1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched.h> 26 #include <linux/delay.h> 27 #include <linux/export.h> 28 #include <linux/fs.h> 29 #include <linux/anon_inodes.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 36 #include <asm/reg.h> 37 #include <asm/cputable.h> 38 #include <asm/cacheflush.h> 39 #include <asm/tlbflush.h> 40 #include <asm/uaccess.h> 41 #include <asm/io.h> 42 #include <asm/kvm_ppc.h> 43 #include <asm/kvm_book3s.h> 44 #include <asm/mmu_context.h> 45 #include <asm/lppaca.h> 46 #include <asm/processor.h> 47 #include <asm/cputhreads.h> 48 #include <asm/page.h> 49 #include <asm/hvcall.h> 50 #include <asm/switch_to.h> 51 #include <asm/smp.h> 52 #include <linux/gfp.h> 53 #include <linux/vmalloc.h> 54 #include <linux/highmem.h> 55 #include <linux/hugetlb.h> 56 #include <linux/module.h> 57 58 #include "book3s.h" 59 60 /* #define EXIT_DEBUG */ 61 /* #define EXIT_DEBUG_SIMPLE */ 62 /* #define EXIT_DEBUG_INT */ 63 64 /* Used to indicate that a guest page fault needs to be handled */ 65 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 66 67 /* Used as a "null" value for timebase values */ 68 #define TB_NIL (~(u64)0) 69 70 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 71 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 72 73 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 74 { 75 int me; 76 int cpu = vcpu->cpu; 77 wait_queue_head_t *wqp; 78 79 wqp = kvm_arch_vcpu_wq(vcpu); 80 if (waitqueue_active(wqp)) { 81 wake_up_interruptible(wqp); 82 ++vcpu->stat.halt_wakeup; 83 } 84 85 me = get_cpu(); 86 87 /* CPU points to the first thread of the core */ 88 if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) { 89 #ifdef CONFIG_PPC_ICP_NATIVE 90 int real_cpu = cpu + vcpu->arch.ptid; 91 if (paca[real_cpu].kvm_hstate.xics_phys) 92 xics_wake_cpu(real_cpu); 93 else 94 #endif 95 if (cpu_online(cpu)) 96 smp_send_reschedule(cpu); 97 } 98 put_cpu(); 99 } 100 101 /* 102 * We use the vcpu_load/put functions to measure stolen time. 103 * Stolen time is counted as time when either the vcpu is able to 104 * run as part of a virtual core, but the task running the vcore 105 * is preempted or sleeping, or when the vcpu needs something done 106 * in the kernel by the task running the vcpu, but that task is 107 * preempted or sleeping. Those two things have to be counted 108 * separately, since one of the vcpu tasks will take on the job 109 * of running the core, and the other vcpu tasks in the vcore will 110 * sleep waiting for it to do that, but that sleep shouldn't count 111 * as stolen time. 112 * 113 * Hence we accumulate stolen time when the vcpu can run as part of 114 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 115 * needs its task to do other things in the kernel (for example, 116 * service a page fault) in busy_stolen. We don't accumulate 117 * stolen time for a vcore when it is inactive, or for a vcpu 118 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 119 * a misnomer; it means that the vcpu task is not executing in 120 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 121 * the kernel. We don't have any way of dividing up that time 122 * between time that the vcpu is genuinely stopped, time that 123 * the task is actively working on behalf of the vcpu, and time 124 * that the task is preempted, so we don't count any of it as 125 * stolen. 126 * 127 * Updates to busy_stolen are protected by arch.tbacct_lock; 128 * updates to vc->stolen_tb are protected by the arch.tbacct_lock 129 * of the vcpu that has taken responsibility for running the vcore 130 * (i.e. vc->runner). The stolen times are measured in units of 131 * timebase ticks. (Note that the != TB_NIL checks below are 132 * purely defensive; they should never fail.) 133 */ 134 135 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 136 { 137 struct kvmppc_vcore *vc = vcpu->arch.vcore; 138 unsigned long flags; 139 140 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 141 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE && 142 vc->preempt_tb != TB_NIL) { 143 vc->stolen_tb += mftb() - vc->preempt_tb; 144 vc->preempt_tb = TB_NIL; 145 } 146 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 147 vcpu->arch.busy_preempt != TB_NIL) { 148 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 149 vcpu->arch.busy_preempt = TB_NIL; 150 } 151 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 152 } 153 154 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 155 { 156 struct kvmppc_vcore *vc = vcpu->arch.vcore; 157 unsigned long flags; 158 159 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 160 if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE) 161 vc->preempt_tb = mftb(); 162 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 163 vcpu->arch.busy_preempt = mftb(); 164 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 165 } 166 167 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 168 { 169 vcpu->arch.shregs.msr = msr; 170 kvmppc_end_cede(vcpu); 171 } 172 173 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 174 { 175 vcpu->arch.pvr = pvr; 176 } 177 178 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 179 { 180 unsigned long pcr = 0; 181 struct kvmppc_vcore *vc = vcpu->arch.vcore; 182 183 if (arch_compat) { 184 if (!cpu_has_feature(CPU_FTR_ARCH_206)) 185 return -EINVAL; /* 970 has no compat mode support */ 186 187 switch (arch_compat) { 188 case PVR_ARCH_205: 189 /* 190 * If an arch bit is set in PCR, all the defined 191 * higher-order arch bits also have to be set. 192 */ 193 pcr = PCR_ARCH_206 | PCR_ARCH_205; 194 break; 195 case PVR_ARCH_206: 196 case PVR_ARCH_206p: 197 pcr = PCR_ARCH_206; 198 break; 199 case PVR_ARCH_207: 200 break; 201 default: 202 return -EINVAL; 203 } 204 205 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) { 206 /* POWER7 can't emulate POWER8 */ 207 if (!(pcr & PCR_ARCH_206)) 208 return -EINVAL; 209 pcr &= ~PCR_ARCH_206; 210 } 211 } 212 213 spin_lock(&vc->lock); 214 vc->arch_compat = arch_compat; 215 vc->pcr = pcr; 216 spin_unlock(&vc->lock); 217 218 return 0; 219 } 220 221 void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 222 { 223 int r; 224 225 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 226 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 227 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 228 for (r = 0; r < 16; ++r) 229 pr_err("r%2d = %.16lx r%d = %.16lx\n", 230 r, kvmppc_get_gpr(vcpu, r), 231 r+16, kvmppc_get_gpr(vcpu, r+16)); 232 pr_err("ctr = %.16lx lr = %.16lx\n", 233 vcpu->arch.ctr, vcpu->arch.lr); 234 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 235 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 236 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 237 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 238 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 239 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 240 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 241 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 242 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 243 pr_err("fault dar = %.16lx dsisr = %.8x\n", 244 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 245 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 246 for (r = 0; r < vcpu->arch.slb_max; ++r) 247 pr_err(" ESID = %.16llx VSID = %.16llx\n", 248 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 249 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 250 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 251 vcpu->arch.last_inst); 252 } 253 254 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 255 { 256 int r; 257 struct kvm_vcpu *v, *ret = NULL; 258 259 mutex_lock(&kvm->lock); 260 kvm_for_each_vcpu(r, v, kvm) { 261 if (v->vcpu_id == id) { 262 ret = v; 263 break; 264 } 265 } 266 mutex_unlock(&kvm->lock); 267 return ret; 268 } 269 270 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 271 { 272 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 273 vpa->yield_count = 1; 274 } 275 276 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 277 unsigned long addr, unsigned long len) 278 { 279 /* check address is cacheline aligned */ 280 if (addr & (L1_CACHE_BYTES - 1)) 281 return -EINVAL; 282 spin_lock(&vcpu->arch.vpa_update_lock); 283 if (v->next_gpa != addr || v->len != len) { 284 v->next_gpa = addr; 285 v->len = addr ? len : 0; 286 v->update_pending = 1; 287 } 288 spin_unlock(&vcpu->arch.vpa_update_lock); 289 return 0; 290 } 291 292 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 293 struct reg_vpa { 294 u32 dummy; 295 union { 296 u16 hword; 297 u32 word; 298 } length; 299 }; 300 301 static int vpa_is_registered(struct kvmppc_vpa *vpap) 302 { 303 if (vpap->update_pending) 304 return vpap->next_gpa != 0; 305 return vpap->pinned_addr != NULL; 306 } 307 308 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 309 unsigned long flags, 310 unsigned long vcpuid, unsigned long vpa) 311 { 312 struct kvm *kvm = vcpu->kvm; 313 unsigned long len, nb; 314 void *va; 315 struct kvm_vcpu *tvcpu; 316 int err; 317 int subfunc; 318 struct kvmppc_vpa *vpap; 319 320 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 321 if (!tvcpu) 322 return H_PARAMETER; 323 324 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 325 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 326 subfunc == H_VPA_REG_SLB) { 327 /* Registering new area - address must be cache-line aligned */ 328 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 329 return H_PARAMETER; 330 331 /* convert logical addr to kernel addr and read length */ 332 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 333 if (va == NULL) 334 return H_PARAMETER; 335 if (subfunc == H_VPA_REG_VPA) 336 len = ((struct reg_vpa *)va)->length.hword; 337 else 338 len = ((struct reg_vpa *)va)->length.word; 339 kvmppc_unpin_guest_page(kvm, va, vpa, false); 340 341 /* Check length */ 342 if (len > nb || len < sizeof(struct reg_vpa)) 343 return H_PARAMETER; 344 } else { 345 vpa = 0; 346 len = 0; 347 } 348 349 err = H_PARAMETER; 350 vpap = NULL; 351 spin_lock(&tvcpu->arch.vpa_update_lock); 352 353 switch (subfunc) { 354 case H_VPA_REG_VPA: /* register VPA */ 355 if (len < sizeof(struct lppaca)) 356 break; 357 vpap = &tvcpu->arch.vpa; 358 err = 0; 359 break; 360 361 case H_VPA_REG_DTL: /* register DTL */ 362 if (len < sizeof(struct dtl_entry)) 363 break; 364 len -= len % sizeof(struct dtl_entry); 365 366 /* Check that they have previously registered a VPA */ 367 err = H_RESOURCE; 368 if (!vpa_is_registered(&tvcpu->arch.vpa)) 369 break; 370 371 vpap = &tvcpu->arch.dtl; 372 err = 0; 373 break; 374 375 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 376 /* Check that they have previously registered a VPA */ 377 err = H_RESOURCE; 378 if (!vpa_is_registered(&tvcpu->arch.vpa)) 379 break; 380 381 vpap = &tvcpu->arch.slb_shadow; 382 err = 0; 383 break; 384 385 case H_VPA_DEREG_VPA: /* deregister VPA */ 386 /* Check they don't still have a DTL or SLB buf registered */ 387 err = H_RESOURCE; 388 if (vpa_is_registered(&tvcpu->arch.dtl) || 389 vpa_is_registered(&tvcpu->arch.slb_shadow)) 390 break; 391 392 vpap = &tvcpu->arch.vpa; 393 err = 0; 394 break; 395 396 case H_VPA_DEREG_DTL: /* deregister DTL */ 397 vpap = &tvcpu->arch.dtl; 398 err = 0; 399 break; 400 401 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 402 vpap = &tvcpu->arch.slb_shadow; 403 err = 0; 404 break; 405 } 406 407 if (vpap) { 408 vpap->next_gpa = vpa; 409 vpap->len = len; 410 vpap->update_pending = 1; 411 } 412 413 spin_unlock(&tvcpu->arch.vpa_update_lock); 414 415 return err; 416 } 417 418 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 419 { 420 struct kvm *kvm = vcpu->kvm; 421 void *va; 422 unsigned long nb; 423 unsigned long gpa; 424 425 /* 426 * We need to pin the page pointed to by vpap->next_gpa, 427 * but we can't call kvmppc_pin_guest_page under the lock 428 * as it does get_user_pages() and down_read(). So we 429 * have to drop the lock, pin the page, then get the lock 430 * again and check that a new area didn't get registered 431 * in the meantime. 432 */ 433 for (;;) { 434 gpa = vpap->next_gpa; 435 spin_unlock(&vcpu->arch.vpa_update_lock); 436 va = NULL; 437 nb = 0; 438 if (gpa) 439 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 440 spin_lock(&vcpu->arch.vpa_update_lock); 441 if (gpa == vpap->next_gpa) 442 break; 443 /* sigh... unpin that one and try again */ 444 if (va) 445 kvmppc_unpin_guest_page(kvm, va, gpa, false); 446 } 447 448 vpap->update_pending = 0; 449 if (va && nb < vpap->len) { 450 /* 451 * If it's now too short, it must be that userspace 452 * has changed the mappings underlying guest memory, 453 * so unregister the region. 454 */ 455 kvmppc_unpin_guest_page(kvm, va, gpa, false); 456 va = NULL; 457 } 458 if (vpap->pinned_addr) 459 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 460 vpap->dirty); 461 vpap->gpa = gpa; 462 vpap->pinned_addr = va; 463 vpap->dirty = false; 464 if (va) 465 vpap->pinned_end = va + vpap->len; 466 } 467 468 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 469 { 470 if (!(vcpu->arch.vpa.update_pending || 471 vcpu->arch.slb_shadow.update_pending || 472 vcpu->arch.dtl.update_pending)) 473 return; 474 475 spin_lock(&vcpu->arch.vpa_update_lock); 476 if (vcpu->arch.vpa.update_pending) { 477 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 478 if (vcpu->arch.vpa.pinned_addr) 479 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 480 } 481 if (vcpu->arch.dtl.update_pending) { 482 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 483 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 484 vcpu->arch.dtl_index = 0; 485 } 486 if (vcpu->arch.slb_shadow.update_pending) 487 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 488 spin_unlock(&vcpu->arch.vpa_update_lock); 489 } 490 491 /* 492 * Return the accumulated stolen time for the vcore up until `now'. 493 * The caller should hold the vcore lock. 494 */ 495 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 496 { 497 u64 p; 498 499 /* 500 * If we are the task running the vcore, then since we hold 501 * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb 502 * can't be updated, so we don't need the tbacct_lock. 503 * If the vcore is inactive, it can't become active (since we 504 * hold the vcore lock), so the vcpu load/put functions won't 505 * update stolen_tb/preempt_tb, and we don't need tbacct_lock. 506 */ 507 if (vc->vcore_state != VCORE_INACTIVE && 508 vc->runner->arch.run_task != current) { 509 spin_lock_irq(&vc->runner->arch.tbacct_lock); 510 p = vc->stolen_tb; 511 if (vc->preempt_tb != TB_NIL) 512 p += now - vc->preempt_tb; 513 spin_unlock_irq(&vc->runner->arch.tbacct_lock); 514 } else { 515 p = vc->stolen_tb; 516 } 517 return p; 518 } 519 520 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 521 struct kvmppc_vcore *vc) 522 { 523 struct dtl_entry *dt; 524 struct lppaca *vpa; 525 unsigned long stolen; 526 unsigned long core_stolen; 527 u64 now; 528 529 dt = vcpu->arch.dtl_ptr; 530 vpa = vcpu->arch.vpa.pinned_addr; 531 now = mftb(); 532 core_stolen = vcore_stolen_time(vc, now); 533 stolen = core_stolen - vcpu->arch.stolen_logged; 534 vcpu->arch.stolen_logged = core_stolen; 535 spin_lock_irq(&vcpu->arch.tbacct_lock); 536 stolen += vcpu->arch.busy_stolen; 537 vcpu->arch.busy_stolen = 0; 538 spin_unlock_irq(&vcpu->arch.tbacct_lock); 539 if (!dt || !vpa) 540 return; 541 memset(dt, 0, sizeof(struct dtl_entry)); 542 dt->dispatch_reason = 7; 543 dt->processor_id = vc->pcpu + vcpu->arch.ptid; 544 dt->timebase = now + vc->tb_offset; 545 dt->enqueue_to_dispatch_time = stolen; 546 dt->srr0 = kvmppc_get_pc(vcpu); 547 dt->srr1 = vcpu->arch.shregs.msr; 548 ++dt; 549 if (dt == vcpu->arch.dtl.pinned_end) 550 dt = vcpu->arch.dtl.pinned_addr; 551 vcpu->arch.dtl_ptr = dt; 552 /* order writing *dt vs. writing vpa->dtl_idx */ 553 smp_wmb(); 554 vpa->dtl_idx = ++vcpu->arch.dtl_index; 555 vcpu->arch.dtl.dirty = true; 556 } 557 558 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 559 { 560 unsigned long req = kvmppc_get_gpr(vcpu, 3); 561 unsigned long target, ret = H_SUCCESS; 562 struct kvm_vcpu *tvcpu; 563 int idx, rc; 564 565 switch (req) { 566 case H_ENTER: 567 idx = srcu_read_lock(&vcpu->kvm->srcu); 568 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4), 569 kvmppc_get_gpr(vcpu, 5), 570 kvmppc_get_gpr(vcpu, 6), 571 kvmppc_get_gpr(vcpu, 7)); 572 srcu_read_unlock(&vcpu->kvm->srcu, idx); 573 break; 574 case H_CEDE: 575 break; 576 case H_PROD: 577 target = kvmppc_get_gpr(vcpu, 4); 578 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 579 if (!tvcpu) { 580 ret = H_PARAMETER; 581 break; 582 } 583 tvcpu->arch.prodded = 1; 584 smp_mb(); 585 if (vcpu->arch.ceded) { 586 if (waitqueue_active(&vcpu->wq)) { 587 wake_up_interruptible(&vcpu->wq); 588 vcpu->stat.halt_wakeup++; 589 } 590 } 591 break; 592 case H_CONFER: 593 target = kvmppc_get_gpr(vcpu, 4); 594 if (target == -1) 595 break; 596 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 597 if (!tvcpu) { 598 ret = H_PARAMETER; 599 break; 600 } 601 kvm_vcpu_yield_to(tvcpu); 602 break; 603 case H_REGISTER_VPA: 604 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 605 kvmppc_get_gpr(vcpu, 5), 606 kvmppc_get_gpr(vcpu, 6)); 607 break; 608 case H_RTAS: 609 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 610 return RESUME_HOST; 611 612 idx = srcu_read_lock(&vcpu->kvm->srcu); 613 rc = kvmppc_rtas_hcall(vcpu); 614 srcu_read_unlock(&vcpu->kvm->srcu, idx); 615 616 if (rc == -ENOENT) 617 return RESUME_HOST; 618 else if (rc == 0) 619 break; 620 621 /* Send the error out to userspace via KVM_RUN */ 622 return rc; 623 624 case H_XIRR: 625 case H_CPPR: 626 case H_EOI: 627 case H_IPI: 628 case H_IPOLL: 629 case H_XIRR_X: 630 if (kvmppc_xics_enabled(vcpu)) { 631 ret = kvmppc_xics_hcall(vcpu, req); 632 break; 633 } /* fallthrough */ 634 default: 635 return RESUME_HOST; 636 } 637 kvmppc_set_gpr(vcpu, 3, ret); 638 vcpu->arch.hcall_needed = 0; 639 return RESUME_GUEST; 640 } 641 642 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 643 struct task_struct *tsk) 644 { 645 int r = RESUME_HOST; 646 647 vcpu->stat.sum_exits++; 648 649 run->exit_reason = KVM_EXIT_UNKNOWN; 650 run->ready_for_interrupt_injection = 1; 651 switch (vcpu->arch.trap) { 652 /* We're good on these - the host merely wanted to get our attention */ 653 case BOOK3S_INTERRUPT_HV_DECREMENTER: 654 vcpu->stat.dec_exits++; 655 r = RESUME_GUEST; 656 break; 657 case BOOK3S_INTERRUPT_EXTERNAL: 658 case BOOK3S_INTERRUPT_H_DOORBELL: 659 vcpu->stat.ext_intr_exits++; 660 r = RESUME_GUEST; 661 break; 662 case BOOK3S_INTERRUPT_PERFMON: 663 r = RESUME_GUEST; 664 break; 665 case BOOK3S_INTERRUPT_MACHINE_CHECK: 666 /* 667 * Deliver a machine check interrupt to the guest. 668 * We have to do this, even if the host has handled the 669 * machine check, because machine checks use SRR0/1 and 670 * the interrupt might have trashed guest state in them. 671 */ 672 kvmppc_book3s_queue_irqprio(vcpu, 673 BOOK3S_INTERRUPT_MACHINE_CHECK); 674 r = RESUME_GUEST; 675 break; 676 case BOOK3S_INTERRUPT_PROGRAM: 677 { 678 ulong flags; 679 /* 680 * Normally program interrupts are delivered directly 681 * to the guest by the hardware, but we can get here 682 * as a result of a hypervisor emulation interrupt 683 * (e40) getting turned into a 700 by BML RTAS. 684 */ 685 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 686 kvmppc_core_queue_program(vcpu, flags); 687 r = RESUME_GUEST; 688 break; 689 } 690 case BOOK3S_INTERRUPT_SYSCALL: 691 { 692 /* hcall - punt to userspace */ 693 int i; 694 695 /* hypercall with MSR_PR has already been handled in rmode, 696 * and never reaches here. 697 */ 698 699 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 700 for (i = 0; i < 9; ++i) 701 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 702 run->exit_reason = KVM_EXIT_PAPR_HCALL; 703 vcpu->arch.hcall_needed = 1; 704 r = RESUME_HOST; 705 break; 706 } 707 /* 708 * We get these next two if the guest accesses a page which it thinks 709 * it has mapped but which is not actually present, either because 710 * it is for an emulated I/O device or because the corresonding 711 * host page has been paged out. Any other HDSI/HISI interrupts 712 * have been handled already. 713 */ 714 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 715 r = RESUME_PAGE_FAULT; 716 break; 717 case BOOK3S_INTERRUPT_H_INST_STORAGE: 718 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 719 vcpu->arch.fault_dsisr = 0; 720 r = RESUME_PAGE_FAULT; 721 break; 722 /* 723 * This occurs if the guest executes an illegal instruction. 724 * We just generate a program interrupt to the guest, since 725 * we don't emulate any guest instructions at this stage. 726 */ 727 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 728 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 729 r = RESUME_GUEST; 730 break; 731 /* 732 * This occurs if the guest (kernel or userspace), does something that 733 * is prohibited by HFSCR. We just generate a program interrupt to 734 * the guest. 735 */ 736 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 737 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 738 r = RESUME_GUEST; 739 break; 740 default: 741 kvmppc_dump_regs(vcpu); 742 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 743 vcpu->arch.trap, kvmppc_get_pc(vcpu), 744 vcpu->arch.shregs.msr); 745 run->hw.hardware_exit_reason = vcpu->arch.trap; 746 r = RESUME_HOST; 747 break; 748 } 749 750 return r; 751 } 752 753 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 754 struct kvm_sregs *sregs) 755 { 756 int i; 757 758 memset(sregs, 0, sizeof(struct kvm_sregs)); 759 sregs->pvr = vcpu->arch.pvr; 760 for (i = 0; i < vcpu->arch.slb_max; i++) { 761 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 762 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 763 } 764 765 return 0; 766 } 767 768 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 769 struct kvm_sregs *sregs) 770 { 771 int i, j; 772 773 kvmppc_set_pvr_hv(vcpu, sregs->pvr); 774 775 j = 0; 776 for (i = 0; i < vcpu->arch.slb_nr; i++) { 777 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 778 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 779 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 780 ++j; 781 } 782 } 783 vcpu->arch.slb_max = j; 784 785 return 0; 786 } 787 788 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr) 789 { 790 struct kvmppc_vcore *vc = vcpu->arch.vcore; 791 u64 mask; 792 793 spin_lock(&vc->lock); 794 /* 795 * If ILE (interrupt little-endian) has changed, update the 796 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 797 */ 798 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 799 struct kvm *kvm = vcpu->kvm; 800 struct kvm_vcpu *vcpu; 801 int i; 802 803 mutex_lock(&kvm->lock); 804 kvm_for_each_vcpu(i, vcpu, kvm) { 805 if (vcpu->arch.vcore != vc) 806 continue; 807 if (new_lpcr & LPCR_ILE) 808 vcpu->arch.intr_msr |= MSR_LE; 809 else 810 vcpu->arch.intr_msr &= ~MSR_LE; 811 } 812 mutex_unlock(&kvm->lock); 813 } 814 815 /* 816 * Userspace can only modify DPFD (default prefetch depth), 817 * ILE (interrupt little-endian) and TC (translation control). 818 * On POWER8 userspace can also modify AIL (alt. interrupt loc.) 819 */ 820 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 821 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 822 mask |= LPCR_AIL; 823 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 824 spin_unlock(&vc->lock); 825 } 826 827 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 828 union kvmppc_one_reg *val) 829 { 830 int r = 0; 831 long int i; 832 833 switch (id) { 834 case KVM_REG_PPC_HIOR: 835 *val = get_reg_val(id, 0); 836 break; 837 case KVM_REG_PPC_DABR: 838 *val = get_reg_val(id, vcpu->arch.dabr); 839 break; 840 case KVM_REG_PPC_DABRX: 841 *val = get_reg_val(id, vcpu->arch.dabrx); 842 break; 843 case KVM_REG_PPC_DSCR: 844 *val = get_reg_val(id, vcpu->arch.dscr); 845 break; 846 case KVM_REG_PPC_PURR: 847 *val = get_reg_val(id, vcpu->arch.purr); 848 break; 849 case KVM_REG_PPC_SPURR: 850 *val = get_reg_val(id, vcpu->arch.spurr); 851 break; 852 case KVM_REG_PPC_AMR: 853 *val = get_reg_val(id, vcpu->arch.amr); 854 break; 855 case KVM_REG_PPC_UAMOR: 856 *val = get_reg_val(id, vcpu->arch.uamor); 857 break; 858 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 859 i = id - KVM_REG_PPC_MMCR0; 860 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 861 break; 862 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 863 i = id - KVM_REG_PPC_PMC1; 864 *val = get_reg_val(id, vcpu->arch.pmc[i]); 865 break; 866 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 867 i = id - KVM_REG_PPC_SPMC1; 868 *val = get_reg_val(id, vcpu->arch.spmc[i]); 869 break; 870 case KVM_REG_PPC_SIAR: 871 *val = get_reg_val(id, vcpu->arch.siar); 872 break; 873 case KVM_REG_PPC_SDAR: 874 *val = get_reg_val(id, vcpu->arch.sdar); 875 break; 876 case KVM_REG_PPC_SIER: 877 *val = get_reg_val(id, vcpu->arch.sier); 878 break; 879 case KVM_REG_PPC_IAMR: 880 *val = get_reg_val(id, vcpu->arch.iamr); 881 break; 882 case KVM_REG_PPC_FSCR: 883 *val = get_reg_val(id, vcpu->arch.fscr); 884 break; 885 case KVM_REG_PPC_PSPB: 886 *val = get_reg_val(id, vcpu->arch.pspb); 887 break; 888 case KVM_REG_PPC_EBBHR: 889 *val = get_reg_val(id, vcpu->arch.ebbhr); 890 break; 891 case KVM_REG_PPC_EBBRR: 892 *val = get_reg_val(id, vcpu->arch.ebbrr); 893 break; 894 case KVM_REG_PPC_BESCR: 895 *val = get_reg_val(id, vcpu->arch.bescr); 896 break; 897 case KVM_REG_PPC_TAR: 898 *val = get_reg_val(id, vcpu->arch.tar); 899 break; 900 case KVM_REG_PPC_DPDES: 901 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 902 break; 903 case KVM_REG_PPC_DAWR: 904 *val = get_reg_val(id, vcpu->arch.dawr); 905 break; 906 case KVM_REG_PPC_DAWRX: 907 *val = get_reg_val(id, vcpu->arch.dawrx); 908 break; 909 case KVM_REG_PPC_CIABR: 910 *val = get_reg_val(id, vcpu->arch.ciabr); 911 break; 912 case KVM_REG_PPC_IC: 913 *val = get_reg_val(id, vcpu->arch.ic); 914 break; 915 case KVM_REG_PPC_VTB: 916 *val = get_reg_val(id, vcpu->arch.vtb); 917 break; 918 case KVM_REG_PPC_CSIGR: 919 *val = get_reg_val(id, vcpu->arch.csigr); 920 break; 921 case KVM_REG_PPC_TACR: 922 *val = get_reg_val(id, vcpu->arch.tacr); 923 break; 924 case KVM_REG_PPC_TCSCR: 925 *val = get_reg_val(id, vcpu->arch.tcscr); 926 break; 927 case KVM_REG_PPC_PID: 928 *val = get_reg_val(id, vcpu->arch.pid); 929 break; 930 case KVM_REG_PPC_ACOP: 931 *val = get_reg_val(id, vcpu->arch.acop); 932 break; 933 case KVM_REG_PPC_WORT: 934 *val = get_reg_val(id, vcpu->arch.wort); 935 break; 936 case KVM_REG_PPC_VPA_ADDR: 937 spin_lock(&vcpu->arch.vpa_update_lock); 938 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 939 spin_unlock(&vcpu->arch.vpa_update_lock); 940 break; 941 case KVM_REG_PPC_VPA_SLB: 942 spin_lock(&vcpu->arch.vpa_update_lock); 943 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 944 val->vpaval.length = vcpu->arch.slb_shadow.len; 945 spin_unlock(&vcpu->arch.vpa_update_lock); 946 break; 947 case KVM_REG_PPC_VPA_DTL: 948 spin_lock(&vcpu->arch.vpa_update_lock); 949 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 950 val->vpaval.length = vcpu->arch.dtl.len; 951 spin_unlock(&vcpu->arch.vpa_update_lock); 952 break; 953 case KVM_REG_PPC_TB_OFFSET: 954 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 955 break; 956 case KVM_REG_PPC_LPCR: 957 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 958 break; 959 case KVM_REG_PPC_PPR: 960 *val = get_reg_val(id, vcpu->arch.ppr); 961 break; 962 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 963 case KVM_REG_PPC_TFHAR: 964 *val = get_reg_val(id, vcpu->arch.tfhar); 965 break; 966 case KVM_REG_PPC_TFIAR: 967 *val = get_reg_val(id, vcpu->arch.tfiar); 968 break; 969 case KVM_REG_PPC_TEXASR: 970 *val = get_reg_val(id, vcpu->arch.texasr); 971 break; 972 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 973 i = id - KVM_REG_PPC_TM_GPR0; 974 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 975 break; 976 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 977 { 978 int j; 979 i = id - KVM_REG_PPC_TM_VSR0; 980 if (i < 32) 981 for (j = 0; j < TS_FPRWIDTH; j++) 982 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 983 else { 984 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 985 val->vval = vcpu->arch.vr_tm.vr[i-32]; 986 else 987 r = -ENXIO; 988 } 989 break; 990 } 991 case KVM_REG_PPC_TM_CR: 992 *val = get_reg_val(id, vcpu->arch.cr_tm); 993 break; 994 case KVM_REG_PPC_TM_LR: 995 *val = get_reg_val(id, vcpu->arch.lr_tm); 996 break; 997 case KVM_REG_PPC_TM_CTR: 998 *val = get_reg_val(id, vcpu->arch.ctr_tm); 999 break; 1000 case KVM_REG_PPC_TM_FPSCR: 1001 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1002 break; 1003 case KVM_REG_PPC_TM_AMR: 1004 *val = get_reg_val(id, vcpu->arch.amr_tm); 1005 break; 1006 case KVM_REG_PPC_TM_PPR: 1007 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1008 break; 1009 case KVM_REG_PPC_TM_VRSAVE: 1010 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1011 break; 1012 case KVM_REG_PPC_TM_VSCR: 1013 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1014 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1015 else 1016 r = -ENXIO; 1017 break; 1018 case KVM_REG_PPC_TM_DSCR: 1019 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1020 break; 1021 case KVM_REG_PPC_TM_TAR: 1022 *val = get_reg_val(id, vcpu->arch.tar_tm); 1023 break; 1024 #endif 1025 case KVM_REG_PPC_ARCH_COMPAT: 1026 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1027 break; 1028 default: 1029 r = -EINVAL; 1030 break; 1031 } 1032 1033 return r; 1034 } 1035 1036 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1037 union kvmppc_one_reg *val) 1038 { 1039 int r = 0; 1040 long int i; 1041 unsigned long addr, len; 1042 1043 switch (id) { 1044 case KVM_REG_PPC_HIOR: 1045 /* Only allow this to be set to zero */ 1046 if (set_reg_val(id, *val)) 1047 r = -EINVAL; 1048 break; 1049 case KVM_REG_PPC_DABR: 1050 vcpu->arch.dabr = set_reg_val(id, *val); 1051 break; 1052 case KVM_REG_PPC_DABRX: 1053 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1054 break; 1055 case KVM_REG_PPC_DSCR: 1056 vcpu->arch.dscr = set_reg_val(id, *val); 1057 break; 1058 case KVM_REG_PPC_PURR: 1059 vcpu->arch.purr = set_reg_val(id, *val); 1060 break; 1061 case KVM_REG_PPC_SPURR: 1062 vcpu->arch.spurr = set_reg_val(id, *val); 1063 break; 1064 case KVM_REG_PPC_AMR: 1065 vcpu->arch.amr = set_reg_val(id, *val); 1066 break; 1067 case KVM_REG_PPC_UAMOR: 1068 vcpu->arch.uamor = set_reg_val(id, *val); 1069 break; 1070 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1071 i = id - KVM_REG_PPC_MMCR0; 1072 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1073 break; 1074 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1075 i = id - KVM_REG_PPC_PMC1; 1076 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1077 break; 1078 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1079 i = id - KVM_REG_PPC_SPMC1; 1080 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1081 break; 1082 case KVM_REG_PPC_SIAR: 1083 vcpu->arch.siar = set_reg_val(id, *val); 1084 break; 1085 case KVM_REG_PPC_SDAR: 1086 vcpu->arch.sdar = set_reg_val(id, *val); 1087 break; 1088 case KVM_REG_PPC_SIER: 1089 vcpu->arch.sier = set_reg_val(id, *val); 1090 break; 1091 case KVM_REG_PPC_IAMR: 1092 vcpu->arch.iamr = set_reg_val(id, *val); 1093 break; 1094 case KVM_REG_PPC_FSCR: 1095 vcpu->arch.fscr = set_reg_val(id, *val); 1096 break; 1097 case KVM_REG_PPC_PSPB: 1098 vcpu->arch.pspb = set_reg_val(id, *val); 1099 break; 1100 case KVM_REG_PPC_EBBHR: 1101 vcpu->arch.ebbhr = set_reg_val(id, *val); 1102 break; 1103 case KVM_REG_PPC_EBBRR: 1104 vcpu->arch.ebbrr = set_reg_val(id, *val); 1105 break; 1106 case KVM_REG_PPC_BESCR: 1107 vcpu->arch.bescr = set_reg_val(id, *val); 1108 break; 1109 case KVM_REG_PPC_TAR: 1110 vcpu->arch.tar = set_reg_val(id, *val); 1111 break; 1112 case KVM_REG_PPC_DPDES: 1113 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1114 break; 1115 case KVM_REG_PPC_DAWR: 1116 vcpu->arch.dawr = set_reg_val(id, *val); 1117 break; 1118 case KVM_REG_PPC_DAWRX: 1119 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1120 break; 1121 case KVM_REG_PPC_CIABR: 1122 vcpu->arch.ciabr = set_reg_val(id, *val); 1123 /* Don't allow setting breakpoints in hypervisor code */ 1124 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1125 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1126 break; 1127 case KVM_REG_PPC_IC: 1128 vcpu->arch.ic = set_reg_val(id, *val); 1129 break; 1130 case KVM_REG_PPC_VTB: 1131 vcpu->arch.vtb = set_reg_val(id, *val); 1132 break; 1133 case KVM_REG_PPC_CSIGR: 1134 vcpu->arch.csigr = set_reg_val(id, *val); 1135 break; 1136 case KVM_REG_PPC_TACR: 1137 vcpu->arch.tacr = set_reg_val(id, *val); 1138 break; 1139 case KVM_REG_PPC_TCSCR: 1140 vcpu->arch.tcscr = set_reg_val(id, *val); 1141 break; 1142 case KVM_REG_PPC_PID: 1143 vcpu->arch.pid = set_reg_val(id, *val); 1144 break; 1145 case KVM_REG_PPC_ACOP: 1146 vcpu->arch.acop = set_reg_val(id, *val); 1147 break; 1148 case KVM_REG_PPC_WORT: 1149 vcpu->arch.wort = set_reg_val(id, *val); 1150 break; 1151 case KVM_REG_PPC_VPA_ADDR: 1152 addr = set_reg_val(id, *val); 1153 r = -EINVAL; 1154 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1155 vcpu->arch.dtl.next_gpa)) 1156 break; 1157 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1158 break; 1159 case KVM_REG_PPC_VPA_SLB: 1160 addr = val->vpaval.addr; 1161 len = val->vpaval.length; 1162 r = -EINVAL; 1163 if (addr && !vcpu->arch.vpa.next_gpa) 1164 break; 1165 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1166 break; 1167 case KVM_REG_PPC_VPA_DTL: 1168 addr = val->vpaval.addr; 1169 len = val->vpaval.length; 1170 r = -EINVAL; 1171 if (addr && (len < sizeof(struct dtl_entry) || 1172 !vcpu->arch.vpa.next_gpa)) 1173 break; 1174 len -= len % sizeof(struct dtl_entry); 1175 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1176 break; 1177 case KVM_REG_PPC_TB_OFFSET: 1178 /* round up to multiple of 2^24 */ 1179 vcpu->arch.vcore->tb_offset = 1180 ALIGN(set_reg_val(id, *val), 1UL << 24); 1181 break; 1182 case KVM_REG_PPC_LPCR: 1183 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val)); 1184 break; 1185 case KVM_REG_PPC_PPR: 1186 vcpu->arch.ppr = set_reg_val(id, *val); 1187 break; 1188 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1189 case KVM_REG_PPC_TFHAR: 1190 vcpu->arch.tfhar = set_reg_val(id, *val); 1191 break; 1192 case KVM_REG_PPC_TFIAR: 1193 vcpu->arch.tfiar = set_reg_val(id, *val); 1194 break; 1195 case KVM_REG_PPC_TEXASR: 1196 vcpu->arch.texasr = set_reg_val(id, *val); 1197 break; 1198 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1199 i = id - KVM_REG_PPC_TM_GPR0; 1200 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1201 break; 1202 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1203 { 1204 int j; 1205 i = id - KVM_REG_PPC_TM_VSR0; 1206 if (i < 32) 1207 for (j = 0; j < TS_FPRWIDTH; j++) 1208 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1209 else 1210 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1211 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1212 else 1213 r = -ENXIO; 1214 break; 1215 } 1216 case KVM_REG_PPC_TM_CR: 1217 vcpu->arch.cr_tm = set_reg_val(id, *val); 1218 break; 1219 case KVM_REG_PPC_TM_LR: 1220 vcpu->arch.lr_tm = set_reg_val(id, *val); 1221 break; 1222 case KVM_REG_PPC_TM_CTR: 1223 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1224 break; 1225 case KVM_REG_PPC_TM_FPSCR: 1226 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1227 break; 1228 case KVM_REG_PPC_TM_AMR: 1229 vcpu->arch.amr_tm = set_reg_val(id, *val); 1230 break; 1231 case KVM_REG_PPC_TM_PPR: 1232 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1233 break; 1234 case KVM_REG_PPC_TM_VRSAVE: 1235 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1236 break; 1237 case KVM_REG_PPC_TM_VSCR: 1238 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1239 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1240 else 1241 r = - ENXIO; 1242 break; 1243 case KVM_REG_PPC_TM_DSCR: 1244 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1245 break; 1246 case KVM_REG_PPC_TM_TAR: 1247 vcpu->arch.tar_tm = set_reg_val(id, *val); 1248 break; 1249 #endif 1250 case KVM_REG_PPC_ARCH_COMPAT: 1251 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1252 break; 1253 default: 1254 r = -EINVAL; 1255 break; 1256 } 1257 1258 return r; 1259 } 1260 1261 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1262 unsigned int id) 1263 { 1264 struct kvm_vcpu *vcpu; 1265 int err = -EINVAL; 1266 int core; 1267 struct kvmppc_vcore *vcore; 1268 1269 core = id / threads_per_core; 1270 if (core >= KVM_MAX_VCORES) 1271 goto out; 1272 1273 err = -ENOMEM; 1274 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1275 if (!vcpu) 1276 goto out; 1277 1278 err = kvm_vcpu_init(vcpu, kvm, id); 1279 if (err) 1280 goto free_vcpu; 1281 1282 vcpu->arch.shared = &vcpu->arch.shregs; 1283 vcpu->arch.mmcr[0] = MMCR0_FC; 1284 vcpu->arch.ctrl = CTRL_RUNLATCH; 1285 /* default to host PVR, since we can't spoof it */ 1286 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1287 spin_lock_init(&vcpu->arch.vpa_update_lock); 1288 spin_lock_init(&vcpu->arch.tbacct_lock); 1289 vcpu->arch.busy_preempt = TB_NIL; 1290 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1291 1292 kvmppc_mmu_book3s_hv_init(vcpu); 1293 1294 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1295 1296 init_waitqueue_head(&vcpu->arch.cpu_run); 1297 1298 mutex_lock(&kvm->lock); 1299 vcore = kvm->arch.vcores[core]; 1300 if (!vcore) { 1301 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1302 if (vcore) { 1303 INIT_LIST_HEAD(&vcore->runnable_threads); 1304 spin_lock_init(&vcore->lock); 1305 init_waitqueue_head(&vcore->wq); 1306 vcore->preempt_tb = TB_NIL; 1307 vcore->lpcr = kvm->arch.lpcr; 1308 vcore->first_vcpuid = core * threads_per_core; 1309 vcore->kvm = kvm; 1310 } 1311 kvm->arch.vcores[core] = vcore; 1312 kvm->arch.online_vcores++; 1313 } 1314 mutex_unlock(&kvm->lock); 1315 1316 if (!vcore) 1317 goto free_vcpu; 1318 1319 spin_lock(&vcore->lock); 1320 ++vcore->num_threads; 1321 spin_unlock(&vcore->lock); 1322 vcpu->arch.vcore = vcore; 1323 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 1324 1325 vcpu->arch.cpu_type = KVM_CPU_3S_64; 1326 kvmppc_sanity_check(vcpu); 1327 1328 return vcpu; 1329 1330 free_vcpu: 1331 kmem_cache_free(kvm_vcpu_cache, vcpu); 1332 out: 1333 return ERR_PTR(err); 1334 } 1335 1336 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 1337 { 1338 if (vpa->pinned_addr) 1339 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 1340 vpa->dirty); 1341 } 1342 1343 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 1344 { 1345 spin_lock(&vcpu->arch.vpa_update_lock); 1346 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 1347 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 1348 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 1349 spin_unlock(&vcpu->arch.vpa_update_lock); 1350 kvm_vcpu_uninit(vcpu); 1351 kmem_cache_free(kvm_vcpu_cache, vcpu); 1352 } 1353 1354 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 1355 { 1356 /* Indicate we want to get back into the guest */ 1357 return 1; 1358 } 1359 1360 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 1361 { 1362 unsigned long dec_nsec, now; 1363 1364 now = get_tb(); 1365 if (now > vcpu->arch.dec_expires) { 1366 /* decrementer has already gone negative */ 1367 kvmppc_core_queue_dec(vcpu); 1368 kvmppc_core_prepare_to_enter(vcpu); 1369 return; 1370 } 1371 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 1372 / tb_ticks_per_sec; 1373 hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec), 1374 HRTIMER_MODE_REL); 1375 vcpu->arch.timer_running = 1; 1376 } 1377 1378 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 1379 { 1380 vcpu->arch.ceded = 0; 1381 if (vcpu->arch.timer_running) { 1382 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1383 vcpu->arch.timer_running = 0; 1384 } 1385 } 1386 1387 extern void __kvmppc_vcore_entry(void); 1388 1389 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 1390 struct kvm_vcpu *vcpu) 1391 { 1392 u64 now; 1393 1394 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1395 return; 1396 spin_lock_irq(&vcpu->arch.tbacct_lock); 1397 now = mftb(); 1398 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 1399 vcpu->arch.stolen_logged; 1400 vcpu->arch.busy_preempt = now; 1401 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1402 spin_unlock_irq(&vcpu->arch.tbacct_lock); 1403 --vc->n_runnable; 1404 list_del(&vcpu->arch.run_list); 1405 } 1406 1407 static int kvmppc_grab_hwthread(int cpu) 1408 { 1409 struct paca_struct *tpaca; 1410 long timeout = 1000; 1411 1412 tpaca = &paca[cpu]; 1413 1414 /* Ensure the thread won't go into the kernel if it wakes */ 1415 tpaca->kvm_hstate.hwthread_req = 1; 1416 tpaca->kvm_hstate.kvm_vcpu = NULL; 1417 1418 /* 1419 * If the thread is already executing in the kernel (e.g. handling 1420 * a stray interrupt), wait for it to get back to nap mode. 1421 * The smp_mb() is to ensure that our setting of hwthread_req 1422 * is visible before we look at hwthread_state, so if this 1423 * races with the code at system_reset_pSeries and the thread 1424 * misses our setting of hwthread_req, we are sure to see its 1425 * setting of hwthread_state, and vice versa. 1426 */ 1427 smp_mb(); 1428 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 1429 if (--timeout <= 0) { 1430 pr_err("KVM: couldn't grab cpu %d\n", cpu); 1431 return -EBUSY; 1432 } 1433 udelay(1); 1434 } 1435 return 0; 1436 } 1437 1438 static void kvmppc_release_hwthread(int cpu) 1439 { 1440 struct paca_struct *tpaca; 1441 1442 tpaca = &paca[cpu]; 1443 tpaca->kvm_hstate.hwthread_req = 0; 1444 tpaca->kvm_hstate.kvm_vcpu = NULL; 1445 } 1446 1447 static void kvmppc_start_thread(struct kvm_vcpu *vcpu) 1448 { 1449 int cpu; 1450 struct paca_struct *tpaca; 1451 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1452 1453 if (vcpu->arch.timer_running) { 1454 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 1455 vcpu->arch.timer_running = 0; 1456 } 1457 cpu = vc->pcpu + vcpu->arch.ptid; 1458 tpaca = &paca[cpu]; 1459 tpaca->kvm_hstate.kvm_vcpu = vcpu; 1460 tpaca->kvm_hstate.kvm_vcore = vc; 1461 tpaca->kvm_hstate.ptid = vcpu->arch.ptid; 1462 vcpu->cpu = vc->pcpu; 1463 smp_wmb(); 1464 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 1465 if (cpu != smp_processor_id()) { 1466 xics_wake_cpu(cpu); 1467 if (vcpu->arch.ptid) 1468 ++vc->n_woken; 1469 } 1470 #endif 1471 } 1472 1473 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc) 1474 { 1475 int i; 1476 1477 HMT_low(); 1478 i = 0; 1479 while (vc->nap_count < vc->n_woken) { 1480 if (++i >= 1000000) { 1481 pr_err("kvmppc_wait_for_nap timeout %d %d\n", 1482 vc->nap_count, vc->n_woken); 1483 break; 1484 } 1485 cpu_relax(); 1486 } 1487 HMT_medium(); 1488 } 1489 1490 /* 1491 * Check that we are on thread 0 and that any other threads in 1492 * this core are off-line. Then grab the threads so they can't 1493 * enter the kernel. 1494 */ 1495 static int on_primary_thread(void) 1496 { 1497 int cpu = smp_processor_id(); 1498 int thr = cpu_thread_in_core(cpu); 1499 1500 if (thr) 1501 return 0; 1502 while (++thr < threads_per_core) 1503 if (cpu_online(cpu + thr)) 1504 return 0; 1505 1506 /* Grab all hw threads so they can't go into the kernel */ 1507 for (thr = 1; thr < threads_per_core; ++thr) { 1508 if (kvmppc_grab_hwthread(cpu + thr)) { 1509 /* Couldn't grab one; let the others go */ 1510 do { 1511 kvmppc_release_hwthread(cpu + thr); 1512 } while (--thr > 0); 1513 return 0; 1514 } 1515 } 1516 return 1; 1517 } 1518 1519 /* 1520 * Run a set of guest threads on a physical core. 1521 * Called with vc->lock held. 1522 */ 1523 static void kvmppc_run_core(struct kvmppc_vcore *vc) 1524 { 1525 struct kvm_vcpu *vcpu, *vnext; 1526 long ret; 1527 u64 now; 1528 int i, need_vpa_update; 1529 int srcu_idx; 1530 struct kvm_vcpu *vcpus_to_update[threads_per_core]; 1531 1532 /* don't start if any threads have a signal pending */ 1533 need_vpa_update = 0; 1534 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1535 if (signal_pending(vcpu->arch.run_task)) 1536 return; 1537 if (vcpu->arch.vpa.update_pending || 1538 vcpu->arch.slb_shadow.update_pending || 1539 vcpu->arch.dtl.update_pending) 1540 vcpus_to_update[need_vpa_update++] = vcpu; 1541 } 1542 1543 /* 1544 * Initialize *vc, in particular vc->vcore_state, so we can 1545 * drop the vcore lock if necessary. 1546 */ 1547 vc->n_woken = 0; 1548 vc->nap_count = 0; 1549 vc->entry_exit_count = 0; 1550 vc->vcore_state = VCORE_STARTING; 1551 vc->in_guest = 0; 1552 vc->napping_threads = 0; 1553 1554 /* 1555 * Updating any of the vpas requires calling kvmppc_pin_guest_page, 1556 * which can't be called with any spinlocks held. 1557 */ 1558 if (need_vpa_update) { 1559 spin_unlock(&vc->lock); 1560 for (i = 0; i < need_vpa_update; ++i) 1561 kvmppc_update_vpas(vcpus_to_update[i]); 1562 spin_lock(&vc->lock); 1563 } 1564 1565 /* 1566 * Make sure we are running on thread 0, and that 1567 * secondary threads are offline. 1568 */ 1569 if (threads_per_core > 1 && !on_primary_thread()) { 1570 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1571 vcpu->arch.ret = -EBUSY; 1572 goto out; 1573 } 1574 1575 vc->pcpu = smp_processor_id(); 1576 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1577 kvmppc_start_thread(vcpu); 1578 kvmppc_create_dtl_entry(vcpu, vc); 1579 } 1580 1581 /* Set this explicitly in case thread 0 doesn't have a vcpu */ 1582 get_paca()->kvm_hstate.kvm_vcore = vc; 1583 get_paca()->kvm_hstate.ptid = 0; 1584 1585 vc->vcore_state = VCORE_RUNNING; 1586 preempt_disable(); 1587 spin_unlock(&vc->lock); 1588 1589 kvm_guest_enter(); 1590 1591 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 1592 1593 __kvmppc_vcore_entry(); 1594 1595 spin_lock(&vc->lock); 1596 /* disable sending of IPIs on virtual external irqs */ 1597 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) 1598 vcpu->cpu = -1; 1599 /* wait for secondary threads to finish writing their state to memory */ 1600 if (vc->nap_count < vc->n_woken) 1601 kvmppc_wait_for_nap(vc); 1602 for (i = 0; i < threads_per_core; ++i) 1603 kvmppc_release_hwthread(vc->pcpu + i); 1604 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 1605 vc->vcore_state = VCORE_EXITING; 1606 spin_unlock(&vc->lock); 1607 1608 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 1609 1610 /* make sure updates to secondary vcpu structs are visible now */ 1611 smp_mb(); 1612 kvm_guest_exit(); 1613 1614 preempt_enable(); 1615 cond_resched(); 1616 1617 spin_lock(&vc->lock); 1618 now = get_tb(); 1619 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) { 1620 /* cancel pending dec exception if dec is positive */ 1621 if (now < vcpu->arch.dec_expires && 1622 kvmppc_core_pending_dec(vcpu)) 1623 kvmppc_core_dequeue_dec(vcpu); 1624 1625 ret = RESUME_GUEST; 1626 if (vcpu->arch.trap) 1627 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 1628 vcpu->arch.run_task); 1629 1630 vcpu->arch.ret = ret; 1631 vcpu->arch.trap = 0; 1632 1633 if (vcpu->arch.ceded) { 1634 if (!is_kvmppc_resume_guest(ret)) 1635 kvmppc_end_cede(vcpu); 1636 else 1637 kvmppc_set_timer(vcpu); 1638 } 1639 } 1640 1641 out: 1642 vc->vcore_state = VCORE_INACTIVE; 1643 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads, 1644 arch.run_list) { 1645 if (!is_kvmppc_resume_guest(vcpu->arch.ret)) { 1646 kvmppc_remove_runnable(vc, vcpu); 1647 wake_up(&vcpu->arch.cpu_run); 1648 } 1649 } 1650 } 1651 1652 /* 1653 * Wait for some other vcpu thread to execute us, and 1654 * wake us up when we need to handle something in the host. 1655 */ 1656 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state) 1657 { 1658 DEFINE_WAIT(wait); 1659 1660 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 1661 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) 1662 schedule(); 1663 finish_wait(&vcpu->arch.cpu_run, &wait); 1664 } 1665 1666 /* 1667 * All the vcpus in this vcore are idle, so wait for a decrementer 1668 * or external interrupt to one of the vcpus. vc->lock is held. 1669 */ 1670 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 1671 { 1672 DEFINE_WAIT(wait); 1673 1674 prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 1675 vc->vcore_state = VCORE_SLEEPING; 1676 spin_unlock(&vc->lock); 1677 schedule(); 1678 finish_wait(&vc->wq, &wait); 1679 spin_lock(&vc->lock); 1680 vc->vcore_state = VCORE_INACTIVE; 1681 } 1682 1683 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 1684 { 1685 int n_ceded; 1686 struct kvmppc_vcore *vc; 1687 struct kvm_vcpu *v, *vn; 1688 1689 kvm_run->exit_reason = 0; 1690 vcpu->arch.ret = RESUME_GUEST; 1691 vcpu->arch.trap = 0; 1692 kvmppc_update_vpas(vcpu); 1693 1694 /* 1695 * Synchronize with other threads in this virtual core 1696 */ 1697 vc = vcpu->arch.vcore; 1698 spin_lock(&vc->lock); 1699 vcpu->arch.ceded = 0; 1700 vcpu->arch.run_task = current; 1701 vcpu->arch.kvm_run = kvm_run; 1702 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 1703 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 1704 vcpu->arch.busy_preempt = TB_NIL; 1705 list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads); 1706 ++vc->n_runnable; 1707 1708 /* 1709 * This happens the first time this is called for a vcpu. 1710 * If the vcore is already running, we may be able to start 1711 * this thread straight away and have it join in. 1712 */ 1713 if (!signal_pending(current)) { 1714 if (vc->vcore_state == VCORE_RUNNING && 1715 VCORE_EXIT_COUNT(vc) == 0) { 1716 kvmppc_create_dtl_entry(vcpu, vc); 1717 kvmppc_start_thread(vcpu); 1718 } else if (vc->vcore_state == VCORE_SLEEPING) { 1719 wake_up(&vc->wq); 1720 } 1721 1722 } 1723 1724 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 1725 !signal_pending(current)) { 1726 if (vc->vcore_state != VCORE_INACTIVE) { 1727 spin_unlock(&vc->lock); 1728 kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE); 1729 spin_lock(&vc->lock); 1730 continue; 1731 } 1732 list_for_each_entry_safe(v, vn, &vc->runnable_threads, 1733 arch.run_list) { 1734 kvmppc_core_prepare_to_enter(v); 1735 if (signal_pending(v->arch.run_task)) { 1736 kvmppc_remove_runnable(vc, v); 1737 v->stat.signal_exits++; 1738 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 1739 v->arch.ret = -EINTR; 1740 wake_up(&v->arch.cpu_run); 1741 } 1742 } 1743 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 1744 break; 1745 vc->runner = vcpu; 1746 n_ceded = 0; 1747 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) { 1748 if (!v->arch.pending_exceptions) 1749 n_ceded += v->arch.ceded; 1750 else 1751 v->arch.ceded = 0; 1752 } 1753 if (n_ceded == vc->n_runnable) 1754 kvmppc_vcore_blocked(vc); 1755 else 1756 kvmppc_run_core(vc); 1757 vc->runner = NULL; 1758 } 1759 1760 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 1761 (vc->vcore_state == VCORE_RUNNING || 1762 vc->vcore_state == VCORE_EXITING)) { 1763 spin_unlock(&vc->lock); 1764 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE); 1765 spin_lock(&vc->lock); 1766 } 1767 1768 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 1769 kvmppc_remove_runnable(vc, vcpu); 1770 vcpu->stat.signal_exits++; 1771 kvm_run->exit_reason = KVM_EXIT_INTR; 1772 vcpu->arch.ret = -EINTR; 1773 } 1774 1775 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 1776 /* Wake up some vcpu to run the core */ 1777 v = list_first_entry(&vc->runnable_threads, 1778 struct kvm_vcpu, arch.run_list); 1779 wake_up(&v->arch.cpu_run); 1780 } 1781 1782 spin_unlock(&vc->lock); 1783 return vcpu->arch.ret; 1784 } 1785 1786 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 1787 { 1788 int r; 1789 int srcu_idx; 1790 1791 if (!vcpu->arch.sane) { 1792 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1793 return -EINVAL; 1794 } 1795 1796 kvmppc_core_prepare_to_enter(vcpu); 1797 1798 /* No need to go into the guest when all we'll do is come back out */ 1799 if (signal_pending(current)) { 1800 run->exit_reason = KVM_EXIT_INTR; 1801 return -EINTR; 1802 } 1803 1804 atomic_inc(&vcpu->kvm->arch.vcpus_running); 1805 /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */ 1806 smp_mb(); 1807 1808 /* On the first time here, set up HTAB and VRMA or RMA */ 1809 if (!vcpu->kvm->arch.rma_setup_done) { 1810 r = kvmppc_hv_setup_htab_rma(vcpu); 1811 if (r) 1812 goto out; 1813 } 1814 1815 flush_fp_to_thread(current); 1816 flush_altivec_to_thread(current); 1817 flush_vsx_to_thread(current); 1818 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 1819 vcpu->arch.pgdir = current->mm->pgd; 1820 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 1821 1822 do { 1823 r = kvmppc_run_vcpu(run, vcpu); 1824 1825 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 1826 !(vcpu->arch.shregs.msr & MSR_PR)) { 1827 r = kvmppc_pseries_do_hcall(vcpu); 1828 kvmppc_core_prepare_to_enter(vcpu); 1829 } else if (r == RESUME_PAGE_FAULT) { 1830 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1831 r = kvmppc_book3s_hv_page_fault(run, vcpu, 1832 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 1833 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1834 } 1835 } while (is_kvmppc_resume_guest(r)); 1836 1837 out: 1838 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1839 atomic_dec(&vcpu->kvm->arch.vcpus_running); 1840 return r; 1841 } 1842 1843 1844 /* Work out RMLS (real mode limit selector) field value for a given RMA size. 1845 Assumes POWER7 or PPC970. */ 1846 static inline int lpcr_rmls(unsigned long rma_size) 1847 { 1848 switch (rma_size) { 1849 case 32ul << 20: /* 32 MB */ 1850 if (cpu_has_feature(CPU_FTR_ARCH_206)) 1851 return 8; /* only supported on POWER7 */ 1852 return -1; 1853 case 64ul << 20: /* 64 MB */ 1854 return 3; 1855 case 128ul << 20: /* 128 MB */ 1856 return 7; 1857 case 256ul << 20: /* 256 MB */ 1858 return 4; 1859 case 1ul << 30: /* 1 GB */ 1860 return 2; 1861 case 16ul << 30: /* 16 GB */ 1862 return 1; 1863 case 256ul << 30: /* 256 GB */ 1864 return 0; 1865 default: 1866 return -1; 1867 } 1868 } 1869 1870 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1871 { 1872 struct page *page; 1873 struct kvm_rma_info *ri = vma->vm_file->private_data; 1874 1875 if (vmf->pgoff >= kvm_rma_pages) 1876 return VM_FAULT_SIGBUS; 1877 1878 page = pfn_to_page(ri->base_pfn + vmf->pgoff); 1879 get_page(page); 1880 vmf->page = page; 1881 return 0; 1882 } 1883 1884 static const struct vm_operations_struct kvm_rma_vm_ops = { 1885 .fault = kvm_rma_fault, 1886 }; 1887 1888 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma) 1889 { 1890 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 1891 vma->vm_ops = &kvm_rma_vm_ops; 1892 return 0; 1893 } 1894 1895 static int kvm_rma_release(struct inode *inode, struct file *filp) 1896 { 1897 struct kvm_rma_info *ri = filp->private_data; 1898 1899 kvm_release_rma(ri); 1900 return 0; 1901 } 1902 1903 static const struct file_operations kvm_rma_fops = { 1904 .mmap = kvm_rma_mmap, 1905 .release = kvm_rma_release, 1906 }; 1907 1908 static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, 1909 struct kvm_allocate_rma *ret) 1910 { 1911 long fd; 1912 struct kvm_rma_info *ri; 1913 /* 1914 * Only do this on PPC970 in HV mode 1915 */ 1916 if (!cpu_has_feature(CPU_FTR_HVMODE) || 1917 !cpu_has_feature(CPU_FTR_ARCH_201)) 1918 return -EINVAL; 1919 1920 if (!kvm_rma_pages) 1921 return -EINVAL; 1922 1923 ri = kvm_alloc_rma(); 1924 if (!ri) 1925 return -ENOMEM; 1926 1927 fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC); 1928 if (fd < 0) 1929 kvm_release_rma(ri); 1930 1931 ret->rma_size = kvm_rma_pages << PAGE_SHIFT; 1932 return fd; 1933 } 1934 1935 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 1936 int linux_psize) 1937 { 1938 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 1939 1940 if (!def->shift) 1941 return; 1942 (*sps)->page_shift = def->shift; 1943 (*sps)->slb_enc = def->sllp; 1944 (*sps)->enc[0].page_shift = def->shift; 1945 /* 1946 * Only return base page encoding. We don't want to return 1947 * all the supporting pte_enc, because our H_ENTER doesn't 1948 * support MPSS yet. Once they do, we can start passing all 1949 * support pte_enc here 1950 */ 1951 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 1952 (*sps)++; 1953 } 1954 1955 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 1956 struct kvm_ppc_smmu_info *info) 1957 { 1958 struct kvm_ppc_one_seg_page_size *sps; 1959 1960 info->flags = KVM_PPC_PAGE_SIZES_REAL; 1961 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1962 info->flags |= KVM_PPC_1T_SEGMENTS; 1963 info->slb_size = mmu_slb_size; 1964 1965 /* We only support these sizes for now, and no muti-size segments */ 1966 sps = &info->sps[0]; 1967 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 1968 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 1969 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 1970 1971 return 0; 1972 } 1973 1974 /* 1975 * Get (and clear) the dirty memory log for a memory slot. 1976 */ 1977 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 1978 struct kvm_dirty_log *log) 1979 { 1980 struct kvm_memory_slot *memslot; 1981 int r; 1982 unsigned long n; 1983 1984 mutex_lock(&kvm->slots_lock); 1985 1986 r = -EINVAL; 1987 if (log->slot >= KVM_USER_MEM_SLOTS) 1988 goto out; 1989 1990 memslot = id_to_memslot(kvm->memslots, log->slot); 1991 r = -ENOENT; 1992 if (!memslot->dirty_bitmap) 1993 goto out; 1994 1995 n = kvm_dirty_bitmap_bytes(memslot); 1996 memset(memslot->dirty_bitmap, 0, n); 1997 1998 r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap); 1999 if (r) 2000 goto out; 2001 2002 r = -EFAULT; 2003 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 2004 goto out; 2005 2006 r = 0; 2007 out: 2008 mutex_unlock(&kvm->slots_lock); 2009 return r; 2010 } 2011 2012 static void unpin_slot(struct kvm_memory_slot *memslot) 2013 { 2014 unsigned long *physp; 2015 unsigned long j, npages, pfn; 2016 struct page *page; 2017 2018 physp = memslot->arch.slot_phys; 2019 npages = memslot->npages; 2020 if (!physp) 2021 return; 2022 for (j = 0; j < npages; j++) { 2023 if (!(physp[j] & KVMPPC_GOT_PAGE)) 2024 continue; 2025 pfn = physp[j] >> PAGE_SHIFT; 2026 page = pfn_to_page(pfn); 2027 SetPageDirty(page); 2028 put_page(page); 2029 } 2030 } 2031 2032 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 2033 struct kvm_memory_slot *dont) 2034 { 2035 if (!dont || free->arch.rmap != dont->arch.rmap) { 2036 vfree(free->arch.rmap); 2037 free->arch.rmap = NULL; 2038 } 2039 if (!dont || free->arch.slot_phys != dont->arch.slot_phys) { 2040 unpin_slot(free); 2041 vfree(free->arch.slot_phys); 2042 free->arch.slot_phys = NULL; 2043 } 2044 } 2045 2046 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 2047 unsigned long npages) 2048 { 2049 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 2050 if (!slot->arch.rmap) 2051 return -ENOMEM; 2052 slot->arch.slot_phys = NULL; 2053 2054 return 0; 2055 } 2056 2057 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 2058 struct kvm_memory_slot *memslot, 2059 struct kvm_userspace_memory_region *mem) 2060 { 2061 unsigned long *phys; 2062 2063 /* Allocate a slot_phys array if needed */ 2064 phys = memslot->arch.slot_phys; 2065 if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) { 2066 phys = vzalloc(memslot->npages * sizeof(unsigned long)); 2067 if (!phys) 2068 return -ENOMEM; 2069 memslot->arch.slot_phys = phys; 2070 } 2071 2072 return 0; 2073 } 2074 2075 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 2076 struct kvm_userspace_memory_region *mem, 2077 const struct kvm_memory_slot *old) 2078 { 2079 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 2080 struct kvm_memory_slot *memslot; 2081 2082 if (npages && old->npages) { 2083 /* 2084 * If modifying a memslot, reset all the rmap dirty bits. 2085 * If this is a new memslot, we don't need to do anything 2086 * since the rmap array starts out as all zeroes, 2087 * i.e. no pages are dirty. 2088 */ 2089 memslot = id_to_memslot(kvm->memslots, mem->slot); 2090 kvmppc_hv_get_dirty_log(kvm, memslot, NULL); 2091 } 2092 } 2093 2094 /* 2095 * Update LPCR values in kvm->arch and in vcores. 2096 * Caller must hold kvm->lock. 2097 */ 2098 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 2099 { 2100 long int i; 2101 u32 cores_done = 0; 2102 2103 if ((kvm->arch.lpcr & mask) == lpcr) 2104 return; 2105 2106 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 2107 2108 for (i = 0; i < KVM_MAX_VCORES; ++i) { 2109 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 2110 if (!vc) 2111 continue; 2112 spin_lock(&vc->lock); 2113 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 2114 spin_unlock(&vc->lock); 2115 if (++cores_done >= kvm->arch.online_vcores) 2116 break; 2117 } 2118 } 2119 2120 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 2121 { 2122 return; 2123 } 2124 2125 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 2126 { 2127 int err = 0; 2128 struct kvm *kvm = vcpu->kvm; 2129 struct kvm_rma_info *ri = NULL; 2130 unsigned long hva; 2131 struct kvm_memory_slot *memslot; 2132 struct vm_area_struct *vma; 2133 unsigned long lpcr = 0, senc; 2134 unsigned long lpcr_mask = 0; 2135 unsigned long psize, porder; 2136 unsigned long rma_size; 2137 unsigned long rmls; 2138 unsigned long *physp; 2139 unsigned long i, npages; 2140 int srcu_idx; 2141 2142 mutex_lock(&kvm->lock); 2143 if (kvm->arch.rma_setup_done) 2144 goto out; /* another vcpu beat us to it */ 2145 2146 /* Allocate hashed page table (if not done already) and reset it */ 2147 if (!kvm->arch.hpt_virt) { 2148 err = kvmppc_alloc_hpt(kvm, NULL); 2149 if (err) { 2150 pr_err("KVM: Couldn't alloc HPT\n"); 2151 goto out; 2152 } 2153 } 2154 2155 /* Look up the memslot for guest physical address 0 */ 2156 srcu_idx = srcu_read_lock(&kvm->srcu); 2157 memslot = gfn_to_memslot(kvm, 0); 2158 2159 /* We must have some memory at 0 by now */ 2160 err = -EINVAL; 2161 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 2162 goto out_srcu; 2163 2164 /* Look up the VMA for the start of this memory slot */ 2165 hva = memslot->userspace_addr; 2166 down_read(¤t->mm->mmap_sem); 2167 vma = find_vma(current->mm, hva); 2168 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 2169 goto up_out; 2170 2171 psize = vma_kernel_pagesize(vma); 2172 porder = __ilog2(psize); 2173 2174 /* Is this one of our preallocated RMAs? */ 2175 if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops && 2176 hva == vma->vm_start) 2177 ri = vma->vm_file->private_data; 2178 2179 up_read(¤t->mm->mmap_sem); 2180 2181 if (!ri) { 2182 /* On POWER7, use VRMA; on PPC970, give up */ 2183 err = -EPERM; 2184 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 2185 pr_err("KVM: CPU requires an RMO\n"); 2186 goto out_srcu; 2187 } 2188 2189 /* We can handle 4k, 64k or 16M pages in the VRMA */ 2190 err = -EINVAL; 2191 if (!(psize == 0x1000 || psize == 0x10000 || 2192 psize == 0x1000000)) 2193 goto out_srcu; 2194 2195 /* Update VRMASD field in the LPCR */ 2196 senc = slb_pgsize_encoding(psize); 2197 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 2198 (VRMA_VSID << SLB_VSID_SHIFT_1T); 2199 lpcr_mask = LPCR_VRMASD; 2200 /* the -4 is to account for senc values starting at 0x10 */ 2201 lpcr = senc << (LPCR_VRMASD_SH - 4); 2202 2203 /* Create HPTEs in the hash page table for the VRMA */ 2204 kvmppc_map_vrma(vcpu, memslot, porder); 2205 2206 } else { 2207 /* Set up to use an RMO region */ 2208 rma_size = kvm_rma_pages; 2209 if (rma_size > memslot->npages) 2210 rma_size = memslot->npages; 2211 rma_size <<= PAGE_SHIFT; 2212 rmls = lpcr_rmls(rma_size); 2213 err = -EINVAL; 2214 if ((long)rmls < 0) { 2215 pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size); 2216 goto out_srcu; 2217 } 2218 atomic_inc(&ri->use_count); 2219 kvm->arch.rma = ri; 2220 2221 /* Update LPCR and RMOR */ 2222 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 2223 /* PPC970; insert RMLS value (split field) in HID4 */ 2224 lpcr_mask = (1ul << HID4_RMLS0_SH) | 2225 (3ul << HID4_RMLS2_SH) | HID4_RMOR; 2226 lpcr = ((rmls >> 2) << HID4_RMLS0_SH) | 2227 ((rmls & 3) << HID4_RMLS2_SH); 2228 /* RMOR is also in HID4 */ 2229 lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff) 2230 << HID4_RMOR_SH; 2231 } else { 2232 /* POWER7 */ 2233 lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS; 2234 lpcr = rmls << LPCR_RMLS_SH; 2235 kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT; 2236 } 2237 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n", 2238 ri->base_pfn << PAGE_SHIFT, rma_size, lpcr); 2239 2240 /* Initialize phys addrs of pages in RMO */ 2241 npages = kvm_rma_pages; 2242 porder = __ilog2(npages); 2243 physp = memslot->arch.slot_phys; 2244 if (physp) { 2245 if (npages > memslot->npages) 2246 npages = memslot->npages; 2247 spin_lock(&kvm->arch.slot_phys_lock); 2248 for (i = 0; i < npages; ++i) 2249 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) + 2250 porder; 2251 spin_unlock(&kvm->arch.slot_phys_lock); 2252 } 2253 } 2254 2255 kvmppc_update_lpcr(kvm, lpcr, lpcr_mask); 2256 2257 /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */ 2258 smp_wmb(); 2259 kvm->arch.rma_setup_done = 1; 2260 err = 0; 2261 out_srcu: 2262 srcu_read_unlock(&kvm->srcu, srcu_idx); 2263 out: 2264 mutex_unlock(&kvm->lock); 2265 return err; 2266 2267 up_out: 2268 up_read(¤t->mm->mmap_sem); 2269 goto out_srcu; 2270 } 2271 2272 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 2273 { 2274 unsigned long lpcr, lpid; 2275 2276 /* Allocate the guest's logical partition ID */ 2277 2278 lpid = kvmppc_alloc_lpid(); 2279 if ((long)lpid < 0) 2280 return -ENOMEM; 2281 kvm->arch.lpid = lpid; 2282 2283 /* 2284 * Since we don't flush the TLB when tearing down a VM, 2285 * and this lpid might have previously been used, 2286 * make sure we flush on each core before running the new VM. 2287 */ 2288 cpumask_setall(&kvm->arch.need_tlb_flush); 2289 2290 kvm->arch.rma = NULL; 2291 2292 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 2293 2294 if (cpu_has_feature(CPU_FTR_ARCH_201)) { 2295 /* PPC970; HID4 is effectively the LPCR */ 2296 kvm->arch.host_lpid = 0; 2297 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4); 2298 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH)); 2299 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) | 2300 ((lpid & 0xf) << HID4_LPID5_SH); 2301 } else { 2302 /* POWER7; init LPCR for virtual RMA mode */ 2303 kvm->arch.host_lpid = mfspr(SPRN_LPID); 2304 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 2305 lpcr &= LPCR_PECE | LPCR_LPES; 2306 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 2307 LPCR_VPM0 | LPCR_VPM1; 2308 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 2309 (VRMA_VSID << SLB_VSID_SHIFT_1T); 2310 /* On POWER8 turn on online bit to enable PURR/SPURR */ 2311 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 2312 lpcr |= LPCR_ONL; 2313 } 2314 kvm->arch.lpcr = lpcr; 2315 2316 kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206); 2317 spin_lock_init(&kvm->arch.slot_phys_lock); 2318 2319 /* 2320 * Don't allow secondary CPU threads to come online 2321 * while any KVM VMs exist. 2322 */ 2323 inhibit_secondary_onlining(); 2324 2325 return 0; 2326 } 2327 2328 static void kvmppc_free_vcores(struct kvm *kvm) 2329 { 2330 long int i; 2331 2332 for (i = 0; i < KVM_MAX_VCORES; ++i) 2333 kfree(kvm->arch.vcores[i]); 2334 kvm->arch.online_vcores = 0; 2335 } 2336 2337 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 2338 { 2339 uninhibit_secondary_onlining(); 2340 2341 kvmppc_free_vcores(kvm); 2342 if (kvm->arch.rma) { 2343 kvm_release_rma(kvm->arch.rma); 2344 kvm->arch.rma = NULL; 2345 } 2346 2347 kvmppc_free_hpt(kvm); 2348 } 2349 2350 /* We don't need to emulate any privileged instructions or dcbz */ 2351 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 2352 unsigned int inst, int *advance) 2353 { 2354 return EMULATE_FAIL; 2355 } 2356 2357 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 2358 ulong spr_val) 2359 { 2360 return EMULATE_FAIL; 2361 } 2362 2363 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 2364 ulong *spr_val) 2365 { 2366 return EMULATE_FAIL; 2367 } 2368 2369 static int kvmppc_core_check_processor_compat_hv(void) 2370 { 2371 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2372 return -EIO; 2373 return 0; 2374 } 2375 2376 static long kvm_arch_vm_ioctl_hv(struct file *filp, 2377 unsigned int ioctl, unsigned long arg) 2378 { 2379 struct kvm *kvm __maybe_unused = filp->private_data; 2380 void __user *argp = (void __user *)arg; 2381 long r; 2382 2383 switch (ioctl) { 2384 2385 case KVM_ALLOCATE_RMA: { 2386 struct kvm_allocate_rma rma; 2387 struct kvm *kvm = filp->private_data; 2388 2389 r = kvm_vm_ioctl_allocate_rma(kvm, &rma); 2390 if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma))) 2391 r = -EFAULT; 2392 break; 2393 } 2394 2395 case KVM_PPC_ALLOCATE_HTAB: { 2396 u32 htab_order; 2397 2398 r = -EFAULT; 2399 if (get_user(htab_order, (u32 __user *)argp)) 2400 break; 2401 r = kvmppc_alloc_reset_hpt(kvm, &htab_order); 2402 if (r) 2403 break; 2404 r = -EFAULT; 2405 if (put_user(htab_order, (u32 __user *)argp)) 2406 break; 2407 r = 0; 2408 break; 2409 } 2410 2411 case KVM_PPC_GET_HTAB_FD: { 2412 struct kvm_get_htab_fd ghf; 2413 2414 r = -EFAULT; 2415 if (copy_from_user(&ghf, argp, sizeof(ghf))) 2416 break; 2417 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 2418 break; 2419 } 2420 2421 default: 2422 r = -ENOTTY; 2423 } 2424 2425 return r; 2426 } 2427 2428 static struct kvmppc_ops kvm_ops_hv = { 2429 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 2430 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 2431 .get_one_reg = kvmppc_get_one_reg_hv, 2432 .set_one_reg = kvmppc_set_one_reg_hv, 2433 .vcpu_load = kvmppc_core_vcpu_load_hv, 2434 .vcpu_put = kvmppc_core_vcpu_put_hv, 2435 .set_msr = kvmppc_set_msr_hv, 2436 .vcpu_run = kvmppc_vcpu_run_hv, 2437 .vcpu_create = kvmppc_core_vcpu_create_hv, 2438 .vcpu_free = kvmppc_core_vcpu_free_hv, 2439 .check_requests = kvmppc_core_check_requests_hv, 2440 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 2441 .flush_memslot = kvmppc_core_flush_memslot_hv, 2442 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 2443 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 2444 .unmap_hva = kvm_unmap_hva_hv, 2445 .unmap_hva_range = kvm_unmap_hva_range_hv, 2446 .age_hva = kvm_age_hva_hv, 2447 .test_age_hva = kvm_test_age_hva_hv, 2448 .set_spte_hva = kvm_set_spte_hva_hv, 2449 .mmu_destroy = kvmppc_mmu_destroy_hv, 2450 .free_memslot = kvmppc_core_free_memslot_hv, 2451 .create_memslot = kvmppc_core_create_memslot_hv, 2452 .init_vm = kvmppc_core_init_vm_hv, 2453 .destroy_vm = kvmppc_core_destroy_vm_hv, 2454 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 2455 .emulate_op = kvmppc_core_emulate_op_hv, 2456 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 2457 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 2458 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 2459 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 2460 }; 2461 2462 static int kvmppc_book3s_init_hv(void) 2463 { 2464 int r; 2465 /* 2466 * FIXME!! Do we need to check on all cpus ? 2467 */ 2468 r = kvmppc_core_check_processor_compat_hv(); 2469 if (r < 0) 2470 return -ENODEV; 2471 2472 kvm_ops_hv.owner = THIS_MODULE; 2473 kvmppc_hv_ops = &kvm_ops_hv; 2474 2475 r = kvmppc_mmu_hv_init(); 2476 return r; 2477 } 2478 2479 static void kvmppc_book3s_exit_hv(void) 2480 { 2481 kvmppc_hv_ops = NULL; 2482 } 2483 2484 module_init(kvmppc_book3s_init_hv); 2485 module_exit(kvmppc_book3s_exit_hv); 2486 MODULE_LICENSE("GPL"); 2487 MODULE_ALIAS_MISCDEV(KVM_MINOR); 2488 MODULE_ALIAS("devname:kvm"); 2489