1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 35 #include <asm/reg.h> 36 #include <asm/cputable.h> 37 #include <asm/cacheflush.h> 38 #include <asm/tlbflush.h> 39 #include <asm/uaccess.h> 40 #include <asm/io.h> 41 #include <asm/kvm_ppc.h> 42 #include <asm/kvm_book3s.h> 43 #include <asm/mmu_context.h> 44 #include <asm/lppaca.h> 45 #include <asm/processor.h> 46 #include <asm/cputhreads.h> 47 #include <asm/page.h> 48 #include <asm/hvcall.h> 49 #include <asm/switch_to.h> 50 #include <asm/smp.h> 51 #include <linux/gfp.h> 52 #include <linux/vmalloc.h> 53 #include <linux/highmem.h> 54 #include <linux/hugetlb.h> 55 #include <linux/module.h> 56 57 #include "book3s.h" 58 59 /* #define EXIT_DEBUG */ 60 /* #define EXIT_DEBUG_SIMPLE */ 61 /* #define EXIT_DEBUG_INT */ 62 63 /* Used to indicate that a guest page fault needs to be handled */ 64 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 65 66 /* Used as a "null" value for timebase values */ 67 #define TB_NIL (~(u64)0) 68 69 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 70 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 71 72 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 73 { 74 int me; 75 int cpu = vcpu->cpu; 76 wait_queue_head_t *wqp; 77 78 wqp = kvm_arch_vcpu_wq(vcpu); 79 if (waitqueue_active(wqp)) { 80 wake_up_interruptible(wqp); 81 ++vcpu->stat.halt_wakeup; 82 } 83 84 me = get_cpu(); 85 86 /* CPU points to the first thread of the core */ 87 if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) { 88 int real_cpu = cpu + vcpu->arch.ptid; 89 if (paca[real_cpu].kvm_hstate.xics_phys) 90 xics_wake_cpu(real_cpu); 91 else if (cpu_online(cpu)) 92 smp_send_reschedule(cpu); 93 } 94 put_cpu(); 95 } 96 97 /* 98 * We use the vcpu_load/put functions to measure stolen time. 99 * Stolen time is counted as time when either the vcpu is able to 100 * run as part of a virtual core, but the task running the vcore 101 * is preempted or sleeping, or when the vcpu needs something done 102 * in the kernel by the task running the vcpu, but that task is 103 * preempted or sleeping. Those two things have to be counted 104 * separately, since one of the vcpu tasks will take on the job 105 * of running the core, and the other vcpu tasks in the vcore will 106 * sleep waiting for it to do that, but that sleep shouldn't count 107 * as stolen time. 108 * 109 * Hence we accumulate stolen time when the vcpu can run as part of 110 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 111 * needs its task to do other things in the kernel (for example, 112 * service a page fault) in busy_stolen. We don't accumulate 113 * stolen time for a vcore when it is inactive, or for a vcpu 114 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 115 * a misnomer; it means that the vcpu task is not executing in 116 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 117 * the kernel. We don't have any way of dividing up that time 118 * between time that the vcpu is genuinely stopped, time that 119 * the task is actively working on behalf of the vcpu, and time 120 * that the task is preempted, so we don't count any of it as 121 * stolen. 122 * 123 * Updates to busy_stolen are protected by arch.tbacct_lock; 124 * updates to vc->stolen_tb are protected by the arch.tbacct_lock 125 * of the vcpu that has taken responsibility for running the vcore 126 * (i.e. vc->runner). The stolen times are measured in units of 127 * timebase ticks. (Note that the != TB_NIL checks below are 128 * purely defensive; they should never fail.) 129 */ 130 131 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 132 { 133 struct kvmppc_vcore *vc = vcpu->arch.vcore; 134 135 spin_lock(&vcpu->arch.tbacct_lock); 136 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE && 137 vc->preempt_tb != TB_NIL) { 138 vc->stolen_tb += mftb() - vc->preempt_tb; 139 vc->preempt_tb = TB_NIL; 140 } 141 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 142 vcpu->arch.busy_preempt != TB_NIL) { 143 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 144 vcpu->arch.busy_preempt = TB_NIL; 145 } 146 spin_unlock(&vcpu->arch.tbacct_lock); 147 } 148 149 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 150 { 151 struct kvmppc_vcore *vc = vcpu->arch.vcore; 152 153 spin_lock(&vcpu->arch.tbacct_lock); 154 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) 155 vc->preempt_tb = mftb(); 156 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 157 vcpu->arch.busy_preempt = mftb(); 158 spin_unlock(&vcpu->arch.tbacct_lock); 159 } 160 161 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 162 { 163 vcpu->arch.shregs.msr = msr; 164 kvmppc_end_cede(vcpu); 165 } 166 167 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 168 { 169 vcpu->arch.pvr = pvr; 170 } 171 172 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 173 { 174 unsigned long pcr = 0; 175 struct kvmppc_vcore *vc = vcpu->arch.vcore; 176 177 if (arch_compat) { 178 if (!cpu_has_feature(CPU_FTR_ARCH_206)) 179 return -EINVAL; /* 970 has no compat mode support */ 180 181 switch (arch_compat) { 182 case PVR_ARCH_205: 183 pcr = PCR_ARCH_205; 184 break; 185 case PVR_ARCH_206: 186 case PVR_ARCH_206p: 187 break; 188 default: 189 return -EINVAL; 190 } 191 } 192 193 spin_lock(&vc->lock); 194 vc->arch_compat = arch_compat; 195 vc->pcr = pcr; 196 spin_unlock(&vc->lock); 197 198 return 0; 199 } 200 201 void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 202 { 203 int r; 204 205 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 206 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 207 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 208 for (r = 0; r < 16; ++r) 209 pr_err("r%2d = %.16lx r%d = %.16lx\n", 210 r, kvmppc_get_gpr(vcpu, r), 211 r+16, kvmppc_get_gpr(vcpu, r+16)); 212 pr_err("ctr = %.16lx lr = %.16lx\n", 213 vcpu->arch.ctr, vcpu->arch.lr); 214 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 215 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 216 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 217 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 218 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 219 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 220 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 221 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 222 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 223 pr_err("fault dar = %.16lx dsisr = %.8x\n", 224 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 225 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 226 for (r = 0; r < vcpu->arch.slb_max; ++r) 227 pr_err(" ESID = %.16llx VSID = %.16llx\n", 228 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 229 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 230 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 231 vcpu->arch.last_inst); 232 } 233 234 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 235 { 236 int r; 237 struct kvm_vcpu *v, *ret = NULL; 238 239 mutex_lock(&kvm->lock); 240 kvm_for_each_vcpu(r, v, kvm) { 241 if (v->vcpu_id == id) { 242 ret = v; 243 break; 244 } 245 } 246 mutex_unlock(&kvm->lock); 247 return ret; 248 } 249 250 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 251 { 252 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 253 vpa->yield_count = 1; 254 } 255 256 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 257 unsigned long addr, unsigned long len) 258 { 259 /* check address is cacheline aligned */ 260 if (addr & (L1_CACHE_BYTES - 1)) 261 return -EINVAL; 262 spin_lock(&vcpu->arch.vpa_update_lock); 263 if (v->next_gpa != addr || v->len != len) { 264 v->next_gpa = addr; 265 v->len = addr ? len : 0; 266 v->update_pending = 1; 267 } 268 spin_unlock(&vcpu->arch.vpa_update_lock); 269 return 0; 270 } 271 272 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 273 struct reg_vpa { 274 u32 dummy; 275 union { 276 u16 hword; 277 u32 word; 278 } length; 279 }; 280 281 static int vpa_is_registered(struct kvmppc_vpa *vpap) 282 { 283 if (vpap->update_pending) 284 return vpap->next_gpa != 0; 285 return vpap->pinned_addr != NULL; 286 } 287 288 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 289 unsigned long flags, 290 unsigned long vcpuid, unsigned long vpa) 291 { 292 struct kvm *kvm = vcpu->kvm; 293 unsigned long len, nb; 294 void *va; 295 struct kvm_vcpu *tvcpu; 296 int err; 297 int subfunc; 298 struct kvmppc_vpa *vpap; 299 300 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 301 if (!tvcpu) 302 return H_PARAMETER; 303 304 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 305 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 306 subfunc == H_VPA_REG_SLB) { 307 /* Registering new area - address must be cache-line aligned */ 308 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 309 return H_PARAMETER; 310 311 /* convert logical addr to kernel addr and read length */ 312 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 313 if (va == NULL) 314 return H_PARAMETER; 315 if (subfunc == H_VPA_REG_VPA) 316 len = ((struct reg_vpa *)va)->length.hword; 317 else 318 len = ((struct reg_vpa *)va)->length.word; 319 kvmppc_unpin_guest_page(kvm, va, vpa, false); 320 321 /* Check length */ 322 if (len > nb || len < sizeof(struct reg_vpa)) 323 return H_PARAMETER; 324 } else { 325 vpa = 0; 326 len = 0; 327 } 328 329 err = H_PARAMETER; 330 vpap = NULL; 331 spin_lock(&tvcpu->arch.vpa_update_lock); 332 333 switch (subfunc) { 334 case H_VPA_REG_VPA: /* register VPA */ 335 if (len < sizeof(struct lppaca)) 336 break; 337 vpap = &tvcpu->arch.vpa; 338 err = 0; 339 break; 340 341 case H_VPA_REG_DTL: /* register DTL */ 342 if (len < sizeof(struct dtl_entry)) 343 break; 344 len -= len % sizeof(struct dtl_entry); 345 346 /* Check that they have previously registered a VPA */ 347 err = H_RESOURCE; 348 if (!vpa_is_registered(&tvcpu->arch.vpa)) 349 break; 350 351 vpap = &tvcpu->arch.dtl; 352 err = 0; 353 break; 354 355 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 356 /* Check that they have previously registered a VPA */ 357 err = H_RESOURCE; 358 if (!vpa_is_registered(&tvcpu->arch.vpa)) 359 break; 360 361 vpap = &tvcpu->arch.slb_shadow; 362 err = 0; 363 break; 364 365 case H_VPA_DEREG_VPA: /* deregister VPA */ 366 /* Check they don't still have a DTL or SLB buf registered */ 367 err = H_RESOURCE; 368 if (vpa_is_registered(&tvcpu->arch.dtl) || 369 vpa_is_registered(&tvcpu->arch.slb_shadow)) 370 break; 371 372 vpap = &tvcpu->arch.vpa; 373 err = 0; 374 break; 375 376 case H_VPA_DEREG_DTL: /* deregister DTL */ 377 vpap = &tvcpu->arch.dtl; 378 err = 0; 379 break; 380 381 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 382 vpap = &tvcpu->arch.slb_shadow; 383 err = 0; 384 break; 385 } 386 387 if (vpap) { 388 vpap->next_gpa = vpa; 389 vpap->len = len; 390 vpap->update_pending = 1; 391 } 392 393 spin_unlock(&tvcpu->arch.vpa_update_lock); 394 395 return err; 396 } 397 398 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 399 { 400 struct kvm *kvm = vcpu->kvm; 401 void *va; 402 unsigned long nb; 403 unsigned long gpa; 404 405 /* 406 * We need to pin the page pointed to by vpap->next_gpa, 407 * but we can't call kvmppc_pin_guest_page under the lock 408 * as it does get_user_pages() and down_read(). So we 409 * have to drop the lock, pin the page, then get the lock 410 * again and check that a new area didn't get registered 411 * in the meantime. 412 */ 413 for (;;) { 414 gpa = vpap->next_gpa; 415 spin_unlock(&vcpu->arch.vpa_update_lock); 416 va = NULL; 417 nb = 0; 418 if (gpa) 419 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 420 spin_lock(&vcpu->arch.vpa_update_lock); 421 if (gpa == vpap->next_gpa) 422 break; 423 /* sigh... unpin that one and try again */ 424 if (va) 425 kvmppc_unpin_guest_page(kvm, va, gpa, false); 426 } 427 428 vpap->update_pending = 0; 429 if (va && nb < vpap->len) { 430 /* 431 * If it's now too short, it must be that userspace 432 * has changed the mappings underlying guest memory, 433 * so unregister the region. 434 */ 435 kvmppc_unpin_guest_page(kvm, va, gpa, false); 436 va = NULL; 437 } 438 if (vpap->pinned_addr) 439 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 440 vpap->dirty); 441 vpap->gpa = gpa; 442 vpap->pinned_addr = va; 443 vpap->dirty = false; 444 if (va) 445 vpap->pinned_end = va + vpap->len; 446 } 447 448 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 449 { 450 if (!(vcpu->arch.vpa.update_pending || 451 vcpu->arch.slb_shadow.update_pending || 452 vcpu->arch.dtl.update_pending)) 453 return; 454 455 spin_lock(&vcpu->arch.vpa_update_lock); 456 if (vcpu->arch.vpa.update_pending) { 457 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 458 if (vcpu->arch.vpa.pinned_addr) 459 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 460 } 461 if (vcpu->arch.dtl.update_pending) { 462 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 463 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 464 vcpu->arch.dtl_index = 0; 465 } 466 if (vcpu->arch.slb_shadow.update_pending) 467 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 468 spin_unlock(&vcpu->arch.vpa_update_lock); 469 } 470 471 /* 472 * Return the accumulated stolen time for the vcore up until `now'. 473 * The caller should hold the vcore lock. 474 */ 475 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 476 { 477 u64 p; 478 479 /* 480 * If we are the task running the vcore, then since we hold 481 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb 482 * can't be updated, so we don't need the tbacct_lock. 483 * If the vcore is inactive, it can't become active (since we 484 * hold the vcore lock), so the vcpu load/put functions won't 485 * update stolen_tb/preempt_tb, and we don't need tbacct_lock. 486 */ 487 if (vc->vcore_state != VCORE_INACTIVE && 488 vc->runner->arch.run_task != current) { 489 spin_lock(&vc->runner->arch.tbacct_lock); 490 p = vc->stolen_tb; 491 if (vc->preempt_tb != TB_NIL) 492 p += now - vc->preempt_tb; 493 spin_unlock(&vc->runner->arch.tbacct_lock); 494 } else { 495 p = vc->stolen_tb; 496 } 497 return p; 498 } 499 500 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 501 struct kvmppc_vcore *vc) 502 { 503 struct dtl_entry *dt; 504 struct lppaca *vpa; 505 unsigned long stolen; 506 unsigned long core_stolen; 507 u64 now; 508 509 dt = vcpu->arch.dtl_ptr; 510 vpa = vcpu->arch.vpa.pinned_addr; 511 now = mftb(); 512 core_stolen = vcore_stolen_time(vc, now); 513 stolen = core_stolen - vcpu->arch.stolen_logged; 514 vcpu->arch.stolen_logged = core_stolen; 515 spin_lock(&vcpu->arch.tbacct_lock); 516 stolen += vcpu->arch.busy_stolen; 517 vcpu->arch.busy_stolen = 0; 518 spin_unlock(&vcpu->arch.tbacct_lock); 519 if (!dt || !vpa) 520 return; 521 memset(dt, 0, sizeof(struct dtl_entry)); 522 dt->dispatch_reason = 7; 523 dt->processor_id = vc->pcpu + vcpu->arch.ptid; 524 dt->timebase = now + vc->tb_offset; 525 dt->enqueue_to_dispatch_time = stolen; 526 dt->srr0 = kvmppc_get_pc(vcpu); 527 dt->srr1 = vcpu->arch.shregs.msr; 528 ++dt; 529 if (dt == vcpu->arch.dtl.pinned_end) 530 dt = vcpu->arch.dtl.pinned_addr; 531 vcpu->arch.dtl_ptr = dt; 532 /* order writing *dt vs. writing vpa->dtl_idx */ 533 smp_wmb(); 534 vpa->dtl_idx = ++vcpu->arch.dtl_index; 535 vcpu->arch.dtl.dirty = true; 536 } 537 538 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 539 { 540 unsigned long req = kvmppc_get_gpr(vcpu, 3); 541 unsigned long target, ret = H_SUCCESS; 542 struct kvm_vcpu *tvcpu; 543 int idx, rc; 544 545 switch (req) { 546 case H_ENTER: 547 idx = srcu_read_lock(&vcpu->kvm->srcu); 548 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 549 kvmppc_get_gpr(vcpu, 5), 550 kvmppc_get_gpr(vcpu, 6), 551 kvmppc_get_gpr(vcpu, 7)); 552 srcu_read_unlock(&vcpu->kvm->srcu, idx); 553 break; 554 case H_CEDE: 555 break; 556 case H_PROD: 557 target = kvmppc_get_gpr(vcpu, 4); 558 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 559 if (!tvcpu) { 560 ret = H_PARAMETER; 561 break; 562 } 563 tvcpu->arch.prodded = 1; 564 smp_mb(); 565 if (vcpu->arch.ceded) { 566 if (waitqueue_active(&vcpu->wq)) { 567 wake_up_interruptible(&vcpu->wq); 568 vcpu->stat.halt_wakeup++; 569 } 570 } 571 break; 572 case H_CONFER: 573 target = kvmppc_get_gpr(vcpu, 4); 574 if (target == -1) 575 break; 576 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 577 if (!tvcpu) { 578 ret = H_PARAMETER; 579 break; 580 } 581 kvm_vcpu_yield_to(tvcpu); 582 break; 583 case H_REGISTER_VPA: 584 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 585 kvmppc_get_gpr(vcpu, 5), 586 kvmppc_get_gpr(vcpu, 6)); 587 break; 588 case H_RTAS: 589 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 590 return RESUME_HOST; 591 592 rc = kvmppc_rtas_hcall(vcpu); 593 594 if (rc == -ENOENT) 595 return RESUME_HOST; 596 else if (rc == 0) 597 break; 598 599 /* Send the error out to userspace via KVM_RUN */ 600 return rc; 601 602 case H_XIRR: 603 case H_CPPR: 604 case H_EOI: 605 case H_IPI: 606 case H_IPOLL: 607 case H_XIRR_X: 608 if (kvmppc_xics_enabled(vcpu)) { 609 ret = kvmppc_xics_hcall(vcpu, req); 610 break; 611 } /* fallthrough */ 612 default: 613 return RESUME_HOST; 614 } 615 kvmppc_set_gpr(vcpu, 3, ret); 616 vcpu->arch.hcall_needed = 0; 617 return RESUME_GUEST; 618 } 619 620 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 621 struct task_struct *tsk) 622 { 623 int r = RESUME_HOST; 624 625 vcpu->stat.sum_exits++; 626 627 run->exit_reason = KVM_EXIT_UNKNOWN; 628 run->ready_for_interrupt_injection = 1; 629 switch (vcpu->arch.trap) { 630 /* We're good on these - the host merely wanted to get our attention */ 631 case BOOK3S_INTERRUPT_HV_DECREMENTER: 632 vcpu->stat.dec_exits++; 633 r = RESUME_GUEST; 634 break; 635 case BOOK3S_INTERRUPT_EXTERNAL: 636 vcpu->stat.ext_intr_exits++; 637 r = RESUME_GUEST; 638 break; 639 case BOOK3S_INTERRUPT_PERFMON: 640 r = RESUME_GUEST; 641 break; 642 case BOOK3S_INTERRUPT_MACHINE_CHECK: 643 /* 644 * Deliver a machine check interrupt to the guest. 645 * We have to do this, even if the host has handled the 646 * machine check, because machine checks use SRR0/1 and 647 * the interrupt might have trashed guest state in them. 648 */ 649 kvmppc_book3s_queue_irqprio(vcpu, 650 BOOK3S_INTERRUPT_MACHINE_CHECK); 651 r = RESUME_GUEST; 652 break; 653 case BOOK3S_INTERRUPT_PROGRAM: 654 { 655 ulong flags; 656 /* 657 * Normally program interrupts are delivered directly 658 * to the guest by the hardware, but we can get here 659 * as a result of a hypervisor emulation interrupt 660 * (e40) getting turned into a 700 by BML RTAS. 661 */ 662 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 663 kvmppc_core_queue_program(vcpu, flags); 664 r = RESUME_GUEST; 665 break; 666 } 667 case BOOK3S_INTERRUPT_SYSCALL: 668 { 669 /* hcall - punt to userspace */ 670 int i; 671 672 if (vcpu->arch.shregs.msr & MSR_PR) { 673 /* sc 1 from userspace - reflect to guest syscall */ 674 kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL); 675 r = RESUME_GUEST; 676 break; 677 } 678 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 679 for (i = 0; i < 9; ++i) 680 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 681 run->exit_reason = KVM_EXIT_PAPR_HCALL; 682 vcpu->arch.hcall_needed = 1; 683 r = RESUME_HOST; 684 break; 685 } 686 /* 687 * We get these next two if the guest accesses a page which it thinks 688 * it has mapped but which is not actually present, either because 689 * it is for an emulated I/O device or because the corresonding 690 * host page has been paged out. Any other HDSI/HISI interrupts 691 * have been handled already. 692 */ 693 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 694 r = RESUME_PAGE_FAULT; 695 break; 696 case BOOK3S_INTERRUPT_H_INST_STORAGE: 697 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 698 vcpu->arch.fault_dsisr = 0; 699 r = RESUME_PAGE_FAULT; 700 break; 701 /* 702 * This occurs if the guest executes an illegal instruction. 703 * We just generate a program interrupt to the guest, since 704 * we don't emulate any guest instructions at this stage. 705 */ 706 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 707 kvmppc_core_queue_program(vcpu, 0x80000); 708 r = RESUME_GUEST; 709 break; 710 default: 711 kvmppc_dump_regs(vcpu); 712 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 713 vcpu->arch.trap, kvmppc_get_pc(vcpu), 714 vcpu->arch.shregs.msr); 715 run->hw.hardware_exit_reason = vcpu->arch.trap; 716 r = RESUME_HOST; 717 break; 718 } 719 720 return r; 721 } 722 723 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 724 struct kvm_sregs *sregs) 725 { 726 int i; 727 728 memset(sregs, 0, sizeof(struct kvm_sregs)); 729 sregs->pvr = vcpu->arch.pvr; 730 for (i = 0; i < vcpu->arch.slb_max; i++) { 731 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 732 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 733 } 734 735 return 0; 736 } 737 738 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 739 struct kvm_sregs *sregs) 740 { 741 int i, j; 742 743 kvmppc_set_pvr_hv(vcpu, sregs->pvr); 744 745 j = 0; 746 for (i = 0; i < vcpu->arch.slb_nr; i++) { 747 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 748 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 749 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 750 ++j; 751 } 752 } 753 vcpu->arch.slb_max = j; 754 755 return 0; 756 } 757 758 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr) 759 { 760 struct kvmppc_vcore *vc = vcpu->arch.vcore; 761 u64 mask; 762 763 spin_lock(&vc->lock); 764 /* 765 * Userspace can only modify DPFD (default prefetch depth), 766 * ILE (interrupt little-endian) and TC (translation control). 767 */ 768 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 769 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 770 spin_unlock(&vc->lock); 771 } 772 773 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 774 union kvmppc_one_reg *val) 775 { 776 int r = 0; 777 long int i; 778 779 switch (id) { 780 case KVM_REG_PPC_HIOR: 781 *val = get_reg_val(id, 0); 782 break; 783 case KVM_REG_PPC_DABR: 784 *val = get_reg_val(id, vcpu->arch.dabr); 785 break; 786 case KVM_REG_PPC_DSCR: 787 *val = get_reg_val(id, vcpu->arch.dscr); 788 break; 789 case KVM_REG_PPC_PURR: 790 *val = get_reg_val(id, vcpu->arch.purr); 791 break; 792 case KVM_REG_PPC_SPURR: 793 *val = get_reg_val(id, vcpu->arch.spurr); 794 break; 795 case KVM_REG_PPC_AMR: 796 *val = get_reg_val(id, vcpu->arch.amr); 797 break; 798 case KVM_REG_PPC_UAMOR: 799 *val = get_reg_val(id, vcpu->arch.uamor); 800 break; 801 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA: 802 i = id - KVM_REG_PPC_MMCR0; 803 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 804 break; 805 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 806 i = id - KVM_REG_PPC_PMC1; 807 *val = get_reg_val(id, vcpu->arch.pmc[i]); 808 break; 809 case KVM_REG_PPC_SIAR: 810 *val = get_reg_val(id, vcpu->arch.siar); 811 break; 812 case KVM_REG_PPC_SDAR: 813 *val = get_reg_val(id, vcpu->arch.sdar); 814 break; 815 #ifdef CONFIG_VSX 816 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31: 817 if (cpu_has_feature(CPU_FTR_VSX)) { 818 /* VSX => FP reg i is stored in arch.vsr[2*i] */ 819 long int i = id - KVM_REG_PPC_FPR0; 820 *val = get_reg_val(id, vcpu->arch.vsr[2 * i]); 821 } else { 822 /* let generic code handle it */ 823 r = -EINVAL; 824 } 825 break; 826 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: 827 if (cpu_has_feature(CPU_FTR_VSX)) { 828 long int i = id - KVM_REG_PPC_VSR0; 829 val->vsxval[0] = vcpu->arch.vsr[2 * i]; 830 val->vsxval[1] = vcpu->arch.vsr[2 * i + 1]; 831 } else { 832 r = -ENXIO; 833 } 834 break; 835 #endif /* CONFIG_VSX */ 836 case KVM_REG_PPC_VPA_ADDR: 837 spin_lock(&vcpu->arch.vpa_update_lock); 838 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 839 spin_unlock(&vcpu->arch.vpa_update_lock); 840 break; 841 case KVM_REG_PPC_VPA_SLB: 842 spin_lock(&vcpu->arch.vpa_update_lock); 843 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 844 val->vpaval.length = vcpu->arch.slb_shadow.len; 845 spin_unlock(&vcpu->arch.vpa_update_lock); 846 break; 847 case KVM_REG_PPC_VPA_DTL: 848 spin_lock(&vcpu->arch.vpa_update_lock); 849 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 850 val->vpaval.length = vcpu->arch.dtl.len; 851 spin_unlock(&vcpu->arch.vpa_update_lock); 852 break; 853 case KVM_REG_PPC_TB_OFFSET: 854 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 855 break; 856 case KVM_REG_PPC_LPCR: 857 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 858 break; 859 case KVM_REG_PPC_PPR: 860 *val = get_reg_val(id, vcpu->arch.ppr); 861 break; 862 case KVM_REG_PPC_ARCH_COMPAT: 863 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 864 break; 865 default: 866 r = -EINVAL; 867 break; 868 } 869 870 return r; 871 } 872 873 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 874 union kvmppc_one_reg *val) 875 { 876 int r = 0; 877 long int i; 878 unsigned long addr, len; 879 880 switch (id) { 881 case KVM_REG_PPC_HIOR: 882 /* Only allow this to be set to zero */ 883 if (set_reg_val(id, *val)) 884 r = -EINVAL; 885 break; 886 case KVM_REG_PPC_DABR: 887 vcpu->arch.dabr = set_reg_val(id, *val); 888 break; 889 case KVM_REG_PPC_DSCR: 890 vcpu->arch.dscr = set_reg_val(id, *val); 891 break; 892 case KVM_REG_PPC_PURR: 893 vcpu->arch.purr = set_reg_val(id, *val); 894 break; 895 case KVM_REG_PPC_SPURR: 896 vcpu->arch.spurr = set_reg_val(id, *val); 897 break; 898 case KVM_REG_PPC_AMR: 899 vcpu->arch.amr = set_reg_val(id, *val); 900 break; 901 case KVM_REG_PPC_UAMOR: 902 vcpu->arch.uamor = set_reg_val(id, *val); 903 break; 904 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA: 905 i = id - KVM_REG_PPC_MMCR0; 906 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 907 break; 908 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 909 i = id - KVM_REG_PPC_PMC1; 910 vcpu->arch.pmc[i] = set_reg_val(id, *val); 911 break; 912 case KVM_REG_PPC_SIAR: 913 vcpu->arch.siar = set_reg_val(id, *val); 914 break; 915 case KVM_REG_PPC_SDAR: 916 vcpu->arch.sdar = set_reg_val(id, *val); 917 break; 918 #ifdef CONFIG_VSX 919 case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31: 920 if (cpu_has_feature(CPU_FTR_VSX)) { 921 /* VSX => FP reg i is stored in arch.vsr[2*i] */ 922 long int i = id - KVM_REG_PPC_FPR0; 923 vcpu->arch.vsr[2 * i] = set_reg_val(id, *val); 924 } else { 925 /* let generic code handle it */ 926 r = -EINVAL; 927 } 928 break; 929 case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: 930 if (cpu_has_feature(CPU_FTR_VSX)) { 931 long int i = id - KVM_REG_PPC_VSR0; 932 vcpu->arch.vsr[2 * i] = val->vsxval[0]; 933 vcpu->arch.vsr[2 * i + 1] = val->vsxval[1]; 934 } else { 935 r = -ENXIO; 936 } 937 break; 938 #endif /* CONFIG_VSX */ 939 case KVM_REG_PPC_VPA_ADDR: 940 addr = set_reg_val(id, *val); 941 r = -EINVAL; 942 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 943 vcpu->arch.dtl.next_gpa)) 944 break; 945 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 946 break; 947 case KVM_REG_PPC_VPA_SLB: 948 addr = val->vpaval.addr; 949 len = val->vpaval.length; 950 r = -EINVAL; 951 if (addr && !vcpu->arch.vpa.next_gpa) 952 break; 953 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 954 break; 955 case KVM_REG_PPC_VPA_DTL: 956 addr = val->vpaval.addr; 957 len = val->vpaval.length; 958 r = -EINVAL; 959 if (addr && (len < sizeof(struct dtl_entry) || 960 !vcpu->arch.vpa.next_gpa)) 961 break; 962 len -= len % sizeof(struct dtl_entry); 963 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 964 break; 965 case KVM_REG_PPC_TB_OFFSET: 966 /* round up to multiple of 2^24 */ 967 vcpu->arch.vcore->tb_offset = 968 ALIGN(set_reg_val(id, *val), 1UL << 24); 969 break; 970 case KVM_REG_PPC_LPCR: 971 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val)); 972 break; 973 case KVM_REG_PPC_PPR: 974 vcpu->arch.ppr = set_reg_val(id, *val); 975 break; 976 case KVM_REG_PPC_ARCH_COMPAT: 977 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 978 break; 979 default: 980 r = -EINVAL; 981 break; 982 } 983 984 return r; 985 } 986 987 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 988 unsigned int id) 989 { 990 struct kvm_vcpu *vcpu; 991 int err = -EINVAL; 992 int core; 993 struct kvmppc_vcore *vcore; 994 995 core = id / threads_per_core; 996 if (core >= KVM_MAX_VCORES) 997 goto out; 998 999 err = -ENOMEM; 1000 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1001 if (!vcpu) 1002 goto out; 1003 1004 err = kvm_vcpu_init(vcpu, kvm, id); 1005 if (err) 1006 goto free_vcpu; 1007 1008 vcpu->arch.shared = &vcpu->arch.shregs; 1009 vcpu->arch.mmcr[0] = MMCR0_FC; 1010 vcpu->arch.ctrl = CTRL_RUNLATCH; 1011 /* default to host PVR, since we can't spoof it */ 1012 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1013 spin_lock_init(&vcpu->arch.vpa_update_lock); 1014 spin_lock_init(&vcpu->arch.tbacct_lock); 1015 vcpu->arch.busy_preempt = TB_NIL; 1016 1017 kvmppc_mmu_book3s_hv_init(vcpu); 1018 1019 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1020 1021 init_waitqueue_head(&vcpu->arch.cpu_run); 1022 1023 mutex_lock(&kvm->lock); 1024 vcore = kvm->arch.vcores[core]; 1025 if (!vcore) { 1026 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1027 if (vcore) { 1028 INIT_LIST_HEAD(&vcore->runnable_threads); 1029 spin_lock_init(&vcore->lock); 1030 init_waitqueue_head(&vcore->wq); 1031 vcore->preempt_tb = TB_NIL; 1032 vcore->lpcr = kvm->arch.lpcr; 1033 } 1034 kvm->arch.vcores[core] = vcore; 1035 kvm->arch.online_vcores++; 1036 } 1037 mutex_unlock(&kvm->lock); 1038 1039 if (!vcore) 1040 goto free_vcpu; 1041 1042 spin_lock(&vcore->lock); 1043 ++vcore->num_threads; 1044 spin_unlock(&vcore->lock); 1045 vcpu->arch.vcore = vcore; 1046 1047 vcpu->arch.cpu_type = KVM_CPU_3S_64; 1048 kvmppc_sanity_check(vcpu); 1049 1050 return vcpu; 1051 1052 free_vcpu: 1053 kmem_cache_free(kvm_vcpu_cache, vcpu); 1054 out: 1055 return ERR_PTR(err); 1056 } 1057 1058 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 1059 { 1060 if (vpa->pinned_addr) 1061 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 1062 vpa->dirty); 1063 } 1064 1065 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 1066 { 1067 spin_lock(&vcpu->arch.vpa_update_lock); 1068 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 1069 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 1070 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 1071 spin_unlock(&vcpu->arch.vpa_update_lock); 1072 kvm_vcpu_uninit(vcpu); 1073 kmem_cache_free(kvm_vcpu_cache, vcpu); 1074 } 1075 1076 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 1077 { 1078 /* Indicate we want to get back into the guest */ 1079 return 1; 1080 } 1081 1082 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 1083 { 1084 unsigned long dec_nsec, now; 1085 1086 now = get_tb(); 1087 if (now > vcpu->arch.dec_expires) { 1088 /* decrementer has already gone negative */ 1089 kvmppc_core_queue_dec(vcpu); 1090 kvmppc_core_prepare_to_enter(vcpu); 1091 return; 1092 } 1093 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 1094 / tb_ticks_per_sec; 1095 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 1096 HRTIMER_MODE_REL); 1097 vcpu->arch.timer_running = 1; 1098 } 1099 1100 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1101 { 1102 vcpu->arch.ceded = 0; 1103 if (vcpu->arch.timer_running) { 1104 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1105 vcpu->arch.timer_running = 0; 1106 } 1107 } 1108 1109 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu); 1110 1111 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1112 struct kvm_vcpu *vcpu) 1113 { 1114 u64 now; 1115 1116 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1117 return; 1118 spin_lock(&vcpu->arch.tbacct_lock); 1119 now = mftb(); 1120 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1121 vcpu->arch.stolen_logged; 1122 vcpu->arch.busy_preempt = now; 1123 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1124 spin_unlock(&vcpu->arch.tbacct_lock); 1125 --vc->n_runnable; 1126 list_del(&vcpu->arch.run_list); 1127 } 1128 1129 static int kvmppc_grab_hwthread(int cpu) 1130 { 1131 struct paca_struct *tpaca; 1132 long timeout = 1000; 1133 1134 tpaca = &paca[cpu]; 1135 1136 /* Ensure the thread won't go into the kernel if it wakes */ 1137 tpaca->kvm_hstate.hwthread_req = 1; 1138 tpaca->kvm_hstate.kvm_vcpu = NULL; 1139 1140 /* 1141 * If the thread is already executing in the kernel (e.g. handling 1142 * a stray interrupt), wait for it to get back to nap mode. 1143 * The smp_mb() is to ensure that our setting of hwthread_req 1144 * is visible before we look at hwthread_state, so if this 1145 * races with the code at system_reset_pSeries and the thread 1146 * misses our setting of hwthread_req, we are sure to see its 1147 * setting of hwthread_state, and vice versa. 1148 */ 1149 smp_mb(); 1150 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1151 if (--timeout <= 0) { 1152 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1153 return -EBUSY; 1154 } 1155 udelay(1); 1156 } 1157 return 0; 1158 } 1159 1160 static void kvmppc_release_hwthread(int cpu) 1161 { 1162 struct paca_struct *tpaca; 1163 1164 tpaca = &paca[cpu]; 1165 tpaca->kvm_hstate.hwthread_req = 0; 1166 tpaca->kvm_hstate.kvm_vcpu = NULL; 1167 } 1168 1169 static void kvmppc_start_thread(struct kvm_vcpu *vcpu) 1170 { 1171 int cpu; 1172 struct paca_struct *tpaca; 1173 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1174 1175 if (vcpu->arch.timer_running) { 1176 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1177 vcpu->arch.timer_running = 0; 1178 } 1179 cpu = vc->pcpu + vcpu->arch.ptid; 1180 tpaca = &paca[cpu]; 1181 tpaca->kvm_hstate.kvm_vcpu = vcpu; 1182 tpaca->kvm_hstate.kvm_vcore = vc; 1183 tpaca->kvm_hstate.napping = 0; 1184 vcpu->cpu = vc->pcpu; 1185 smp_wmb(); 1186 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 1187 if (vcpu->arch.ptid) { 1188 xics_wake_cpu(cpu); 1189 ++vc->n_woken; 1190 } 1191 #endif 1192 } 1193 1194 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) 1195 { 1196 int i; 1197 1198 HMT_low(); 1199 i = 0; 1200 while (vc->nap_count < vc->n_woken) { 1201 if (++i >= 1000000) { 1202 pr_err("kvmppc_wait_for_nap timeout %d %d\n", 1203 vc->nap_count, vc->n_woken); 1204 break; 1205 } 1206 cpu_relax(); 1207 } 1208 HMT_medium(); 1209 } 1210 1211 /* 1212 * Check that we are on thread 0 and that any other threads in 1213 * this core are off-line. Then grab the threads so they can't 1214 * enter the kernel. 1215 */ 1216 static int on_primary_thread(void) 1217 { 1218 int cpu = smp_processor_id(); 1219 int thr = cpu_thread_in_core(cpu); 1220 1221 if (thr) 1222 return 0; 1223 while (++thr < threads_per_core) 1224 if (cpu_online(cpu + thr)) 1225 return 0; 1226 1227 /* Grab all hw threads so they can't go into the kernel */ 1228 for (thr = 1; thr < threads_per_core; ++thr) { 1229 if (kvmppc_grab_hwthread(cpu + thr)) { 1230 /* Couldn't grab one; let the others go */ 1231 do { 1232 kvmppc_release_hwthread(cpu + thr); 1233 } while (--thr > 0); 1234 return 0; 1235 } 1236 } 1237 return 1; 1238 } 1239 1240 /* 1241 * Run a set of guest threads on a physical core. 1242 * Called with vc->lock held. 1243 */ 1244 static void kvmppc_run_core(struct kvmppc_vcore *vc) 1245 { 1246 struct kvm_vcpu *vcpu, *vcpu0, *vnext; 1247 long ret; 1248 u64 now; 1249 int ptid, i, need_vpa_update; 1250 int srcu_idx; 1251 struct kvm_vcpu *vcpus_to_update[threads_per_core]; 1252 1253 /* don't start if any threads have a signal pending */ 1254 need_vpa_update = 0; 1255 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1256 if (signal_pending(vcpu->arch.run_task)) 1257 return; 1258 if (vcpu->arch.vpa.update_pending || 1259 vcpu->arch.slb_shadow.update_pending || 1260 vcpu->arch.dtl.update_pending) 1261 vcpus_to_update[need_vpa_update++] = vcpu; 1262 } 1263 1264 /* 1265 * Initialize *vc, in particular vc->vcore_state, so we can 1266 * drop the vcore lock if necessary. 1267 */ 1268 vc->n_woken = 0; 1269 vc->nap_count = 0; 1270 vc->entry_exit_count = 0; 1271 vc->vcore_state = VCORE_STARTING; 1272 vc->in_guest = 0; 1273 vc->napping_threads = 0; 1274 1275 /* 1276 * Updating any of the vpas requires calling kvmppc_pin_guest_page, 1277 * which can't be called with any spinlocks held. 1278 */ 1279 if (need_vpa_update) { 1280 spin_unlock(&vc->lock); 1281 for (i = 0; i < need_vpa_update; ++i) 1282 kvmppc_update_vpas(vcpus_to_update[i]); 1283 spin_lock(&vc->lock); 1284 } 1285 1286 /* 1287 * Assign physical thread IDs, first to non-ceded vcpus 1288 * and then to ceded ones. 1289 */ 1290 ptid = 0; 1291 vcpu0 = NULL; 1292 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1293 if (!vcpu->arch.ceded) { 1294 if (!ptid) 1295 vcpu0 = vcpu; 1296 vcpu->arch.ptid = ptid++; 1297 } 1298 } 1299 if (!vcpu0) 1300 goto out; /* nothing to run; should never happen */ 1301 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1302 if (vcpu->arch.ceded) 1303 vcpu->arch.ptid = ptid++; 1304 1305 /* 1306 * Make sure we are running on thread 0, and that 1307 * secondary threads are offline. 1308 */ 1309 if (threads_per_core > 1 && !on_primary_thread()) { 1310 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1311 vcpu->arch.ret = -EBUSY; 1312 goto out; 1313 } 1314 1315 vc->pcpu = smp_processor_id(); 1316 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1317 kvmppc_start_thread(vcpu); 1318 kvmppc_create_dtl_entry(vcpu, vc); 1319 } 1320 1321 vc->vcore_state = VCORE_RUNNING; 1322 preempt_disable(); 1323 spin_unlock(&vc->lock); 1324 1325 kvm_guest_enter(); 1326 1327 srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu); 1328 1329 __kvmppc_vcore_entry(NULL, vcpu0); 1330 1331 spin_lock(&vc->lock); 1332 /* disable sending of IPIs on virtual external irqs */ 1333 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1334 vcpu->cpu = -1; 1335 /* wait for secondary threads to finish writing their state to memory */ 1336 if (vc->nap_count < vc->n_woken) 1337 kvmppc_wait_for_nap(vc); 1338 for (i = 0; i < threads_per_core; ++i) 1339 kvmppc_release_hwthread(vc->pcpu + i); 1340 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 1341 vc->vcore_state = VCORE_EXITING; 1342 spin_unlock(&vc->lock); 1343 1344 srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx); 1345 1346 /* make sure updates to secondary vcpu structs are visible now */ 1347 smp_mb(); 1348 kvm_guest_exit(); 1349 1350 preempt_enable(); 1351 kvm_resched(vcpu); 1352 1353 spin_lock(&vc->lock); 1354 now = get_tb(); 1355 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1356 /* cancel pending dec exception if dec is positive */ 1357 if (now < vcpu->arch.dec_expires && 1358 kvmppc_core_pending_dec(vcpu)) 1359 kvmppc_core_dequeue_dec(vcpu); 1360 1361 ret = RESUME_GUEST; 1362 if (vcpu->arch.trap) 1363 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 1364 vcpu->arch.run_task); 1365 1366 vcpu->arch.ret = ret; 1367 vcpu->arch.trap = 0; 1368 1369 if (vcpu->arch.ceded) { 1370 if (ret != RESUME_GUEST) 1371 kvmppc_end_cede(vcpu); 1372 else 1373 kvmppc_set_timer(vcpu); 1374 } 1375 } 1376 1377 out: 1378 vc->vcore_state = VCORE_INACTIVE; 1379 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 1380 arch.run_list) { 1381 if (vcpu->arch.ret != RESUME_GUEST) { 1382 kvmppc_remove_runnable(vc, vcpu); 1383 wake_up(&vcpu->arch.cpu_run); 1384 } 1385 } 1386 } 1387 1388 /* 1389 * Wait for some other vcpu thread to execute us, and 1390 * wake us up when we need to handle something in the host. 1391 */ 1392 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) 1393 { 1394 DEFINE_WAIT(wait); 1395 1396 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 1397 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) 1398 schedule(); 1399 finish_wait(&vcpu->arch.cpu_run, &wait); 1400 } 1401 1402 /* 1403 * All the vcpus in this vcore are idle, so wait for a decrementer 1404 * or external interrupt to one of the vcpus. vc->lock is held. 1405 */ 1406 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 1407 { 1408 DEFINE_WAIT(wait); 1409 1410 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 1411 vc->vcore_state = VCORE_SLEEPING; 1412 spin_unlock(&vc->lock); 1413 schedule(); 1414 finish_wait(&vc->wq, &wait); 1415 spin_lock(&vc->lock); 1416 vc->vcore_state = VCORE_INACTIVE; 1417 } 1418 1419 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 1420 { 1421 int n_ceded; 1422 struct kvmppc_vcore *vc; 1423 struct kvm_vcpu *v, *vn; 1424 1425 kvm_run->exit_reason = 0; 1426 vcpu->arch.ret = RESUME_GUEST; 1427 vcpu->arch.trap = 0; 1428 kvmppc_update_vpas(vcpu); 1429 1430 /* 1431 * Synchronize with other threads in this virtual core 1432 */ 1433 vc = vcpu->arch.vcore; 1434 spin_lock(&vc->lock); 1435 vcpu->arch.ceded = 0; 1436 vcpu->arch.run_task = current; 1437 vcpu->arch.kvm_run = kvm_run; 1438 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 1439 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 1440 vcpu->arch.busy_preempt = TB_NIL; 1441 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 1442 ++vc->n_runnable; 1443 1444 /* 1445 * This happens the first time this is called for a vcpu. 1446 * If the vcore is already running, we may be able to start 1447 * this thread straight away and have it join in. 1448 */ 1449 if (!signal_pending(current)) { 1450 if (vc->vcore_state == VCORE_RUNNING && 1451 VCORE_EXIT_COUNT(vc) == 0) { 1452 vcpu->arch.ptid = vc->n_runnable - 1; 1453 kvmppc_create_dtl_entry(vcpu, vc); 1454 kvmppc_start_thread(vcpu); 1455 } else if (vc->vcore_state == VCORE_SLEEPING) { 1456 wake_up(&vc->wq); 1457 } 1458 1459 } 1460 1461 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 1462 !signal_pending(current)) { 1463 if (vc->vcore_state != VCORE_INACTIVE) { 1464 spin_unlock(&vc->lock); 1465 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); 1466 spin_lock(&vc->lock); 1467 continue; 1468 } 1469 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 1470 arch.run_list) { 1471 kvmppc_core_prepare_to_enter(v); 1472 if (signal_pending(v->arch.run_task)) { 1473 kvmppc_remove_runnable(vc, v); 1474 v->stat.signal_exits++; 1475 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 1476 v->arch.ret = -EINTR; 1477 wake_up(&v->arch.cpu_run); 1478 } 1479 } 1480 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1481 break; 1482 vc->runner = vcpu; 1483 n_ceded = 0; 1484 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 1485 if (!v->arch.pending_exceptions) 1486 n_ceded += v->arch.ceded; 1487 else 1488 v->arch.ceded = 0; 1489 } 1490 if (n_ceded == vc->n_runnable) 1491 kvmppc_vcore_blocked(vc); 1492 else 1493 kvmppc_run_core(vc); 1494 vc->runner = NULL; 1495 } 1496 1497 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 1498 (vc->vcore_state == VCORE_RUNNING || 1499 vc->vcore_state == VCORE_EXITING)) { 1500 spin_unlock(&vc->lock); 1501 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); 1502 spin_lock(&vc->lock); 1503 } 1504 1505 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 1506 kvmppc_remove_runnable(vc, vcpu); 1507 vcpu->stat.signal_exits++; 1508 kvm_run->exit_reason = KVM_EXIT_INTR; 1509 vcpu->arch.ret = -EINTR; 1510 } 1511 1512 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 1513 /* Wake up some vcpu to run the core */ 1514 v = list_first_entry(&vc->runnable_threads, 1515 struct kvm_vcpu, arch.run_list); 1516 wake_up(&v->arch.cpu_run); 1517 } 1518 1519 spin_unlock(&vc->lock); 1520 return vcpu->arch.ret; 1521 } 1522 1523 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 1524 { 1525 int r; 1526 int srcu_idx; 1527 1528 if (!vcpu->arch.sane) { 1529 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1530 return -EINVAL; 1531 } 1532 1533 kvmppc_core_prepare_to_enter(vcpu); 1534 1535 /* No need to go into the guest when all we'll do is come back out */ 1536 if (signal_pending(current)) { 1537 run->exit_reason = KVM_EXIT_INTR; 1538 return -EINTR; 1539 } 1540 1541 atomic_inc(&vcpu->kvm->arch.vcpus_running); 1542 /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */ 1543 smp_mb(); 1544 1545 /* On the first time here, set up HTAB and VRMA or RMA */ 1546 if (!vcpu->kvm->arch.rma_setup_done) { 1547 r = kvmppc_hv_setup_htab_rma(vcpu); 1548 if (r) 1549 goto out; 1550 } 1551 1552 flush_fp_to_thread(current); 1553 flush_altivec_to_thread(current); 1554 flush_vsx_to_thread(current); 1555 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 1556 vcpu->arch.pgdir = current->mm->pgd; 1557 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1558 1559 do { 1560 r = kvmppc_run_vcpu(run, vcpu); 1561 1562 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 1563 !(vcpu->arch.shregs.msr & MSR_PR)) { 1564 r = kvmppc_pseries_do_hcall(vcpu); 1565 kvmppc_core_prepare_to_enter(vcpu); 1566 } else if (r == RESUME_PAGE_FAULT) { 1567 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1568 r = kvmppc_book3s_hv_page_fault(run, vcpu, 1569 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1570 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1571 } 1572 } while (r == RESUME_GUEST); 1573 1574 out: 1575 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1576 atomic_dec(&vcpu->kvm->arch.vcpus_running); 1577 return r; 1578 } 1579 1580 1581 /* Work out RMLS (real mode limit selector) field value for a given RMA size. 1582 Assumes POWER7 or PPC970. */ 1583 static inline int lpcr_rmls(unsigned long rma_size) 1584 { 1585 switch (rma_size) { 1586 case 32ul << 20: /* 32 MB */ 1587 if (cpu_has_feature(CPU_FTR_ARCH_206)) 1588 return 8; /* only supported on POWER7 */ 1589 return -1; 1590 case 64ul << 20: /* 64 MB */ 1591 return 3; 1592 case 128ul << 20: /* 128 MB */ 1593 return 7; 1594 case 256ul << 20: /* 256 MB */ 1595 return 4; 1596 case 1ul << 30: /* 1 GB */ 1597 return 2; 1598 case 16ul << 30: /* 16 GB */ 1599 return 1; 1600 case 256ul << 30: /* 256 GB */ 1601 return 0; 1602 default: 1603 return -1; 1604 } 1605 } 1606 1607 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1608 { 1609 struct page *page; 1610 struct kvm_rma_info *ri = vma->vm_file->private_data; 1611 1612 if (vmf->pgoff >= kvm_rma_pages) 1613 return VM_FAULT_SIGBUS; 1614 1615 page = pfn_to_page(ri->base_pfn + vmf->pgoff); 1616 get_page(page); 1617 vmf->page = page; 1618 return 0; 1619 } 1620 1621 static const struct vm_operations_struct kvm_rma_vm_ops = { 1622 .fault = kvm_rma_fault, 1623 }; 1624 1625 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) 1626 { 1627 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 1628 vma->vm_ops = &kvm_rma_vm_ops; 1629 return 0; 1630 } 1631 1632 static int kvm_rma_release(struct inode *inode, struct file *filp) 1633 { 1634 struct kvm_rma_info *ri = filp->private_data; 1635 1636 kvm_release_rma(ri); 1637 return 0; 1638 } 1639 1640 static const struct file_operations kvm_rma_fops = { 1641 .mmap = kvm_rma_mmap, 1642 .release = kvm_rma_release, 1643 }; 1644 1645 static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, 1646 struct kvm_allocate_rma *ret) 1647 { 1648 long fd; 1649 struct kvm_rma_info *ri; 1650 /* 1651 * Only do this on PPC970 in HV mode 1652 */ 1653 if (!cpu_has_feature(CPU_FTR_HVMODE) || 1654 !cpu_has_feature(CPU_FTR_ARCH_201)) 1655 return -EINVAL; 1656 1657 if (!kvm_rma_pages) 1658 return -EINVAL; 1659 1660 ri = kvm_alloc_rma(); 1661 if (!ri) 1662 return -ENOMEM; 1663 1664 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC); 1665 if (fd < 0) 1666 kvm_release_rma(ri); 1667 1668 ret->rma_size = kvm_rma_pages << PAGE_SHIFT; 1669 return fd; 1670 } 1671 1672 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 1673 int linux_psize) 1674 { 1675 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 1676 1677 if (!def->shift) 1678 return; 1679 (*sps)->page_shift = def->shift; 1680 (*sps)->slb_enc = def->sllp; 1681 (*sps)->enc[0].page_shift = def->shift; 1682 /* 1683 * Only return base page encoding. We don't want to return 1684 * all the supporting pte_enc, because our H_ENTER doesn't 1685 * support MPSS yet. Once they do, we can start passing all 1686 * support pte_enc here 1687 */ 1688 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 1689 (*sps)++; 1690 } 1691 1692 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 1693 struct kvm_ppc_smmu_info *info) 1694 { 1695 struct kvm_ppc_one_seg_page_size *sps; 1696 1697 info->flags = KVM_PPC_PAGE_SIZES_REAL; 1698 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1699 info->flags |= KVM_PPC_1T_SEGMENTS; 1700 info->slb_size = mmu_slb_size; 1701 1702 /* We only support these sizes for now, and no muti-size segments */ 1703 sps = &info->sps[0]; 1704 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 1705 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 1706 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 1707 1708 return 0; 1709 } 1710 1711 /* 1712 * Get (and clear) the dirty memory log for a memory slot. 1713 */ 1714 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 1715 struct kvm_dirty_log *log) 1716 { 1717 struct kvm_memory_slot *memslot; 1718 int r; 1719 unsigned long n; 1720 1721 mutex_lock(&kvm->slots_lock); 1722 1723 r = -EINVAL; 1724 if (log->slot >= KVM_USER_MEM_SLOTS) 1725 goto out; 1726 1727 memslot = id_to_memslot(kvm->memslots, log->slot); 1728 r = -ENOENT; 1729 if (!memslot->dirty_bitmap) 1730 goto out; 1731 1732 n = kvm_dirty_bitmap_bytes(memslot); 1733 memset(memslot->dirty_bitmap, 0, n); 1734 1735 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); 1736 if (r) 1737 goto out; 1738 1739 r = -EFAULT; 1740 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1741 goto out; 1742 1743 r = 0; 1744 out: 1745 mutex_unlock(&kvm->slots_lock); 1746 return r; 1747 } 1748 1749 static void unpin_slot(struct kvm_memory_slot *memslot) 1750 { 1751 unsigned long *physp; 1752 unsigned long j, npages, pfn; 1753 struct page *page; 1754 1755 physp = memslot->arch.slot_phys; 1756 npages = memslot->npages; 1757 if (!physp) 1758 return; 1759 for (j = 0; j < npages; j++) { 1760 if (!(physp[j] & KVMPPC_GOT_PAGE)) 1761 continue; 1762 pfn = physp[j] >> PAGE_SHIFT; 1763 page = pfn_to_page(pfn); 1764 SetPageDirty(page); 1765 put_page(page); 1766 } 1767 } 1768 1769 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 1770 struct kvm_memory_slot *dont) 1771 { 1772 if (!dont || free->arch.rmap != dont->arch.rmap) { 1773 vfree(free->arch.rmap); 1774 free->arch.rmap = NULL; 1775 } 1776 if (!dont || free->arch.slot_phys != dont->arch.slot_phys) { 1777 unpin_slot(free); 1778 vfree(free->arch.slot_phys); 1779 free->arch.slot_phys = NULL; 1780 } 1781 } 1782 1783 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 1784 unsigned long npages) 1785 { 1786 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 1787 if (!slot->arch.rmap) 1788 return -ENOMEM; 1789 slot->arch.slot_phys = NULL; 1790 1791 return 0; 1792 } 1793 1794 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 1795 struct kvm_memory_slot *memslot, 1796 struct kvm_userspace_memory_region *mem) 1797 { 1798 unsigned long *phys; 1799 1800 /* Allocate a slot_phys array if needed */ 1801 phys = memslot->arch.slot_phys; 1802 if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) { 1803 phys = vzalloc(memslot->npages * sizeof(unsigned long)); 1804 if (!phys) 1805 return -ENOMEM; 1806 memslot->arch.slot_phys = phys; 1807 } 1808 1809 return 0; 1810 } 1811 1812 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 1813 struct kvm_userspace_memory_region *mem, 1814 const struct kvm_memory_slot *old) 1815 { 1816 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 1817 struct kvm_memory_slot *memslot; 1818 1819 if (npages && old->npages) { 1820 /* 1821 * If modifying a memslot, reset all the rmap dirty bits. 1822 * If this is a new memslot, we don't need to do anything 1823 * since the rmap array starts out as all zeroes, 1824 * i.e. no pages are dirty. 1825 */ 1826 memslot = id_to_memslot(kvm->memslots, mem->slot); 1827 kvmppc_hv_get_dirty_log(kvm, memslot, NULL); 1828 } 1829 } 1830 1831 /* 1832 * Update LPCR values in kvm->arch and in vcores. 1833 * Caller must hold kvm->lock. 1834 */ 1835 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 1836 { 1837 long int i; 1838 u32 cores_done = 0; 1839 1840 if ((kvm->arch.lpcr & mask) == lpcr) 1841 return; 1842 1843 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 1844 1845 for (i = 0; i < KVM_MAX_VCORES; ++i) { 1846 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 1847 if (!vc) 1848 continue; 1849 spin_lock(&vc->lock); 1850 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 1851 spin_unlock(&vc->lock); 1852 if (++cores_done >= kvm->arch.online_vcores) 1853 break; 1854 } 1855 } 1856 1857 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 1858 { 1859 return; 1860 } 1861 1862 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 1863 { 1864 int err = 0; 1865 struct kvm *kvm = vcpu->kvm; 1866 struct kvm_rma_info *ri = NULL; 1867 unsigned long hva; 1868 struct kvm_memory_slot *memslot; 1869 struct vm_area_struct *vma; 1870 unsigned long lpcr = 0, senc; 1871 unsigned long lpcr_mask = 0; 1872 unsigned long psize, porder; 1873 unsigned long rma_size; 1874 unsigned long rmls; 1875 unsigned long *physp; 1876 unsigned long i, npages; 1877 int srcu_idx; 1878 1879 mutex_lock(&kvm->lock); 1880 if (kvm->arch.rma_setup_done) 1881 goto out; /* another vcpu beat us to it */ 1882 1883 /* Allocate hashed page table (if not done already) and reset it */ 1884 if (!kvm->arch.hpt_virt) { 1885 err = kvmppc_alloc_hpt(kvm, NULL); 1886 if (err) { 1887 pr_err("KVM: Couldn't alloc HPT\n"); 1888 goto out; 1889 } 1890 } 1891 1892 /* Look up the memslot for guest physical address 0 */ 1893 srcu_idx = srcu_read_lock(&kvm->srcu); 1894 memslot = gfn_to_memslot(kvm, 0); 1895 1896 /* We must have some memory at 0 by now */ 1897 err = -EINVAL; 1898 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 1899 goto out_srcu; 1900 1901 /* Look up the VMA for the start of this memory slot */ 1902 hva = memslot->userspace_addr; 1903 down_read(¤t->mm->mmap_sem); 1904 vma = find_vma(current->mm, hva); 1905 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 1906 goto up_out; 1907 1908 psize = vma_kernel_pagesize(vma); 1909 porder = __ilog2(psize); 1910 1911 /* Is this one of our preallocated RMAs? */ 1912 if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops && 1913 hva == vma->vm_start) 1914 ri = vma->vm_file->private_data; 1915 1916 up_read(¤t->mm->mmap_sem); 1917 1918 if (!ri) { 1919 /* On POWER7, use VRMA; on PPC970, give up */ 1920 err = -EPERM; 1921 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1922 pr_err("KVM: CPU requires an RMO\n"); 1923 goto out_srcu; 1924 } 1925 1926 /* We can handle 4k, 64k or 16M pages in the VRMA */ 1927 err = -EINVAL; 1928 if (!(psize == 0x1000 || psize == 0x10000 || 1929 psize == 0x1000000)) 1930 goto out_srcu; 1931 1932 /* Update VRMASD field in the LPCR */ 1933 senc = slb_pgsize_encoding(psize); 1934 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 1935 (VRMA_VSID << SLB_VSID_SHIFT_1T); 1936 lpcr_mask = LPCR_VRMASD; 1937 /* the -4 is to account for senc values starting at 0x10 */ 1938 lpcr = senc << (LPCR_VRMASD_SH - 4); 1939 1940 /* Create HPTEs in the hash page table for the VRMA */ 1941 kvmppc_map_vrma(vcpu, memslot, porder); 1942 1943 } else { 1944 /* Set up to use an RMO region */ 1945 rma_size = kvm_rma_pages; 1946 if (rma_size > memslot->npages) 1947 rma_size = memslot->npages; 1948 rma_size <<= PAGE_SHIFT; 1949 rmls = lpcr_rmls(rma_size); 1950 err = -EINVAL; 1951 if ((long)rmls < 0) { 1952 pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size); 1953 goto out_srcu; 1954 } 1955 atomic_inc(&ri->use_count); 1956 kvm->arch.rma = ri; 1957 1958 /* Update LPCR and RMOR */ 1959 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 1960 /* PPC970; insert RMLS value (split field) in HID4 */ 1961 lpcr_mask = (1ul << HID4_RMLS0_SH) | 1962 (3ul << HID4_RMLS2_SH) | HID4_RMOR; 1963 lpcr = ((rmls >> 2) << HID4_RMLS0_SH) | 1964 ((rmls & 3) << HID4_RMLS2_SH); 1965 /* RMOR is also in HID4 */ 1966 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) 1967 << HID4_RMOR_SH; 1968 } else { 1969 /* POWER7 */ 1970 lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS; 1971 lpcr = rmls << LPCR_RMLS_SH; 1972 kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT; 1973 } 1974 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n", 1975 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); 1976 1977 /* Initialize phys addrs of pages in RMO */ 1978 npages = kvm_rma_pages; 1979 porder = __ilog2(npages); 1980 physp = memslot->arch.slot_phys; 1981 if (physp) { 1982 if (npages > memslot->npages) 1983 npages = memslot->npages; 1984 spin_lock(&kvm->arch.slot_phys_lock); 1985 for (i = 0; i < npages; ++i) 1986 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + 1987 porder; 1988 spin_unlock(&kvm->arch.slot_phys_lock); 1989 } 1990 } 1991 1992 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 1993 1994 /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */ 1995 smp_wmb(); 1996 kvm->arch.rma_setup_done = 1; 1997 err = 0; 1998 out_srcu: 1999 srcu_read_unlock(&kvm->srcu, srcu_idx); 2000 out: 2001 mutex_unlock(&kvm->lock); 2002 return err; 2003 2004 up_out: 2005 up_read(¤t->mm->mmap_sem); 2006 goto out_srcu; 2007 } 2008 2009 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 2010 { 2011 unsigned long lpcr, lpid; 2012 2013 /* Allocate the guest's logical partition ID */ 2014 2015 lpid = kvmppc_alloc_lpid(); 2016 if ((long)lpid < 0) 2017 return -ENOMEM; 2018 kvm->arch.lpid = lpid; 2019 2020 /* 2021 * Since we don't flush the TLB when tearing down a VM, 2022 * and this lpid might have previously been used, 2023 * make sure we flush on each core before running the new VM. 2024 */ 2025 cpumask_setall(&kvm->arch.need_tlb_flush); 2026 2027 kvm->arch.rma = NULL; 2028 2029 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 2030 2031 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 2032 /* PPC970; HID4 is effectively the LPCR */ 2033 kvm->arch.host_lpid = 0; 2034 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); 2035 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); 2036 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | 2037 ((lpid & 0xf) << HID4_LPID5_SH); 2038 } else { 2039 /* POWER7; init LPCR for virtual RMA mode */ 2040 kvm->arch.host_lpid = mfspr(SPRN_LPID); 2041 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 2042 lpcr &= LPCR_PECE | LPCR_LPES; 2043 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 2044 LPCR_VPM0 | LPCR_VPM1; 2045 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 2046 (VRMA_VSID << SLB_VSID_SHIFT_1T); 2047 } 2048 kvm->arch.lpcr = lpcr; 2049 2050 kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206); 2051 spin_lock_init(&kvm->arch.slot_phys_lock); 2052 2053 /* 2054 * Don't allow secondary CPU threads to come online 2055 * while any KVM VMs exist. 2056 */ 2057 inhibit_secondary_onlining(); 2058 2059 return 0; 2060 } 2061 2062 static void kvmppc_free_vcores(struct kvm *kvm) 2063 { 2064 long int i; 2065 2066 for (i = 0; i < KVM_MAX_VCORES; ++i) 2067 kfree(kvm->arch.vcores[i]); 2068 kvm->arch.online_vcores = 0; 2069 } 2070 2071 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 2072 { 2073 uninhibit_secondary_onlining(); 2074 2075 kvmppc_free_vcores(kvm); 2076 if (kvm->arch.rma) { 2077 kvm_release_rma(kvm->arch.rma); 2078 kvm->arch.rma = NULL; 2079 } 2080 2081 kvmppc_free_hpt(kvm); 2082 } 2083 2084 /* We don't need to emulate any privileged instructions or dcbz */ 2085 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 2086 unsigned int inst, int *advance) 2087 { 2088 return EMULATE_FAIL; 2089 } 2090 2091 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 2092 ulong spr_val) 2093 { 2094 return EMULATE_FAIL; 2095 } 2096 2097 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 2098 ulong *spr_val) 2099 { 2100 return EMULATE_FAIL; 2101 } 2102 2103 static int kvmppc_core_check_processor_compat_hv(void) 2104 { 2105 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2106 return -EIO; 2107 return 0; 2108 } 2109 2110 static long kvm_arch_vm_ioctl_hv(struct file *filp, 2111 unsigned int ioctl, unsigned long arg) 2112 { 2113 struct kvm *kvm __maybe_unused = filp->private_data; 2114 void __user *argp = (void __user *)arg; 2115 long r; 2116 2117 switch (ioctl) { 2118 2119 case KVM_ALLOCATE_RMA: { 2120 struct kvm_allocate_rma rma; 2121 struct kvm *kvm = filp->private_data; 2122 2123 r = kvm_vm_ioctl_allocate_rma(kvm, &rma); 2124 if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma))) 2125 r = -EFAULT; 2126 break; 2127 } 2128 2129 case KVM_PPC_ALLOCATE_HTAB: { 2130 u32 htab_order; 2131 2132 r = -EFAULT; 2133 if (get_user(htab_order, (u32 __user *)argp)) 2134 break; 2135 r = kvmppc_alloc_reset_hpt(kvm, &htab_order); 2136 if (r) 2137 break; 2138 r = -EFAULT; 2139 if (put_user(htab_order, (u32 __user *)argp)) 2140 break; 2141 r = 0; 2142 break; 2143 } 2144 2145 case KVM_PPC_GET_HTAB_FD: { 2146 struct kvm_get_htab_fd ghf; 2147 2148 r = -EFAULT; 2149 if (copy_from_user(&ghf, argp, sizeof(ghf))) 2150 break; 2151 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 2152 break; 2153 } 2154 2155 default: 2156 r = -ENOTTY; 2157 } 2158 2159 return r; 2160 } 2161 2162 static struct kvmppc_ops kvm_ops_hv = { 2163 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 2164 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 2165 .get_one_reg = kvmppc_get_one_reg_hv, 2166 .set_one_reg = kvmppc_set_one_reg_hv, 2167 .vcpu_load = kvmppc_core_vcpu_load_hv, 2168 .vcpu_put = kvmppc_core_vcpu_put_hv, 2169 .set_msr = kvmppc_set_msr_hv, 2170 .vcpu_run = kvmppc_vcpu_run_hv, 2171 .vcpu_create = kvmppc_core_vcpu_create_hv, 2172 .vcpu_free = kvmppc_core_vcpu_free_hv, 2173 .check_requests = kvmppc_core_check_requests_hv, 2174 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 2175 .flush_memslot = kvmppc_core_flush_memslot_hv, 2176 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 2177 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 2178 .unmap_hva = kvm_unmap_hva_hv, 2179 .unmap_hva_range = kvm_unmap_hva_range_hv, 2180 .age_hva = kvm_age_hva_hv, 2181 .test_age_hva = kvm_test_age_hva_hv, 2182 .set_spte_hva = kvm_set_spte_hva_hv, 2183 .mmu_destroy = kvmppc_mmu_destroy_hv, 2184 .free_memslot = kvmppc_core_free_memslot_hv, 2185 .create_memslot = kvmppc_core_create_memslot_hv, 2186 .init_vm = kvmppc_core_init_vm_hv, 2187 .destroy_vm = kvmppc_core_destroy_vm_hv, 2188 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 2189 .emulate_op = kvmppc_core_emulate_op_hv, 2190 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 2191 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 2192 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 2193 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 2194 }; 2195 2196 static int kvmppc_book3s_init_hv(void) 2197 { 2198 int r; 2199 /* 2200 * FIXME!! Do we need to check on all cpus ? 2201 */ 2202 r = kvmppc_core_check_processor_compat_hv(); 2203 if (r < 0) 2204 return r; 2205 2206 kvm_ops_hv.owner = THIS_MODULE; 2207 kvmppc_hv_ops = &kvm_ops_hv; 2208 2209 r = kvmppc_mmu_hv_init(); 2210 return r; 2211 } 2212 2213 static void kvmppc_book3s_exit_hv(void) 2214 { 2215 kvmppc_hv_ops = NULL; 2216 } 2217 2218 module_init(kvmppc_book3s_init_hv); 2219 module_exit(kvmppc_book3s_exit_hv); 2220 MODULE_LICENSE("GPL"); 2221