xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 78289b4a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75 #include <asm/kvm_book3s_uvmem.h>
76 #include <asm/ultravisor.h>
77 
78 #include "book3s.h"
79 
80 #define CREATE_TRACE_POINTS
81 #include "trace_hv.h"
82 
83 /* #define EXIT_DEBUG */
84 /* #define EXIT_DEBUG_SIMPLE */
85 /* #define EXIT_DEBUG_INT */
86 
87 /* Used to indicate that a guest page fault needs to be handled */
88 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
89 /* Used to indicate that a guest passthrough interrupt needs to be handled */
90 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
91 
92 /* Used as a "null" value for timebase values */
93 #define TB_NIL	(~(u64)0)
94 
95 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
96 
97 static int dynamic_mt_modes = 6;
98 module_param(dynamic_mt_modes, int, 0644);
99 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
100 static int target_smt_mode;
101 module_param(target_smt_mode, int, 0644);
102 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
103 
104 static bool indep_threads_mode = true;
105 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
107 
108 static bool one_vm_per_core;
109 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
111 
112 #ifdef CONFIG_KVM_XICS
113 static struct kernel_param_ops module_param_ops = {
114 	.set = param_set_int,
115 	.get = param_get_int,
116 };
117 
118 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
119 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
120 
121 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
122 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
123 #endif
124 
125 /* If set, guests are allowed to create and control nested guests */
126 static bool nested = true;
127 module_param(nested, bool, S_IRUGO | S_IWUSR);
128 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
129 
130 static inline bool nesting_enabled(struct kvm *kvm)
131 {
132 	return kvm->arch.nested_enable && kvm_is_radix(kvm);
133 }
134 
135 /* If set, the threads on each CPU core have to be in the same MMU mode */
136 static bool no_mixing_hpt_and_radix;
137 
138 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
139 
140 /*
141  * RWMR values for POWER8.  These control the rate at which PURR
142  * and SPURR count and should be set according to the number of
143  * online threads in the vcore being run.
144  */
145 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
146 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
147 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
148 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
149 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
150 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
151 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
152 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
153 
154 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
155 	RWMR_RPA_P8_1THREAD,
156 	RWMR_RPA_P8_1THREAD,
157 	RWMR_RPA_P8_2THREAD,
158 	RWMR_RPA_P8_3THREAD,
159 	RWMR_RPA_P8_4THREAD,
160 	RWMR_RPA_P8_5THREAD,
161 	RWMR_RPA_P8_6THREAD,
162 	RWMR_RPA_P8_7THREAD,
163 	RWMR_RPA_P8_8THREAD,
164 };
165 
166 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
167 		int *ip)
168 {
169 	int i = *ip;
170 	struct kvm_vcpu *vcpu;
171 
172 	while (++i < MAX_SMT_THREADS) {
173 		vcpu = READ_ONCE(vc->runnable_threads[i]);
174 		if (vcpu) {
175 			*ip = i;
176 			return vcpu;
177 		}
178 	}
179 	return NULL;
180 }
181 
182 /* Used to traverse the list of runnable threads for a given vcore */
183 #define for_each_runnable_thread(i, vcpu, vc) \
184 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
185 
186 static bool kvmppc_ipi_thread(int cpu)
187 {
188 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
189 
190 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
191 	if (kvmhv_on_pseries())
192 		return false;
193 
194 	/* On POWER9 we can use msgsnd to IPI any cpu */
195 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
196 		msg |= get_hard_smp_processor_id(cpu);
197 		smp_mb();
198 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
199 		return true;
200 	}
201 
202 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
203 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
204 		preempt_disable();
205 		if (cpu_first_thread_sibling(cpu) ==
206 		    cpu_first_thread_sibling(smp_processor_id())) {
207 			msg |= cpu_thread_in_core(cpu);
208 			smp_mb();
209 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
210 			preempt_enable();
211 			return true;
212 		}
213 		preempt_enable();
214 	}
215 
216 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
217 	if (cpu >= 0 && cpu < nr_cpu_ids) {
218 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
219 			xics_wake_cpu(cpu);
220 			return true;
221 		}
222 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
223 		return true;
224 	}
225 #endif
226 
227 	return false;
228 }
229 
230 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
231 {
232 	int cpu;
233 	struct rcuwait *waitp;
234 
235 	waitp = kvm_arch_vcpu_get_wait(vcpu);
236 	if (rcuwait_wake_up(waitp))
237 		++vcpu->stat.halt_wakeup;
238 
239 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
240 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
241 		return;
242 
243 	/* CPU points to the first thread of the core */
244 	cpu = vcpu->cpu;
245 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
246 		smp_send_reschedule(cpu);
247 }
248 
249 /*
250  * We use the vcpu_load/put functions to measure stolen time.
251  * Stolen time is counted as time when either the vcpu is able to
252  * run as part of a virtual core, but the task running the vcore
253  * is preempted or sleeping, or when the vcpu needs something done
254  * in the kernel by the task running the vcpu, but that task is
255  * preempted or sleeping.  Those two things have to be counted
256  * separately, since one of the vcpu tasks will take on the job
257  * of running the core, and the other vcpu tasks in the vcore will
258  * sleep waiting for it to do that, but that sleep shouldn't count
259  * as stolen time.
260  *
261  * Hence we accumulate stolen time when the vcpu can run as part of
262  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
263  * needs its task to do other things in the kernel (for example,
264  * service a page fault) in busy_stolen.  We don't accumulate
265  * stolen time for a vcore when it is inactive, or for a vcpu
266  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
267  * a misnomer; it means that the vcpu task is not executing in
268  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
269  * the kernel.  We don't have any way of dividing up that time
270  * between time that the vcpu is genuinely stopped, time that
271  * the task is actively working on behalf of the vcpu, and time
272  * that the task is preempted, so we don't count any of it as
273  * stolen.
274  *
275  * Updates to busy_stolen are protected by arch.tbacct_lock;
276  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
277  * lock.  The stolen times are measured in units of timebase ticks.
278  * (Note that the != TB_NIL checks below are purely defensive;
279  * they should never fail.)
280  */
281 
282 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
283 {
284 	unsigned long flags;
285 
286 	spin_lock_irqsave(&vc->stoltb_lock, flags);
287 	vc->preempt_tb = mftb();
288 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
289 }
290 
291 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
292 {
293 	unsigned long flags;
294 
295 	spin_lock_irqsave(&vc->stoltb_lock, flags);
296 	if (vc->preempt_tb != TB_NIL) {
297 		vc->stolen_tb += mftb() - vc->preempt_tb;
298 		vc->preempt_tb = TB_NIL;
299 	}
300 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
301 }
302 
303 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
304 {
305 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
306 	unsigned long flags;
307 
308 	/*
309 	 * We can test vc->runner without taking the vcore lock,
310 	 * because only this task ever sets vc->runner to this
311 	 * vcpu, and once it is set to this vcpu, only this task
312 	 * ever sets it to NULL.
313 	 */
314 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
315 		kvmppc_core_end_stolen(vc);
316 
317 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
318 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
319 	    vcpu->arch.busy_preempt != TB_NIL) {
320 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
321 		vcpu->arch.busy_preempt = TB_NIL;
322 	}
323 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
324 }
325 
326 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
327 {
328 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
329 	unsigned long flags;
330 
331 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
332 		kvmppc_core_start_stolen(vc);
333 
334 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
335 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
336 		vcpu->arch.busy_preempt = mftb();
337 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
338 }
339 
340 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
341 {
342 	vcpu->arch.pvr = pvr;
343 }
344 
345 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
346 {
347 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
348 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
349 
350 	/* We can (emulate) our own architecture version and anything older */
351 	if (cpu_has_feature(CPU_FTR_ARCH_300))
352 		host_pcr_bit = PCR_ARCH_300;
353 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
354 		host_pcr_bit = PCR_ARCH_207;
355 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
356 		host_pcr_bit = PCR_ARCH_206;
357 	else
358 		host_pcr_bit = PCR_ARCH_205;
359 
360 	/* Determine lowest PCR bit needed to run guest in given PVR level */
361 	guest_pcr_bit = host_pcr_bit;
362 	if (arch_compat) {
363 		switch (arch_compat) {
364 		case PVR_ARCH_205:
365 			guest_pcr_bit = PCR_ARCH_205;
366 			break;
367 		case PVR_ARCH_206:
368 		case PVR_ARCH_206p:
369 			guest_pcr_bit = PCR_ARCH_206;
370 			break;
371 		case PVR_ARCH_207:
372 			guest_pcr_bit = PCR_ARCH_207;
373 			break;
374 		case PVR_ARCH_300:
375 			guest_pcr_bit = PCR_ARCH_300;
376 			break;
377 		default:
378 			return -EINVAL;
379 		}
380 	}
381 
382 	/* Check requested PCR bits don't exceed our capabilities */
383 	if (guest_pcr_bit > host_pcr_bit)
384 		return -EINVAL;
385 
386 	spin_lock(&vc->lock);
387 	vc->arch_compat = arch_compat;
388 	/*
389 	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
390 	 * Also set all reserved PCR bits
391 	 */
392 	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
393 	spin_unlock(&vc->lock);
394 
395 	return 0;
396 }
397 
398 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
399 {
400 	int r;
401 
402 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
403 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
404 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
405 	for (r = 0; r < 16; ++r)
406 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
407 		       r, kvmppc_get_gpr(vcpu, r),
408 		       r+16, kvmppc_get_gpr(vcpu, r+16));
409 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
410 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
411 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
412 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
413 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
414 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
415 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
416 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
417 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
418 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
419 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
420 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
421 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
422 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
423 	for (r = 0; r < vcpu->arch.slb_max; ++r)
424 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
425 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
426 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
427 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
428 	       vcpu->arch.last_inst);
429 }
430 
431 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
432 {
433 	return kvm_get_vcpu_by_id(kvm, id);
434 }
435 
436 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
437 {
438 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
439 	vpa->yield_count = cpu_to_be32(1);
440 }
441 
442 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
443 		   unsigned long addr, unsigned long len)
444 {
445 	/* check address is cacheline aligned */
446 	if (addr & (L1_CACHE_BYTES - 1))
447 		return -EINVAL;
448 	spin_lock(&vcpu->arch.vpa_update_lock);
449 	if (v->next_gpa != addr || v->len != len) {
450 		v->next_gpa = addr;
451 		v->len = addr ? len : 0;
452 		v->update_pending = 1;
453 	}
454 	spin_unlock(&vcpu->arch.vpa_update_lock);
455 	return 0;
456 }
457 
458 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
459 struct reg_vpa {
460 	u32 dummy;
461 	union {
462 		__be16 hword;
463 		__be32 word;
464 	} length;
465 };
466 
467 static int vpa_is_registered(struct kvmppc_vpa *vpap)
468 {
469 	if (vpap->update_pending)
470 		return vpap->next_gpa != 0;
471 	return vpap->pinned_addr != NULL;
472 }
473 
474 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
475 				       unsigned long flags,
476 				       unsigned long vcpuid, unsigned long vpa)
477 {
478 	struct kvm *kvm = vcpu->kvm;
479 	unsigned long len, nb;
480 	void *va;
481 	struct kvm_vcpu *tvcpu;
482 	int err;
483 	int subfunc;
484 	struct kvmppc_vpa *vpap;
485 
486 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
487 	if (!tvcpu)
488 		return H_PARAMETER;
489 
490 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
491 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
492 	    subfunc == H_VPA_REG_SLB) {
493 		/* Registering new area - address must be cache-line aligned */
494 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
495 			return H_PARAMETER;
496 
497 		/* convert logical addr to kernel addr and read length */
498 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
499 		if (va == NULL)
500 			return H_PARAMETER;
501 		if (subfunc == H_VPA_REG_VPA)
502 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
503 		else
504 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
505 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
506 
507 		/* Check length */
508 		if (len > nb || len < sizeof(struct reg_vpa))
509 			return H_PARAMETER;
510 	} else {
511 		vpa = 0;
512 		len = 0;
513 	}
514 
515 	err = H_PARAMETER;
516 	vpap = NULL;
517 	spin_lock(&tvcpu->arch.vpa_update_lock);
518 
519 	switch (subfunc) {
520 	case H_VPA_REG_VPA:		/* register VPA */
521 		/*
522 		 * The size of our lppaca is 1kB because of the way we align
523 		 * it for the guest to avoid crossing a 4kB boundary. We only
524 		 * use 640 bytes of the structure though, so we should accept
525 		 * clients that set a size of 640.
526 		 */
527 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
528 		if (len < sizeof(struct lppaca))
529 			break;
530 		vpap = &tvcpu->arch.vpa;
531 		err = 0;
532 		break;
533 
534 	case H_VPA_REG_DTL:		/* register DTL */
535 		if (len < sizeof(struct dtl_entry))
536 			break;
537 		len -= len % sizeof(struct dtl_entry);
538 
539 		/* Check that they have previously registered a VPA */
540 		err = H_RESOURCE;
541 		if (!vpa_is_registered(&tvcpu->arch.vpa))
542 			break;
543 
544 		vpap = &tvcpu->arch.dtl;
545 		err = 0;
546 		break;
547 
548 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
549 		/* Check that they have previously registered a VPA */
550 		err = H_RESOURCE;
551 		if (!vpa_is_registered(&tvcpu->arch.vpa))
552 			break;
553 
554 		vpap = &tvcpu->arch.slb_shadow;
555 		err = 0;
556 		break;
557 
558 	case H_VPA_DEREG_VPA:		/* deregister VPA */
559 		/* Check they don't still have a DTL or SLB buf registered */
560 		err = H_RESOURCE;
561 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
562 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
563 			break;
564 
565 		vpap = &tvcpu->arch.vpa;
566 		err = 0;
567 		break;
568 
569 	case H_VPA_DEREG_DTL:		/* deregister DTL */
570 		vpap = &tvcpu->arch.dtl;
571 		err = 0;
572 		break;
573 
574 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
575 		vpap = &tvcpu->arch.slb_shadow;
576 		err = 0;
577 		break;
578 	}
579 
580 	if (vpap) {
581 		vpap->next_gpa = vpa;
582 		vpap->len = len;
583 		vpap->update_pending = 1;
584 	}
585 
586 	spin_unlock(&tvcpu->arch.vpa_update_lock);
587 
588 	return err;
589 }
590 
591 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
592 {
593 	struct kvm *kvm = vcpu->kvm;
594 	void *va;
595 	unsigned long nb;
596 	unsigned long gpa;
597 
598 	/*
599 	 * We need to pin the page pointed to by vpap->next_gpa,
600 	 * but we can't call kvmppc_pin_guest_page under the lock
601 	 * as it does get_user_pages() and down_read().  So we
602 	 * have to drop the lock, pin the page, then get the lock
603 	 * again and check that a new area didn't get registered
604 	 * in the meantime.
605 	 */
606 	for (;;) {
607 		gpa = vpap->next_gpa;
608 		spin_unlock(&vcpu->arch.vpa_update_lock);
609 		va = NULL;
610 		nb = 0;
611 		if (gpa)
612 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
613 		spin_lock(&vcpu->arch.vpa_update_lock);
614 		if (gpa == vpap->next_gpa)
615 			break;
616 		/* sigh... unpin that one and try again */
617 		if (va)
618 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
619 	}
620 
621 	vpap->update_pending = 0;
622 	if (va && nb < vpap->len) {
623 		/*
624 		 * If it's now too short, it must be that userspace
625 		 * has changed the mappings underlying guest memory,
626 		 * so unregister the region.
627 		 */
628 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
629 		va = NULL;
630 	}
631 	if (vpap->pinned_addr)
632 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
633 					vpap->dirty);
634 	vpap->gpa = gpa;
635 	vpap->pinned_addr = va;
636 	vpap->dirty = false;
637 	if (va)
638 		vpap->pinned_end = va + vpap->len;
639 }
640 
641 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
642 {
643 	if (!(vcpu->arch.vpa.update_pending ||
644 	      vcpu->arch.slb_shadow.update_pending ||
645 	      vcpu->arch.dtl.update_pending))
646 		return;
647 
648 	spin_lock(&vcpu->arch.vpa_update_lock);
649 	if (vcpu->arch.vpa.update_pending) {
650 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
651 		if (vcpu->arch.vpa.pinned_addr)
652 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
653 	}
654 	if (vcpu->arch.dtl.update_pending) {
655 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
656 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
657 		vcpu->arch.dtl_index = 0;
658 	}
659 	if (vcpu->arch.slb_shadow.update_pending)
660 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
661 	spin_unlock(&vcpu->arch.vpa_update_lock);
662 }
663 
664 /*
665  * Return the accumulated stolen time for the vcore up until `now'.
666  * The caller should hold the vcore lock.
667  */
668 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
669 {
670 	u64 p;
671 	unsigned long flags;
672 
673 	spin_lock_irqsave(&vc->stoltb_lock, flags);
674 	p = vc->stolen_tb;
675 	if (vc->vcore_state != VCORE_INACTIVE &&
676 	    vc->preempt_tb != TB_NIL)
677 		p += now - vc->preempt_tb;
678 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
679 	return p;
680 }
681 
682 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
683 				    struct kvmppc_vcore *vc)
684 {
685 	struct dtl_entry *dt;
686 	struct lppaca *vpa;
687 	unsigned long stolen;
688 	unsigned long core_stolen;
689 	u64 now;
690 	unsigned long flags;
691 
692 	dt = vcpu->arch.dtl_ptr;
693 	vpa = vcpu->arch.vpa.pinned_addr;
694 	now = mftb();
695 	core_stolen = vcore_stolen_time(vc, now);
696 	stolen = core_stolen - vcpu->arch.stolen_logged;
697 	vcpu->arch.stolen_logged = core_stolen;
698 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
699 	stolen += vcpu->arch.busy_stolen;
700 	vcpu->arch.busy_stolen = 0;
701 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
702 	if (!dt || !vpa)
703 		return;
704 	memset(dt, 0, sizeof(struct dtl_entry));
705 	dt->dispatch_reason = 7;
706 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
707 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
708 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
709 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
710 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
711 	++dt;
712 	if (dt == vcpu->arch.dtl.pinned_end)
713 		dt = vcpu->arch.dtl.pinned_addr;
714 	vcpu->arch.dtl_ptr = dt;
715 	/* order writing *dt vs. writing vpa->dtl_idx */
716 	smp_wmb();
717 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
718 	vcpu->arch.dtl.dirty = true;
719 }
720 
721 /* See if there is a doorbell interrupt pending for a vcpu */
722 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
723 {
724 	int thr;
725 	struct kvmppc_vcore *vc;
726 
727 	if (vcpu->arch.doorbell_request)
728 		return true;
729 	/*
730 	 * Ensure that the read of vcore->dpdes comes after the read
731 	 * of vcpu->doorbell_request.  This barrier matches the
732 	 * smp_wmb() in kvmppc_guest_entry_inject().
733 	 */
734 	smp_rmb();
735 	vc = vcpu->arch.vcore;
736 	thr = vcpu->vcpu_id - vc->first_vcpuid;
737 	return !!(vc->dpdes & (1 << thr));
738 }
739 
740 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
741 {
742 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
743 		return true;
744 	if ((!vcpu->arch.vcore->arch_compat) &&
745 	    cpu_has_feature(CPU_FTR_ARCH_207S))
746 		return true;
747 	return false;
748 }
749 
750 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
751 			     unsigned long resource, unsigned long value1,
752 			     unsigned long value2)
753 {
754 	switch (resource) {
755 	case H_SET_MODE_RESOURCE_SET_CIABR:
756 		if (!kvmppc_power8_compatible(vcpu))
757 			return H_P2;
758 		if (value2)
759 			return H_P4;
760 		if (mflags)
761 			return H_UNSUPPORTED_FLAG_START;
762 		/* Guests can't breakpoint the hypervisor */
763 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
764 			return H_P3;
765 		vcpu->arch.ciabr  = value1;
766 		return H_SUCCESS;
767 	case H_SET_MODE_RESOURCE_SET_DAWR:
768 		if (!kvmppc_power8_compatible(vcpu))
769 			return H_P2;
770 		if (!ppc_breakpoint_available())
771 			return H_P2;
772 		if (mflags)
773 			return H_UNSUPPORTED_FLAG_START;
774 		if (value2 & DABRX_HYP)
775 			return H_P4;
776 		vcpu->arch.dawr  = value1;
777 		vcpu->arch.dawrx = value2;
778 		return H_SUCCESS;
779 	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
780 		/* KVM does not support mflags=2 (AIL=2) */
781 		if (mflags != 0 && mflags != 3)
782 			return H_UNSUPPORTED_FLAG_START;
783 		return H_TOO_HARD;
784 	default:
785 		return H_TOO_HARD;
786 	}
787 }
788 
789 /* Copy guest memory in place - must reside within a single memslot */
790 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
791 				  unsigned long len)
792 {
793 	struct kvm_memory_slot *to_memslot = NULL;
794 	struct kvm_memory_slot *from_memslot = NULL;
795 	unsigned long to_addr, from_addr;
796 	int r;
797 
798 	/* Get HPA for from address */
799 	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
800 	if (!from_memslot)
801 		return -EFAULT;
802 	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
803 			     << PAGE_SHIFT))
804 		return -EINVAL;
805 	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
806 	if (kvm_is_error_hva(from_addr))
807 		return -EFAULT;
808 	from_addr |= (from & (PAGE_SIZE - 1));
809 
810 	/* Get HPA for to address */
811 	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
812 	if (!to_memslot)
813 		return -EFAULT;
814 	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
815 			   << PAGE_SHIFT))
816 		return -EINVAL;
817 	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
818 	if (kvm_is_error_hva(to_addr))
819 		return -EFAULT;
820 	to_addr |= (to & (PAGE_SIZE - 1));
821 
822 	/* Perform copy */
823 	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
824 			     len);
825 	if (r)
826 		return -EFAULT;
827 	mark_page_dirty(kvm, to >> PAGE_SHIFT);
828 	return 0;
829 }
830 
831 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
832 			       unsigned long dest, unsigned long src)
833 {
834 	u64 pg_sz = SZ_4K;		/* 4K page size */
835 	u64 pg_mask = SZ_4K - 1;
836 	int ret;
837 
838 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
839 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
840 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
841 		return H_PARAMETER;
842 
843 	/* dest (and src if copy_page flag set) must be page aligned */
844 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
845 		return H_PARAMETER;
846 
847 	/* zero and/or copy the page as determined by the flags */
848 	if (flags & H_COPY_PAGE) {
849 		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
850 		if (ret < 0)
851 			return H_PARAMETER;
852 	} else if (flags & H_ZERO_PAGE) {
853 		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
854 		if (ret < 0)
855 			return H_PARAMETER;
856 	}
857 
858 	/* We can ignore the remaining flags */
859 
860 	return H_SUCCESS;
861 }
862 
863 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
864 {
865 	struct kvmppc_vcore *vcore = target->arch.vcore;
866 
867 	/*
868 	 * We expect to have been called by the real mode handler
869 	 * (kvmppc_rm_h_confer()) which would have directly returned
870 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
871 	 * have useful work to do and should not confer) so we don't
872 	 * recheck that here.
873 	 */
874 
875 	spin_lock(&vcore->lock);
876 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
877 	    vcore->vcore_state != VCORE_INACTIVE &&
878 	    vcore->runner)
879 		target = vcore->runner;
880 	spin_unlock(&vcore->lock);
881 
882 	return kvm_vcpu_yield_to(target);
883 }
884 
885 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
886 {
887 	int yield_count = 0;
888 	struct lppaca *lppaca;
889 
890 	spin_lock(&vcpu->arch.vpa_update_lock);
891 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
892 	if (lppaca)
893 		yield_count = be32_to_cpu(lppaca->yield_count);
894 	spin_unlock(&vcpu->arch.vpa_update_lock);
895 	return yield_count;
896 }
897 
898 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
899 {
900 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
901 	unsigned long target, ret = H_SUCCESS;
902 	int yield_count;
903 	struct kvm_vcpu *tvcpu;
904 	int idx, rc;
905 
906 	if (req <= MAX_HCALL_OPCODE &&
907 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
908 		return RESUME_HOST;
909 
910 	switch (req) {
911 	case H_CEDE:
912 		break;
913 	case H_PROD:
914 		target = kvmppc_get_gpr(vcpu, 4);
915 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
916 		if (!tvcpu) {
917 			ret = H_PARAMETER;
918 			break;
919 		}
920 		tvcpu->arch.prodded = 1;
921 		smp_mb();
922 		if (tvcpu->arch.ceded)
923 			kvmppc_fast_vcpu_kick_hv(tvcpu);
924 		break;
925 	case H_CONFER:
926 		target = kvmppc_get_gpr(vcpu, 4);
927 		if (target == -1)
928 			break;
929 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
930 		if (!tvcpu) {
931 			ret = H_PARAMETER;
932 			break;
933 		}
934 		yield_count = kvmppc_get_gpr(vcpu, 5);
935 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
936 			break;
937 		kvm_arch_vcpu_yield_to(tvcpu);
938 		break;
939 	case H_REGISTER_VPA:
940 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
941 					kvmppc_get_gpr(vcpu, 5),
942 					kvmppc_get_gpr(vcpu, 6));
943 		break;
944 	case H_RTAS:
945 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
946 			return RESUME_HOST;
947 
948 		idx = srcu_read_lock(&vcpu->kvm->srcu);
949 		rc = kvmppc_rtas_hcall(vcpu);
950 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
951 
952 		if (rc == -ENOENT)
953 			return RESUME_HOST;
954 		else if (rc == 0)
955 			break;
956 
957 		/* Send the error out to userspace via KVM_RUN */
958 		return rc;
959 	case H_LOGICAL_CI_LOAD:
960 		ret = kvmppc_h_logical_ci_load(vcpu);
961 		if (ret == H_TOO_HARD)
962 			return RESUME_HOST;
963 		break;
964 	case H_LOGICAL_CI_STORE:
965 		ret = kvmppc_h_logical_ci_store(vcpu);
966 		if (ret == H_TOO_HARD)
967 			return RESUME_HOST;
968 		break;
969 	case H_SET_MODE:
970 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
971 					kvmppc_get_gpr(vcpu, 5),
972 					kvmppc_get_gpr(vcpu, 6),
973 					kvmppc_get_gpr(vcpu, 7));
974 		if (ret == H_TOO_HARD)
975 			return RESUME_HOST;
976 		break;
977 	case H_XIRR:
978 	case H_CPPR:
979 	case H_EOI:
980 	case H_IPI:
981 	case H_IPOLL:
982 	case H_XIRR_X:
983 		if (kvmppc_xics_enabled(vcpu)) {
984 			if (xics_on_xive()) {
985 				ret = H_NOT_AVAILABLE;
986 				return RESUME_GUEST;
987 			}
988 			ret = kvmppc_xics_hcall(vcpu, req);
989 			break;
990 		}
991 		return RESUME_HOST;
992 	case H_SET_DABR:
993 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
994 		break;
995 	case H_SET_XDABR:
996 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
997 						kvmppc_get_gpr(vcpu, 5));
998 		break;
999 #ifdef CONFIG_SPAPR_TCE_IOMMU
1000 	case H_GET_TCE:
1001 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1002 						kvmppc_get_gpr(vcpu, 5));
1003 		if (ret == H_TOO_HARD)
1004 			return RESUME_HOST;
1005 		break;
1006 	case H_PUT_TCE:
1007 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1008 						kvmppc_get_gpr(vcpu, 5),
1009 						kvmppc_get_gpr(vcpu, 6));
1010 		if (ret == H_TOO_HARD)
1011 			return RESUME_HOST;
1012 		break;
1013 	case H_PUT_TCE_INDIRECT:
1014 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1015 						kvmppc_get_gpr(vcpu, 5),
1016 						kvmppc_get_gpr(vcpu, 6),
1017 						kvmppc_get_gpr(vcpu, 7));
1018 		if (ret == H_TOO_HARD)
1019 			return RESUME_HOST;
1020 		break;
1021 	case H_STUFF_TCE:
1022 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1023 						kvmppc_get_gpr(vcpu, 5),
1024 						kvmppc_get_gpr(vcpu, 6),
1025 						kvmppc_get_gpr(vcpu, 7));
1026 		if (ret == H_TOO_HARD)
1027 			return RESUME_HOST;
1028 		break;
1029 #endif
1030 	case H_RANDOM:
1031 		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1032 			ret = H_HARDWARE;
1033 		break;
1034 
1035 	case H_SET_PARTITION_TABLE:
1036 		ret = H_FUNCTION;
1037 		if (nesting_enabled(vcpu->kvm))
1038 			ret = kvmhv_set_partition_table(vcpu);
1039 		break;
1040 	case H_ENTER_NESTED:
1041 		ret = H_FUNCTION;
1042 		if (!nesting_enabled(vcpu->kvm))
1043 			break;
1044 		ret = kvmhv_enter_nested_guest(vcpu);
1045 		if (ret == H_INTERRUPT) {
1046 			kvmppc_set_gpr(vcpu, 3, 0);
1047 			vcpu->arch.hcall_needed = 0;
1048 			return -EINTR;
1049 		} else if (ret == H_TOO_HARD) {
1050 			kvmppc_set_gpr(vcpu, 3, 0);
1051 			vcpu->arch.hcall_needed = 0;
1052 			return RESUME_HOST;
1053 		}
1054 		break;
1055 	case H_TLB_INVALIDATE:
1056 		ret = H_FUNCTION;
1057 		if (nesting_enabled(vcpu->kvm))
1058 			ret = kvmhv_do_nested_tlbie(vcpu);
1059 		break;
1060 	case H_COPY_TOFROM_GUEST:
1061 		ret = H_FUNCTION;
1062 		if (nesting_enabled(vcpu->kvm))
1063 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1064 		break;
1065 	case H_PAGE_INIT:
1066 		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1067 					 kvmppc_get_gpr(vcpu, 5),
1068 					 kvmppc_get_gpr(vcpu, 6));
1069 		break;
1070 	case H_SVM_PAGE_IN:
1071 		ret = H_UNSUPPORTED;
1072 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1073 			ret = kvmppc_h_svm_page_in(vcpu->kvm,
1074 						   kvmppc_get_gpr(vcpu, 4),
1075 						   kvmppc_get_gpr(vcpu, 5),
1076 						   kvmppc_get_gpr(vcpu, 6));
1077 		break;
1078 	case H_SVM_PAGE_OUT:
1079 		ret = H_UNSUPPORTED;
1080 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1081 			ret = kvmppc_h_svm_page_out(vcpu->kvm,
1082 						    kvmppc_get_gpr(vcpu, 4),
1083 						    kvmppc_get_gpr(vcpu, 5),
1084 						    kvmppc_get_gpr(vcpu, 6));
1085 		break;
1086 	case H_SVM_INIT_START:
1087 		ret = H_UNSUPPORTED;
1088 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1089 			ret = kvmppc_h_svm_init_start(vcpu->kvm);
1090 		break;
1091 	case H_SVM_INIT_DONE:
1092 		ret = H_UNSUPPORTED;
1093 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1094 			ret = kvmppc_h_svm_init_done(vcpu->kvm);
1095 		break;
1096 	case H_SVM_INIT_ABORT:
1097 		ret = H_UNSUPPORTED;
1098 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1099 			ret = kvmppc_h_svm_init_abort(vcpu->kvm);
1100 		break;
1101 
1102 	default:
1103 		return RESUME_HOST;
1104 	}
1105 	kvmppc_set_gpr(vcpu, 3, ret);
1106 	vcpu->arch.hcall_needed = 0;
1107 	return RESUME_GUEST;
1108 }
1109 
1110 /*
1111  * Handle H_CEDE in the nested virtualization case where we haven't
1112  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1113  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1114  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1115  */
1116 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1117 {
1118 	vcpu->arch.shregs.msr |= MSR_EE;
1119 	vcpu->arch.ceded = 1;
1120 	smp_mb();
1121 	if (vcpu->arch.prodded) {
1122 		vcpu->arch.prodded = 0;
1123 		smp_mb();
1124 		vcpu->arch.ceded = 0;
1125 	}
1126 }
1127 
1128 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1129 {
1130 	switch (cmd) {
1131 	case H_CEDE:
1132 	case H_PROD:
1133 	case H_CONFER:
1134 	case H_REGISTER_VPA:
1135 	case H_SET_MODE:
1136 	case H_LOGICAL_CI_LOAD:
1137 	case H_LOGICAL_CI_STORE:
1138 #ifdef CONFIG_KVM_XICS
1139 	case H_XIRR:
1140 	case H_CPPR:
1141 	case H_EOI:
1142 	case H_IPI:
1143 	case H_IPOLL:
1144 	case H_XIRR_X:
1145 #endif
1146 	case H_PAGE_INIT:
1147 		return 1;
1148 	}
1149 
1150 	/* See if it's in the real-mode table */
1151 	return kvmppc_hcall_impl_hv_realmode(cmd);
1152 }
1153 
1154 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1155 					struct kvm_vcpu *vcpu)
1156 {
1157 	u32 last_inst;
1158 
1159 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1160 					EMULATE_DONE) {
1161 		/*
1162 		 * Fetch failed, so return to guest and
1163 		 * try executing it again.
1164 		 */
1165 		return RESUME_GUEST;
1166 	}
1167 
1168 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1169 		run->exit_reason = KVM_EXIT_DEBUG;
1170 		run->debug.arch.address = kvmppc_get_pc(vcpu);
1171 		return RESUME_HOST;
1172 	} else {
1173 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1174 		return RESUME_GUEST;
1175 	}
1176 }
1177 
1178 static void do_nothing(void *x)
1179 {
1180 }
1181 
1182 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1183 {
1184 	int thr, cpu, pcpu, nthreads;
1185 	struct kvm_vcpu *v;
1186 	unsigned long dpdes;
1187 
1188 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1189 	dpdes = 0;
1190 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1191 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1192 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1193 		if (!v)
1194 			continue;
1195 		/*
1196 		 * If the vcpu is currently running on a physical cpu thread,
1197 		 * interrupt it in order to pull it out of the guest briefly,
1198 		 * which will update its vcore->dpdes value.
1199 		 */
1200 		pcpu = READ_ONCE(v->cpu);
1201 		if (pcpu >= 0)
1202 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1203 		if (kvmppc_doorbell_pending(v))
1204 			dpdes |= 1 << thr;
1205 	}
1206 	return dpdes;
1207 }
1208 
1209 /*
1210  * On POWER9, emulate doorbell-related instructions in order to
1211  * give the guest the illusion of running on a multi-threaded core.
1212  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1213  * and mfspr DPDES.
1214  */
1215 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1216 {
1217 	u32 inst, rb, thr;
1218 	unsigned long arg;
1219 	struct kvm *kvm = vcpu->kvm;
1220 	struct kvm_vcpu *tvcpu;
1221 
1222 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1223 		return RESUME_GUEST;
1224 	if (get_op(inst) != 31)
1225 		return EMULATE_FAIL;
1226 	rb = get_rb(inst);
1227 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1228 	switch (get_xop(inst)) {
1229 	case OP_31_XOP_MSGSNDP:
1230 		arg = kvmppc_get_gpr(vcpu, rb);
1231 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1232 			break;
1233 		arg &= 0x3f;
1234 		if (arg >= kvm->arch.emul_smt_mode)
1235 			break;
1236 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1237 		if (!tvcpu)
1238 			break;
1239 		if (!tvcpu->arch.doorbell_request) {
1240 			tvcpu->arch.doorbell_request = 1;
1241 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1242 		}
1243 		break;
1244 	case OP_31_XOP_MSGCLRP:
1245 		arg = kvmppc_get_gpr(vcpu, rb);
1246 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1247 			break;
1248 		vcpu->arch.vcore->dpdes = 0;
1249 		vcpu->arch.doorbell_request = 0;
1250 		break;
1251 	case OP_31_XOP_MFSPR:
1252 		switch (get_sprn(inst)) {
1253 		case SPRN_TIR:
1254 			arg = thr;
1255 			break;
1256 		case SPRN_DPDES:
1257 			arg = kvmppc_read_dpdes(vcpu);
1258 			break;
1259 		default:
1260 			return EMULATE_FAIL;
1261 		}
1262 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1263 		break;
1264 	default:
1265 		return EMULATE_FAIL;
1266 	}
1267 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1268 	return RESUME_GUEST;
1269 }
1270 
1271 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1272 				 struct task_struct *tsk)
1273 {
1274 	int r = RESUME_HOST;
1275 
1276 	vcpu->stat.sum_exits++;
1277 
1278 	/*
1279 	 * This can happen if an interrupt occurs in the last stages
1280 	 * of guest entry or the first stages of guest exit (i.e. after
1281 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1282 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1283 	 * That can happen due to a bug, or due to a machine check
1284 	 * occurring at just the wrong time.
1285 	 */
1286 	if (vcpu->arch.shregs.msr & MSR_HV) {
1287 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1288 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1289 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1290 			vcpu->arch.shregs.msr);
1291 		kvmppc_dump_regs(vcpu);
1292 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1293 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1294 		return RESUME_HOST;
1295 	}
1296 	run->exit_reason = KVM_EXIT_UNKNOWN;
1297 	run->ready_for_interrupt_injection = 1;
1298 	switch (vcpu->arch.trap) {
1299 	/* We're good on these - the host merely wanted to get our attention */
1300 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1301 		vcpu->stat.dec_exits++;
1302 		r = RESUME_GUEST;
1303 		break;
1304 	case BOOK3S_INTERRUPT_EXTERNAL:
1305 	case BOOK3S_INTERRUPT_H_DOORBELL:
1306 	case BOOK3S_INTERRUPT_H_VIRT:
1307 		vcpu->stat.ext_intr_exits++;
1308 		r = RESUME_GUEST;
1309 		break;
1310 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1311 	case BOOK3S_INTERRUPT_HMI:
1312 	case BOOK3S_INTERRUPT_PERFMON:
1313 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1314 		r = RESUME_GUEST;
1315 		break;
1316 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1317 		/* Print the MCE event to host console. */
1318 		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1319 
1320 		/*
1321 		 * If the guest can do FWNMI, exit to userspace so it can
1322 		 * deliver a FWNMI to the guest.
1323 		 * Otherwise we synthesize a machine check for the guest
1324 		 * so that it knows that the machine check occurred.
1325 		 */
1326 		if (!vcpu->kvm->arch.fwnmi_enabled) {
1327 			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1328 			kvmppc_core_queue_machine_check(vcpu, flags);
1329 			r = RESUME_GUEST;
1330 			break;
1331 		}
1332 
1333 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1334 		run->exit_reason = KVM_EXIT_NMI;
1335 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1336 		/* Clear out the old NMI status from run->flags */
1337 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1338 		/* Now set the NMI status */
1339 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1340 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1341 		else
1342 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1343 
1344 		r = RESUME_HOST;
1345 		break;
1346 	case BOOK3S_INTERRUPT_PROGRAM:
1347 	{
1348 		ulong flags;
1349 		/*
1350 		 * Normally program interrupts are delivered directly
1351 		 * to the guest by the hardware, but we can get here
1352 		 * as a result of a hypervisor emulation interrupt
1353 		 * (e40) getting turned into a 700 by BML RTAS.
1354 		 */
1355 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1356 		kvmppc_core_queue_program(vcpu, flags);
1357 		r = RESUME_GUEST;
1358 		break;
1359 	}
1360 	case BOOK3S_INTERRUPT_SYSCALL:
1361 	{
1362 		/* hcall - punt to userspace */
1363 		int i;
1364 
1365 		/* hypercall with MSR_PR has already been handled in rmode,
1366 		 * and never reaches here.
1367 		 */
1368 
1369 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1370 		for (i = 0; i < 9; ++i)
1371 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1372 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1373 		vcpu->arch.hcall_needed = 1;
1374 		r = RESUME_HOST;
1375 		break;
1376 	}
1377 	/*
1378 	 * We get these next two if the guest accesses a page which it thinks
1379 	 * it has mapped but which is not actually present, either because
1380 	 * it is for an emulated I/O device or because the corresonding
1381 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1382 	 * have been handled already.
1383 	 */
1384 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1385 		r = RESUME_PAGE_FAULT;
1386 		break;
1387 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1388 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1389 		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1390 			DSISR_SRR1_MATCH_64S;
1391 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1392 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1393 		r = RESUME_PAGE_FAULT;
1394 		break;
1395 	/*
1396 	 * This occurs if the guest executes an illegal instruction.
1397 	 * If the guest debug is disabled, generate a program interrupt
1398 	 * to the guest. If guest debug is enabled, we need to check
1399 	 * whether the instruction is a software breakpoint instruction.
1400 	 * Accordingly return to Guest or Host.
1401 	 */
1402 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1403 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1404 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1405 				swab32(vcpu->arch.emul_inst) :
1406 				vcpu->arch.emul_inst;
1407 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1408 			r = kvmppc_emulate_debug_inst(run, vcpu);
1409 		} else {
1410 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1411 			r = RESUME_GUEST;
1412 		}
1413 		break;
1414 	/*
1415 	 * This occurs if the guest (kernel or userspace), does something that
1416 	 * is prohibited by HFSCR.
1417 	 * On POWER9, this could be a doorbell instruction that we need
1418 	 * to emulate.
1419 	 * Otherwise, we just generate a program interrupt to the guest.
1420 	 */
1421 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1422 		r = EMULATE_FAIL;
1423 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1424 		    cpu_has_feature(CPU_FTR_ARCH_300))
1425 			r = kvmppc_emulate_doorbell_instr(vcpu);
1426 		if (r == EMULATE_FAIL) {
1427 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1428 			r = RESUME_GUEST;
1429 		}
1430 		break;
1431 
1432 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1433 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1434 		/*
1435 		 * This occurs for various TM-related instructions that
1436 		 * we need to emulate on POWER9 DD2.2.  We have already
1437 		 * handled the cases where the guest was in real-suspend
1438 		 * mode and was transitioning to transactional state.
1439 		 */
1440 		r = kvmhv_p9_tm_emulation(vcpu);
1441 		break;
1442 #endif
1443 
1444 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1445 		r = RESUME_PASSTHROUGH;
1446 		break;
1447 	default:
1448 		kvmppc_dump_regs(vcpu);
1449 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1450 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1451 			vcpu->arch.shregs.msr);
1452 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1453 		r = RESUME_HOST;
1454 		break;
1455 	}
1456 
1457 	return r;
1458 }
1459 
1460 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1461 {
1462 	int r;
1463 	int srcu_idx;
1464 
1465 	vcpu->stat.sum_exits++;
1466 
1467 	/*
1468 	 * This can happen if an interrupt occurs in the last stages
1469 	 * of guest entry or the first stages of guest exit (i.e. after
1470 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1471 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1472 	 * That can happen due to a bug, or due to a machine check
1473 	 * occurring at just the wrong time.
1474 	 */
1475 	if (vcpu->arch.shregs.msr & MSR_HV) {
1476 		pr_emerg("KVM trap in HV mode while nested!\n");
1477 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1478 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1479 			 vcpu->arch.shregs.msr);
1480 		kvmppc_dump_regs(vcpu);
1481 		return RESUME_HOST;
1482 	}
1483 	switch (vcpu->arch.trap) {
1484 	/* We're good on these - the host merely wanted to get our attention */
1485 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1486 		vcpu->stat.dec_exits++;
1487 		r = RESUME_GUEST;
1488 		break;
1489 	case BOOK3S_INTERRUPT_EXTERNAL:
1490 		vcpu->stat.ext_intr_exits++;
1491 		r = RESUME_HOST;
1492 		break;
1493 	case BOOK3S_INTERRUPT_H_DOORBELL:
1494 	case BOOK3S_INTERRUPT_H_VIRT:
1495 		vcpu->stat.ext_intr_exits++;
1496 		r = RESUME_GUEST;
1497 		break;
1498 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1499 	case BOOK3S_INTERRUPT_HMI:
1500 	case BOOK3S_INTERRUPT_PERFMON:
1501 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1502 		r = RESUME_GUEST;
1503 		break;
1504 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1505 		/* Pass the machine check to the L1 guest */
1506 		r = RESUME_HOST;
1507 		/* Print the MCE event to host console. */
1508 		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1509 		break;
1510 	/*
1511 	 * We get these next two if the guest accesses a page which it thinks
1512 	 * it has mapped but which is not actually present, either because
1513 	 * it is for an emulated I/O device or because the corresonding
1514 	 * host page has been paged out.
1515 	 */
1516 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1517 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1518 		r = kvmhv_nested_page_fault(run, vcpu);
1519 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1520 		break;
1521 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1522 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1523 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1524 					 DSISR_SRR1_MATCH_64S;
1525 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1526 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1527 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1528 		r = kvmhv_nested_page_fault(run, vcpu);
1529 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1530 		break;
1531 
1532 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1533 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1534 		/*
1535 		 * This occurs for various TM-related instructions that
1536 		 * we need to emulate on POWER9 DD2.2.  We have already
1537 		 * handled the cases where the guest was in real-suspend
1538 		 * mode and was transitioning to transactional state.
1539 		 */
1540 		r = kvmhv_p9_tm_emulation(vcpu);
1541 		break;
1542 #endif
1543 
1544 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1545 		vcpu->arch.trap = 0;
1546 		r = RESUME_GUEST;
1547 		if (!xics_on_xive())
1548 			kvmppc_xics_rm_complete(vcpu, 0);
1549 		break;
1550 	default:
1551 		r = RESUME_HOST;
1552 		break;
1553 	}
1554 
1555 	return r;
1556 }
1557 
1558 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1559 					    struct kvm_sregs *sregs)
1560 {
1561 	int i;
1562 
1563 	memset(sregs, 0, sizeof(struct kvm_sregs));
1564 	sregs->pvr = vcpu->arch.pvr;
1565 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1566 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1567 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1574 					    struct kvm_sregs *sregs)
1575 {
1576 	int i, j;
1577 
1578 	/* Only accept the same PVR as the host's, since we can't spoof it */
1579 	if (sregs->pvr != vcpu->arch.pvr)
1580 		return -EINVAL;
1581 
1582 	j = 0;
1583 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1584 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1585 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1586 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1587 			++j;
1588 		}
1589 	}
1590 	vcpu->arch.slb_max = j;
1591 
1592 	return 0;
1593 }
1594 
1595 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1596 		bool preserve_top32)
1597 {
1598 	struct kvm *kvm = vcpu->kvm;
1599 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1600 	u64 mask;
1601 
1602 	spin_lock(&vc->lock);
1603 	/*
1604 	 * If ILE (interrupt little-endian) has changed, update the
1605 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1606 	 */
1607 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1608 		struct kvm_vcpu *vcpu;
1609 		int i;
1610 
1611 		kvm_for_each_vcpu(i, vcpu, kvm) {
1612 			if (vcpu->arch.vcore != vc)
1613 				continue;
1614 			if (new_lpcr & LPCR_ILE)
1615 				vcpu->arch.intr_msr |= MSR_LE;
1616 			else
1617 				vcpu->arch.intr_msr &= ~MSR_LE;
1618 		}
1619 	}
1620 
1621 	/*
1622 	 * Userspace can only modify DPFD (default prefetch depth),
1623 	 * ILE (interrupt little-endian) and TC (translation control).
1624 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1625 	 */
1626 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1627 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1628 		mask |= LPCR_AIL;
1629 	/*
1630 	 * On POWER9, allow userspace to enable large decrementer for the
1631 	 * guest, whether or not the host has it enabled.
1632 	 */
1633 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1634 		mask |= LPCR_LD;
1635 
1636 	/* Broken 32-bit version of LPCR must not clear top bits */
1637 	if (preserve_top32)
1638 		mask &= 0xFFFFFFFF;
1639 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1640 	spin_unlock(&vc->lock);
1641 }
1642 
1643 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1644 				 union kvmppc_one_reg *val)
1645 {
1646 	int r = 0;
1647 	long int i;
1648 
1649 	switch (id) {
1650 	case KVM_REG_PPC_DEBUG_INST:
1651 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1652 		break;
1653 	case KVM_REG_PPC_HIOR:
1654 		*val = get_reg_val(id, 0);
1655 		break;
1656 	case KVM_REG_PPC_DABR:
1657 		*val = get_reg_val(id, vcpu->arch.dabr);
1658 		break;
1659 	case KVM_REG_PPC_DABRX:
1660 		*val = get_reg_val(id, vcpu->arch.dabrx);
1661 		break;
1662 	case KVM_REG_PPC_DSCR:
1663 		*val = get_reg_val(id, vcpu->arch.dscr);
1664 		break;
1665 	case KVM_REG_PPC_PURR:
1666 		*val = get_reg_val(id, vcpu->arch.purr);
1667 		break;
1668 	case KVM_REG_PPC_SPURR:
1669 		*val = get_reg_val(id, vcpu->arch.spurr);
1670 		break;
1671 	case KVM_REG_PPC_AMR:
1672 		*val = get_reg_val(id, vcpu->arch.amr);
1673 		break;
1674 	case KVM_REG_PPC_UAMOR:
1675 		*val = get_reg_val(id, vcpu->arch.uamor);
1676 		break;
1677 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1678 		i = id - KVM_REG_PPC_MMCR0;
1679 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1680 		break;
1681 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1682 		i = id - KVM_REG_PPC_PMC1;
1683 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1684 		break;
1685 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1686 		i = id - KVM_REG_PPC_SPMC1;
1687 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1688 		break;
1689 	case KVM_REG_PPC_SIAR:
1690 		*val = get_reg_val(id, vcpu->arch.siar);
1691 		break;
1692 	case KVM_REG_PPC_SDAR:
1693 		*val = get_reg_val(id, vcpu->arch.sdar);
1694 		break;
1695 	case KVM_REG_PPC_SIER:
1696 		*val = get_reg_val(id, vcpu->arch.sier);
1697 		break;
1698 	case KVM_REG_PPC_IAMR:
1699 		*val = get_reg_val(id, vcpu->arch.iamr);
1700 		break;
1701 	case KVM_REG_PPC_PSPB:
1702 		*val = get_reg_val(id, vcpu->arch.pspb);
1703 		break;
1704 	case KVM_REG_PPC_DPDES:
1705 		/*
1706 		 * On POWER9, where we are emulating msgsndp etc.,
1707 		 * we return 1 bit for each vcpu, which can come from
1708 		 * either vcore->dpdes or doorbell_request.
1709 		 * On POWER8, doorbell_request is 0.
1710 		 */
1711 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1712 				   vcpu->arch.doorbell_request);
1713 		break;
1714 	case KVM_REG_PPC_VTB:
1715 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1716 		break;
1717 	case KVM_REG_PPC_DAWR:
1718 		*val = get_reg_val(id, vcpu->arch.dawr);
1719 		break;
1720 	case KVM_REG_PPC_DAWRX:
1721 		*val = get_reg_val(id, vcpu->arch.dawrx);
1722 		break;
1723 	case KVM_REG_PPC_CIABR:
1724 		*val = get_reg_val(id, vcpu->arch.ciabr);
1725 		break;
1726 	case KVM_REG_PPC_CSIGR:
1727 		*val = get_reg_val(id, vcpu->arch.csigr);
1728 		break;
1729 	case KVM_REG_PPC_TACR:
1730 		*val = get_reg_val(id, vcpu->arch.tacr);
1731 		break;
1732 	case KVM_REG_PPC_TCSCR:
1733 		*val = get_reg_val(id, vcpu->arch.tcscr);
1734 		break;
1735 	case KVM_REG_PPC_PID:
1736 		*val = get_reg_val(id, vcpu->arch.pid);
1737 		break;
1738 	case KVM_REG_PPC_ACOP:
1739 		*val = get_reg_val(id, vcpu->arch.acop);
1740 		break;
1741 	case KVM_REG_PPC_WORT:
1742 		*val = get_reg_val(id, vcpu->arch.wort);
1743 		break;
1744 	case KVM_REG_PPC_TIDR:
1745 		*val = get_reg_val(id, vcpu->arch.tid);
1746 		break;
1747 	case KVM_REG_PPC_PSSCR:
1748 		*val = get_reg_val(id, vcpu->arch.psscr);
1749 		break;
1750 	case KVM_REG_PPC_VPA_ADDR:
1751 		spin_lock(&vcpu->arch.vpa_update_lock);
1752 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1753 		spin_unlock(&vcpu->arch.vpa_update_lock);
1754 		break;
1755 	case KVM_REG_PPC_VPA_SLB:
1756 		spin_lock(&vcpu->arch.vpa_update_lock);
1757 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1758 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1759 		spin_unlock(&vcpu->arch.vpa_update_lock);
1760 		break;
1761 	case KVM_REG_PPC_VPA_DTL:
1762 		spin_lock(&vcpu->arch.vpa_update_lock);
1763 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1764 		val->vpaval.length = vcpu->arch.dtl.len;
1765 		spin_unlock(&vcpu->arch.vpa_update_lock);
1766 		break;
1767 	case KVM_REG_PPC_TB_OFFSET:
1768 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1769 		break;
1770 	case KVM_REG_PPC_LPCR:
1771 	case KVM_REG_PPC_LPCR_64:
1772 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1773 		break;
1774 	case KVM_REG_PPC_PPR:
1775 		*val = get_reg_val(id, vcpu->arch.ppr);
1776 		break;
1777 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1778 	case KVM_REG_PPC_TFHAR:
1779 		*val = get_reg_val(id, vcpu->arch.tfhar);
1780 		break;
1781 	case KVM_REG_PPC_TFIAR:
1782 		*val = get_reg_val(id, vcpu->arch.tfiar);
1783 		break;
1784 	case KVM_REG_PPC_TEXASR:
1785 		*val = get_reg_val(id, vcpu->arch.texasr);
1786 		break;
1787 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1788 		i = id - KVM_REG_PPC_TM_GPR0;
1789 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1790 		break;
1791 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1792 	{
1793 		int j;
1794 		i = id - KVM_REG_PPC_TM_VSR0;
1795 		if (i < 32)
1796 			for (j = 0; j < TS_FPRWIDTH; j++)
1797 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1798 		else {
1799 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1800 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1801 			else
1802 				r = -ENXIO;
1803 		}
1804 		break;
1805 	}
1806 	case KVM_REG_PPC_TM_CR:
1807 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1808 		break;
1809 	case KVM_REG_PPC_TM_XER:
1810 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1811 		break;
1812 	case KVM_REG_PPC_TM_LR:
1813 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1814 		break;
1815 	case KVM_REG_PPC_TM_CTR:
1816 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1817 		break;
1818 	case KVM_REG_PPC_TM_FPSCR:
1819 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1820 		break;
1821 	case KVM_REG_PPC_TM_AMR:
1822 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1823 		break;
1824 	case KVM_REG_PPC_TM_PPR:
1825 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1826 		break;
1827 	case KVM_REG_PPC_TM_VRSAVE:
1828 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1829 		break;
1830 	case KVM_REG_PPC_TM_VSCR:
1831 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1832 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1833 		else
1834 			r = -ENXIO;
1835 		break;
1836 	case KVM_REG_PPC_TM_DSCR:
1837 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1838 		break;
1839 	case KVM_REG_PPC_TM_TAR:
1840 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1841 		break;
1842 #endif
1843 	case KVM_REG_PPC_ARCH_COMPAT:
1844 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1845 		break;
1846 	case KVM_REG_PPC_DEC_EXPIRY:
1847 		*val = get_reg_val(id, vcpu->arch.dec_expires +
1848 				   vcpu->arch.vcore->tb_offset);
1849 		break;
1850 	case KVM_REG_PPC_ONLINE:
1851 		*val = get_reg_val(id, vcpu->arch.online);
1852 		break;
1853 	case KVM_REG_PPC_PTCR:
1854 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1855 		break;
1856 	default:
1857 		r = -EINVAL;
1858 		break;
1859 	}
1860 
1861 	return r;
1862 }
1863 
1864 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1865 				 union kvmppc_one_reg *val)
1866 {
1867 	int r = 0;
1868 	long int i;
1869 	unsigned long addr, len;
1870 
1871 	switch (id) {
1872 	case KVM_REG_PPC_HIOR:
1873 		/* Only allow this to be set to zero */
1874 		if (set_reg_val(id, *val))
1875 			r = -EINVAL;
1876 		break;
1877 	case KVM_REG_PPC_DABR:
1878 		vcpu->arch.dabr = set_reg_val(id, *val);
1879 		break;
1880 	case KVM_REG_PPC_DABRX:
1881 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1882 		break;
1883 	case KVM_REG_PPC_DSCR:
1884 		vcpu->arch.dscr = set_reg_val(id, *val);
1885 		break;
1886 	case KVM_REG_PPC_PURR:
1887 		vcpu->arch.purr = set_reg_val(id, *val);
1888 		break;
1889 	case KVM_REG_PPC_SPURR:
1890 		vcpu->arch.spurr = set_reg_val(id, *val);
1891 		break;
1892 	case KVM_REG_PPC_AMR:
1893 		vcpu->arch.amr = set_reg_val(id, *val);
1894 		break;
1895 	case KVM_REG_PPC_UAMOR:
1896 		vcpu->arch.uamor = set_reg_val(id, *val);
1897 		break;
1898 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1899 		i = id - KVM_REG_PPC_MMCR0;
1900 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1901 		break;
1902 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1903 		i = id - KVM_REG_PPC_PMC1;
1904 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1905 		break;
1906 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1907 		i = id - KVM_REG_PPC_SPMC1;
1908 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1909 		break;
1910 	case KVM_REG_PPC_SIAR:
1911 		vcpu->arch.siar = set_reg_val(id, *val);
1912 		break;
1913 	case KVM_REG_PPC_SDAR:
1914 		vcpu->arch.sdar = set_reg_val(id, *val);
1915 		break;
1916 	case KVM_REG_PPC_SIER:
1917 		vcpu->arch.sier = set_reg_val(id, *val);
1918 		break;
1919 	case KVM_REG_PPC_IAMR:
1920 		vcpu->arch.iamr = set_reg_val(id, *val);
1921 		break;
1922 	case KVM_REG_PPC_PSPB:
1923 		vcpu->arch.pspb = set_reg_val(id, *val);
1924 		break;
1925 	case KVM_REG_PPC_DPDES:
1926 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1927 		break;
1928 	case KVM_REG_PPC_VTB:
1929 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1930 		break;
1931 	case KVM_REG_PPC_DAWR:
1932 		vcpu->arch.dawr = set_reg_val(id, *val);
1933 		break;
1934 	case KVM_REG_PPC_DAWRX:
1935 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1936 		break;
1937 	case KVM_REG_PPC_CIABR:
1938 		vcpu->arch.ciabr = set_reg_val(id, *val);
1939 		/* Don't allow setting breakpoints in hypervisor code */
1940 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1941 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1942 		break;
1943 	case KVM_REG_PPC_CSIGR:
1944 		vcpu->arch.csigr = set_reg_val(id, *val);
1945 		break;
1946 	case KVM_REG_PPC_TACR:
1947 		vcpu->arch.tacr = set_reg_val(id, *val);
1948 		break;
1949 	case KVM_REG_PPC_TCSCR:
1950 		vcpu->arch.tcscr = set_reg_val(id, *val);
1951 		break;
1952 	case KVM_REG_PPC_PID:
1953 		vcpu->arch.pid = set_reg_val(id, *val);
1954 		break;
1955 	case KVM_REG_PPC_ACOP:
1956 		vcpu->arch.acop = set_reg_val(id, *val);
1957 		break;
1958 	case KVM_REG_PPC_WORT:
1959 		vcpu->arch.wort = set_reg_val(id, *val);
1960 		break;
1961 	case KVM_REG_PPC_TIDR:
1962 		vcpu->arch.tid = set_reg_val(id, *val);
1963 		break;
1964 	case KVM_REG_PPC_PSSCR:
1965 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1966 		break;
1967 	case KVM_REG_PPC_VPA_ADDR:
1968 		addr = set_reg_val(id, *val);
1969 		r = -EINVAL;
1970 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1971 			      vcpu->arch.dtl.next_gpa))
1972 			break;
1973 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1974 		break;
1975 	case KVM_REG_PPC_VPA_SLB:
1976 		addr = val->vpaval.addr;
1977 		len = val->vpaval.length;
1978 		r = -EINVAL;
1979 		if (addr && !vcpu->arch.vpa.next_gpa)
1980 			break;
1981 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1982 		break;
1983 	case KVM_REG_PPC_VPA_DTL:
1984 		addr = val->vpaval.addr;
1985 		len = val->vpaval.length;
1986 		r = -EINVAL;
1987 		if (addr && (len < sizeof(struct dtl_entry) ||
1988 			     !vcpu->arch.vpa.next_gpa))
1989 			break;
1990 		len -= len % sizeof(struct dtl_entry);
1991 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1992 		break;
1993 	case KVM_REG_PPC_TB_OFFSET:
1994 		/* round up to multiple of 2^24 */
1995 		vcpu->arch.vcore->tb_offset =
1996 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1997 		break;
1998 	case KVM_REG_PPC_LPCR:
1999 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2000 		break;
2001 	case KVM_REG_PPC_LPCR_64:
2002 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2003 		break;
2004 	case KVM_REG_PPC_PPR:
2005 		vcpu->arch.ppr = set_reg_val(id, *val);
2006 		break;
2007 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2008 	case KVM_REG_PPC_TFHAR:
2009 		vcpu->arch.tfhar = set_reg_val(id, *val);
2010 		break;
2011 	case KVM_REG_PPC_TFIAR:
2012 		vcpu->arch.tfiar = set_reg_val(id, *val);
2013 		break;
2014 	case KVM_REG_PPC_TEXASR:
2015 		vcpu->arch.texasr = set_reg_val(id, *val);
2016 		break;
2017 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2018 		i = id - KVM_REG_PPC_TM_GPR0;
2019 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2020 		break;
2021 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2022 	{
2023 		int j;
2024 		i = id - KVM_REG_PPC_TM_VSR0;
2025 		if (i < 32)
2026 			for (j = 0; j < TS_FPRWIDTH; j++)
2027 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2028 		else
2029 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2030 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2031 			else
2032 				r = -ENXIO;
2033 		break;
2034 	}
2035 	case KVM_REG_PPC_TM_CR:
2036 		vcpu->arch.cr_tm = set_reg_val(id, *val);
2037 		break;
2038 	case KVM_REG_PPC_TM_XER:
2039 		vcpu->arch.xer_tm = set_reg_val(id, *val);
2040 		break;
2041 	case KVM_REG_PPC_TM_LR:
2042 		vcpu->arch.lr_tm = set_reg_val(id, *val);
2043 		break;
2044 	case KVM_REG_PPC_TM_CTR:
2045 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2046 		break;
2047 	case KVM_REG_PPC_TM_FPSCR:
2048 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2049 		break;
2050 	case KVM_REG_PPC_TM_AMR:
2051 		vcpu->arch.amr_tm = set_reg_val(id, *val);
2052 		break;
2053 	case KVM_REG_PPC_TM_PPR:
2054 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2055 		break;
2056 	case KVM_REG_PPC_TM_VRSAVE:
2057 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2058 		break;
2059 	case KVM_REG_PPC_TM_VSCR:
2060 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2061 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2062 		else
2063 			r = - ENXIO;
2064 		break;
2065 	case KVM_REG_PPC_TM_DSCR:
2066 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2067 		break;
2068 	case KVM_REG_PPC_TM_TAR:
2069 		vcpu->arch.tar_tm = set_reg_val(id, *val);
2070 		break;
2071 #endif
2072 	case KVM_REG_PPC_ARCH_COMPAT:
2073 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2074 		break;
2075 	case KVM_REG_PPC_DEC_EXPIRY:
2076 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
2077 			vcpu->arch.vcore->tb_offset;
2078 		break;
2079 	case KVM_REG_PPC_ONLINE:
2080 		i = set_reg_val(id, *val);
2081 		if (i && !vcpu->arch.online)
2082 			atomic_inc(&vcpu->arch.vcore->online_count);
2083 		else if (!i && vcpu->arch.online)
2084 			atomic_dec(&vcpu->arch.vcore->online_count);
2085 		vcpu->arch.online = i;
2086 		break;
2087 	case KVM_REG_PPC_PTCR:
2088 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2089 		break;
2090 	default:
2091 		r = -EINVAL;
2092 		break;
2093 	}
2094 
2095 	return r;
2096 }
2097 
2098 /*
2099  * On POWER9, threads are independent and can be in different partitions.
2100  * Therefore we consider each thread to be a subcore.
2101  * There is a restriction that all threads have to be in the same
2102  * MMU mode (radix or HPT), unfortunately, but since we only support
2103  * HPT guests on a HPT host so far, that isn't an impediment yet.
2104  */
2105 static int threads_per_vcore(struct kvm *kvm)
2106 {
2107 	if (kvm->arch.threads_indep)
2108 		return 1;
2109 	return threads_per_subcore;
2110 }
2111 
2112 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2113 {
2114 	struct kvmppc_vcore *vcore;
2115 
2116 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2117 
2118 	if (vcore == NULL)
2119 		return NULL;
2120 
2121 	spin_lock_init(&vcore->lock);
2122 	spin_lock_init(&vcore->stoltb_lock);
2123 	rcuwait_init(&vcore->wait);
2124 	vcore->preempt_tb = TB_NIL;
2125 	vcore->lpcr = kvm->arch.lpcr;
2126 	vcore->first_vcpuid = id;
2127 	vcore->kvm = kvm;
2128 	INIT_LIST_HEAD(&vcore->preempt_list);
2129 
2130 	return vcore;
2131 }
2132 
2133 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2134 static struct debugfs_timings_element {
2135 	const char *name;
2136 	size_t offset;
2137 } timings[] = {
2138 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2139 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2140 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2141 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2142 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2143 };
2144 
2145 #define N_TIMINGS	(ARRAY_SIZE(timings))
2146 
2147 struct debugfs_timings_state {
2148 	struct kvm_vcpu	*vcpu;
2149 	unsigned int	buflen;
2150 	char		buf[N_TIMINGS * 100];
2151 };
2152 
2153 static int debugfs_timings_open(struct inode *inode, struct file *file)
2154 {
2155 	struct kvm_vcpu *vcpu = inode->i_private;
2156 	struct debugfs_timings_state *p;
2157 
2158 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2159 	if (!p)
2160 		return -ENOMEM;
2161 
2162 	kvm_get_kvm(vcpu->kvm);
2163 	p->vcpu = vcpu;
2164 	file->private_data = p;
2165 
2166 	return nonseekable_open(inode, file);
2167 }
2168 
2169 static int debugfs_timings_release(struct inode *inode, struct file *file)
2170 {
2171 	struct debugfs_timings_state *p = file->private_data;
2172 
2173 	kvm_put_kvm(p->vcpu->kvm);
2174 	kfree(p);
2175 	return 0;
2176 }
2177 
2178 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2179 				    size_t len, loff_t *ppos)
2180 {
2181 	struct debugfs_timings_state *p = file->private_data;
2182 	struct kvm_vcpu *vcpu = p->vcpu;
2183 	char *s, *buf_end;
2184 	struct kvmhv_tb_accumulator tb;
2185 	u64 count;
2186 	loff_t pos;
2187 	ssize_t n;
2188 	int i, loops;
2189 	bool ok;
2190 
2191 	if (!p->buflen) {
2192 		s = p->buf;
2193 		buf_end = s + sizeof(p->buf);
2194 		for (i = 0; i < N_TIMINGS; ++i) {
2195 			struct kvmhv_tb_accumulator *acc;
2196 
2197 			acc = (struct kvmhv_tb_accumulator *)
2198 				((unsigned long)vcpu + timings[i].offset);
2199 			ok = false;
2200 			for (loops = 0; loops < 1000; ++loops) {
2201 				count = acc->seqcount;
2202 				if (!(count & 1)) {
2203 					smp_rmb();
2204 					tb = *acc;
2205 					smp_rmb();
2206 					if (count == acc->seqcount) {
2207 						ok = true;
2208 						break;
2209 					}
2210 				}
2211 				udelay(1);
2212 			}
2213 			if (!ok)
2214 				snprintf(s, buf_end - s, "%s: stuck\n",
2215 					timings[i].name);
2216 			else
2217 				snprintf(s, buf_end - s,
2218 					"%s: %llu %llu %llu %llu\n",
2219 					timings[i].name, count / 2,
2220 					tb_to_ns(tb.tb_total),
2221 					tb_to_ns(tb.tb_min),
2222 					tb_to_ns(tb.tb_max));
2223 			s += strlen(s);
2224 		}
2225 		p->buflen = s - p->buf;
2226 	}
2227 
2228 	pos = *ppos;
2229 	if (pos >= p->buflen)
2230 		return 0;
2231 	if (len > p->buflen - pos)
2232 		len = p->buflen - pos;
2233 	n = copy_to_user(buf, p->buf + pos, len);
2234 	if (n) {
2235 		if (n == len)
2236 			return -EFAULT;
2237 		len -= n;
2238 	}
2239 	*ppos = pos + len;
2240 	return len;
2241 }
2242 
2243 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2244 				     size_t len, loff_t *ppos)
2245 {
2246 	return -EACCES;
2247 }
2248 
2249 static const struct file_operations debugfs_timings_ops = {
2250 	.owner	 = THIS_MODULE,
2251 	.open	 = debugfs_timings_open,
2252 	.release = debugfs_timings_release,
2253 	.read	 = debugfs_timings_read,
2254 	.write	 = debugfs_timings_write,
2255 	.llseek	 = generic_file_llseek,
2256 };
2257 
2258 /* Create a debugfs directory for the vcpu */
2259 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2260 {
2261 	char buf[16];
2262 	struct kvm *kvm = vcpu->kvm;
2263 
2264 	snprintf(buf, sizeof(buf), "vcpu%u", id);
2265 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2266 	debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2267 			    &debugfs_timings_ops);
2268 }
2269 
2270 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2271 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2272 {
2273 }
2274 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2275 
2276 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2277 {
2278 	int err;
2279 	int core;
2280 	struct kvmppc_vcore *vcore;
2281 	struct kvm *kvm;
2282 	unsigned int id;
2283 
2284 	kvm = vcpu->kvm;
2285 	id = vcpu->vcpu_id;
2286 
2287 	vcpu->arch.shared = &vcpu->arch.shregs;
2288 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2289 	/*
2290 	 * The shared struct is never shared on HV,
2291 	 * so we can always use host endianness
2292 	 */
2293 #ifdef __BIG_ENDIAN__
2294 	vcpu->arch.shared_big_endian = true;
2295 #else
2296 	vcpu->arch.shared_big_endian = false;
2297 #endif
2298 #endif
2299 	vcpu->arch.mmcr[0] = MMCR0_FC;
2300 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2301 	/* default to host PVR, since we can't spoof it */
2302 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2303 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2304 	spin_lock_init(&vcpu->arch.tbacct_lock);
2305 	vcpu->arch.busy_preempt = TB_NIL;
2306 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2307 
2308 	/*
2309 	 * Set the default HFSCR for the guest from the host value.
2310 	 * This value is only used on POWER9.
2311 	 * On POWER9, we want to virtualize the doorbell facility, so we
2312 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2313 	 * to trap and then we emulate them.
2314 	 */
2315 	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2316 		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2317 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2318 		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2319 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2320 			vcpu->arch.hfscr |= HFSCR_TM;
2321 	}
2322 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2323 		vcpu->arch.hfscr |= HFSCR_TM;
2324 
2325 	kvmppc_mmu_book3s_hv_init(vcpu);
2326 
2327 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2328 
2329 	init_waitqueue_head(&vcpu->arch.cpu_run);
2330 
2331 	mutex_lock(&kvm->lock);
2332 	vcore = NULL;
2333 	err = -EINVAL;
2334 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2335 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2336 			pr_devel("KVM: VCPU ID too high\n");
2337 			core = KVM_MAX_VCORES;
2338 		} else {
2339 			BUG_ON(kvm->arch.smt_mode != 1);
2340 			core = kvmppc_pack_vcpu_id(kvm, id);
2341 		}
2342 	} else {
2343 		core = id / kvm->arch.smt_mode;
2344 	}
2345 	if (core < KVM_MAX_VCORES) {
2346 		vcore = kvm->arch.vcores[core];
2347 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2348 			pr_devel("KVM: collision on id %u", id);
2349 			vcore = NULL;
2350 		} else if (!vcore) {
2351 			/*
2352 			 * Take mmu_setup_lock for mutual exclusion
2353 			 * with kvmppc_update_lpcr().
2354 			 */
2355 			err = -ENOMEM;
2356 			vcore = kvmppc_vcore_create(kvm,
2357 					id & ~(kvm->arch.smt_mode - 1));
2358 			mutex_lock(&kvm->arch.mmu_setup_lock);
2359 			kvm->arch.vcores[core] = vcore;
2360 			kvm->arch.online_vcores++;
2361 			mutex_unlock(&kvm->arch.mmu_setup_lock);
2362 		}
2363 	}
2364 	mutex_unlock(&kvm->lock);
2365 
2366 	if (!vcore)
2367 		return err;
2368 
2369 	spin_lock(&vcore->lock);
2370 	++vcore->num_threads;
2371 	spin_unlock(&vcore->lock);
2372 	vcpu->arch.vcore = vcore;
2373 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2374 	vcpu->arch.thread_cpu = -1;
2375 	vcpu->arch.prev_cpu = -1;
2376 
2377 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2378 	kvmppc_sanity_check(vcpu);
2379 
2380 	debugfs_vcpu_init(vcpu, id);
2381 
2382 	return 0;
2383 }
2384 
2385 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2386 			      unsigned long flags)
2387 {
2388 	int err;
2389 	int esmt = 0;
2390 
2391 	if (flags)
2392 		return -EINVAL;
2393 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2394 		return -EINVAL;
2395 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2396 		/*
2397 		 * On POWER8 (or POWER7), the threading mode is "strict",
2398 		 * so we pack smt_mode vcpus per vcore.
2399 		 */
2400 		if (smt_mode > threads_per_subcore)
2401 			return -EINVAL;
2402 	} else {
2403 		/*
2404 		 * On POWER9, the threading mode is "loose",
2405 		 * so each vcpu gets its own vcore.
2406 		 */
2407 		esmt = smt_mode;
2408 		smt_mode = 1;
2409 	}
2410 	mutex_lock(&kvm->lock);
2411 	err = -EBUSY;
2412 	if (!kvm->arch.online_vcores) {
2413 		kvm->arch.smt_mode = smt_mode;
2414 		kvm->arch.emul_smt_mode = esmt;
2415 		err = 0;
2416 	}
2417 	mutex_unlock(&kvm->lock);
2418 
2419 	return err;
2420 }
2421 
2422 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2423 {
2424 	if (vpa->pinned_addr)
2425 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2426 					vpa->dirty);
2427 }
2428 
2429 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2430 {
2431 	spin_lock(&vcpu->arch.vpa_update_lock);
2432 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2433 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2434 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2435 	spin_unlock(&vcpu->arch.vpa_update_lock);
2436 }
2437 
2438 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2439 {
2440 	/* Indicate we want to get back into the guest */
2441 	return 1;
2442 }
2443 
2444 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2445 {
2446 	unsigned long dec_nsec, now;
2447 
2448 	now = get_tb();
2449 	if (now > vcpu->arch.dec_expires) {
2450 		/* decrementer has already gone negative */
2451 		kvmppc_core_queue_dec(vcpu);
2452 		kvmppc_core_prepare_to_enter(vcpu);
2453 		return;
2454 	}
2455 	dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2456 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2457 	vcpu->arch.timer_running = 1;
2458 }
2459 
2460 extern int __kvmppc_vcore_entry(void);
2461 
2462 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2463 				   struct kvm_vcpu *vcpu)
2464 {
2465 	u64 now;
2466 
2467 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2468 		return;
2469 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2470 	now = mftb();
2471 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2472 		vcpu->arch.stolen_logged;
2473 	vcpu->arch.busy_preempt = now;
2474 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2475 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2476 	--vc->n_runnable;
2477 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2478 }
2479 
2480 static int kvmppc_grab_hwthread(int cpu)
2481 {
2482 	struct paca_struct *tpaca;
2483 	long timeout = 10000;
2484 
2485 	tpaca = paca_ptrs[cpu];
2486 
2487 	/* Ensure the thread won't go into the kernel if it wakes */
2488 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2489 	tpaca->kvm_hstate.kvm_vcore = NULL;
2490 	tpaca->kvm_hstate.napping = 0;
2491 	smp_wmb();
2492 	tpaca->kvm_hstate.hwthread_req = 1;
2493 
2494 	/*
2495 	 * If the thread is already executing in the kernel (e.g. handling
2496 	 * a stray interrupt), wait for it to get back to nap mode.
2497 	 * The smp_mb() is to ensure that our setting of hwthread_req
2498 	 * is visible before we look at hwthread_state, so if this
2499 	 * races with the code at system_reset_pSeries and the thread
2500 	 * misses our setting of hwthread_req, we are sure to see its
2501 	 * setting of hwthread_state, and vice versa.
2502 	 */
2503 	smp_mb();
2504 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2505 		if (--timeout <= 0) {
2506 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2507 			return -EBUSY;
2508 		}
2509 		udelay(1);
2510 	}
2511 	return 0;
2512 }
2513 
2514 static void kvmppc_release_hwthread(int cpu)
2515 {
2516 	struct paca_struct *tpaca;
2517 
2518 	tpaca = paca_ptrs[cpu];
2519 	tpaca->kvm_hstate.hwthread_req = 0;
2520 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2521 	tpaca->kvm_hstate.kvm_vcore = NULL;
2522 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2523 }
2524 
2525 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2526 {
2527 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2528 	cpumask_t *cpu_in_guest;
2529 	int i;
2530 
2531 	cpu = cpu_first_thread_sibling(cpu);
2532 	if (nested) {
2533 		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2534 		cpu_in_guest = &nested->cpu_in_guest;
2535 	} else {
2536 		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2537 		cpu_in_guest = &kvm->arch.cpu_in_guest;
2538 	}
2539 	/*
2540 	 * Make sure setting of bit in need_tlb_flush precedes
2541 	 * testing of cpu_in_guest bits.  The matching barrier on
2542 	 * the other side is the first smp_mb() in kvmppc_run_core().
2543 	 */
2544 	smp_mb();
2545 	for (i = 0; i < threads_per_core; ++i)
2546 		if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2547 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2548 }
2549 
2550 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2551 {
2552 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2553 	struct kvm *kvm = vcpu->kvm;
2554 	int prev_cpu;
2555 
2556 	if (!cpu_has_feature(CPU_FTR_HVMODE))
2557 		return;
2558 
2559 	if (nested)
2560 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2561 	else
2562 		prev_cpu = vcpu->arch.prev_cpu;
2563 
2564 	/*
2565 	 * With radix, the guest can do TLB invalidations itself,
2566 	 * and it could choose to use the local form (tlbiel) if
2567 	 * it is invalidating a translation that has only ever been
2568 	 * used on one vcpu.  However, that doesn't mean it has
2569 	 * only ever been used on one physical cpu, since vcpus
2570 	 * can move around between pcpus.  To cope with this, when
2571 	 * a vcpu moves from one pcpu to another, we need to tell
2572 	 * any vcpus running on the same core as this vcpu previously
2573 	 * ran to flush the TLB.  The TLB is shared between threads,
2574 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2575 	 */
2576 	if (prev_cpu != pcpu) {
2577 		if (prev_cpu >= 0 &&
2578 		    cpu_first_thread_sibling(prev_cpu) !=
2579 		    cpu_first_thread_sibling(pcpu))
2580 			radix_flush_cpu(kvm, prev_cpu, vcpu);
2581 		if (nested)
2582 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2583 		else
2584 			vcpu->arch.prev_cpu = pcpu;
2585 	}
2586 }
2587 
2588 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2589 {
2590 	int cpu;
2591 	struct paca_struct *tpaca;
2592 	struct kvm *kvm = vc->kvm;
2593 
2594 	cpu = vc->pcpu;
2595 	if (vcpu) {
2596 		if (vcpu->arch.timer_running) {
2597 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2598 			vcpu->arch.timer_running = 0;
2599 		}
2600 		cpu += vcpu->arch.ptid;
2601 		vcpu->cpu = vc->pcpu;
2602 		vcpu->arch.thread_cpu = cpu;
2603 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2604 	}
2605 	tpaca = paca_ptrs[cpu];
2606 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2607 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2608 	tpaca->kvm_hstate.fake_suspend = 0;
2609 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2610 	smp_wmb();
2611 	tpaca->kvm_hstate.kvm_vcore = vc;
2612 	if (cpu != smp_processor_id())
2613 		kvmppc_ipi_thread(cpu);
2614 }
2615 
2616 static void kvmppc_wait_for_nap(int n_threads)
2617 {
2618 	int cpu = smp_processor_id();
2619 	int i, loops;
2620 
2621 	if (n_threads <= 1)
2622 		return;
2623 	for (loops = 0; loops < 1000000; ++loops) {
2624 		/*
2625 		 * Check if all threads are finished.
2626 		 * We set the vcore pointer when starting a thread
2627 		 * and the thread clears it when finished, so we look
2628 		 * for any threads that still have a non-NULL vcore ptr.
2629 		 */
2630 		for (i = 1; i < n_threads; ++i)
2631 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2632 				break;
2633 		if (i == n_threads) {
2634 			HMT_medium();
2635 			return;
2636 		}
2637 		HMT_low();
2638 	}
2639 	HMT_medium();
2640 	for (i = 1; i < n_threads; ++i)
2641 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2642 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2643 }
2644 
2645 /*
2646  * Check that we are on thread 0 and that any other threads in
2647  * this core are off-line.  Then grab the threads so they can't
2648  * enter the kernel.
2649  */
2650 static int on_primary_thread(void)
2651 {
2652 	int cpu = smp_processor_id();
2653 	int thr;
2654 
2655 	/* Are we on a primary subcore? */
2656 	if (cpu_thread_in_subcore(cpu))
2657 		return 0;
2658 
2659 	thr = 0;
2660 	while (++thr < threads_per_subcore)
2661 		if (cpu_online(cpu + thr))
2662 			return 0;
2663 
2664 	/* Grab all hw threads so they can't go into the kernel */
2665 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2666 		if (kvmppc_grab_hwthread(cpu + thr)) {
2667 			/* Couldn't grab one; let the others go */
2668 			do {
2669 				kvmppc_release_hwthread(cpu + thr);
2670 			} while (--thr > 0);
2671 			return 0;
2672 		}
2673 	}
2674 	return 1;
2675 }
2676 
2677 /*
2678  * A list of virtual cores for each physical CPU.
2679  * These are vcores that could run but their runner VCPU tasks are
2680  * (or may be) preempted.
2681  */
2682 struct preempted_vcore_list {
2683 	struct list_head	list;
2684 	spinlock_t		lock;
2685 };
2686 
2687 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2688 
2689 static void init_vcore_lists(void)
2690 {
2691 	int cpu;
2692 
2693 	for_each_possible_cpu(cpu) {
2694 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2695 		spin_lock_init(&lp->lock);
2696 		INIT_LIST_HEAD(&lp->list);
2697 	}
2698 }
2699 
2700 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2701 {
2702 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2703 
2704 	vc->vcore_state = VCORE_PREEMPT;
2705 	vc->pcpu = smp_processor_id();
2706 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2707 		spin_lock(&lp->lock);
2708 		list_add_tail(&vc->preempt_list, &lp->list);
2709 		spin_unlock(&lp->lock);
2710 	}
2711 
2712 	/* Start accumulating stolen time */
2713 	kvmppc_core_start_stolen(vc);
2714 }
2715 
2716 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2717 {
2718 	struct preempted_vcore_list *lp;
2719 
2720 	kvmppc_core_end_stolen(vc);
2721 	if (!list_empty(&vc->preempt_list)) {
2722 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2723 		spin_lock(&lp->lock);
2724 		list_del_init(&vc->preempt_list);
2725 		spin_unlock(&lp->lock);
2726 	}
2727 	vc->vcore_state = VCORE_INACTIVE;
2728 }
2729 
2730 /*
2731  * This stores information about the virtual cores currently
2732  * assigned to a physical core.
2733  */
2734 struct core_info {
2735 	int		n_subcores;
2736 	int		max_subcore_threads;
2737 	int		total_threads;
2738 	int		subcore_threads[MAX_SUBCORES];
2739 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2740 };
2741 
2742 /*
2743  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2744  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2745  */
2746 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2747 
2748 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2749 {
2750 	memset(cip, 0, sizeof(*cip));
2751 	cip->n_subcores = 1;
2752 	cip->max_subcore_threads = vc->num_threads;
2753 	cip->total_threads = vc->num_threads;
2754 	cip->subcore_threads[0] = vc->num_threads;
2755 	cip->vc[0] = vc;
2756 }
2757 
2758 static bool subcore_config_ok(int n_subcores, int n_threads)
2759 {
2760 	/*
2761 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2762 	 * split-core mode, with one thread per subcore.
2763 	 */
2764 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2765 		return n_subcores <= 4 && n_threads == 1;
2766 
2767 	/* On POWER8, can only dynamically split if unsplit to begin with */
2768 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2769 		return false;
2770 	if (n_subcores > MAX_SUBCORES)
2771 		return false;
2772 	if (n_subcores > 1) {
2773 		if (!(dynamic_mt_modes & 2))
2774 			n_subcores = 4;
2775 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2776 			return false;
2777 	}
2778 
2779 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2780 }
2781 
2782 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2783 {
2784 	vc->entry_exit_map = 0;
2785 	vc->in_guest = 0;
2786 	vc->napping_threads = 0;
2787 	vc->conferring_threads = 0;
2788 	vc->tb_offset_applied = 0;
2789 }
2790 
2791 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2792 {
2793 	int n_threads = vc->num_threads;
2794 	int sub;
2795 
2796 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2797 		return false;
2798 
2799 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
2800 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2801 		return false;
2802 
2803 	/* Some POWER9 chips require all threads to be in the same MMU mode */
2804 	if (no_mixing_hpt_and_radix &&
2805 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2806 		return false;
2807 
2808 	if (n_threads < cip->max_subcore_threads)
2809 		n_threads = cip->max_subcore_threads;
2810 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2811 		return false;
2812 	cip->max_subcore_threads = n_threads;
2813 
2814 	sub = cip->n_subcores;
2815 	++cip->n_subcores;
2816 	cip->total_threads += vc->num_threads;
2817 	cip->subcore_threads[sub] = vc->num_threads;
2818 	cip->vc[sub] = vc;
2819 	init_vcore_to_run(vc);
2820 	list_del_init(&vc->preempt_list);
2821 
2822 	return true;
2823 }
2824 
2825 /*
2826  * Work out whether it is possible to piggyback the execution of
2827  * vcore *pvc onto the execution of the other vcores described in *cip.
2828  */
2829 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2830 			  int target_threads)
2831 {
2832 	if (cip->total_threads + pvc->num_threads > target_threads)
2833 		return false;
2834 
2835 	return can_dynamic_split(pvc, cip);
2836 }
2837 
2838 static void prepare_threads(struct kvmppc_vcore *vc)
2839 {
2840 	int i;
2841 	struct kvm_vcpu *vcpu;
2842 
2843 	for_each_runnable_thread(i, vcpu, vc) {
2844 		if (signal_pending(vcpu->arch.run_task))
2845 			vcpu->arch.ret = -EINTR;
2846 		else if (vcpu->arch.vpa.update_pending ||
2847 			 vcpu->arch.slb_shadow.update_pending ||
2848 			 vcpu->arch.dtl.update_pending)
2849 			vcpu->arch.ret = RESUME_GUEST;
2850 		else
2851 			continue;
2852 		kvmppc_remove_runnable(vc, vcpu);
2853 		wake_up(&vcpu->arch.cpu_run);
2854 	}
2855 }
2856 
2857 static void collect_piggybacks(struct core_info *cip, int target_threads)
2858 {
2859 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2860 	struct kvmppc_vcore *pvc, *vcnext;
2861 
2862 	spin_lock(&lp->lock);
2863 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2864 		if (!spin_trylock(&pvc->lock))
2865 			continue;
2866 		prepare_threads(pvc);
2867 		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2868 			list_del_init(&pvc->preempt_list);
2869 			if (pvc->runner == NULL) {
2870 				pvc->vcore_state = VCORE_INACTIVE;
2871 				kvmppc_core_end_stolen(pvc);
2872 			}
2873 			spin_unlock(&pvc->lock);
2874 			continue;
2875 		}
2876 		if (!can_piggyback(pvc, cip, target_threads)) {
2877 			spin_unlock(&pvc->lock);
2878 			continue;
2879 		}
2880 		kvmppc_core_end_stolen(pvc);
2881 		pvc->vcore_state = VCORE_PIGGYBACK;
2882 		if (cip->total_threads >= target_threads)
2883 			break;
2884 	}
2885 	spin_unlock(&lp->lock);
2886 }
2887 
2888 static bool recheck_signals_and_mmu(struct core_info *cip)
2889 {
2890 	int sub, i;
2891 	struct kvm_vcpu *vcpu;
2892 	struct kvmppc_vcore *vc;
2893 
2894 	for (sub = 0; sub < cip->n_subcores; ++sub) {
2895 		vc = cip->vc[sub];
2896 		if (!vc->kvm->arch.mmu_ready)
2897 			return true;
2898 		for_each_runnable_thread(i, vcpu, vc)
2899 			if (signal_pending(vcpu->arch.run_task))
2900 				return true;
2901 	}
2902 	return false;
2903 }
2904 
2905 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2906 {
2907 	int still_running = 0, i;
2908 	u64 now;
2909 	long ret;
2910 	struct kvm_vcpu *vcpu;
2911 
2912 	spin_lock(&vc->lock);
2913 	now = get_tb();
2914 	for_each_runnable_thread(i, vcpu, vc) {
2915 		/*
2916 		 * It's safe to unlock the vcore in the loop here, because
2917 		 * for_each_runnable_thread() is safe against removal of
2918 		 * the vcpu, and the vcore state is VCORE_EXITING here,
2919 		 * so any vcpus becoming runnable will have their arch.trap
2920 		 * set to zero and can't actually run in the guest.
2921 		 */
2922 		spin_unlock(&vc->lock);
2923 		/* cancel pending dec exception if dec is positive */
2924 		if (now < vcpu->arch.dec_expires &&
2925 		    kvmppc_core_pending_dec(vcpu))
2926 			kvmppc_core_dequeue_dec(vcpu);
2927 
2928 		trace_kvm_guest_exit(vcpu);
2929 
2930 		ret = RESUME_GUEST;
2931 		if (vcpu->arch.trap)
2932 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2933 						    vcpu->arch.run_task);
2934 
2935 		vcpu->arch.ret = ret;
2936 		vcpu->arch.trap = 0;
2937 
2938 		spin_lock(&vc->lock);
2939 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2940 			if (vcpu->arch.pending_exceptions)
2941 				kvmppc_core_prepare_to_enter(vcpu);
2942 			if (vcpu->arch.ceded)
2943 				kvmppc_set_timer(vcpu);
2944 			else
2945 				++still_running;
2946 		} else {
2947 			kvmppc_remove_runnable(vc, vcpu);
2948 			wake_up(&vcpu->arch.cpu_run);
2949 		}
2950 	}
2951 	if (!is_master) {
2952 		if (still_running > 0) {
2953 			kvmppc_vcore_preempt(vc);
2954 		} else if (vc->runner) {
2955 			vc->vcore_state = VCORE_PREEMPT;
2956 			kvmppc_core_start_stolen(vc);
2957 		} else {
2958 			vc->vcore_state = VCORE_INACTIVE;
2959 		}
2960 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2961 			/* make sure there's a candidate runner awake */
2962 			i = -1;
2963 			vcpu = next_runnable_thread(vc, &i);
2964 			wake_up(&vcpu->arch.cpu_run);
2965 		}
2966 	}
2967 	spin_unlock(&vc->lock);
2968 }
2969 
2970 /*
2971  * Clear core from the list of active host cores as we are about to
2972  * enter the guest. Only do this if it is the primary thread of the
2973  * core (not if a subcore) that is entering the guest.
2974  */
2975 static inline int kvmppc_clear_host_core(unsigned int cpu)
2976 {
2977 	int core;
2978 
2979 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2980 		return 0;
2981 	/*
2982 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2983 	 * later in kvmppc_start_thread and we need ensure that state is
2984 	 * visible to other CPUs only after we enter guest.
2985 	 */
2986 	core = cpu >> threads_shift;
2987 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2988 	return 0;
2989 }
2990 
2991 /*
2992  * Advertise this core as an active host core since we exited the guest
2993  * Only need to do this if it is the primary thread of the core that is
2994  * exiting.
2995  */
2996 static inline int kvmppc_set_host_core(unsigned int cpu)
2997 {
2998 	int core;
2999 
3000 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3001 		return 0;
3002 
3003 	/*
3004 	 * Memory barrier can be omitted here because we do a spin_unlock
3005 	 * immediately after this which provides the memory barrier.
3006 	 */
3007 	core = cpu >> threads_shift;
3008 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3009 	return 0;
3010 }
3011 
3012 static void set_irq_happened(int trap)
3013 {
3014 	switch (trap) {
3015 	case BOOK3S_INTERRUPT_EXTERNAL:
3016 		local_paca->irq_happened |= PACA_IRQ_EE;
3017 		break;
3018 	case BOOK3S_INTERRUPT_H_DOORBELL:
3019 		local_paca->irq_happened |= PACA_IRQ_DBELL;
3020 		break;
3021 	case BOOK3S_INTERRUPT_HMI:
3022 		local_paca->irq_happened |= PACA_IRQ_HMI;
3023 		break;
3024 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3025 		replay_system_reset();
3026 		break;
3027 	}
3028 }
3029 
3030 /*
3031  * Run a set of guest threads on a physical core.
3032  * Called with vc->lock held.
3033  */
3034 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3035 {
3036 	struct kvm_vcpu *vcpu;
3037 	int i;
3038 	int srcu_idx;
3039 	struct core_info core_info;
3040 	struct kvmppc_vcore *pvc;
3041 	struct kvm_split_mode split_info, *sip;
3042 	int split, subcore_size, active;
3043 	int sub;
3044 	bool thr0_done;
3045 	unsigned long cmd_bit, stat_bit;
3046 	int pcpu, thr;
3047 	int target_threads;
3048 	int controlled_threads;
3049 	int trap;
3050 	bool is_power8;
3051 	bool hpt_on_radix;
3052 
3053 	/*
3054 	 * Remove from the list any threads that have a signal pending
3055 	 * or need a VPA update done
3056 	 */
3057 	prepare_threads(vc);
3058 
3059 	/* if the runner is no longer runnable, let the caller pick a new one */
3060 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3061 		return;
3062 
3063 	/*
3064 	 * Initialize *vc.
3065 	 */
3066 	init_vcore_to_run(vc);
3067 	vc->preempt_tb = TB_NIL;
3068 
3069 	/*
3070 	 * Number of threads that we will be controlling: the same as
3071 	 * the number of threads per subcore, except on POWER9,
3072 	 * where it's 1 because the threads are (mostly) independent.
3073 	 */
3074 	controlled_threads = threads_per_vcore(vc->kvm);
3075 
3076 	/*
3077 	 * Make sure we are running on primary threads, and that secondary
3078 	 * threads are offline.  Also check if the number of threads in this
3079 	 * guest are greater than the current system threads per guest.
3080 	 * On POWER9, we need to be not in independent-threads mode if
3081 	 * this is a HPT guest on a radix host machine where the
3082 	 * CPU threads may not be in different MMU modes.
3083 	 */
3084 	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3085 		!kvm_is_radix(vc->kvm);
3086 	if (((controlled_threads > 1) &&
3087 	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3088 	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3089 		for_each_runnable_thread(i, vcpu, vc) {
3090 			vcpu->arch.ret = -EBUSY;
3091 			kvmppc_remove_runnable(vc, vcpu);
3092 			wake_up(&vcpu->arch.cpu_run);
3093 		}
3094 		goto out;
3095 	}
3096 
3097 	/*
3098 	 * See if we could run any other vcores on the physical core
3099 	 * along with this one.
3100 	 */
3101 	init_core_info(&core_info, vc);
3102 	pcpu = smp_processor_id();
3103 	target_threads = controlled_threads;
3104 	if (target_smt_mode && target_smt_mode < target_threads)
3105 		target_threads = target_smt_mode;
3106 	if (vc->num_threads < target_threads)
3107 		collect_piggybacks(&core_info, target_threads);
3108 
3109 	/*
3110 	 * On radix, arrange for TLB flushing if necessary.
3111 	 * This has to be done before disabling interrupts since
3112 	 * it uses smp_call_function().
3113 	 */
3114 	pcpu = smp_processor_id();
3115 	if (kvm_is_radix(vc->kvm)) {
3116 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3117 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3118 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3119 	}
3120 
3121 	/*
3122 	 * Hard-disable interrupts, and check resched flag and signals.
3123 	 * If we need to reschedule or deliver a signal, clean up
3124 	 * and return without going into the guest(s).
3125 	 * If the mmu_ready flag has been cleared, don't go into the
3126 	 * guest because that means a HPT resize operation is in progress.
3127 	 */
3128 	local_irq_disable();
3129 	hard_irq_disable();
3130 	if (lazy_irq_pending() || need_resched() ||
3131 	    recheck_signals_and_mmu(&core_info)) {
3132 		local_irq_enable();
3133 		vc->vcore_state = VCORE_INACTIVE;
3134 		/* Unlock all except the primary vcore */
3135 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3136 			pvc = core_info.vc[sub];
3137 			/* Put back on to the preempted vcores list */
3138 			kvmppc_vcore_preempt(pvc);
3139 			spin_unlock(&pvc->lock);
3140 		}
3141 		for (i = 0; i < controlled_threads; ++i)
3142 			kvmppc_release_hwthread(pcpu + i);
3143 		return;
3144 	}
3145 
3146 	kvmppc_clear_host_core(pcpu);
3147 
3148 	/* Decide on micro-threading (split-core) mode */
3149 	subcore_size = threads_per_subcore;
3150 	cmd_bit = stat_bit = 0;
3151 	split = core_info.n_subcores;
3152 	sip = NULL;
3153 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3154 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
3155 
3156 	if (split > 1 || hpt_on_radix) {
3157 		sip = &split_info;
3158 		memset(&split_info, 0, sizeof(split_info));
3159 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3160 			split_info.vc[sub] = core_info.vc[sub];
3161 
3162 		if (is_power8) {
3163 			if (split == 2 && (dynamic_mt_modes & 2)) {
3164 				cmd_bit = HID0_POWER8_1TO2LPAR;
3165 				stat_bit = HID0_POWER8_2LPARMODE;
3166 			} else {
3167 				split = 4;
3168 				cmd_bit = HID0_POWER8_1TO4LPAR;
3169 				stat_bit = HID0_POWER8_4LPARMODE;
3170 			}
3171 			subcore_size = MAX_SMT_THREADS / split;
3172 			split_info.rpr = mfspr(SPRN_RPR);
3173 			split_info.pmmar = mfspr(SPRN_PMMAR);
3174 			split_info.ldbar = mfspr(SPRN_LDBAR);
3175 			split_info.subcore_size = subcore_size;
3176 		} else {
3177 			split_info.subcore_size = 1;
3178 			if (hpt_on_radix) {
3179 				/* Use the split_info for LPCR/LPIDR changes */
3180 				split_info.lpcr_req = vc->lpcr;
3181 				split_info.lpidr_req = vc->kvm->arch.lpid;
3182 				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3183 				split_info.do_set = 1;
3184 			}
3185 		}
3186 
3187 		/* order writes to split_info before kvm_split_mode pointer */
3188 		smp_wmb();
3189 	}
3190 
3191 	for (thr = 0; thr < controlled_threads; ++thr) {
3192 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3193 
3194 		paca->kvm_hstate.tid = thr;
3195 		paca->kvm_hstate.napping = 0;
3196 		paca->kvm_hstate.kvm_split_mode = sip;
3197 	}
3198 
3199 	/* Initiate micro-threading (split-core) on POWER8 if required */
3200 	if (cmd_bit) {
3201 		unsigned long hid0 = mfspr(SPRN_HID0);
3202 
3203 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3204 		mb();
3205 		mtspr(SPRN_HID0, hid0);
3206 		isync();
3207 		for (;;) {
3208 			hid0 = mfspr(SPRN_HID0);
3209 			if (hid0 & stat_bit)
3210 				break;
3211 			cpu_relax();
3212 		}
3213 	}
3214 
3215 	/*
3216 	 * On POWER8, set RWMR register.
3217 	 * Since it only affects PURR and SPURR, it doesn't affect
3218 	 * the host, so we don't save/restore the host value.
3219 	 */
3220 	if (is_power8) {
3221 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3222 		int n_online = atomic_read(&vc->online_count);
3223 
3224 		/*
3225 		 * Use the 8-thread value if we're doing split-core
3226 		 * or if the vcore's online count looks bogus.
3227 		 */
3228 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3229 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3230 			rwmr_val = p8_rwmr_values[n_online];
3231 		mtspr(SPRN_RWMR, rwmr_val);
3232 	}
3233 
3234 	/* Start all the threads */
3235 	active = 0;
3236 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3237 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3238 		thr0_done = false;
3239 		active |= 1 << thr;
3240 		pvc = core_info.vc[sub];
3241 		pvc->pcpu = pcpu + thr;
3242 		for_each_runnable_thread(i, vcpu, pvc) {
3243 			kvmppc_start_thread(vcpu, pvc);
3244 			kvmppc_create_dtl_entry(vcpu, pvc);
3245 			trace_kvm_guest_enter(vcpu);
3246 			if (!vcpu->arch.ptid)
3247 				thr0_done = true;
3248 			active |= 1 << (thr + vcpu->arch.ptid);
3249 		}
3250 		/*
3251 		 * We need to start the first thread of each subcore
3252 		 * even if it doesn't have a vcpu.
3253 		 */
3254 		if (!thr0_done)
3255 			kvmppc_start_thread(NULL, pvc);
3256 	}
3257 
3258 	/*
3259 	 * Ensure that split_info.do_nap is set after setting
3260 	 * the vcore pointer in the PACA of the secondaries.
3261 	 */
3262 	smp_mb();
3263 
3264 	/*
3265 	 * When doing micro-threading, poke the inactive threads as well.
3266 	 * This gets them to the nap instruction after kvm_do_nap,
3267 	 * which reduces the time taken to unsplit later.
3268 	 * For POWER9 HPT guest on radix host, we need all the secondary
3269 	 * threads woken up so they can do the LPCR/LPIDR change.
3270 	 */
3271 	if (cmd_bit || hpt_on_radix) {
3272 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3273 		for (thr = 1; thr < threads_per_subcore; ++thr)
3274 			if (!(active & (1 << thr)))
3275 				kvmppc_ipi_thread(pcpu + thr);
3276 	}
3277 
3278 	vc->vcore_state = VCORE_RUNNING;
3279 	preempt_disable();
3280 
3281 	trace_kvmppc_run_core(vc, 0);
3282 
3283 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3284 		spin_unlock(&core_info.vc[sub]->lock);
3285 
3286 	guest_enter_irqoff();
3287 
3288 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3289 
3290 	this_cpu_disable_ftrace();
3291 
3292 	/*
3293 	 * Interrupts will be enabled once we get into the guest,
3294 	 * so tell lockdep that we're about to enable interrupts.
3295 	 */
3296 	trace_hardirqs_on();
3297 
3298 	trap = __kvmppc_vcore_entry();
3299 
3300 	trace_hardirqs_off();
3301 
3302 	this_cpu_enable_ftrace();
3303 
3304 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3305 
3306 	set_irq_happened(trap);
3307 
3308 	spin_lock(&vc->lock);
3309 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3310 	vc->vcore_state = VCORE_EXITING;
3311 
3312 	/* wait for secondary threads to finish writing their state to memory */
3313 	kvmppc_wait_for_nap(controlled_threads);
3314 
3315 	/* Return to whole-core mode if we split the core earlier */
3316 	if (cmd_bit) {
3317 		unsigned long hid0 = mfspr(SPRN_HID0);
3318 		unsigned long loops = 0;
3319 
3320 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3321 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3322 		mb();
3323 		mtspr(SPRN_HID0, hid0);
3324 		isync();
3325 		for (;;) {
3326 			hid0 = mfspr(SPRN_HID0);
3327 			if (!(hid0 & stat_bit))
3328 				break;
3329 			cpu_relax();
3330 			++loops;
3331 		}
3332 	} else if (hpt_on_radix) {
3333 		/* Wait for all threads to have seen final sync */
3334 		for (thr = 1; thr < controlled_threads; ++thr) {
3335 			struct paca_struct *paca = paca_ptrs[pcpu + thr];
3336 
3337 			while (paca->kvm_hstate.kvm_split_mode) {
3338 				HMT_low();
3339 				barrier();
3340 			}
3341 			HMT_medium();
3342 		}
3343 	}
3344 	split_info.do_nap = 0;
3345 
3346 	kvmppc_set_host_core(pcpu);
3347 
3348 	local_irq_enable();
3349 	guest_exit();
3350 
3351 	/* Let secondaries go back to the offline loop */
3352 	for (i = 0; i < controlled_threads; ++i) {
3353 		kvmppc_release_hwthread(pcpu + i);
3354 		if (sip && sip->napped[i])
3355 			kvmppc_ipi_thread(pcpu + i);
3356 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3357 	}
3358 
3359 	spin_unlock(&vc->lock);
3360 
3361 	/* make sure updates to secondary vcpu structs are visible now */
3362 	smp_mb();
3363 
3364 	preempt_enable();
3365 
3366 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3367 		pvc = core_info.vc[sub];
3368 		post_guest_process(pvc, pvc == vc);
3369 	}
3370 
3371 	spin_lock(&vc->lock);
3372 
3373  out:
3374 	vc->vcore_state = VCORE_INACTIVE;
3375 	trace_kvmppc_run_core(vc, 1);
3376 }
3377 
3378 /*
3379  * Load up hypervisor-mode registers on P9.
3380  */
3381 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3382 				     unsigned long lpcr)
3383 {
3384 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3385 	s64 hdec;
3386 	u64 tb, purr, spurr;
3387 	int trap;
3388 	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3389 	unsigned long host_ciabr = mfspr(SPRN_CIABR);
3390 	unsigned long host_dawr = mfspr(SPRN_DAWR0);
3391 	unsigned long host_dawrx = mfspr(SPRN_DAWRX0);
3392 	unsigned long host_psscr = mfspr(SPRN_PSSCR);
3393 	unsigned long host_pidr = mfspr(SPRN_PID);
3394 
3395 	hdec = time_limit - mftb();
3396 	if (hdec < 0)
3397 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3398 	mtspr(SPRN_HDEC, hdec);
3399 
3400 	if (vc->tb_offset) {
3401 		u64 new_tb = mftb() + vc->tb_offset;
3402 		mtspr(SPRN_TBU40, new_tb);
3403 		tb = mftb();
3404 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3405 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3406 		vc->tb_offset_applied = vc->tb_offset;
3407 	}
3408 
3409 	if (vc->pcr)
3410 		mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3411 	mtspr(SPRN_DPDES, vc->dpdes);
3412 	mtspr(SPRN_VTB, vc->vtb);
3413 
3414 	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3415 	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3416 	mtspr(SPRN_PURR, vcpu->arch.purr);
3417 	mtspr(SPRN_SPURR, vcpu->arch.spurr);
3418 
3419 	if (dawr_enabled()) {
3420 		mtspr(SPRN_DAWR0, vcpu->arch.dawr);
3421 		mtspr(SPRN_DAWRX0, vcpu->arch.dawrx);
3422 	}
3423 	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3424 	mtspr(SPRN_IC, vcpu->arch.ic);
3425 	mtspr(SPRN_PID, vcpu->arch.pid);
3426 
3427 	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3428 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3429 
3430 	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3431 
3432 	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3433 	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3434 	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3435 	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3436 
3437 	mtspr(SPRN_AMOR, ~0UL);
3438 
3439 	mtspr(SPRN_LPCR, lpcr);
3440 	isync();
3441 
3442 	kvmppc_xive_push_vcpu(vcpu);
3443 
3444 	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3445 	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3446 
3447 	trap = __kvmhv_vcpu_entry_p9(vcpu);
3448 
3449 	/* Advance host PURR/SPURR by the amount used by guest */
3450 	purr = mfspr(SPRN_PURR);
3451 	spurr = mfspr(SPRN_SPURR);
3452 	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3453 	      purr - vcpu->arch.purr);
3454 	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3455 	      spurr - vcpu->arch.spurr);
3456 	vcpu->arch.purr = purr;
3457 	vcpu->arch.spurr = spurr;
3458 
3459 	vcpu->arch.ic = mfspr(SPRN_IC);
3460 	vcpu->arch.pid = mfspr(SPRN_PID);
3461 	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3462 
3463 	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3464 	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3465 	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3466 	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3467 
3468 	/* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3469 	mtspr(SPRN_PSSCR, host_psscr |
3470 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3471 	mtspr(SPRN_HFSCR, host_hfscr);
3472 	mtspr(SPRN_CIABR, host_ciabr);
3473 	mtspr(SPRN_DAWR0, host_dawr);
3474 	mtspr(SPRN_DAWRX0, host_dawrx);
3475 	mtspr(SPRN_PID, host_pidr);
3476 
3477 	/*
3478 	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3479 	 * case we interrupted the guest between a tlbie and a ptesync.
3480 	 */
3481 	asm volatile("eieio; tlbsync; ptesync");
3482 
3483 	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
3484 	isync();
3485 
3486 	vc->dpdes = mfspr(SPRN_DPDES);
3487 	vc->vtb = mfspr(SPRN_VTB);
3488 	mtspr(SPRN_DPDES, 0);
3489 	if (vc->pcr)
3490 		mtspr(SPRN_PCR, PCR_MASK);
3491 
3492 	if (vc->tb_offset_applied) {
3493 		u64 new_tb = mftb() - vc->tb_offset_applied;
3494 		mtspr(SPRN_TBU40, new_tb);
3495 		tb = mftb();
3496 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3497 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3498 		vc->tb_offset_applied = 0;
3499 	}
3500 
3501 	mtspr(SPRN_HDEC, 0x7fffffff);
3502 	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3503 
3504 	return trap;
3505 }
3506 
3507 /*
3508  * Virtual-mode guest entry for POWER9 and later when the host and
3509  * guest are both using the radix MMU.  The LPIDR has already been set.
3510  */
3511 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3512 			 unsigned long lpcr)
3513 {
3514 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3515 	unsigned long host_dscr = mfspr(SPRN_DSCR);
3516 	unsigned long host_tidr = mfspr(SPRN_TIDR);
3517 	unsigned long host_iamr = mfspr(SPRN_IAMR);
3518 	unsigned long host_amr = mfspr(SPRN_AMR);
3519 	s64 dec;
3520 	u64 tb;
3521 	int trap, save_pmu;
3522 
3523 	dec = mfspr(SPRN_DEC);
3524 	tb = mftb();
3525 	if (dec < 512)
3526 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3527 	local_paca->kvm_hstate.dec_expires = dec + tb;
3528 	if (local_paca->kvm_hstate.dec_expires < time_limit)
3529 		time_limit = local_paca->kvm_hstate.dec_expires;
3530 
3531 	vcpu->arch.ceded = 0;
3532 
3533 	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */
3534 
3535 	kvmppc_subcore_enter_guest();
3536 
3537 	vc->entry_exit_map = 1;
3538 	vc->in_guest = 1;
3539 
3540 	if (vcpu->arch.vpa.pinned_addr) {
3541 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3542 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3543 		lp->yield_count = cpu_to_be32(yield_count);
3544 		vcpu->arch.vpa.dirty = 1;
3545 	}
3546 
3547 	if (cpu_has_feature(CPU_FTR_TM) ||
3548 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3549 		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3550 
3551 	kvmhv_load_guest_pmu(vcpu);
3552 
3553 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3554 	load_fp_state(&vcpu->arch.fp);
3555 #ifdef CONFIG_ALTIVEC
3556 	load_vr_state(&vcpu->arch.vr);
3557 #endif
3558 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3559 
3560 	mtspr(SPRN_DSCR, vcpu->arch.dscr);
3561 	mtspr(SPRN_IAMR, vcpu->arch.iamr);
3562 	mtspr(SPRN_PSPB, vcpu->arch.pspb);
3563 	mtspr(SPRN_FSCR, vcpu->arch.fscr);
3564 	mtspr(SPRN_TAR, vcpu->arch.tar);
3565 	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3566 	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3567 	mtspr(SPRN_BESCR, vcpu->arch.bescr);
3568 	mtspr(SPRN_WORT, vcpu->arch.wort);
3569 	mtspr(SPRN_TIDR, vcpu->arch.tid);
3570 	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3571 	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3572 	mtspr(SPRN_AMR, vcpu->arch.amr);
3573 	mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3574 
3575 	if (!(vcpu->arch.ctrl & 1))
3576 		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3577 
3578 	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3579 
3580 	if (kvmhv_on_pseries()) {
3581 		/*
3582 		 * We need to save and restore the guest visible part of the
3583 		 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3584 		 * doesn't do this for us. Note only required if pseries since
3585 		 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3586 		 */
3587 		unsigned long host_psscr;
3588 		/* call our hypervisor to load up HV regs and go */
3589 		struct hv_guest_state hvregs;
3590 
3591 		host_psscr = mfspr(SPRN_PSSCR_PR);
3592 		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3593 		kvmhv_save_hv_regs(vcpu, &hvregs);
3594 		hvregs.lpcr = lpcr;
3595 		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3596 		hvregs.version = HV_GUEST_STATE_VERSION;
3597 		if (vcpu->arch.nested) {
3598 			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3599 			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3600 		} else {
3601 			hvregs.lpid = vcpu->kvm->arch.lpid;
3602 			hvregs.vcpu_token = vcpu->vcpu_id;
3603 		}
3604 		hvregs.hdec_expiry = time_limit;
3605 		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3606 					  __pa(&vcpu->arch.regs));
3607 		kvmhv_restore_hv_return_state(vcpu, &hvregs);
3608 		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3609 		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3610 		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3611 		vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3612 		mtspr(SPRN_PSSCR_PR, host_psscr);
3613 
3614 		/* H_CEDE has to be handled now, not later */
3615 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3616 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3617 			kvmppc_nested_cede(vcpu);
3618 			kvmppc_set_gpr(vcpu, 3, 0);
3619 			trap = 0;
3620 		}
3621 	} else {
3622 		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3623 	}
3624 
3625 	vcpu->arch.slb_max = 0;
3626 	dec = mfspr(SPRN_DEC);
3627 	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3628 		dec = (s32) dec;
3629 	tb = mftb();
3630 	vcpu->arch.dec_expires = dec + tb;
3631 	vcpu->cpu = -1;
3632 	vcpu->arch.thread_cpu = -1;
3633 	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3634 
3635 	vcpu->arch.iamr = mfspr(SPRN_IAMR);
3636 	vcpu->arch.pspb = mfspr(SPRN_PSPB);
3637 	vcpu->arch.fscr = mfspr(SPRN_FSCR);
3638 	vcpu->arch.tar = mfspr(SPRN_TAR);
3639 	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3640 	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3641 	vcpu->arch.bescr = mfspr(SPRN_BESCR);
3642 	vcpu->arch.wort = mfspr(SPRN_WORT);
3643 	vcpu->arch.tid = mfspr(SPRN_TIDR);
3644 	vcpu->arch.amr = mfspr(SPRN_AMR);
3645 	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3646 	vcpu->arch.dscr = mfspr(SPRN_DSCR);
3647 
3648 	mtspr(SPRN_PSPB, 0);
3649 	mtspr(SPRN_WORT, 0);
3650 	mtspr(SPRN_UAMOR, 0);
3651 	mtspr(SPRN_DSCR, host_dscr);
3652 	mtspr(SPRN_TIDR, host_tidr);
3653 	mtspr(SPRN_IAMR, host_iamr);
3654 	mtspr(SPRN_PSPB, 0);
3655 
3656 	if (host_amr != vcpu->arch.amr)
3657 		mtspr(SPRN_AMR, host_amr);
3658 
3659 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3660 	store_fp_state(&vcpu->arch.fp);
3661 #ifdef CONFIG_ALTIVEC
3662 	store_vr_state(&vcpu->arch.vr);
3663 #endif
3664 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3665 
3666 	if (cpu_has_feature(CPU_FTR_TM) ||
3667 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3668 		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3669 
3670 	save_pmu = 1;
3671 	if (vcpu->arch.vpa.pinned_addr) {
3672 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3673 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3674 		lp->yield_count = cpu_to_be32(yield_count);
3675 		vcpu->arch.vpa.dirty = 1;
3676 		save_pmu = lp->pmcregs_in_use;
3677 	}
3678 	/* Must save pmu if this guest is capable of running nested guests */
3679 	save_pmu |= nesting_enabled(vcpu->kvm);
3680 
3681 	kvmhv_save_guest_pmu(vcpu, save_pmu);
3682 
3683 	vc->entry_exit_map = 0x101;
3684 	vc->in_guest = 0;
3685 
3686 	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3687 	mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3688 
3689 	kvmhv_load_host_pmu();
3690 
3691 	kvmppc_subcore_exit_guest();
3692 
3693 	return trap;
3694 }
3695 
3696 /*
3697  * Wait for some other vcpu thread to execute us, and
3698  * wake us up when we need to handle something in the host.
3699  */
3700 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3701 				 struct kvm_vcpu *vcpu, int wait_state)
3702 {
3703 	DEFINE_WAIT(wait);
3704 
3705 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3706 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3707 		spin_unlock(&vc->lock);
3708 		schedule();
3709 		spin_lock(&vc->lock);
3710 	}
3711 	finish_wait(&vcpu->arch.cpu_run, &wait);
3712 }
3713 
3714 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3715 {
3716 	if (!halt_poll_ns_grow)
3717 		return;
3718 
3719 	vc->halt_poll_ns *= halt_poll_ns_grow;
3720 	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3721 		vc->halt_poll_ns = halt_poll_ns_grow_start;
3722 }
3723 
3724 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3725 {
3726 	if (halt_poll_ns_shrink == 0)
3727 		vc->halt_poll_ns = 0;
3728 	else
3729 		vc->halt_poll_ns /= halt_poll_ns_shrink;
3730 }
3731 
3732 #ifdef CONFIG_KVM_XICS
3733 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3734 {
3735 	if (!xics_on_xive())
3736 		return false;
3737 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3738 		vcpu->arch.xive_saved_state.cppr;
3739 }
3740 #else
3741 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3742 {
3743 	return false;
3744 }
3745 #endif /* CONFIG_KVM_XICS */
3746 
3747 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3748 {
3749 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3750 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3751 		return true;
3752 
3753 	return false;
3754 }
3755 
3756 /*
3757  * Check to see if any of the runnable vcpus on the vcore have pending
3758  * exceptions or are no longer ceded
3759  */
3760 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3761 {
3762 	struct kvm_vcpu *vcpu;
3763 	int i;
3764 
3765 	for_each_runnable_thread(i, vcpu, vc) {
3766 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3767 			return 1;
3768 	}
3769 
3770 	return 0;
3771 }
3772 
3773 /*
3774  * All the vcpus in this vcore are idle, so wait for a decrementer
3775  * or external interrupt to one of the vcpus.  vc->lock is held.
3776  */
3777 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3778 {
3779 	ktime_t cur, start_poll, start_wait;
3780 	int do_sleep = 1;
3781 	u64 block_ns;
3782 
3783 	/* Poll for pending exceptions and ceded state */
3784 	cur = start_poll = ktime_get();
3785 	if (vc->halt_poll_ns) {
3786 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3787 		++vc->runner->stat.halt_attempted_poll;
3788 
3789 		vc->vcore_state = VCORE_POLLING;
3790 		spin_unlock(&vc->lock);
3791 
3792 		do {
3793 			if (kvmppc_vcore_check_block(vc)) {
3794 				do_sleep = 0;
3795 				break;
3796 			}
3797 			cur = ktime_get();
3798 		} while (single_task_running() && ktime_before(cur, stop));
3799 
3800 		spin_lock(&vc->lock);
3801 		vc->vcore_state = VCORE_INACTIVE;
3802 
3803 		if (!do_sleep) {
3804 			++vc->runner->stat.halt_successful_poll;
3805 			goto out;
3806 		}
3807 	}
3808 
3809 	prepare_to_rcuwait(&vc->wait);
3810 	set_current_state(TASK_INTERRUPTIBLE);
3811 	if (kvmppc_vcore_check_block(vc)) {
3812 		finish_rcuwait(&vc->wait);
3813 		do_sleep = 0;
3814 		/* If we polled, count this as a successful poll */
3815 		if (vc->halt_poll_ns)
3816 			++vc->runner->stat.halt_successful_poll;
3817 		goto out;
3818 	}
3819 
3820 	start_wait = ktime_get();
3821 
3822 	vc->vcore_state = VCORE_SLEEPING;
3823 	trace_kvmppc_vcore_blocked(vc, 0);
3824 	spin_unlock(&vc->lock);
3825 	schedule();
3826 	finish_rcuwait(&vc->wait);
3827 	spin_lock(&vc->lock);
3828 	vc->vcore_state = VCORE_INACTIVE;
3829 	trace_kvmppc_vcore_blocked(vc, 1);
3830 	++vc->runner->stat.halt_successful_wait;
3831 
3832 	cur = ktime_get();
3833 
3834 out:
3835 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3836 
3837 	/* Attribute wait time */
3838 	if (do_sleep) {
3839 		vc->runner->stat.halt_wait_ns +=
3840 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3841 		/* Attribute failed poll time */
3842 		if (vc->halt_poll_ns)
3843 			vc->runner->stat.halt_poll_fail_ns +=
3844 				ktime_to_ns(start_wait) -
3845 				ktime_to_ns(start_poll);
3846 	} else {
3847 		/* Attribute successful poll time */
3848 		if (vc->halt_poll_ns)
3849 			vc->runner->stat.halt_poll_success_ns +=
3850 				ktime_to_ns(cur) -
3851 				ktime_to_ns(start_poll);
3852 	}
3853 
3854 	/* Adjust poll time */
3855 	if (halt_poll_ns) {
3856 		if (block_ns <= vc->halt_poll_ns)
3857 			;
3858 		/* We slept and blocked for longer than the max halt time */
3859 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3860 			shrink_halt_poll_ns(vc);
3861 		/* We slept and our poll time is too small */
3862 		else if (vc->halt_poll_ns < halt_poll_ns &&
3863 				block_ns < halt_poll_ns)
3864 			grow_halt_poll_ns(vc);
3865 		if (vc->halt_poll_ns > halt_poll_ns)
3866 			vc->halt_poll_ns = halt_poll_ns;
3867 	} else
3868 		vc->halt_poll_ns = 0;
3869 
3870 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3871 }
3872 
3873 /*
3874  * This never fails for a radix guest, as none of the operations it does
3875  * for a radix guest can fail or have a way to report failure.
3876  * kvmhv_run_single_vcpu() relies on this fact.
3877  */
3878 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3879 {
3880 	int r = 0;
3881 	struct kvm *kvm = vcpu->kvm;
3882 
3883 	mutex_lock(&kvm->arch.mmu_setup_lock);
3884 	if (!kvm->arch.mmu_ready) {
3885 		if (!kvm_is_radix(kvm))
3886 			r = kvmppc_hv_setup_htab_rma(vcpu);
3887 		if (!r) {
3888 			if (cpu_has_feature(CPU_FTR_ARCH_300))
3889 				kvmppc_setup_partition_table(kvm);
3890 			kvm->arch.mmu_ready = 1;
3891 		}
3892 	}
3893 	mutex_unlock(&kvm->arch.mmu_setup_lock);
3894 	return r;
3895 }
3896 
3897 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3898 {
3899 	int n_ceded, i, r;
3900 	struct kvmppc_vcore *vc;
3901 	struct kvm_vcpu *v;
3902 
3903 	trace_kvmppc_run_vcpu_enter(vcpu);
3904 
3905 	kvm_run->exit_reason = 0;
3906 	vcpu->arch.ret = RESUME_GUEST;
3907 	vcpu->arch.trap = 0;
3908 	kvmppc_update_vpas(vcpu);
3909 
3910 	/*
3911 	 * Synchronize with other threads in this virtual core
3912 	 */
3913 	vc = vcpu->arch.vcore;
3914 	spin_lock(&vc->lock);
3915 	vcpu->arch.ceded = 0;
3916 	vcpu->arch.run_task = current;
3917 	vcpu->arch.kvm_run = kvm_run;
3918 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3919 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3920 	vcpu->arch.busy_preempt = TB_NIL;
3921 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3922 	++vc->n_runnable;
3923 
3924 	/*
3925 	 * This happens the first time this is called for a vcpu.
3926 	 * If the vcore is already running, we may be able to start
3927 	 * this thread straight away and have it join in.
3928 	 */
3929 	if (!signal_pending(current)) {
3930 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
3931 		     vc->vcore_state == VCORE_RUNNING) &&
3932 			   !VCORE_IS_EXITING(vc)) {
3933 			kvmppc_create_dtl_entry(vcpu, vc);
3934 			kvmppc_start_thread(vcpu, vc);
3935 			trace_kvm_guest_enter(vcpu);
3936 		} else if (vc->vcore_state == VCORE_SLEEPING) {
3937 		        rcuwait_wake_up(&vc->wait);
3938 		}
3939 
3940 	}
3941 
3942 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3943 	       !signal_pending(current)) {
3944 		/* See if the MMU is ready to go */
3945 		if (!vcpu->kvm->arch.mmu_ready) {
3946 			spin_unlock(&vc->lock);
3947 			r = kvmhv_setup_mmu(vcpu);
3948 			spin_lock(&vc->lock);
3949 			if (r) {
3950 				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3951 				kvm_run->fail_entry.
3952 					hardware_entry_failure_reason = 0;
3953 				vcpu->arch.ret = r;
3954 				break;
3955 			}
3956 		}
3957 
3958 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3959 			kvmppc_vcore_end_preempt(vc);
3960 
3961 		if (vc->vcore_state != VCORE_INACTIVE) {
3962 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3963 			continue;
3964 		}
3965 		for_each_runnable_thread(i, v, vc) {
3966 			kvmppc_core_prepare_to_enter(v);
3967 			if (signal_pending(v->arch.run_task)) {
3968 				kvmppc_remove_runnable(vc, v);
3969 				v->stat.signal_exits++;
3970 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3971 				v->arch.ret = -EINTR;
3972 				wake_up(&v->arch.cpu_run);
3973 			}
3974 		}
3975 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3976 			break;
3977 		n_ceded = 0;
3978 		for_each_runnable_thread(i, v, vc) {
3979 			if (!kvmppc_vcpu_woken(v))
3980 				n_ceded += v->arch.ceded;
3981 			else
3982 				v->arch.ceded = 0;
3983 		}
3984 		vc->runner = vcpu;
3985 		if (n_ceded == vc->n_runnable) {
3986 			kvmppc_vcore_blocked(vc);
3987 		} else if (need_resched()) {
3988 			kvmppc_vcore_preempt(vc);
3989 			/* Let something else run */
3990 			cond_resched_lock(&vc->lock);
3991 			if (vc->vcore_state == VCORE_PREEMPT)
3992 				kvmppc_vcore_end_preempt(vc);
3993 		} else {
3994 			kvmppc_run_core(vc);
3995 		}
3996 		vc->runner = NULL;
3997 	}
3998 
3999 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4000 	       (vc->vcore_state == VCORE_RUNNING ||
4001 		vc->vcore_state == VCORE_EXITING ||
4002 		vc->vcore_state == VCORE_PIGGYBACK))
4003 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4004 
4005 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4006 		kvmppc_vcore_end_preempt(vc);
4007 
4008 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4009 		kvmppc_remove_runnable(vc, vcpu);
4010 		vcpu->stat.signal_exits++;
4011 		kvm_run->exit_reason = KVM_EXIT_INTR;
4012 		vcpu->arch.ret = -EINTR;
4013 	}
4014 
4015 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4016 		/* Wake up some vcpu to run the core */
4017 		i = -1;
4018 		v = next_runnable_thread(vc, &i);
4019 		wake_up(&v->arch.cpu_run);
4020 	}
4021 
4022 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4023 	spin_unlock(&vc->lock);
4024 	return vcpu->arch.ret;
4025 }
4026 
4027 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
4028 			  struct kvm_vcpu *vcpu, u64 time_limit,
4029 			  unsigned long lpcr)
4030 {
4031 	int trap, r, pcpu;
4032 	int srcu_idx, lpid;
4033 	struct kvmppc_vcore *vc;
4034 	struct kvm *kvm = vcpu->kvm;
4035 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4036 
4037 	trace_kvmppc_run_vcpu_enter(vcpu);
4038 
4039 	kvm_run->exit_reason = 0;
4040 	vcpu->arch.ret = RESUME_GUEST;
4041 	vcpu->arch.trap = 0;
4042 
4043 	vc = vcpu->arch.vcore;
4044 	vcpu->arch.ceded = 0;
4045 	vcpu->arch.run_task = current;
4046 	vcpu->arch.kvm_run = kvm_run;
4047 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4048 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4049 	vcpu->arch.busy_preempt = TB_NIL;
4050 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4051 	vc->runnable_threads[0] = vcpu;
4052 	vc->n_runnable = 1;
4053 	vc->runner = vcpu;
4054 
4055 	/* See if the MMU is ready to go */
4056 	if (!kvm->arch.mmu_ready)
4057 		kvmhv_setup_mmu(vcpu);
4058 
4059 	if (need_resched())
4060 		cond_resched();
4061 
4062 	kvmppc_update_vpas(vcpu);
4063 
4064 	init_vcore_to_run(vc);
4065 	vc->preempt_tb = TB_NIL;
4066 
4067 	preempt_disable();
4068 	pcpu = smp_processor_id();
4069 	vc->pcpu = pcpu;
4070 	kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4071 
4072 	local_irq_disable();
4073 	hard_irq_disable();
4074 	if (signal_pending(current))
4075 		goto sigpend;
4076 	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4077 		goto out;
4078 
4079 	if (!nested) {
4080 		kvmppc_core_prepare_to_enter(vcpu);
4081 		if (vcpu->arch.doorbell_request) {
4082 			vc->dpdes = 1;
4083 			smp_wmb();
4084 			vcpu->arch.doorbell_request = 0;
4085 		}
4086 		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4087 			     &vcpu->arch.pending_exceptions))
4088 			lpcr |= LPCR_MER;
4089 	} else if (vcpu->arch.pending_exceptions ||
4090 		   vcpu->arch.doorbell_request ||
4091 		   xive_interrupt_pending(vcpu)) {
4092 		vcpu->arch.ret = RESUME_HOST;
4093 		goto out;
4094 	}
4095 
4096 	kvmppc_clear_host_core(pcpu);
4097 
4098 	local_paca->kvm_hstate.tid = 0;
4099 	local_paca->kvm_hstate.napping = 0;
4100 	local_paca->kvm_hstate.kvm_split_mode = NULL;
4101 	kvmppc_start_thread(vcpu, vc);
4102 	kvmppc_create_dtl_entry(vcpu, vc);
4103 	trace_kvm_guest_enter(vcpu);
4104 
4105 	vc->vcore_state = VCORE_RUNNING;
4106 	trace_kvmppc_run_core(vc, 0);
4107 
4108 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4109 		lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4110 		mtspr(SPRN_LPID, lpid);
4111 		isync();
4112 		kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4113 	}
4114 
4115 	guest_enter_irqoff();
4116 
4117 	srcu_idx = srcu_read_lock(&kvm->srcu);
4118 
4119 	this_cpu_disable_ftrace();
4120 
4121 	/* Tell lockdep that we're about to enable interrupts */
4122 	trace_hardirqs_on();
4123 
4124 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4125 	vcpu->arch.trap = trap;
4126 
4127 	trace_hardirqs_off();
4128 
4129 	this_cpu_enable_ftrace();
4130 
4131 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4132 
4133 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4134 		mtspr(SPRN_LPID, kvm->arch.host_lpid);
4135 		isync();
4136 	}
4137 
4138 	set_irq_happened(trap);
4139 
4140 	kvmppc_set_host_core(pcpu);
4141 
4142 	local_irq_enable();
4143 	guest_exit();
4144 
4145 	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4146 
4147 	preempt_enable();
4148 
4149 	/*
4150 	 * cancel pending decrementer exception if DEC is now positive, or if
4151 	 * entering a nested guest in which case the decrementer is now owned
4152 	 * by L2 and the L1 decrementer is provided in hdec_expires
4153 	 */
4154 	if (kvmppc_core_pending_dec(vcpu) &&
4155 			((get_tb() < vcpu->arch.dec_expires) ||
4156 			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4157 			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4158 		kvmppc_core_dequeue_dec(vcpu);
4159 
4160 	trace_kvm_guest_exit(vcpu);
4161 	r = RESUME_GUEST;
4162 	if (trap) {
4163 		if (!nested)
4164 			r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4165 		else
4166 			r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4167 	}
4168 	vcpu->arch.ret = r;
4169 
4170 	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4171 	    !kvmppc_vcpu_woken(vcpu)) {
4172 		kvmppc_set_timer(vcpu);
4173 		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4174 			if (signal_pending(current)) {
4175 				vcpu->stat.signal_exits++;
4176 				kvm_run->exit_reason = KVM_EXIT_INTR;
4177 				vcpu->arch.ret = -EINTR;
4178 				break;
4179 			}
4180 			spin_lock(&vc->lock);
4181 			kvmppc_vcore_blocked(vc);
4182 			spin_unlock(&vc->lock);
4183 		}
4184 	}
4185 	vcpu->arch.ceded = 0;
4186 
4187 	vc->vcore_state = VCORE_INACTIVE;
4188 	trace_kvmppc_run_core(vc, 1);
4189 
4190  done:
4191 	kvmppc_remove_runnable(vc, vcpu);
4192 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4193 
4194 	return vcpu->arch.ret;
4195 
4196  sigpend:
4197 	vcpu->stat.signal_exits++;
4198 	kvm_run->exit_reason = KVM_EXIT_INTR;
4199 	vcpu->arch.ret = -EINTR;
4200  out:
4201 	local_irq_enable();
4202 	preempt_enable();
4203 	goto done;
4204 }
4205 
4206 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4207 {
4208 	int r;
4209 	int srcu_idx;
4210 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4211 	unsigned long user_tar = 0;
4212 	unsigned int user_vrsave;
4213 	struct kvm *kvm;
4214 
4215 	if (!vcpu->arch.sane) {
4216 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4217 		return -EINVAL;
4218 	}
4219 
4220 	/*
4221 	 * Don't allow entry with a suspended transaction, because
4222 	 * the guest entry/exit code will lose it.
4223 	 * If the guest has TM enabled, save away their TM-related SPRs
4224 	 * (they will get restored by the TM unavailable interrupt).
4225 	 */
4226 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4227 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4228 	    (current->thread.regs->msr & MSR_TM)) {
4229 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4230 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4231 			run->fail_entry.hardware_entry_failure_reason = 0;
4232 			return -EINVAL;
4233 		}
4234 		/* Enable TM so we can read the TM SPRs */
4235 		mtmsr(mfmsr() | MSR_TM);
4236 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4237 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4238 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4239 		current->thread.regs->msr &= ~MSR_TM;
4240 	}
4241 #endif
4242 
4243 	/*
4244 	 * Force online to 1 for the sake of old userspace which doesn't
4245 	 * set it.
4246 	 */
4247 	if (!vcpu->arch.online) {
4248 		atomic_inc(&vcpu->arch.vcore->online_count);
4249 		vcpu->arch.online = 1;
4250 	}
4251 
4252 	kvmppc_core_prepare_to_enter(vcpu);
4253 
4254 	/* No need to go into the guest when all we'll do is come back out */
4255 	if (signal_pending(current)) {
4256 		run->exit_reason = KVM_EXIT_INTR;
4257 		return -EINTR;
4258 	}
4259 
4260 	kvm = vcpu->kvm;
4261 	atomic_inc(&kvm->arch.vcpus_running);
4262 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4263 	smp_mb();
4264 
4265 	flush_all_to_thread(current);
4266 
4267 	/* Save userspace EBB and other register values */
4268 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4269 		ebb_regs[0] = mfspr(SPRN_EBBHR);
4270 		ebb_regs[1] = mfspr(SPRN_EBBRR);
4271 		ebb_regs[2] = mfspr(SPRN_BESCR);
4272 		user_tar = mfspr(SPRN_TAR);
4273 	}
4274 	user_vrsave = mfspr(SPRN_VRSAVE);
4275 
4276 	vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4277 	vcpu->arch.pgdir = kvm->mm->pgd;
4278 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4279 
4280 	do {
4281 		/*
4282 		 * The early POWER9 chips that can't mix radix and HPT threads
4283 		 * on the same core also need the workaround for the problem
4284 		 * where the TLB would prefetch entries in the guest exit path
4285 		 * for radix guests using the guest PIDR value and LPID 0.
4286 		 * The workaround is in the old path (kvmppc_run_vcpu())
4287 		 * but not the new path (kvmhv_run_single_vcpu()).
4288 		 */
4289 		if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4290 		    !no_mixing_hpt_and_radix)
4291 			r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4292 						  vcpu->arch.vcore->lpcr);
4293 		else
4294 			r = kvmppc_run_vcpu(run, vcpu);
4295 
4296 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4297 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4298 			trace_kvm_hcall_enter(vcpu);
4299 			r = kvmppc_pseries_do_hcall(vcpu);
4300 			trace_kvm_hcall_exit(vcpu, r);
4301 			kvmppc_core_prepare_to_enter(vcpu);
4302 		} else if (r == RESUME_PAGE_FAULT) {
4303 			srcu_idx = srcu_read_lock(&kvm->srcu);
4304 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
4305 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4306 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4307 		} else if (r == RESUME_PASSTHROUGH) {
4308 			if (WARN_ON(xics_on_xive()))
4309 				r = H_SUCCESS;
4310 			else
4311 				r = kvmppc_xics_rm_complete(vcpu, 0);
4312 		}
4313 	} while (is_kvmppc_resume_guest(r));
4314 
4315 	/* Restore userspace EBB and other register values */
4316 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4317 		mtspr(SPRN_EBBHR, ebb_regs[0]);
4318 		mtspr(SPRN_EBBRR, ebb_regs[1]);
4319 		mtspr(SPRN_BESCR, ebb_regs[2]);
4320 		mtspr(SPRN_TAR, user_tar);
4321 		mtspr(SPRN_FSCR, current->thread.fscr);
4322 	}
4323 	mtspr(SPRN_VRSAVE, user_vrsave);
4324 
4325 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4326 	atomic_dec(&kvm->arch.vcpus_running);
4327 	return r;
4328 }
4329 
4330 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4331 				     int shift, int sllp)
4332 {
4333 	(*sps)->page_shift = shift;
4334 	(*sps)->slb_enc = sllp;
4335 	(*sps)->enc[0].page_shift = shift;
4336 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4337 	/*
4338 	 * Add 16MB MPSS support (may get filtered out by userspace)
4339 	 */
4340 	if (shift != 24) {
4341 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4342 		if (penc != -1) {
4343 			(*sps)->enc[1].page_shift = 24;
4344 			(*sps)->enc[1].pte_enc = penc;
4345 		}
4346 	}
4347 	(*sps)++;
4348 }
4349 
4350 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4351 					 struct kvm_ppc_smmu_info *info)
4352 {
4353 	struct kvm_ppc_one_seg_page_size *sps;
4354 
4355 	/*
4356 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4357 	 * POWER7 doesn't support keys for instruction accesses,
4358 	 * POWER8 and POWER9 do.
4359 	 */
4360 	info->data_keys = 32;
4361 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4362 
4363 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4364 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4365 	info->slb_size = 32;
4366 
4367 	/* We only support these sizes for now, and no muti-size segments */
4368 	sps = &info->sps[0];
4369 	kvmppc_add_seg_page_size(&sps, 12, 0);
4370 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4371 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4372 
4373 	/* If running as a nested hypervisor, we don't support HPT guests */
4374 	if (kvmhv_on_pseries())
4375 		info->flags |= KVM_PPC_NO_HASH;
4376 
4377 	return 0;
4378 }
4379 
4380 /*
4381  * Get (and clear) the dirty memory log for a memory slot.
4382  */
4383 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4384 					 struct kvm_dirty_log *log)
4385 {
4386 	struct kvm_memslots *slots;
4387 	struct kvm_memory_slot *memslot;
4388 	int i, r;
4389 	unsigned long n;
4390 	unsigned long *buf, *p;
4391 	struct kvm_vcpu *vcpu;
4392 
4393 	mutex_lock(&kvm->slots_lock);
4394 
4395 	r = -EINVAL;
4396 	if (log->slot >= KVM_USER_MEM_SLOTS)
4397 		goto out;
4398 
4399 	slots = kvm_memslots(kvm);
4400 	memslot = id_to_memslot(slots, log->slot);
4401 	r = -ENOENT;
4402 	if (!memslot || !memslot->dirty_bitmap)
4403 		goto out;
4404 
4405 	/*
4406 	 * Use second half of bitmap area because both HPT and radix
4407 	 * accumulate bits in the first half.
4408 	 */
4409 	n = kvm_dirty_bitmap_bytes(memslot);
4410 	buf = memslot->dirty_bitmap + n / sizeof(long);
4411 	memset(buf, 0, n);
4412 
4413 	if (kvm_is_radix(kvm))
4414 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4415 	else
4416 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4417 	if (r)
4418 		goto out;
4419 
4420 	/*
4421 	 * We accumulate dirty bits in the first half of the
4422 	 * memslot's dirty_bitmap area, for when pages are paged
4423 	 * out or modified by the host directly.  Pick up these
4424 	 * bits and add them to the map.
4425 	 */
4426 	p = memslot->dirty_bitmap;
4427 	for (i = 0; i < n / sizeof(long); ++i)
4428 		buf[i] |= xchg(&p[i], 0);
4429 
4430 	/* Harvest dirty bits from VPA and DTL updates */
4431 	/* Note: we never modify the SLB shadow buffer areas */
4432 	kvm_for_each_vcpu(i, vcpu, kvm) {
4433 		spin_lock(&vcpu->arch.vpa_update_lock);
4434 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4435 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4436 		spin_unlock(&vcpu->arch.vpa_update_lock);
4437 	}
4438 
4439 	r = -EFAULT;
4440 	if (copy_to_user(log->dirty_bitmap, buf, n))
4441 		goto out;
4442 
4443 	r = 0;
4444 out:
4445 	mutex_unlock(&kvm->slots_lock);
4446 	return r;
4447 }
4448 
4449 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4450 {
4451 	vfree(slot->arch.rmap);
4452 	slot->arch.rmap = NULL;
4453 }
4454 
4455 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4456 					struct kvm_memory_slot *slot,
4457 					const struct kvm_userspace_memory_region *mem,
4458 					enum kvm_mr_change change)
4459 {
4460 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4461 
4462 	if (change == KVM_MR_CREATE) {
4463 		slot->arch.rmap = vzalloc(array_size(npages,
4464 					  sizeof(*slot->arch.rmap)));
4465 		if (!slot->arch.rmap)
4466 			return -ENOMEM;
4467 	}
4468 
4469 	return 0;
4470 }
4471 
4472 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4473 				const struct kvm_userspace_memory_region *mem,
4474 				const struct kvm_memory_slot *old,
4475 				const struct kvm_memory_slot *new,
4476 				enum kvm_mr_change change)
4477 {
4478 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4479 
4480 	/*
4481 	 * If we are making a new memslot, it might make
4482 	 * some address that was previously cached as emulated
4483 	 * MMIO be no longer emulated MMIO, so invalidate
4484 	 * all the caches of emulated MMIO translations.
4485 	 */
4486 	if (npages)
4487 		atomic64_inc(&kvm->arch.mmio_update);
4488 
4489 	/*
4490 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4491 	 * have already called kvm_arch_flush_shadow_memslot() to
4492 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
4493 	 * previous mappings.  So the only case to handle is
4494 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4495 	 * has been changed.
4496 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4497 	 * to get rid of any THP PTEs in the partition-scoped page tables
4498 	 * so we can track dirtiness at the page level; we flush when
4499 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4500 	 * using THP PTEs.
4501 	 */
4502 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4503 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4504 		kvmppc_radix_flush_memslot(kvm, old);
4505 	/*
4506 	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4507 	 */
4508 	if (!kvm->arch.secure_guest)
4509 		return;
4510 
4511 	switch (change) {
4512 	case KVM_MR_CREATE:
4513 		if (kvmppc_uvmem_slot_init(kvm, new))
4514 			return;
4515 		uv_register_mem_slot(kvm->arch.lpid,
4516 				     new->base_gfn << PAGE_SHIFT,
4517 				     new->npages * PAGE_SIZE,
4518 				     0, new->id);
4519 		break;
4520 	case KVM_MR_DELETE:
4521 		uv_unregister_mem_slot(kvm->arch.lpid, old->id);
4522 		kvmppc_uvmem_slot_free(kvm, old);
4523 		break;
4524 	default:
4525 		/* TODO: Handle KVM_MR_MOVE */
4526 		break;
4527 	}
4528 }
4529 
4530 /*
4531  * Update LPCR values in kvm->arch and in vcores.
4532  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4533  * of kvm->arch.lpcr update).
4534  */
4535 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4536 {
4537 	long int i;
4538 	u32 cores_done = 0;
4539 
4540 	if ((kvm->arch.lpcr & mask) == lpcr)
4541 		return;
4542 
4543 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4544 
4545 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
4546 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4547 		if (!vc)
4548 			continue;
4549 		spin_lock(&vc->lock);
4550 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4551 		spin_unlock(&vc->lock);
4552 		if (++cores_done >= kvm->arch.online_vcores)
4553 			break;
4554 	}
4555 }
4556 
4557 void kvmppc_setup_partition_table(struct kvm *kvm)
4558 {
4559 	unsigned long dw0, dw1;
4560 
4561 	if (!kvm_is_radix(kvm)) {
4562 		/* PS field - page size for VRMA */
4563 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4564 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4565 		/* HTABSIZE and HTABORG fields */
4566 		dw0 |= kvm->arch.sdr1;
4567 
4568 		/* Second dword as set by userspace */
4569 		dw1 = kvm->arch.process_table;
4570 	} else {
4571 		dw0 = PATB_HR | radix__get_tree_size() |
4572 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4573 		dw1 = PATB_GR | kvm->arch.process_table;
4574 	}
4575 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4576 }
4577 
4578 /*
4579  * Set up HPT (hashed page table) and RMA (real-mode area).
4580  * Must be called with kvm->arch.mmu_setup_lock held.
4581  */
4582 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4583 {
4584 	int err = 0;
4585 	struct kvm *kvm = vcpu->kvm;
4586 	unsigned long hva;
4587 	struct kvm_memory_slot *memslot;
4588 	struct vm_area_struct *vma;
4589 	unsigned long lpcr = 0, senc;
4590 	unsigned long psize, porder;
4591 	int srcu_idx;
4592 
4593 	/* Allocate hashed page table (if not done already) and reset it */
4594 	if (!kvm->arch.hpt.virt) {
4595 		int order = KVM_DEFAULT_HPT_ORDER;
4596 		struct kvm_hpt_info info;
4597 
4598 		err = kvmppc_allocate_hpt(&info, order);
4599 		/* If we get here, it means userspace didn't specify a
4600 		 * size explicitly.  So, try successively smaller
4601 		 * sizes if the default failed. */
4602 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4603 			err  = kvmppc_allocate_hpt(&info, order);
4604 
4605 		if (err < 0) {
4606 			pr_err("KVM: Couldn't alloc HPT\n");
4607 			goto out;
4608 		}
4609 
4610 		kvmppc_set_hpt(kvm, &info);
4611 	}
4612 
4613 	/* Look up the memslot for guest physical address 0 */
4614 	srcu_idx = srcu_read_lock(&kvm->srcu);
4615 	memslot = gfn_to_memslot(kvm, 0);
4616 
4617 	/* We must have some memory at 0 by now */
4618 	err = -EINVAL;
4619 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4620 		goto out_srcu;
4621 
4622 	/* Look up the VMA for the start of this memory slot */
4623 	hva = memslot->userspace_addr;
4624 	mmap_read_lock(kvm->mm);
4625 	vma = find_vma(kvm->mm, hva);
4626 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4627 		goto up_out;
4628 
4629 	psize = vma_kernel_pagesize(vma);
4630 
4631 	mmap_read_unlock(kvm->mm);
4632 
4633 	/* We can handle 4k, 64k or 16M pages in the VRMA */
4634 	if (psize >= 0x1000000)
4635 		psize = 0x1000000;
4636 	else if (psize >= 0x10000)
4637 		psize = 0x10000;
4638 	else
4639 		psize = 0x1000;
4640 	porder = __ilog2(psize);
4641 
4642 	senc = slb_pgsize_encoding(psize);
4643 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4644 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4645 	/* Create HPTEs in the hash page table for the VRMA */
4646 	kvmppc_map_vrma(vcpu, memslot, porder);
4647 
4648 	/* Update VRMASD field in the LPCR */
4649 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4650 		/* the -4 is to account for senc values starting at 0x10 */
4651 		lpcr = senc << (LPCR_VRMASD_SH - 4);
4652 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4653 	}
4654 
4655 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4656 	smp_wmb();
4657 	err = 0;
4658  out_srcu:
4659 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4660  out:
4661 	return err;
4662 
4663  up_out:
4664 	mmap_read_unlock(kvm->mm);
4665 	goto out_srcu;
4666 }
4667 
4668 /*
4669  * Must be called with kvm->arch.mmu_setup_lock held and
4670  * mmu_ready = 0 and no vcpus running.
4671  */
4672 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4673 {
4674 	if (nesting_enabled(kvm))
4675 		kvmhv_release_all_nested(kvm);
4676 	kvmppc_rmap_reset(kvm);
4677 	kvm->arch.process_table = 0;
4678 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4679 	spin_lock(&kvm->mmu_lock);
4680 	kvm->arch.radix = 0;
4681 	spin_unlock(&kvm->mmu_lock);
4682 	kvmppc_free_radix(kvm);
4683 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
4684 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4685 	return 0;
4686 }
4687 
4688 /*
4689  * Must be called with kvm->arch.mmu_setup_lock held and
4690  * mmu_ready = 0 and no vcpus running.
4691  */
4692 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4693 {
4694 	int err;
4695 
4696 	err = kvmppc_init_vm_radix(kvm);
4697 	if (err)
4698 		return err;
4699 	kvmppc_rmap_reset(kvm);
4700 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4701 	spin_lock(&kvm->mmu_lock);
4702 	kvm->arch.radix = 1;
4703 	spin_unlock(&kvm->mmu_lock);
4704 	kvmppc_free_hpt(&kvm->arch.hpt);
4705 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4706 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4707 	return 0;
4708 }
4709 
4710 #ifdef CONFIG_KVM_XICS
4711 /*
4712  * Allocate a per-core structure for managing state about which cores are
4713  * running in the host versus the guest and for exchanging data between
4714  * real mode KVM and CPU running in the host.
4715  * This is only done for the first VM.
4716  * The allocated structure stays even if all VMs have stopped.
4717  * It is only freed when the kvm-hv module is unloaded.
4718  * It's OK for this routine to fail, we just don't support host
4719  * core operations like redirecting H_IPI wakeups.
4720  */
4721 void kvmppc_alloc_host_rm_ops(void)
4722 {
4723 	struct kvmppc_host_rm_ops *ops;
4724 	unsigned long l_ops;
4725 	int cpu, core;
4726 	int size;
4727 
4728 	/* Not the first time here ? */
4729 	if (kvmppc_host_rm_ops_hv != NULL)
4730 		return;
4731 
4732 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4733 	if (!ops)
4734 		return;
4735 
4736 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4737 	ops->rm_core = kzalloc(size, GFP_KERNEL);
4738 
4739 	if (!ops->rm_core) {
4740 		kfree(ops);
4741 		return;
4742 	}
4743 
4744 	cpus_read_lock();
4745 
4746 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4747 		if (!cpu_online(cpu))
4748 			continue;
4749 
4750 		core = cpu >> threads_shift;
4751 		ops->rm_core[core].rm_state.in_host = 1;
4752 	}
4753 
4754 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4755 
4756 	/*
4757 	 * Make the contents of the kvmppc_host_rm_ops structure visible
4758 	 * to other CPUs before we assign it to the global variable.
4759 	 * Do an atomic assignment (no locks used here), but if someone
4760 	 * beats us to it, just free our copy and return.
4761 	 */
4762 	smp_wmb();
4763 	l_ops = (unsigned long) ops;
4764 
4765 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4766 		cpus_read_unlock();
4767 		kfree(ops->rm_core);
4768 		kfree(ops);
4769 		return;
4770 	}
4771 
4772 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4773 					     "ppc/kvm_book3s:prepare",
4774 					     kvmppc_set_host_core,
4775 					     kvmppc_clear_host_core);
4776 	cpus_read_unlock();
4777 }
4778 
4779 void kvmppc_free_host_rm_ops(void)
4780 {
4781 	if (kvmppc_host_rm_ops_hv) {
4782 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4783 		kfree(kvmppc_host_rm_ops_hv->rm_core);
4784 		kfree(kvmppc_host_rm_ops_hv);
4785 		kvmppc_host_rm_ops_hv = NULL;
4786 	}
4787 }
4788 #endif
4789 
4790 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4791 {
4792 	unsigned long lpcr, lpid;
4793 	char buf[32];
4794 	int ret;
4795 
4796 	mutex_init(&kvm->arch.uvmem_lock);
4797 	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4798 	mutex_init(&kvm->arch.mmu_setup_lock);
4799 
4800 	/* Allocate the guest's logical partition ID */
4801 
4802 	lpid = kvmppc_alloc_lpid();
4803 	if ((long)lpid < 0)
4804 		return -ENOMEM;
4805 	kvm->arch.lpid = lpid;
4806 
4807 	kvmppc_alloc_host_rm_ops();
4808 
4809 	kvmhv_vm_nested_init(kvm);
4810 
4811 	/*
4812 	 * Since we don't flush the TLB when tearing down a VM,
4813 	 * and this lpid might have previously been used,
4814 	 * make sure we flush on each core before running the new VM.
4815 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4816 	 * does this flush for us.
4817 	 */
4818 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4819 		cpumask_setall(&kvm->arch.need_tlb_flush);
4820 
4821 	/* Start out with the default set of hcalls enabled */
4822 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4823 	       sizeof(kvm->arch.enabled_hcalls));
4824 
4825 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4826 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4827 
4828 	/* Init LPCR for virtual RMA mode */
4829 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4830 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
4831 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4832 		lpcr &= LPCR_PECE | LPCR_LPES;
4833 	} else {
4834 		lpcr = 0;
4835 	}
4836 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4837 		LPCR_VPM0 | LPCR_VPM1;
4838 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4839 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4840 	/* On POWER8 turn on online bit to enable PURR/SPURR */
4841 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
4842 		lpcr |= LPCR_ONL;
4843 	/*
4844 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4845 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4846 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4847 	 * be unnecessary but better safe than sorry in case we re-enable
4848 	 * EE in HV mode with this LPCR still set)
4849 	 */
4850 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4851 		lpcr &= ~LPCR_VPM0;
4852 		lpcr |= LPCR_HVICE | LPCR_HEIC;
4853 
4854 		/*
4855 		 * If xive is enabled, we route 0x500 interrupts directly
4856 		 * to the guest.
4857 		 */
4858 		if (xics_on_xive())
4859 			lpcr |= LPCR_LPES;
4860 	}
4861 
4862 	/*
4863 	 * If the host uses radix, the guest starts out as radix.
4864 	 */
4865 	if (radix_enabled()) {
4866 		kvm->arch.radix = 1;
4867 		kvm->arch.mmu_ready = 1;
4868 		lpcr &= ~LPCR_VPM1;
4869 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4870 		ret = kvmppc_init_vm_radix(kvm);
4871 		if (ret) {
4872 			kvmppc_free_lpid(kvm->arch.lpid);
4873 			return ret;
4874 		}
4875 		kvmppc_setup_partition_table(kvm);
4876 	}
4877 
4878 	kvm->arch.lpcr = lpcr;
4879 
4880 	/* Initialization for future HPT resizes */
4881 	kvm->arch.resize_hpt = NULL;
4882 
4883 	/*
4884 	 * Work out how many sets the TLB has, for the use of
4885 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4886 	 */
4887 	if (radix_enabled())
4888 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
4889 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4890 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
4891 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4892 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
4893 	else
4894 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
4895 
4896 	/*
4897 	 * Track that we now have a HV mode VM active. This blocks secondary
4898 	 * CPU threads from coming online.
4899 	 * On POWER9, we only need to do this if the "indep_threads_mode"
4900 	 * module parameter has been set to N.
4901 	 */
4902 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4903 		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4904 			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4905 			kvm->arch.threads_indep = true;
4906 		} else {
4907 			kvm->arch.threads_indep = indep_threads_mode;
4908 		}
4909 	}
4910 	if (!kvm->arch.threads_indep)
4911 		kvm_hv_vm_activated();
4912 
4913 	/*
4914 	 * Initialize smt_mode depending on processor.
4915 	 * POWER8 and earlier have to use "strict" threading, where
4916 	 * all vCPUs in a vcore have to run on the same (sub)core,
4917 	 * whereas on POWER9 the threads can each run a different
4918 	 * guest.
4919 	 */
4920 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4921 		kvm->arch.smt_mode = threads_per_subcore;
4922 	else
4923 		kvm->arch.smt_mode = 1;
4924 	kvm->arch.emul_smt_mode = 1;
4925 
4926 	/*
4927 	 * Create a debugfs directory for the VM
4928 	 */
4929 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
4930 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4931 	kvmppc_mmu_debugfs_init(kvm);
4932 	if (radix_enabled())
4933 		kvmhv_radix_debugfs_init(kvm);
4934 
4935 	return 0;
4936 }
4937 
4938 static void kvmppc_free_vcores(struct kvm *kvm)
4939 {
4940 	long int i;
4941 
4942 	for (i = 0; i < KVM_MAX_VCORES; ++i)
4943 		kfree(kvm->arch.vcores[i]);
4944 	kvm->arch.online_vcores = 0;
4945 }
4946 
4947 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4948 {
4949 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
4950 
4951 	if (!kvm->arch.threads_indep)
4952 		kvm_hv_vm_deactivated();
4953 
4954 	kvmppc_free_vcores(kvm);
4955 
4956 
4957 	if (kvm_is_radix(kvm))
4958 		kvmppc_free_radix(kvm);
4959 	else
4960 		kvmppc_free_hpt(&kvm->arch.hpt);
4961 
4962 	/* Perform global invalidation and return lpid to the pool */
4963 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4964 		if (nesting_enabled(kvm))
4965 			kvmhv_release_all_nested(kvm);
4966 		kvm->arch.process_table = 0;
4967 		if (kvm->arch.secure_guest)
4968 			uv_svm_terminate(kvm->arch.lpid);
4969 		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4970 	}
4971 
4972 	kvmppc_free_lpid(kvm->arch.lpid);
4973 
4974 	kvmppc_free_pimap(kvm);
4975 }
4976 
4977 /* We don't need to emulate any privileged instructions or dcbz */
4978 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4979 				     unsigned int inst, int *advance)
4980 {
4981 	return EMULATE_FAIL;
4982 }
4983 
4984 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4985 					ulong spr_val)
4986 {
4987 	return EMULATE_FAIL;
4988 }
4989 
4990 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4991 					ulong *spr_val)
4992 {
4993 	return EMULATE_FAIL;
4994 }
4995 
4996 static int kvmppc_core_check_processor_compat_hv(void)
4997 {
4998 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
4999 	    cpu_has_feature(CPU_FTR_ARCH_206))
5000 		return 0;
5001 
5002 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
5003 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5004 		return 0;
5005 
5006 	return -EIO;
5007 }
5008 
5009 #ifdef CONFIG_KVM_XICS
5010 
5011 void kvmppc_free_pimap(struct kvm *kvm)
5012 {
5013 	kfree(kvm->arch.pimap);
5014 }
5015 
5016 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5017 {
5018 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5019 }
5020 
5021 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5022 {
5023 	struct irq_desc *desc;
5024 	struct kvmppc_irq_map *irq_map;
5025 	struct kvmppc_passthru_irqmap *pimap;
5026 	struct irq_chip *chip;
5027 	int i, rc = 0;
5028 
5029 	if (!kvm_irq_bypass)
5030 		return 1;
5031 
5032 	desc = irq_to_desc(host_irq);
5033 	if (!desc)
5034 		return -EIO;
5035 
5036 	mutex_lock(&kvm->lock);
5037 
5038 	pimap = kvm->arch.pimap;
5039 	if (pimap == NULL) {
5040 		/* First call, allocate structure to hold IRQ map */
5041 		pimap = kvmppc_alloc_pimap();
5042 		if (pimap == NULL) {
5043 			mutex_unlock(&kvm->lock);
5044 			return -ENOMEM;
5045 		}
5046 		kvm->arch.pimap = pimap;
5047 	}
5048 
5049 	/*
5050 	 * For now, we only support interrupts for which the EOI operation
5051 	 * is an OPAL call followed by a write to XIRR, since that's
5052 	 * what our real-mode EOI code does, or a XIVE interrupt
5053 	 */
5054 	chip = irq_data_get_irq_chip(&desc->irq_data);
5055 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5056 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5057 			host_irq, guest_gsi);
5058 		mutex_unlock(&kvm->lock);
5059 		return -ENOENT;
5060 	}
5061 
5062 	/*
5063 	 * See if we already have an entry for this guest IRQ number.
5064 	 * If it's mapped to a hardware IRQ number, that's an error,
5065 	 * otherwise re-use this entry.
5066 	 */
5067 	for (i = 0; i < pimap->n_mapped; i++) {
5068 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5069 			if (pimap->mapped[i].r_hwirq) {
5070 				mutex_unlock(&kvm->lock);
5071 				return -EINVAL;
5072 			}
5073 			break;
5074 		}
5075 	}
5076 
5077 	if (i == KVMPPC_PIRQ_MAPPED) {
5078 		mutex_unlock(&kvm->lock);
5079 		return -EAGAIN;		/* table is full */
5080 	}
5081 
5082 	irq_map = &pimap->mapped[i];
5083 
5084 	irq_map->v_hwirq = guest_gsi;
5085 	irq_map->desc = desc;
5086 
5087 	/*
5088 	 * Order the above two stores before the next to serialize with
5089 	 * the KVM real mode handler.
5090 	 */
5091 	smp_wmb();
5092 	irq_map->r_hwirq = desc->irq_data.hwirq;
5093 
5094 	if (i == pimap->n_mapped)
5095 		pimap->n_mapped++;
5096 
5097 	if (xics_on_xive())
5098 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5099 	else
5100 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5101 	if (rc)
5102 		irq_map->r_hwirq = 0;
5103 
5104 	mutex_unlock(&kvm->lock);
5105 
5106 	return 0;
5107 }
5108 
5109 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5110 {
5111 	struct irq_desc *desc;
5112 	struct kvmppc_passthru_irqmap *pimap;
5113 	int i, rc = 0;
5114 
5115 	if (!kvm_irq_bypass)
5116 		return 0;
5117 
5118 	desc = irq_to_desc(host_irq);
5119 	if (!desc)
5120 		return -EIO;
5121 
5122 	mutex_lock(&kvm->lock);
5123 	if (!kvm->arch.pimap)
5124 		goto unlock;
5125 
5126 	pimap = kvm->arch.pimap;
5127 
5128 	for (i = 0; i < pimap->n_mapped; i++) {
5129 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5130 			break;
5131 	}
5132 
5133 	if (i == pimap->n_mapped) {
5134 		mutex_unlock(&kvm->lock);
5135 		return -ENODEV;
5136 	}
5137 
5138 	if (xics_on_xive())
5139 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5140 	else
5141 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5142 
5143 	/* invalidate the entry (what do do on error from the above ?) */
5144 	pimap->mapped[i].r_hwirq = 0;
5145 
5146 	/*
5147 	 * We don't free this structure even when the count goes to
5148 	 * zero. The structure is freed when we destroy the VM.
5149 	 */
5150  unlock:
5151 	mutex_unlock(&kvm->lock);
5152 	return rc;
5153 }
5154 
5155 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5156 					     struct irq_bypass_producer *prod)
5157 {
5158 	int ret = 0;
5159 	struct kvm_kernel_irqfd *irqfd =
5160 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5161 
5162 	irqfd->producer = prod;
5163 
5164 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5165 	if (ret)
5166 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5167 			prod->irq, irqfd->gsi, ret);
5168 
5169 	return ret;
5170 }
5171 
5172 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5173 					      struct irq_bypass_producer *prod)
5174 {
5175 	int ret;
5176 	struct kvm_kernel_irqfd *irqfd =
5177 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5178 
5179 	irqfd->producer = NULL;
5180 
5181 	/*
5182 	 * When producer of consumer is unregistered, we change back to
5183 	 * default external interrupt handling mode - KVM real mode
5184 	 * will switch back to host.
5185 	 */
5186 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5187 	if (ret)
5188 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5189 			prod->irq, irqfd->gsi, ret);
5190 }
5191 #endif
5192 
5193 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5194 				 unsigned int ioctl, unsigned long arg)
5195 {
5196 	struct kvm *kvm __maybe_unused = filp->private_data;
5197 	void __user *argp = (void __user *)arg;
5198 	long r;
5199 
5200 	switch (ioctl) {
5201 
5202 	case KVM_PPC_ALLOCATE_HTAB: {
5203 		u32 htab_order;
5204 
5205 		r = -EFAULT;
5206 		if (get_user(htab_order, (u32 __user *)argp))
5207 			break;
5208 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5209 		if (r)
5210 			break;
5211 		r = 0;
5212 		break;
5213 	}
5214 
5215 	case KVM_PPC_GET_HTAB_FD: {
5216 		struct kvm_get_htab_fd ghf;
5217 
5218 		r = -EFAULT;
5219 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5220 			break;
5221 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5222 		break;
5223 	}
5224 
5225 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5226 		struct kvm_ppc_resize_hpt rhpt;
5227 
5228 		r = -EFAULT;
5229 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5230 			break;
5231 
5232 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5233 		break;
5234 	}
5235 
5236 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5237 		struct kvm_ppc_resize_hpt rhpt;
5238 
5239 		r = -EFAULT;
5240 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5241 			break;
5242 
5243 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5244 		break;
5245 	}
5246 
5247 	default:
5248 		r = -ENOTTY;
5249 	}
5250 
5251 	return r;
5252 }
5253 
5254 /*
5255  * List of hcall numbers to enable by default.
5256  * For compatibility with old userspace, we enable by default
5257  * all hcalls that were implemented before the hcall-enabling
5258  * facility was added.  Note this list should not include H_RTAS.
5259  */
5260 static unsigned int default_hcall_list[] = {
5261 	H_REMOVE,
5262 	H_ENTER,
5263 	H_READ,
5264 	H_PROTECT,
5265 	H_BULK_REMOVE,
5266 	H_GET_TCE,
5267 	H_PUT_TCE,
5268 	H_SET_DABR,
5269 	H_SET_XDABR,
5270 	H_CEDE,
5271 	H_PROD,
5272 	H_CONFER,
5273 	H_REGISTER_VPA,
5274 #ifdef CONFIG_KVM_XICS
5275 	H_EOI,
5276 	H_CPPR,
5277 	H_IPI,
5278 	H_IPOLL,
5279 	H_XIRR,
5280 	H_XIRR_X,
5281 #endif
5282 	0
5283 };
5284 
5285 static void init_default_hcalls(void)
5286 {
5287 	int i;
5288 	unsigned int hcall;
5289 
5290 	for (i = 0; default_hcall_list[i]; ++i) {
5291 		hcall = default_hcall_list[i];
5292 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5293 		__set_bit(hcall / 4, default_enabled_hcalls);
5294 	}
5295 }
5296 
5297 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5298 {
5299 	unsigned long lpcr;
5300 	int radix;
5301 	int err;
5302 
5303 	/* If not on a POWER9, reject it */
5304 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5305 		return -ENODEV;
5306 
5307 	/* If any unknown flags set, reject it */
5308 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5309 		return -EINVAL;
5310 
5311 	/* GR (guest radix) bit in process_table field must match */
5312 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5313 	if (!!(cfg->process_table & PATB_GR) != radix)
5314 		return -EINVAL;
5315 
5316 	/* Process table size field must be reasonable, i.e. <= 24 */
5317 	if ((cfg->process_table & PRTS_MASK) > 24)
5318 		return -EINVAL;
5319 
5320 	/* We can change a guest to/from radix now, if the host is radix */
5321 	if (radix && !radix_enabled())
5322 		return -EINVAL;
5323 
5324 	/* If we're a nested hypervisor, we currently only support radix */
5325 	if (kvmhv_on_pseries() && !radix)
5326 		return -EINVAL;
5327 
5328 	mutex_lock(&kvm->arch.mmu_setup_lock);
5329 	if (radix != kvm_is_radix(kvm)) {
5330 		if (kvm->arch.mmu_ready) {
5331 			kvm->arch.mmu_ready = 0;
5332 			/* order mmu_ready vs. vcpus_running */
5333 			smp_mb();
5334 			if (atomic_read(&kvm->arch.vcpus_running)) {
5335 				kvm->arch.mmu_ready = 1;
5336 				err = -EBUSY;
5337 				goto out_unlock;
5338 			}
5339 		}
5340 		if (radix)
5341 			err = kvmppc_switch_mmu_to_radix(kvm);
5342 		else
5343 			err = kvmppc_switch_mmu_to_hpt(kvm);
5344 		if (err)
5345 			goto out_unlock;
5346 	}
5347 
5348 	kvm->arch.process_table = cfg->process_table;
5349 	kvmppc_setup_partition_table(kvm);
5350 
5351 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5352 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5353 	err = 0;
5354 
5355  out_unlock:
5356 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5357 	return err;
5358 }
5359 
5360 static int kvmhv_enable_nested(struct kvm *kvm)
5361 {
5362 	if (!nested)
5363 		return -EPERM;
5364 	if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5365 		return -ENODEV;
5366 
5367 	/* kvm == NULL means the caller is testing if the capability exists */
5368 	if (kvm)
5369 		kvm->arch.nested_enable = true;
5370 	return 0;
5371 }
5372 
5373 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5374 				 int size)
5375 {
5376 	int rc = -EINVAL;
5377 
5378 	if (kvmhv_vcpu_is_radix(vcpu)) {
5379 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5380 
5381 		if (rc > 0)
5382 			rc = -EINVAL;
5383 	}
5384 
5385 	/* For now quadrants are the only way to access nested guest memory */
5386 	if (rc && vcpu->arch.nested)
5387 		rc = -EAGAIN;
5388 
5389 	return rc;
5390 }
5391 
5392 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5393 				int size)
5394 {
5395 	int rc = -EINVAL;
5396 
5397 	if (kvmhv_vcpu_is_radix(vcpu)) {
5398 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5399 
5400 		if (rc > 0)
5401 			rc = -EINVAL;
5402 	}
5403 
5404 	/* For now quadrants are the only way to access nested guest memory */
5405 	if (rc && vcpu->arch.nested)
5406 		rc = -EAGAIN;
5407 
5408 	return rc;
5409 }
5410 
5411 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5412 {
5413 	unpin_vpa(kvm, vpa);
5414 	vpa->gpa = 0;
5415 	vpa->pinned_addr = NULL;
5416 	vpa->dirty = false;
5417 	vpa->update_pending = 0;
5418 }
5419 
5420 /*
5421  * Enable a guest to become a secure VM, or test whether
5422  * that could be enabled.
5423  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5424  * tested (kvm == NULL) or enabled (kvm != NULL).
5425  */
5426 static int kvmhv_enable_svm(struct kvm *kvm)
5427 {
5428 	if (!kvmppc_uvmem_available())
5429 		return -EINVAL;
5430 	if (kvm)
5431 		kvm->arch.svm_enabled = 1;
5432 	return 0;
5433 }
5434 
5435 /*
5436  *  IOCTL handler to turn off secure mode of guest
5437  *
5438  * - Release all device pages
5439  * - Issue ucall to terminate the guest on the UV side
5440  * - Unpin the VPA pages.
5441  * - Reinit the partition scoped page tables
5442  */
5443 static int kvmhv_svm_off(struct kvm *kvm)
5444 {
5445 	struct kvm_vcpu *vcpu;
5446 	int mmu_was_ready;
5447 	int srcu_idx;
5448 	int ret = 0;
5449 	int i;
5450 
5451 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5452 		return ret;
5453 
5454 	mutex_lock(&kvm->arch.mmu_setup_lock);
5455 	mmu_was_ready = kvm->arch.mmu_ready;
5456 	if (kvm->arch.mmu_ready) {
5457 		kvm->arch.mmu_ready = 0;
5458 		/* order mmu_ready vs. vcpus_running */
5459 		smp_mb();
5460 		if (atomic_read(&kvm->arch.vcpus_running)) {
5461 			kvm->arch.mmu_ready = 1;
5462 			ret = -EBUSY;
5463 			goto out;
5464 		}
5465 	}
5466 
5467 	srcu_idx = srcu_read_lock(&kvm->srcu);
5468 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5469 		struct kvm_memory_slot *memslot;
5470 		struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5471 
5472 		if (!slots)
5473 			continue;
5474 
5475 		kvm_for_each_memslot(memslot, slots) {
5476 			kvmppc_uvmem_drop_pages(memslot, kvm, true);
5477 			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5478 		}
5479 	}
5480 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5481 
5482 	ret = uv_svm_terminate(kvm->arch.lpid);
5483 	if (ret != U_SUCCESS) {
5484 		ret = -EINVAL;
5485 		goto out;
5486 	}
5487 
5488 	/*
5489 	 * When secure guest is reset, all the guest pages are sent
5490 	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5491 	 * chance to run and unpin their VPA pages. Unpinning of all
5492 	 * VPA pages is done here explicitly so that VPA pages
5493 	 * can be migrated to the secure side.
5494 	 *
5495 	 * This is required to for the secure SMP guest to reboot
5496 	 * correctly.
5497 	 */
5498 	kvm_for_each_vcpu(i, vcpu, kvm) {
5499 		spin_lock(&vcpu->arch.vpa_update_lock);
5500 		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5501 		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5502 		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5503 		spin_unlock(&vcpu->arch.vpa_update_lock);
5504 	}
5505 
5506 	kvmppc_setup_partition_table(kvm);
5507 	kvm->arch.secure_guest = 0;
5508 	kvm->arch.mmu_ready = mmu_was_ready;
5509 out:
5510 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5511 	return ret;
5512 }
5513 
5514 static struct kvmppc_ops kvm_ops_hv = {
5515 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5516 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5517 	.get_one_reg = kvmppc_get_one_reg_hv,
5518 	.set_one_reg = kvmppc_set_one_reg_hv,
5519 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
5520 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
5521 	.inject_interrupt = kvmppc_inject_interrupt_hv,
5522 	.set_msr     = kvmppc_set_msr_hv,
5523 	.vcpu_run    = kvmppc_vcpu_run_hv,
5524 	.vcpu_create = kvmppc_core_vcpu_create_hv,
5525 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
5526 	.check_requests = kvmppc_core_check_requests_hv,
5527 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5528 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
5529 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5530 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5531 	.unmap_hva_range = kvm_unmap_hva_range_hv,
5532 	.age_hva  = kvm_age_hva_hv,
5533 	.test_age_hva = kvm_test_age_hva_hv,
5534 	.set_spte_hva = kvm_set_spte_hva_hv,
5535 	.free_memslot = kvmppc_core_free_memslot_hv,
5536 	.init_vm =  kvmppc_core_init_vm_hv,
5537 	.destroy_vm = kvmppc_core_destroy_vm_hv,
5538 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5539 	.emulate_op = kvmppc_core_emulate_op_hv,
5540 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5541 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5542 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5543 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5544 	.hcall_implemented = kvmppc_hcall_impl_hv,
5545 #ifdef CONFIG_KVM_XICS
5546 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5547 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5548 #endif
5549 	.configure_mmu = kvmhv_configure_mmu,
5550 	.get_rmmu_info = kvmhv_get_rmmu_info,
5551 	.set_smt_mode = kvmhv_set_smt_mode,
5552 	.enable_nested = kvmhv_enable_nested,
5553 	.load_from_eaddr = kvmhv_load_from_eaddr,
5554 	.store_to_eaddr = kvmhv_store_to_eaddr,
5555 	.enable_svm = kvmhv_enable_svm,
5556 	.svm_off = kvmhv_svm_off,
5557 };
5558 
5559 static int kvm_init_subcore_bitmap(void)
5560 {
5561 	int i, j;
5562 	int nr_cores = cpu_nr_cores();
5563 	struct sibling_subcore_state *sibling_subcore_state;
5564 
5565 	for (i = 0; i < nr_cores; i++) {
5566 		int first_cpu = i * threads_per_core;
5567 		int node = cpu_to_node(first_cpu);
5568 
5569 		/* Ignore if it is already allocated. */
5570 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5571 			continue;
5572 
5573 		sibling_subcore_state =
5574 			kzalloc_node(sizeof(struct sibling_subcore_state),
5575 							GFP_KERNEL, node);
5576 		if (!sibling_subcore_state)
5577 			return -ENOMEM;
5578 
5579 
5580 		for (j = 0; j < threads_per_core; j++) {
5581 			int cpu = first_cpu + j;
5582 
5583 			paca_ptrs[cpu]->sibling_subcore_state =
5584 						sibling_subcore_state;
5585 		}
5586 	}
5587 	return 0;
5588 }
5589 
5590 static int kvmppc_radix_possible(void)
5591 {
5592 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5593 }
5594 
5595 static int kvmppc_book3s_init_hv(void)
5596 {
5597 	int r;
5598 
5599 	if (!tlbie_capable) {
5600 		pr_err("KVM-HV: Host does not support TLBIE\n");
5601 		return -ENODEV;
5602 	}
5603 
5604 	/*
5605 	 * FIXME!! Do we need to check on all cpus ?
5606 	 */
5607 	r = kvmppc_core_check_processor_compat_hv();
5608 	if (r < 0)
5609 		return -ENODEV;
5610 
5611 	r = kvmhv_nested_init();
5612 	if (r)
5613 		return r;
5614 
5615 	r = kvm_init_subcore_bitmap();
5616 	if (r)
5617 		return r;
5618 
5619 	/*
5620 	 * We need a way of accessing the XICS interrupt controller,
5621 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5622 	 * indirectly, via OPAL.
5623 	 */
5624 #ifdef CONFIG_SMP
5625 	if (!xics_on_xive() && !kvmhv_on_pseries() &&
5626 	    !local_paca->kvm_hstate.xics_phys) {
5627 		struct device_node *np;
5628 
5629 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5630 		if (!np) {
5631 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5632 			return -ENODEV;
5633 		}
5634 		/* presence of intc confirmed - node can be dropped again */
5635 		of_node_put(np);
5636 	}
5637 #endif
5638 
5639 	kvm_ops_hv.owner = THIS_MODULE;
5640 	kvmppc_hv_ops = &kvm_ops_hv;
5641 
5642 	init_default_hcalls();
5643 
5644 	init_vcore_lists();
5645 
5646 	r = kvmppc_mmu_hv_init();
5647 	if (r)
5648 		return r;
5649 
5650 	if (kvmppc_radix_possible())
5651 		r = kvmppc_radix_init();
5652 
5653 	/*
5654 	 * POWER9 chips before version 2.02 can't have some threads in
5655 	 * HPT mode and some in radix mode on the same core.
5656 	 */
5657 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5658 		unsigned int pvr = mfspr(SPRN_PVR);
5659 		if ((pvr >> 16) == PVR_POWER9 &&
5660 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5661 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5662 			no_mixing_hpt_and_radix = true;
5663 	}
5664 
5665 	r = kvmppc_uvmem_init();
5666 	if (r < 0)
5667 		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5668 
5669 	return r;
5670 }
5671 
5672 static void kvmppc_book3s_exit_hv(void)
5673 {
5674 	kvmppc_uvmem_free();
5675 	kvmppc_free_host_rm_ops();
5676 	if (kvmppc_radix_possible())
5677 		kvmppc_radix_exit();
5678 	kvmppc_hv_ops = NULL;
5679 	kvmhv_nested_exit();
5680 }
5681 
5682 module_init(kvmppc_book3s_init_hv);
5683 module_exit(kvmppc_book3s_exit_hv);
5684 MODULE_LICENSE("GPL");
5685 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5686 MODULE_ALIAS("devname:kvm");
5687