1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/err.h> 23 #include <linux/slab.h> 24 #include <linux/preempt.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/stat.h> 27 #include <linux/delay.h> 28 #include <linux/export.h> 29 #include <linux/fs.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/cpu.h> 32 #include <linux/cpumask.h> 33 #include <linux/spinlock.h> 34 #include <linux/page-flags.h> 35 #include <linux/srcu.h> 36 #include <linux/miscdevice.h> 37 #include <linux/debugfs.h> 38 #include <linux/gfp.h> 39 #include <linux/vmalloc.h> 40 #include <linux/highmem.h> 41 #include <linux/hugetlb.h> 42 #include <linux/kvm_irqfd.h> 43 #include <linux/irqbypass.h> 44 #include <linux/module.h> 45 #include <linux/compiler.h> 46 #include <linux/of.h> 47 48 #include <asm/reg.h> 49 #include <asm/ppc-opcode.h> 50 #include <asm/disassemble.h> 51 #include <asm/cputable.h> 52 #include <asm/cacheflush.h> 53 #include <asm/tlbflush.h> 54 #include <linux/uaccess.h> 55 #include <asm/io.h> 56 #include <asm/kvm_ppc.h> 57 #include <asm/kvm_book3s.h> 58 #include <asm/mmu_context.h> 59 #include <asm/lppaca.h> 60 #include <asm/processor.h> 61 #include <asm/cputhreads.h> 62 #include <asm/page.h> 63 #include <asm/hvcall.h> 64 #include <asm/switch_to.h> 65 #include <asm/smp.h> 66 #include <asm/dbell.h> 67 #include <asm/hmi.h> 68 #include <asm/pnv-pci.h> 69 #include <asm/mmu.h> 70 #include <asm/opal.h> 71 #include <asm/xics.h> 72 #include <asm/xive.h> 73 74 #include "book3s.h" 75 76 #define CREATE_TRACE_POINTS 77 #include "trace_hv.h" 78 79 /* #define EXIT_DEBUG */ 80 /* #define EXIT_DEBUG_SIMPLE */ 81 /* #define EXIT_DEBUG_INT */ 82 83 /* Used to indicate that a guest page fault needs to be handled */ 84 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 85 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 86 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 87 88 /* Used as a "null" value for timebase values */ 89 #define TB_NIL (~(u64)0) 90 91 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 92 93 static int dynamic_mt_modes = 6; 94 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR); 95 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 96 static int target_smt_mode; 97 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR); 98 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 99 100 #ifdef CONFIG_KVM_XICS 101 static struct kernel_param_ops module_param_ops = { 102 .set = param_set_int, 103 .get = param_get_int, 104 }; 105 106 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 107 S_IRUGO | S_IWUSR); 108 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 109 110 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 111 S_IRUGO | S_IWUSR); 112 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 113 #endif 114 115 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 116 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 117 118 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 119 int *ip) 120 { 121 int i = *ip; 122 struct kvm_vcpu *vcpu; 123 124 while (++i < MAX_SMT_THREADS) { 125 vcpu = READ_ONCE(vc->runnable_threads[i]); 126 if (vcpu) { 127 *ip = i; 128 return vcpu; 129 } 130 } 131 return NULL; 132 } 133 134 /* Used to traverse the list of runnable threads for a given vcore */ 135 #define for_each_runnable_thread(i, vcpu, vc) \ 136 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 137 138 static bool kvmppc_ipi_thread(int cpu) 139 { 140 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 141 142 /* On POWER9 we can use msgsnd to IPI any cpu */ 143 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 144 msg |= get_hard_smp_processor_id(cpu); 145 smp_mb(); 146 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 147 return true; 148 } 149 150 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 151 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 152 preempt_disable(); 153 if (cpu_first_thread_sibling(cpu) == 154 cpu_first_thread_sibling(smp_processor_id())) { 155 msg |= cpu_thread_in_core(cpu); 156 smp_mb(); 157 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 158 preempt_enable(); 159 return true; 160 } 161 preempt_enable(); 162 } 163 164 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 165 if (cpu >= 0 && cpu < nr_cpu_ids) { 166 if (paca[cpu].kvm_hstate.xics_phys) { 167 xics_wake_cpu(cpu); 168 return true; 169 } 170 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 171 return true; 172 } 173 #endif 174 175 return false; 176 } 177 178 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 179 { 180 int cpu; 181 struct swait_queue_head *wqp; 182 183 wqp = kvm_arch_vcpu_wq(vcpu); 184 if (swq_has_sleeper(wqp)) { 185 swake_up(wqp); 186 ++vcpu->stat.halt_wakeup; 187 } 188 189 cpu = READ_ONCE(vcpu->arch.thread_cpu); 190 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 191 return; 192 193 /* CPU points to the first thread of the core */ 194 cpu = vcpu->cpu; 195 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 196 smp_send_reschedule(cpu); 197 } 198 199 /* 200 * We use the vcpu_load/put functions to measure stolen time. 201 * Stolen time is counted as time when either the vcpu is able to 202 * run as part of a virtual core, but the task running the vcore 203 * is preempted or sleeping, or when the vcpu needs something done 204 * in the kernel by the task running the vcpu, but that task is 205 * preempted or sleeping. Those two things have to be counted 206 * separately, since one of the vcpu tasks will take on the job 207 * of running the core, and the other vcpu tasks in the vcore will 208 * sleep waiting for it to do that, but that sleep shouldn't count 209 * as stolen time. 210 * 211 * Hence we accumulate stolen time when the vcpu can run as part of 212 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 213 * needs its task to do other things in the kernel (for example, 214 * service a page fault) in busy_stolen. We don't accumulate 215 * stolen time for a vcore when it is inactive, or for a vcpu 216 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 217 * a misnomer; it means that the vcpu task is not executing in 218 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 219 * the kernel. We don't have any way of dividing up that time 220 * between time that the vcpu is genuinely stopped, time that 221 * the task is actively working on behalf of the vcpu, and time 222 * that the task is preempted, so we don't count any of it as 223 * stolen. 224 * 225 * Updates to busy_stolen are protected by arch.tbacct_lock; 226 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 227 * lock. The stolen times are measured in units of timebase ticks. 228 * (Note that the != TB_NIL checks below are purely defensive; 229 * they should never fail.) 230 */ 231 232 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 233 { 234 unsigned long flags; 235 236 spin_lock_irqsave(&vc->stoltb_lock, flags); 237 vc->preempt_tb = mftb(); 238 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 239 } 240 241 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 242 { 243 unsigned long flags; 244 245 spin_lock_irqsave(&vc->stoltb_lock, flags); 246 if (vc->preempt_tb != TB_NIL) { 247 vc->stolen_tb += mftb() - vc->preempt_tb; 248 vc->preempt_tb = TB_NIL; 249 } 250 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 251 } 252 253 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 254 { 255 struct kvmppc_vcore *vc = vcpu->arch.vcore; 256 unsigned long flags; 257 258 /* 259 * We can test vc->runner without taking the vcore lock, 260 * because only this task ever sets vc->runner to this 261 * vcpu, and once it is set to this vcpu, only this task 262 * ever sets it to NULL. 263 */ 264 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 265 kvmppc_core_end_stolen(vc); 266 267 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 268 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 269 vcpu->arch.busy_preempt != TB_NIL) { 270 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 271 vcpu->arch.busy_preempt = TB_NIL; 272 } 273 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 274 } 275 276 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 277 { 278 struct kvmppc_vcore *vc = vcpu->arch.vcore; 279 unsigned long flags; 280 281 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 282 kvmppc_core_start_stolen(vc); 283 284 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 285 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 286 vcpu->arch.busy_preempt = mftb(); 287 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 288 } 289 290 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 291 { 292 /* 293 * Check for illegal transactional state bit combination 294 * and if we find it, force the TS field to a safe state. 295 */ 296 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 297 msr &= ~MSR_TS_MASK; 298 vcpu->arch.shregs.msr = msr; 299 kvmppc_end_cede(vcpu); 300 } 301 302 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 303 { 304 vcpu->arch.pvr = pvr; 305 } 306 307 /* Dummy value used in computing PCR value below */ 308 #define PCR_ARCH_300 (PCR_ARCH_207 << 1) 309 310 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 311 { 312 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 313 struct kvmppc_vcore *vc = vcpu->arch.vcore; 314 315 /* We can (emulate) our own architecture version and anything older */ 316 if (cpu_has_feature(CPU_FTR_ARCH_300)) 317 host_pcr_bit = PCR_ARCH_300; 318 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 319 host_pcr_bit = PCR_ARCH_207; 320 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 321 host_pcr_bit = PCR_ARCH_206; 322 else 323 host_pcr_bit = PCR_ARCH_205; 324 325 /* Determine lowest PCR bit needed to run guest in given PVR level */ 326 guest_pcr_bit = host_pcr_bit; 327 if (arch_compat) { 328 switch (arch_compat) { 329 case PVR_ARCH_205: 330 guest_pcr_bit = PCR_ARCH_205; 331 break; 332 case PVR_ARCH_206: 333 case PVR_ARCH_206p: 334 guest_pcr_bit = PCR_ARCH_206; 335 break; 336 case PVR_ARCH_207: 337 guest_pcr_bit = PCR_ARCH_207; 338 break; 339 case PVR_ARCH_300: 340 guest_pcr_bit = PCR_ARCH_300; 341 break; 342 default: 343 return -EINVAL; 344 } 345 } 346 347 /* Check requested PCR bits don't exceed our capabilities */ 348 if (guest_pcr_bit > host_pcr_bit) 349 return -EINVAL; 350 351 spin_lock(&vc->lock); 352 vc->arch_compat = arch_compat; 353 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */ 354 vc->pcr = host_pcr_bit - guest_pcr_bit; 355 spin_unlock(&vc->lock); 356 357 return 0; 358 } 359 360 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 361 { 362 int r; 363 364 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 365 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 366 vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap); 367 for (r = 0; r < 16; ++r) 368 pr_err("r%2d = %.16lx r%d = %.16lx\n", 369 r, kvmppc_get_gpr(vcpu, r), 370 r+16, kvmppc_get_gpr(vcpu, r+16)); 371 pr_err("ctr = %.16lx lr = %.16lx\n", 372 vcpu->arch.ctr, vcpu->arch.lr); 373 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 374 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 375 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 376 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 377 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 378 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 379 pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n", 380 vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr); 381 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 382 pr_err("fault dar = %.16lx dsisr = %.8x\n", 383 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 384 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 385 for (r = 0; r < vcpu->arch.slb_max; ++r) 386 pr_err(" ESID = %.16llx VSID = %.16llx\n", 387 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 388 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 389 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 390 vcpu->arch.last_inst); 391 } 392 393 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 394 { 395 struct kvm_vcpu *ret; 396 397 mutex_lock(&kvm->lock); 398 ret = kvm_get_vcpu_by_id(kvm, id); 399 mutex_unlock(&kvm->lock); 400 return ret; 401 } 402 403 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 404 { 405 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 406 vpa->yield_count = cpu_to_be32(1); 407 } 408 409 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 410 unsigned long addr, unsigned long len) 411 { 412 /* check address is cacheline aligned */ 413 if (addr & (L1_CACHE_BYTES - 1)) 414 return -EINVAL; 415 spin_lock(&vcpu->arch.vpa_update_lock); 416 if (v->next_gpa != addr || v->len != len) { 417 v->next_gpa = addr; 418 v->len = addr ? len : 0; 419 v->update_pending = 1; 420 } 421 spin_unlock(&vcpu->arch.vpa_update_lock); 422 return 0; 423 } 424 425 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 426 struct reg_vpa { 427 u32 dummy; 428 union { 429 __be16 hword; 430 __be32 word; 431 } length; 432 }; 433 434 static int vpa_is_registered(struct kvmppc_vpa *vpap) 435 { 436 if (vpap->update_pending) 437 return vpap->next_gpa != 0; 438 return vpap->pinned_addr != NULL; 439 } 440 441 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 442 unsigned long flags, 443 unsigned long vcpuid, unsigned long vpa) 444 { 445 struct kvm *kvm = vcpu->kvm; 446 unsigned long len, nb; 447 void *va; 448 struct kvm_vcpu *tvcpu; 449 int err; 450 int subfunc; 451 struct kvmppc_vpa *vpap; 452 453 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 454 if (!tvcpu) 455 return H_PARAMETER; 456 457 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 458 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 459 subfunc == H_VPA_REG_SLB) { 460 /* Registering new area - address must be cache-line aligned */ 461 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 462 return H_PARAMETER; 463 464 /* convert logical addr to kernel addr and read length */ 465 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 466 if (va == NULL) 467 return H_PARAMETER; 468 if (subfunc == H_VPA_REG_VPA) 469 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 470 else 471 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 472 kvmppc_unpin_guest_page(kvm, va, vpa, false); 473 474 /* Check length */ 475 if (len > nb || len < sizeof(struct reg_vpa)) 476 return H_PARAMETER; 477 } else { 478 vpa = 0; 479 len = 0; 480 } 481 482 err = H_PARAMETER; 483 vpap = NULL; 484 spin_lock(&tvcpu->arch.vpa_update_lock); 485 486 switch (subfunc) { 487 case H_VPA_REG_VPA: /* register VPA */ 488 /* 489 * The size of our lppaca is 1kB because of the way we align 490 * it for the guest to avoid crossing a 4kB boundary. We only 491 * use 640 bytes of the structure though, so we should accept 492 * clients that set a size of 640. 493 */ 494 if (len < 640) 495 break; 496 vpap = &tvcpu->arch.vpa; 497 err = 0; 498 break; 499 500 case H_VPA_REG_DTL: /* register DTL */ 501 if (len < sizeof(struct dtl_entry)) 502 break; 503 len -= len % sizeof(struct dtl_entry); 504 505 /* Check that they have previously registered a VPA */ 506 err = H_RESOURCE; 507 if (!vpa_is_registered(&tvcpu->arch.vpa)) 508 break; 509 510 vpap = &tvcpu->arch.dtl; 511 err = 0; 512 break; 513 514 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 515 /* Check that they have previously registered a VPA */ 516 err = H_RESOURCE; 517 if (!vpa_is_registered(&tvcpu->arch.vpa)) 518 break; 519 520 vpap = &tvcpu->arch.slb_shadow; 521 err = 0; 522 break; 523 524 case H_VPA_DEREG_VPA: /* deregister VPA */ 525 /* Check they don't still have a DTL or SLB buf registered */ 526 err = H_RESOURCE; 527 if (vpa_is_registered(&tvcpu->arch.dtl) || 528 vpa_is_registered(&tvcpu->arch.slb_shadow)) 529 break; 530 531 vpap = &tvcpu->arch.vpa; 532 err = 0; 533 break; 534 535 case H_VPA_DEREG_DTL: /* deregister DTL */ 536 vpap = &tvcpu->arch.dtl; 537 err = 0; 538 break; 539 540 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 541 vpap = &tvcpu->arch.slb_shadow; 542 err = 0; 543 break; 544 } 545 546 if (vpap) { 547 vpap->next_gpa = vpa; 548 vpap->len = len; 549 vpap->update_pending = 1; 550 } 551 552 spin_unlock(&tvcpu->arch.vpa_update_lock); 553 554 return err; 555 } 556 557 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 558 { 559 struct kvm *kvm = vcpu->kvm; 560 void *va; 561 unsigned long nb; 562 unsigned long gpa; 563 564 /* 565 * We need to pin the page pointed to by vpap->next_gpa, 566 * but we can't call kvmppc_pin_guest_page under the lock 567 * as it does get_user_pages() and down_read(). So we 568 * have to drop the lock, pin the page, then get the lock 569 * again and check that a new area didn't get registered 570 * in the meantime. 571 */ 572 for (;;) { 573 gpa = vpap->next_gpa; 574 spin_unlock(&vcpu->arch.vpa_update_lock); 575 va = NULL; 576 nb = 0; 577 if (gpa) 578 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 579 spin_lock(&vcpu->arch.vpa_update_lock); 580 if (gpa == vpap->next_gpa) 581 break; 582 /* sigh... unpin that one and try again */ 583 if (va) 584 kvmppc_unpin_guest_page(kvm, va, gpa, false); 585 } 586 587 vpap->update_pending = 0; 588 if (va && nb < vpap->len) { 589 /* 590 * If it's now too short, it must be that userspace 591 * has changed the mappings underlying guest memory, 592 * so unregister the region. 593 */ 594 kvmppc_unpin_guest_page(kvm, va, gpa, false); 595 va = NULL; 596 } 597 if (vpap->pinned_addr) 598 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 599 vpap->dirty); 600 vpap->gpa = gpa; 601 vpap->pinned_addr = va; 602 vpap->dirty = false; 603 if (va) 604 vpap->pinned_end = va + vpap->len; 605 } 606 607 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 608 { 609 if (!(vcpu->arch.vpa.update_pending || 610 vcpu->arch.slb_shadow.update_pending || 611 vcpu->arch.dtl.update_pending)) 612 return; 613 614 spin_lock(&vcpu->arch.vpa_update_lock); 615 if (vcpu->arch.vpa.update_pending) { 616 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 617 if (vcpu->arch.vpa.pinned_addr) 618 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 619 } 620 if (vcpu->arch.dtl.update_pending) { 621 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 622 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 623 vcpu->arch.dtl_index = 0; 624 } 625 if (vcpu->arch.slb_shadow.update_pending) 626 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 627 spin_unlock(&vcpu->arch.vpa_update_lock); 628 } 629 630 /* 631 * Return the accumulated stolen time for the vcore up until `now'. 632 * The caller should hold the vcore lock. 633 */ 634 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 635 { 636 u64 p; 637 unsigned long flags; 638 639 spin_lock_irqsave(&vc->stoltb_lock, flags); 640 p = vc->stolen_tb; 641 if (vc->vcore_state != VCORE_INACTIVE && 642 vc->preempt_tb != TB_NIL) 643 p += now - vc->preempt_tb; 644 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 645 return p; 646 } 647 648 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 649 struct kvmppc_vcore *vc) 650 { 651 struct dtl_entry *dt; 652 struct lppaca *vpa; 653 unsigned long stolen; 654 unsigned long core_stolen; 655 u64 now; 656 unsigned long flags; 657 658 dt = vcpu->arch.dtl_ptr; 659 vpa = vcpu->arch.vpa.pinned_addr; 660 now = mftb(); 661 core_stolen = vcore_stolen_time(vc, now); 662 stolen = core_stolen - vcpu->arch.stolen_logged; 663 vcpu->arch.stolen_logged = core_stolen; 664 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 665 stolen += vcpu->arch.busy_stolen; 666 vcpu->arch.busy_stolen = 0; 667 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 668 if (!dt || !vpa) 669 return; 670 memset(dt, 0, sizeof(struct dtl_entry)); 671 dt->dispatch_reason = 7; 672 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 673 dt->timebase = cpu_to_be64(now + vc->tb_offset); 674 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 675 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 676 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 677 ++dt; 678 if (dt == vcpu->arch.dtl.pinned_end) 679 dt = vcpu->arch.dtl.pinned_addr; 680 vcpu->arch.dtl_ptr = dt; 681 /* order writing *dt vs. writing vpa->dtl_idx */ 682 smp_wmb(); 683 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 684 vcpu->arch.dtl.dirty = true; 685 } 686 687 /* See if there is a doorbell interrupt pending for a vcpu */ 688 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 689 { 690 int thr; 691 struct kvmppc_vcore *vc; 692 693 if (vcpu->arch.doorbell_request) 694 return true; 695 /* 696 * Ensure that the read of vcore->dpdes comes after the read 697 * of vcpu->doorbell_request. This barrier matches the 698 * lwsync in book3s_hv_rmhandlers.S just before the 699 * fast_guest_return label. 700 */ 701 smp_rmb(); 702 vc = vcpu->arch.vcore; 703 thr = vcpu->vcpu_id - vc->first_vcpuid; 704 return !!(vc->dpdes & (1 << thr)); 705 } 706 707 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 708 { 709 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 710 return true; 711 if ((!vcpu->arch.vcore->arch_compat) && 712 cpu_has_feature(CPU_FTR_ARCH_207S)) 713 return true; 714 return false; 715 } 716 717 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 718 unsigned long resource, unsigned long value1, 719 unsigned long value2) 720 { 721 switch (resource) { 722 case H_SET_MODE_RESOURCE_SET_CIABR: 723 if (!kvmppc_power8_compatible(vcpu)) 724 return H_P2; 725 if (value2) 726 return H_P4; 727 if (mflags) 728 return H_UNSUPPORTED_FLAG_START; 729 /* Guests can't breakpoint the hypervisor */ 730 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 731 return H_P3; 732 vcpu->arch.ciabr = value1; 733 return H_SUCCESS; 734 case H_SET_MODE_RESOURCE_SET_DAWR: 735 if (!kvmppc_power8_compatible(vcpu)) 736 return H_P2; 737 if (mflags) 738 return H_UNSUPPORTED_FLAG_START; 739 if (value2 & DABRX_HYP) 740 return H_P4; 741 vcpu->arch.dawr = value1; 742 vcpu->arch.dawrx = value2; 743 return H_SUCCESS; 744 default: 745 return H_TOO_HARD; 746 } 747 } 748 749 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 750 { 751 struct kvmppc_vcore *vcore = target->arch.vcore; 752 753 /* 754 * We expect to have been called by the real mode handler 755 * (kvmppc_rm_h_confer()) which would have directly returned 756 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 757 * have useful work to do and should not confer) so we don't 758 * recheck that here. 759 */ 760 761 spin_lock(&vcore->lock); 762 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 763 vcore->vcore_state != VCORE_INACTIVE && 764 vcore->runner) 765 target = vcore->runner; 766 spin_unlock(&vcore->lock); 767 768 return kvm_vcpu_yield_to(target); 769 } 770 771 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 772 { 773 int yield_count = 0; 774 struct lppaca *lppaca; 775 776 spin_lock(&vcpu->arch.vpa_update_lock); 777 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 778 if (lppaca) 779 yield_count = be32_to_cpu(lppaca->yield_count); 780 spin_unlock(&vcpu->arch.vpa_update_lock); 781 return yield_count; 782 } 783 784 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 785 { 786 unsigned long req = kvmppc_get_gpr(vcpu, 3); 787 unsigned long target, ret = H_SUCCESS; 788 int yield_count; 789 struct kvm_vcpu *tvcpu; 790 int idx, rc; 791 792 if (req <= MAX_HCALL_OPCODE && 793 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 794 return RESUME_HOST; 795 796 switch (req) { 797 case H_CEDE: 798 break; 799 case H_PROD: 800 target = kvmppc_get_gpr(vcpu, 4); 801 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 802 if (!tvcpu) { 803 ret = H_PARAMETER; 804 break; 805 } 806 tvcpu->arch.prodded = 1; 807 smp_mb(); 808 if (tvcpu->arch.ceded) 809 kvmppc_fast_vcpu_kick_hv(tvcpu); 810 break; 811 case H_CONFER: 812 target = kvmppc_get_gpr(vcpu, 4); 813 if (target == -1) 814 break; 815 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 816 if (!tvcpu) { 817 ret = H_PARAMETER; 818 break; 819 } 820 yield_count = kvmppc_get_gpr(vcpu, 5); 821 if (kvmppc_get_yield_count(tvcpu) != yield_count) 822 break; 823 kvm_arch_vcpu_yield_to(tvcpu); 824 break; 825 case H_REGISTER_VPA: 826 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 827 kvmppc_get_gpr(vcpu, 5), 828 kvmppc_get_gpr(vcpu, 6)); 829 break; 830 case H_RTAS: 831 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 832 return RESUME_HOST; 833 834 idx = srcu_read_lock(&vcpu->kvm->srcu); 835 rc = kvmppc_rtas_hcall(vcpu); 836 srcu_read_unlock(&vcpu->kvm->srcu, idx); 837 838 if (rc == -ENOENT) 839 return RESUME_HOST; 840 else if (rc == 0) 841 break; 842 843 /* Send the error out to userspace via KVM_RUN */ 844 return rc; 845 case H_LOGICAL_CI_LOAD: 846 ret = kvmppc_h_logical_ci_load(vcpu); 847 if (ret == H_TOO_HARD) 848 return RESUME_HOST; 849 break; 850 case H_LOGICAL_CI_STORE: 851 ret = kvmppc_h_logical_ci_store(vcpu); 852 if (ret == H_TOO_HARD) 853 return RESUME_HOST; 854 break; 855 case H_SET_MODE: 856 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 857 kvmppc_get_gpr(vcpu, 5), 858 kvmppc_get_gpr(vcpu, 6), 859 kvmppc_get_gpr(vcpu, 7)); 860 if (ret == H_TOO_HARD) 861 return RESUME_HOST; 862 break; 863 case H_XIRR: 864 case H_CPPR: 865 case H_EOI: 866 case H_IPI: 867 case H_IPOLL: 868 case H_XIRR_X: 869 if (kvmppc_xics_enabled(vcpu)) { 870 if (xive_enabled()) { 871 ret = H_NOT_AVAILABLE; 872 return RESUME_GUEST; 873 } 874 ret = kvmppc_xics_hcall(vcpu, req); 875 break; 876 } 877 return RESUME_HOST; 878 case H_PUT_TCE: 879 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 880 kvmppc_get_gpr(vcpu, 5), 881 kvmppc_get_gpr(vcpu, 6)); 882 if (ret == H_TOO_HARD) 883 return RESUME_HOST; 884 break; 885 case H_PUT_TCE_INDIRECT: 886 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 887 kvmppc_get_gpr(vcpu, 5), 888 kvmppc_get_gpr(vcpu, 6), 889 kvmppc_get_gpr(vcpu, 7)); 890 if (ret == H_TOO_HARD) 891 return RESUME_HOST; 892 break; 893 case H_STUFF_TCE: 894 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 895 kvmppc_get_gpr(vcpu, 5), 896 kvmppc_get_gpr(vcpu, 6), 897 kvmppc_get_gpr(vcpu, 7)); 898 if (ret == H_TOO_HARD) 899 return RESUME_HOST; 900 break; 901 default: 902 return RESUME_HOST; 903 } 904 kvmppc_set_gpr(vcpu, 3, ret); 905 vcpu->arch.hcall_needed = 0; 906 return RESUME_GUEST; 907 } 908 909 static int kvmppc_hcall_impl_hv(unsigned long cmd) 910 { 911 switch (cmd) { 912 case H_CEDE: 913 case H_PROD: 914 case H_CONFER: 915 case H_REGISTER_VPA: 916 case H_SET_MODE: 917 case H_LOGICAL_CI_LOAD: 918 case H_LOGICAL_CI_STORE: 919 #ifdef CONFIG_KVM_XICS 920 case H_XIRR: 921 case H_CPPR: 922 case H_EOI: 923 case H_IPI: 924 case H_IPOLL: 925 case H_XIRR_X: 926 #endif 927 return 1; 928 } 929 930 /* See if it's in the real-mode table */ 931 return kvmppc_hcall_impl_hv_realmode(cmd); 932 } 933 934 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 935 struct kvm_vcpu *vcpu) 936 { 937 u32 last_inst; 938 939 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 940 EMULATE_DONE) { 941 /* 942 * Fetch failed, so return to guest and 943 * try executing it again. 944 */ 945 return RESUME_GUEST; 946 } 947 948 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 949 run->exit_reason = KVM_EXIT_DEBUG; 950 run->debug.arch.address = kvmppc_get_pc(vcpu); 951 return RESUME_HOST; 952 } else { 953 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 954 return RESUME_GUEST; 955 } 956 } 957 958 static void do_nothing(void *x) 959 { 960 } 961 962 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 963 { 964 int thr, cpu, pcpu, nthreads; 965 struct kvm_vcpu *v; 966 unsigned long dpdes; 967 968 nthreads = vcpu->kvm->arch.emul_smt_mode; 969 dpdes = 0; 970 cpu = vcpu->vcpu_id & ~(nthreads - 1); 971 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 972 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 973 if (!v) 974 continue; 975 /* 976 * If the vcpu is currently running on a physical cpu thread, 977 * interrupt it in order to pull it out of the guest briefly, 978 * which will update its vcore->dpdes value. 979 */ 980 pcpu = READ_ONCE(v->cpu); 981 if (pcpu >= 0) 982 smp_call_function_single(pcpu, do_nothing, NULL, 1); 983 if (kvmppc_doorbell_pending(v)) 984 dpdes |= 1 << thr; 985 } 986 return dpdes; 987 } 988 989 /* 990 * On POWER9, emulate doorbell-related instructions in order to 991 * give the guest the illusion of running on a multi-threaded core. 992 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 993 * and mfspr DPDES. 994 */ 995 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 996 { 997 u32 inst, rb, thr; 998 unsigned long arg; 999 struct kvm *kvm = vcpu->kvm; 1000 struct kvm_vcpu *tvcpu; 1001 1002 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1003 return EMULATE_FAIL; 1004 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1005 return RESUME_GUEST; 1006 if (get_op(inst) != 31) 1007 return EMULATE_FAIL; 1008 rb = get_rb(inst); 1009 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1010 switch (get_xop(inst)) { 1011 case OP_31_XOP_MSGSNDP: 1012 arg = kvmppc_get_gpr(vcpu, rb); 1013 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1014 break; 1015 arg &= 0x3f; 1016 if (arg >= kvm->arch.emul_smt_mode) 1017 break; 1018 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1019 if (!tvcpu) 1020 break; 1021 if (!tvcpu->arch.doorbell_request) { 1022 tvcpu->arch.doorbell_request = 1; 1023 kvmppc_fast_vcpu_kick_hv(tvcpu); 1024 } 1025 break; 1026 case OP_31_XOP_MSGCLRP: 1027 arg = kvmppc_get_gpr(vcpu, rb); 1028 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1029 break; 1030 vcpu->arch.vcore->dpdes = 0; 1031 vcpu->arch.doorbell_request = 0; 1032 break; 1033 case OP_31_XOP_MFSPR: 1034 switch (get_sprn(inst)) { 1035 case SPRN_TIR: 1036 arg = thr; 1037 break; 1038 case SPRN_DPDES: 1039 arg = kvmppc_read_dpdes(vcpu); 1040 break; 1041 default: 1042 return EMULATE_FAIL; 1043 } 1044 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1045 break; 1046 default: 1047 return EMULATE_FAIL; 1048 } 1049 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1050 return RESUME_GUEST; 1051 } 1052 1053 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 1054 struct task_struct *tsk) 1055 { 1056 int r = RESUME_HOST; 1057 1058 vcpu->stat.sum_exits++; 1059 1060 /* 1061 * This can happen if an interrupt occurs in the last stages 1062 * of guest entry or the first stages of guest exit (i.e. after 1063 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1064 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1065 * That can happen due to a bug, or due to a machine check 1066 * occurring at just the wrong time. 1067 */ 1068 if (vcpu->arch.shregs.msr & MSR_HV) { 1069 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1070 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1071 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1072 vcpu->arch.shregs.msr); 1073 kvmppc_dump_regs(vcpu); 1074 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1075 run->hw.hardware_exit_reason = vcpu->arch.trap; 1076 return RESUME_HOST; 1077 } 1078 run->exit_reason = KVM_EXIT_UNKNOWN; 1079 run->ready_for_interrupt_injection = 1; 1080 switch (vcpu->arch.trap) { 1081 /* We're good on these - the host merely wanted to get our attention */ 1082 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1083 vcpu->stat.dec_exits++; 1084 r = RESUME_GUEST; 1085 break; 1086 case BOOK3S_INTERRUPT_EXTERNAL: 1087 case BOOK3S_INTERRUPT_H_DOORBELL: 1088 case BOOK3S_INTERRUPT_H_VIRT: 1089 vcpu->stat.ext_intr_exits++; 1090 r = RESUME_GUEST; 1091 break; 1092 /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/ 1093 case BOOK3S_INTERRUPT_HMI: 1094 case BOOK3S_INTERRUPT_PERFMON: 1095 r = RESUME_GUEST; 1096 break; 1097 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1098 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1099 run->exit_reason = KVM_EXIT_NMI; 1100 run->hw.hardware_exit_reason = vcpu->arch.trap; 1101 /* Clear out the old NMI status from run->flags */ 1102 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1103 /* Now set the NMI status */ 1104 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1105 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1106 else 1107 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1108 1109 r = RESUME_HOST; 1110 /* Print the MCE event to host console. */ 1111 machine_check_print_event_info(&vcpu->arch.mce_evt, false); 1112 break; 1113 case BOOK3S_INTERRUPT_PROGRAM: 1114 { 1115 ulong flags; 1116 /* 1117 * Normally program interrupts are delivered directly 1118 * to the guest by the hardware, but we can get here 1119 * as a result of a hypervisor emulation interrupt 1120 * (e40) getting turned into a 700 by BML RTAS. 1121 */ 1122 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1123 kvmppc_core_queue_program(vcpu, flags); 1124 r = RESUME_GUEST; 1125 break; 1126 } 1127 case BOOK3S_INTERRUPT_SYSCALL: 1128 { 1129 /* hcall - punt to userspace */ 1130 int i; 1131 1132 /* hypercall with MSR_PR has already been handled in rmode, 1133 * and never reaches here. 1134 */ 1135 1136 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1137 for (i = 0; i < 9; ++i) 1138 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1139 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1140 vcpu->arch.hcall_needed = 1; 1141 r = RESUME_HOST; 1142 break; 1143 } 1144 /* 1145 * We get these next two if the guest accesses a page which it thinks 1146 * it has mapped but which is not actually present, either because 1147 * it is for an emulated I/O device or because the corresonding 1148 * host page has been paged out. Any other HDSI/HISI interrupts 1149 * have been handled already. 1150 */ 1151 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1152 r = RESUME_PAGE_FAULT; 1153 break; 1154 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1155 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1156 vcpu->arch.fault_dsisr = 0; 1157 r = RESUME_PAGE_FAULT; 1158 break; 1159 /* 1160 * This occurs if the guest executes an illegal instruction. 1161 * If the guest debug is disabled, generate a program interrupt 1162 * to the guest. If guest debug is enabled, we need to check 1163 * whether the instruction is a software breakpoint instruction. 1164 * Accordingly return to Guest or Host. 1165 */ 1166 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1167 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1168 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1169 swab32(vcpu->arch.emul_inst) : 1170 vcpu->arch.emul_inst; 1171 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1172 r = kvmppc_emulate_debug_inst(run, vcpu); 1173 } else { 1174 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1175 r = RESUME_GUEST; 1176 } 1177 break; 1178 /* 1179 * This occurs if the guest (kernel or userspace), does something that 1180 * is prohibited by HFSCR. 1181 * On POWER9, this could be a doorbell instruction that we need 1182 * to emulate. 1183 * Otherwise, we just generate a program interrupt to the guest. 1184 */ 1185 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1186 r = EMULATE_FAIL; 1187 if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) 1188 r = kvmppc_emulate_doorbell_instr(vcpu); 1189 if (r == EMULATE_FAIL) { 1190 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1191 r = RESUME_GUEST; 1192 } 1193 break; 1194 case BOOK3S_INTERRUPT_HV_RM_HARD: 1195 r = RESUME_PASSTHROUGH; 1196 break; 1197 default: 1198 kvmppc_dump_regs(vcpu); 1199 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1200 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1201 vcpu->arch.shregs.msr); 1202 run->hw.hardware_exit_reason = vcpu->arch.trap; 1203 r = RESUME_HOST; 1204 break; 1205 } 1206 1207 return r; 1208 } 1209 1210 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1211 struct kvm_sregs *sregs) 1212 { 1213 int i; 1214 1215 memset(sregs, 0, sizeof(struct kvm_sregs)); 1216 sregs->pvr = vcpu->arch.pvr; 1217 for (i = 0; i < vcpu->arch.slb_max; i++) { 1218 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1219 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1220 } 1221 1222 return 0; 1223 } 1224 1225 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1226 struct kvm_sregs *sregs) 1227 { 1228 int i, j; 1229 1230 /* Only accept the same PVR as the host's, since we can't spoof it */ 1231 if (sregs->pvr != vcpu->arch.pvr) 1232 return -EINVAL; 1233 1234 j = 0; 1235 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1236 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1237 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1238 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1239 ++j; 1240 } 1241 } 1242 vcpu->arch.slb_max = j; 1243 1244 return 0; 1245 } 1246 1247 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1248 bool preserve_top32) 1249 { 1250 struct kvm *kvm = vcpu->kvm; 1251 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1252 u64 mask; 1253 1254 mutex_lock(&kvm->lock); 1255 spin_lock(&vc->lock); 1256 /* 1257 * If ILE (interrupt little-endian) has changed, update the 1258 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1259 */ 1260 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1261 struct kvm_vcpu *vcpu; 1262 int i; 1263 1264 kvm_for_each_vcpu(i, vcpu, kvm) { 1265 if (vcpu->arch.vcore != vc) 1266 continue; 1267 if (new_lpcr & LPCR_ILE) 1268 vcpu->arch.intr_msr |= MSR_LE; 1269 else 1270 vcpu->arch.intr_msr &= ~MSR_LE; 1271 } 1272 } 1273 1274 /* 1275 * Userspace can only modify DPFD (default prefetch depth), 1276 * ILE (interrupt little-endian) and TC (translation control). 1277 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1278 */ 1279 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1280 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1281 mask |= LPCR_AIL; 1282 /* 1283 * On POWER9, allow userspace to enable large decrementer for the 1284 * guest, whether or not the host has it enabled. 1285 */ 1286 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1287 mask |= LPCR_LD; 1288 1289 /* Broken 32-bit version of LPCR must not clear top bits */ 1290 if (preserve_top32) 1291 mask &= 0xFFFFFFFF; 1292 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1293 spin_unlock(&vc->lock); 1294 mutex_unlock(&kvm->lock); 1295 } 1296 1297 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1298 union kvmppc_one_reg *val) 1299 { 1300 int r = 0; 1301 long int i; 1302 1303 switch (id) { 1304 case KVM_REG_PPC_DEBUG_INST: 1305 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1306 break; 1307 case KVM_REG_PPC_HIOR: 1308 *val = get_reg_val(id, 0); 1309 break; 1310 case KVM_REG_PPC_DABR: 1311 *val = get_reg_val(id, vcpu->arch.dabr); 1312 break; 1313 case KVM_REG_PPC_DABRX: 1314 *val = get_reg_val(id, vcpu->arch.dabrx); 1315 break; 1316 case KVM_REG_PPC_DSCR: 1317 *val = get_reg_val(id, vcpu->arch.dscr); 1318 break; 1319 case KVM_REG_PPC_PURR: 1320 *val = get_reg_val(id, vcpu->arch.purr); 1321 break; 1322 case KVM_REG_PPC_SPURR: 1323 *val = get_reg_val(id, vcpu->arch.spurr); 1324 break; 1325 case KVM_REG_PPC_AMR: 1326 *val = get_reg_val(id, vcpu->arch.amr); 1327 break; 1328 case KVM_REG_PPC_UAMOR: 1329 *val = get_reg_val(id, vcpu->arch.uamor); 1330 break; 1331 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1332 i = id - KVM_REG_PPC_MMCR0; 1333 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1334 break; 1335 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1336 i = id - KVM_REG_PPC_PMC1; 1337 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1338 break; 1339 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1340 i = id - KVM_REG_PPC_SPMC1; 1341 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1342 break; 1343 case KVM_REG_PPC_SIAR: 1344 *val = get_reg_val(id, vcpu->arch.siar); 1345 break; 1346 case KVM_REG_PPC_SDAR: 1347 *val = get_reg_val(id, vcpu->arch.sdar); 1348 break; 1349 case KVM_REG_PPC_SIER: 1350 *val = get_reg_val(id, vcpu->arch.sier); 1351 break; 1352 case KVM_REG_PPC_IAMR: 1353 *val = get_reg_val(id, vcpu->arch.iamr); 1354 break; 1355 case KVM_REG_PPC_PSPB: 1356 *val = get_reg_val(id, vcpu->arch.pspb); 1357 break; 1358 case KVM_REG_PPC_DPDES: 1359 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1360 break; 1361 case KVM_REG_PPC_VTB: 1362 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1363 break; 1364 case KVM_REG_PPC_DAWR: 1365 *val = get_reg_val(id, vcpu->arch.dawr); 1366 break; 1367 case KVM_REG_PPC_DAWRX: 1368 *val = get_reg_val(id, vcpu->arch.dawrx); 1369 break; 1370 case KVM_REG_PPC_CIABR: 1371 *val = get_reg_val(id, vcpu->arch.ciabr); 1372 break; 1373 case KVM_REG_PPC_CSIGR: 1374 *val = get_reg_val(id, vcpu->arch.csigr); 1375 break; 1376 case KVM_REG_PPC_TACR: 1377 *val = get_reg_val(id, vcpu->arch.tacr); 1378 break; 1379 case KVM_REG_PPC_TCSCR: 1380 *val = get_reg_val(id, vcpu->arch.tcscr); 1381 break; 1382 case KVM_REG_PPC_PID: 1383 *val = get_reg_val(id, vcpu->arch.pid); 1384 break; 1385 case KVM_REG_PPC_ACOP: 1386 *val = get_reg_val(id, vcpu->arch.acop); 1387 break; 1388 case KVM_REG_PPC_WORT: 1389 *val = get_reg_val(id, vcpu->arch.wort); 1390 break; 1391 case KVM_REG_PPC_TIDR: 1392 *val = get_reg_val(id, vcpu->arch.tid); 1393 break; 1394 case KVM_REG_PPC_PSSCR: 1395 *val = get_reg_val(id, vcpu->arch.psscr); 1396 break; 1397 case KVM_REG_PPC_VPA_ADDR: 1398 spin_lock(&vcpu->arch.vpa_update_lock); 1399 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1400 spin_unlock(&vcpu->arch.vpa_update_lock); 1401 break; 1402 case KVM_REG_PPC_VPA_SLB: 1403 spin_lock(&vcpu->arch.vpa_update_lock); 1404 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1405 val->vpaval.length = vcpu->arch.slb_shadow.len; 1406 spin_unlock(&vcpu->arch.vpa_update_lock); 1407 break; 1408 case KVM_REG_PPC_VPA_DTL: 1409 spin_lock(&vcpu->arch.vpa_update_lock); 1410 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1411 val->vpaval.length = vcpu->arch.dtl.len; 1412 spin_unlock(&vcpu->arch.vpa_update_lock); 1413 break; 1414 case KVM_REG_PPC_TB_OFFSET: 1415 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1416 break; 1417 case KVM_REG_PPC_LPCR: 1418 case KVM_REG_PPC_LPCR_64: 1419 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1420 break; 1421 case KVM_REG_PPC_PPR: 1422 *val = get_reg_val(id, vcpu->arch.ppr); 1423 break; 1424 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1425 case KVM_REG_PPC_TFHAR: 1426 *val = get_reg_val(id, vcpu->arch.tfhar); 1427 break; 1428 case KVM_REG_PPC_TFIAR: 1429 *val = get_reg_val(id, vcpu->arch.tfiar); 1430 break; 1431 case KVM_REG_PPC_TEXASR: 1432 *val = get_reg_val(id, vcpu->arch.texasr); 1433 break; 1434 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1435 i = id - KVM_REG_PPC_TM_GPR0; 1436 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1437 break; 1438 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1439 { 1440 int j; 1441 i = id - KVM_REG_PPC_TM_VSR0; 1442 if (i < 32) 1443 for (j = 0; j < TS_FPRWIDTH; j++) 1444 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1445 else { 1446 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1447 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1448 else 1449 r = -ENXIO; 1450 } 1451 break; 1452 } 1453 case KVM_REG_PPC_TM_CR: 1454 *val = get_reg_val(id, vcpu->arch.cr_tm); 1455 break; 1456 case KVM_REG_PPC_TM_XER: 1457 *val = get_reg_val(id, vcpu->arch.xer_tm); 1458 break; 1459 case KVM_REG_PPC_TM_LR: 1460 *val = get_reg_val(id, vcpu->arch.lr_tm); 1461 break; 1462 case KVM_REG_PPC_TM_CTR: 1463 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1464 break; 1465 case KVM_REG_PPC_TM_FPSCR: 1466 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1467 break; 1468 case KVM_REG_PPC_TM_AMR: 1469 *val = get_reg_val(id, vcpu->arch.amr_tm); 1470 break; 1471 case KVM_REG_PPC_TM_PPR: 1472 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1473 break; 1474 case KVM_REG_PPC_TM_VRSAVE: 1475 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1476 break; 1477 case KVM_REG_PPC_TM_VSCR: 1478 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1479 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1480 else 1481 r = -ENXIO; 1482 break; 1483 case KVM_REG_PPC_TM_DSCR: 1484 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1485 break; 1486 case KVM_REG_PPC_TM_TAR: 1487 *val = get_reg_val(id, vcpu->arch.tar_tm); 1488 break; 1489 #endif 1490 case KVM_REG_PPC_ARCH_COMPAT: 1491 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1492 break; 1493 default: 1494 r = -EINVAL; 1495 break; 1496 } 1497 1498 return r; 1499 } 1500 1501 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1502 union kvmppc_one_reg *val) 1503 { 1504 int r = 0; 1505 long int i; 1506 unsigned long addr, len; 1507 1508 switch (id) { 1509 case KVM_REG_PPC_HIOR: 1510 /* Only allow this to be set to zero */ 1511 if (set_reg_val(id, *val)) 1512 r = -EINVAL; 1513 break; 1514 case KVM_REG_PPC_DABR: 1515 vcpu->arch.dabr = set_reg_val(id, *val); 1516 break; 1517 case KVM_REG_PPC_DABRX: 1518 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1519 break; 1520 case KVM_REG_PPC_DSCR: 1521 vcpu->arch.dscr = set_reg_val(id, *val); 1522 break; 1523 case KVM_REG_PPC_PURR: 1524 vcpu->arch.purr = set_reg_val(id, *val); 1525 break; 1526 case KVM_REG_PPC_SPURR: 1527 vcpu->arch.spurr = set_reg_val(id, *val); 1528 break; 1529 case KVM_REG_PPC_AMR: 1530 vcpu->arch.amr = set_reg_val(id, *val); 1531 break; 1532 case KVM_REG_PPC_UAMOR: 1533 vcpu->arch.uamor = set_reg_val(id, *val); 1534 break; 1535 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1536 i = id - KVM_REG_PPC_MMCR0; 1537 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1538 break; 1539 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1540 i = id - KVM_REG_PPC_PMC1; 1541 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1542 break; 1543 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1544 i = id - KVM_REG_PPC_SPMC1; 1545 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1546 break; 1547 case KVM_REG_PPC_SIAR: 1548 vcpu->arch.siar = set_reg_val(id, *val); 1549 break; 1550 case KVM_REG_PPC_SDAR: 1551 vcpu->arch.sdar = set_reg_val(id, *val); 1552 break; 1553 case KVM_REG_PPC_SIER: 1554 vcpu->arch.sier = set_reg_val(id, *val); 1555 break; 1556 case KVM_REG_PPC_IAMR: 1557 vcpu->arch.iamr = set_reg_val(id, *val); 1558 break; 1559 case KVM_REG_PPC_PSPB: 1560 vcpu->arch.pspb = set_reg_val(id, *val); 1561 break; 1562 case KVM_REG_PPC_DPDES: 1563 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1564 break; 1565 case KVM_REG_PPC_VTB: 1566 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1567 break; 1568 case KVM_REG_PPC_DAWR: 1569 vcpu->arch.dawr = set_reg_val(id, *val); 1570 break; 1571 case KVM_REG_PPC_DAWRX: 1572 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1573 break; 1574 case KVM_REG_PPC_CIABR: 1575 vcpu->arch.ciabr = set_reg_val(id, *val); 1576 /* Don't allow setting breakpoints in hypervisor code */ 1577 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1578 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1579 break; 1580 case KVM_REG_PPC_CSIGR: 1581 vcpu->arch.csigr = set_reg_val(id, *val); 1582 break; 1583 case KVM_REG_PPC_TACR: 1584 vcpu->arch.tacr = set_reg_val(id, *val); 1585 break; 1586 case KVM_REG_PPC_TCSCR: 1587 vcpu->arch.tcscr = set_reg_val(id, *val); 1588 break; 1589 case KVM_REG_PPC_PID: 1590 vcpu->arch.pid = set_reg_val(id, *val); 1591 break; 1592 case KVM_REG_PPC_ACOP: 1593 vcpu->arch.acop = set_reg_val(id, *val); 1594 break; 1595 case KVM_REG_PPC_WORT: 1596 vcpu->arch.wort = set_reg_val(id, *val); 1597 break; 1598 case KVM_REG_PPC_TIDR: 1599 vcpu->arch.tid = set_reg_val(id, *val); 1600 break; 1601 case KVM_REG_PPC_PSSCR: 1602 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1603 break; 1604 case KVM_REG_PPC_VPA_ADDR: 1605 addr = set_reg_val(id, *val); 1606 r = -EINVAL; 1607 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1608 vcpu->arch.dtl.next_gpa)) 1609 break; 1610 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1611 break; 1612 case KVM_REG_PPC_VPA_SLB: 1613 addr = val->vpaval.addr; 1614 len = val->vpaval.length; 1615 r = -EINVAL; 1616 if (addr && !vcpu->arch.vpa.next_gpa) 1617 break; 1618 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1619 break; 1620 case KVM_REG_PPC_VPA_DTL: 1621 addr = val->vpaval.addr; 1622 len = val->vpaval.length; 1623 r = -EINVAL; 1624 if (addr && (len < sizeof(struct dtl_entry) || 1625 !vcpu->arch.vpa.next_gpa)) 1626 break; 1627 len -= len % sizeof(struct dtl_entry); 1628 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1629 break; 1630 case KVM_REG_PPC_TB_OFFSET: 1631 /* 1632 * POWER9 DD1 has an erratum where writing TBU40 causes 1633 * the timebase to lose ticks. So we don't let the 1634 * timebase offset be changed on P9 DD1. (It is 1635 * initialized to zero.) 1636 */ 1637 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) 1638 break; 1639 /* round up to multiple of 2^24 */ 1640 vcpu->arch.vcore->tb_offset = 1641 ALIGN(set_reg_val(id, *val), 1UL << 24); 1642 break; 1643 case KVM_REG_PPC_LPCR: 1644 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1645 break; 1646 case KVM_REG_PPC_LPCR_64: 1647 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1648 break; 1649 case KVM_REG_PPC_PPR: 1650 vcpu->arch.ppr = set_reg_val(id, *val); 1651 break; 1652 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1653 case KVM_REG_PPC_TFHAR: 1654 vcpu->arch.tfhar = set_reg_val(id, *val); 1655 break; 1656 case KVM_REG_PPC_TFIAR: 1657 vcpu->arch.tfiar = set_reg_val(id, *val); 1658 break; 1659 case KVM_REG_PPC_TEXASR: 1660 vcpu->arch.texasr = set_reg_val(id, *val); 1661 break; 1662 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1663 i = id - KVM_REG_PPC_TM_GPR0; 1664 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1665 break; 1666 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1667 { 1668 int j; 1669 i = id - KVM_REG_PPC_TM_VSR0; 1670 if (i < 32) 1671 for (j = 0; j < TS_FPRWIDTH; j++) 1672 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1673 else 1674 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1675 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1676 else 1677 r = -ENXIO; 1678 break; 1679 } 1680 case KVM_REG_PPC_TM_CR: 1681 vcpu->arch.cr_tm = set_reg_val(id, *val); 1682 break; 1683 case KVM_REG_PPC_TM_XER: 1684 vcpu->arch.xer_tm = set_reg_val(id, *val); 1685 break; 1686 case KVM_REG_PPC_TM_LR: 1687 vcpu->arch.lr_tm = set_reg_val(id, *val); 1688 break; 1689 case KVM_REG_PPC_TM_CTR: 1690 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1691 break; 1692 case KVM_REG_PPC_TM_FPSCR: 1693 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1694 break; 1695 case KVM_REG_PPC_TM_AMR: 1696 vcpu->arch.amr_tm = set_reg_val(id, *val); 1697 break; 1698 case KVM_REG_PPC_TM_PPR: 1699 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1700 break; 1701 case KVM_REG_PPC_TM_VRSAVE: 1702 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1703 break; 1704 case KVM_REG_PPC_TM_VSCR: 1705 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1706 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1707 else 1708 r = - ENXIO; 1709 break; 1710 case KVM_REG_PPC_TM_DSCR: 1711 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1712 break; 1713 case KVM_REG_PPC_TM_TAR: 1714 vcpu->arch.tar_tm = set_reg_val(id, *val); 1715 break; 1716 #endif 1717 case KVM_REG_PPC_ARCH_COMPAT: 1718 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1719 break; 1720 default: 1721 r = -EINVAL; 1722 break; 1723 } 1724 1725 return r; 1726 } 1727 1728 /* 1729 * On POWER9, threads are independent and can be in different partitions. 1730 * Therefore we consider each thread to be a subcore. 1731 * There is a restriction that all threads have to be in the same 1732 * MMU mode (radix or HPT), unfortunately, but since we only support 1733 * HPT guests on a HPT host so far, that isn't an impediment yet. 1734 */ 1735 static int threads_per_vcore(void) 1736 { 1737 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1738 return 1; 1739 return threads_per_subcore; 1740 } 1741 1742 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core) 1743 { 1744 struct kvmppc_vcore *vcore; 1745 1746 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 1747 1748 if (vcore == NULL) 1749 return NULL; 1750 1751 spin_lock_init(&vcore->lock); 1752 spin_lock_init(&vcore->stoltb_lock); 1753 init_swait_queue_head(&vcore->wq); 1754 vcore->preempt_tb = TB_NIL; 1755 vcore->lpcr = kvm->arch.lpcr; 1756 vcore->first_vcpuid = core * kvm->arch.smt_mode; 1757 vcore->kvm = kvm; 1758 INIT_LIST_HEAD(&vcore->preempt_list); 1759 1760 return vcore; 1761 } 1762 1763 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 1764 static struct debugfs_timings_element { 1765 const char *name; 1766 size_t offset; 1767 } timings[] = { 1768 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 1769 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 1770 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 1771 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 1772 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 1773 }; 1774 1775 #define N_TIMINGS (sizeof(timings) / sizeof(timings[0])) 1776 1777 struct debugfs_timings_state { 1778 struct kvm_vcpu *vcpu; 1779 unsigned int buflen; 1780 char buf[N_TIMINGS * 100]; 1781 }; 1782 1783 static int debugfs_timings_open(struct inode *inode, struct file *file) 1784 { 1785 struct kvm_vcpu *vcpu = inode->i_private; 1786 struct debugfs_timings_state *p; 1787 1788 p = kzalloc(sizeof(*p), GFP_KERNEL); 1789 if (!p) 1790 return -ENOMEM; 1791 1792 kvm_get_kvm(vcpu->kvm); 1793 p->vcpu = vcpu; 1794 file->private_data = p; 1795 1796 return nonseekable_open(inode, file); 1797 } 1798 1799 static int debugfs_timings_release(struct inode *inode, struct file *file) 1800 { 1801 struct debugfs_timings_state *p = file->private_data; 1802 1803 kvm_put_kvm(p->vcpu->kvm); 1804 kfree(p); 1805 return 0; 1806 } 1807 1808 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 1809 size_t len, loff_t *ppos) 1810 { 1811 struct debugfs_timings_state *p = file->private_data; 1812 struct kvm_vcpu *vcpu = p->vcpu; 1813 char *s, *buf_end; 1814 struct kvmhv_tb_accumulator tb; 1815 u64 count; 1816 loff_t pos; 1817 ssize_t n; 1818 int i, loops; 1819 bool ok; 1820 1821 if (!p->buflen) { 1822 s = p->buf; 1823 buf_end = s + sizeof(p->buf); 1824 for (i = 0; i < N_TIMINGS; ++i) { 1825 struct kvmhv_tb_accumulator *acc; 1826 1827 acc = (struct kvmhv_tb_accumulator *) 1828 ((unsigned long)vcpu + timings[i].offset); 1829 ok = false; 1830 for (loops = 0; loops < 1000; ++loops) { 1831 count = acc->seqcount; 1832 if (!(count & 1)) { 1833 smp_rmb(); 1834 tb = *acc; 1835 smp_rmb(); 1836 if (count == acc->seqcount) { 1837 ok = true; 1838 break; 1839 } 1840 } 1841 udelay(1); 1842 } 1843 if (!ok) 1844 snprintf(s, buf_end - s, "%s: stuck\n", 1845 timings[i].name); 1846 else 1847 snprintf(s, buf_end - s, 1848 "%s: %llu %llu %llu %llu\n", 1849 timings[i].name, count / 2, 1850 tb_to_ns(tb.tb_total), 1851 tb_to_ns(tb.tb_min), 1852 tb_to_ns(tb.tb_max)); 1853 s += strlen(s); 1854 } 1855 p->buflen = s - p->buf; 1856 } 1857 1858 pos = *ppos; 1859 if (pos >= p->buflen) 1860 return 0; 1861 if (len > p->buflen - pos) 1862 len = p->buflen - pos; 1863 n = copy_to_user(buf, p->buf + pos, len); 1864 if (n) { 1865 if (n == len) 1866 return -EFAULT; 1867 len -= n; 1868 } 1869 *ppos = pos + len; 1870 return len; 1871 } 1872 1873 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 1874 size_t len, loff_t *ppos) 1875 { 1876 return -EACCES; 1877 } 1878 1879 static const struct file_operations debugfs_timings_ops = { 1880 .owner = THIS_MODULE, 1881 .open = debugfs_timings_open, 1882 .release = debugfs_timings_release, 1883 .read = debugfs_timings_read, 1884 .write = debugfs_timings_write, 1885 .llseek = generic_file_llseek, 1886 }; 1887 1888 /* Create a debugfs directory for the vcpu */ 1889 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1890 { 1891 char buf[16]; 1892 struct kvm *kvm = vcpu->kvm; 1893 1894 snprintf(buf, sizeof(buf), "vcpu%u", id); 1895 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 1896 return; 1897 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 1898 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 1899 return; 1900 vcpu->arch.debugfs_timings = 1901 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 1902 vcpu, &debugfs_timings_ops); 1903 } 1904 1905 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1906 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 1907 { 1908 } 1909 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 1910 1911 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 1912 unsigned int id) 1913 { 1914 struct kvm_vcpu *vcpu; 1915 int err; 1916 int core; 1917 struct kvmppc_vcore *vcore; 1918 1919 err = -ENOMEM; 1920 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 1921 if (!vcpu) 1922 goto out; 1923 1924 err = kvm_vcpu_init(vcpu, kvm, id); 1925 if (err) 1926 goto free_vcpu; 1927 1928 vcpu->arch.shared = &vcpu->arch.shregs; 1929 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 1930 /* 1931 * The shared struct is never shared on HV, 1932 * so we can always use host endianness 1933 */ 1934 #ifdef __BIG_ENDIAN__ 1935 vcpu->arch.shared_big_endian = true; 1936 #else 1937 vcpu->arch.shared_big_endian = false; 1938 #endif 1939 #endif 1940 vcpu->arch.mmcr[0] = MMCR0_FC; 1941 vcpu->arch.ctrl = CTRL_RUNLATCH; 1942 /* default to host PVR, since we can't spoof it */ 1943 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 1944 spin_lock_init(&vcpu->arch.vpa_update_lock); 1945 spin_lock_init(&vcpu->arch.tbacct_lock); 1946 vcpu->arch.busy_preempt = TB_NIL; 1947 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 1948 1949 /* 1950 * Set the default HFSCR for the guest from the host value. 1951 * This value is only used on POWER9. 1952 * On POWER9 DD1, TM doesn't work, so we make sure to 1953 * prevent the guest from using it. 1954 * On POWER9, we want to virtualize the doorbell facility, so we 1955 * turn off the HFSCR bit, which causes those instructions to trap. 1956 */ 1957 vcpu->arch.hfscr = mfspr(SPRN_HFSCR); 1958 if (!cpu_has_feature(CPU_FTR_TM)) 1959 vcpu->arch.hfscr &= ~HFSCR_TM; 1960 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1961 vcpu->arch.hfscr &= ~HFSCR_MSGP; 1962 1963 kvmppc_mmu_book3s_hv_init(vcpu); 1964 1965 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 1966 1967 init_waitqueue_head(&vcpu->arch.cpu_run); 1968 1969 mutex_lock(&kvm->lock); 1970 vcore = NULL; 1971 err = -EINVAL; 1972 core = id / kvm->arch.smt_mode; 1973 if (core < KVM_MAX_VCORES) { 1974 vcore = kvm->arch.vcores[core]; 1975 if (!vcore) { 1976 err = -ENOMEM; 1977 vcore = kvmppc_vcore_create(kvm, core); 1978 kvm->arch.vcores[core] = vcore; 1979 kvm->arch.online_vcores++; 1980 } 1981 } 1982 mutex_unlock(&kvm->lock); 1983 1984 if (!vcore) 1985 goto free_vcpu; 1986 1987 spin_lock(&vcore->lock); 1988 ++vcore->num_threads; 1989 spin_unlock(&vcore->lock); 1990 vcpu->arch.vcore = vcore; 1991 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 1992 vcpu->arch.thread_cpu = -1; 1993 vcpu->arch.prev_cpu = -1; 1994 1995 vcpu->arch.cpu_type = KVM_CPU_3S_64; 1996 kvmppc_sanity_check(vcpu); 1997 1998 debugfs_vcpu_init(vcpu, id); 1999 2000 return vcpu; 2001 2002 free_vcpu: 2003 kmem_cache_free(kvm_vcpu_cache, vcpu); 2004 out: 2005 return ERR_PTR(err); 2006 } 2007 2008 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2009 unsigned long flags) 2010 { 2011 int err; 2012 int esmt = 0; 2013 2014 if (flags) 2015 return -EINVAL; 2016 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2017 return -EINVAL; 2018 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2019 /* 2020 * On POWER8 (or POWER7), the threading mode is "strict", 2021 * so we pack smt_mode vcpus per vcore. 2022 */ 2023 if (smt_mode > threads_per_subcore) 2024 return -EINVAL; 2025 } else { 2026 /* 2027 * On POWER9, the threading mode is "loose", 2028 * so each vcpu gets its own vcore. 2029 */ 2030 esmt = smt_mode; 2031 smt_mode = 1; 2032 } 2033 mutex_lock(&kvm->lock); 2034 err = -EBUSY; 2035 if (!kvm->arch.online_vcores) { 2036 kvm->arch.smt_mode = smt_mode; 2037 kvm->arch.emul_smt_mode = esmt; 2038 err = 0; 2039 } 2040 mutex_unlock(&kvm->lock); 2041 2042 return err; 2043 } 2044 2045 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2046 { 2047 if (vpa->pinned_addr) 2048 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2049 vpa->dirty); 2050 } 2051 2052 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2053 { 2054 spin_lock(&vcpu->arch.vpa_update_lock); 2055 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2056 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2057 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2058 spin_unlock(&vcpu->arch.vpa_update_lock); 2059 kvm_vcpu_uninit(vcpu); 2060 kmem_cache_free(kvm_vcpu_cache, vcpu); 2061 } 2062 2063 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2064 { 2065 /* Indicate we want to get back into the guest */ 2066 return 1; 2067 } 2068 2069 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2070 { 2071 unsigned long dec_nsec, now; 2072 2073 now = get_tb(); 2074 if (now > vcpu->arch.dec_expires) { 2075 /* decrementer has already gone negative */ 2076 kvmppc_core_queue_dec(vcpu); 2077 kvmppc_core_prepare_to_enter(vcpu); 2078 return; 2079 } 2080 dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC 2081 / tb_ticks_per_sec; 2082 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2083 vcpu->arch.timer_running = 1; 2084 } 2085 2086 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 2087 { 2088 vcpu->arch.ceded = 0; 2089 if (vcpu->arch.timer_running) { 2090 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2091 vcpu->arch.timer_running = 0; 2092 } 2093 } 2094 2095 extern int __kvmppc_vcore_entry(void); 2096 2097 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2098 struct kvm_vcpu *vcpu) 2099 { 2100 u64 now; 2101 2102 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2103 return; 2104 spin_lock_irq(&vcpu->arch.tbacct_lock); 2105 now = mftb(); 2106 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2107 vcpu->arch.stolen_logged; 2108 vcpu->arch.busy_preempt = now; 2109 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2110 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2111 --vc->n_runnable; 2112 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2113 } 2114 2115 static int kvmppc_grab_hwthread(int cpu) 2116 { 2117 struct paca_struct *tpaca; 2118 long timeout = 10000; 2119 2120 /* 2121 * ISA v3.0 idle routines do not set hwthread_state or test 2122 * hwthread_req, so they can not grab idle threads. 2123 */ 2124 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2125 WARN(1, "KVM: can not control sibling threads\n"); 2126 return -EBUSY; 2127 } 2128 2129 tpaca = &paca[cpu]; 2130 2131 /* Ensure the thread won't go into the kernel if it wakes */ 2132 tpaca->kvm_hstate.kvm_vcpu = NULL; 2133 tpaca->kvm_hstate.kvm_vcore = NULL; 2134 tpaca->kvm_hstate.napping = 0; 2135 smp_wmb(); 2136 tpaca->kvm_hstate.hwthread_req = 1; 2137 2138 /* 2139 * If the thread is already executing in the kernel (e.g. handling 2140 * a stray interrupt), wait for it to get back to nap mode. 2141 * The smp_mb() is to ensure that our setting of hwthread_req 2142 * is visible before we look at hwthread_state, so if this 2143 * races with the code at system_reset_pSeries and the thread 2144 * misses our setting of hwthread_req, we are sure to see its 2145 * setting of hwthread_state, and vice versa. 2146 */ 2147 smp_mb(); 2148 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2149 if (--timeout <= 0) { 2150 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2151 return -EBUSY; 2152 } 2153 udelay(1); 2154 } 2155 return 0; 2156 } 2157 2158 static void kvmppc_release_hwthread(int cpu) 2159 { 2160 struct paca_struct *tpaca; 2161 2162 tpaca = &paca[cpu]; 2163 tpaca->kvm_hstate.kvm_vcpu = NULL; 2164 tpaca->kvm_hstate.kvm_vcore = NULL; 2165 tpaca->kvm_hstate.kvm_split_mode = NULL; 2166 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 2167 tpaca->kvm_hstate.hwthread_req = 0; 2168 2169 } 2170 2171 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2172 { 2173 int i; 2174 2175 cpu = cpu_first_thread_sibling(cpu); 2176 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2177 /* 2178 * Make sure setting of bit in need_tlb_flush precedes 2179 * testing of cpu_in_guest bits. The matching barrier on 2180 * the other side is the first smp_mb() in kvmppc_run_core(). 2181 */ 2182 smp_mb(); 2183 for (i = 0; i < threads_per_core; ++i) 2184 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest)) 2185 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2186 } 2187 2188 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2189 { 2190 struct kvm *kvm = vcpu->kvm; 2191 2192 /* 2193 * With radix, the guest can do TLB invalidations itself, 2194 * and it could choose to use the local form (tlbiel) if 2195 * it is invalidating a translation that has only ever been 2196 * used on one vcpu. However, that doesn't mean it has 2197 * only ever been used on one physical cpu, since vcpus 2198 * can move around between pcpus. To cope with this, when 2199 * a vcpu moves from one pcpu to another, we need to tell 2200 * any vcpus running on the same core as this vcpu previously 2201 * ran to flush the TLB. The TLB is shared between threads, 2202 * so we use a single bit in .need_tlb_flush for all 4 threads. 2203 */ 2204 if (vcpu->arch.prev_cpu != pcpu) { 2205 if (vcpu->arch.prev_cpu >= 0 && 2206 cpu_first_thread_sibling(vcpu->arch.prev_cpu) != 2207 cpu_first_thread_sibling(pcpu)) 2208 radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu); 2209 vcpu->arch.prev_cpu = pcpu; 2210 } 2211 } 2212 2213 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2214 { 2215 int cpu; 2216 struct paca_struct *tpaca; 2217 struct kvm *kvm = vc->kvm; 2218 2219 cpu = vc->pcpu; 2220 if (vcpu) { 2221 if (vcpu->arch.timer_running) { 2222 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2223 vcpu->arch.timer_running = 0; 2224 } 2225 cpu += vcpu->arch.ptid; 2226 vcpu->cpu = vc->pcpu; 2227 vcpu->arch.thread_cpu = cpu; 2228 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2229 } 2230 tpaca = &paca[cpu]; 2231 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2232 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2233 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2234 smp_wmb(); 2235 tpaca->kvm_hstate.kvm_vcore = vc; 2236 if (cpu != smp_processor_id()) 2237 kvmppc_ipi_thread(cpu); 2238 } 2239 2240 static void kvmppc_wait_for_nap(void) 2241 { 2242 int cpu = smp_processor_id(); 2243 int i, loops; 2244 int n_threads = threads_per_vcore(); 2245 2246 if (n_threads <= 1) 2247 return; 2248 for (loops = 0; loops < 1000000; ++loops) { 2249 /* 2250 * Check if all threads are finished. 2251 * We set the vcore pointer when starting a thread 2252 * and the thread clears it when finished, so we look 2253 * for any threads that still have a non-NULL vcore ptr. 2254 */ 2255 for (i = 1; i < n_threads; ++i) 2256 if (paca[cpu + i].kvm_hstate.kvm_vcore) 2257 break; 2258 if (i == n_threads) { 2259 HMT_medium(); 2260 return; 2261 } 2262 HMT_low(); 2263 } 2264 HMT_medium(); 2265 for (i = 1; i < n_threads; ++i) 2266 if (paca[cpu + i].kvm_hstate.kvm_vcore) 2267 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2268 } 2269 2270 /* 2271 * Check that we are on thread 0 and that any other threads in 2272 * this core are off-line. Then grab the threads so they can't 2273 * enter the kernel. 2274 */ 2275 static int on_primary_thread(void) 2276 { 2277 int cpu = smp_processor_id(); 2278 int thr; 2279 2280 /* Are we on a primary subcore? */ 2281 if (cpu_thread_in_subcore(cpu)) 2282 return 0; 2283 2284 thr = 0; 2285 while (++thr < threads_per_subcore) 2286 if (cpu_online(cpu + thr)) 2287 return 0; 2288 2289 /* Grab all hw threads so they can't go into the kernel */ 2290 for (thr = 1; thr < threads_per_subcore; ++thr) { 2291 if (kvmppc_grab_hwthread(cpu + thr)) { 2292 /* Couldn't grab one; let the others go */ 2293 do { 2294 kvmppc_release_hwthread(cpu + thr); 2295 } while (--thr > 0); 2296 return 0; 2297 } 2298 } 2299 return 1; 2300 } 2301 2302 /* 2303 * A list of virtual cores for each physical CPU. 2304 * These are vcores that could run but their runner VCPU tasks are 2305 * (or may be) preempted. 2306 */ 2307 struct preempted_vcore_list { 2308 struct list_head list; 2309 spinlock_t lock; 2310 }; 2311 2312 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2313 2314 static void init_vcore_lists(void) 2315 { 2316 int cpu; 2317 2318 for_each_possible_cpu(cpu) { 2319 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2320 spin_lock_init(&lp->lock); 2321 INIT_LIST_HEAD(&lp->list); 2322 } 2323 } 2324 2325 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2326 { 2327 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2328 2329 vc->vcore_state = VCORE_PREEMPT; 2330 vc->pcpu = smp_processor_id(); 2331 if (vc->num_threads < threads_per_vcore()) { 2332 spin_lock(&lp->lock); 2333 list_add_tail(&vc->preempt_list, &lp->list); 2334 spin_unlock(&lp->lock); 2335 } 2336 2337 /* Start accumulating stolen time */ 2338 kvmppc_core_start_stolen(vc); 2339 } 2340 2341 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2342 { 2343 struct preempted_vcore_list *lp; 2344 2345 kvmppc_core_end_stolen(vc); 2346 if (!list_empty(&vc->preempt_list)) { 2347 lp = &per_cpu(preempted_vcores, vc->pcpu); 2348 spin_lock(&lp->lock); 2349 list_del_init(&vc->preempt_list); 2350 spin_unlock(&lp->lock); 2351 } 2352 vc->vcore_state = VCORE_INACTIVE; 2353 } 2354 2355 /* 2356 * This stores information about the virtual cores currently 2357 * assigned to a physical core. 2358 */ 2359 struct core_info { 2360 int n_subcores; 2361 int max_subcore_threads; 2362 int total_threads; 2363 int subcore_threads[MAX_SUBCORES]; 2364 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2365 }; 2366 2367 /* 2368 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2369 * respectively in 2-way micro-threading (split-core) mode. 2370 */ 2371 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2372 2373 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2374 { 2375 memset(cip, 0, sizeof(*cip)); 2376 cip->n_subcores = 1; 2377 cip->max_subcore_threads = vc->num_threads; 2378 cip->total_threads = vc->num_threads; 2379 cip->subcore_threads[0] = vc->num_threads; 2380 cip->vc[0] = vc; 2381 } 2382 2383 static bool subcore_config_ok(int n_subcores, int n_threads) 2384 { 2385 /* Can only dynamically split if unsplit to begin with */ 2386 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2387 return false; 2388 if (n_subcores > MAX_SUBCORES) 2389 return false; 2390 if (n_subcores > 1) { 2391 if (!(dynamic_mt_modes & 2)) 2392 n_subcores = 4; 2393 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2394 return false; 2395 } 2396 2397 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2398 } 2399 2400 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2401 { 2402 vc->entry_exit_map = 0; 2403 vc->in_guest = 0; 2404 vc->napping_threads = 0; 2405 vc->conferring_threads = 0; 2406 } 2407 2408 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2409 { 2410 int n_threads = vc->num_threads; 2411 int sub; 2412 2413 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2414 return false; 2415 2416 if (n_threads < cip->max_subcore_threads) 2417 n_threads = cip->max_subcore_threads; 2418 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2419 return false; 2420 cip->max_subcore_threads = n_threads; 2421 2422 sub = cip->n_subcores; 2423 ++cip->n_subcores; 2424 cip->total_threads += vc->num_threads; 2425 cip->subcore_threads[sub] = vc->num_threads; 2426 cip->vc[sub] = vc; 2427 init_vcore_to_run(vc); 2428 list_del_init(&vc->preempt_list); 2429 2430 return true; 2431 } 2432 2433 /* 2434 * Work out whether it is possible to piggyback the execution of 2435 * vcore *pvc onto the execution of the other vcores described in *cip. 2436 */ 2437 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2438 int target_threads) 2439 { 2440 if (cip->total_threads + pvc->num_threads > target_threads) 2441 return false; 2442 2443 return can_dynamic_split(pvc, cip); 2444 } 2445 2446 static void prepare_threads(struct kvmppc_vcore *vc) 2447 { 2448 int i; 2449 struct kvm_vcpu *vcpu; 2450 2451 for_each_runnable_thread(i, vcpu, vc) { 2452 if (signal_pending(vcpu->arch.run_task)) 2453 vcpu->arch.ret = -EINTR; 2454 else if (vcpu->arch.vpa.update_pending || 2455 vcpu->arch.slb_shadow.update_pending || 2456 vcpu->arch.dtl.update_pending) 2457 vcpu->arch.ret = RESUME_GUEST; 2458 else 2459 continue; 2460 kvmppc_remove_runnable(vc, vcpu); 2461 wake_up(&vcpu->arch.cpu_run); 2462 } 2463 } 2464 2465 static void collect_piggybacks(struct core_info *cip, int target_threads) 2466 { 2467 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2468 struct kvmppc_vcore *pvc, *vcnext; 2469 2470 spin_lock(&lp->lock); 2471 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2472 if (!spin_trylock(&pvc->lock)) 2473 continue; 2474 prepare_threads(pvc); 2475 if (!pvc->n_runnable) { 2476 list_del_init(&pvc->preempt_list); 2477 if (pvc->runner == NULL) { 2478 pvc->vcore_state = VCORE_INACTIVE; 2479 kvmppc_core_end_stolen(pvc); 2480 } 2481 spin_unlock(&pvc->lock); 2482 continue; 2483 } 2484 if (!can_piggyback(pvc, cip, target_threads)) { 2485 spin_unlock(&pvc->lock); 2486 continue; 2487 } 2488 kvmppc_core_end_stolen(pvc); 2489 pvc->vcore_state = VCORE_PIGGYBACK; 2490 if (cip->total_threads >= target_threads) 2491 break; 2492 } 2493 spin_unlock(&lp->lock); 2494 } 2495 2496 static bool recheck_signals(struct core_info *cip) 2497 { 2498 int sub, i; 2499 struct kvm_vcpu *vcpu; 2500 2501 for (sub = 0; sub < cip->n_subcores; ++sub) 2502 for_each_runnable_thread(i, vcpu, cip->vc[sub]) 2503 if (signal_pending(vcpu->arch.run_task)) 2504 return true; 2505 return false; 2506 } 2507 2508 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2509 { 2510 int still_running = 0, i; 2511 u64 now; 2512 long ret; 2513 struct kvm_vcpu *vcpu; 2514 2515 spin_lock(&vc->lock); 2516 now = get_tb(); 2517 for_each_runnable_thread(i, vcpu, vc) { 2518 /* cancel pending dec exception if dec is positive */ 2519 if (now < vcpu->arch.dec_expires && 2520 kvmppc_core_pending_dec(vcpu)) 2521 kvmppc_core_dequeue_dec(vcpu); 2522 2523 trace_kvm_guest_exit(vcpu); 2524 2525 ret = RESUME_GUEST; 2526 if (vcpu->arch.trap) 2527 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2528 vcpu->arch.run_task); 2529 2530 vcpu->arch.ret = ret; 2531 vcpu->arch.trap = 0; 2532 2533 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2534 if (vcpu->arch.pending_exceptions) 2535 kvmppc_core_prepare_to_enter(vcpu); 2536 if (vcpu->arch.ceded) 2537 kvmppc_set_timer(vcpu); 2538 else 2539 ++still_running; 2540 } else { 2541 kvmppc_remove_runnable(vc, vcpu); 2542 wake_up(&vcpu->arch.cpu_run); 2543 } 2544 } 2545 if (!is_master) { 2546 if (still_running > 0) { 2547 kvmppc_vcore_preempt(vc); 2548 } else if (vc->runner) { 2549 vc->vcore_state = VCORE_PREEMPT; 2550 kvmppc_core_start_stolen(vc); 2551 } else { 2552 vc->vcore_state = VCORE_INACTIVE; 2553 } 2554 if (vc->n_runnable > 0 && vc->runner == NULL) { 2555 /* make sure there's a candidate runner awake */ 2556 i = -1; 2557 vcpu = next_runnable_thread(vc, &i); 2558 wake_up(&vcpu->arch.cpu_run); 2559 } 2560 } 2561 spin_unlock(&vc->lock); 2562 } 2563 2564 /* 2565 * Clear core from the list of active host cores as we are about to 2566 * enter the guest. Only do this if it is the primary thread of the 2567 * core (not if a subcore) that is entering the guest. 2568 */ 2569 static inline int kvmppc_clear_host_core(unsigned int cpu) 2570 { 2571 int core; 2572 2573 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2574 return 0; 2575 /* 2576 * Memory barrier can be omitted here as we will do a smp_wmb() 2577 * later in kvmppc_start_thread and we need ensure that state is 2578 * visible to other CPUs only after we enter guest. 2579 */ 2580 core = cpu >> threads_shift; 2581 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2582 return 0; 2583 } 2584 2585 /* 2586 * Advertise this core as an active host core since we exited the guest 2587 * Only need to do this if it is the primary thread of the core that is 2588 * exiting. 2589 */ 2590 static inline int kvmppc_set_host_core(unsigned int cpu) 2591 { 2592 int core; 2593 2594 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2595 return 0; 2596 2597 /* 2598 * Memory barrier can be omitted here because we do a spin_unlock 2599 * immediately after this which provides the memory barrier. 2600 */ 2601 core = cpu >> threads_shift; 2602 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 2603 return 0; 2604 } 2605 2606 static void set_irq_happened(int trap) 2607 { 2608 switch (trap) { 2609 case BOOK3S_INTERRUPT_EXTERNAL: 2610 local_paca->irq_happened |= PACA_IRQ_EE; 2611 break; 2612 case BOOK3S_INTERRUPT_H_DOORBELL: 2613 local_paca->irq_happened |= PACA_IRQ_DBELL; 2614 break; 2615 case BOOK3S_INTERRUPT_HMI: 2616 local_paca->irq_happened |= PACA_IRQ_HMI; 2617 break; 2618 } 2619 } 2620 2621 /* 2622 * Run a set of guest threads on a physical core. 2623 * Called with vc->lock held. 2624 */ 2625 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 2626 { 2627 struct kvm_vcpu *vcpu; 2628 int i; 2629 int srcu_idx; 2630 struct core_info core_info; 2631 struct kvmppc_vcore *pvc; 2632 struct kvm_split_mode split_info, *sip; 2633 int split, subcore_size, active; 2634 int sub; 2635 bool thr0_done; 2636 unsigned long cmd_bit, stat_bit; 2637 int pcpu, thr; 2638 int target_threads; 2639 int controlled_threads; 2640 int trap; 2641 2642 /* 2643 * Remove from the list any threads that have a signal pending 2644 * or need a VPA update done 2645 */ 2646 prepare_threads(vc); 2647 2648 /* if the runner is no longer runnable, let the caller pick a new one */ 2649 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 2650 return; 2651 2652 /* 2653 * Initialize *vc. 2654 */ 2655 init_vcore_to_run(vc); 2656 vc->preempt_tb = TB_NIL; 2657 2658 /* 2659 * Number of threads that we will be controlling: the same as 2660 * the number of threads per subcore, except on POWER9, 2661 * where it's 1 because the threads are (mostly) independent. 2662 */ 2663 controlled_threads = threads_per_vcore(); 2664 2665 /* 2666 * Make sure we are running on primary threads, and that secondary 2667 * threads are offline. Also check if the number of threads in this 2668 * guest are greater than the current system threads per guest. 2669 */ 2670 if ((controlled_threads > 1) && 2671 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 2672 for_each_runnable_thread(i, vcpu, vc) { 2673 vcpu->arch.ret = -EBUSY; 2674 kvmppc_remove_runnable(vc, vcpu); 2675 wake_up(&vcpu->arch.cpu_run); 2676 } 2677 goto out; 2678 } 2679 2680 /* 2681 * See if we could run any other vcores on the physical core 2682 * along with this one. 2683 */ 2684 init_core_info(&core_info, vc); 2685 pcpu = smp_processor_id(); 2686 target_threads = controlled_threads; 2687 if (target_smt_mode && target_smt_mode < target_threads) 2688 target_threads = target_smt_mode; 2689 if (vc->num_threads < target_threads) 2690 collect_piggybacks(&core_info, target_threads); 2691 2692 /* 2693 * On radix, arrange for TLB flushing if necessary. 2694 * This has to be done before disabling interrupts since 2695 * it uses smp_call_function(). 2696 */ 2697 pcpu = smp_processor_id(); 2698 if (kvm_is_radix(vc->kvm)) { 2699 for (sub = 0; sub < core_info.n_subcores; ++sub) 2700 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 2701 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 2702 } 2703 2704 /* 2705 * Hard-disable interrupts, and check resched flag and signals. 2706 * If we need to reschedule or deliver a signal, clean up 2707 * and return without going into the guest(s). 2708 */ 2709 local_irq_disable(); 2710 hard_irq_disable(); 2711 if (lazy_irq_pending() || need_resched() || 2712 recheck_signals(&core_info)) { 2713 local_irq_enable(); 2714 vc->vcore_state = VCORE_INACTIVE; 2715 /* Unlock all except the primary vcore */ 2716 for (sub = 1; sub < core_info.n_subcores; ++sub) { 2717 pvc = core_info.vc[sub]; 2718 /* Put back on to the preempted vcores list */ 2719 kvmppc_vcore_preempt(pvc); 2720 spin_unlock(&pvc->lock); 2721 } 2722 for (i = 0; i < controlled_threads; ++i) 2723 kvmppc_release_hwthread(pcpu + i); 2724 return; 2725 } 2726 2727 kvmppc_clear_host_core(pcpu); 2728 2729 /* Decide on micro-threading (split-core) mode */ 2730 subcore_size = threads_per_subcore; 2731 cmd_bit = stat_bit = 0; 2732 split = core_info.n_subcores; 2733 sip = NULL; 2734 if (split > 1) { 2735 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */ 2736 if (split == 2 && (dynamic_mt_modes & 2)) { 2737 cmd_bit = HID0_POWER8_1TO2LPAR; 2738 stat_bit = HID0_POWER8_2LPARMODE; 2739 } else { 2740 split = 4; 2741 cmd_bit = HID0_POWER8_1TO4LPAR; 2742 stat_bit = HID0_POWER8_4LPARMODE; 2743 } 2744 subcore_size = MAX_SMT_THREADS / split; 2745 sip = &split_info; 2746 memset(&split_info, 0, sizeof(split_info)); 2747 split_info.rpr = mfspr(SPRN_RPR); 2748 split_info.pmmar = mfspr(SPRN_PMMAR); 2749 split_info.ldbar = mfspr(SPRN_LDBAR); 2750 split_info.subcore_size = subcore_size; 2751 for (sub = 0; sub < core_info.n_subcores; ++sub) 2752 split_info.vc[sub] = core_info.vc[sub]; 2753 /* order writes to split_info before kvm_split_mode pointer */ 2754 smp_wmb(); 2755 } 2756 for (thr = 0; thr < controlled_threads; ++thr) 2757 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip; 2758 2759 /* Initiate micro-threading (split-core) if required */ 2760 if (cmd_bit) { 2761 unsigned long hid0 = mfspr(SPRN_HID0); 2762 2763 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 2764 mb(); 2765 mtspr(SPRN_HID0, hid0); 2766 isync(); 2767 for (;;) { 2768 hid0 = mfspr(SPRN_HID0); 2769 if (hid0 & stat_bit) 2770 break; 2771 cpu_relax(); 2772 } 2773 } 2774 2775 /* Start all the threads */ 2776 active = 0; 2777 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2778 thr = subcore_thread_map[sub]; 2779 thr0_done = false; 2780 active |= 1 << thr; 2781 pvc = core_info.vc[sub]; 2782 pvc->pcpu = pcpu + thr; 2783 for_each_runnable_thread(i, vcpu, pvc) { 2784 kvmppc_start_thread(vcpu, pvc); 2785 kvmppc_create_dtl_entry(vcpu, pvc); 2786 trace_kvm_guest_enter(vcpu); 2787 if (!vcpu->arch.ptid) 2788 thr0_done = true; 2789 active |= 1 << (thr + vcpu->arch.ptid); 2790 } 2791 /* 2792 * We need to start the first thread of each subcore 2793 * even if it doesn't have a vcpu. 2794 */ 2795 if (!thr0_done) 2796 kvmppc_start_thread(NULL, pvc); 2797 thr += pvc->num_threads; 2798 } 2799 2800 /* 2801 * Ensure that split_info.do_nap is set after setting 2802 * the vcore pointer in the PACA of the secondaries. 2803 */ 2804 smp_mb(); 2805 if (cmd_bit) 2806 split_info.do_nap = 1; /* ask secondaries to nap when done */ 2807 2808 /* 2809 * When doing micro-threading, poke the inactive threads as well. 2810 * This gets them to the nap instruction after kvm_do_nap, 2811 * which reduces the time taken to unsplit later. 2812 */ 2813 if (split > 1) 2814 for (thr = 1; thr < threads_per_subcore; ++thr) 2815 if (!(active & (1 << thr))) 2816 kvmppc_ipi_thread(pcpu + thr); 2817 2818 vc->vcore_state = VCORE_RUNNING; 2819 preempt_disable(); 2820 2821 trace_kvmppc_run_core(vc, 0); 2822 2823 for (sub = 0; sub < core_info.n_subcores; ++sub) 2824 spin_unlock(&core_info.vc[sub]->lock); 2825 2826 /* 2827 * Interrupts will be enabled once we get into the guest, 2828 * so tell lockdep that we're about to enable interrupts. 2829 */ 2830 trace_hardirqs_on(); 2831 2832 guest_enter(); 2833 2834 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 2835 2836 trap = __kvmppc_vcore_entry(); 2837 2838 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 2839 2840 guest_exit(); 2841 2842 trace_hardirqs_off(); 2843 set_irq_happened(trap); 2844 2845 spin_lock(&vc->lock); 2846 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 2847 vc->vcore_state = VCORE_EXITING; 2848 2849 /* wait for secondary threads to finish writing their state to memory */ 2850 kvmppc_wait_for_nap(); 2851 2852 /* Return to whole-core mode if we split the core earlier */ 2853 if (split > 1) { 2854 unsigned long hid0 = mfspr(SPRN_HID0); 2855 unsigned long loops = 0; 2856 2857 hid0 &= ~HID0_POWER8_DYNLPARDIS; 2858 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 2859 mb(); 2860 mtspr(SPRN_HID0, hid0); 2861 isync(); 2862 for (;;) { 2863 hid0 = mfspr(SPRN_HID0); 2864 if (!(hid0 & stat_bit)) 2865 break; 2866 cpu_relax(); 2867 ++loops; 2868 } 2869 split_info.do_nap = 0; 2870 } 2871 2872 kvmppc_set_host_core(pcpu); 2873 2874 local_irq_enable(); 2875 2876 /* Let secondaries go back to the offline loop */ 2877 for (i = 0; i < controlled_threads; ++i) { 2878 kvmppc_release_hwthread(pcpu + i); 2879 if (sip && sip->napped[i]) 2880 kvmppc_ipi_thread(pcpu + i); 2881 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 2882 } 2883 2884 spin_unlock(&vc->lock); 2885 2886 /* make sure updates to secondary vcpu structs are visible now */ 2887 smp_mb(); 2888 2889 for (sub = 0; sub < core_info.n_subcores; ++sub) { 2890 pvc = core_info.vc[sub]; 2891 post_guest_process(pvc, pvc == vc); 2892 } 2893 2894 spin_lock(&vc->lock); 2895 preempt_enable(); 2896 2897 out: 2898 vc->vcore_state = VCORE_INACTIVE; 2899 trace_kvmppc_run_core(vc, 1); 2900 } 2901 2902 /* 2903 * Wait for some other vcpu thread to execute us, and 2904 * wake us up when we need to handle something in the host. 2905 */ 2906 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 2907 struct kvm_vcpu *vcpu, int wait_state) 2908 { 2909 DEFINE_WAIT(wait); 2910 2911 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 2912 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 2913 spin_unlock(&vc->lock); 2914 schedule(); 2915 spin_lock(&vc->lock); 2916 } 2917 finish_wait(&vcpu->arch.cpu_run, &wait); 2918 } 2919 2920 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 2921 { 2922 /* 10us base */ 2923 if (vc->halt_poll_ns == 0 && halt_poll_ns_grow) 2924 vc->halt_poll_ns = 10000; 2925 else 2926 vc->halt_poll_ns *= halt_poll_ns_grow; 2927 } 2928 2929 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 2930 { 2931 if (halt_poll_ns_shrink == 0) 2932 vc->halt_poll_ns = 0; 2933 else 2934 vc->halt_poll_ns /= halt_poll_ns_shrink; 2935 } 2936 2937 #ifdef CONFIG_KVM_XICS 2938 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 2939 { 2940 if (!xive_enabled()) 2941 return false; 2942 return vcpu->arch.xive_saved_state.pipr < 2943 vcpu->arch.xive_saved_state.cppr; 2944 } 2945 #else 2946 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 2947 { 2948 return false; 2949 } 2950 #endif /* CONFIG_KVM_XICS */ 2951 2952 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 2953 { 2954 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 2955 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 2956 return true; 2957 2958 return false; 2959 } 2960 2961 /* 2962 * Check to see if any of the runnable vcpus on the vcore have pending 2963 * exceptions or are no longer ceded 2964 */ 2965 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 2966 { 2967 struct kvm_vcpu *vcpu; 2968 int i; 2969 2970 for_each_runnable_thread(i, vcpu, vc) { 2971 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 2972 return 1; 2973 } 2974 2975 return 0; 2976 } 2977 2978 /* 2979 * All the vcpus in this vcore are idle, so wait for a decrementer 2980 * or external interrupt to one of the vcpus. vc->lock is held. 2981 */ 2982 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 2983 { 2984 ktime_t cur, start_poll, start_wait; 2985 int do_sleep = 1; 2986 u64 block_ns; 2987 DECLARE_SWAITQUEUE(wait); 2988 2989 /* Poll for pending exceptions and ceded state */ 2990 cur = start_poll = ktime_get(); 2991 if (vc->halt_poll_ns) { 2992 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 2993 ++vc->runner->stat.halt_attempted_poll; 2994 2995 vc->vcore_state = VCORE_POLLING; 2996 spin_unlock(&vc->lock); 2997 2998 do { 2999 if (kvmppc_vcore_check_block(vc)) { 3000 do_sleep = 0; 3001 break; 3002 } 3003 cur = ktime_get(); 3004 } while (single_task_running() && ktime_before(cur, stop)); 3005 3006 spin_lock(&vc->lock); 3007 vc->vcore_state = VCORE_INACTIVE; 3008 3009 if (!do_sleep) { 3010 ++vc->runner->stat.halt_successful_poll; 3011 goto out; 3012 } 3013 } 3014 3015 prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE); 3016 3017 if (kvmppc_vcore_check_block(vc)) { 3018 finish_swait(&vc->wq, &wait); 3019 do_sleep = 0; 3020 /* If we polled, count this as a successful poll */ 3021 if (vc->halt_poll_ns) 3022 ++vc->runner->stat.halt_successful_poll; 3023 goto out; 3024 } 3025 3026 start_wait = ktime_get(); 3027 3028 vc->vcore_state = VCORE_SLEEPING; 3029 trace_kvmppc_vcore_blocked(vc, 0); 3030 spin_unlock(&vc->lock); 3031 schedule(); 3032 finish_swait(&vc->wq, &wait); 3033 spin_lock(&vc->lock); 3034 vc->vcore_state = VCORE_INACTIVE; 3035 trace_kvmppc_vcore_blocked(vc, 1); 3036 ++vc->runner->stat.halt_successful_wait; 3037 3038 cur = ktime_get(); 3039 3040 out: 3041 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3042 3043 /* Attribute wait time */ 3044 if (do_sleep) { 3045 vc->runner->stat.halt_wait_ns += 3046 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3047 /* Attribute failed poll time */ 3048 if (vc->halt_poll_ns) 3049 vc->runner->stat.halt_poll_fail_ns += 3050 ktime_to_ns(start_wait) - 3051 ktime_to_ns(start_poll); 3052 } else { 3053 /* Attribute successful poll time */ 3054 if (vc->halt_poll_ns) 3055 vc->runner->stat.halt_poll_success_ns += 3056 ktime_to_ns(cur) - 3057 ktime_to_ns(start_poll); 3058 } 3059 3060 /* Adjust poll time */ 3061 if (halt_poll_ns) { 3062 if (block_ns <= vc->halt_poll_ns) 3063 ; 3064 /* We slept and blocked for longer than the max halt time */ 3065 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3066 shrink_halt_poll_ns(vc); 3067 /* We slept and our poll time is too small */ 3068 else if (vc->halt_poll_ns < halt_poll_ns && 3069 block_ns < halt_poll_ns) 3070 grow_halt_poll_ns(vc); 3071 if (vc->halt_poll_ns > halt_poll_ns) 3072 vc->halt_poll_ns = halt_poll_ns; 3073 } else 3074 vc->halt_poll_ns = 0; 3075 3076 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3077 } 3078 3079 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 3080 { 3081 int n_ceded, i; 3082 struct kvmppc_vcore *vc; 3083 struct kvm_vcpu *v; 3084 3085 trace_kvmppc_run_vcpu_enter(vcpu); 3086 3087 kvm_run->exit_reason = 0; 3088 vcpu->arch.ret = RESUME_GUEST; 3089 vcpu->arch.trap = 0; 3090 kvmppc_update_vpas(vcpu); 3091 3092 /* 3093 * Synchronize with other threads in this virtual core 3094 */ 3095 vc = vcpu->arch.vcore; 3096 spin_lock(&vc->lock); 3097 vcpu->arch.ceded = 0; 3098 vcpu->arch.run_task = current; 3099 vcpu->arch.kvm_run = kvm_run; 3100 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3101 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3102 vcpu->arch.busy_preempt = TB_NIL; 3103 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 3104 ++vc->n_runnable; 3105 3106 /* 3107 * This happens the first time this is called for a vcpu. 3108 * If the vcore is already running, we may be able to start 3109 * this thread straight away and have it join in. 3110 */ 3111 if (!signal_pending(current)) { 3112 if (vc->vcore_state == VCORE_PIGGYBACK) { 3113 if (spin_trylock(&vc->lock)) { 3114 if (vc->vcore_state == VCORE_RUNNING && 3115 !VCORE_IS_EXITING(vc)) { 3116 kvmppc_create_dtl_entry(vcpu, vc); 3117 kvmppc_start_thread(vcpu, vc); 3118 trace_kvm_guest_enter(vcpu); 3119 } 3120 spin_unlock(&vc->lock); 3121 } 3122 } else if (vc->vcore_state == VCORE_RUNNING && 3123 !VCORE_IS_EXITING(vc)) { 3124 kvmppc_create_dtl_entry(vcpu, vc); 3125 kvmppc_start_thread(vcpu, vc); 3126 trace_kvm_guest_enter(vcpu); 3127 } else if (vc->vcore_state == VCORE_SLEEPING) { 3128 swake_up(&vc->wq); 3129 } 3130 3131 } 3132 3133 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3134 !signal_pending(current)) { 3135 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3136 kvmppc_vcore_end_preempt(vc); 3137 3138 if (vc->vcore_state != VCORE_INACTIVE) { 3139 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 3140 continue; 3141 } 3142 for_each_runnable_thread(i, v, vc) { 3143 kvmppc_core_prepare_to_enter(v); 3144 if (signal_pending(v->arch.run_task)) { 3145 kvmppc_remove_runnable(vc, v); 3146 v->stat.signal_exits++; 3147 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 3148 v->arch.ret = -EINTR; 3149 wake_up(&v->arch.cpu_run); 3150 } 3151 } 3152 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3153 break; 3154 n_ceded = 0; 3155 for_each_runnable_thread(i, v, vc) { 3156 if (!kvmppc_vcpu_woken(v)) 3157 n_ceded += v->arch.ceded; 3158 else 3159 v->arch.ceded = 0; 3160 } 3161 vc->runner = vcpu; 3162 if (n_ceded == vc->n_runnable) { 3163 kvmppc_vcore_blocked(vc); 3164 } else if (need_resched()) { 3165 kvmppc_vcore_preempt(vc); 3166 /* Let something else run */ 3167 cond_resched_lock(&vc->lock); 3168 if (vc->vcore_state == VCORE_PREEMPT) 3169 kvmppc_vcore_end_preempt(vc); 3170 } else { 3171 kvmppc_run_core(vc); 3172 } 3173 vc->runner = NULL; 3174 } 3175 3176 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3177 (vc->vcore_state == VCORE_RUNNING || 3178 vc->vcore_state == VCORE_EXITING || 3179 vc->vcore_state == VCORE_PIGGYBACK)) 3180 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 3181 3182 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3183 kvmppc_vcore_end_preempt(vc); 3184 3185 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3186 kvmppc_remove_runnable(vc, vcpu); 3187 vcpu->stat.signal_exits++; 3188 kvm_run->exit_reason = KVM_EXIT_INTR; 3189 vcpu->arch.ret = -EINTR; 3190 } 3191 3192 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 3193 /* Wake up some vcpu to run the core */ 3194 i = -1; 3195 v = next_runnable_thread(vc, &i); 3196 wake_up(&v->arch.cpu_run); 3197 } 3198 3199 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 3200 spin_unlock(&vc->lock); 3201 return vcpu->arch.ret; 3202 } 3203 3204 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 3205 { 3206 int r; 3207 int srcu_idx; 3208 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 3209 unsigned long user_tar = 0; 3210 unsigned int user_vrsave; 3211 3212 if (!vcpu->arch.sane) { 3213 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 3214 return -EINVAL; 3215 } 3216 3217 /* 3218 * Don't allow entry with a suspended transaction, because 3219 * the guest entry/exit code will lose it. 3220 * If the guest has TM enabled, save away their TM-related SPRs 3221 * (they will get restored by the TM unavailable interrupt). 3222 */ 3223 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 3224 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 3225 (current->thread.regs->msr & MSR_TM)) { 3226 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 3227 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3228 run->fail_entry.hardware_entry_failure_reason = 0; 3229 return -EINVAL; 3230 } 3231 /* Enable TM so we can read the TM SPRs */ 3232 mtmsr(mfmsr() | MSR_TM); 3233 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 3234 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 3235 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 3236 current->thread.regs->msr &= ~MSR_TM; 3237 } 3238 #endif 3239 3240 kvmppc_core_prepare_to_enter(vcpu); 3241 3242 /* No need to go into the guest when all we'll do is come back out */ 3243 if (signal_pending(current)) { 3244 run->exit_reason = KVM_EXIT_INTR; 3245 return -EINTR; 3246 } 3247 3248 atomic_inc(&vcpu->kvm->arch.vcpus_running); 3249 /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */ 3250 smp_mb(); 3251 3252 /* On the first time here, set up HTAB and VRMA */ 3253 if (!kvm_is_radix(vcpu->kvm) && !vcpu->kvm->arch.hpte_setup_done) { 3254 r = kvmppc_hv_setup_htab_rma(vcpu); 3255 if (r) 3256 goto out; 3257 } 3258 3259 flush_all_to_thread(current); 3260 3261 /* Save userspace EBB and other register values */ 3262 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 3263 ebb_regs[0] = mfspr(SPRN_EBBHR); 3264 ebb_regs[1] = mfspr(SPRN_EBBRR); 3265 ebb_regs[2] = mfspr(SPRN_BESCR); 3266 user_tar = mfspr(SPRN_TAR); 3267 } 3268 user_vrsave = mfspr(SPRN_VRSAVE); 3269 3270 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 3271 vcpu->arch.pgdir = current->mm->pgd; 3272 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 3273 3274 do { 3275 r = kvmppc_run_vcpu(run, vcpu); 3276 3277 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 3278 !(vcpu->arch.shregs.msr & MSR_PR)) { 3279 trace_kvm_hcall_enter(vcpu); 3280 r = kvmppc_pseries_do_hcall(vcpu); 3281 trace_kvm_hcall_exit(vcpu, r); 3282 kvmppc_core_prepare_to_enter(vcpu); 3283 } else if (r == RESUME_PAGE_FAULT) { 3284 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 3285 r = kvmppc_book3s_hv_page_fault(run, vcpu, 3286 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 3287 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 3288 } else if (r == RESUME_PASSTHROUGH) { 3289 if (WARN_ON(xive_enabled())) 3290 r = H_SUCCESS; 3291 else 3292 r = kvmppc_xics_rm_complete(vcpu, 0); 3293 } 3294 } while (is_kvmppc_resume_guest(r)); 3295 3296 /* Restore userspace EBB and other register values */ 3297 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 3298 mtspr(SPRN_EBBHR, ebb_regs[0]); 3299 mtspr(SPRN_EBBRR, ebb_regs[1]); 3300 mtspr(SPRN_BESCR, ebb_regs[2]); 3301 mtspr(SPRN_TAR, user_tar); 3302 mtspr(SPRN_FSCR, current->thread.fscr); 3303 } 3304 mtspr(SPRN_VRSAVE, user_vrsave); 3305 3306 out: 3307 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 3308 atomic_dec(&vcpu->kvm->arch.vcpus_running); 3309 return r; 3310 } 3311 3312 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 3313 int linux_psize) 3314 { 3315 struct mmu_psize_def *def = &mmu_psize_defs[linux_psize]; 3316 3317 if (!def->shift) 3318 return; 3319 (*sps)->page_shift = def->shift; 3320 (*sps)->slb_enc = def->sllp; 3321 (*sps)->enc[0].page_shift = def->shift; 3322 (*sps)->enc[0].pte_enc = def->penc[linux_psize]; 3323 /* 3324 * Add 16MB MPSS support if host supports it 3325 */ 3326 if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) { 3327 (*sps)->enc[1].page_shift = 24; 3328 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M]; 3329 } 3330 (*sps)++; 3331 } 3332 3333 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 3334 struct kvm_ppc_smmu_info *info) 3335 { 3336 struct kvm_ppc_one_seg_page_size *sps; 3337 3338 /* 3339 * Since we don't yet support HPT guests on a radix host, 3340 * return an error if the host uses radix. 3341 */ 3342 if (radix_enabled()) 3343 return -EINVAL; 3344 3345 /* 3346 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 3347 * POWER7 doesn't support keys for instruction accesses, 3348 * POWER8 and POWER9 do. 3349 */ 3350 info->data_keys = 32; 3351 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 3352 3353 info->flags = KVM_PPC_PAGE_SIZES_REAL; 3354 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 3355 info->flags |= KVM_PPC_1T_SEGMENTS; 3356 info->slb_size = mmu_slb_size; 3357 3358 /* We only support these sizes for now, and no muti-size segments */ 3359 sps = &info->sps[0]; 3360 kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K); 3361 kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K); 3362 kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M); 3363 3364 return 0; 3365 } 3366 3367 /* 3368 * Get (and clear) the dirty memory log for a memory slot. 3369 */ 3370 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 3371 struct kvm_dirty_log *log) 3372 { 3373 struct kvm_memslots *slots; 3374 struct kvm_memory_slot *memslot; 3375 int i, r; 3376 unsigned long n; 3377 unsigned long *buf; 3378 struct kvm_vcpu *vcpu; 3379 3380 mutex_lock(&kvm->slots_lock); 3381 3382 r = -EINVAL; 3383 if (log->slot >= KVM_USER_MEM_SLOTS) 3384 goto out; 3385 3386 slots = kvm_memslots(kvm); 3387 memslot = id_to_memslot(slots, log->slot); 3388 r = -ENOENT; 3389 if (!memslot->dirty_bitmap) 3390 goto out; 3391 3392 /* 3393 * Use second half of bitmap area because radix accumulates 3394 * bits in the first half. 3395 */ 3396 n = kvm_dirty_bitmap_bytes(memslot); 3397 buf = memslot->dirty_bitmap + n / sizeof(long); 3398 memset(buf, 0, n); 3399 3400 if (kvm_is_radix(kvm)) 3401 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 3402 else 3403 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 3404 if (r) 3405 goto out; 3406 3407 /* Harvest dirty bits from VPA and DTL updates */ 3408 /* Note: we never modify the SLB shadow buffer areas */ 3409 kvm_for_each_vcpu(i, vcpu, kvm) { 3410 spin_lock(&vcpu->arch.vpa_update_lock); 3411 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 3412 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 3413 spin_unlock(&vcpu->arch.vpa_update_lock); 3414 } 3415 3416 r = -EFAULT; 3417 if (copy_to_user(log->dirty_bitmap, buf, n)) 3418 goto out; 3419 3420 r = 0; 3421 out: 3422 mutex_unlock(&kvm->slots_lock); 3423 return r; 3424 } 3425 3426 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 3427 struct kvm_memory_slot *dont) 3428 { 3429 if (!dont || free->arch.rmap != dont->arch.rmap) { 3430 vfree(free->arch.rmap); 3431 free->arch.rmap = NULL; 3432 } 3433 } 3434 3435 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 3436 unsigned long npages) 3437 { 3438 /* 3439 * For now, if radix_enabled() then we only support radix guests, 3440 * and in that case we don't need the rmap array. 3441 */ 3442 if (radix_enabled()) { 3443 slot->arch.rmap = NULL; 3444 return 0; 3445 } 3446 3447 slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap)); 3448 if (!slot->arch.rmap) 3449 return -ENOMEM; 3450 3451 return 0; 3452 } 3453 3454 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 3455 struct kvm_memory_slot *memslot, 3456 const struct kvm_userspace_memory_region *mem) 3457 { 3458 return 0; 3459 } 3460 3461 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 3462 const struct kvm_userspace_memory_region *mem, 3463 const struct kvm_memory_slot *old, 3464 const struct kvm_memory_slot *new) 3465 { 3466 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 3467 struct kvm_memslots *slots; 3468 struct kvm_memory_slot *memslot; 3469 3470 /* 3471 * If we are making a new memslot, it might make 3472 * some address that was previously cached as emulated 3473 * MMIO be no longer emulated MMIO, so invalidate 3474 * all the caches of emulated MMIO translations. 3475 */ 3476 if (npages) 3477 atomic64_inc(&kvm->arch.mmio_update); 3478 3479 if (npages && old->npages && !kvm_is_radix(kvm)) { 3480 /* 3481 * If modifying a memslot, reset all the rmap dirty bits. 3482 * If this is a new memslot, we don't need to do anything 3483 * since the rmap array starts out as all zeroes, 3484 * i.e. no pages are dirty. 3485 */ 3486 slots = kvm_memslots(kvm); 3487 memslot = id_to_memslot(slots, mem->slot); 3488 kvmppc_hv_get_dirty_log_hpt(kvm, memslot, NULL); 3489 } 3490 } 3491 3492 /* 3493 * Update LPCR values in kvm->arch and in vcores. 3494 * Caller must hold kvm->lock. 3495 */ 3496 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 3497 { 3498 long int i; 3499 u32 cores_done = 0; 3500 3501 if ((kvm->arch.lpcr & mask) == lpcr) 3502 return; 3503 3504 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 3505 3506 for (i = 0; i < KVM_MAX_VCORES; ++i) { 3507 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 3508 if (!vc) 3509 continue; 3510 spin_lock(&vc->lock); 3511 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 3512 spin_unlock(&vc->lock); 3513 if (++cores_done >= kvm->arch.online_vcores) 3514 break; 3515 } 3516 } 3517 3518 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 3519 { 3520 return; 3521 } 3522 3523 static void kvmppc_setup_partition_table(struct kvm *kvm) 3524 { 3525 unsigned long dw0, dw1; 3526 3527 if (!kvm_is_radix(kvm)) { 3528 /* PS field - page size for VRMA */ 3529 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 3530 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 3531 /* HTABSIZE and HTABORG fields */ 3532 dw0 |= kvm->arch.sdr1; 3533 3534 /* Second dword as set by userspace */ 3535 dw1 = kvm->arch.process_table; 3536 } else { 3537 dw0 = PATB_HR | radix__get_tree_size() | 3538 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 3539 dw1 = PATB_GR | kvm->arch.process_table; 3540 } 3541 3542 mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1); 3543 } 3544 3545 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 3546 { 3547 int err = 0; 3548 struct kvm *kvm = vcpu->kvm; 3549 unsigned long hva; 3550 struct kvm_memory_slot *memslot; 3551 struct vm_area_struct *vma; 3552 unsigned long lpcr = 0, senc; 3553 unsigned long psize, porder; 3554 int srcu_idx; 3555 3556 mutex_lock(&kvm->lock); 3557 if (kvm->arch.hpte_setup_done) 3558 goto out; /* another vcpu beat us to it */ 3559 3560 /* Allocate hashed page table (if not done already) and reset it */ 3561 if (!kvm->arch.hpt.virt) { 3562 int order = KVM_DEFAULT_HPT_ORDER; 3563 struct kvm_hpt_info info; 3564 3565 err = kvmppc_allocate_hpt(&info, order); 3566 /* If we get here, it means userspace didn't specify a 3567 * size explicitly. So, try successively smaller 3568 * sizes if the default failed. */ 3569 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 3570 err = kvmppc_allocate_hpt(&info, order); 3571 3572 if (err < 0) { 3573 pr_err("KVM: Couldn't alloc HPT\n"); 3574 goto out; 3575 } 3576 3577 kvmppc_set_hpt(kvm, &info); 3578 } 3579 3580 /* Look up the memslot for guest physical address 0 */ 3581 srcu_idx = srcu_read_lock(&kvm->srcu); 3582 memslot = gfn_to_memslot(kvm, 0); 3583 3584 /* We must have some memory at 0 by now */ 3585 err = -EINVAL; 3586 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 3587 goto out_srcu; 3588 3589 /* Look up the VMA for the start of this memory slot */ 3590 hva = memslot->userspace_addr; 3591 down_read(¤t->mm->mmap_sem); 3592 vma = find_vma(current->mm, hva); 3593 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 3594 goto up_out; 3595 3596 psize = vma_kernel_pagesize(vma); 3597 porder = __ilog2(psize); 3598 3599 up_read(¤t->mm->mmap_sem); 3600 3601 /* We can handle 4k, 64k or 16M pages in the VRMA */ 3602 err = -EINVAL; 3603 if (!(psize == 0x1000 || psize == 0x10000 || 3604 psize == 0x1000000)) 3605 goto out_srcu; 3606 3607 senc = slb_pgsize_encoding(psize); 3608 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 3609 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3610 /* Create HPTEs in the hash page table for the VRMA */ 3611 kvmppc_map_vrma(vcpu, memslot, porder); 3612 3613 /* Update VRMASD field in the LPCR */ 3614 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 3615 /* the -4 is to account for senc values starting at 0x10 */ 3616 lpcr = senc << (LPCR_VRMASD_SH - 4); 3617 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 3618 } else { 3619 kvmppc_setup_partition_table(kvm); 3620 } 3621 3622 /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */ 3623 smp_wmb(); 3624 kvm->arch.hpte_setup_done = 1; 3625 err = 0; 3626 out_srcu: 3627 srcu_read_unlock(&kvm->srcu, srcu_idx); 3628 out: 3629 mutex_unlock(&kvm->lock); 3630 return err; 3631 3632 up_out: 3633 up_read(¤t->mm->mmap_sem); 3634 goto out_srcu; 3635 } 3636 3637 #ifdef CONFIG_KVM_XICS 3638 /* 3639 * Allocate a per-core structure for managing state about which cores are 3640 * running in the host versus the guest and for exchanging data between 3641 * real mode KVM and CPU running in the host. 3642 * This is only done for the first VM. 3643 * The allocated structure stays even if all VMs have stopped. 3644 * It is only freed when the kvm-hv module is unloaded. 3645 * It's OK for this routine to fail, we just don't support host 3646 * core operations like redirecting H_IPI wakeups. 3647 */ 3648 void kvmppc_alloc_host_rm_ops(void) 3649 { 3650 struct kvmppc_host_rm_ops *ops; 3651 unsigned long l_ops; 3652 int cpu, core; 3653 int size; 3654 3655 /* Not the first time here ? */ 3656 if (kvmppc_host_rm_ops_hv != NULL) 3657 return; 3658 3659 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 3660 if (!ops) 3661 return; 3662 3663 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 3664 ops->rm_core = kzalloc(size, GFP_KERNEL); 3665 3666 if (!ops->rm_core) { 3667 kfree(ops); 3668 return; 3669 } 3670 3671 cpus_read_lock(); 3672 3673 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 3674 if (!cpu_online(cpu)) 3675 continue; 3676 3677 core = cpu >> threads_shift; 3678 ops->rm_core[core].rm_state.in_host = 1; 3679 } 3680 3681 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 3682 3683 /* 3684 * Make the contents of the kvmppc_host_rm_ops structure visible 3685 * to other CPUs before we assign it to the global variable. 3686 * Do an atomic assignment (no locks used here), but if someone 3687 * beats us to it, just free our copy and return. 3688 */ 3689 smp_wmb(); 3690 l_ops = (unsigned long) ops; 3691 3692 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 3693 cpus_read_unlock(); 3694 kfree(ops->rm_core); 3695 kfree(ops); 3696 return; 3697 } 3698 3699 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 3700 "ppc/kvm_book3s:prepare", 3701 kvmppc_set_host_core, 3702 kvmppc_clear_host_core); 3703 cpus_read_unlock(); 3704 } 3705 3706 void kvmppc_free_host_rm_ops(void) 3707 { 3708 if (kvmppc_host_rm_ops_hv) { 3709 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 3710 kfree(kvmppc_host_rm_ops_hv->rm_core); 3711 kfree(kvmppc_host_rm_ops_hv); 3712 kvmppc_host_rm_ops_hv = NULL; 3713 } 3714 } 3715 #endif 3716 3717 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 3718 { 3719 unsigned long lpcr, lpid; 3720 char buf[32]; 3721 int ret; 3722 3723 /* Allocate the guest's logical partition ID */ 3724 3725 lpid = kvmppc_alloc_lpid(); 3726 if ((long)lpid < 0) 3727 return -ENOMEM; 3728 kvm->arch.lpid = lpid; 3729 3730 kvmppc_alloc_host_rm_ops(); 3731 3732 /* 3733 * Since we don't flush the TLB when tearing down a VM, 3734 * and this lpid might have previously been used, 3735 * make sure we flush on each core before running the new VM. 3736 * On POWER9, the tlbie in mmu_partition_table_set_entry() 3737 * does this flush for us. 3738 */ 3739 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3740 cpumask_setall(&kvm->arch.need_tlb_flush); 3741 3742 /* Start out with the default set of hcalls enabled */ 3743 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 3744 sizeof(kvm->arch.enabled_hcalls)); 3745 3746 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3747 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 3748 3749 /* Init LPCR for virtual RMA mode */ 3750 kvm->arch.host_lpid = mfspr(SPRN_LPID); 3751 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 3752 lpcr &= LPCR_PECE | LPCR_LPES; 3753 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 3754 LPCR_VPM0 | LPCR_VPM1; 3755 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 3756 (VRMA_VSID << SLB_VSID_SHIFT_1T); 3757 /* On POWER8 turn on online bit to enable PURR/SPURR */ 3758 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3759 lpcr |= LPCR_ONL; 3760 /* 3761 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 3762 * Set HVICE bit to enable hypervisor virtualization interrupts. 3763 * Set HEIC to prevent OS interrupts to go to hypervisor (should 3764 * be unnecessary but better safe than sorry in case we re-enable 3765 * EE in HV mode with this LPCR still set) 3766 */ 3767 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 3768 lpcr &= ~LPCR_VPM0; 3769 lpcr |= LPCR_HVICE | LPCR_HEIC; 3770 3771 /* 3772 * If xive is enabled, we route 0x500 interrupts directly 3773 * to the guest. 3774 */ 3775 if (xive_enabled()) 3776 lpcr |= LPCR_LPES; 3777 } 3778 3779 /* 3780 * For now, if the host uses radix, the guest must be radix. 3781 */ 3782 if (radix_enabled()) { 3783 kvm->arch.radix = 1; 3784 lpcr &= ~LPCR_VPM1; 3785 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 3786 ret = kvmppc_init_vm_radix(kvm); 3787 if (ret) { 3788 kvmppc_free_lpid(kvm->arch.lpid); 3789 return ret; 3790 } 3791 kvmppc_setup_partition_table(kvm); 3792 } 3793 3794 kvm->arch.lpcr = lpcr; 3795 3796 /* Initialization for future HPT resizes */ 3797 kvm->arch.resize_hpt = NULL; 3798 3799 /* 3800 * Work out how many sets the TLB has, for the use of 3801 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 3802 */ 3803 if (kvm_is_radix(kvm)) 3804 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 3805 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 3806 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 3807 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 3808 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 3809 else 3810 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 3811 3812 /* 3813 * Track that we now have a HV mode VM active. This blocks secondary 3814 * CPU threads from coming online. 3815 * On POWER9, we only need to do this for HPT guests on a radix 3816 * host, which is not yet supported. 3817 */ 3818 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3819 kvm_hv_vm_activated(); 3820 3821 /* 3822 * Initialize smt_mode depending on processor. 3823 * POWER8 and earlier have to use "strict" threading, where 3824 * all vCPUs in a vcore have to run on the same (sub)core, 3825 * whereas on POWER9 the threads can each run a different 3826 * guest. 3827 */ 3828 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3829 kvm->arch.smt_mode = threads_per_subcore; 3830 else 3831 kvm->arch.smt_mode = 1; 3832 kvm->arch.emul_smt_mode = 1; 3833 3834 /* 3835 * Create a debugfs directory for the VM 3836 */ 3837 snprintf(buf, sizeof(buf), "vm%d", current->pid); 3838 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 3839 if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 3840 kvmppc_mmu_debugfs_init(kvm); 3841 3842 return 0; 3843 } 3844 3845 static void kvmppc_free_vcores(struct kvm *kvm) 3846 { 3847 long int i; 3848 3849 for (i = 0; i < KVM_MAX_VCORES; ++i) 3850 kfree(kvm->arch.vcores[i]); 3851 kvm->arch.online_vcores = 0; 3852 } 3853 3854 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 3855 { 3856 debugfs_remove_recursive(kvm->arch.debugfs_dir); 3857 3858 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 3859 kvm_hv_vm_deactivated(); 3860 3861 kvmppc_free_vcores(kvm); 3862 3863 kvmppc_free_lpid(kvm->arch.lpid); 3864 3865 if (kvm_is_radix(kvm)) 3866 kvmppc_free_radix(kvm); 3867 else 3868 kvmppc_free_hpt(&kvm->arch.hpt); 3869 3870 kvmppc_free_pimap(kvm); 3871 } 3872 3873 /* We don't need to emulate any privileged instructions or dcbz */ 3874 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 3875 unsigned int inst, int *advance) 3876 { 3877 return EMULATE_FAIL; 3878 } 3879 3880 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 3881 ulong spr_val) 3882 { 3883 return EMULATE_FAIL; 3884 } 3885 3886 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 3887 ulong *spr_val) 3888 { 3889 return EMULATE_FAIL; 3890 } 3891 3892 static int kvmppc_core_check_processor_compat_hv(void) 3893 { 3894 if (!cpu_has_feature(CPU_FTR_HVMODE) || 3895 !cpu_has_feature(CPU_FTR_ARCH_206)) 3896 return -EIO; 3897 3898 return 0; 3899 } 3900 3901 #ifdef CONFIG_KVM_XICS 3902 3903 void kvmppc_free_pimap(struct kvm *kvm) 3904 { 3905 kfree(kvm->arch.pimap); 3906 } 3907 3908 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 3909 { 3910 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 3911 } 3912 3913 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 3914 { 3915 struct irq_desc *desc; 3916 struct kvmppc_irq_map *irq_map; 3917 struct kvmppc_passthru_irqmap *pimap; 3918 struct irq_chip *chip; 3919 int i, rc = 0; 3920 3921 if (!kvm_irq_bypass) 3922 return 1; 3923 3924 desc = irq_to_desc(host_irq); 3925 if (!desc) 3926 return -EIO; 3927 3928 mutex_lock(&kvm->lock); 3929 3930 pimap = kvm->arch.pimap; 3931 if (pimap == NULL) { 3932 /* First call, allocate structure to hold IRQ map */ 3933 pimap = kvmppc_alloc_pimap(); 3934 if (pimap == NULL) { 3935 mutex_unlock(&kvm->lock); 3936 return -ENOMEM; 3937 } 3938 kvm->arch.pimap = pimap; 3939 } 3940 3941 /* 3942 * For now, we only support interrupts for which the EOI operation 3943 * is an OPAL call followed by a write to XIRR, since that's 3944 * what our real-mode EOI code does, or a XIVE interrupt 3945 */ 3946 chip = irq_data_get_irq_chip(&desc->irq_data); 3947 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 3948 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 3949 host_irq, guest_gsi); 3950 mutex_unlock(&kvm->lock); 3951 return -ENOENT; 3952 } 3953 3954 /* 3955 * See if we already have an entry for this guest IRQ number. 3956 * If it's mapped to a hardware IRQ number, that's an error, 3957 * otherwise re-use this entry. 3958 */ 3959 for (i = 0; i < pimap->n_mapped; i++) { 3960 if (guest_gsi == pimap->mapped[i].v_hwirq) { 3961 if (pimap->mapped[i].r_hwirq) { 3962 mutex_unlock(&kvm->lock); 3963 return -EINVAL; 3964 } 3965 break; 3966 } 3967 } 3968 3969 if (i == KVMPPC_PIRQ_MAPPED) { 3970 mutex_unlock(&kvm->lock); 3971 return -EAGAIN; /* table is full */ 3972 } 3973 3974 irq_map = &pimap->mapped[i]; 3975 3976 irq_map->v_hwirq = guest_gsi; 3977 irq_map->desc = desc; 3978 3979 /* 3980 * Order the above two stores before the next to serialize with 3981 * the KVM real mode handler. 3982 */ 3983 smp_wmb(); 3984 irq_map->r_hwirq = desc->irq_data.hwirq; 3985 3986 if (i == pimap->n_mapped) 3987 pimap->n_mapped++; 3988 3989 if (xive_enabled()) 3990 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 3991 else 3992 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 3993 if (rc) 3994 irq_map->r_hwirq = 0; 3995 3996 mutex_unlock(&kvm->lock); 3997 3998 return 0; 3999 } 4000 4001 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 4002 { 4003 struct irq_desc *desc; 4004 struct kvmppc_passthru_irqmap *pimap; 4005 int i, rc = 0; 4006 4007 if (!kvm_irq_bypass) 4008 return 0; 4009 4010 desc = irq_to_desc(host_irq); 4011 if (!desc) 4012 return -EIO; 4013 4014 mutex_lock(&kvm->lock); 4015 if (!kvm->arch.pimap) 4016 goto unlock; 4017 4018 pimap = kvm->arch.pimap; 4019 4020 for (i = 0; i < pimap->n_mapped; i++) { 4021 if (guest_gsi == pimap->mapped[i].v_hwirq) 4022 break; 4023 } 4024 4025 if (i == pimap->n_mapped) { 4026 mutex_unlock(&kvm->lock); 4027 return -ENODEV; 4028 } 4029 4030 if (xive_enabled()) 4031 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 4032 else 4033 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 4034 4035 /* invalidate the entry (what do do on error from the above ?) */ 4036 pimap->mapped[i].r_hwirq = 0; 4037 4038 /* 4039 * We don't free this structure even when the count goes to 4040 * zero. The structure is freed when we destroy the VM. 4041 */ 4042 unlock: 4043 mutex_unlock(&kvm->lock); 4044 return rc; 4045 } 4046 4047 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 4048 struct irq_bypass_producer *prod) 4049 { 4050 int ret = 0; 4051 struct kvm_kernel_irqfd *irqfd = 4052 container_of(cons, struct kvm_kernel_irqfd, consumer); 4053 4054 irqfd->producer = prod; 4055 4056 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 4057 if (ret) 4058 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 4059 prod->irq, irqfd->gsi, ret); 4060 4061 return ret; 4062 } 4063 4064 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 4065 struct irq_bypass_producer *prod) 4066 { 4067 int ret; 4068 struct kvm_kernel_irqfd *irqfd = 4069 container_of(cons, struct kvm_kernel_irqfd, consumer); 4070 4071 irqfd->producer = NULL; 4072 4073 /* 4074 * When producer of consumer is unregistered, we change back to 4075 * default external interrupt handling mode - KVM real mode 4076 * will switch back to host. 4077 */ 4078 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 4079 if (ret) 4080 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 4081 prod->irq, irqfd->gsi, ret); 4082 } 4083 #endif 4084 4085 static long kvm_arch_vm_ioctl_hv(struct file *filp, 4086 unsigned int ioctl, unsigned long arg) 4087 { 4088 struct kvm *kvm __maybe_unused = filp->private_data; 4089 void __user *argp = (void __user *)arg; 4090 long r; 4091 4092 switch (ioctl) { 4093 4094 case KVM_PPC_ALLOCATE_HTAB: { 4095 u32 htab_order; 4096 4097 r = -EFAULT; 4098 if (get_user(htab_order, (u32 __user *)argp)) 4099 break; 4100 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 4101 if (r) 4102 break; 4103 r = 0; 4104 break; 4105 } 4106 4107 case KVM_PPC_GET_HTAB_FD: { 4108 struct kvm_get_htab_fd ghf; 4109 4110 r = -EFAULT; 4111 if (copy_from_user(&ghf, argp, sizeof(ghf))) 4112 break; 4113 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 4114 break; 4115 } 4116 4117 case KVM_PPC_RESIZE_HPT_PREPARE: { 4118 struct kvm_ppc_resize_hpt rhpt; 4119 4120 r = -EFAULT; 4121 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 4122 break; 4123 4124 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 4125 break; 4126 } 4127 4128 case KVM_PPC_RESIZE_HPT_COMMIT: { 4129 struct kvm_ppc_resize_hpt rhpt; 4130 4131 r = -EFAULT; 4132 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 4133 break; 4134 4135 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 4136 break; 4137 } 4138 4139 default: 4140 r = -ENOTTY; 4141 } 4142 4143 return r; 4144 } 4145 4146 /* 4147 * List of hcall numbers to enable by default. 4148 * For compatibility with old userspace, we enable by default 4149 * all hcalls that were implemented before the hcall-enabling 4150 * facility was added. Note this list should not include H_RTAS. 4151 */ 4152 static unsigned int default_hcall_list[] = { 4153 H_REMOVE, 4154 H_ENTER, 4155 H_READ, 4156 H_PROTECT, 4157 H_BULK_REMOVE, 4158 H_GET_TCE, 4159 H_PUT_TCE, 4160 H_SET_DABR, 4161 H_SET_XDABR, 4162 H_CEDE, 4163 H_PROD, 4164 H_CONFER, 4165 H_REGISTER_VPA, 4166 #ifdef CONFIG_KVM_XICS 4167 H_EOI, 4168 H_CPPR, 4169 H_IPI, 4170 H_IPOLL, 4171 H_XIRR, 4172 H_XIRR_X, 4173 #endif 4174 0 4175 }; 4176 4177 static void init_default_hcalls(void) 4178 { 4179 int i; 4180 unsigned int hcall; 4181 4182 for (i = 0; default_hcall_list[i]; ++i) { 4183 hcall = default_hcall_list[i]; 4184 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 4185 __set_bit(hcall / 4, default_enabled_hcalls); 4186 } 4187 } 4188 4189 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 4190 { 4191 unsigned long lpcr; 4192 int radix; 4193 4194 /* If not on a POWER9, reject it */ 4195 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4196 return -ENODEV; 4197 4198 /* If any unknown flags set, reject it */ 4199 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 4200 return -EINVAL; 4201 4202 /* We can't change a guest to/from radix yet */ 4203 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 4204 if (radix != kvm_is_radix(kvm)) 4205 return -EINVAL; 4206 4207 /* GR (guest radix) bit in process_table field must match */ 4208 if (!!(cfg->process_table & PATB_GR) != radix) 4209 return -EINVAL; 4210 4211 /* Process table size field must be reasonable, i.e. <= 24 */ 4212 if ((cfg->process_table & PRTS_MASK) > 24) 4213 return -EINVAL; 4214 4215 mutex_lock(&kvm->lock); 4216 kvm->arch.process_table = cfg->process_table; 4217 kvmppc_setup_partition_table(kvm); 4218 4219 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 4220 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 4221 mutex_unlock(&kvm->lock); 4222 4223 return 0; 4224 } 4225 4226 static struct kvmppc_ops kvm_ops_hv = { 4227 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 4228 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 4229 .get_one_reg = kvmppc_get_one_reg_hv, 4230 .set_one_reg = kvmppc_set_one_reg_hv, 4231 .vcpu_load = kvmppc_core_vcpu_load_hv, 4232 .vcpu_put = kvmppc_core_vcpu_put_hv, 4233 .set_msr = kvmppc_set_msr_hv, 4234 .vcpu_run = kvmppc_vcpu_run_hv, 4235 .vcpu_create = kvmppc_core_vcpu_create_hv, 4236 .vcpu_free = kvmppc_core_vcpu_free_hv, 4237 .check_requests = kvmppc_core_check_requests_hv, 4238 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 4239 .flush_memslot = kvmppc_core_flush_memslot_hv, 4240 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 4241 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 4242 .unmap_hva = kvm_unmap_hva_hv, 4243 .unmap_hva_range = kvm_unmap_hva_range_hv, 4244 .age_hva = kvm_age_hva_hv, 4245 .test_age_hva = kvm_test_age_hva_hv, 4246 .set_spte_hva = kvm_set_spte_hva_hv, 4247 .mmu_destroy = kvmppc_mmu_destroy_hv, 4248 .free_memslot = kvmppc_core_free_memslot_hv, 4249 .create_memslot = kvmppc_core_create_memslot_hv, 4250 .init_vm = kvmppc_core_init_vm_hv, 4251 .destroy_vm = kvmppc_core_destroy_vm_hv, 4252 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 4253 .emulate_op = kvmppc_core_emulate_op_hv, 4254 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 4255 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 4256 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 4257 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 4258 .hcall_implemented = kvmppc_hcall_impl_hv, 4259 #ifdef CONFIG_KVM_XICS 4260 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 4261 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 4262 #endif 4263 .configure_mmu = kvmhv_configure_mmu, 4264 .get_rmmu_info = kvmhv_get_rmmu_info, 4265 .set_smt_mode = kvmhv_set_smt_mode, 4266 }; 4267 4268 static int kvm_init_subcore_bitmap(void) 4269 { 4270 int i, j; 4271 int nr_cores = cpu_nr_cores(); 4272 struct sibling_subcore_state *sibling_subcore_state; 4273 4274 for (i = 0; i < nr_cores; i++) { 4275 int first_cpu = i * threads_per_core; 4276 int node = cpu_to_node(first_cpu); 4277 4278 /* Ignore if it is already allocated. */ 4279 if (paca[first_cpu].sibling_subcore_state) 4280 continue; 4281 4282 sibling_subcore_state = 4283 kmalloc_node(sizeof(struct sibling_subcore_state), 4284 GFP_KERNEL, node); 4285 if (!sibling_subcore_state) 4286 return -ENOMEM; 4287 4288 memset(sibling_subcore_state, 0, 4289 sizeof(struct sibling_subcore_state)); 4290 4291 for (j = 0; j < threads_per_core; j++) { 4292 int cpu = first_cpu + j; 4293 4294 paca[cpu].sibling_subcore_state = sibling_subcore_state; 4295 } 4296 } 4297 return 0; 4298 } 4299 4300 static int kvmppc_radix_possible(void) 4301 { 4302 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 4303 } 4304 4305 static int kvmppc_book3s_init_hv(void) 4306 { 4307 int r; 4308 /* 4309 * FIXME!! Do we need to check on all cpus ? 4310 */ 4311 r = kvmppc_core_check_processor_compat_hv(); 4312 if (r < 0) 4313 return -ENODEV; 4314 4315 r = kvm_init_subcore_bitmap(); 4316 if (r) 4317 return r; 4318 4319 /* 4320 * We need a way of accessing the XICS interrupt controller, 4321 * either directly, via paca[cpu].kvm_hstate.xics_phys, or 4322 * indirectly, via OPAL. 4323 */ 4324 #ifdef CONFIG_SMP 4325 if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) { 4326 struct device_node *np; 4327 4328 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 4329 if (!np) { 4330 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 4331 return -ENODEV; 4332 } 4333 } 4334 #endif 4335 4336 kvm_ops_hv.owner = THIS_MODULE; 4337 kvmppc_hv_ops = &kvm_ops_hv; 4338 4339 init_default_hcalls(); 4340 4341 init_vcore_lists(); 4342 4343 r = kvmppc_mmu_hv_init(); 4344 if (r) 4345 return r; 4346 4347 if (kvmppc_radix_possible()) 4348 r = kvmppc_radix_init(); 4349 return r; 4350 } 4351 4352 static void kvmppc_book3s_exit_hv(void) 4353 { 4354 kvmppc_free_host_rm_ops(); 4355 if (kvmppc_radix_possible()) 4356 kvmppc_radix_exit(); 4357 kvmppc_hv_ops = NULL; 4358 } 4359 4360 module_init(kvmppc_book3s_init_hv); 4361 module_exit(kvmppc_book3s_exit_hv); 4362 MODULE_LICENSE("GPL"); 4363 MODULE_ALIAS_MISCDEV(KVM_MINOR); 4364 MODULE_ALIAS("devname:kvm"); 4365 4366