1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 46 #include <asm/ftrace.h> 47 #include <asm/reg.h> 48 #include <asm/ppc-opcode.h> 49 #include <asm/asm-prototypes.h> 50 #include <asm/archrandom.h> 51 #include <asm/debug.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <linux/uaccess.h> 56 #include <asm/io.h> 57 #include <asm/kvm_ppc.h> 58 #include <asm/kvm_book3s.h> 59 #include <asm/mmu_context.h> 60 #include <asm/lppaca.h> 61 #include <asm/processor.h> 62 #include <asm/cputhreads.h> 63 #include <asm/page.h> 64 #include <asm/hvcall.h> 65 #include <asm/switch_to.h> 66 #include <asm/smp.h> 67 #include <asm/dbell.h> 68 #include <asm/hmi.h> 69 #include <asm/pnv-pci.h> 70 #include <asm/mmu.h> 71 #include <asm/opal.h> 72 #include <asm/xics.h> 73 #include <asm/xive.h> 74 #include <asm/hw_breakpoint.h> 75 #include <asm/kvm_book3s_uvmem.h> 76 #include <asm/ultravisor.h> 77 78 #include "book3s.h" 79 80 #define CREATE_TRACE_POINTS 81 #include "trace_hv.h" 82 83 /* #define EXIT_DEBUG */ 84 /* #define EXIT_DEBUG_SIMPLE */ 85 /* #define EXIT_DEBUG_INT */ 86 87 /* Used to indicate that a guest page fault needs to be handled */ 88 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 89 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 90 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 91 92 /* Used as a "null" value for timebase values */ 93 #define TB_NIL (~(u64)0) 94 95 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 96 97 static int dynamic_mt_modes = 6; 98 module_param(dynamic_mt_modes, int, 0644); 99 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 100 static int target_smt_mode; 101 module_param(target_smt_mode, int, 0644); 102 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 103 104 static bool indep_threads_mode = true; 105 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 106 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 107 108 static bool one_vm_per_core; 109 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 110 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)"); 111 112 #ifdef CONFIG_KVM_XICS 113 static struct kernel_param_ops module_param_ops = { 114 .set = param_set_int, 115 .get = param_get_int, 116 }; 117 118 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 119 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 120 121 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 122 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 123 #endif 124 125 /* If set, guests are allowed to create and control nested guests */ 126 static bool nested = true; 127 module_param(nested, bool, S_IRUGO | S_IWUSR); 128 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 129 130 static inline bool nesting_enabled(struct kvm *kvm) 131 { 132 return kvm->arch.nested_enable && kvm_is_radix(kvm); 133 } 134 135 /* If set, the threads on each CPU core have to be in the same MMU mode */ 136 static bool no_mixing_hpt_and_radix; 137 138 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 139 140 /* 141 * RWMR values for POWER8. These control the rate at which PURR 142 * and SPURR count and should be set according to the number of 143 * online threads in the vcore being run. 144 */ 145 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 146 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 147 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 148 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 149 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 150 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 151 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 152 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 153 154 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 155 RWMR_RPA_P8_1THREAD, 156 RWMR_RPA_P8_1THREAD, 157 RWMR_RPA_P8_2THREAD, 158 RWMR_RPA_P8_3THREAD, 159 RWMR_RPA_P8_4THREAD, 160 RWMR_RPA_P8_5THREAD, 161 RWMR_RPA_P8_6THREAD, 162 RWMR_RPA_P8_7THREAD, 163 RWMR_RPA_P8_8THREAD, 164 }; 165 166 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 167 int *ip) 168 { 169 int i = *ip; 170 struct kvm_vcpu *vcpu; 171 172 while (++i < MAX_SMT_THREADS) { 173 vcpu = READ_ONCE(vc->runnable_threads[i]); 174 if (vcpu) { 175 *ip = i; 176 return vcpu; 177 } 178 } 179 return NULL; 180 } 181 182 /* Used to traverse the list of runnable threads for a given vcore */ 183 #define for_each_runnable_thread(i, vcpu, vc) \ 184 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 185 186 static bool kvmppc_ipi_thread(int cpu) 187 { 188 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 189 190 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 191 if (kvmhv_on_pseries()) 192 return false; 193 194 /* On POWER9 we can use msgsnd to IPI any cpu */ 195 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 196 msg |= get_hard_smp_processor_id(cpu); 197 smp_mb(); 198 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 199 return true; 200 } 201 202 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 203 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 204 preempt_disable(); 205 if (cpu_first_thread_sibling(cpu) == 206 cpu_first_thread_sibling(smp_processor_id())) { 207 msg |= cpu_thread_in_core(cpu); 208 smp_mb(); 209 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 210 preempt_enable(); 211 return true; 212 } 213 preempt_enable(); 214 } 215 216 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 217 if (cpu >= 0 && cpu < nr_cpu_ids) { 218 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 219 xics_wake_cpu(cpu); 220 return true; 221 } 222 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 223 return true; 224 } 225 #endif 226 227 return false; 228 } 229 230 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 231 { 232 int cpu; 233 struct rcuwait *waitp; 234 235 waitp = kvm_arch_vcpu_get_wait(vcpu); 236 if (rcuwait_wake_up(waitp)) 237 ++vcpu->stat.halt_wakeup; 238 239 cpu = READ_ONCE(vcpu->arch.thread_cpu); 240 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 241 return; 242 243 /* CPU points to the first thread of the core */ 244 cpu = vcpu->cpu; 245 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 246 smp_send_reschedule(cpu); 247 } 248 249 /* 250 * We use the vcpu_load/put functions to measure stolen time. 251 * Stolen time is counted as time when either the vcpu is able to 252 * run as part of a virtual core, but the task running the vcore 253 * is preempted or sleeping, or when the vcpu needs something done 254 * in the kernel by the task running the vcpu, but that task is 255 * preempted or sleeping. Those two things have to be counted 256 * separately, since one of the vcpu tasks will take on the job 257 * of running the core, and the other vcpu tasks in the vcore will 258 * sleep waiting for it to do that, but that sleep shouldn't count 259 * as stolen time. 260 * 261 * Hence we accumulate stolen time when the vcpu can run as part of 262 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 263 * needs its task to do other things in the kernel (for example, 264 * service a page fault) in busy_stolen. We don't accumulate 265 * stolen time for a vcore when it is inactive, or for a vcpu 266 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 267 * a misnomer; it means that the vcpu task is not executing in 268 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 269 * the kernel. We don't have any way of dividing up that time 270 * between time that the vcpu is genuinely stopped, time that 271 * the task is actively working on behalf of the vcpu, and time 272 * that the task is preempted, so we don't count any of it as 273 * stolen. 274 * 275 * Updates to busy_stolen are protected by arch.tbacct_lock; 276 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 277 * lock. The stolen times are measured in units of timebase ticks. 278 * (Note that the != TB_NIL checks below are purely defensive; 279 * they should never fail.) 280 */ 281 282 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 283 { 284 unsigned long flags; 285 286 spin_lock_irqsave(&vc->stoltb_lock, flags); 287 vc->preempt_tb = mftb(); 288 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 289 } 290 291 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 292 { 293 unsigned long flags; 294 295 spin_lock_irqsave(&vc->stoltb_lock, flags); 296 if (vc->preempt_tb != TB_NIL) { 297 vc->stolen_tb += mftb() - vc->preempt_tb; 298 vc->preempt_tb = TB_NIL; 299 } 300 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 301 } 302 303 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 304 { 305 struct kvmppc_vcore *vc = vcpu->arch.vcore; 306 unsigned long flags; 307 308 /* 309 * We can test vc->runner without taking the vcore lock, 310 * because only this task ever sets vc->runner to this 311 * vcpu, and once it is set to this vcpu, only this task 312 * ever sets it to NULL. 313 */ 314 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 315 kvmppc_core_end_stolen(vc); 316 317 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 318 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 319 vcpu->arch.busy_preempt != TB_NIL) { 320 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 321 vcpu->arch.busy_preempt = TB_NIL; 322 } 323 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 324 } 325 326 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 327 { 328 struct kvmppc_vcore *vc = vcpu->arch.vcore; 329 unsigned long flags; 330 331 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 332 kvmppc_core_start_stolen(vc); 333 334 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 335 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 336 vcpu->arch.busy_preempt = mftb(); 337 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 338 } 339 340 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 341 { 342 vcpu->arch.pvr = pvr; 343 } 344 345 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 346 { 347 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 348 struct kvmppc_vcore *vc = vcpu->arch.vcore; 349 350 /* We can (emulate) our own architecture version and anything older */ 351 if (cpu_has_feature(CPU_FTR_ARCH_300)) 352 host_pcr_bit = PCR_ARCH_300; 353 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 354 host_pcr_bit = PCR_ARCH_207; 355 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 356 host_pcr_bit = PCR_ARCH_206; 357 else 358 host_pcr_bit = PCR_ARCH_205; 359 360 /* Determine lowest PCR bit needed to run guest in given PVR level */ 361 guest_pcr_bit = host_pcr_bit; 362 if (arch_compat) { 363 switch (arch_compat) { 364 case PVR_ARCH_205: 365 guest_pcr_bit = PCR_ARCH_205; 366 break; 367 case PVR_ARCH_206: 368 case PVR_ARCH_206p: 369 guest_pcr_bit = PCR_ARCH_206; 370 break; 371 case PVR_ARCH_207: 372 guest_pcr_bit = PCR_ARCH_207; 373 break; 374 case PVR_ARCH_300: 375 guest_pcr_bit = PCR_ARCH_300; 376 break; 377 default: 378 return -EINVAL; 379 } 380 } 381 382 /* Check requested PCR bits don't exceed our capabilities */ 383 if (guest_pcr_bit > host_pcr_bit) 384 return -EINVAL; 385 386 spin_lock(&vc->lock); 387 vc->arch_compat = arch_compat; 388 /* 389 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 390 * Also set all reserved PCR bits 391 */ 392 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 393 spin_unlock(&vc->lock); 394 395 return 0; 396 } 397 398 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 399 { 400 int r; 401 402 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 403 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 404 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 405 for (r = 0; r < 16; ++r) 406 pr_err("r%2d = %.16lx r%d = %.16lx\n", 407 r, kvmppc_get_gpr(vcpu, r), 408 r+16, kvmppc_get_gpr(vcpu, r+16)); 409 pr_err("ctr = %.16lx lr = %.16lx\n", 410 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 411 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 412 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 413 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 414 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 415 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 416 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 417 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 418 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 419 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 420 pr_err("fault dar = %.16lx dsisr = %.8x\n", 421 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 422 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 423 for (r = 0; r < vcpu->arch.slb_max; ++r) 424 pr_err(" ESID = %.16llx VSID = %.16llx\n", 425 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 426 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 427 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 428 vcpu->arch.last_inst); 429 } 430 431 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 432 { 433 return kvm_get_vcpu_by_id(kvm, id); 434 } 435 436 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 437 { 438 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 439 vpa->yield_count = cpu_to_be32(1); 440 } 441 442 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 443 unsigned long addr, unsigned long len) 444 { 445 /* check address is cacheline aligned */ 446 if (addr & (L1_CACHE_BYTES - 1)) 447 return -EINVAL; 448 spin_lock(&vcpu->arch.vpa_update_lock); 449 if (v->next_gpa != addr || v->len != len) { 450 v->next_gpa = addr; 451 v->len = addr ? len : 0; 452 v->update_pending = 1; 453 } 454 spin_unlock(&vcpu->arch.vpa_update_lock); 455 return 0; 456 } 457 458 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 459 struct reg_vpa { 460 u32 dummy; 461 union { 462 __be16 hword; 463 __be32 word; 464 } length; 465 }; 466 467 static int vpa_is_registered(struct kvmppc_vpa *vpap) 468 { 469 if (vpap->update_pending) 470 return vpap->next_gpa != 0; 471 return vpap->pinned_addr != NULL; 472 } 473 474 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 475 unsigned long flags, 476 unsigned long vcpuid, unsigned long vpa) 477 { 478 struct kvm *kvm = vcpu->kvm; 479 unsigned long len, nb; 480 void *va; 481 struct kvm_vcpu *tvcpu; 482 int err; 483 int subfunc; 484 struct kvmppc_vpa *vpap; 485 486 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 487 if (!tvcpu) 488 return H_PARAMETER; 489 490 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 491 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 492 subfunc == H_VPA_REG_SLB) { 493 /* Registering new area - address must be cache-line aligned */ 494 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 495 return H_PARAMETER; 496 497 /* convert logical addr to kernel addr and read length */ 498 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 499 if (va == NULL) 500 return H_PARAMETER; 501 if (subfunc == H_VPA_REG_VPA) 502 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 503 else 504 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 505 kvmppc_unpin_guest_page(kvm, va, vpa, false); 506 507 /* Check length */ 508 if (len > nb || len < sizeof(struct reg_vpa)) 509 return H_PARAMETER; 510 } else { 511 vpa = 0; 512 len = 0; 513 } 514 515 err = H_PARAMETER; 516 vpap = NULL; 517 spin_lock(&tvcpu->arch.vpa_update_lock); 518 519 switch (subfunc) { 520 case H_VPA_REG_VPA: /* register VPA */ 521 /* 522 * The size of our lppaca is 1kB because of the way we align 523 * it for the guest to avoid crossing a 4kB boundary. We only 524 * use 640 bytes of the structure though, so we should accept 525 * clients that set a size of 640. 526 */ 527 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 528 if (len < sizeof(struct lppaca)) 529 break; 530 vpap = &tvcpu->arch.vpa; 531 err = 0; 532 break; 533 534 case H_VPA_REG_DTL: /* register DTL */ 535 if (len < sizeof(struct dtl_entry)) 536 break; 537 len -= len % sizeof(struct dtl_entry); 538 539 /* Check that they have previously registered a VPA */ 540 err = H_RESOURCE; 541 if (!vpa_is_registered(&tvcpu->arch.vpa)) 542 break; 543 544 vpap = &tvcpu->arch.dtl; 545 err = 0; 546 break; 547 548 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 549 /* Check that they have previously registered a VPA */ 550 err = H_RESOURCE; 551 if (!vpa_is_registered(&tvcpu->arch.vpa)) 552 break; 553 554 vpap = &tvcpu->arch.slb_shadow; 555 err = 0; 556 break; 557 558 case H_VPA_DEREG_VPA: /* deregister VPA */ 559 /* Check they don't still have a DTL or SLB buf registered */ 560 err = H_RESOURCE; 561 if (vpa_is_registered(&tvcpu->arch.dtl) || 562 vpa_is_registered(&tvcpu->arch.slb_shadow)) 563 break; 564 565 vpap = &tvcpu->arch.vpa; 566 err = 0; 567 break; 568 569 case H_VPA_DEREG_DTL: /* deregister DTL */ 570 vpap = &tvcpu->arch.dtl; 571 err = 0; 572 break; 573 574 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 575 vpap = &tvcpu->arch.slb_shadow; 576 err = 0; 577 break; 578 } 579 580 if (vpap) { 581 vpap->next_gpa = vpa; 582 vpap->len = len; 583 vpap->update_pending = 1; 584 } 585 586 spin_unlock(&tvcpu->arch.vpa_update_lock); 587 588 return err; 589 } 590 591 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 592 { 593 struct kvm *kvm = vcpu->kvm; 594 void *va; 595 unsigned long nb; 596 unsigned long gpa; 597 598 /* 599 * We need to pin the page pointed to by vpap->next_gpa, 600 * but we can't call kvmppc_pin_guest_page under the lock 601 * as it does get_user_pages() and down_read(). So we 602 * have to drop the lock, pin the page, then get the lock 603 * again and check that a new area didn't get registered 604 * in the meantime. 605 */ 606 for (;;) { 607 gpa = vpap->next_gpa; 608 spin_unlock(&vcpu->arch.vpa_update_lock); 609 va = NULL; 610 nb = 0; 611 if (gpa) 612 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 613 spin_lock(&vcpu->arch.vpa_update_lock); 614 if (gpa == vpap->next_gpa) 615 break; 616 /* sigh... unpin that one and try again */ 617 if (va) 618 kvmppc_unpin_guest_page(kvm, va, gpa, false); 619 } 620 621 vpap->update_pending = 0; 622 if (va && nb < vpap->len) { 623 /* 624 * If it's now too short, it must be that userspace 625 * has changed the mappings underlying guest memory, 626 * so unregister the region. 627 */ 628 kvmppc_unpin_guest_page(kvm, va, gpa, false); 629 va = NULL; 630 } 631 if (vpap->pinned_addr) 632 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 633 vpap->dirty); 634 vpap->gpa = gpa; 635 vpap->pinned_addr = va; 636 vpap->dirty = false; 637 if (va) 638 vpap->pinned_end = va + vpap->len; 639 } 640 641 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 642 { 643 if (!(vcpu->arch.vpa.update_pending || 644 vcpu->arch.slb_shadow.update_pending || 645 vcpu->arch.dtl.update_pending)) 646 return; 647 648 spin_lock(&vcpu->arch.vpa_update_lock); 649 if (vcpu->arch.vpa.update_pending) { 650 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 651 if (vcpu->arch.vpa.pinned_addr) 652 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 653 } 654 if (vcpu->arch.dtl.update_pending) { 655 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 656 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 657 vcpu->arch.dtl_index = 0; 658 } 659 if (vcpu->arch.slb_shadow.update_pending) 660 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 661 spin_unlock(&vcpu->arch.vpa_update_lock); 662 } 663 664 /* 665 * Return the accumulated stolen time for the vcore up until `now'. 666 * The caller should hold the vcore lock. 667 */ 668 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 669 { 670 u64 p; 671 unsigned long flags; 672 673 spin_lock_irqsave(&vc->stoltb_lock, flags); 674 p = vc->stolen_tb; 675 if (vc->vcore_state != VCORE_INACTIVE && 676 vc->preempt_tb != TB_NIL) 677 p += now - vc->preempt_tb; 678 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 679 return p; 680 } 681 682 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 683 struct kvmppc_vcore *vc) 684 { 685 struct dtl_entry *dt; 686 struct lppaca *vpa; 687 unsigned long stolen; 688 unsigned long core_stolen; 689 u64 now; 690 unsigned long flags; 691 692 dt = vcpu->arch.dtl_ptr; 693 vpa = vcpu->arch.vpa.pinned_addr; 694 now = mftb(); 695 core_stolen = vcore_stolen_time(vc, now); 696 stolen = core_stolen - vcpu->arch.stolen_logged; 697 vcpu->arch.stolen_logged = core_stolen; 698 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 699 stolen += vcpu->arch.busy_stolen; 700 vcpu->arch.busy_stolen = 0; 701 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 702 if (!dt || !vpa) 703 return; 704 memset(dt, 0, sizeof(struct dtl_entry)); 705 dt->dispatch_reason = 7; 706 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 707 dt->timebase = cpu_to_be64(now + vc->tb_offset); 708 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 709 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 710 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 711 ++dt; 712 if (dt == vcpu->arch.dtl.pinned_end) 713 dt = vcpu->arch.dtl.pinned_addr; 714 vcpu->arch.dtl_ptr = dt; 715 /* order writing *dt vs. writing vpa->dtl_idx */ 716 smp_wmb(); 717 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 718 vcpu->arch.dtl.dirty = true; 719 } 720 721 /* See if there is a doorbell interrupt pending for a vcpu */ 722 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 723 { 724 int thr; 725 struct kvmppc_vcore *vc; 726 727 if (vcpu->arch.doorbell_request) 728 return true; 729 /* 730 * Ensure that the read of vcore->dpdes comes after the read 731 * of vcpu->doorbell_request. This barrier matches the 732 * smp_wmb() in kvmppc_guest_entry_inject(). 733 */ 734 smp_rmb(); 735 vc = vcpu->arch.vcore; 736 thr = vcpu->vcpu_id - vc->first_vcpuid; 737 return !!(vc->dpdes & (1 << thr)); 738 } 739 740 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 741 { 742 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 743 return true; 744 if ((!vcpu->arch.vcore->arch_compat) && 745 cpu_has_feature(CPU_FTR_ARCH_207S)) 746 return true; 747 return false; 748 } 749 750 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 751 unsigned long resource, unsigned long value1, 752 unsigned long value2) 753 { 754 switch (resource) { 755 case H_SET_MODE_RESOURCE_SET_CIABR: 756 if (!kvmppc_power8_compatible(vcpu)) 757 return H_P2; 758 if (value2) 759 return H_P4; 760 if (mflags) 761 return H_UNSUPPORTED_FLAG_START; 762 /* Guests can't breakpoint the hypervisor */ 763 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 764 return H_P3; 765 vcpu->arch.ciabr = value1; 766 return H_SUCCESS; 767 case H_SET_MODE_RESOURCE_SET_DAWR: 768 if (!kvmppc_power8_compatible(vcpu)) 769 return H_P2; 770 if (!ppc_breakpoint_available()) 771 return H_P2; 772 if (mflags) 773 return H_UNSUPPORTED_FLAG_START; 774 if (value2 & DABRX_HYP) 775 return H_P4; 776 vcpu->arch.dawr = value1; 777 vcpu->arch.dawrx = value2; 778 return H_SUCCESS; 779 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 780 /* KVM does not support mflags=2 (AIL=2) */ 781 if (mflags != 0 && mflags != 3) 782 return H_UNSUPPORTED_FLAG_START; 783 return H_TOO_HARD; 784 default: 785 return H_TOO_HARD; 786 } 787 } 788 789 /* Copy guest memory in place - must reside within a single memslot */ 790 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 791 unsigned long len) 792 { 793 struct kvm_memory_slot *to_memslot = NULL; 794 struct kvm_memory_slot *from_memslot = NULL; 795 unsigned long to_addr, from_addr; 796 int r; 797 798 /* Get HPA for from address */ 799 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 800 if (!from_memslot) 801 return -EFAULT; 802 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 803 << PAGE_SHIFT)) 804 return -EINVAL; 805 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 806 if (kvm_is_error_hva(from_addr)) 807 return -EFAULT; 808 from_addr |= (from & (PAGE_SIZE - 1)); 809 810 /* Get HPA for to address */ 811 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 812 if (!to_memslot) 813 return -EFAULT; 814 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 815 << PAGE_SHIFT)) 816 return -EINVAL; 817 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 818 if (kvm_is_error_hva(to_addr)) 819 return -EFAULT; 820 to_addr |= (to & (PAGE_SIZE - 1)); 821 822 /* Perform copy */ 823 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 824 len); 825 if (r) 826 return -EFAULT; 827 mark_page_dirty(kvm, to >> PAGE_SHIFT); 828 return 0; 829 } 830 831 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 832 unsigned long dest, unsigned long src) 833 { 834 u64 pg_sz = SZ_4K; /* 4K page size */ 835 u64 pg_mask = SZ_4K - 1; 836 int ret; 837 838 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 839 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 840 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 841 return H_PARAMETER; 842 843 /* dest (and src if copy_page flag set) must be page aligned */ 844 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 845 return H_PARAMETER; 846 847 /* zero and/or copy the page as determined by the flags */ 848 if (flags & H_COPY_PAGE) { 849 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 850 if (ret < 0) 851 return H_PARAMETER; 852 } else if (flags & H_ZERO_PAGE) { 853 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 854 if (ret < 0) 855 return H_PARAMETER; 856 } 857 858 /* We can ignore the remaining flags */ 859 860 return H_SUCCESS; 861 } 862 863 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 864 { 865 struct kvmppc_vcore *vcore = target->arch.vcore; 866 867 /* 868 * We expect to have been called by the real mode handler 869 * (kvmppc_rm_h_confer()) which would have directly returned 870 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 871 * have useful work to do and should not confer) so we don't 872 * recheck that here. 873 */ 874 875 spin_lock(&vcore->lock); 876 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 877 vcore->vcore_state != VCORE_INACTIVE && 878 vcore->runner) 879 target = vcore->runner; 880 spin_unlock(&vcore->lock); 881 882 return kvm_vcpu_yield_to(target); 883 } 884 885 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 886 { 887 int yield_count = 0; 888 struct lppaca *lppaca; 889 890 spin_lock(&vcpu->arch.vpa_update_lock); 891 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 892 if (lppaca) 893 yield_count = be32_to_cpu(lppaca->yield_count); 894 spin_unlock(&vcpu->arch.vpa_update_lock); 895 return yield_count; 896 } 897 898 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 899 { 900 unsigned long req = kvmppc_get_gpr(vcpu, 3); 901 unsigned long target, ret = H_SUCCESS; 902 int yield_count; 903 struct kvm_vcpu *tvcpu; 904 int idx, rc; 905 906 if (req <= MAX_HCALL_OPCODE && 907 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 908 return RESUME_HOST; 909 910 switch (req) { 911 case H_CEDE: 912 break; 913 case H_PROD: 914 target = kvmppc_get_gpr(vcpu, 4); 915 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 916 if (!tvcpu) { 917 ret = H_PARAMETER; 918 break; 919 } 920 tvcpu->arch.prodded = 1; 921 smp_mb(); 922 if (tvcpu->arch.ceded) 923 kvmppc_fast_vcpu_kick_hv(tvcpu); 924 break; 925 case H_CONFER: 926 target = kvmppc_get_gpr(vcpu, 4); 927 if (target == -1) 928 break; 929 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 930 if (!tvcpu) { 931 ret = H_PARAMETER; 932 break; 933 } 934 yield_count = kvmppc_get_gpr(vcpu, 5); 935 if (kvmppc_get_yield_count(tvcpu) != yield_count) 936 break; 937 kvm_arch_vcpu_yield_to(tvcpu); 938 break; 939 case H_REGISTER_VPA: 940 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 941 kvmppc_get_gpr(vcpu, 5), 942 kvmppc_get_gpr(vcpu, 6)); 943 break; 944 case H_RTAS: 945 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 946 return RESUME_HOST; 947 948 idx = srcu_read_lock(&vcpu->kvm->srcu); 949 rc = kvmppc_rtas_hcall(vcpu); 950 srcu_read_unlock(&vcpu->kvm->srcu, idx); 951 952 if (rc == -ENOENT) 953 return RESUME_HOST; 954 else if (rc == 0) 955 break; 956 957 /* Send the error out to userspace via KVM_RUN */ 958 return rc; 959 case H_LOGICAL_CI_LOAD: 960 ret = kvmppc_h_logical_ci_load(vcpu); 961 if (ret == H_TOO_HARD) 962 return RESUME_HOST; 963 break; 964 case H_LOGICAL_CI_STORE: 965 ret = kvmppc_h_logical_ci_store(vcpu); 966 if (ret == H_TOO_HARD) 967 return RESUME_HOST; 968 break; 969 case H_SET_MODE: 970 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 971 kvmppc_get_gpr(vcpu, 5), 972 kvmppc_get_gpr(vcpu, 6), 973 kvmppc_get_gpr(vcpu, 7)); 974 if (ret == H_TOO_HARD) 975 return RESUME_HOST; 976 break; 977 case H_XIRR: 978 case H_CPPR: 979 case H_EOI: 980 case H_IPI: 981 case H_IPOLL: 982 case H_XIRR_X: 983 if (kvmppc_xics_enabled(vcpu)) { 984 if (xics_on_xive()) { 985 ret = H_NOT_AVAILABLE; 986 return RESUME_GUEST; 987 } 988 ret = kvmppc_xics_hcall(vcpu, req); 989 break; 990 } 991 return RESUME_HOST; 992 case H_SET_DABR: 993 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 994 break; 995 case H_SET_XDABR: 996 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 997 kvmppc_get_gpr(vcpu, 5)); 998 break; 999 #ifdef CONFIG_SPAPR_TCE_IOMMU 1000 case H_GET_TCE: 1001 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1002 kvmppc_get_gpr(vcpu, 5)); 1003 if (ret == H_TOO_HARD) 1004 return RESUME_HOST; 1005 break; 1006 case H_PUT_TCE: 1007 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1008 kvmppc_get_gpr(vcpu, 5), 1009 kvmppc_get_gpr(vcpu, 6)); 1010 if (ret == H_TOO_HARD) 1011 return RESUME_HOST; 1012 break; 1013 case H_PUT_TCE_INDIRECT: 1014 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1015 kvmppc_get_gpr(vcpu, 5), 1016 kvmppc_get_gpr(vcpu, 6), 1017 kvmppc_get_gpr(vcpu, 7)); 1018 if (ret == H_TOO_HARD) 1019 return RESUME_HOST; 1020 break; 1021 case H_STUFF_TCE: 1022 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1023 kvmppc_get_gpr(vcpu, 5), 1024 kvmppc_get_gpr(vcpu, 6), 1025 kvmppc_get_gpr(vcpu, 7)); 1026 if (ret == H_TOO_HARD) 1027 return RESUME_HOST; 1028 break; 1029 #endif 1030 case H_RANDOM: 1031 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4])) 1032 ret = H_HARDWARE; 1033 break; 1034 1035 case H_SET_PARTITION_TABLE: 1036 ret = H_FUNCTION; 1037 if (nesting_enabled(vcpu->kvm)) 1038 ret = kvmhv_set_partition_table(vcpu); 1039 break; 1040 case H_ENTER_NESTED: 1041 ret = H_FUNCTION; 1042 if (!nesting_enabled(vcpu->kvm)) 1043 break; 1044 ret = kvmhv_enter_nested_guest(vcpu); 1045 if (ret == H_INTERRUPT) { 1046 kvmppc_set_gpr(vcpu, 3, 0); 1047 vcpu->arch.hcall_needed = 0; 1048 return -EINTR; 1049 } else if (ret == H_TOO_HARD) { 1050 kvmppc_set_gpr(vcpu, 3, 0); 1051 vcpu->arch.hcall_needed = 0; 1052 return RESUME_HOST; 1053 } 1054 break; 1055 case H_TLB_INVALIDATE: 1056 ret = H_FUNCTION; 1057 if (nesting_enabled(vcpu->kvm)) 1058 ret = kvmhv_do_nested_tlbie(vcpu); 1059 break; 1060 case H_COPY_TOFROM_GUEST: 1061 ret = H_FUNCTION; 1062 if (nesting_enabled(vcpu->kvm)) 1063 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1064 break; 1065 case H_PAGE_INIT: 1066 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1067 kvmppc_get_gpr(vcpu, 5), 1068 kvmppc_get_gpr(vcpu, 6)); 1069 break; 1070 case H_SVM_PAGE_IN: 1071 ret = H_UNSUPPORTED; 1072 if (kvmppc_get_srr1(vcpu) & MSR_S) 1073 ret = kvmppc_h_svm_page_in(vcpu->kvm, 1074 kvmppc_get_gpr(vcpu, 4), 1075 kvmppc_get_gpr(vcpu, 5), 1076 kvmppc_get_gpr(vcpu, 6)); 1077 break; 1078 case H_SVM_PAGE_OUT: 1079 ret = H_UNSUPPORTED; 1080 if (kvmppc_get_srr1(vcpu) & MSR_S) 1081 ret = kvmppc_h_svm_page_out(vcpu->kvm, 1082 kvmppc_get_gpr(vcpu, 4), 1083 kvmppc_get_gpr(vcpu, 5), 1084 kvmppc_get_gpr(vcpu, 6)); 1085 break; 1086 case H_SVM_INIT_START: 1087 ret = H_UNSUPPORTED; 1088 if (kvmppc_get_srr1(vcpu) & MSR_S) 1089 ret = kvmppc_h_svm_init_start(vcpu->kvm); 1090 break; 1091 case H_SVM_INIT_DONE: 1092 ret = H_UNSUPPORTED; 1093 if (kvmppc_get_srr1(vcpu) & MSR_S) 1094 ret = kvmppc_h_svm_init_done(vcpu->kvm); 1095 break; 1096 case H_SVM_INIT_ABORT: 1097 ret = H_UNSUPPORTED; 1098 if (kvmppc_get_srr1(vcpu) & MSR_S) 1099 ret = kvmppc_h_svm_init_abort(vcpu->kvm); 1100 break; 1101 1102 default: 1103 return RESUME_HOST; 1104 } 1105 kvmppc_set_gpr(vcpu, 3, ret); 1106 vcpu->arch.hcall_needed = 0; 1107 return RESUME_GUEST; 1108 } 1109 1110 /* 1111 * Handle H_CEDE in the nested virtualization case where we haven't 1112 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S. 1113 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1114 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1115 */ 1116 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu) 1117 { 1118 vcpu->arch.shregs.msr |= MSR_EE; 1119 vcpu->arch.ceded = 1; 1120 smp_mb(); 1121 if (vcpu->arch.prodded) { 1122 vcpu->arch.prodded = 0; 1123 smp_mb(); 1124 vcpu->arch.ceded = 0; 1125 } 1126 } 1127 1128 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1129 { 1130 switch (cmd) { 1131 case H_CEDE: 1132 case H_PROD: 1133 case H_CONFER: 1134 case H_REGISTER_VPA: 1135 case H_SET_MODE: 1136 case H_LOGICAL_CI_LOAD: 1137 case H_LOGICAL_CI_STORE: 1138 #ifdef CONFIG_KVM_XICS 1139 case H_XIRR: 1140 case H_CPPR: 1141 case H_EOI: 1142 case H_IPI: 1143 case H_IPOLL: 1144 case H_XIRR_X: 1145 #endif 1146 case H_PAGE_INIT: 1147 return 1; 1148 } 1149 1150 /* See if it's in the real-mode table */ 1151 return kvmppc_hcall_impl_hv_realmode(cmd); 1152 } 1153 1154 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 1155 struct kvm_vcpu *vcpu) 1156 { 1157 u32 last_inst; 1158 1159 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1160 EMULATE_DONE) { 1161 /* 1162 * Fetch failed, so return to guest and 1163 * try executing it again. 1164 */ 1165 return RESUME_GUEST; 1166 } 1167 1168 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1169 run->exit_reason = KVM_EXIT_DEBUG; 1170 run->debug.arch.address = kvmppc_get_pc(vcpu); 1171 return RESUME_HOST; 1172 } else { 1173 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1174 return RESUME_GUEST; 1175 } 1176 } 1177 1178 static void do_nothing(void *x) 1179 { 1180 } 1181 1182 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1183 { 1184 int thr, cpu, pcpu, nthreads; 1185 struct kvm_vcpu *v; 1186 unsigned long dpdes; 1187 1188 nthreads = vcpu->kvm->arch.emul_smt_mode; 1189 dpdes = 0; 1190 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1191 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1192 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1193 if (!v) 1194 continue; 1195 /* 1196 * If the vcpu is currently running on a physical cpu thread, 1197 * interrupt it in order to pull it out of the guest briefly, 1198 * which will update its vcore->dpdes value. 1199 */ 1200 pcpu = READ_ONCE(v->cpu); 1201 if (pcpu >= 0) 1202 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1203 if (kvmppc_doorbell_pending(v)) 1204 dpdes |= 1 << thr; 1205 } 1206 return dpdes; 1207 } 1208 1209 /* 1210 * On POWER9, emulate doorbell-related instructions in order to 1211 * give the guest the illusion of running on a multi-threaded core. 1212 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1213 * and mfspr DPDES. 1214 */ 1215 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1216 { 1217 u32 inst, rb, thr; 1218 unsigned long arg; 1219 struct kvm *kvm = vcpu->kvm; 1220 struct kvm_vcpu *tvcpu; 1221 1222 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1223 return RESUME_GUEST; 1224 if (get_op(inst) != 31) 1225 return EMULATE_FAIL; 1226 rb = get_rb(inst); 1227 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1228 switch (get_xop(inst)) { 1229 case OP_31_XOP_MSGSNDP: 1230 arg = kvmppc_get_gpr(vcpu, rb); 1231 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1232 break; 1233 arg &= 0x3f; 1234 if (arg >= kvm->arch.emul_smt_mode) 1235 break; 1236 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1237 if (!tvcpu) 1238 break; 1239 if (!tvcpu->arch.doorbell_request) { 1240 tvcpu->arch.doorbell_request = 1; 1241 kvmppc_fast_vcpu_kick_hv(tvcpu); 1242 } 1243 break; 1244 case OP_31_XOP_MSGCLRP: 1245 arg = kvmppc_get_gpr(vcpu, rb); 1246 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1247 break; 1248 vcpu->arch.vcore->dpdes = 0; 1249 vcpu->arch.doorbell_request = 0; 1250 break; 1251 case OP_31_XOP_MFSPR: 1252 switch (get_sprn(inst)) { 1253 case SPRN_TIR: 1254 arg = thr; 1255 break; 1256 case SPRN_DPDES: 1257 arg = kvmppc_read_dpdes(vcpu); 1258 break; 1259 default: 1260 return EMULATE_FAIL; 1261 } 1262 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1263 break; 1264 default: 1265 return EMULATE_FAIL; 1266 } 1267 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1268 return RESUME_GUEST; 1269 } 1270 1271 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 1272 struct task_struct *tsk) 1273 { 1274 int r = RESUME_HOST; 1275 1276 vcpu->stat.sum_exits++; 1277 1278 /* 1279 * This can happen if an interrupt occurs in the last stages 1280 * of guest entry or the first stages of guest exit (i.e. after 1281 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1282 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1283 * That can happen due to a bug, or due to a machine check 1284 * occurring at just the wrong time. 1285 */ 1286 if (vcpu->arch.shregs.msr & MSR_HV) { 1287 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1288 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1289 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1290 vcpu->arch.shregs.msr); 1291 kvmppc_dump_regs(vcpu); 1292 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1293 run->hw.hardware_exit_reason = vcpu->arch.trap; 1294 return RESUME_HOST; 1295 } 1296 run->exit_reason = KVM_EXIT_UNKNOWN; 1297 run->ready_for_interrupt_injection = 1; 1298 switch (vcpu->arch.trap) { 1299 /* We're good on these - the host merely wanted to get our attention */ 1300 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1301 vcpu->stat.dec_exits++; 1302 r = RESUME_GUEST; 1303 break; 1304 case BOOK3S_INTERRUPT_EXTERNAL: 1305 case BOOK3S_INTERRUPT_H_DOORBELL: 1306 case BOOK3S_INTERRUPT_H_VIRT: 1307 vcpu->stat.ext_intr_exits++; 1308 r = RESUME_GUEST; 1309 break; 1310 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1311 case BOOK3S_INTERRUPT_HMI: 1312 case BOOK3S_INTERRUPT_PERFMON: 1313 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1314 r = RESUME_GUEST; 1315 break; 1316 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1317 /* Print the MCE event to host console. */ 1318 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1319 1320 /* 1321 * If the guest can do FWNMI, exit to userspace so it can 1322 * deliver a FWNMI to the guest. 1323 * Otherwise we synthesize a machine check for the guest 1324 * so that it knows that the machine check occurred. 1325 */ 1326 if (!vcpu->kvm->arch.fwnmi_enabled) { 1327 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1328 kvmppc_core_queue_machine_check(vcpu, flags); 1329 r = RESUME_GUEST; 1330 break; 1331 } 1332 1333 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1334 run->exit_reason = KVM_EXIT_NMI; 1335 run->hw.hardware_exit_reason = vcpu->arch.trap; 1336 /* Clear out the old NMI status from run->flags */ 1337 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1338 /* Now set the NMI status */ 1339 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1340 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1341 else 1342 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1343 1344 r = RESUME_HOST; 1345 break; 1346 case BOOK3S_INTERRUPT_PROGRAM: 1347 { 1348 ulong flags; 1349 /* 1350 * Normally program interrupts are delivered directly 1351 * to the guest by the hardware, but we can get here 1352 * as a result of a hypervisor emulation interrupt 1353 * (e40) getting turned into a 700 by BML RTAS. 1354 */ 1355 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1356 kvmppc_core_queue_program(vcpu, flags); 1357 r = RESUME_GUEST; 1358 break; 1359 } 1360 case BOOK3S_INTERRUPT_SYSCALL: 1361 { 1362 /* hcall - punt to userspace */ 1363 int i; 1364 1365 /* hypercall with MSR_PR has already been handled in rmode, 1366 * and never reaches here. 1367 */ 1368 1369 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1370 for (i = 0; i < 9; ++i) 1371 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1372 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1373 vcpu->arch.hcall_needed = 1; 1374 r = RESUME_HOST; 1375 break; 1376 } 1377 /* 1378 * We get these next two if the guest accesses a page which it thinks 1379 * it has mapped but which is not actually present, either because 1380 * it is for an emulated I/O device or because the corresonding 1381 * host page has been paged out. Any other HDSI/HISI interrupts 1382 * have been handled already. 1383 */ 1384 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1385 r = RESUME_PAGE_FAULT; 1386 break; 1387 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1388 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1389 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1390 DSISR_SRR1_MATCH_64S; 1391 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1392 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1393 r = RESUME_PAGE_FAULT; 1394 break; 1395 /* 1396 * This occurs if the guest executes an illegal instruction. 1397 * If the guest debug is disabled, generate a program interrupt 1398 * to the guest. If guest debug is enabled, we need to check 1399 * whether the instruction is a software breakpoint instruction. 1400 * Accordingly return to Guest or Host. 1401 */ 1402 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1403 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1404 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1405 swab32(vcpu->arch.emul_inst) : 1406 vcpu->arch.emul_inst; 1407 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1408 r = kvmppc_emulate_debug_inst(run, vcpu); 1409 } else { 1410 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1411 r = RESUME_GUEST; 1412 } 1413 break; 1414 /* 1415 * This occurs if the guest (kernel or userspace), does something that 1416 * is prohibited by HFSCR. 1417 * On POWER9, this could be a doorbell instruction that we need 1418 * to emulate. 1419 * Otherwise, we just generate a program interrupt to the guest. 1420 */ 1421 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1422 r = EMULATE_FAIL; 1423 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1424 cpu_has_feature(CPU_FTR_ARCH_300)) 1425 r = kvmppc_emulate_doorbell_instr(vcpu); 1426 if (r == EMULATE_FAIL) { 1427 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1428 r = RESUME_GUEST; 1429 } 1430 break; 1431 1432 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1433 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1434 /* 1435 * This occurs for various TM-related instructions that 1436 * we need to emulate on POWER9 DD2.2. We have already 1437 * handled the cases where the guest was in real-suspend 1438 * mode and was transitioning to transactional state. 1439 */ 1440 r = kvmhv_p9_tm_emulation(vcpu); 1441 break; 1442 #endif 1443 1444 case BOOK3S_INTERRUPT_HV_RM_HARD: 1445 r = RESUME_PASSTHROUGH; 1446 break; 1447 default: 1448 kvmppc_dump_regs(vcpu); 1449 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1450 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1451 vcpu->arch.shregs.msr); 1452 run->hw.hardware_exit_reason = vcpu->arch.trap; 1453 r = RESUME_HOST; 1454 break; 1455 } 1456 1457 return r; 1458 } 1459 1460 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu) 1461 { 1462 int r; 1463 int srcu_idx; 1464 1465 vcpu->stat.sum_exits++; 1466 1467 /* 1468 * This can happen if an interrupt occurs in the last stages 1469 * of guest entry or the first stages of guest exit (i.e. after 1470 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1471 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1472 * That can happen due to a bug, or due to a machine check 1473 * occurring at just the wrong time. 1474 */ 1475 if (vcpu->arch.shregs.msr & MSR_HV) { 1476 pr_emerg("KVM trap in HV mode while nested!\n"); 1477 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1478 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1479 vcpu->arch.shregs.msr); 1480 kvmppc_dump_regs(vcpu); 1481 return RESUME_HOST; 1482 } 1483 switch (vcpu->arch.trap) { 1484 /* We're good on these - the host merely wanted to get our attention */ 1485 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1486 vcpu->stat.dec_exits++; 1487 r = RESUME_GUEST; 1488 break; 1489 case BOOK3S_INTERRUPT_EXTERNAL: 1490 vcpu->stat.ext_intr_exits++; 1491 r = RESUME_HOST; 1492 break; 1493 case BOOK3S_INTERRUPT_H_DOORBELL: 1494 case BOOK3S_INTERRUPT_H_VIRT: 1495 vcpu->stat.ext_intr_exits++; 1496 r = RESUME_GUEST; 1497 break; 1498 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1499 case BOOK3S_INTERRUPT_HMI: 1500 case BOOK3S_INTERRUPT_PERFMON: 1501 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1502 r = RESUME_GUEST; 1503 break; 1504 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1505 /* Pass the machine check to the L1 guest */ 1506 r = RESUME_HOST; 1507 /* Print the MCE event to host console. */ 1508 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1509 break; 1510 /* 1511 * We get these next two if the guest accesses a page which it thinks 1512 * it has mapped but which is not actually present, either because 1513 * it is for an emulated I/O device or because the corresonding 1514 * host page has been paged out. 1515 */ 1516 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1517 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1518 r = kvmhv_nested_page_fault(run, vcpu); 1519 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1520 break; 1521 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1522 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1523 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1524 DSISR_SRR1_MATCH_64S; 1525 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1526 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1527 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1528 r = kvmhv_nested_page_fault(run, vcpu); 1529 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1530 break; 1531 1532 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1533 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1534 /* 1535 * This occurs for various TM-related instructions that 1536 * we need to emulate on POWER9 DD2.2. We have already 1537 * handled the cases where the guest was in real-suspend 1538 * mode and was transitioning to transactional state. 1539 */ 1540 r = kvmhv_p9_tm_emulation(vcpu); 1541 break; 1542 #endif 1543 1544 case BOOK3S_INTERRUPT_HV_RM_HARD: 1545 vcpu->arch.trap = 0; 1546 r = RESUME_GUEST; 1547 if (!xics_on_xive()) 1548 kvmppc_xics_rm_complete(vcpu, 0); 1549 break; 1550 default: 1551 r = RESUME_HOST; 1552 break; 1553 } 1554 1555 return r; 1556 } 1557 1558 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1559 struct kvm_sregs *sregs) 1560 { 1561 int i; 1562 1563 memset(sregs, 0, sizeof(struct kvm_sregs)); 1564 sregs->pvr = vcpu->arch.pvr; 1565 for (i = 0; i < vcpu->arch.slb_max; i++) { 1566 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1567 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1568 } 1569 1570 return 0; 1571 } 1572 1573 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1574 struct kvm_sregs *sregs) 1575 { 1576 int i, j; 1577 1578 /* Only accept the same PVR as the host's, since we can't spoof it */ 1579 if (sregs->pvr != vcpu->arch.pvr) 1580 return -EINVAL; 1581 1582 j = 0; 1583 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1584 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1585 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1586 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1587 ++j; 1588 } 1589 } 1590 vcpu->arch.slb_max = j; 1591 1592 return 0; 1593 } 1594 1595 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1596 bool preserve_top32) 1597 { 1598 struct kvm *kvm = vcpu->kvm; 1599 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1600 u64 mask; 1601 1602 spin_lock(&vc->lock); 1603 /* 1604 * If ILE (interrupt little-endian) has changed, update the 1605 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1606 */ 1607 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1608 struct kvm_vcpu *vcpu; 1609 int i; 1610 1611 kvm_for_each_vcpu(i, vcpu, kvm) { 1612 if (vcpu->arch.vcore != vc) 1613 continue; 1614 if (new_lpcr & LPCR_ILE) 1615 vcpu->arch.intr_msr |= MSR_LE; 1616 else 1617 vcpu->arch.intr_msr &= ~MSR_LE; 1618 } 1619 } 1620 1621 /* 1622 * Userspace can only modify DPFD (default prefetch depth), 1623 * ILE (interrupt little-endian) and TC (translation control). 1624 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1625 */ 1626 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1627 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1628 mask |= LPCR_AIL; 1629 /* 1630 * On POWER9, allow userspace to enable large decrementer for the 1631 * guest, whether or not the host has it enabled. 1632 */ 1633 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1634 mask |= LPCR_LD; 1635 1636 /* Broken 32-bit version of LPCR must not clear top bits */ 1637 if (preserve_top32) 1638 mask &= 0xFFFFFFFF; 1639 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1640 spin_unlock(&vc->lock); 1641 } 1642 1643 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1644 union kvmppc_one_reg *val) 1645 { 1646 int r = 0; 1647 long int i; 1648 1649 switch (id) { 1650 case KVM_REG_PPC_DEBUG_INST: 1651 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1652 break; 1653 case KVM_REG_PPC_HIOR: 1654 *val = get_reg_val(id, 0); 1655 break; 1656 case KVM_REG_PPC_DABR: 1657 *val = get_reg_val(id, vcpu->arch.dabr); 1658 break; 1659 case KVM_REG_PPC_DABRX: 1660 *val = get_reg_val(id, vcpu->arch.dabrx); 1661 break; 1662 case KVM_REG_PPC_DSCR: 1663 *val = get_reg_val(id, vcpu->arch.dscr); 1664 break; 1665 case KVM_REG_PPC_PURR: 1666 *val = get_reg_val(id, vcpu->arch.purr); 1667 break; 1668 case KVM_REG_PPC_SPURR: 1669 *val = get_reg_val(id, vcpu->arch.spurr); 1670 break; 1671 case KVM_REG_PPC_AMR: 1672 *val = get_reg_val(id, vcpu->arch.amr); 1673 break; 1674 case KVM_REG_PPC_UAMOR: 1675 *val = get_reg_val(id, vcpu->arch.uamor); 1676 break; 1677 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1678 i = id - KVM_REG_PPC_MMCR0; 1679 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1680 break; 1681 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1682 i = id - KVM_REG_PPC_PMC1; 1683 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1684 break; 1685 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1686 i = id - KVM_REG_PPC_SPMC1; 1687 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1688 break; 1689 case KVM_REG_PPC_SIAR: 1690 *val = get_reg_val(id, vcpu->arch.siar); 1691 break; 1692 case KVM_REG_PPC_SDAR: 1693 *val = get_reg_val(id, vcpu->arch.sdar); 1694 break; 1695 case KVM_REG_PPC_SIER: 1696 *val = get_reg_val(id, vcpu->arch.sier); 1697 break; 1698 case KVM_REG_PPC_IAMR: 1699 *val = get_reg_val(id, vcpu->arch.iamr); 1700 break; 1701 case KVM_REG_PPC_PSPB: 1702 *val = get_reg_val(id, vcpu->arch.pspb); 1703 break; 1704 case KVM_REG_PPC_DPDES: 1705 /* 1706 * On POWER9, where we are emulating msgsndp etc., 1707 * we return 1 bit for each vcpu, which can come from 1708 * either vcore->dpdes or doorbell_request. 1709 * On POWER8, doorbell_request is 0. 1710 */ 1711 *val = get_reg_val(id, vcpu->arch.vcore->dpdes | 1712 vcpu->arch.doorbell_request); 1713 break; 1714 case KVM_REG_PPC_VTB: 1715 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1716 break; 1717 case KVM_REG_PPC_DAWR: 1718 *val = get_reg_val(id, vcpu->arch.dawr); 1719 break; 1720 case KVM_REG_PPC_DAWRX: 1721 *val = get_reg_val(id, vcpu->arch.dawrx); 1722 break; 1723 case KVM_REG_PPC_CIABR: 1724 *val = get_reg_val(id, vcpu->arch.ciabr); 1725 break; 1726 case KVM_REG_PPC_CSIGR: 1727 *val = get_reg_val(id, vcpu->arch.csigr); 1728 break; 1729 case KVM_REG_PPC_TACR: 1730 *val = get_reg_val(id, vcpu->arch.tacr); 1731 break; 1732 case KVM_REG_PPC_TCSCR: 1733 *val = get_reg_val(id, vcpu->arch.tcscr); 1734 break; 1735 case KVM_REG_PPC_PID: 1736 *val = get_reg_val(id, vcpu->arch.pid); 1737 break; 1738 case KVM_REG_PPC_ACOP: 1739 *val = get_reg_val(id, vcpu->arch.acop); 1740 break; 1741 case KVM_REG_PPC_WORT: 1742 *val = get_reg_val(id, vcpu->arch.wort); 1743 break; 1744 case KVM_REG_PPC_TIDR: 1745 *val = get_reg_val(id, vcpu->arch.tid); 1746 break; 1747 case KVM_REG_PPC_PSSCR: 1748 *val = get_reg_val(id, vcpu->arch.psscr); 1749 break; 1750 case KVM_REG_PPC_VPA_ADDR: 1751 spin_lock(&vcpu->arch.vpa_update_lock); 1752 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1753 spin_unlock(&vcpu->arch.vpa_update_lock); 1754 break; 1755 case KVM_REG_PPC_VPA_SLB: 1756 spin_lock(&vcpu->arch.vpa_update_lock); 1757 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1758 val->vpaval.length = vcpu->arch.slb_shadow.len; 1759 spin_unlock(&vcpu->arch.vpa_update_lock); 1760 break; 1761 case KVM_REG_PPC_VPA_DTL: 1762 spin_lock(&vcpu->arch.vpa_update_lock); 1763 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1764 val->vpaval.length = vcpu->arch.dtl.len; 1765 spin_unlock(&vcpu->arch.vpa_update_lock); 1766 break; 1767 case KVM_REG_PPC_TB_OFFSET: 1768 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1769 break; 1770 case KVM_REG_PPC_LPCR: 1771 case KVM_REG_PPC_LPCR_64: 1772 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1773 break; 1774 case KVM_REG_PPC_PPR: 1775 *val = get_reg_val(id, vcpu->arch.ppr); 1776 break; 1777 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1778 case KVM_REG_PPC_TFHAR: 1779 *val = get_reg_val(id, vcpu->arch.tfhar); 1780 break; 1781 case KVM_REG_PPC_TFIAR: 1782 *val = get_reg_val(id, vcpu->arch.tfiar); 1783 break; 1784 case KVM_REG_PPC_TEXASR: 1785 *val = get_reg_val(id, vcpu->arch.texasr); 1786 break; 1787 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1788 i = id - KVM_REG_PPC_TM_GPR0; 1789 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1790 break; 1791 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1792 { 1793 int j; 1794 i = id - KVM_REG_PPC_TM_VSR0; 1795 if (i < 32) 1796 for (j = 0; j < TS_FPRWIDTH; j++) 1797 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1798 else { 1799 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1800 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1801 else 1802 r = -ENXIO; 1803 } 1804 break; 1805 } 1806 case KVM_REG_PPC_TM_CR: 1807 *val = get_reg_val(id, vcpu->arch.cr_tm); 1808 break; 1809 case KVM_REG_PPC_TM_XER: 1810 *val = get_reg_val(id, vcpu->arch.xer_tm); 1811 break; 1812 case KVM_REG_PPC_TM_LR: 1813 *val = get_reg_val(id, vcpu->arch.lr_tm); 1814 break; 1815 case KVM_REG_PPC_TM_CTR: 1816 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1817 break; 1818 case KVM_REG_PPC_TM_FPSCR: 1819 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1820 break; 1821 case KVM_REG_PPC_TM_AMR: 1822 *val = get_reg_val(id, vcpu->arch.amr_tm); 1823 break; 1824 case KVM_REG_PPC_TM_PPR: 1825 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1826 break; 1827 case KVM_REG_PPC_TM_VRSAVE: 1828 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1829 break; 1830 case KVM_REG_PPC_TM_VSCR: 1831 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1832 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1833 else 1834 r = -ENXIO; 1835 break; 1836 case KVM_REG_PPC_TM_DSCR: 1837 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1838 break; 1839 case KVM_REG_PPC_TM_TAR: 1840 *val = get_reg_val(id, vcpu->arch.tar_tm); 1841 break; 1842 #endif 1843 case KVM_REG_PPC_ARCH_COMPAT: 1844 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1845 break; 1846 case KVM_REG_PPC_DEC_EXPIRY: 1847 *val = get_reg_val(id, vcpu->arch.dec_expires + 1848 vcpu->arch.vcore->tb_offset); 1849 break; 1850 case KVM_REG_PPC_ONLINE: 1851 *val = get_reg_val(id, vcpu->arch.online); 1852 break; 1853 case KVM_REG_PPC_PTCR: 1854 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 1855 break; 1856 default: 1857 r = -EINVAL; 1858 break; 1859 } 1860 1861 return r; 1862 } 1863 1864 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1865 union kvmppc_one_reg *val) 1866 { 1867 int r = 0; 1868 long int i; 1869 unsigned long addr, len; 1870 1871 switch (id) { 1872 case KVM_REG_PPC_HIOR: 1873 /* Only allow this to be set to zero */ 1874 if (set_reg_val(id, *val)) 1875 r = -EINVAL; 1876 break; 1877 case KVM_REG_PPC_DABR: 1878 vcpu->arch.dabr = set_reg_val(id, *val); 1879 break; 1880 case KVM_REG_PPC_DABRX: 1881 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1882 break; 1883 case KVM_REG_PPC_DSCR: 1884 vcpu->arch.dscr = set_reg_val(id, *val); 1885 break; 1886 case KVM_REG_PPC_PURR: 1887 vcpu->arch.purr = set_reg_val(id, *val); 1888 break; 1889 case KVM_REG_PPC_SPURR: 1890 vcpu->arch.spurr = set_reg_val(id, *val); 1891 break; 1892 case KVM_REG_PPC_AMR: 1893 vcpu->arch.amr = set_reg_val(id, *val); 1894 break; 1895 case KVM_REG_PPC_UAMOR: 1896 vcpu->arch.uamor = set_reg_val(id, *val); 1897 break; 1898 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1899 i = id - KVM_REG_PPC_MMCR0; 1900 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1901 break; 1902 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1903 i = id - KVM_REG_PPC_PMC1; 1904 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1905 break; 1906 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1907 i = id - KVM_REG_PPC_SPMC1; 1908 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1909 break; 1910 case KVM_REG_PPC_SIAR: 1911 vcpu->arch.siar = set_reg_val(id, *val); 1912 break; 1913 case KVM_REG_PPC_SDAR: 1914 vcpu->arch.sdar = set_reg_val(id, *val); 1915 break; 1916 case KVM_REG_PPC_SIER: 1917 vcpu->arch.sier = set_reg_val(id, *val); 1918 break; 1919 case KVM_REG_PPC_IAMR: 1920 vcpu->arch.iamr = set_reg_val(id, *val); 1921 break; 1922 case KVM_REG_PPC_PSPB: 1923 vcpu->arch.pspb = set_reg_val(id, *val); 1924 break; 1925 case KVM_REG_PPC_DPDES: 1926 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1927 break; 1928 case KVM_REG_PPC_VTB: 1929 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1930 break; 1931 case KVM_REG_PPC_DAWR: 1932 vcpu->arch.dawr = set_reg_val(id, *val); 1933 break; 1934 case KVM_REG_PPC_DAWRX: 1935 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1936 break; 1937 case KVM_REG_PPC_CIABR: 1938 vcpu->arch.ciabr = set_reg_val(id, *val); 1939 /* Don't allow setting breakpoints in hypervisor code */ 1940 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1941 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1942 break; 1943 case KVM_REG_PPC_CSIGR: 1944 vcpu->arch.csigr = set_reg_val(id, *val); 1945 break; 1946 case KVM_REG_PPC_TACR: 1947 vcpu->arch.tacr = set_reg_val(id, *val); 1948 break; 1949 case KVM_REG_PPC_TCSCR: 1950 vcpu->arch.tcscr = set_reg_val(id, *val); 1951 break; 1952 case KVM_REG_PPC_PID: 1953 vcpu->arch.pid = set_reg_val(id, *val); 1954 break; 1955 case KVM_REG_PPC_ACOP: 1956 vcpu->arch.acop = set_reg_val(id, *val); 1957 break; 1958 case KVM_REG_PPC_WORT: 1959 vcpu->arch.wort = set_reg_val(id, *val); 1960 break; 1961 case KVM_REG_PPC_TIDR: 1962 vcpu->arch.tid = set_reg_val(id, *val); 1963 break; 1964 case KVM_REG_PPC_PSSCR: 1965 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1966 break; 1967 case KVM_REG_PPC_VPA_ADDR: 1968 addr = set_reg_val(id, *val); 1969 r = -EINVAL; 1970 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1971 vcpu->arch.dtl.next_gpa)) 1972 break; 1973 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1974 break; 1975 case KVM_REG_PPC_VPA_SLB: 1976 addr = val->vpaval.addr; 1977 len = val->vpaval.length; 1978 r = -EINVAL; 1979 if (addr && !vcpu->arch.vpa.next_gpa) 1980 break; 1981 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1982 break; 1983 case KVM_REG_PPC_VPA_DTL: 1984 addr = val->vpaval.addr; 1985 len = val->vpaval.length; 1986 r = -EINVAL; 1987 if (addr && (len < sizeof(struct dtl_entry) || 1988 !vcpu->arch.vpa.next_gpa)) 1989 break; 1990 len -= len % sizeof(struct dtl_entry); 1991 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1992 break; 1993 case KVM_REG_PPC_TB_OFFSET: 1994 /* round up to multiple of 2^24 */ 1995 vcpu->arch.vcore->tb_offset = 1996 ALIGN(set_reg_val(id, *val), 1UL << 24); 1997 break; 1998 case KVM_REG_PPC_LPCR: 1999 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 2000 break; 2001 case KVM_REG_PPC_LPCR_64: 2002 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 2003 break; 2004 case KVM_REG_PPC_PPR: 2005 vcpu->arch.ppr = set_reg_val(id, *val); 2006 break; 2007 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2008 case KVM_REG_PPC_TFHAR: 2009 vcpu->arch.tfhar = set_reg_val(id, *val); 2010 break; 2011 case KVM_REG_PPC_TFIAR: 2012 vcpu->arch.tfiar = set_reg_val(id, *val); 2013 break; 2014 case KVM_REG_PPC_TEXASR: 2015 vcpu->arch.texasr = set_reg_val(id, *val); 2016 break; 2017 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2018 i = id - KVM_REG_PPC_TM_GPR0; 2019 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2020 break; 2021 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2022 { 2023 int j; 2024 i = id - KVM_REG_PPC_TM_VSR0; 2025 if (i < 32) 2026 for (j = 0; j < TS_FPRWIDTH; j++) 2027 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2028 else 2029 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2030 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2031 else 2032 r = -ENXIO; 2033 break; 2034 } 2035 case KVM_REG_PPC_TM_CR: 2036 vcpu->arch.cr_tm = set_reg_val(id, *val); 2037 break; 2038 case KVM_REG_PPC_TM_XER: 2039 vcpu->arch.xer_tm = set_reg_val(id, *val); 2040 break; 2041 case KVM_REG_PPC_TM_LR: 2042 vcpu->arch.lr_tm = set_reg_val(id, *val); 2043 break; 2044 case KVM_REG_PPC_TM_CTR: 2045 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2046 break; 2047 case KVM_REG_PPC_TM_FPSCR: 2048 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2049 break; 2050 case KVM_REG_PPC_TM_AMR: 2051 vcpu->arch.amr_tm = set_reg_val(id, *val); 2052 break; 2053 case KVM_REG_PPC_TM_PPR: 2054 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2055 break; 2056 case KVM_REG_PPC_TM_VRSAVE: 2057 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2058 break; 2059 case KVM_REG_PPC_TM_VSCR: 2060 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2061 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2062 else 2063 r = - ENXIO; 2064 break; 2065 case KVM_REG_PPC_TM_DSCR: 2066 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2067 break; 2068 case KVM_REG_PPC_TM_TAR: 2069 vcpu->arch.tar_tm = set_reg_val(id, *val); 2070 break; 2071 #endif 2072 case KVM_REG_PPC_ARCH_COMPAT: 2073 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2074 break; 2075 case KVM_REG_PPC_DEC_EXPIRY: 2076 vcpu->arch.dec_expires = set_reg_val(id, *val) - 2077 vcpu->arch.vcore->tb_offset; 2078 break; 2079 case KVM_REG_PPC_ONLINE: 2080 i = set_reg_val(id, *val); 2081 if (i && !vcpu->arch.online) 2082 atomic_inc(&vcpu->arch.vcore->online_count); 2083 else if (!i && vcpu->arch.online) 2084 atomic_dec(&vcpu->arch.vcore->online_count); 2085 vcpu->arch.online = i; 2086 break; 2087 case KVM_REG_PPC_PTCR: 2088 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2089 break; 2090 default: 2091 r = -EINVAL; 2092 break; 2093 } 2094 2095 return r; 2096 } 2097 2098 /* 2099 * On POWER9, threads are independent and can be in different partitions. 2100 * Therefore we consider each thread to be a subcore. 2101 * There is a restriction that all threads have to be in the same 2102 * MMU mode (radix or HPT), unfortunately, but since we only support 2103 * HPT guests on a HPT host so far, that isn't an impediment yet. 2104 */ 2105 static int threads_per_vcore(struct kvm *kvm) 2106 { 2107 if (kvm->arch.threads_indep) 2108 return 1; 2109 return threads_per_subcore; 2110 } 2111 2112 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2113 { 2114 struct kvmppc_vcore *vcore; 2115 2116 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2117 2118 if (vcore == NULL) 2119 return NULL; 2120 2121 spin_lock_init(&vcore->lock); 2122 spin_lock_init(&vcore->stoltb_lock); 2123 rcuwait_init(&vcore->wait); 2124 vcore->preempt_tb = TB_NIL; 2125 vcore->lpcr = kvm->arch.lpcr; 2126 vcore->first_vcpuid = id; 2127 vcore->kvm = kvm; 2128 INIT_LIST_HEAD(&vcore->preempt_list); 2129 2130 return vcore; 2131 } 2132 2133 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2134 static struct debugfs_timings_element { 2135 const char *name; 2136 size_t offset; 2137 } timings[] = { 2138 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2139 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2140 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2141 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2142 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2143 }; 2144 2145 #define N_TIMINGS (ARRAY_SIZE(timings)) 2146 2147 struct debugfs_timings_state { 2148 struct kvm_vcpu *vcpu; 2149 unsigned int buflen; 2150 char buf[N_TIMINGS * 100]; 2151 }; 2152 2153 static int debugfs_timings_open(struct inode *inode, struct file *file) 2154 { 2155 struct kvm_vcpu *vcpu = inode->i_private; 2156 struct debugfs_timings_state *p; 2157 2158 p = kzalloc(sizeof(*p), GFP_KERNEL); 2159 if (!p) 2160 return -ENOMEM; 2161 2162 kvm_get_kvm(vcpu->kvm); 2163 p->vcpu = vcpu; 2164 file->private_data = p; 2165 2166 return nonseekable_open(inode, file); 2167 } 2168 2169 static int debugfs_timings_release(struct inode *inode, struct file *file) 2170 { 2171 struct debugfs_timings_state *p = file->private_data; 2172 2173 kvm_put_kvm(p->vcpu->kvm); 2174 kfree(p); 2175 return 0; 2176 } 2177 2178 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2179 size_t len, loff_t *ppos) 2180 { 2181 struct debugfs_timings_state *p = file->private_data; 2182 struct kvm_vcpu *vcpu = p->vcpu; 2183 char *s, *buf_end; 2184 struct kvmhv_tb_accumulator tb; 2185 u64 count; 2186 loff_t pos; 2187 ssize_t n; 2188 int i, loops; 2189 bool ok; 2190 2191 if (!p->buflen) { 2192 s = p->buf; 2193 buf_end = s + sizeof(p->buf); 2194 for (i = 0; i < N_TIMINGS; ++i) { 2195 struct kvmhv_tb_accumulator *acc; 2196 2197 acc = (struct kvmhv_tb_accumulator *) 2198 ((unsigned long)vcpu + timings[i].offset); 2199 ok = false; 2200 for (loops = 0; loops < 1000; ++loops) { 2201 count = acc->seqcount; 2202 if (!(count & 1)) { 2203 smp_rmb(); 2204 tb = *acc; 2205 smp_rmb(); 2206 if (count == acc->seqcount) { 2207 ok = true; 2208 break; 2209 } 2210 } 2211 udelay(1); 2212 } 2213 if (!ok) 2214 snprintf(s, buf_end - s, "%s: stuck\n", 2215 timings[i].name); 2216 else 2217 snprintf(s, buf_end - s, 2218 "%s: %llu %llu %llu %llu\n", 2219 timings[i].name, count / 2, 2220 tb_to_ns(tb.tb_total), 2221 tb_to_ns(tb.tb_min), 2222 tb_to_ns(tb.tb_max)); 2223 s += strlen(s); 2224 } 2225 p->buflen = s - p->buf; 2226 } 2227 2228 pos = *ppos; 2229 if (pos >= p->buflen) 2230 return 0; 2231 if (len > p->buflen - pos) 2232 len = p->buflen - pos; 2233 n = copy_to_user(buf, p->buf + pos, len); 2234 if (n) { 2235 if (n == len) 2236 return -EFAULT; 2237 len -= n; 2238 } 2239 *ppos = pos + len; 2240 return len; 2241 } 2242 2243 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2244 size_t len, loff_t *ppos) 2245 { 2246 return -EACCES; 2247 } 2248 2249 static const struct file_operations debugfs_timings_ops = { 2250 .owner = THIS_MODULE, 2251 .open = debugfs_timings_open, 2252 .release = debugfs_timings_release, 2253 .read = debugfs_timings_read, 2254 .write = debugfs_timings_write, 2255 .llseek = generic_file_llseek, 2256 }; 2257 2258 /* Create a debugfs directory for the vcpu */ 2259 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2260 { 2261 char buf[16]; 2262 struct kvm *kvm = vcpu->kvm; 2263 2264 snprintf(buf, sizeof(buf), "vcpu%u", id); 2265 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 2266 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu, 2267 &debugfs_timings_ops); 2268 } 2269 2270 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2271 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2272 { 2273 } 2274 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2275 2276 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2277 { 2278 int err; 2279 int core; 2280 struct kvmppc_vcore *vcore; 2281 struct kvm *kvm; 2282 unsigned int id; 2283 2284 kvm = vcpu->kvm; 2285 id = vcpu->vcpu_id; 2286 2287 vcpu->arch.shared = &vcpu->arch.shregs; 2288 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2289 /* 2290 * The shared struct is never shared on HV, 2291 * so we can always use host endianness 2292 */ 2293 #ifdef __BIG_ENDIAN__ 2294 vcpu->arch.shared_big_endian = true; 2295 #else 2296 vcpu->arch.shared_big_endian = false; 2297 #endif 2298 #endif 2299 vcpu->arch.mmcr[0] = MMCR0_FC; 2300 vcpu->arch.ctrl = CTRL_RUNLATCH; 2301 /* default to host PVR, since we can't spoof it */ 2302 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2303 spin_lock_init(&vcpu->arch.vpa_update_lock); 2304 spin_lock_init(&vcpu->arch.tbacct_lock); 2305 vcpu->arch.busy_preempt = TB_NIL; 2306 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2307 2308 /* 2309 * Set the default HFSCR for the guest from the host value. 2310 * This value is only used on POWER9. 2311 * On POWER9, we want to virtualize the doorbell facility, so we 2312 * don't set the HFSCR_MSGP bit, and that causes those instructions 2313 * to trap and then we emulate them. 2314 */ 2315 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2316 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP; 2317 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2318 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2319 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2320 vcpu->arch.hfscr |= HFSCR_TM; 2321 } 2322 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2323 vcpu->arch.hfscr |= HFSCR_TM; 2324 2325 kvmppc_mmu_book3s_hv_init(vcpu); 2326 2327 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2328 2329 init_waitqueue_head(&vcpu->arch.cpu_run); 2330 2331 mutex_lock(&kvm->lock); 2332 vcore = NULL; 2333 err = -EINVAL; 2334 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2335 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2336 pr_devel("KVM: VCPU ID too high\n"); 2337 core = KVM_MAX_VCORES; 2338 } else { 2339 BUG_ON(kvm->arch.smt_mode != 1); 2340 core = kvmppc_pack_vcpu_id(kvm, id); 2341 } 2342 } else { 2343 core = id / kvm->arch.smt_mode; 2344 } 2345 if (core < KVM_MAX_VCORES) { 2346 vcore = kvm->arch.vcores[core]; 2347 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2348 pr_devel("KVM: collision on id %u", id); 2349 vcore = NULL; 2350 } else if (!vcore) { 2351 /* 2352 * Take mmu_setup_lock for mutual exclusion 2353 * with kvmppc_update_lpcr(). 2354 */ 2355 err = -ENOMEM; 2356 vcore = kvmppc_vcore_create(kvm, 2357 id & ~(kvm->arch.smt_mode - 1)); 2358 mutex_lock(&kvm->arch.mmu_setup_lock); 2359 kvm->arch.vcores[core] = vcore; 2360 kvm->arch.online_vcores++; 2361 mutex_unlock(&kvm->arch.mmu_setup_lock); 2362 } 2363 } 2364 mutex_unlock(&kvm->lock); 2365 2366 if (!vcore) 2367 return err; 2368 2369 spin_lock(&vcore->lock); 2370 ++vcore->num_threads; 2371 spin_unlock(&vcore->lock); 2372 vcpu->arch.vcore = vcore; 2373 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2374 vcpu->arch.thread_cpu = -1; 2375 vcpu->arch.prev_cpu = -1; 2376 2377 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2378 kvmppc_sanity_check(vcpu); 2379 2380 debugfs_vcpu_init(vcpu, id); 2381 2382 return 0; 2383 } 2384 2385 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2386 unsigned long flags) 2387 { 2388 int err; 2389 int esmt = 0; 2390 2391 if (flags) 2392 return -EINVAL; 2393 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2394 return -EINVAL; 2395 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2396 /* 2397 * On POWER8 (or POWER7), the threading mode is "strict", 2398 * so we pack smt_mode vcpus per vcore. 2399 */ 2400 if (smt_mode > threads_per_subcore) 2401 return -EINVAL; 2402 } else { 2403 /* 2404 * On POWER9, the threading mode is "loose", 2405 * so each vcpu gets its own vcore. 2406 */ 2407 esmt = smt_mode; 2408 smt_mode = 1; 2409 } 2410 mutex_lock(&kvm->lock); 2411 err = -EBUSY; 2412 if (!kvm->arch.online_vcores) { 2413 kvm->arch.smt_mode = smt_mode; 2414 kvm->arch.emul_smt_mode = esmt; 2415 err = 0; 2416 } 2417 mutex_unlock(&kvm->lock); 2418 2419 return err; 2420 } 2421 2422 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2423 { 2424 if (vpa->pinned_addr) 2425 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2426 vpa->dirty); 2427 } 2428 2429 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2430 { 2431 spin_lock(&vcpu->arch.vpa_update_lock); 2432 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2433 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2434 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2435 spin_unlock(&vcpu->arch.vpa_update_lock); 2436 } 2437 2438 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2439 { 2440 /* Indicate we want to get back into the guest */ 2441 return 1; 2442 } 2443 2444 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2445 { 2446 unsigned long dec_nsec, now; 2447 2448 now = get_tb(); 2449 if (now > vcpu->arch.dec_expires) { 2450 /* decrementer has already gone negative */ 2451 kvmppc_core_queue_dec(vcpu); 2452 kvmppc_core_prepare_to_enter(vcpu); 2453 return; 2454 } 2455 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now); 2456 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2457 vcpu->arch.timer_running = 1; 2458 } 2459 2460 extern int __kvmppc_vcore_entry(void); 2461 2462 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2463 struct kvm_vcpu *vcpu) 2464 { 2465 u64 now; 2466 2467 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2468 return; 2469 spin_lock_irq(&vcpu->arch.tbacct_lock); 2470 now = mftb(); 2471 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2472 vcpu->arch.stolen_logged; 2473 vcpu->arch.busy_preempt = now; 2474 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2475 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2476 --vc->n_runnable; 2477 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2478 } 2479 2480 static int kvmppc_grab_hwthread(int cpu) 2481 { 2482 struct paca_struct *tpaca; 2483 long timeout = 10000; 2484 2485 tpaca = paca_ptrs[cpu]; 2486 2487 /* Ensure the thread won't go into the kernel if it wakes */ 2488 tpaca->kvm_hstate.kvm_vcpu = NULL; 2489 tpaca->kvm_hstate.kvm_vcore = NULL; 2490 tpaca->kvm_hstate.napping = 0; 2491 smp_wmb(); 2492 tpaca->kvm_hstate.hwthread_req = 1; 2493 2494 /* 2495 * If the thread is already executing in the kernel (e.g. handling 2496 * a stray interrupt), wait for it to get back to nap mode. 2497 * The smp_mb() is to ensure that our setting of hwthread_req 2498 * is visible before we look at hwthread_state, so if this 2499 * races with the code at system_reset_pSeries and the thread 2500 * misses our setting of hwthread_req, we are sure to see its 2501 * setting of hwthread_state, and vice versa. 2502 */ 2503 smp_mb(); 2504 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2505 if (--timeout <= 0) { 2506 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2507 return -EBUSY; 2508 } 2509 udelay(1); 2510 } 2511 return 0; 2512 } 2513 2514 static void kvmppc_release_hwthread(int cpu) 2515 { 2516 struct paca_struct *tpaca; 2517 2518 tpaca = paca_ptrs[cpu]; 2519 tpaca->kvm_hstate.hwthread_req = 0; 2520 tpaca->kvm_hstate.kvm_vcpu = NULL; 2521 tpaca->kvm_hstate.kvm_vcore = NULL; 2522 tpaca->kvm_hstate.kvm_split_mode = NULL; 2523 } 2524 2525 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2526 { 2527 struct kvm_nested_guest *nested = vcpu->arch.nested; 2528 cpumask_t *cpu_in_guest; 2529 int i; 2530 2531 cpu = cpu_first_thread_sibling(cpu); 2532 if (nested) { 2533 cpumask_set_cpu(cpu, &nested->need_tlb_flush); 2534 cpu_in_guest = &nested->cpu_in_guest; 2535 } else { 2536 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2537 cpu_in_guest = &kvm->arch.cpu_in_guest; 2538 } 2539 /* 2540 * Make sure setting of bit in need_tlb_flush precedes 2541 * testing of cpu_in_guest bits. The matching barrier on 2542 * the other side is the first smp_mb() in kvmppc_run_core(). 2543 */ 2544 smp_mb(); 2545 for (i = 0; i < threads_per_core; ++i) 2546 if (cpumask_test_cpu(cpu + i, cpu_in_guest)) 2547 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2548 } 2549 2550 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2551 { 2552 struct kvm_nested_guest *nested = vcpu->arch.nested; 2553 struct kvm *kvm = vcpu->kvm; 2554 int prev_cpu; 2555 2556 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2557 return; 2558 2559 if (nested) 2560 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 2561 else 2562 prev_cpu = vcpu->arch.prev_cpu; 2563 2564 /* 2565 * With radix, the guest can do TLB invalidations itself, 2566 * and it could choose to use the local form (tlbiel) if 2567 * it is invalidating a translation that has only ever been 2568 * used on one vcpu. However, that doesn't mean it has 2569 * only ever been used on one physical cpu, since vcpus 2570 * can move around between pcpus. To cope with this, when 2571 * a vcpu moves from one pcpu to another, we need to tell 2572 * any vcpus running on the same core as this vcpu previously 2573 * ran to flush the TLB. The TLB is shared between threads, 2574 * so we use a single bit in .need_tlb_flush for all 4 threads. 2575 */ 2576 if (prev_cpu != pcpu) { 2577 if (prev_cpu >= 0 && 2578 cpu_first_thread_sibling(prev_cpu) != 2579 cpu_first_thread_sibling(pcpu)) 2580 radix_flush_cpu(kvm, prev_cpu, vcpu); 2581 if (nested) 2582 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 2583 else 2584 vcpu->arch.prev_cpu = pcpu; 2585 } 2586 } 2587 2588 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2589 { 2590 int cpu; 2591 struct paca_struct *tpaca; 2592 struct kvm *kvm = vc->kvm; 2593 2594 cpu = vc->pcpu; 2595 if (vcpu) { 2596 if (vcpu->arch.timer_running) { 2597 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2598 vcpu->arch.timer_running = 0; 2599 } 2600 cpu += vcpu->arch.ptid; 2601 vcpu->cpu = vc->pcpu; 2602 vcpu->arch.thread_cpu = cpu; 2603 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2604 } 2605 tpaca = paca_ptrs[cpu]; 2606 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2607 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2608 tpaca->kvm_hstate.fake_suspend = 0; 2609 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2610 smp_wmb(); 2611 tpaca->kvm_hstate.kvm_vcore = vc; 2612 if (cpu != smp_processor_id()) 2613 kvmppc_ipi_thread(cpu); 2614 } 2615 2616 static void kvmppc_wait_for_nap(int n_threads) 2617 { 2618 int cpu = smp_processor_id(); 2619 int i, loops; 2620 2621 if (n_threads <= 1) 2622 return; 2623 for (loops = 0; loops < 1000000; ++loops) { 2624 /* 2625 * Check if all threads are finished. 2626 * We set the vcore pointer when starting a thread 2627 * and the thread clears it when finished, so we look 2628 * for any threads that still have a non-NULL vcore ptr. 2629 */ 2630 for (i = 1; i < n_threads; ++i) 2631 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2632 break; 2633 if (i == n_threads) { 2634 HMT_medium(); 2635 return; 2636 } 2637 HMT_low(); 2638 } 2639 HMT_medium(); 2640 for (i = 1; i < n_threads; ++i) 2641 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2642 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2643 } 2644 2645 /* 2646 * Check that we are on thread 0 and that any other threads in 2647 * this core are off-line. Then grab the threads so they can't 2648 * enter the kernel. 2649 */ 2650 static int on_primary_thread(void) 2651 { 2652 int cpu = smp_processor_id(); 2653 int thr; 2654 2655 /* Are we on a primary subcore? */ 2656 if (cpu_thread_in_subcore(cpu)) 2657 return 0; 2658 2659 thr = 0; 2660 while (++thr < threads_per_subcore) 2661 if (cpu_online(cpu + thr)) 2662 return 0; 2663 2664 /* Grab all hw threads so they can't go into the kernel */ 2665 for (thr = 1; thr < threads_per_subcore; ++thr) { 2666 if (kvmppc_grab_hwthread(cpu + thr)) { 2667 /* Couldn't grab one; let the others go */ 2668 do { 2669 kvmppc_release_hwthread(cpu + thr); 2670 } while (--thr > 0); 2671 return 0; 2672 } 2673 } 2674 return 1; 2675 } 2676 2677 /* 2678 * A list of virtual cores for each physical CPU. 2679 * These are vcores that could run but their runner VCPU tasks are 2680 * (or may be) preempted. 2681 */ 2682 struct preempted_vcore_list { 2683 struct list_head list; 2684 spinlock_t lock; 2685 }; 2686 2687 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2688 2689 static void init_vcore_lists(void) 2690 { 2691 int cpu; 2692 2693 for_each_possible_cpu(cpu) { 2694 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2695 spin_lock_init(&lp->lock); 2696 INIT_LIST_HEAD(&lp->list); 2697 } 2698 } 2699 2700 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2701 { 2702 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2703 2704 vc->vcore_state = VCORE_PREEMPT; 2705 vc->pcpu = smp_processor_id(); 2706 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2707 spin_lock(&lp->lock); 2708 list_add_tail(&vc->preempt_list, &lp->list); 2709 spin_unlock(&lp->lock); 2710 } 2711 2712 /* Start accumulating stolen time */ 2713 kvmppc_core_start_stolen(vc); 2714 } 2715 2716 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2717 { 2718 struct preempted_vcore_list *lp; 2719 2720 kvmppc_core_end_stolen(vc); 2721 if (!list_empty(&vc->preempt_list)) { 2722 lp = &per_cpu(preempted_vcores, vc->pcpu); 2723 spin_lock(&lp->lock); 2724 list_del_init(&vc->preempt_list); 2725 spin_unlock(&lp->lock); 2726 } 2727 vc->vcore_state = VCORE_INACTIVE; 2728 } 2729 2730 /* 2731 * This stores information about the virtual cores currently 2732 * assigned to a physical core. 2733 */ 2734 struct core_info { 2735 int n_subcores; 2736 int max_subcore_threads; 2737 int total_threads; 2738 int subcore_threads[MAX_SUBCORES]; 2739 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2740 }; 2741 2742 /* 2743 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2744 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2745 */ 2746 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2747 2748 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2749 { 2750 memset(cip, 0, sizeof(*cip)); 2751 cip->n_subcores = 1; 2752 cip->max_subcore_threads = vc->num_threads; 2753 cip->total_threads = vc->num_threads; 2754 cip->subcore_threads[0] = vc->num_threads; 2755 cip->vc[0] = vc; 2756 } 2757 2758 static bool subcore_config_ok(int n_subcores, int n_threads) 2759 { 2760 /* 2761 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 2762 * split-core mode, with one thread per subcore. 2763 */ 2764 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2765 return n_subcores <= 4 && n_threads == 1; 2766 2767 /* On POWER8, can only dynamically split if unsplit to begin with */ 2768 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2769 return false; 2770 if (n_subcores > MAX_SUBCORES) 2771 return false; 2772 if (n_subcores > 1) { 2773 if (!(dynamic_mt_modes & 2)) 2774 n_subcores = 4; 2775 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2776 return false; 2777 } 2778 2779 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2780 } 2781 2782 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2783 { 2784 vc->entry_exit_map = 0; 2785 vc->in_guest = 0; 2786 vc->napping_threads = 0; 2787 vc->conferring_threads = 0; 2788 vc->tb_offset_applied = 0; 2789 } 2790 2791 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2792 { 2793 int n_threads = vc->num_threads; 2794 int sub; 2795 2796 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2797 return false; 2798 2799 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 2800 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 2801 return false; 2802 2803 /* Some POWER9 chips require all threads to be in the same MMU mode */ 2804 if (no_mixing_hpt_and_radix && 2805 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm)) 2806 return false; 2807 2808 if (n_threads < cip->max_subcore_threads) 2809 n_threads = cip->max_subcore_threads; 2810 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2811 return false; 2812 cip->max_subcore_threads = n_threads; 2813 2814 sub = cip->n_subcores; 2815 ++cip->n_subcores; 2816 cip->total_threads += vc->num_threads; 2817 cip->subcore_threads[sub] = vc->num_threads; 2818 cip->vc[sub] = vc; 2819 init_vcore_to_run(vc); 2820 list_del_init(&vc->preempt_list); 2821 2822 return true; 2823 } 2824 2825 /* 2826 * Work out whether it is possible to piggyback the execution of 2827 * vcore *pvc onto the execution of the other vcores described in *cip. 2828 */ 2829 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2830 int target_threads) 2831 { 2832 if (cip->total_threads + pvc->num_threads > target_threads) 2833 return false; 2834 2835 return can_dynamic_split(pvc, cip); 2836 } 2837 2838 static void prepare_threads(struct kvmppc_vcore *vc) 2839 { 2840 int i; 2841 struct kvm_vcpu *vcpu; 2842 2843 for_each_runnable_thread(i, vcpu, vc) { 2844 if (signal_pending(vcpu->arch.run_task)) 2845 vcpu->arch.ret = -EINTR; 2846 else if (vcpu->arch.vpa.update_pending || 2847 vcpu->arch.slb_shadow.update_pending || 2848 vcpu->arch.dtl.update_pending) 2849 vcpu->arch.ret = RESUME_GUEST; 2850 else 2851 continue; 2852 kvmppc_remove_runnable(vc, vcpu); 2853 wake_up(&vcpu->arch.cpu_run); 2854 } 2855 } 2856 2857 static void collect_piggybacks(struct core_info *cip, int target_threads) 2858 { 2859 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2860 struct kvmppc_vcore *pvc, *vcnext; 2861 2862 spin_lock(&lp->lock); 2863 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2864 if (!spin_trylock(&pvc->lock)) 2865 continue; 2866 prepare_threads(pvc); 2867 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 2868 list_del_init(&pvc->preempt_list); 2869 if (pvc->runner == NULL) { 2870 pvc->vcore_state = VCORE_INACTIVE; 2871 kvmppc_core_end_stolen(pvc); 2872 } 2873 spin_unlock(&pvc->lock); 2874 continue; 2875 } 2876 if (!can_piggyback(pvc, cip, target_threads)) { 2877 spin_unlock(&pvc->lock); 2878 continue; 2879 } 2880 kvmppc_core_end_stolen(pvc); 2881 pvc->vcore_state = VCORE_PIGGYBACK; 2882 if (cip->total_threads >= target_threads) 2883 break; 2884 } 2885 spin_unlock(&lp->lock); 2886 } 2887 2888 static bool recheck_signals_and_mmu(struct core_info *cip) 2889 { 2890 int sub, i; 2891 struct kvm_vcpu *vcpu; 2892 struct kvmppc_vcore *vc; 2893 2894 for (sub = 0; sub < cip->n_subcores; ++sub) { 2895 vc = cip->vc[sub]; 2896 if (!vc->kvm->arch.mmu_ready) 2897 return true; 2898 for_each_runnable_thread(i, vcpu, vc) 2899 if (signal_pending(vcpu->arch.run_task)) 2900 return true; 2901 } 2902 return false; 2903 } 2904 2905 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2906 { 2907 int still_running = 0, i; 2908 u64 now; 2909 long ret; 2910 struct kvm_vcpu *vcpu; 2911 2912 spin_lock(&vc->lock); 2913 now = get_tb(); 2914 for_each_runnable_thread(i, vcpu, vc) { 2915 /* 2916 * It's safe to unlock the vcore in the loop here, because 2917 * for_each_runnable_thread() is safe against removal of 2918 * the vcpu, and the vcore state is VCORE_EXITING here, 2919 * so any vcpus becoming runnable will have their arch.trap 2920 * set to zero and can't actually run in the guest. 2921 */ 2922 spin_unlock(&vc->lock); 2923 /* cancel pending dec exception if dec is positive */ 2924 if (now < vcpu->arch.dec_expires && 2925 kvmppc_core_pending_dec(vcpu)) 2926 kvmppc_core_dequeue_dec(vcpu); 2927 2928 trace_kvm_guest_exit(vcpu); 2929 2930 ret = RESUME_GUEST; 2931 if (vcpu->arch.trap) 2932 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2933 vcpu->arch.run_task); 2934 2935 vcpu->arch.ret = ret; 2936 vcpu->arch.trap = 0; 2937 2938 spin_lock(&vc->lock); 2939 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2940 if (vcpu->arch.pending_exceptions) 2941 kvmppc_core_prepare_to_enter(vcpu); 2942 if (vcpu->arch.ceded) 2943 kvmppc_set_timer(vcpu); 2944 else 2945 ++still_running; 2946 } else { 2947 kvmppc_remove_runnable(vc, vcpu); 2948 wake_up(&vcpu->arch.cpu_run); 2949 } 2950 } 2951 if (!is_master) { 2952 if (still_running > 0) { 2953 kvmppc_vcore_preempt(vc); 2954 } else if (vc->runner) { 2955 vc->vcore_state = VCORE_PREEMPT; 2956 kvmppc_core_start_stolen(vc); 2957 } else { 2958 vc->vcore_state = VCORE_INACTIVE; 2959 } 2960 if (vc->n_runnable > 0 && vc->runner == NULL) { 2961 /* make sure there's a candidate runner awake */ 2962 i = -1; 2963 vcpu = next_runnable_thread(vc, &i); 2964 wake_up(&vcpu->arch.cpu_run); 2965 } 2966 } 2967 spin_unlock(&vc->lock); 2968 } 2969 2970 /* 2971 * Clear core from the list of active host cores as we are about to 2972 * enter the guest. Only do this if it is the primary thread of the 2973 * core (not if a subcore) that is entering the guest. 2974 */ 2975 static inline int kvmppc_clear_host_core(unsigned int cpu) 2976 { 2977 int core; 2978 2979 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2980 return 0; 2981 /* 2982 * Memory barrier can be omitted here as we will do a smp_wmb() 2983 * later in kvmppc_start_thread and we need ensure that state is 2984 * visible to other CPUs only after we enter guest. 2985 */ 2986 core = cpu >> threads_shift; 2987 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2988 return 0; 2989 } 2990 2991 /* 2992 * Advertise this core as an active host core since we exited the guest 2993 * Only need to do this if it is the primary thread of the core that is 2994 * exiting. 2995 */ 2996 static inline int kvmppc_set_host_core(unsigned int cpu) 2997 { 2998 int core; 2999 3000 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3001 return 0; 3002 3003 /* 3004 * Memory barrier can be omitted here because we do a spin_unlock 3005 * immediately after this which provides the memory barrier. 3006 */ 3007 core = cpu >> threads_shift; 3008 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3009 return 0; 3010 } 3011 3012 static void set_irq_happened(int trap) 3013 { 3014 switch (trap) { 3015 case BOOK3S_INTERRUPT_EXTERNAL: 3016 local_paca->irq_happened |= PACA_IRQ_EE; 3017 break; 3018 case BOOK3S_INTERRUPT_H_DOORBELL: 3019 local_paca->irq_happened |= PACA_IRQ_DBELL; 3020 break; 3021 case BOOK3S_INTERRUPT_HMI: 3022 local_paca->irq_happened |= PACA_IRQ_HMI; 3023 break; 3024 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3025 replay_system_reset(); 3026 break; 3027 } 3028 } 3029 3030 /* 3031 * Run a set of guest threads on a physical core. 3032 * Called with vc->lock held. 3033 */ 3034 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3035 { 3036 struct kvm_vcpu *vcpu; 3037 int i; 3038 int srcu_idx; 3039 struct core_info core_info; 3040 struct kvmppc_vcore *pvc; 3041 struct kvm_split_mode split_info, *sip; 3042 int split, subcore_size, active; 3043 int sub; 3044 bool thr0_done; 3045 unsigned long cmd_bit, stat_bit; 3046 int pcpu, thr; 3047 int target_threads; 3048 int controlled_threads; 3049 int trap; 3050 bool is_power8; 3051 bool hpt_on_radix; 3052 3053 /* 3054 * Remove from the list any threads that have a signal pending 3055 * or need a VPA update done 3056 */ 3057 prepare_threads(vc); 3058 3059 /* if the runner is no longer runnable, let the caller pick a new one */ 3060 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3061 return; 3062 3063 /* 3064 * Initialize *vc. 3065 */ 3066 init_vcore_to_run(vc); 3067 vc->preempt_tb = TB_NIL; 3068 3069 /* 3070 * Number of threads that we will be controlling: the same as 3071 * the number of threads per subcore, except on POWER9, 3072 * where it's 1 because the threads are (mostly) independent. 3073 */ 3074 controlled_threads = threads_per_vcore(vc->kvm); 3075 3076 /* 3077 * Make sure we are running on primary threads, and that secondary 3078 * threads are offline. Also check if the number of threads in this 3079 * guest are greater than the current system threads per guest. 3080 * On POWER9, we need to be not in independent-threads mode if 3081 * this is a HPT guest on a radix host machine where the 3082 * CPU threads may not be in different MMU modes. 3083 */ 3084 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() && 3085 !kvm_is_radix(vc->kvm); 3086 if (((controlled_threads > 1) && 3087 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) || 3088 (hpt_on_radix && vc->kvm->arch.threads_indep)) { 3089 for_each_runnable_thread(i, vcpu, vc) { 3090 vcpu->arch.ret = -EBUSY; 3091 kvmppc_remove_runnable(vc, vcpu); 3092 wake_up(&vcpu->arch.cpu_run); 3093 } 3094 goto out; 3095 } 3096 3097 /* 3098 * See if we could run any other vcores on the physical core 3099 * along with this one. 3100 */ 3101 init_core_info(&core_info, vc); 3102 pcpu = smp_processor_id(); 3103 target_threads = controlled_threads; 3104 if (target_smt_mode && target_smt_mode < target_threads) 3105 target_threads = target_smt_mode; 3106 if (vc->num_threads < target_threads) 3107 collect_piggybacks(&core_info, target_threads); 3108 3109 /* 3110 * On radix, arrange for TLB flushing if necessary. 3111 * This has to be done before disabling interrupts since 3112 * it uses smp_call_function(). 3113 */ 3114 pcpu = smp_processor_id(); 3115 if (kvm_is_radix(vc->kvm)) { 3116 for (sub = 0; sub < core_info.n_subcores; ++sub) 3117 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 3118 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 3119 } 3120 3121 /* 3122 * Hard-disable interrupts, and check resched flag and signals. 3123 * If we need to reschedule or deliver a signal, clean up 3124 * and return without going into the guest(s). 3125 * If the mmu_ready flag has been cleared, don't go into the 3126 * guest because that means a HPT resize operation is in progress. 3127 */ 3128 local_irq_disable(); 3129 hard_irq_disable(); 3130 if (lazy_irq_pending() || need_resched() || 3131 recheck_signals_and_mmu(&core_info)) { 3132 local_irq_enable(); 3133 vc->vcore_state = VCORE_INACTIVE; 3134 /* Unlock all except the primary vcore */ 3135 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3136 pvc = core_info.vc[sub]; 3137 /* Put back on to the preempted vcores list */ 3138 kvmppc_vcore_preempt(pvc); 3139 spin_unlock(&pvc->lock); 3140 } 3141 for (i = 0; i < controlled_threads; ++i) 3142 kvmppc_release_hwthread(pcpu + i); 3143 return; 3144 } 3145 3146 kvmppc_clear_host_core(pcpu); 3147 3148 /* Decide on micro-threading (split-core) mode */ 3149 subcore_size = threads_per_subcore; 3150 cmd_bit = stat_bit = 0; 3151 split = core_info.n_subcores; 3152 sip = NULL; 3153 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 3154 && !cpu_has_feature(CPU_FTR_ARCH_300); 3155 3156 if (split > 1 || hpt_on_radix) { 3157 sip = &split_info; 3158 memset(&split_info, 0, sizeof(split_info)); 3159 for (sub = 0; sub < core_info.n_subcores; ++sub) 3160 split_info.vc[sub] = core_info.vc[sub]; 3161 3162 if (is_power8) { 3163 if (split == 2 && (dynamic_mt_modes & 2)) { 3164 cmd_bit = HID0_POWER8_1TO2LPAR; 3165 stat_bit = HID0_POWER8_2LPARMODE; 3166 } else { 3167 split = 4; 3168 cmd_bit = HID0_POWER8_1TO4LPAR; 3169 stat_bit = HID0_POWER8_4LPARMODE; 3170 } 3171 subcore_size = MAX_SMT_THREADS / split; 3172 split_info.rpr = mfspr(SPRN_RPR); 3173 split_info.pmmar = mfspr(SPRN_PMMAR); 3174 split_info.ldbar = mfspr(SPRN_LDBAR); 3175 split_info.subcore_size = subcore_size; 3176 } else { 3177 split_info.subcore_size = 1; 3178 if (hpt_on_radix) { 3179 /* Use the split_info for LPCR/LPIDR changes */ 3180 split_info.lpcr_req = vc->lpcr; 3181 split_info.lpidr_req = vc->kvm->arch.lpid; 3182 split_info.host_lpcr = vc->kvm->arch.host_lpcr; 3183 split_info.do_set = 1; 3184 } 3185 } 3186 3187 /* order writes to split_info before kvm_split_mode pointer */ 3188 smp_wmb(); 3189 } 3190 3191 for (thr = 0; thr < controlled_threads; ++thr) { 3192 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3193 3194 paca->kvm_hstate.tid = thr; 3195 paca->kvm_hstate.napping = 0; 3196 paca->kvm_hstate.kvm_split_mode = sip; 3197 } 3198 3199 /* Initiate micro-threading (split-core) on POWER8 if required */ 3200 if (cmd_bit) { 3201 unsigned long hid0 = mfspr(SPRN_HID0); 3202 3203 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3204 mb(); 3205 mtspr(SPRN_HID0, hid0); 3206 isync(); 3207 for (;;) { 3208 hid0 = mfspr(SPRN_HID0); 3209 if (hid0 & stat_bit) 3210 break; 3211 cpu_relax(); 3212 } 3213 } 3214 3215 /* 3216 * On POWER8, set RWMR register. 3217 * Since it only affects PURR and SPURR, it doesn't affect 3218 * the host, so we don't save/restore the host value. 3219 */ 3220 if (is_power8) { 3221 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3222 int n_online = atomic_read(&vc->online_count); 3223 3224 /* 3225 * Use the 8-thread value if we're doing split-core 3226 * or if the vcore's online count looks bogus. 3227 */ 3228 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3229 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3230 rwmr_val = p8_rwmr_values[n_online]; 3231 mtspr(SPRN_RWMR, rwmr_val); 3232 } 3233 3234 /* Start all the threads */ 3235 active = 0; 3236 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3237 thr = is_power8 ? subcore_thread_map[sub] : sub; 3238 thr0_done = false; 3239 active |= 1 << thr; 3240 pvc = core_info.vc[sub]; 3241 pvc->pcpu = pcpu + thr; 3242 for_each_runnable_thread(i, vcpu, pvc) { 3243 kvmppc_start_thread(vcpu, pvc); 3244 kvmppc_create_dtl_entry(vcpu, pvc); 3245 trace_kvm_guest_enter(vcpu); 3246 if (!vcpu->arch.ptid) 3247 thr0_done = true; 3248 active |= 1 << (thr + vcpu->arch.ptid); 3249 } 3250 /* 3251 * We need to start the first thread of each subcore 3252 * even if it doesn't have a vcpu. 3253 */ 3254 if (!thr0_done) 3255 kvmppc_start_thread(NULL, pvc); 3256 } 3257 3258 /* 3259 * Ensure that split_info.do_nap is set after setting 3260 * the vcore pointer in the PACA of the secondaries. 3261 */ 3262 smp_mb(); 3263 3264 /* 3265 * When doing micro-threading, poke the inactive threads as well. 3266 * This gets them to the nap instruction after kvm_do_nap, 3267 * which reduces the time taken to unsplit later. 3268 * For POWER9 HPT guest on radix host, we need all the secondary 3269 * threads woken up so they can do the LPCR/LPIDR change. 3270 */ 3271 if (cmd_bit || hpt_on_radix) { 3272 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3273 for (thr = 1; thr < threads_per_subcore; ++thr) 3274 if (!(active & (1 << thr))) 3275 kvmppc_ipi_thread(pcpu + thr); 3276 } 3277 3278 vc->vcore_state = VCORE_RUNNING; 3279 preempt_disable(); 3280 3281 trace_kvmppc_run_core(vc, 0); 3282 3283 for (sub = 0; sub < core_info.n_subcores; ++sub) 3284 spin_unlock(&core_info.vc[sub]->lock); 3285 3286 guest_enter_irqoff(); 3287 3288 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3289 3290 this_cpu_disable_ftrace(); 3291 3292 /* 3293 * Interrupts will be enabled once we get into the guest, 3294 * so tell lockdep that we're about to enable interrupts. 3295 */ 3296 trace_hardirqs_on(); 3297 3298 trap = __kvmppc_vcore_entry(); 3299 3300 trace_hardirqs_off(); 3301 3302 this_cpu_enable_ftrace(); 3303 3304 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3305 3306 set_irq_happened(trap); 3307 3308 spin_lock(&vc->lock); 3309 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3310 vc->vcore_state = VCORE_EXITING; 3311 3312 /* wait for secondary threads to finish writing their state to memory */ 3313 kvmppc_wait_for_nap(controlled_threads); 3314 3315 /* Return to whole-core mode if we split the core earlier */ 3316 if (cmd_bit) { 3317 unsigned long hid0 = mfspr(SPRN_HID0); 3318 unsigned long loops = 0; 3319 3320 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3321 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3322 mb(); 3323 mtspr(SPRN_HID0, hid0); 3324 isync(); 3325 for (;;) { 3326 hid0 = mfspr(SPRN_HID0); 3327 if (!(hid0 & stat_bit)) 3328 break; 3329 cpu_relax(); 3330 ++loops; 3331 } 3332 } else if (hpt_on_radix) { 3333 /* Wait for all threads to have seen final sync */ 3334 for (thr = 1; thr < controlled_threads; ++thr) { 3335 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3336 3337 while (paca->kvm_hstate.kvm_split_mode) { 3338 HMT_low(); 3339 barrier(); 3340 } 3341 HMT_medium(); 3342 } 3343 } 3344 split_info.do_nap = 0; 3345 3346 kvmppc_set_host_core(pcpu); 3347 3348 local_irq_enable(); 3349 guest_exit(); 3350 3351 /* Let secondaries go back to the offline loop */ 3352 for (i = 0; i < controlled_threads; ++i) { 3353 kvmppc_release_hwthread(pcpu + i); 3354 if (sip && sip->napped[i]) 3355 kvmppc_ipi_thread(pcpu + i); 3356 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 3357 } 3358 3359 spin_unlock(&vc->lock); 3360 3361 /* make sure updates to secondary vcpu structs are visible now */ 3362 smp_mb(); 3363 3364 preempt_enable(); 3365 3366 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3367 pvc = core_info.vc[sub]; 3368 post_guest_process(pvc, pvc == vc); 3369 } 3370 3371 spin_lock(&vc->lock); 3372 3373 out: 3374 vc->vcore_state = VCORE_INACTIVE; 3375 trace_kvmppc_run_core(vc, 1); 3376 } 3377 3378 /* 3379 * Load up hypervisor-mode registers on P9. 3380 */ 3381 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit, 3382 unsigned long lpcr) 3383 { 3384 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3385 s64 hdec; 3386 u64 tb, purr, spurr; 3387 int trap; 3388 unsigned long host_hfscr = mfspr(SPRN_HFSCR); 3389 unsigned long host_ciabr = mfspr(SPRN_CIABR); 3390 unsigned long host_dawr = mfspr(SPRN_DAWR0); 3391 unsigned long host_dawrx = mfspr(SPRN_DAWRX0); 3392 unsigned long host_psscr = mfspr(SPRN_PSSCR); 3393 unsigned long host_pidr = mfspr(SPRN_PID); 3394 3395 hdec = time_limit - mftb(); 3396 if (hdec < 0) 3397 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3398 mtspr(SPRN_HDEC, hdec); 3399 3400 if (vc->tb_offset) { 3401 u64 new_tb = mftb() + vc->tb_offset; 3402 mtspr(SPRN_TBU40, new_tb); 3403 tb = mftb(); 3404 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3405 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3406 vc->tb_offset_applied = vc->tb_offset; 3407 } 3408 3409 if (vc->pcr) 3410 mtspr(SPRN_PCR, vc->pcr | PCR_MASK); 3411 mtspr(SPRN_DPDES, vc->dpdes); 3412 mtspr(SPRN_VTB, vc->vtb); 3413 3414 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR); 3415 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR); 3416 mtspr(SPRN_PURR, vcpu->arch.purr); 3417 mtspr(SPRN_SPURR, vcpu->arch.spurr); 3418 3419 if (dawr_enabled()) { 3420 mtspr(SPRN_DAWR0, vcpu->arch.dawr); 3421 mtspr(SPRN_DAWRX0, vcpu->arch.dawrx); 3422 } 3423 mtspr(SPRN_CIABR, vcpu->arch.ciabr); 3424 mtspr(SPRN_IC, vcpu->arch.ic); 3425 mtspr(SPRN_PID, vcpu->arch.pid); 3426 3427 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC | 3428 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3429 3430 mtspr(SPRN_HFSCR, vcpu->arch.hfscr); 3431 3432 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0); 3433 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1); 3434 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2); 3435 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3); 3436 3437 mtspr(SPRN_AMOR, ~0UL); 3438 3439 mtspr(SPRN_LPCR, lpcr); 3440 isync(); 3441 3442 kvmppc_xive_push_vcpu(vcpu); 3443 3444 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0); 3445 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1); 3446 3447 trap = __kvmhv_vcpu_entry_p9(vcpu); 3448 3449 /* Advance host PURR/SPURR by the amount used by guest */ 3450 purr = mfspr(SPRN_PURR); 3451 spurr = mfspr(SPRN_SPURR); 3452 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr + 3453 purr - vcpu->arch.purr); 3454 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr + 3455 spurr - vcpu->arch.spurr); 3456 vcpu->arch.purr = purr; 3457 vcpu->arch.spurr = spurr; 3458 3459 vcpu->arch.ic = mfspr(SPRN_IC); 3460 vcpu->arch.pid = mfspr(SPRN_PID); 3461 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS; 3462 3463 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0); 3464 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1); 3465 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2); 3466 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3); 3467 3468 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */ 3469 mtspr(SPRN_PSSCR, host_psscr | 3470 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3471 mtspr(SPRN_HFSCR, host_hfscr); 3472 mtspr(SPRN_CIABR, host_ciabr); 3473 mtspr(SPRN_DAWR0, host_dawr); 3474 mtspr(SPRN_DAWRX0, host_dawrx); 3475 mtspr(SPRN_PID, host_pidr); 3476 3477 /* 3478 * Since this is radix, do a eieio; tlbsync; ptesync sequence in 3479 * case we interrupted the guest between a tlbie and a ptesync. 3480 */ 3481 asm volatile("eieio; tlbsync; ptesync"); 3482 3483 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */ 3484 isync(); 3485 3486 vc->dpdes = mfspr(SPRN_DPDES); 3487 vc->vtb = mfspr(SPRN_VTB); 3488 mtspr(SPRN_DPDES, 0); 3489 if (vc->pcr) 3490 mtspr(SPRN_PCR, PCR_MASK); 3491 3492 if (vc->tb_offset_applied) { 3493 u64 new_tb = mftb() - vc->tb_offset_applied; 3494 mtspr(SPRN_TBU40, new_tb); 3495 tb = mftb(); 3496 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3497 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3498 vc->tb_offset_applied = 0; 3499 } 3500 3501 mtspr(SPRN_HDEC, 0x7fffffff); 3502 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr); 3503 3504 return trap; 3505 } 3506 3507 /* 3508 * Virtual-mode guest entry for POWER9 and later when the host and 3509 * guest are both using the radix MMU. The LPIDR has already been set. 3510 */ 3511 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 3512 unsigned long lpcr) 3513 { 3514 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3515 unsigned long host_dscr = mfspr(SPRN_DSCR); 3516 unsigned long host_tidr = mfspr(SPRN_TIDR); 3517 unsigned long host_iamr = mfspr(SPRN_IAMR); 3518 unsigned long host_amr = mfspr(SPRN_AMR); 3519 s64 dec; 3520 u64 tb; 3521 int trap, save_pmu; 3522 3523 dec = mfspr(SPRN_DEC); 3524 tb = mftb(); 3525 if (dec < 512) 3526 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3527 local_paca->kvm_hstate.dec_expires = dec + tb; 3528 if (local_paca->kvm_hstate.dec_expires < time_limit) 3529 time_limit = local_paca->kvm_hstate.dec_expires; 3530 3531 vcpu->arch.ceded = 0; 3532 3533 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */ 3534 3535 kvmppc_subcore_enter_guest(); 3536 3537 vc->entry_exit_map = 1; 3538 vc->in_guest = 1; 3539 3540 if (vcpu->arch.vpa.pinned_addr) { 3541 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3542 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3543 lp->yield_count = cpu_to_be32(yield_count); 3544 vcpu->arch.vpa.dirty = 1; 3545 } 3546 3547 if (cpu_has_feature(CPU_FTR_TM) || 3548 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3549 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3550 3551 kvmhv_load_guest_pmu(vcpu); 3552 3553 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3554 load_fp_state(&vcpu->arch.fp); 3555 #ifdef CONFIG_ALTIVEC 3556 load_vr_state(&vcpu->arch.vr); 3557 #endif 3558 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 3559 3560 mtspr(SPRN_DSCR, vcpu->arch.dscr); 3561 mtspr(SPRN_IAMR, vcpu->arch.iamr); 3562 mtspr(SPRN_PSPB, vcpu->arch.pspb); 3563 mtspr(SPRN_FSCR, vcpu->arch.fscr); 3564 mtspr(SPRN_TAR, vcpu->arch.tar); 3565 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr); 3566 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr); 3567 mtspr(SPRN_BESCR, vcpu->arch.bescr); 3568 mtspr(SPRN_WORT, vcpu->arch.wort); 3569 mtspr(SPRN_TIDR, vcpu->arch.tid); 3570 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 3571 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 3572 mtspr(SPRN_AMR, vcpu->arch.amr); 3573 mtspr(SPRN_UAMOR, vcpu->arch.uamor); 3574 3575 if (!(vcpu->arch.ctrl & 1)) 3576 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1); 3577 3578 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb()); 3579 3580 if (kvmhv_on_pseries()) { 3581 /* 3582 * We need to save and restore the guest visible part of the 3583 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 3584 * doesn't do this for us. Note only required if pseries since 3585 * this is done in kvmhv_load_hv_regs_and_go() below otherwise. 3586 */ 3587 unsigned long host_psscr; 3588 /* call our hypervisor to load up HV regs and go */ 3589 struct hv_guest_state hvregs; 3590 3591 host_psscr = mfspr(SPRN_PSSCR_PR); 3592 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 3593 kvmhv_save_hv_regs(vcpu, &hvregs); 3594 hvregs.lpcr = lpcr; 3595 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 3596 hvregs.version = HV_GUEST_STATE_VERSION; 3597 if (vcpu->arch.nested) { 3598 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 3599 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 3600 } else { 3601 hvregs.lpid = vcpu->kvm->arch.lpid; 3602 hvregs.vcpu_token = vcpu->vcpu_id; 3603 } 3604 hvregs.hdec_expiry = time_limit; 3605 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 3606 __pa(&vcpu->arch.regs)); 3607 kvmhv_restore_hv_return_state(vcpu, &hvregs); 3608 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 3609 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 3610 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 3611 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 3612 mtspr(SPRN_PSSCR_PR, host_psscr); 3613 3614 /* H_CEDE has to be handled now, not later */ 3615 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 3616 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 3617 kvmppc_nested_cede(vcpu); 3618 kvmppc_set_gpr(vcpu, 3, 0); 3619 trap = 0; 3620 } 3621 } else { 3622 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr); 3623 } 3624 3625 vcpu->arch.slb_max = 0; 3626 dec = mfspr(SPRN_DEC); 3627 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 3628 dec = (s32) dec; 3629 tb = mftb(); 3630 vcpu->arch.dec_expires = dec + tb; 3631 vcpu->cpu = -1; 3632 vcpu->arch.thread_cpu = -1; 3633 vcpu->arch.ctrl = mfspr(SPRN_CTRLF); 3634 3635 vcpu->arch.iamr = mfspr(SPRN_IAMR); 3636 vcpu->arch.pspb = mfspr(SPRN_PSPB); 3637 vcpu->arch.fscr = mfspr(SPRN_FSCR); 3638 vcpu->arch.tar = mfspr(SPRN_TAR); 3639 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR); 3640 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR); 3641 vcpu->arch.bescr = mfspr(SPRN_BESCR); 3642 vcpu->arch.wort = mfspr(SPRN_WORT); 3643 vcpu->arch.tid = mfspr(SPRN_TIDR); 3644 vcpu->arch.amr = mfspr(SPRN_AMR); 3645 vcpu->arch.uamor = mfspr(SPRN_UAMOR); 3646 vcpu->arch.dscr = mfspr(SPRN_DSCR); 3647 3648 mtspr(SPRN_PSPB, 0); 3649 mtspr(SPRN_WORT, 0); 3650 mtspr(SPRN_UAMOR, 0); 3651 mtspr(SPRN_DSCR, host_dscr); 3652 mtspr(SPRN_TIDR, host_tidr); 3653 mtspr(SPRN_IAMR, host_iamr); 3654 mtspr(SPRN_PSPB, 0); 3655 3656 if (host_amr != vcpu->arch.amr) 3657 mtspr(SPRN_AMR, host_amr); 3658 3659 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3660 store_fp_state(&vcpu->arch.fp); 3661 #ifdef CONFIG_ALTIVEC 3662 store_vr_state(&vcpu->arch.vr); 3663 #endif 3664 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 3665 3666 if (cpu_has_feature(CPU_FTR_TM) || 3667 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3668 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3669 3670 save_pmu = 1; 3671 if (vcpu->arch.vpa.pinned_addr) { 3672 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3673 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3674 lp->yield_count = cpu_to_be32(yield_count); 3675 vcpu->arch.vpa.dirty = 1; 3676 save_pmu = lp->pmcregs_in_use; 3677 } 3678 /* Must save pmu if this guest is capable of running nested guests */ 3679 save_pmu |= nesting_enabled(vcpu->kvm); 3680 3681 kvmhv_save_guest_pmu(vcpu, save_pmu); 3682 3683 vc->entry_exit_map = 0x101; 3684 vc->in_guest = 0; 3685 3686 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb()); 3687 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso); 3688 3689 kvmhv_load_host_pmu(); 3690 3691 kvmppc_subcore_exit_guest(); 3692 3693 return trap; 3694 } 3695 3696 /* 3697 * Wait for some other vcpu thread to execute us, and 3698 * wake us up when we need to handle something in the host. 3699 */ 3700 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 3701 struct kvm_vcpu *vcpu, int wait_state) 3702 { 3703 DEFINE_WAIT(wait); 3704 3705 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 3706 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3707 spin_unlock(&vc->lock); 3708 schedule(); 3709 spin_lock(&vc->lock); 3710 } 3711 finish_wait(&vcpu->arch.cpu_run, &wait); 3712 } 3713 3714 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 3715 { 3716 if (!halt_poll_ns_grow) 3717 return; 3718 3719 vc->halt_poll_ns *= halt_poll_ns_grow; 3720 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 3721 vc->halt_poll_ns = halt_poll_ns_grow_start; 3722 } 3723 3724 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 3725 { 3726 if (halt_poll_ns_shrink == 0) 3727 vc->halt_poll_ns = 0; 3728 else 3729 vc->halt_poll_ns /= halt_poll_ns_shrink; 3730 } 3731 3732 #ifdef CONFIG_KVM_XICS 3733 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3734 { 3735 if (!xics_on_xive()) 3736 return false; 3737 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 3738 vcpu->arch.xive_saved_state.cppr; 3739 } 3740 #else 3741 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3742 { 3743 return false; 3744 } 3745 #endif /* CONFIG_KVM_XICS */ 3746 3747 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3748 { 3749 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3750 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3751 return true; 3752 3753 return false; 3754 } 3755 3756 /* 3757 * Check to see if any of the runnable vcpus on the vcore have pending 3758 * exceptions or are no longer ceded 3759 */ 3760 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3761 { 3762 struct kvm_vcpu *vcpu; 3763 int i; 3764 3765 for_each_runnable_thread(i, vcpu, vc) { 3766 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3767 return 1; 3768 } 3769 3770 return 0; 3771 } 3772 3773 /* 3774 * All the vcpus in this vcore are idle, so wait for a decrementer 3775 * or external interrupt to one of the vcpus. vc->lock is held. 3776 */ 3777 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3778 { 3779 ktime_t cur, start_poll, start_wait; 3780 int do_sleep = 1; 3781 u64 block_ns; 3782 3783 /* Poll for pending exceptions and ceded state */ 3784 cur = start_poll = ktime_get(); 3785 if (vc->halt_poll_ns) { 3786 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3787 ++vc->runner->stat.halt_attempted_poll; 3788 3789 vc->vcore_state = VCORE_POLLING; 3790 spin_unlock(&vc->lock); 3791 3792 do { 3793 if (kvmppc_vcore_check_block(vc)) { 3794 do_sleep = 0; 3795 break; 3796 } 3797 cur = ktime_get(); 3798 } while (single_task_running() && ktime_before(cur, stop)); 3799 3800 spin_lock(&vc->lock); 3801 vc->vcore_state = VCORE_INACTIVE; 3802 3803 if (!do_sleep) { 3804 ++vc->runner->stat.halt_successful_poll; 3805 goto out; 3806 } 3807 } 3808 3809 prepare_to_rcuwait(&vc->wait); 3810 set_current_state(TASK_INTERRUPTIBLE); 3811 if (kvmppc_vcore_check_block(vc)) { 3812 finish_rcuwait(&vc->wait); 3813 do_sleep = 0; 3814 /* If we polled, count this as a successful poll */ 3815 if (vc->halt_poll_ns) 3816 ++vc->runner->stat.halt_successful_poll; 3817 goto out; 3818 } 3819 3820 start_wait = ktime_get(); 3821 3822 vc->vcore_state = VCORE_SLEEPING; 3823 trace_kvmppc_vcore_blocked(vc, 0); 3824 spin_unlock(&vc->lock); 3825 schedule(); 3826 finish_rcuwait(&vc->wait); 3827 spin_lock(&vc->lock); 3828 vc->vcore_state = VCORE_INACTIVE; 3829 trace_kvmppc_vcore_blocked(vc, 1); 3830 ++vc->runner->stat.halt_successful_wait; 3831 3832 cur = ktime_get(); 3833 3834 out: 3835 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3836 3837 /* Attribute wait time */ 3838 if (do_sleep) { 3839 vc->runner->stat.halt_wait_ns += 3840 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3841 /* Attribute failed poll time */ 3842 if (vc->halt_poll_ns) 3843 vc->runner->stat.halt_poll_fail_ns += 3844 ktime_to_ns(start_wait) - 3845 ktime_to_ns(start_poll); 3846 } else { 3847 /* Attribute successful poll time */ 3848 if (vc->halt_poll_ns) 3849 vc->runner->stat.halt_poll_success_ns += 3850 ktime_to_ns(cur) - 3851 ktime_to_ns(start_poll); 3852 } 3853 3854 /* Adjust poll time */ 3855 if (halt_poll_ns) { 3856 if (block_ns <= vc->halt_poll_ns) 3857 ; 3858 /* We slept and blocked for longer than the max halt time */ 3859 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3860 shrink_halt_poll_ns(vc); 3861 /* We slept and our poll time is too small */ 3862 else if (vc->halt_poll_ns < halt_poll_ns && 3863 block_ns < halt_poll_ns) 3864 grow_halt_poll_ns(vc); 3865 if (vc->halt_poll_ns > halt_poll_ns) 3866 vc->halt_poll_ns = halt_poll_ns; 3867 } else 3868 vc->halt_poll_ns = 0; 3869 3870 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3871 } 3872 3873 /* 3874 * This never fails for a radix guest, as none of the operations it does 3875 * for a radix guest can fail or have a way to report failure. 3876 * kvmhv_run_single_vcpu() relies on this fact. 3877 */ 3878 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 3879 { 3880 int r = 0; 3881 struct kvm *kvm = vcpu->kvm; 3882 3883 mutex_lock(&kvm->arch.mmu_setup_lock); 3884 if (!kvm->arch.mmu_ready) { 3885 if (!kvm_is_radix(kvm)) 3886 r = kvmppc_hv_setup_htab_rma(vcpu); 3887 if (!r) { 3888 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3889 kvmppc_setup_partition_table(kvm); 3890 kvm->arch.mmu_ready = 1; 3891 } 3892 } 3893 mutex_unlock(&kvm->arch.mmu_setup_lock); 3894 return r; 3895 } 3896 3897 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 3898 { 3899 int n_ceded, i, r; 3900 struct kvmppc_vcore *vc; 3901 struct kvm_vcpu *v; 3902 3903 trace_kvmppc_run_vcpu_enter(vcpu); 3904 3905 kvm_run->exit_reason = 0; 3906 vcpu->arch.ret = RESUME_GUEST; 3907 vcpu->arch.trap = 0; 3908 kvmppc_update_vpas(vcpu); 3909 3910 /* 3911 * Synchronize with other threads in this virtual core 3912 */ 3913 vc = vcpu->arch.vcore; 3914 spin_lock(&vc->lock); 3915 vcpu->arch.ceded = 0; 3916 vcpu->arch.run_task = current; 3917 vcpu->arch.kvm_run = kvm_run; 3918 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3919 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3920 vcpu->arch.busy_preempt = TB_NIL; 3921 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 3922 ++vc->n_runnable; 3923 3924 /* 3925 * This happens the first time this is called for a vcpu. 3926 * If the vcore is already running, we may be able to start 3927 * this thread straight away and have it join in. 3928 */ 3929 if (!signal_pending(current)) { 3930 if ((vc->vcore_state == VCORE_PIGGYBACK || 3931 vc->vcore_state == VCORE_RUNNING) && 3932 !VCORE_IS_EXITING(vc)) { 3933 kvmppc_create_dtl_entry(vcpu, vc); 3934 kvmppc_start_thread(vcpu, vc); 3935 trace_kvm_guest_enter(vcpu); 3936 } else if (vc->vcore_state == VCORE_SLEEPING) { 3937 rcuwait_wake_up(&vc->wait); 3938 } 3939 3940 } 3941 3942 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3943 !signal_pending(current)) { 3944 /* See if the MMU is ready to go */ 3945 if (!vcpu->kvm->arch.mmu_ready) { 3946 spin_unlock(&vc->lock); 3947 r = kvmhv_setup_mmu(vcpu); 3948 spin_lock(&vc->lock); 3949 if (r) { 3950 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3951 kvm_run->fail_entry. 3952 hardware_entry_failure_reason = 0; 3953 vcpu->arch.ret = r; 3954 break; 3955 } 3956 } 3957 3958 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3959 kvmppc_vcore_end_preempt(vc); 3960 3961 if (vc->vcore_state != VCORE_INACTIVE) { 3962 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 3963 continue; 3964 } 3965 for_each_runnable_thread(i, v, vc) { 3966 kvmppc_core_prepare_to_enter(v); 3967 if (signal_pending(v->arch.run_task)) { 3968 kvmppc_remove_runnable(vc, v); 3969 v->stat.signal_exits++; 3970 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 3971 v->arch.ret = -EINTR; 3972 wake_up(&v->arch.cpu_run); 3973 } 3974 } 3975 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3976 break; 3977 n_ceded = 0; 3978 for_each_runnable_thread(i, v, vc) { 3979 if (!kvmppc_vcpu_woken(v)) 3980 n_ceded += v->arch.ceded; 3981 else 3982 v->arch.ceded = 0; 3983 } 3984 vc->runner = vcpu; 3985 if (n_ceded == vc->n_runnable) { 3986 kvmppc_vcore_blocked(vc); 3987 } else if (need_resched()) { 3988 kvmppc_vcore_preempt(vc); 3989 /* Let something else run */ 3990 cond_resched_lock(&vc->lock); 3991 if (vc->vcore_state == VCORE_PREEMPT) 3992 kvmppc_vcore_end_preempt(vc); 3993 } else { 3994 kvmppc_run_core(vc); 3995 } 3996 vc->runner = NULL; 3997 } 3998 3999 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4000 (vc->vcore_state == VCORE_RUNNING || 4001 vc->vcore_state == VCORE_EXITING || 4002 vc->vcore_state == VCORE_PIGGYBACK)) 4003 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4004 4005 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4006 kvmppc_vcore_end_preempt(vc); 4007 4008 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4009 kvmppc_remove_runnable(vc, vcpu); 4010 vcpu->stat.signal_exits++; 4011 kvm_run->exit_reason = KVM_EXIT_INTR; 4012 vcpu->arch.ret = -EINTR; 4013 } 4014 4015 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4016 /* Wake up some vcpu to run the core */ 4017 i = -1; 4018 v = next_runnable_thread(vc, &i); 4019 wake_up(&v->arch.cpu_run); 4020 } 4021 4022 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 4023 spin_unlock(&vc->lock); 4024 return vcpu->arch.ret; 4025 } 4026 4027 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run, 4028 struct kvm_vcpu *vcpu, u64 time_limit, 4029 unsigned long lpcr) 4030 { 4031 int trap, r, pcpu; 4032 int srcu_idx, lpid; 4033 struct kvmppc_vcore *vc; 4034 struct kvm *kvm = vcpu->kvm; 4035 struct kvm_nested_guest *nested = vcpu->arch.nested; 4036 4037 trace_kvmppc_run_vcpu_enter(vcpu); 4038 4039 kvm_run->exit_reason = 0; 4040 vcpu->arch.ret = RESUME_GUEST; 4041 vcpu->arch.trap = 0; 4042 4043 vc = vcpu->arch.vcore; 4044 vcpu->arch.ceded = 0; 4045 vcpu->arch.run_task = current; 4046 vcpu->arch.kvm_run = kvm_run; 4047 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4048 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4049 vcpu->arch.busy_preempt = TB_NIL; 4050 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4051 vc->runnable_threads[0] = vcpu; 4052 vc->n_runnable = 1; 4053 vc->runner = vcpu; 4054 4055 /* See if the MMU is ready to go */ 4056 if (!kvm->arch.mmu_ready) 4057 kvmhv_setup_mmu(vcpu); 4058 4059 if (need_resched()) 4060 cond_resched(); 4061 4062 kvmppc_update_vpas(vcpu); 4063 4064 init_vcore_to_run(vc); 4065 vc->preempt_tb = TB_NIL; 4066 4067 preempt_disable(); 4068 pcpu = smp_processor_id(); 4069 vc->pcpu = pcpu; 4070 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4071 4072 local_irq_disable(); 4073 hard_irq_disable(); 4074 if (signal_pending(current)) 4075 goto sigpend; 4076 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready) 4077 goto out; 4078 4079 if (!nested) { 4080 kvmppc_core_prepare_to_enter(vcpu); 4081 if (vcpu->arch.doorbell_request) { 4082 vc->dpdes = 1; 4083 smp_wmb(); 4084 vcpu->arch.doorbell_request = 0; 4085 } 4086 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4087 &vcpu->arch.pending_exceptions)) 4088 lpcr |= LPCR_MER; 4089 } else if (vcpu->arch.pending_exceptions || 4090 vcpu->arch.doorbell_request || 4091 xive_interrupt_pending(vcpu)) { 4092 vcpu->arch.ret = RESUME_HOST; 4093 goto out; 4094 } 4095 4096 kvmppc_clear_host_core(pcpu); 4097 4098 local_paca->kvm_hstate.tid = 0; 4099 local_paca->kvm_hstate.napping = 0; 4100 local_paca->kvm_hstate.kvm_split_mode = NULL; 4101 kvmppc_start_thread(vcpu, vc); 4102 kvmppc_create_dtl_entry(vcpu, vc); 4103 trace_kvm_guest_enter(vcpu); 4104 4105 vc->vcore_state = VCORE_RUNNING; 4106 trace_kvmppc_run_core(vc, 0); 4107 4108 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4109 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid; 4110 mtspr(SPRN_LPID, lpid); 4111 isync(); 4112 kvmppc_check_need_tlb_flush(kvm, pcpu, nested); 4113 } 4114 4115 guest_enter_irqoff(); 4116 4117 srcu_idx = srcu_read_lock(&kvm->srcu); 4118 4119 this_cpu_disable_ftrace(); 4120 4121 /* Tell lockdep that we're about to enable interrupts */ 4122 trace_hardirqs_on(); 4123 4124 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr); 4125 vcpu->arch.trap = trap; 4126 4127 trace_hardirqs_off(); 4128 4129 this_cpu_enable_ftrace(); 4130 4131 srcu_read_unlock(&kvm->srcu, srcu_idx); 4132 4133 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4134 mtspr(SPRN_LPID, kvm->arch.host_lpid); 4135 isync(); 4136 } 4137 4138 set_irq_happened(trap); 4139 4140 kvmppc_set_host_core(pcpu); 4141 4142 local_irq_enable(); 4143 guest_exit(); 4144 4145 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest); 4146 4147 preempt_enable(); 4148 4149 /* 4150 * cancel pending decrementer exception if DEC is now positive, or if 4151 * entering a nested guest in which case the decrementer is now owned 4152 * by L2 and the L1 decrementer is provided in hdec_expires 4153 */ 4154 if (kvmppc_core_pending_dec(vcpu) && 4155 ((get_tb() < vcpu->arch.dec_expires) || 4156 (trap == BOOK3S_INTERRUPT_SYSCALL && 4157 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4158 kvmppc_core_dequeue_dec(vcpu); 4159 4160 trace_kvm_guest_exit(vcpu); 4161 r = RESUME_GUEST; 4162 if (trap) { 4163 if (!nested) 4164 r = kvmppc_handle_exit_hv(kvm_run, vcpu, current); 4165 else 4166 r = kvmppc_handle_nested_exit(kvm_run, vcpu); 4167 } 4168 vcpu->arch.ret = r; 4169 4170 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded && 4171 !kvmppc_vcpu_woken(vcpu)) { 4172 kvmppc_set_timer(vcpu); 4173 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) { 4174 if (signal_pending(current)) { 4175 vcpu->stat.signal_exits++; 4176 kvm_run->exit_reason = KVM_EXIT_INTR; 4177 vcpu->arch.ret = -EINTR; 4178 break; 4179 } 4180 spin_lock(&vc->lock); 4181 kvmppc_vcore_blocked(vc); 4182 spin_unlock(&vc->lock); 4183 } 4184 } 4185 vcpu->arch.ceded = 0; 4186 4187 vc->vcore_state = VCORE_INACTIVE; 4188 trace_kvmppc_run_core(vc, 1); 4189 4190 done: 4191 kvmppc_remove_runnable(vc, vcpu); 4192 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 4193 4194 return vcpu->arch.ret; 4195 4196 sigpend: 4197 vcpu->stat.signal_exits++; 4198 kvm_run->exit_reason = KVM_EXIT_INTR; 4199 vcpu->arch.ret = -EINTR; 4200 out: 4201 local_irq_enable(); 4202 preempt_enable(); 4203 goto done; 4204 } 4205 4206 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 4207 { 4208 int r; 4209 int srcu_idx; 4210 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 4211 unsigned long user_tar = 0; 4212 unsigned int user_vrsave; 4213 struct kvm *kvm; 4214 4215 if (!vcpu->arch.sane) { 4216 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4217 return -EINVAL; 4218 } 4219 4220 /* 4221 * Don't allow entry with a suspended transaction, because 4222 * the guest entry/exit code will lose it. 4223 * If the guest has TM enabled, save away their TM-related SPRs 4224 * (they will get restored by the TM unavailable interrupt). 4225 */ 4226 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4227 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4228 (current->thread.regs->msr & MSR_TM)) { 4229 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4230 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4231 run->fail_entry.hardware_entry_failure_reason = 0; 4232 return -EINVAL; 4233 } 4234 /* Enable TM so we can read the TM SPRs */ 4235 mtmsr(mfmsr() | MSR_TM); 4236 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 4237 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 4238 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 4239 current->thread.regs->msr &= ~MSR_TM; 4240 } 4241 #endif 4242 4243 /* 4244 * Force online to 1 for the sake of old userspace which doesn't 4245 * set it. 4246 */ 4247 if (!vcpu->arch.online) { 4248 atomic_inc(&vcpu->arch.vcore->online_count); 4249 vcpu->arch.online = 1; 4250 } 4251 4252 kvmppc_core_prepare_to_enter(vcpu); 4253 4254 /* No need to go into the guest when all we'll do is come back out */ 4255 if (signal_pending(current)) { 4256 run->exit_reason = KVM_EXIT_INTR; 4257 return -EINTR; 4258 } 4259 4260 kvm = vcpu->kvm; 4261 atomic_inc(&kvm->arch.vcpus_running); 4262 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4263 smp_mb(); 4264 4265 flush_all_to_thread(current); 4266 4267 /* Save userspace EBB and other register values */ 4268 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4269 ebb_regs[0] = mfspr(SPRN_EBBHR); 4270 ebb_regs[1] = mfspr(SPRN_EBBRR); 4271 ebb_regs[2] = mfspr(SPRN_BESCR); 4272 user_tar = mfspr(SPRN_TAR); 4273 } 4274 user_vrsave = mfspr(SPRN_VRSAVE); 4275 4276 vcpu->arch.waitp = &vcpu->arch.vcore->wait; 4277 vcpu->arch.pgdir = kvm->mm->pgd; 4278 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4279 4280 do { 4281 /* 4282 * The early POWER9 chips that can't mix radix and HPT threads 4283 * on the same core also need the workaround for the problem 4284 * where the TLB would prefetch entries in the guest exit path 4285 * for radix guests using the guest PIDR value and LPID 0. 4286 * The workaround is in the old path (kvmppc_run_vcpu()) 4287 * but not the new path (kvmhv_run_single_vcpu()). 4288 */ 4289 if (kvm->arch.threads_indep && kvm_is_radix(kvm) && 4290 !no_mixing_hpt_and_radix) 4291 r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0, 4292 vcpu->arch.vcore->lpcr); 4293 else 4294 r = kvmppc_run_vcpu(run, vcpu); 4295 4296 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 4297 !(vcpu->arch.shregs.msr & MSR_PR)) { 4298 trace_kvm_hcall_enter(vcpu); 4299 r = kvmppc_pseries_do_hcall(vcpu); 4300 trace_kvm_hcall_exit(vcpu, r); 4301 kvmppc_core_prepare_to_enter(vcpu); 4302 } else if (r == RESUME_PAGE_FAULT) { 4303 srcu_idx = srcu_read_lock(&kvm->srcu); 4304 r = kvmppc_book3s_hv_page_fault(run, vcpu, 4305 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4306 srcu_read_unlock(&kvm->srcu, srcu_idx); 4307 } else if (r == RESUME_PASSTHROUGH) { 4308 if (WARN_ON(xics_on_xive())) 4309 r = H_SUCCESS; 4310 else 4311 r = kvmppc_xics_rm_complete(vcpu, 0); 4312 } 4313 } while (is_kvmppc_resume_guest(r)); 4314 4315 /* Restore userspace EBB and other register values */ 4316 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4317 mtspr(SPRN_EBBHR, ebb_regs[0]); 4318 mtspr(SPRN_EBBRR, ebb_regs[1]); 4319 mtspr(SPRN_BESCR, ebb_regs[2]); 4320 mtspr(SPRN_TAR, user_tar); 4321 mtspr(SPRN_FSCR, current->thread.fscr); 4322 } 4323 mtspr(SPRN_VRSAVE, user_vrsave); 4324 4325 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4326 atomic_dec(&kvm->arch.vcpus_running); 4327 return r; 4328 } 4329 4330 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4331 int shift, int sllp) 4332 { 4333 (*sps)->page_shift = shift; 4334 (*sps)->slb_enc = sllp; 4335 (*sps)->enc[0].page_shift = shift; 4336 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4337 /* 4338 * Add 16MB MPSS support (may get filtered out by userspace) 4339 */ 4340 if (shift != 24) { 4341 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4342 if (penc != -1) { 4343 (*sps)->enc[1].page_shift = 24; 4344 (*sps)->enc[1].pte_enc = penc; 4345 } 4346 } 4347 (*sps)++; 4348 } 4349 4350 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4351 struct kvm_ppc_smmu_info *info) 4352 { 4353 struct kvm_ppc_one_seg_page_size *sps; 4354 4355 /* 4356 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4357 * POWER7 doesn't support keys for instruction accesses, 4358 * POWER8 and POWER9 do. 4359 */ 4360 info->data_keys = 32; 4361 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4362 4363 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4364 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4365 info->slb_size = 32; 4366 4367 /* We only support these sizes for now, and no muti-size segments */ 4368 sps = &info->sps[0]; 4369 kvmppc_add_seg_page_size(&sps, 12, 0); 4370 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4371 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4372 4373 /* If running as a nested hypervisor, we don't support HPT guests */ 4374 if (kvmhv_on_pseries()) 4375 info->flags |= KVM_PPC_NO_HASH; 4376 4377 return 0; 4378 } 4379 4380 /* 4381 * Get (and clear) the dirty memory log for a memory slot. 4382 */ 4383 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4384 struct kvm_dirty_log *log) 4385 { 4386 struct kvm_memslots *slots; 4387 struct kvm_memory_slot *memslot; 4388 int i, r; 4389 unsigned long n; 4390 unsigned long *buf, *p; 4391 struct kvm_vcpu *vcpu; 4392 4393 mutex_lock(&kvm->slots_lock); 4394 4395 r = -EINVAL; 4396 if (log->slot >= KVM_USER_MEM_SLOTS) 4397 goto out; 4398 4399 slots = kvm_memslots(kvm); 4400 memslot = id_to_memslot(slots, log->slot); 4401 r = -ENOENT; 4402 if (!memslot || !memslot->dirty_bitmap) 4403 goto out; 4404 4405 /* 4406 * Use second half of bitmap area because both HPT and radix 4407 * accumulate bits in the first half. 4408 */ 4409 n = kvm_dirty_bitmap_bytes(memslot); 4410 buf = memslot->dirty_bitmap + n / sizeof(long); 4411 memset(buf, 0, n); 4412 4413 if (kvm_is_radix(kvm)) 4414 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4415 else 4416 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4417 if (r) 4418 goto out; 4419 4420 /* 4421 * We accumulate dirty bits in the first half of the 4422 * memslot's dirty_bitmap area, for when pages are paged 4423 * out or modified by the host directly. Pick up these 4424 * bits and add them to the map. 4425 */ 4426 p = memslot->dirty_bitmap; 4427 for (i = 0; i < n / sizeof(long); ++i) 4428 buf[i] |= xchg(&p[i], 0); 4429 4430 /* Harvest dirty bits from VPA and DTL updates */ 4431 /* Note: we never modify the SLB shadow buffer areas */ 4432 kvm_for_each_vcpu(i, vcpu, kvm) { 4433 spin_lock(&vcpu->arch.vpa_update_lock); 4434 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4435 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4436 spin_unlock(&vcpu->arch.vpa_update_lock); 4437 } 4438 4439 r = -EFAULT; 4440 if (copy_to_user(log->dirty_bitmap, buf, n)) 4441 goto out; 4442 4443 r = 0; 4444 out: 4445 mutex_unlock(&kvm->slots_lock); 4446 return r; 4447 } 4448 4449 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) 4450 { 4451 vfree(slot->arch.rmap); 4452 slot->arch.rmap = NULL; 4453 } 4454 4455 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 4456 struct kvm_memory_slot *slot, 4457 const struct kvm_userspace_memory_region *mem, 4458 enum kvm_mr_change change) 4459 { 4460 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4461 4462 if (change == KVM_MR_CREATE) { 4463 slot->arch.rmap = vzalloc(array_size(npages, 4464 sizeof(*slot->arch.rmap))); 4465 if (!slot->arch.rmap) 4466 return -ENOMEM; 4467 } 4468 4469 return 0; 4470 } 4471 4472 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 4473 const struct kvm_userspace_memory_region *mem, 4474 const struct kvm_memory_slot *old, 4475 const struct kvm_memory_slot *new, 4476 enum kvm_mr_change change) 4477 { 4478 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4479 4480 /* 4481 * If we are making a new memslot, it might make 4482 * some address that was previously cached as emulated 4483 * MMIO be no longer emulated MMIO, so invalidate 4484 * all the caches of emulated MMIO translations. 4485 */ 4486 if (npages) 4487 atomic64_inc(&kvm->arch.mmio_update); 4488 4489 /* 4490 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 4491 * have already called kvm_arch_flush_shadow_memslot() to 4492 * flush shadow mappings. For KVM_MR_CREATE we have no 4493 * previous mappings. So the only case to handle is 4494 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 4495 * has been changed. 4496 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 4497 * to get rid of any THP PTEs in the partition-scoped page tables 4498 * so we can track dirtiness at the page level; we flush when 4499 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 4500 * using THP PTEs. 4501 */ 4502 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 4503 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 4504 kvmppc_radix_flush_memslot(kvm, old); 4505 /* 4506 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 4507 */ 4508 if (!kvm->arch.secure_guest) 4509 return; 4510 4511 switch (change) { 4512 case KVM_MR_CREATE: 4513 if (kvmppc_uvmem_slot_init(kvm, new)) 4514 return; 4515 uv_register_mem_slot(kvm->arch.lpid, 4516 new->base_gfn << PAGE_SHIFT, 4517 new->npages * PAGE_SIZE, 4518 0, new->id); 4519 break; 4520 case KVM_MR_DELETE: 4521 uv_unregister_mem_slot(kvm->arch.lpid, old->id); 4522 kvmppc_uvmem_slot_free(kvm, old); 4523 break; 4524 default: 4525 /* TODO: Handle KVM_MR_MOVE */ 4526 break; 4527 } 4528 } 4529 4530 /* 4531 * Update LPCR values in kvm->arch and in vcores. 4532 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 4533 * of kvm->arch.lpcr update). 4534 */ 4535 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 4536 { 4537 long int i; 4538 u32 cores_done = 0; 4539 4540 if ((kvm->arch.lpcr & mask) == lpcr) 4541 return; 4542 4543 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 4544 4545 for (i = 0; i < KVM_MAX_VCORES; ++i) { 4546 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 4547 if (!vc) 4548 continue; 4549 spin_lock(&vc->lock); 4550 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 4551 spin_unlock(&vc->lock); 4552 if (++cores_done >= kvm->arch.online_vcores) 4553 break; 4554 } 4555 } 4556 4557 void kvmppc_setup_partition_table(struct kvm *kvm) 4558 { 4559 unsigned long dw0, dw1; 4560 4561 if (!kvm_is_radix(kvm)) { 4562 /* PS field - page size for VRMA */ 4563 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 4564 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 4565 /* HTABSIZE and HTABORG fields */ 4566 dw0 |= kvm->arch.sdr1; 4567 4568 /* Second dword as set by userspace */ 4569 dw1 = kvm->arch.process_table; 4570 } else { 4571 dw0 = PATB_HR | radix__get_tree_size() | 4572 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 4573 dw1 = PATB_GR | kvm->arch.process_table; 4574 } 4575 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 4576 } 4577 4578 /* 4579 * Set up HPT (hashed page table) and RMA (real-mode area). 4580 * Must be called with kvm->arch.mmu_setup_lock held. 4581 */ 4582 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 4583 { 4584 int err = 0; 4585 struct kvm *kvm = vcpu->kvm; 4586 unsigned long hva; 4587 struct kvm_memory_slot *memslot; 4588 struct vm_area_struct *vma; 4589 unsigned long lpcr = 0, senc; 4590 unsigned long psize, porder; 4591 int srcu_idx; 4592 4593 /* Allocate hashed page table (if not done already) and reset it */ 4594 if (!kvm->arch.hpt.virt) { 4595 int order = KVM_DEFAULT_HPT_ORDER; 4596 struct kvm_hpt_info info; 4597 4598 err = kvmppc_allocate_hpt(&info, order); 4599 /* If we get here, it means userspace didn't specify a 4600 * size explicitly. So, try successively smaller 4601 * sizes if the default failed. */ 4602 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 4603 err = kvmppc_allocate_hpt(&info, order); 4604 4605 if (err < 0) { 4606 pr_err("KVM: Couldn't alloc HPT\n"); 4607 goto out; 4608 } 4609 4610 kvmppc_set_hpt(kvm, &info); 4611 } 4612 4613 /* Look up the memslot for guest physical address 0 */ 4614 srcu_idx = srcu_read_lock(&kvm->srcu); 4615 memslot = gfn_to_memslot(kvm, 0); 4616 4617 /* We must have some memory at 0 by now */ 4618 err = -EINVAL; 4619 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 4620 goto out_srcu; 4621 4622 /* Look up the VMA for the start of this memory slot */ 4623 hva = memslot->userspace_addr; 4624 mmap_read_lock(kvm->mm); 4625 vma = find_vma(kvm->mm, hva); 4626 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 4627 goto up_out; 4628 4629 psize = vma_kernel_pagesize(vma); 4630 4631 mmap_read_unlock(kvm->mm); 4632 4633 /* We can handle 4k, 64k or 16M pages in the VRMA */ 4634 if (psize >= 0x1000000) 4635 psize = 0x1000000; 4636 else if (psize >= 0x10000) 4637 psize = 0x10000; 4638 else 4639 psize = 0x1000; 4640 porder = __ilog2(psize); 4641 4642 senc = slb_pgsize_encoding(psize); 4643 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 4644 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4645 /* Create HPTEs in the hash page table for the VRMA */ 4646 kvmppc_map_vrma(vcpu, memslot, porder); 4647 4648 /* Update VRMASD field in the LPCR */ 4649 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 4650 /* the -4 is to account for senc values starting at 0x10 */ 4651 lpcr = senc << (LPCR_VRMASD_SH - 4); 4652 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 4653 } 4654 4655 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 4656 smp_wmb(); 4657 err = 0; 4658 out_srcu: 4659 srcu_read_unlock(&kvm->srcu, srcu_idx); 4660 out: 4661 return err; 4662 4663 up_out: 4664 mmap_read_unlock(kvm->mm); 4665 goto out_srcu; 4666 } 4667 4668 /* 4669 * Must be called with kvm->arch.mmu_setup_lock held and 4670 * mmu_ready = 0 and no vcpus running. 4671 */ 4672 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 4673 { 4674 if (nesting_enabled(kvm)) 4675 kvmhv_release_all_nested(kvm); 4676 kvmppc_rmap_reset(kvm); 4677 kvm->arch.process_table = 0; 4678 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4679 spin_lock(&kvm->mmu_lock); 4680 kvm->arch.radix = 0; 4681 spin_unlock(&kvm->mmu_lock); 4682 kvmppc_free_radix(kvm); 4683 kvmppc_update_lpcr(kvm, LPCR_VPM1, 4684 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4685 return 0; 4686 } 4687 4688 /* 4689 * Must be called with kvm->arch.mmu_setup_lock held and 4690 * mmu_ready = 0 and no vcpus running. 4691 */ 4692 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 4693 { 4694 int err; 4695 4696 err = kvmppc_init_vm_radix(kvm); 4697 if (err) 4698 return err; 4699 kvmppc_rmap_reset(kvm); 4700 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4701 spin_lock(&kvm->mmu_lock); 4702 kvm->arch.radix = 1; 4703 spin_unlock(&kvm->mmu_lock); 4704 kvmppc_free_hpt(&kvm->arch.hpt); 4705 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 4706 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4707 return 0; 4708 } 4709 4710 #ifdef CONFIG_KVM_XICS 4711 /* 4712 * Allocate a per-core structure for managing state about which cores are 4713 * running in the host versus the guest and for exchanging data between 4714 * real mode KVM and CPU running in the host. 4715 * This is only done for the first VM. 4716 * The allocated structure stays even if all VMs have stopped. 4717 * It is only freed when the kvm-hv module is unloaded. 4718 * It's OK for this routine to fail, we just don't support host 4719 * core operations like redirecting H_IPI wakeups. 4720 */ 4721 void kvmppc_alloc_host_rm_ops(void) 4722 { 4723 struct kvmppc_host_rm_ops *ops; 4724 unsigned long l_ops; 4725 int cpu, core; 4726 int size; 4727 4728 /* Not the first time here ? */ 4729 if (kvmppc_host_rm_ops_hv != NULL) 4730 return; 4731 4732 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 4733 if (!ops) 4734 return; 4735 4736 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 4737 ops->rm_core = kzalloc(size, GFP_KERNEL); 4738 4739 if (!ops->rm_core) { 4740 kfree(ops); 4741 return; 4742 } 4743 4744 cpus_read_lock(); 4745 4746 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 4747 if (!cpu_online(cpu)) 4748 continue; 4749 4750 core = cpu >> threads_shift; 4751 ops->rm_core[core].rm_state.in_host = 1; 4752 } 4753 4754 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 4755 4756 /* 4757 * Make the contents of the kvmppc_host_rm_ops structure visible 4758 * to other CPUs before we assign it to the global variable. 4759 * Do an atomic assignment (no locks used here), but if someone 4760 * beats us to it, just free our copy and return. 4761 */ 4762 smp_wmb(); 4763 l_ops = (unsigned long) ops; 4764 4765 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 4766 cpus_read_unlock(); 4767 kfree(ops->rm_core); 4768 kfree(ops); 4769 return; 4770 } 4771 4772 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 4773 "ppc/kvm_book3s:prepare", 4774 kvmppc_set_host_core, 4775 kvmppc_clear_host_core); 4776 cpus_read_unlock(); 4777 } 4778 4779 void kvmppc_free_host_rm_ops(void) 4780 { 4781 if (kvmppc_host_rm_ops_hv) { 4782 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 4783 kfree(kvmppc_host_rm_ops_hv->rm_core); 4784 kfree(kvmppc_host_rm_ops_hv); 4785 kvmppc_host_rm_ops_hv = NULL; 4786 } 4787 } 4788 #endif 4789 4790 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 4791 { 4792 unsigned long lpcr, lpid; 4793 char buf[32]; 4794 int ret; 4795 4796 mutex_init(&kvm->arch.uvmem_lock); 4797 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 4798 mutex_init(&kvm->arch.mmu_setup_lock); 4799 4800 /* Allocate the guest's logical partition ID */ 4801 4802 lpid = kvmppc_alloc_lpid(); 4803 if ((long)lpid < 0) 4804 return -ENOMEM; 4805 kvm->arch.lpid = lpid; 4806 4807 kvmppc_alloc_host_rm_ops(); 4808 4809 kvmhv_vm_nested_init(kvm); 4810 4811 /* 4812 * Since we don't flush the TLB when tearing down a VM, 4813 * and this lpid might have previously been used, 4814 * make sure we flush on each core before running the new VM. 4815 * On POWER9, the tlbie in mmu_partition_table_set_entry() 4816 * does this flush for us. 4817 */ 4818 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4819 cpumask_setall(&kvm->arch.need_tlb_flush); 4820 4821 /* Start out with the default set of hcalls enabled */ 4822 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 4823 sizeof(kvm->arch.enabled_hcalls)); 4824 4825 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4826 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 4827 4828 /* Init LPCR for virtual RMA mode */ 4829 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4830 kvm->arch.host_lpid = mfspr(SPRN_LPID); 4831 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 4832 lpcr &= LPCR_PECE | LPCR_LPES; 4833 } else { 4834 lpcr = 0; 4835 } 4836 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 4837 LPCR_VPM0 | LPCR_VPM1; 4838 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 4839 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4840 /* On POWER8 turn on online bit to enable PURR/SPURR */ 4841 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4842 lpcr |= LPCR_ONL; 4843 /* 4844 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 4845 * Set HVICE bit to enable hypervisor virtualization interrupts. 4846 * Set HEIC to prevent OS interrupts to go to hypervisor (should 4847 * be unnecessary but better safe than sorry in case we re-enable 4848 * EE in HV mode with this LPCR still set) 4849 */ 4850 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4851 lpcr &= ~LPCR_VPM0; 4852 lpcr |= LPCR_HVICE | LPCR_HEIC; 4853 4854 /* 4855 * If xive is enabled, we route 0x500 interrupts directly 4856 * to the guest. 4857 */ 4858 if (xics_on_xive()) 4859 lpcr |= LPCR_LPES; 4860 } 4861 4862 /* 4863 * If the host uses radix, the guest starts out as radix. 4864 */ 4865 if (radix_enabled()) { 4866 kvm->arch.radix = 1; 4867 kvm->arch.mmu_ready = 1; 4868 lpcr &= ~LPCR_VPM1; 4869 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 4870 ret = kvmppc_init_vm_radix(kvm); 4871 if (ret) { 4872 kvmppc_free_lpid(kvm->arch.lpid); 4873 return ret; 4874 } 4875 kvmppc_setup_partition_table(kvm); 4876 } 4877 4878 kvm->arch.lpcr = lpcr; 4879 4880 /* Initialization for future HPT resizes */ 4881 kvm->arch.resize_hpt = NULL; 4882 4883 /* 4884 * Work out how many sets the TLB has, for the use of 4885 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 4886 */ 4887 if (radix_enabled()) 4888 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 4889 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 4890 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 4891 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4892 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 4893 else 4894 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 4895 4896 /* 4897 * Track that we now have a HV mode VM active. This blocks secondary 4898 * CPU threads from coming online. 4899 * On POWER9, we only need to do this if the "indep_threads_mode" 4900 * module parameter has been set to N. 4901 */ 4902 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4903 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) { 4904 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n"); 4905 kvm->arch.threads_indep = true; 4906 } else { 4907 kvm->arch.threads_indep = indep_threads_mode; 4908 } 4909 } 4910 if (!kvm->arch.threads_indep) 4911 kvm_hv_vm_activated(); 4912 4913 /* 4914 * Initialize smt_mode depending on processor. 4915 * POWER8 and earlier have to use "strict" threading, where 4916 * all vCPUs in a vcore have to run on the same (sub)core, 4917 * whereas on POWER9 the threads can each run a different 4918 * guest. 4919 */ 4920 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4921 kvm->arch.smt_mode = threads_per_subcore; 4922 else 4923 kvm->arch.smt_mode = 1; 4924 kvm->arch.emul_smt_mode = 1; 4925 4926 /* 4927 * Create a debugfs directory for the VM 4928 */ 4929 snprintf(buf, sizeof(buf), "vm%d", current->pid); 4930 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 4931 kvmppc_mmu_debugfs_init(kvm); 4932 if (radix_enabled()) 4933 kvmhv_radix_debugfs_init(kvm); 4934 4935 return 0; 4936 } 4937 4938 static void kvmppc_free_vcores(struct kvm *kvm) 4939 { 4940 long int i; 4941 4942 for (i = 0; i < KVM_MAX_VCORES; ++i) 4943 kfree(kvm->arch.vcores[i]); 4944 kvm->arch.online_vcores = 0; 4945 } 4946 4947 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 4948 { 4949 debugfs_remove_recursive(kvm->arch.debugfs_dir); 4950 4951 if (!kvm->arch.threads_indep) 4952 kvm_hv_vm_deactivated(); 4953 4954 kvmppc_free_vcores(kvm); 4955 4956 4957 if (kvm_is_radix(kvm)) 4958 kvmppc_free_radix(kvm); 4959 else 4960 kvmppc_free_hpt(&kvm->arch.hpt); 4961 4962 /* Perform global invalidation and return lpid to the pool */ 4963 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4964 if (nesting_enabled(kvm)) 4965 kvmhv_release_all_nested(kvm); 4966 kvm->arch.process_table = 0; 4967 if (kvm->arch.secure_guest) 4968 uv_svm_terminate(kvm->arch.lpid); 4969 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 4970 } 4971 4972 kvmppc_free_lpid(kvm->arch.lpid); 4973 4974 kvmppc_free_pimap(kvm); 4975 } 4976 4977 /* We don't need to emulate any privileged instructions or dcbz */ 4978 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 4979 unsigned int inst, int *advance) 4980 { 4981 return EMULATE_FAIL; 4982 } 4983 4984 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 4985 ulong spr_val) 4986 { 4987 return EMULATE_FAIL; 4988 } 4989 4990 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 4991 ulong *spr_val) 4992 { 4993 return EMULATE_FAIL; 4994 } 4995 4996 static int kvmppc_core_check_processor_compat_hv(void) 4997 { 4998 if (cpu_has_feature(CPU_FTR_HVMODE) && 4999 cpu_has_feature(CPU_FTR_ARCH_206)) 5000 return 0; 5001 5002 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5003 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5004 return 0; 5005 5006 return -EIO; 5007 } 5008 5009 #ifdef CONFIG_KVM_XICS 5010 5011 void kvmppc_free_pimap(struct kvm *kvm) 5012 { 5013 kfree(kvm->arch.pimap); 5014 } 5015 5016 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5017 { 5018 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5019 } 5020 5021 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5022 { 5023 struct irq_desc *desc; 5024 struct kvmppc_irq_map *irq_map; 5025 struct kvmppc_passthru_irqmap *pimap; 5026 struct irq_chip *chip; 5027 int i, rc = 0; 5028 5029 if (!kvm_irq_bypass) 5030 return 1; 5031 5032 desc = irq_to_desc(host_irq); 5033 if (!desc) 5034 return -EIO; 5035 5036 mutex_lock(&kvm->lock); 5037 5038 pimap = kvm->arch.pimap; 5039 if (pimap == NULL) { 5040 /* First call, allocate structure to hold IRQ map */ 5041 pimap = kvmppc_alloc_pimap(); 5042 if (pimap == NULL) { 5043 mutex_unlock(&kvm->lock); 5044 return -ENOMEM; 5045 } 5046 kvm->arch.pimap = pimap; 5047 } 5048 5049 /* 5050 * For now, we only support interrupts for which the EOI operation 5051 * is an OPAL call followed by a write to XIRR, since that's 5052 * what our real-mode EOI code does, or a XIVE interrupt 5053 */ 5054 chip = irq_data_get_irq_chip(&desc->irq_data); 5055 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 5056 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5057 host_irq, guest_gsi); 5058 mutex_unlock(&kvm->lock); 5059 return -ENOENT; 5060 } 5061 5062 /* 5063 * See if we already have an entry for this guest IRQ number. 5064 * If it's mapped to a hardware IRQ number, that's an error, 5065 * otherwise re-use this entry. 5066 */ 5067 for (i = 0; i < pimap->n_mapped; i++) { 5068 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5069 if (pimap->mapped[i].r_hwirq) { 5070 mutex_unlock(&kvm->lock); 5071 return -EINVAL; 5072 } 5073 break; 5074 } 5075 } 5076 5077 if (i == KVMPPC_PIRQ_MAPPED) { 5078 mutex_unlock(&kvm->lock); 5079 return -EAGAIN; /* table is full */ 5080 } 5081 5082 irq_map = &pimap->mapped[i]; 5083 5084 irq_map->v_hwirq = guest_gsi; 5085 irq_map->desc = desc; 5086 5087 /* 5088 * Order the above two stores before the next to serialize with 5089 * the KVM real mode handler. 5090 */ 5091 smp_wmb(); 5092 irq_map->r_hwirq = desc->irq_data.hwirq; 5093 5094 if (i == pimap->n_mapped) 5095 pimap->n_mapped++; 5096 5097 if (xics_on_xive()) 5098 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 5099 else 5100 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 5101 if (rc) 5102 irq_map->r_hwirq = 0; 5103 5104 mutex_unlock(&kvm->lock); 5105 5106 return 0; 5107 } 5108 5109 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5110 { 5111 struct irq_desc *desc; 5112 struct kvmppc_passthru_irqmap *pimap; 5113 int i, rc = 0; 5114 5115 if (!kvm_irq_bypass) 5116 return 0; 5117 5118 desc = irq_to_desc(host_irq); 5119 if (!desc) 5120 return -EIO; 5121 5122 mutex_lock(&kvm->lock); 5123 if (!kvm->arch.pimap) 5124 goto unlock; 5125 5126 pimap = kvm->arch.pimap; 5127 5128 for (i = 0; i < pimap->n_mapped; i++) { 5129 if (guest_gsi == pimap->mapped[i].v_hwirq) 5130 break; 5131 } 5132 5133 if (i == pimap->n_mapped) { 5134 mutex_unlock(&kvm->lock); 5135 return -ENODEV; 5136 } 5137 5138 if (xics_on_xive()) 5139 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 5140 else 5141 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5142 5143 /* invalidate the entry (what do do on error from the above ?) */ 5144 pimap->mapped[i].r_hwirq = 0; 5145 5146 /* 5147 * We don't free this structure even when the count goes to 5148 * zero. The structure is freed when we destroy the VM. 5149 */ 5150 unlock: 5151 mutex_unlock(&kvm->lock); 5152 return rc; 5153 } 5154 5155 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5156 struct irq_bypass_producer *prod) 5157 { 5158 int ret = 0; 5159 struct kvm_kernel_irqfd *irqfd = 5160 container_of(cons, struct kvm_kernel_irqfd, consumer); 5161 5162 irqfd->producer = prod; 5163 5164 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5165 if (ret) 5166 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5167 prod->irq, irqfd->gsi, ret); 5168 5169 return ret; 5170 } 5171 5172 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5173 struct irq_bypass_producer *prod) 5174 { 5175 int ret; 5176 struct kvm_kernel_irqfd *irqfd = 5177 container_of(cons, struct kvm_kernel_irqfd, consumer); 5178 5179 irqfd->producer = NULL; 5180 5181 /* 5182 * When producer of consumer is unregistered, we change back to 5183 * default external interrupt handling mode - KVM real mode 5184 * will switch back to host. 5185 */ 5186 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5187 if (ret) 5188 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5189 prod->irq, irqfd->gsi, ret); 5190 } 5191 #endif 5192 5193 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5194 unsigned int ioctl, unsigned long arg) 5195 { 5196 struct kvm *kvm __maybe_unused = filp->private_data; 5197 void __user *argp = (void __user *)arg; 5198 long r; 5199 5200 switch (ioctl) { 5201 5202 case KVM_PPC_ALLOCATE_HTAB: { 5203 u32 htab_order; 5204 5205 r = -EFAULT; 5206 if (get_user(htab_order, (u32 __user *)argp)) 5207 break; 5208 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5209 if (r) 5210 break; 5211 r = 0; 5212 break; 5213 } 5214 5215 case KVM_PPC_GET_HTAB_FD: { 5216 struct kvm_get_htab_fd ghf; 5217 5218 r = -EFAULT; 5219 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5220 break; 5221 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5222 break; 5223 } 5224 5225 case KVM_PPC_RESIZE_HPT_PREPARE: { 5226 struct kvm_ppc_resize_hpt rhpt; 5227 5228 r = -EFAULT; 5229 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5230 break; 5231 5232 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5233 break; 5234 } 5235 5236 case KVM_PPC_RESIZE_HPT_COMMIT: { 5237 struct kvm_ppc_resize_hpt rhpt; 5238 5239 r = -EFAULT; 5240 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5241 break; 5242 5243 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5244 break; 5245 } 5246 5247 default: 5248 r = -ENOTTY; 5249 } 5250 5251 return r; 5252 } 5253 5254 /* 5255 * List of hcall numbers to enable by default. 5256 * For compatibility with old userspace, we enable by default 5257 * all hcalls that were implemented before the hcall-enabling 5258 * facility was added. Note this list should not include H_RTAS. 5259 */ 5260 static unsigned int default_hcall_list[] = { 5261 H_REMOVE, 5262 H_ENTER, 5263 H_READ, 5264 H_PROTECT, 5265 H_BULK_REMOVE, 5266 H_GET_TCE, 5267 H_PUT_TCE, 5268 H_SET_DABR, 5269 H_SET_XDABR, 5270 H_CEDE, 5271 H_PROD, 5272 H_CONFER, 5273 H_REGISTER_VPA, 5274 #ifdef CONFIG_KVM_XICS 5275 H_EOI, 5276 H_CPPR, 5277 H_IPI, 5278 H_IPOLL, 5279 H_XIRR, 5280 H_XIRR_X, 5281 #endif 5282 0 5283 }; 5284 5285 static void init_default_hcalls(void) 5286 { 5287 int i; 5288 unsigned int hcall; 5289 5290 for (i = 0; default_hcall_list[i]; ++i) { 5291 hcall = default_hcall_list[i]; 5292 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5293 __set_bit(hcall / 4, default_enabled_hcalls); 5294 } 5295 } 5296 5297 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5298 { 5299 unsigned long lpcr; 5300 int radix; 5301 int err; 5302 5303 /* If not on a POWER9, reject it */ 5304 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5305 return -ENODEV; 5306 5307 /* If any unknown flags set, reject it */ 5308 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5309 return -EINVAL; 5310 5311 /* GR (guest radix) bit in process_table field must match */ 5312 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5313 if (!!(cfg->process_table & PATB_GR) != radix) 5314 return -EINVAL; 5315 5316 /* Process table size field must be reasonable, i.e. <= 24 */ 5317 if ((cfg->process_table & PRTS_MASK) > 24) 5318 return -EINVAL; 5319 5320 /* We can change a guest to/from radix now, if the host is radix */ 5321 if (radix && !radix_enabled()) 5322 return -EINVAL; 5323 5324 /* If we're a nested hypervisor, we currently only support radix */ 5325 if (kvmhv_on_pseries() && !radix) 5326 return -EINVAL; 5327 5328 mutex_lock(&kvm->arch.mmu_setup_lock); 5329 if (radix != kvm_is_radix(kvm)) { 5330 if (kvm->arch.mmu_ready) { 5331 kvm->arch.mmu_ready = 0; 5332 /* order mmu_ready vs. vcpus_running */ 5333 smp_mb(); 5334 if (atomic_read(&kvm->arch.vcpus_running)) { 5335 kvm->arch.mmu_ready = 1; 5336 err = -EBUSY; 5337 goto out_unlock; 5338 } 5339 } 5340 if (radix) 5341 err = kvmppc_switch_mmu_to_radix(kvm); 5342 else 5343 err = kvmppc_switch_mmu_to_hpt(kvm); 5344 if (err) 5345 goto out_unlock; 5346 } 5347 5348 kvm->arch.process_table = cfg->process_table; 5349 kvmppc_setup_partition_table(kvm); 5350 5351 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5352 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5353 err = 0; 5354 5355 out_unlock: 5356 mutex_unlock(&kvm->arch.mmu_setup_lock); 5357 return err; 5358 } 5359 5360 static int kvmhv_enable_nested(struct kvm *kvm) 5361 { 5362 if (!nested) 5363 return -EPERM; 5364 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix) 5365 return -ENODEV; 5366 5367 /* kvm == NULL means the caller is testing if the capability exists */ 5368 if (kvm) 5369 kvm->arch.nested_enable = true; 5370 return 0; 5371 } 5372 5373 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5374 int size) 5375 { 5376 int rc = -EINVAL; 5377 5378 if (kvmhv_vcpu_is_radix(vcpu)) { 5379 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5380 5381 if (rc > 0) 5382 rc = -EINVAL; 5383 } 5384 5385 /* For now quadrants are the only way to access nested guest memory */ 5386 if (rc && vcpu->arch.nested) 5387 rc = -EAGAIN; 5388 5389 return rc; 5390 } 5391 5392 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5393 int size) 5394 { 5395 int rc = -EINVAL; 5396 5397 if (kvmhv_vcpu_is_radix(vcpu)) { 5398 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5399 5400 if (rc > 0) 5401 rc = -EINVAL; 5402 } 5403 5404 /* For now quadrants are the only way to access nested guest memory */ 5405 if (rc && vcpu->arch.nested) 5406 rc = -EAGAIN; 5407 5408 return rc; 5409 } 5410 5411 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 5412 { 5413 unpin_vpa(kvm, vpa); 5414 vpa->gpa = 0; 5415 vpa->pinned_addr = NULL; 5416 vpa->dirty = false; 5417 vpa->update_pending = 0; 5418 } 5419 5420 /* 5421 * Enable a guest to become a secure VM, or test whether 5422 * that could be enabled. 5423 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is 5424 * tested (kvm == NULL) or enabled (kvm != NULL). 5425 */ 5426 static int kvmhv_enable_svm(struct kvm *kvm) 5427 { 5428 if (!kvmppc_uvmem_available()) 5429 return -EINVAL; 5430 if (kvm) 5431 kvm->arch.svm_enabled = 1; 5432 return 0; 5433 } 5434 5435 /* 5436 * IOCTL handler to turn off secure mode of guest 5437 * 5438 * - Release all device pages 5439 * - Issue ucall to terminate the guest on the UV side 5440 * - Unpin the VPA pages. 5441 * - Reinit the partition scoped page tables 5442 */ 5443 static int kvmhv_svm_off(struct kvm *kvm) 5444 { 5445 struct kvm_vcpu *vcpu; 5446 int mmu_was_ready; 5447 int srcu_idx; 5448 int ret = 0; 5449 int i; 5450 5451 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 5452 return ret; 5453 5454 mutex_lock(&kvm->arch.mmu_setup_lock); 5455 mmu_was_ready = kvm->arch.mmu_ready; 5456 if (kvm->arch.mmu_ready) { 5457 kvm->arch.mmu_ready = 0; 5458 /* order mmu_ready vs. vcpus_running */ 5459 smp_mb(); 5460 if (atomic_read(&kvm->arch.vcpus_running)) { 5461 kvm->arch.mmu_ready = 1; 5462 ret = -EBUSY; 5463 goto out; 5464 } 5465 } 5466 5467 srcu_idx = srcu_read_lock(&kvm->srcu); 5468 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5469 struct kvm_memory_slot *memslot; 5470 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 5471 5472 if (!slots) 5473 continue; 5474 5475 kvm_for_each_memslot(memslot, slots) { 5476 kvmppc_uvmem_drop_pages(memslot, kvm, true); 5477 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 5478 } 5479 } 5480 srcu_read_unlock(&kvm->srcu, srcu_idx); 5481 5482 ret = uv_svm_terminate(kvm->arch.lpid); 5483 if (ret != U_SUCCESS) { 5484 ret = -EINVAL; 5485 goto out; 5486 } 5487 5488 /* 5489 * When secure guest is reset, all the guest pages are sent 5490 * to UV via UV_PAGE_IN before the non-boot vcpus get a 5491 * chance to run and unpin their VPA pages. Unpinning of all 5492 * VPA pages is done here explicitly so that VPA pages 5493 * can be migrated to the secure side. 5494 * 5495 * This is required to for the secure SMP guest to reboot 5496 * correctly. 5497 */ 5498 kvm_for_each_vcpu(i, vcpu, kvm) { 5499 spin_lock(&vcpu->arch.vpa_update_lock); 5500 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 5501 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 5502 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 5503 spin_unlock(&vcpu->arch.vpa_update_lock); 5504 } 5505 5506 kvmppc_setup_partition_table(kvm); 5507 kvm->arch.secure_guest = 0; 5508 kvm->arch.mmu_ready = mmu_was_ready; 5509 out: 5510 mutex_unlock(&kvm->arch.mmu_setup_lock); 5511 return ret; 5512 } 5513 5514 static struct kvmppc_ops kvm_ops_hv = { 5515 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 5516 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 5517 .get_one_reg = kvmppc_get_one_reg_hv, 5518 .set_one_reg = kvmppc_set_one_reg_hv, 5519 .vcpu_load = kvmppc_core_vcpu_load_hv, 5520 .vcpu_put = kvmppc_core_vcpu_put_hv, 5521 .inject_interrupt = kvmppc_inject_interrupt_hv, 5522 .set_msr = kvmppc_set_msr_hv, 5523 .vcpu_run = kvmppc_vcpu_run_hv, 5524 .vcpu_create = kvmppc_core_vcpu_create_hv, 5525 .vcpu_free = kvmppc_core_vcpu_free_hv, 5526 .check_requests = kvmppc_core_check_requests_hv, 5527 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 5528 .flush_memslot = kvmppc_core_flush_memslot_hv, 5529 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 5530 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 5531 .unmap_hva_range = kvm_unmap_hva_range_hv, 5532 .age_hva = kvm_age_hva_hv, 5533 .test_age_hva = kvm_test_age_hva_hv, 5534 .set_spte_hva = kvm_set_spte_hva_hv, 5535 .free_memslot = kvmppc_core_free_memslot_hv, 5536 .init_vm = kvmppc_core_init_vm_hv, 5537 .destroy_vm = kvmppc_core_destroy_vm_hv, 5538 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 5539 .emulate_op = kvmppc_core_emulate_op_hv, 5540 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 5541 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 5542 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 5543 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 5544 .hcall_implemented = kvmppc_hcall_impl_hv, 5545 #ifdef CONFIG_KVM_XICS 5546 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 5547 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 5548 #endif 5549 .configure_mmu = kvmhv_configure_mmu, 5550 .get_rmmu_info = kvmhv_get_rmmu_info, 5551 .set_smt_mode = kvmhv_set_smt_mode, 5552 .enable_nested = kvmhv_enable_nested, 5553 .load_from_eaddr = kvmhv_load_from_eaddr, 5554 .store_to_eaddr = kvmhv_store_to_eaddr, 5555 .enable_svm = kvmhv_enable_svm, 5556 .svm_off = kvmhv_svm_off, 5557 }; 5558 5559 static int kvm_init_subcore_bitmap(void) 5560 { 5561 int i, j; 5562 int nr_cores = cpu_nr_cores(); 5563 struct sibling_subcore_state *sibling_subcore_state; 5564 5565 for (i = 0; i < nr_cores; i++) { 5566 int first_cpu = i * threads_per_core; 5567 int node = cpu_to_node(first_cpu); 5568 5569 /* Ignore if it is already allocated. */ 5570 if (paca_ptrs[first_cpu]->sibling_subcore_state) 5571 continue; 5572 5573 sibling_subcore_state = 5574 kzalloc_node(sizeof(struct sibling_subcore_state), 5575 GFP_KERNEL, node); 5576 if (!sibling_subcore_state) 5577 return -ENOMEM; 5578 5579 5580 for (j = 0; j < threads_per_core; j++) { 5581 int cpu = first_cpu + j; 5582 5583 paca_ptrs[cpu]->sibling_subcore_state = 5584 sibling_subcore_state; 5585 } 5586 } 5587 return 0; 5588 } 5589 5590 static int kvmppc_radix_possible(void) 5591 { 5592 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 5593 } 5594 5595 static int kvmppc_book3s_init_hv(void) 5596 { 5597 int r; 5598 5599 if (!tlbie_capable) { 5600 pr_err("KVM-HV: Host does not support TLBIE\n"); 5601 return -ENODEV; 5602 } 5603 5604 /* 5605 * FIXME!! Do we need to check on all cpus ? 5606 */ 5607 r = kvmppc_core_check_processor_compat_hv(); 5608 if (r < 0) 5609 return -ENODEV; 5610 5611 r = kvmhv_nested_init(); 5612 if (r) 5613 return r; 5614 5615 r = kvm_init_subcore_bitmap(); 5616 if (r) 5617 return r; 5618 5619 /* 5620 * We need a way of accessing the XICS interrupt controller, 5621 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 5622 * indirectly, via OPAL. 5623 */ 5624 #ifdef CONFIG_SMP 5625 if (!xics_on_xive() && !kvmhv_on_pseries() && 5626 !local_paca->kvm_hstate.xics_phys) { 5627 struct device_node *np; 5628 5629 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 5630 if (!np) { 5631 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 5632 return -ENODEV; 5633 } 5634 /* presence of intc confirmed - node can be dropped again */ 5635 of_node_put(np); 5636 } 5637 #endif 5638 5639 kvm_ops_hv.owner = THIS_MODULE; 5640 kvmppc_hv_ops = &kvm_ops_hv; 5641 5642 init_default_hcalls(); 5643 5644 init_vcore_lists(); 5645 5646 r = kvmppc_mmu_hv_init(); 5647 if (r) 5648 return r; 5649 5650 if (kvmppc_radix_possible()) 5651 r = kvmppc_radix_init(); 5652 5653 /* 5654 * POWER9 chips before version 2.02 can't have some threads in 5655 * HPT mode and some in radix mode on the same core. 5656 */ 5657 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5658 unsigned int pvr = mfspr(SPRN_PVR); 5659 if ((pvr >> 16) == PVR_POWER9 && 5660 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 5661 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 5662 no_mixing_hpt_and_radix = true; 5663 } 5664 5665 r = kvmppc_uvmem_init(); 5666 if (r < 0) 5667 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 5668 5669 return r; 5670 } 5671 5672 static void kvmppc_book3s_exit_hv(void) 5673 { 5674 kvmppc_uvmem_free(); 5675 kvmppc_free_host_rm_ops(); 5676 if (kvmppc_radix_possible()) 5677 kvmppc_radix_exit(); 5678 kvmppc_hv_ops = NULL; 5679 kvmhv_nested_exit(); 5680 } 5681 5682 module_init(kvmppc_book3s_init_hv); 5683 module_exit(kvmppc_book3s_exit_hv); 5684 MODULE_LICENSE("GPL"); 5685 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5686 MODULE_ALIAS("devname:kvm"); 5687