argp = (void __user *)arg; 3289 long r; 3290 3291 switch (ioctl) { 3292 3293 case KVM_PPC_ALLOCATE_HTAB: { 3294 u32 htab_order; 3295 3296 r = -EFAULT; 3297 if (get_user(htab_order, (u32 __user *)argp)) 3298 break; 3299 r = kvmppc_alloc_reset_hpt(kvm, &htab_order); 3300 if (r) 3301 break; 3302 r = -EFAULT; 3303 if (put_user(htab_order, (u32 __user *)argp)) 3304 break; 3305 r = 0; 3306 break; 3307 } 3308 3309 case KVM_PPC_GET_HTAB_FD: { 3310 struct kvm_get_htab_fd ghf; 3311 3312 r = -EFAULT; 3313 if (copy_from_user(&ghf, argp, sizeof(ghf))) 3314 break; 3315 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 3316 break; 3317 } 3318 3319 default: 3320 r = -ENOTTY; 3321 } 3322 3323 return r; 3324 } 3325 3326 /* 3327 * List of hcall numbers to enable by default. 3328 * For compatibility with old userspace, we enable by default 3329 * all hcalls that were implemented before the hcall-enabling 3330 * facility was added. Note this list should not include H_RTAS. 3331 */ 3332 static unsigned int default_hcall_list[] = { 3333 H_REMOVE, 3334 H_ENTER, 3335 H_READ, 3336 H_PROTECT, 3337 H_BULK_REMOVE, 3338 H_GET_TCE, 3339 H_PUT_TCE, 3340 H_SET_DABR, 3341 H_SET_XDABR, 3342 H_CEDE, 3343 H_PROD, 3344 H_CONFER, 3345 H_REGISTER_VPA, 3346 #ifdef CONFIG_KVM_XICS 3347 H_EOI, 3348 H_CPPR, 3349 H_IPI, 3350 H_IPOLL, 3351 H_XIRR, 3352 H_XIRR_X, 3353 #endif 3354 0 3355 }; 3356 3357 static void init_default_hcalls(void) 3358 { 3359 int i; 3360 unsigned int hcall; 3361 3362 for (i = 0; default_hcall_list[i]; ++i) { 3363 hcall = default_hcall_list[i]; 3364 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 3365 __set_bit(hcall / 4, default_enabled_hcalls); 3366 } 3367 } 3368 3369 static struct kvmppc_ops kvm_ops_hv = { 3370 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 3371 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 3372 .get_one_reg = kvmppc_get_one_reg_hv, 3373 .set_one_reg = kvmppc_set_one_reg_hv, 3374 .vcpu_load = kvmppc_core_vcpu_load_hv, 3375 .vcpu_put = kvmppc_core_vcpu_put_hv, 3376 .set_msr = kvmppc_set_msr_hv, 3377 .vcpu_run = kvmppc_vcpu_run_hv, 3378 .vcpu_create = kvmppc_core_vcpu_create_hv, 3379 .vcpu_free = kvmppc_core_vcpu_free_hv, 3380 .check_requests = kvmppc_core_check_requests_hv, 3381 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 3382 .flush_memslot = kvmppc_core_flush_memslot_hv, 3383 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 3384 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 3385 .unmap_hva = kvm_unmap_hva_hv, 3386 .unmap_hva_range = kvm_unmap_hva_range_hv, 3387 .age_hva = kvm_age_hva_hv, 3388 .test_age_hva = kvm_test_age_hva_hv, 3389 .set_spte_hva = kvm_set_spte_hva_hv, 3390 .mmu_destroy = kvmppc_mmu_destroy_hv, 3391 .free_memslot = kvmppc_core_free_memslot_hv, 3392 .create_memslot = kvmppc_core_create_memslot_hv, 3393 .init_vm = kvmppc_core_init_vm_hv, 3394 .destroy_vm = kvmppc_core_destroy_vm_hv, 3395 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 3396 .emulate_op = kvmppc_core_emulate_op_hv, 3397 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 3398 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 3399 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 3400 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 3401 .hcall_implemented = kvmppc_hcall_impl_hv, 3402 }; 3403 3404 static int kvmppc_book3s_init_hv(void) 3405 { 3406 int r; 3407 /* 3408 * FIXME!! Do we need to check on all cpus ? 3409 */ 3410 r = kvmppc_core_check_processor_compat_hv(); 3411 if (r < 0) 3412 return -ENODEV; 3413 3414 kvm_ops_hv.owner = THIS_MODULE; 3415 kvmppc_hv_ops = &kvm_ops_hv; 3416 3417 init_default_hcalls(); 3418 3419 init_vcore_lists(); 3420 3421 r = kvmppc_mmu_hv_init(); 3422 return r; 3423 } 3424 3425 static void kvmppc_book3s_exit_hv(void) 3426 { 3427 kvmppc_free_host_rm_ops(); 3428 kvmppc_hv_ops = NULL; 3429 } 3430 3431 module_init(kvmppc_book3s_init_hv); 3432 module_exit(kvmppc_book3s_exit_hv); 3433 MODULE_LICENSE("GPL"); 3434 MODULE_ALIAS_MISCDEV(KVM_MINOR); 3435 MODULE_ALIAS("devname:kvm"); 3436