1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 46 #include <asm/ftrace.h> 47 #include <asm/reg.h> 48 #include <asm/ppc-opcode.h> 49 #include <asm/asm-prototypes.h> 50 #include <asm/archrandom.h> 51 #include <asm/debug.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <linux/uaccess.h> 56 #include <asm/interrupt.h> 57 #include <asm/io.h> 58 #include <asm/kvm_ppc.h> 59 #include <asm/kvm_book3s.h> 60 #include <asm/mmu_context.h> 61 #include <asm/lppaca.h> 62 #include <asm/processor.h> 63 #include <asm/cputhreads.h> 64 #include <asm/page.h> 65 #include <asm/hvcall.h> 66 #include <asm/switch_to.h> 67 #include <asm/smp.h> 68 #include <asm/dbell.h> 69 #include <asm/hmi.h> 70 #include <asm/pnv-pci.h> 71 #include <asm/mmu.h> 72 #include <asm/opal.h> 73 #include <asm/xics.h> 74 #include <asm/xive.h> 75 #include <asm/hw_breakpoint.h> 76 #include <asm/kvm_book3s_uvmem.h> 77 #include <asm/ultravisor.h> 78 #include <asm/dtl.h> 79 80 #include "book3s.h" 81 82 #define CREATE_TRACE_POINTS 83 #include "trace_hv.h" 84 85 /* #define EXIT_DEBUG */ 86 /* #define EXIT_DEBUG_SIMPLE */ 87 /* #define EXIT_DEBUG_INT */ 88 89 /* Used to indicate that a guest page fault needs to be handled */ 90 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 91 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 92 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 93 94 /* Used as a "null" value for timebase values */ 95 #define TB_NIL (~(u64)0) 96 97 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 98 99 static int dynamic_mt_modes = 6; 100 module_param(dynamic_mt_modes, int, 0644); 101 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 102 static int target_smt_mode; 103 module_param(target_smt_mode, int, 0644); 104 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 105 106 static bool indep_threads_mode = true; 107 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 108 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 109 110 static bool one_vm_per_core; 111 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 112 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)"); 113 114 #ifdef CONFIG_KVM_XICS 115 static const struct kernel_param_ops module_param_ops = { 116 .set = param_set_int, 117 .get = param_get_int, 118 }; 119 120 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 121 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 122 123 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 124 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 125 #endif 126 127 /* If set, guests are allowed to create and control nested guests */ 128 static bool nested = true; 129 module_param(nested, bool, S_IRUGO | S_IWUSR); 130 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 131 132 static inline bool nesting_enabled(struct kvm *kvm) 133 { 134 return kvm->arch.nested_enable && kvm_is_radix(kvm); 135 } 136 137 /* If set, the threads on each CPU core have to be in the same MMU mode */ 138 static bool no_mixing_hpt_and_radix __read_mostly; 139 140 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 141 142 /* 143 * RWMR values for POWER8. These control the rate at which PURR 144 * and SPURR count and should be set according to the number of 145 * online threads in the vcore being run. 146 */ 147 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 148 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 149 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 150 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 151 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 152 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 153 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 154 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 155 156 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 157 RWMR_RPA_P8_1THREAD, 158 RWMR_RPA_P8_1THREAD, 159 RWMR_RPA_P8_2THREAD, 160 RWMR_RPA_P8_3THREAD, 161 RWMR_RPA_P8_4THREAD, 162 RWMR_RPA_P8_5THREAD, 163 RWMR_RPA_P8_6THREAD, 164 RWMR_RPA_P8_7THREAD, 165 RWMR_RPA_P8_8THREAD, 166 }; 167 168 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 169 int *ip) 170 { 171 int i = *ip; 172 struct kvm_vcpu *vcpu; 173 174 while (++i < MAX_SMT_THREADS) { 175 vcpu = READ_ONCE(vc->runnable_threads[i]); 176 if (vcpu) { 177 *ip = i; 178 return vcpu; 179 } 180 } 181 return NULL; 182 } 183 184 /* Used to traverse the list of runnable threads for a given vcore */ 185 #define for_each_runnable_thread(i, vcpu, vc) \ 186 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 187 188 static bool kvmppc_ipi_thread(int cpu) 189 { 190 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 191 192 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 193 if (kvmhv_on_pseries()) 194 return false; 195 196 /* On POWER9 we can use msgsnd to IPI any cpu */ 197 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 198 msg |= get_hard_smp_processor_id(cpu); 199 smp_mb(); 200 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 201 return true; 202 } 203 204 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 205 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 206 preempt_disable(); 207 if (cpu_first_thread_sibling(cpu) == 208 cpu_first_thread_sibling(smp_processor_id())) { 209 msg |= cpu_thread_in_core(cpu); 210 smp_mb(); 211 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 212 preempt_enable(); 213 return true; 214 } 215 preempt_enable(); 216 } 217 218 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 219 if (cpu >= 0 && cpu < nr_cpu_ids) { 220 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 221 xics_wake_cpu(cpu); 222 return true; 223 } 224 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 225 return true; 226 } 227 #endif 228 229 return false; 230 } 231 232 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 233 { 234 int cpu; 235 struct rcuwait *waitp; 236 237 waitp = kvm_arch_vcpu_get_wait(vcpu); 238 if (rcuwait_wake_up(waitp)) 239 ++vcpu->stat.halt_wakeup; 240 241 cpu = READ_ONCE(vcpu->arch.thread_cpu); 242 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 243 return; 244 245 /* CPU points to the first thread of the core */ 246 cpu = vcpu->cpu; 247 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 248 smp_send_reschedule(cpu); 249 } 250 251 /* 252 * We use the vcpu_load/put functions to measure stolen time. 253 * Stolen time is counted as time when either the vcpu is able to 254 * run as part of a virtual core, but the task running the vcore 255 * is preempted or sleeping, or when the vcpu needs something done 256 * in the kernel by the task running the vcpu, but that task is 257 * preempted or sleeping. Those two things have to be counted 258 * separately, since one of the vcpu tasks will take on the job 259 * of running the core, and the other vcpu tasks in the vcore will 260 * sleep waiting for it to do that, but that sleep shouldn't count 261 * as stolen time. 262 * 263 * Hence we accumulate stolen time when the vcpu can run as part of 264 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 265 * needs its task to do other things in the kernel (for example, 266 * service a page fault) in busy_stolen. We don't accumulate 267 * stolen time for a vcore when it is inactive, or for a vcpu 268 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 269 * a misnomer; it means that the vcpu task is not executing in 270 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 271 * the kernel. We don't have any way of dividing up that time 272 * between time that the vcpu is genuinely stopped, time that 273 * the task is actively working on behalf of the vcpu, and time 274 * that the task is preempted, so we don't count any of it as 275 * stolen. 276 * 277 * Updates to busy_stolen are protected by arch.tbacct_lock; 278 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 279 * lock. The stolen times are measured in units of timebase ticks. 280 * (Note that the != TB_NIL checks below are purely defensive; 281 * they should never fail.) 282 */ 283 284 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 285 { 286 unsigned long flags; 287 288 spin_lock_irqsave(&vc->stoltb_lock, flags); 289 vc->preempt_tb = mftb(); 290 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 291 } 292 293 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 294 { 295 unsigned long flags; 296 297 spin_lock_irqsave(&vc->stoltb_lock, flags); 298 if (vc->preempt_tb != TB_NIL) { 299 vc->stolen_tb += mftb() - vc->preempt_tb; 300 vc->preempt_tb = TB_NIL; 301 } 302 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 303 } 304 305 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 306 { 307 struct kvmppc_vcore *vc = vcpu->arch.vcore; 308 unsigned long flags; 309 310 /* 311 * We can test vc->runner without taking the vcore lock, 312 * because only this task ever sets vc->runner to this 313 * vcpu, and once it is set to this vcpu, only this task 314 * ever sets it to NULL. 315 */ 316 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 317 kvmppc_core_end_stolen(vc); 318 319 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 320 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 321 vcpu->arch.busy_preempt != TB_NIL) { 322 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 323 vcpu->arch.busy_preempt = TB_NIL; 324 } 325 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 326 } 327 328 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 329 { 330 struct kvmppc_vcore *vc = vcpu->arch.vcore; 331 unsigned long flags; 332 333 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 334 kvmppc_core_start_stolen(vc); 335 336 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 337 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 338 vcpu->arch.busy_preempt = mftb(); 339 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 340 } 341 342 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 343 { 344 vcpu->arch.pvr = pvr; 345 } 346 347 /* Dummy value used in computing PCR value below */ 348 #define PCR_ARCH_31 (PCR_ARCH_300 << 1) 349 350 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 351 { 352 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 353 struct kvmppc_vcore *vc = vcpu->arch.vcore; 354 355 /* We can (emulate) our own architecture version and anything older */ 356 if (cpu_has_feature(CPU_FTR_ARCH_31)) 357 host_pcr_bit = PCR_ARCH_31; 358 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 359 host_pcr_bit = PCR_ARCH_300; 360 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 361 host_pcr_bit = PCR_ARCH_207; 362 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 363 host_pcr_bit = PCR_ARCH_206; 364 else 365 host_pcr_bit = PCR_ARCH_205; 366 367 /* Determine lowest PCR bit needed to run guest in given PVR level */ 368 guest_pcr_bit = host_pcr_bit; 369 if (arch_compat) { 370 switch (arch_compat) { 371 case PVR_ARCH_205: 372 guest_pcr_bit = PCR_ARCH_205; 373 break; 374 case PVR_ARCH_206: 375 case PVR_ARCH_206p: 376 guest_pcr_bit = PCR_ARCH_206; 377 break; 378 case PVR_ARCH_207: 379 guest_pcr_bit = PCR_ARCH_207; 380 break; 381 case PVR_ARCH_300: 382 guest_pcr_bit = PCR_ARCH_300; 383 break; 384 case PVR_ARCH_31: 385 guest_pcr_bit = PCR_ARCH_31; 386 break; 387 default: 388 return -EINVAL; 389 } 390 } 391 392 /* Check requested PCR bits don't exceed our capabilities */ 393 if (guest_pcr_bit > host_pcr_bit) 394 return -EINVAL; 395 396 spin_lock(&vc->lock); 397 vc->arch_compat = arch_compat; 398 /* 399 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 400 * Also set all reserved PCR bits 401 */ 402 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 403 spin_unlock(&vc->lock); 404 405 return 0; 406 } 407 408 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 409 { 410 int r; 411 412 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 413 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 414 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 415 for (r = 0; r < 16; ++r) 416 pr_err("r%2d = %.16lx r%d = %.16lx\n", 417 r, kvmppc_get_gpr(vcpu, r), 418 r+16, kvmppc_get_gpr(vcpu, r+16)); 419 pr_err("ctr = %.16lx lr = %.16lx\n", 420 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 421 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 422 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 423 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 424 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 425 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 426 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 427 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 428 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 429 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 430 pr_err("fault dar = %.16lx dsisr = %.8x\n", 431 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 432 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 433 for (r = 0; r < vcpu->arch.slb_max; ++r) 434 pr_err(" ESID = %.16llx VSID = %.16llx\n", 435 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 436 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 437 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 438 vcpu->arch.last_inst); 439 } 440 441 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 442 { 443 return kvm_get_vcpu_by_id(kvm, id); 444 } 445 446 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 447 { 448 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 449 vpa->yield_count = cpu_to_be32(1); 450 } 451 452 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 453 unsigned long addr, unsigned long len) 454 { 455 /* check address is cacheline aligned */ 456 if (addr & (L1_CACHE_BYTES - 1)) 457 return -EINVAL; 458 spin_lock(&vcpu->arch.vpa_update_lock); 459 if (v->next_gpa != addr || v->len != len) { 460 v->next_gpa = addr; 461 v->len = addr ? len : 0; 462 v->update_pending = 1; 463 } 464 spin_unlock(&vcpu->arch.vpa_update_lock); 465 return 0; 466 } 467 468 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 469 struct reg_vpa { 470 u32 dummy; 471 union { 472 __be16 hword; 473 __be32 word; 474 } length; 475 }; 476 477 static int vpa_is_registered(struct kvmppc_vpa *vpap) 478 { 479 if (vpap->update_pending) 480 return vpap->next_gpa != 0; 481 return vpap->pinned_addr != NULL; 482 } 483 484 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 485 unsigned long flags, 486 unsigned long vcpuid, unsigned long vpa) 487 { 488 struct kvm *kvm = vcpu->kvm; 489 unsigned long len, nb; 490 void *va; 491 struct kvm_vcpu *tvcpu; 492 int err; 493 int subfunc; 494 struct kvmppc_vpa *vpap; 495 496 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 497 if (!tvcpu) 498 return H_PARAMETER; 499 500 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 501 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 502 subfunc == H_VPA_REG_SLB) { 503 /* Registering new area - address must be cache-line aligned */ 504 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 505 return H_PARAMETER; 506 507 /* convert logical addr to kernel addr and read length */ 508 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 509 if (va == NULL) 510 return H_PARAMETER; 511 if (subfunc == H_VPA_REG_VPA) 512 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 513 else 514 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 515 kvmppc_unpin_guest_page(kvm, va, vpa, false); 516 517 /* Check length */ 518 if (len > nb || len < sizeof(struct reg_vpa)) 519 return H_PARAMETER; 520 } else { 521 vpa = 0; 522 len = 0; 523 } 524 525 err = H_PARAMETER; 526 vpap = NULL; 527 spin_lock(&tvcpu->arch.vpa_update_lock); 528 529 switch (subfunc) { 530 case H_VPA_REG_VPA: /* register VPA */ 531 /* 532 * The size of our lppaca is 1kB because of the way we align 533 * it for the guest to avoid crossing a 4kB boundary. We only 534 * use 640 bytes of the structure though, so we should accept 535 * clients that set a size of 640. 536 */ 537 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 538 if (len < sizeof(struct lppaca)) 539 break; 540 vpap = &tvcpu->arch.vpa; 541 err = 0; 542 break; 543 544 case H_VPA_REG_DTL: /* register DTL */ 545 if (len < sizeof(struct dtl_entry)) 546 break; 547 len -= len % sizeof(struct dtl_entry); 548 549 /* Check that they have previously registered a VPA */ 550 err = H_RESOURCE; 551 if (!vpa_is_registered(&tvcpu->arch.vpa)) 552 break; 553 554 vpap = &tvcpu->arch.dtl; 555 err = 0; 556 break; 557 558 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 559 /* Check that they have previously registered a VPA */ 560 err = H_RESOURCE; 561 if (!vpa_is_registered(&tvcpu->arch.vpa)) 562 break; 563 564 vpap = &tvcpu->arch.slb_shadow; 565 err = 0; 566 break; 567 568 case H_VPA_DEREG_VPA: /* deregister VPA */ 569 /* Check they don't still have a DTL or SLB buf registered */ 570 err = H_RESOURCE; 571 if (vpa_is_registered(&tvcpu->arch.dtl) || 572 vpa_is_registered(&tvcpu->arch.slb_shadow)) 573 break; 574 575 vpap = &tvcpu->arch.vpa; 576 err = 0; 577 break; 578 579 case H_VPA_DEREG_DTL: /* deregister DTL */ 580 vpap = &tvcpu->arch.dtl; 581 err = 0; 582 break; 583 584 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 585 vpap = &tvcpu->arch.slb_shadow; 586 err = 0; 587 break; 588 } 589 590 if (vpap) { 591 vpap->next_gpa = vpa; 592 vpap->len = len; 593 vpap->update_pending = 1; 594 } 595 596 spin_unlock(&tvcpu->arch.vpa_update_lock); 597 598 return err; 599 } 600 601 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 602 { 603 struct kvm *kvm = vcpu->kvm; 604 void *va; 605 unsigned long nb; 606 unsigned long gpa; 607 608 /* 609 * We need to pin the page pointed to by vpap->next_gpa, 610 * but we can't call kvmppc_pin_guest_page under the lock 611 * as it does get_user_pages() and down_read(). So we 612 * have to drop the lock, pin the page, then get the lock 613 * again and check that a new area didn't get registered 614 * in the meantime. 615 */ 616 for (;;) { 617 gpa = vpap->next_gpa; 618 spin_unlock(&vcpu->arch.vpa_update_lock); 619 va = NULL; 620 nb = 0; 621 if (gpa) 622 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 623 spin_lock(&vcpu->arch.vpa_update_lock); 624 if (gpa == vpap->next_gpa) 625 break; 626 /* sigh... unpin that one and try again */ 627 if (va) 628 kvmppc_unpin_guest_page(kvm, va, gpa, false); 629 } 630 631 vpap->update_pending = 0; 632 if (va && nb < vpap->len) { 633 /* 634 * If it's now too short, it must be that userspace 635 * has changed the mappings underlying guest memory, 636 * so unregister the region. 637 */ 638 kvmppc_unpin_guest_page(kvm, va, gpa, false); 639 va = NULL; 640 } 641 if (vpap->pinned_addr) 642 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 643 vpap->dirty); 644 vpap->gpa = gpa; 645 vpap->pinned_addr = va; 646 vpap->dirty = false; 647 if (va) 648 vpap->pinned_end = va + vpap->len; 649 } 650 651 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 652 { 653 if (!(vcpu->arch.vpa.update_pending || 654 vcpu->arch.slb_shadow.update_pending || 655 vcpu->arch.dtl.update_pending)) 656 return; 657 658 spin_lock(&vcpu->arch.vpa_update_lock); 659 if (vcpu->arch.vpa.update_pending) { 660 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 661 if (vcpu->arch.vpa.pinned_addr) 662 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 663 } 664 if (vcpu->arch.dtl.update_pending) { 665 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 666 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 667 vcpu->arch.dtl_index = 0; 668 } 669 if (vcpu->arch.slb_shadow.update_pending) 670 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 671 spin_unlock(&vcpu->arch.vpa_update_lock); 672 } 673 674 /* 675 * Return the accumulated stolen time for the vcore up until `now'. 676 * The caller should hold the vcore lock. 677 */ 678 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 679 { 680 u64 p; 681 unsigned long flags; 682 683 spin_lock_irqsave(&vc->stoltb_lock, flags); 684 p = vc->stolen_tb; 685 if (vc->vcore_state != VCORE_INACTIVE && 686 vc->preempt_tb != TB_NIL) 687 p += now - vc->preempt_tb; 688 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 689 return p; 690 } 691 692 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 693 struct kvmppc_vcore *vc) 694 { 695 struct dtl_entry *dt; 696 struct lppaca *vpa; 697 unsigned long stolen; 698 unsigned long core_stolen; 699 u64 now; 700 unsigned long flags; 701 702 dt = vcpu->arch.dtl_ptr; 703 vpa = vcpu->arch.vpa.pinned_addr; 704 now = mftb(); 705 core_stolen = vcore_stolen_time(vc, now); 706 stolen = core_stolen - vcpu->arch.stolen_logged; 707 vcpu->arch.stolen_logged = core_stolen; 708 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 709 stolen += vcpu->arch.busy_stolen; 710 vcpu->arch.busy_stolen = 0; 711 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 712 if (!dt || !vpa) 713 return; 714 memset(dt, 0, sizeof(struct dtl_entry)); 715 dt->dispatch_reason = 7; 716 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 717 dt->timebase = cpu_to_be64(now + vc->tb_offset); 718 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 719 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 720 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 721 ++dt; 722 if (dt == vcpu->arch.dtl.pinned_end) 723 dt = vcpu->arch.dtl.pinned_addr; 724 vcpu->arch.dtl_ptr = dt; 725 /* order writing *dt vs. writing vpa->dtl_idx */ 726 smp_wmb(); 727 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 728 vcpu->arch.dtl.dirty = true; 729 } 730 731 /* See if there is a doorbell interrupt pending for a vcpu */ 732 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 733 { 734 int thr; 735 struct kvmppc_vcore *vc; 736 737 if (vcpu->arch.doorbell_request) 738 return true; 739 /* 740 * Ensure that the read of vcore->dpdes comes after the read 741 * of vcpu->doorbell_request. This barrier matches the 742 * smp_wmb() in kvmppc_guest_entry_inject(). 743 */ 744 smp_rmb(); 745 vc = vcpu->arch.vcore; 746 thr = vcpu->vcpu_id - vc->first_vcpuid; 747 return !!(vc->dpdes & (1 << thr)); 748 } 749 750 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 751 { 752 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 753 return true; 754 if ((!vcpu->arch.vcore->arch_compat) && 755 cpu_has_feature(CPU_FTR_ARCH_207S)) 756 return true; 757 return false; 758 } 759 760 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 761 unsigned long resource, unsigned long value1, 762 unsigned long value2) 763 { 764 switch (resource) { 765 case H_SET_MODE_RESOURCE_SET_CIABR: 766 if (!kvmppc_power8_compatible(vcpu)) 767 return H_P2; 768 if (value2) 769 return H_P4; 770 if (mflags) 771 return H_UNSUPPORTED_FLAG_START; 772 /* Guests can't breakpoint the hypervisor */ 773 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 774 return H_P3; 775 vcpu->arch.ciabr = value1; 776 return H_SUCCESS; 777 case H_SET_MODE_RESOURCE_SET_DAWR0: 778 if (!kvmppc_power8_compatible(vcpu)) 779 return H_P2; 780 if (!ppc_breakpoint_available()) 781 return H_P2; 782 if (mflags) 783 return H_UNSUPPORTED_FLAG_START; 784 if (value2 & DABRX_HYP) 785 return H_P4; 786 vcpu->arch.dawr0 = value1; 787 vcpu->arch.dawrx0 = value2; 788 return H_SUCCESS; 789 case H_SET_MODE_RESOURCE_SET_DAWR1: 790 if (!kvmppc_power8_compatible(vcpu)) 791 return H_P2; 792 if (!ppc_breakpoint_available()) 793 return H_P2; 794 if (!cpu_has_feature(CPU_FTR_DAWR1)) 795 return H_P2; 796 if (!vcpu->kvm->arch.dawr1_enabled) 797 return H_FUNCTION; 798 if (mflags) 799 return H_UNSUPPORTED_FLAG_START; 800 if (value2 & DABRX_HYP) 801 return H_P4; 802 vcpu->arch.dawr1 = value1; 803 vcpu->arch.dawrx1 = value2; 804 return H_SUCCESS; 805 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 806 /* KVM does not support mflags=2 (AIL=2) */ 807 if (mflags != 0 && mflags != 3) 808 return H_UNSUPPORTED_FLAG_START; 809 return H_TOO_HARD; 810 default: 811 return H_TOO_HARD; 812 } 813 } 814 815 /* Copy guest memory in place - must reside within a single memslot */ 816 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 817 unsigned long len) 818 { 819 struct kvm_memory_slot *to_memslot = NULL; 820 struct kvm_memory_slot *from_memslot = NULL; 821 unsigned long to_addr, from_addr; 822 int r; 823 824 /* Get HPA for from address */ 825 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 826 if (!from_memslot) 827 return -EFAULT; 828 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 829 << PAGE_SHIFT)) 830 return -EINVAL; 831 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 832 if (kvm_is_error_hva(from_addr)) 833 return -EFAULT; 834 from_addr |= (from & (PAGE_SIZE - 1)); 835 836 /* Get HPA for to address */ 837 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 838 if (!to_memslot) 839 return -EFAULT; 840 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 841 << PAGE_SHIFT)) 842 return -EINVAL; 843 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 844 if (kvm_is_error_hva(to_addr)) 845 return -EFAULT; 846 to_addr |= (to & (PAGE_SIZE - 1)); 847 848 /* Perform copy */ 849 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 850 len); 851 if (r) 852 return -EFAULT; 853 mark_page_dirty(kvm, to >> PAGE_SHIFT); 854 return 0; 855 } 856 857 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 858 unsigned long dest, unsigned long src) 859 { 860 u64 pg_sz = SZ_4K; /* 4K page size */ 861 u64 pg_mask = SZ_4K - 1; 862 int ret; 863 864 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 865 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 866 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 867 return H_PARAMETER; 868 869 /* dest (and src if copy_page flag set) must be page aligned */ 870 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 871 return H_PARAMETER; 872 873 /* zero and/or copy the page as determined by the flags */ 874 if (flags & H_COPY_PAGE) { 875 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 876 if (ret < 0) 877 return H_PARAMETER; 878 } else if (flags & H_ZERO_PAGE) { 879 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 880 if (ret < 0) 881 return H_PARAMETER; 882 } 883 884 /* We can ignore the remaining flags */ 885 886 return H_SUCCESS; 887 } 888 889 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 890 { 891 struct kvmppc_vcore *vcore = target->arch.vcore; 892 893 /* 894 * We expect to have been called by the real mode handler 895 * (kvmppc_rm_h_confer()) which would have directly returned 896 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 897 * have useful work to do and should not confer) so we don't 898 * recheck that here. 899 */ 900 901 spin_lock(&vcore->lock); 902 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 903 vcore->vcore_state != VCORE_INACTIVE && 904 vcore->runner) 905 target = vcore->runner; 906 spin_unlock(&vcore->lock); 907 908 return kvm_vcpu_yield_to(target); 909 } 910 911 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 912 { 913 int yield_count = 0; 914 struct lppaca *lppaca; 915 916 spin_lock(&vcpu->arch.vpa_update_lock); 917 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 918 if (lppaca) 919 yield_count = be32_to_cpu(lppaca->yield_count); 920 spin_unlock(&vcpu->arch.vpa_update_lock); 921 return yield_count; 922 } 923 924 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 925 { 926 unsigned long req = kvmppc_get_gpr(vcpu, 3); 927 unsigned long target, ret = H_SUCCESS; 928 int yield_count; 929 struct kvm_vcpu *tvcpu; 930 int idx, rc; 931 932 if (req <= MAX_HCALL_OPCODE && 933 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 934 return RESUME_HOST; 935 936 switch (req) { 937 case H_CEDE: 938 break; 939 case H_PROD: 940 target = kvmppc_get_gpr(vcpu, 4); 941 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 942 if (!tvcpu) { 943 ret = H_PARAMETER; 944 break; 945 } 946 tvcpu->arch.prodded = 1; 947 smp_mb(); 948 if (tvcpu->arch.ceded) 949 kvmppc_fast_vcpu_kick_hv(tvcpu); 950 break; 951 case H_CONFER: 952 target = kvmppc_get_gpr(vcpu, 4); 953 if (target == -1) 954 break; 955 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 956 if (!tvcpu) { 957 ret = H_PARAMETER; 958 break; 959 } 960 yield_count = kvmppc_get_gpr(vcpu, 5); 961 if (kvmppc_get_yield_count(tvcpu) != yield_count) 962 break; 963 kvm_arch_vcpu_yield_to(tvcpu); 964 break; 965 case H_REGISTER_VPA: 966 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 967 kvmppc_get_gpr(vcpu, 5), 968 kvmppc_get_gpr(vcpu, 6)); 969 break; 970 case H_RTAS: 971 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 972 return RESUME_HOST; 973 974 idx = srcu_read_lock(&vcpu->kvm->srcu); 975 rc = kvmppc_rtas_hcall(vcpu); 976 srcu_read_unlock(&vcpu->kvm->srcu, idx); 977 978 if (rc == -ENOENT) 979 return RESUME_HOST; 980 else if (rc == 0) 981 break; 982 983 /* Send the error out to userspace via KVM_RUN */ 984 return rc; 985 case H_LOGICAL_CI_LOAD: 986 ret = kvmppc_h_logical_ci_load(vcpu); 987 if (ret == H_TOO_HARD) 988 return RESUME_HOST; 989 break; 990 case H_LOGICAL_CI_STORE: 991 ret = kvmppc_h_logical_ci_store(vcpu); 992 if (ret == H_TOO_HARD) 993 return RESUME_HOST; 994 break; 995 case H_SET_MODE: 996 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 997 kvmppc_get_gpr(vcpu, 5), 998 kvmppc_get_gpr(vcpu, 6), 999 kvmppc_get_gpr(vcpu, 7)); 1000 if (ret == H_TOO_HARD) 1001 return RESUME_HOST; 1002 break; 1003 case H_XIRR: 1004 case H_CPPR: 1005 case H_EOI: 1006 case H_IPI: 1007 case H_IPOLL: 1008 case H_XIRR_X: 1009 if (kvmppc_xics_enabled(vcpu)) { 1010 if (xics_on_xive()) { 1011 ret = H_NOT_AVAILABLE; 1012 return RESUME_GUEST; 1013 } 1014 ret = kvmppc_xics_hcall(vcpu, req); 1015 break; 1016 } 1017 return RESUME_HOST; 1018 case H_SET_DABR: 1019 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1020 break; 1021 case H_SET_XDABR: 1022 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1023 kvmppc_get_gpr(vcpu, 5)); 1024 break; 1025 #ifdef CONFIG_SPAPR_TCE_IOMMU 1026 case H_GET_TCE: 1027 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1028 kvmppc_get_gpr(vcpu, 5)); 1029 if (ret == H_TOO_HARD) 1030 return RESUME_HOST; 1031 break; 1032 case H_PUT_TCE: 1033 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1034 kvmppc_get_gpr(vcpu, 5), 1035 kvmppc_get_gpr(vcpu, 6)); 1036 if (ret == H_TOO_HARD) 1037 return RESUME_HOST; 1038 break; 1039 case H_PUT_TCE_INDIRECT: 1040 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1041 kvmppc_get_gpr(vcpu, 5), 1042 kvmppc_get_gpr(vcpu, 6), 1043 kvmppc_get_gpr(vcpu, 7)); 1044 if (ret == H_TOO_HARD) 1045 return RESUME_HOST; 1046 break; 1047 case H_STUFF_TCE: 1048 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1049 kvmppc_get_gpr(vcpu, 5), 1050 kvmppc_get_gpr(vcpu, 6), 1051 kvmppc_get_gpr(vcpu, 7)); 1052 if (ret == H_TOO_HARD) 1053 return RESUME_HOST; 1054 break; 1055 #endif 1056 case H_RANDOM: 1057 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4])) 1058 ret = H_HARDWARE; 1059 break; 1060 1061 case H_SET_PARTITION_TABLE: 1062 ret = H_FUNCTION; 1063 if (nesting_enabled(vcpu->kvm)) 1064 ret = kvmhv_set_partition_table(vcpu); 1065 break; 1066 case H_ENTER_NESTED: 1067 ret = H_FUNCTION; 1068 if (!nesting_enabled(vcpu->kvm)) 1069 break; 1070 ret = kvmhv_enter_nested_guest(vcpu); 1071 if (ret == H_INTERRUPT) { 1072 kvmppc_set_gpr(vcpu, 3, 0); 1073 vcpu->arch.hcall_needed = 0; 1074 return -EINTR; 1075 } else if (ret == H_TOO_HARD) { 1076 kvmppc_set_gpr(vcpu, 3, 0); 1077 vcpu->arch.hcall_needed = 0; 1078 return RESUME_HOST; 1079 } 1080 break; 1081 case H_TLB_INVALIDATE: 1082 ret = H_FUNCTION; 1083 if (nesting_enabled(vcpu->kvm)) 1084 ret = kvmhv_do_nested_tlbie(vcpu); 1085 break; 1086 case H_COPY_TOFROM_GUEST: 1087 ret = H_FUNCTION; 1088 if (nesting_enabled(vcpu->kvm)) 1089 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1090 break; 1091 case H_PAGE_INIT: 1092 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1093 kvmppc_get_gpr(vcpu, 5), 1094 kvmppc_get_gpr(vcpu, 6)); 1095 break; 1096 case H_SVM_PAGE_IN: 1097 ret = H_UNSUPPORTED; 1098 if (kvmppc_get_srr1(vcpu) & MSR_S) 1099 ret = kvmppc_h_svm_page_in(vcpu->kvm, 1100 kvmppc_get_gpr(vcpu, 4), 1101 kvmppc_get_gpr(vcpu, 5), 1102 kvmppc_get_gpr(vcpu, 6)); 1103 break; 1104 case H_SVM_PAGE_OUT: 1105 ret = H_UNSUPPORTED; 1106 if (kvmppc_get_srr1(vcpu) & MSR_S) 1107 ret = kvmppc_h_svm_page_out(vcpu->kvm, 1108 kvmppc_get_gpr(vcpu, 4), 1109 kvmppc_get_gpr(vcpu, 5), 1110 kvmppc_get_gpr(vcpu, 6)); 1111 break; 1112 case H_SVM_INIT_START: 1113 ret = H_UNSUPPORTED; 1114 if (kvmppc_get_srr1(vcpu) & MSR_S) 1115 ret = kvmppc_h_svm_init_start(vcpu->kvm); 1116 break; 1117 case H_SVM_INIT_DONE: 1118 ret = H_UNSUPPORTED; 1119 if (kvmppc_get_srr1(vcpu) & MSR_S) 1120 ret = kvmppc_h_svm_init_done(vcpu->kvm); 1121 break; 1122 case H_SVM_INIT_ABORT: 1123 /* 1124 * Even if that call is made by the Ultravisor, the SSR1 value 1125 * is the guest context one, with the secure bit clear as it has 1126 * not yet been secured. So we can't check it here. 1127 * Instead the kvm->arch.secure_guest flag is checked inside 1128 * kvmppc_h_svm_init_abort(). 1129 */ 1130 ret = kvmppc_h_svm_init_abort(vcpu->kvm); 1131 break; 1132 1133 default: 1134 return RESUME_HOST; 1135 } 1136 kvmppc_set_gpr(vcpu, 3, ret); 1137 vcpu->arch.hcall_needed = 0; 1138 return RESUME_GUEST; 1139 } 1140 1141 /* 1142 * Handle H_CEDE in the nested virtualization case where we haven't 1143 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S. 1144 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1145 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1146 */ 1147 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu) 1148 { 1149 vcpu->arch.shregs.msr |= MSR_EE; 1150 vcpu->arch.ceded = 1; 1151 smp_mb(); 1152 if (vcpu->arch.prodded) { 1153 vcpu->arch.prodded = 0; 1154 smp_mb(); 1155 vcpu->arch.ceded = 0; 1156 } 1157 } 1158 1159 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1160 { 1161 switch (cmd) { 1162 case H_CEDE: 1163 case H_PROD: 1164 case H_CONFER: 1165 case H_REGISTER_VPA: 1166 case H_SET_MODE: 1167 case H_LOGICAL_CI_LOAD: 1168 case H_LOGICAL_CI_STORE: 1169 #ifdef CONFIG_KVM_XICS 1170 case H_XIRR: 1171 case H_CPPR: 1172 case H_EOI: 1173 case H_IPI: 1174 case H_IPOLL: 1175 case H_XIRR_X: 1176 #endif 1177 case H_PAGE_INIT: 1178 return 1; 1179 } 1180 1181 /* See if it's in the real-mode table */ 1182 return kvmppc_hcall_impl_hv_realmode(cmd); 1183 } 1184 1185 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) 1186 { 1187 u32 last_inst; 1188 1189 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1190 EMULATE_DONE) { 1191 /* 1192 * Fetch failed, so return to guest and 1193 * try executing it again. 1194 */ 1195 return RESUME_GUEST; 1196 } 1197 1198 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1199 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 1200 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); 1201 return RESUME_HOST; 1202 } else { 1203 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1204 return RESUME_GUEST; 1205 } 1206 } 1207 1208 static void do_nothing(void *x) 1209 { 1210 } 1211 1212 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1213 { 1214 int thr, cpu, pcpu, nthreads; 1215 struct kvm_vcpu *v; 1216 unsigned long dpdes; 1217 1218 nthreads = vcpu->kvm->arch.emul_smt_mode; 1219 dpdes = 0; 1220 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1221 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1222 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1223 if (!v) 1224 continue; 1225 /* 1226 * If the vcpu is currently running on a physical cpu thread, 1227 * interrupt it in order to pull it out of the guest briefly, 1228 * which will update its vcore->dpdes value. 1229 */ 1230 pcpu = READ_ONCE(v->cpu); 1231 if (pcpu >= 0) 1232 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1233 if (kvmppc_doorbell_pending(v)) 1234 dpdes |= 1 << thr; 1235 } 1236 return dpdes; 1237 } 1238 1239 /* 1240 * On POWER9, emulate doorbell-related instructions in order to 1241 * give the guest the illusion of running on a multi-threaded core. 1242 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1243 * and mfspr DPDES. 1244 */ 1245 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1246 { 1247 u32 inst, rb, thr; 1248 unsigned long arg; 1249 struct kvm *kvm = vcpu->kvm; 1250 struct kvm_vcpu *tvcpu; 1251 1252 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1253 return RESUME_GUEST; 1254 if (get_op(inst) != 31) 1255 return EMULATE_FAIL; 1256 rb = get_rb(inst); 1257 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1258 switch (get_xop(inst)) { 1259 case OP_31_XOP_MSGSNDP: 1260 arg = kvmppc_get_gpr(vcpu, rb); 1261 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1262 break; 1263 arg &= 0x7f; 1264 if (arg >= kvm->arch.emul_smt_mode) 1265 break; 1266 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1267 if (!tvcpu) 1268 break; 1269 if (!tvcpu->arch.doorbell_request) { 1270 tvcpu->arch.doorbell_request = 1; 1271 kvmppc_fast_vcpu_kick_hv(tvcpu); 1272 } 1273 break; 1274 case OP_31_XOP_MSGCLRP: 1275 arg = kvmppc_get_gpr(vcpu, rb); 1276 if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER) 1277 break; 1278 vcpu->arch.vcore->dpdes = 0; 1279 vcpu->arch.doorbell_request = 0; 1280 break; 1281 case OP_31_XOP_MFSPR: 1282 switch (get_sprn(inst)) { 1283 case SPRN_TIR: 1284 arg = thr; 1285 break; 1286 case SPRN_DPDES: 1287 arg = kvmppc_read_dpdes(vcpu); 1288 break; 1289 default: 1290 return EMULATE_FAIL; 1291 } 1292 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1293 break; 1294 default: 1295 return EMULATE_FAIL; 1296 } 1297 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1298 return RESUME_GUEST; 1299 } 1300 1301 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, 1302 struct task_struct *tsk) 1303 { 1304 struct kvm_run *run = vcpu->run; 1305 int r = RESUME_HOST; 1306 1307 vcpu->stat.sum_exits++; 1308 1309 /* 1310 * This can happen if an interrupt occurs in the last stages 1311 * of guest entry or the first stages of guest exit (i.e. after 1312 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1313 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1314 * That can happen due to a bug, or due to a machine check 1315 * occurring at just the wrong time. 1316 */ 1317 if (vcpu->arch.shregs.msr & MSR_HV) { 1318 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1319 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1320 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1321 vcpu->arch.shregs.msr); 1322 kvmppc_dump_regs(vcpu); 1323 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1324 run->hw.hardware_exit_reason = vcpu->arch.trap; 1325 return RESUME_HOST; 1326 } 1327 run->exit_reason = KVM_EXIT_UNKNOWN; 1328 run->ready_for_interrupt_injection = 1; 1329 switch (vcpu->arch.trap) { 1330 /* We're good on these - the host merely wanted to get our attention */ 1331 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1332 vcpu->stat.dec_exits++; 1333 r = RESUME_GUEST; 1334 break; 1335 case BOOK3S_INTERRUPT_EXTERNAL: 1336 case BOOK3S_INTERRUPT_H_DOORBELL: 1337 case BOOK3S_INTERRUPT_H_VIRT: 1338 vcpu->stat.ext_intr_exits++; 1339 r = RESUME_GUEST; 1340 break; 1341 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1342 case BOOK3S_INTERRUPT_HMI: 1343 case BOOK3S_INTERRUPT_PERFMON: 1344 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1345 r = RESUME_GUEST; 1346 break; 1347 case BOOK3S_INTERRUPT_MACHINE_CHECK: { 1348 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1349 DEFAULT_RATELIMIT_BURST); 1350 /* 1351 * Print the MCE event to host console. Ratelimit so the guest 1352 * can't flood the host log. 1353 */ 1354 if (__ratelimit(&rs)) 1355 machine_check_print_event_info(&vcpu->arch.mce_evt,false, true); 1356 1357 /* 1358 * If the guest can do FWNMI, exit to userspace so it can 1359 * deliver a FWNMI to the guest. 1360 * Otherwise we synthesize a machine check for the guest 1361 * so that it knows that the machine check occurred. 1362 */ 1363 if (!vcpu->kvm->arch.fwnmi_enabled) { 1364 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1365 kvmppc_core_queue_machine_check(vcpu, flags); 1366 r = RESUME_GUEST; 1367 break; 1368 } 1369 1370 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1371 run->exit_reason = KVM_EXIT_NMI; 1372 run->hw.hardware_exit_reason = vcpu->arch.trap; 1373 /* Clear out the old NMI status from run->flags */ 1374 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1375 /* Now set the NMI status */ 1376 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1377 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1378 else 1379 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1380 1381 r = RESUME_HOST; 1382 break; 1383 } 1384 case BOOK3S_INTERRUPT_PROGRAM: 1385 { 1386 ulong flags; 1387 /* 1388 * Normally program interrupts are delivered directly 1389 * to the guest by the hardware, but we can get here 1390 * as a result of a hypervisor emulation interrupt 1391 * (e40) getting turned into a 700 by BML RTAS. 1392 */ 1393 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1394 kvmppc_core_queue_program(vcpu, flags); 1395 r = RESUME_GUEST; 1396 break; 1397 } 1398 case BOOK3S_INTERRUPT_SYSCALL: 1399 { 1400 /* hcall - punt to userspace */ 1401 int i; 1402 1403 /* hypercall with MSR_PR has already been handled in rmode, 1404 * and never reaches here. 1405 */ 1406 1407 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1408 for (i = 0; i < 9; ++i) 1409 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1410 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1411 vcpu->arch.hcall_needed = 1; 1412 r = RESUME_HOST; 1413 break; 1414 } 1415 /* 1416 * We get these next two if the guest accesses a page which it thinks 1417 * it has mapped but which is not actually present, either because 1418 * it is for an emulated I/O device or because the corresonding 1419 * host page has been paged out. Any other HDSI/HISI interrupts 1420 * have been handled already. 1421 */ 1422 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1423 r = RESUME_PAGE_FAULT; 1424 break; 1425 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1426 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1427 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1428 DSISR_SRR1_MATCH_64S; 1429 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1430 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1431 r = RESUME_PAGE_FAULT; 1432 break; 1433 /* 1434 * This occurs if the guest executes an illegal instruction. 1435 * If the guest debug is disabled, generate a program interrupt 1436 * to the guest. If guest debug is enabled, we need to check 1437 * whether the instruction is a software breakpoint instruction. 1438 * Accordingly return to Guest or Host. 1439 */ 1440 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1441 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1442 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1443 swab32(vcpu->arch.emul_inst) : 1444 vcpu->arch.emul_inst; 1445 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1446 r = kvmppc_emulate_debug_inst(vcpu); 1447 } else { 1448 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1449 r = RESUME_GUEST; 1450 } 1451 break; 1452 /* 1453 * This occurs if the guest (kernel or userspace), does something that 1454 * is prohibited by HFSCR. 1455 * On POWER9, this could be a doorbell instruction that we need 1456 * to emulate. 1457 * Otherwise, we just generate a program interrupt to the guest. 1458 */ 1459 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1460 r = EMULATE_FAIL; 1461 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1462 cpu_has_feature(CPU_FTR_ARCH_300)) 1463 r = kvmppc_emulate_doorbell_instr(vcpu); 1464 if (r == EMULATE_FAIL) { 1465 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1466 r = RESUME_GUEST; 1467 } 1468 break; 1469 1470 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1471 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1472 /* 1473 * This occurs for various TM-related instructions that 1474 * we need to emulate on POWER9 DD2.2. We have already 1475 * handled the cases where the guest was in real-suspend 1476 * mode and was transitioning to transactional state. 1477 */ 1478 r = kvmhv_p9_tm_emulation(vcpu); 1479 break; 1480 #endif 1481 1482 case BOOK3S_INTERRUPT_HV_RM_HARD: 1483 r = RESUME_PASSTHROUGH; 1484 break; 1485 default: 1486 kvmppc_dump_regs(vcpu); 1487 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1488 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1489 vcpu->arch.shregs.msr); 1490 run->hw.hardware_exit_reason = vcpu->arch.trap; 1491 r = RESUME_HOST; 1492 break; 1493 } 1494 1495 return r; 1496 } 1497 1498 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) 1499 { 1500 int r; 1501 int srcu_idx; 1502 1503 vcpu->stat.sum_exits++; 1504 1505 /* 1506 * This can happen if an interrupt occurs in the last stages 1507 * of guest entry or the first stages of guest exit (i.e. after 1508 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1509 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1510 * That can happen due to a bug, or due to a machine check 1511 * occurring at just the wrong time. 1512 */ 1513 if (vcpu->arch.shregs.msr & MSR_HV) { 1514 pr_emerg("KVM trap in HV mode while nested!\n"); 1515 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1516 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1517 vcpu->arch.shregs.msr); 1518 kvmppc_dump_regs(vcpu); 1519 return RESUME_HOST; 1520 } 1521 switch (vcpu->arch.trap) { 1522 /* We're good on these - the host merely wanted to get our attention */ 1523 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1524 vcpu->stat.dec_exits++; 1525 r = RESUME_GUEST; 1526 break; 1527 case BOOK3S_INTERRUPT_EXTERNAL: 1528 vcpu->stat.ext_intr_exits++; 1529 r = RESUME_HOST; 1530 break; 1531 case BOOK3S_INTERRUPT_H_DOORBELL: 1532 case BOOK3S_INTERRUPT_H_VIRT: 1533 vcpu->stat.ext_intr_exits++; 1534 r = RESUME_GUEST; 1535 break; 1536 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1537 case BOOK3S_INTERRUPT_HMI: 1538 case BOOK3S_INTERRUPT_PERFMON: 1539 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1540 r = RESUME_GUEST; 1541 break; 1542 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1543 { 1544 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1545 DEFAULT_RATELIMIT_BURST); 1546 /* Pass the machine check to the L1 guest */ 1547 r = RESUME_HOST; 1548 /* Print the MCE event to host console. */ 1549 if (__ratelimit(&rs)) 1550 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1551 break; 1552 } 1553 /* 1554 * We get these next two if the guest accesses a page which it thinks 1555 * it has mapped but which is not actually present, either because 1556 * it is for an emulated I/O device or because the corresonding 1557 * host page has been paged out. 1558 */ 1559 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1560 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1561 r = kvmhv_nested_page_fault(vcpu); 1562 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1563 break; 1564 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1565 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1566 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1567 DSISR_SRR1_MATCH_64S; 1568 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1569 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1570 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1571 r = kvmhv_nested_page_fault(vcpu); 1572 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1573 break; 1574 1575 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1576 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1577 /* 1578 * This occurs for various TM-related instructions that 1579 * we need to emulate on POWER9 DD2.2. We have already 1580 * handled the cases where the guest was in real-suspend 1581 * mode and was transitioning to transactional state. 1582 */ 1583 r = kvmhv_p9_tm_emulation(vcpu); 1584 break; 1585 #endif 1586 1587 case BOOK3S_INTERRUPT_HV_RM_HARD: 1588 vcpu->arch.trap = 0; 1589 r = RESUME_GUEST; 1590 if (!xics_on_xive()) 1591 kvmppc_xics_rm_complete(vcpu, 0); 1592 break; 1593 default: 1594 r = RESUME_HOST; 1595 break; 1596 } 1597 1598 return r; 1599 } 1600 1601 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1602 struct kvm_sregs *sregs) 1603 { 1604 int i; 1605 1606 memset(sregs, 0, sizeof(struct kvm_sregs)); 1607 sregs->pvr = vcpu->arch.pvr; 1608 for (i = 0; i < vcpu->arch.slb_max; i++) { 1609 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1610 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1611 } 1612 1613 return 0; 1614 } 1615 1616 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1617 struct kvm_sregs *sregs) 1618 { 1619 int i, j; 1620 1621 /* Only accept the same PVR as the host's, since we can't spoof it */ 1622 if (sregs->pvr != vcpu->arch.pvr) 1623 return -EINVAL; 1624 1625 j = 0; 1626 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1627 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1628 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1629 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1630 ++j; 1631 } 1632 } 1633 vcpu->arch.slb_max = j; 1634 1635 return 0; 1636 } 1637 1638 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1639 bool preserve_top32) 1640 { 1641 struct kvm *kvm = vcpu->kvm; 1642 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1643 u64 mask; 1644 1645 spin_lock(&vc->lock); 1646 /* 1647 * If ILE (interrupt little-endian) has changed, update the 1648 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1649 */ 1650 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1651 struct kvm_vcpu *vcpu; 1652 int i; 1653 1654 kvm_for_each_vcpu(i, vcpu, kvm) { 1655 if (vcpu->arch.vcore != vc) 1656 continue; 1657 if (new_lpcr & LPCR_ILE) 1658 vcpu->arch.intr_msr |= MSR_LE; 1659 else 1660 vcpu->arch.intr_msr &= ~MSR_LE; 1661 } 1662 } 1663 1664 /* 1665 * Userspace can only modify DPFD (default prefetch depth), 1666 * ILE (interrupt little-endian) and TC (translation control). 1667 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1668 */ 1669 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1670 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1671 mask |= LPCR_AIL; 1672 /* 1673 * On POWER9, allow userspace to enable large decrementer for the 1674 * guest, whether or not the host has it enabled. 1675 */ 1676 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1677 mask |= LPCR_LD; 1678 1679 /* Broken 32-bit version of LPCR must not clear top bits */ 1680 if (preserve_top32) 1681 mask &= 0xFFFFFFFF; 1682 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1683 spin_unlock(&vc->lock); 1684 } 1685 1686 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1687 union kvmppc_one_reg *val) 1688 { 1689 int r = 0; 1690 long int i; 1691 1692 switch (id) { 1693 case KVM_REG_PPC_DEBUG_INST: 1694 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1695 break; 1696 case KVM_REG_PPC_HIOR: 1697 *val = get_reg_val(id, 0); 1698 break; 1699 case KVM_REG_PPC_DABR: 1700 *val = get_reg_val(id, vcpu->arch.dabr); 1701 break; 1702 case KVM_REG_PPC_DABRX: 1703 *val = get_reg_val(id, vcpu->arch.dabrx); 1704 break; 1705 case KVM_REG_PPC_DSCR: 1706 *val = get_reg_val(id, vcpu->arch.dscr); 1707 break; 1708 case KVM_REG_PPC_PURR: 1709 *val = get_reg_val(id, vcpu->arch.purr); 1710 break; 1711 case KVM_REG_PPC_SPURR: 1712 *val = get_reg_val(id, vcpu->arch.spurr); 1713 break; 1714 case KVM_REG_PPC_AMR: 1715 *val = get_reg_val(id, vcpu->arch.amr); 1716 break; 1717 case KVM_REG_PPC_UAMOR: 1718 *val = get_reg_val(id, vcpu->arch.uamor); 1719 break; 1720 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 1721 i = id - KVM_REG_PPC_MMCR0; 1722 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1723 break; 1724 case KVM_REG_PPC_MMCR2: 1725 *val = get_reg_val(id, vcpu->arch.mmcr[2]); 1726 break; 1727 case KVM_REG_PPC_MMCRA: 1728 *val = get_reg_val(id, vcpu->arch.mmcra); 1729 break; 1730 case KVM_REG_PPC_MMCRS: 1731 *val = get_reg_val(id, vcpu->arch.mmcrs); 1732 break; 1733 case KVM_REG_PPC_MMCR3: 1734 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 1735 break; 1736 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1737 i = id - KVM_REG_PPC_PMC1; 1738 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1739 break; 1740 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1741 i = id - KVM_REG_PPC_SPMC1; 1742 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1743 break; 1744 case KVM_REG_PPC_SIAR: 1745 *val = get_reg_val(id, vcpu->arch.siar); 1746 break; 1747 case KVM_REG_PPC_SDAR: 1748 *val = get_reg_val(id, vcpu->arch.sdar); 1749 break; 1750 case KVM_REG_PPC_SIER: 1751 *val = get_reg_val(id, vcpu->arch.sier[0]); 1752 break; 1753 case KVM_REG_PPC_SIER2: 1754 *val = get_reg_val(id, vcpu->arch.sier[1]); 1755 break; 1756 case KVM_REG_PPC_SIER3: 1757 *val = get_reg_val(id, vcpu->arch.sier[2]); 1758 break; 1759 case KVM_REG_PPC_IAMR: 1760 *val = get_reg_val(id, vcpu->arch.iamr); 1761 break; 1762 case KVM_REG_PPC_PSPB: 1763 *val = get_reg_val(id, vcpu->arch.pspb); 1764 break; 1765 case KVM_REG_PPC_DPDES: 1766 /* 1767 * On POWER9, where we are emulating msgsndp etc., 1768 * we return 1 bit for each vcpu, which can come from 1769 * either vcore->dpdes or doorbell_request. 1770 * On POWER8, doorbell_request is 0. 1771 */ 1772 *val = get_reg_val(id, vcpu->arch.vcore->dpdes | 1773 vcpu->arch.doorbell_request); 1774 break; 1775 case KVM_REG_PPC_VTB: 1776 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1777 break; 1778 case KVM_REG_PPC_DAWR: 1779 *val = get_reg_val(id, vcpu->arch.dawr0); 1780 break; 1781 case KVM_REG_PPC_DAWRX: 1782 *val = get_reg_val(id, vcpu->arch.dawrx0); 1783 break; 1784 case KVM_REG_PPC_DAWR1: 1785 *val = get_reg_val(id, vcpu->arch.dawr1); 1786 break; 1787 case KVM_REG_PPC_DAWRX1: 1788 *val = get_reg_val(id, vcpu->arch.dawrx1); 1789 break; 1790 case KVM_REG_PPC_CIABR: 1791 *val = get_reg_val(id, vcpu->arch.ciabr); 1792 break; 1793 case KVM_REG_PPC_CSIGR: 1794 *val = get_reg_val(id, vcpu->arch.csigr); 1795 break; 1796 case KVM_REG_PPC_TACR: 1797 *val = get_reg_val(id, vcpu->arch.tacr); 1798 break; 1799 case KVM_REG_PPC_TCSCR: 1800 *val = get_reg_val(id, vcpu->arch.tcscr); 1801 break; 1802 case KVM_REG_PPC_PID: 1803 *val = get_reg_val(id, vcpu->arch.pid); 1804 break; 1805 case KVM_REG_PPC_ACOP: 1806 *val = get_reg_val(id, vcpu->arch.acop); 1807 break; 1808 case KVM_REG_PPC_WORT: 1809 *val = get_reg_val(id, vcpu->arch.wort); 1810 break; 1811 case KVM_REG_PPC_TIDR: 1812 *val = get_reg_val(id, vcpu->arch.tid); 1813 break; 1814 case KVM_REG_PPC_PSSCR: 1815 *val = get_reg_val(id, vcpu->arch.psscr); 1816 break; 1817 case KVM_REG_PPC_VPA_ADDR: 1818 spin_lock(&vcpu->arch.vpa_update_lock); 1819 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1820 spin_unlock(&vcpu->arch.vpa_update_lock); 1821 break; 1822 case KVM_REG_PPC_VPA_SLB: 1823 spin_lock(&vcpu->arch.vpa_update_lock); 1824 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1825 val->vpaval.length = vcpu->arch.slb_shadow.len; 1826 spin_unlock(&vcpu->arch.vpa_update_lock); 1827 break; 1828 case KVM_REG_PPC_VPA_DTL: 1829 spin_lock(&vcpu->arch.vpa_update_lock); 1830 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1831 val->vpaval.length = vcpu->arch.dtl.len; 1832 spin_unlock(&vcpu->arch.vpa_update_lock); 1833 break; 1834 case KVM_REG_PPC_TB_OFFSET: 1835 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1836 break; 1837 case KVM_REG_PPC_LPCR: 1838 case KVM_REG_PPC_LPCR_64: 1839 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1840 break; 1841 case KVM_REG_PPC_PPR: 1842 *val = get_reg_val(id, vcpu->arch.ppr); 1843 break; 1844 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1845 case KVM_REG_PPC_TFHAR: 1846 *val = get_reg_val(id, vcpu->arch.tfhar); 1847 break; 1848 case KVM_REG_PPC_TFIAR: 1849 *val = get_reg_val(id, vcpu->arch.tfiar); 1850 break; 1851 case KVM_REG_PPC_TEXASR: 1852 *val = get_reg_val(id, vcpu->arch.texasr); 1853 break; 1854 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1855 i = id - KVM_REG_PPC_TM_GPR0; 1856 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1857 break; 1858 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1859 { 1860 int j; 1861 i = id - KVM_REG_PPC_TM_VSR0; 1862 if (i < 32) 1863 for (j = 0; j < TS_FPRWIDTH; j++) 1864 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1865 else { 1866 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1867 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1868 else 1869 r = -ENXIO; 1870 } 1871 break; 1872 } 1873 case KVM_REG_PPC_TM_CR: 1874 *val = get_reg_val(id, vcpu->arch.cr_tm); 1875 break; 1876 case KVM_REG_PPC_TM_XER: 1877 *val = get_reg_val(id, vcpu->arch.xer_tm); 1878 break; 1879 case KVM_REG_PPC_TM_LR: 1880 *val = get_reg_val(id, vcpu->arch.lr_tm); 1881 break; 1882 case KVM_REG_PPC_TM_CTR: 1883 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1884 break; 1885 case KVM_REG_PPC_TM_FPSCR: 1886 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1887 break; 1888 case KVM_REG_PPC_TM_AMR: 1889 *val = get_reg_val(id, vcpu->arch.amr_tm); 1890 break; 1891 case KVM_REG_PPC_TM_PPR: 1892 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1893 break; 1894 case KVM_REG_PPC_TM_VRSAVE: 1895 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1896 break; 1897 case KVM_REG_PPC_TM_VSCR: 1898 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1899 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1900 else 1901 r = -ENXIO; 1902 break; 1903 case KVM_REG_PPC_TM_DSCR: 1904 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1905 break; 1906 case KVM_REG_PPC_TM_TAR: 1907 *val = get_reg_val(id, vcpu->arch.tar_tm); 1908 break; 1909 #endif 1910 case KVM_REG_PPC_ARCH_COMPAT: 1911 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1912 break; 1913 case KVM_REG_PPC_DEC_EXPIRY: 1914 *val = get_reg_val(id, vcpu->arch.dec_expires + 1915 vcpu->arch.vcore->tb_offset); 1916 break; 1917 case KVM_REG_PPC_ONLINE: 1918 *val = get_reg_val(id, vcpu->arch.online); 1919 break; 1920 case KVM_REG_PPC_PTCR: 1921 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 1922 break; 1923 default: 1924 r = -EINVAL; 1925 break; 1926 } 1927 1928 return r; 1929 } 1930 1931 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1932 union kvmppc_one_reg *val) 1933 { 1934 int r = 0; 1935 long int i; 1936 unsigned long addr, len; 1937 1938 switch (id) { 1939 case KVM_REG_PPC_HIOR: 1940 /* Only allow this to be set to zero */ 1941 if (set_reg_val(id, *val)) 1942 r = -EINVAL; 1943 break; 1944 case KVM_REG_PPC_DABR: 1945 vcpu->arch.dabr = set_reg_val(id, *val); 1946 break; 1947 case KVM_REG_PPC_DABRX: 1948 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1949 break; 1950 case KVM_REG_PPC_DSCR: 1951 vcpu->arch.dscr = set_reg_val(id, *val); 1952 break; 1953 case KVM_REG_PPC_PURR: 1954 vcpu->arch.purr = set_reg_val(id, *val); 1955 break; 1956 case KVM_REG_PPC_SPURR: 1957 vcpu->arch.spurr = set_reg_val(id, *val); 1958 break; 1959 case KVM_REG_PPC_AMR: 1960 vcpu->arch.amr = set_reg_val(id, *val); 1961 break; 1962 case KVM_REG_PPC_UAMOR: 1963 vcpu->arch.uamor = set_reg_val(id, *val); 1964 break; 1965 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1: 1966 i = id - KVM_REG_PPC_MMCR0; 1967 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1968 break; 1969 case KVM_REG_PPC_MMCR2: 1970 vcpu->arch.mmcr[2] = set_reg_val(id, *val); 1971 break; 1972 case KVM_REG_PPC_MMCRA: 1973 vcpu->arch.mmcra = set_reg_val(id, *val); 1974 break; 1975 case KVM_REG_PPC_MMCRS: 1976 vcpu->arch.mmcrs = set_reg_val(id, *val); 1977 break; 1978 case KVM_REG_PPC_MMCR3: 1979 *val = get_reg_val(id, vcpu->arch.mmcr[3]); 1980 break; 1981 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1982 i = id - KVM_REG_PPC_PMC1; 1983 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1984 break; 1985 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1986 i = id - KVM_REG_PPC_SPMC1; 1987 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1988 break; 1989 case KVM_REG_PPC_SIAR: 1990 vcpu->arch.siar = set_reg_val(id, *val); 1991 break; 1992 case KVM_REG_PPC_SDAR: 1993 vcpu->arch.sdar = set_reg_val(id, *val); 1994 break; 1995 case KVM_REG_PPC_SIER: 1996 vcpu->arch.sier[0] = set_reg_val(id, *val); 1997 break; 1998 case KVM_REG_PPC_SIER2: 1999 vcpu->arch.sier[1] = set_reg_val(id, *val); 2000 break; 2001 case KVM_REG_PPC_SIER3: 2002 vcpu->arch.sier[2] = set_reg_val(id, *val); 2003 break; 2004 case KVM_REG_PPC_IAMR: 2005 vcpu->arch.iamr = set_reg_val(id, *val); 2006 break; 2007 case KVM_REG_PPC_PSPB: 2008 vcpu->arch.pspb = set_reg_val(id, *val); 2009 break; 2010 case KVM_REG_PPC_DPDES: 2011 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 2012 break; 2013 case KVM_REG_PPC_VTB: 2014 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 2015 break; 2016 case KVM_REG_PPC_DAWR: 2017 vcpu->arch.dawr0 = set_reg_val(id, *val); 2018 break; 2019 case KVM_REG_PPC_DAWRX: 2020 vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP; 2021 break; 2022 case KVM_REG_PPC_DAWR1: 2023 vcpu->arch.dawr1 = set_reg_val(id, *val); 2024 break; 2025 case KVM_REG_PPC_DAWRX1: 2026 vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP; 2027 break; 2028 case KVM_REG_PPC_CIABR: 2029 vcpu->arch.ciabr = set_reg_val(id, *val); 2030 /* Don't allow setting breakpoints in hypervisor code */ 2031 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 2032 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 2033 break; 2034 case KVM_REG_PPC_CSIGR: 2035 vcpu->arch.csigr = set_reg_val(id, *val); 2036 break; 2037 case KVM_REG_PPC_TACR: 2038 vcpu->arch.tacr = set_reg_val(id, *val); 2039 break; 2040 case KVM_REG_PPC_TCSCR: 2041 vcpu->arch.tcscr = set_reg_val(id, *val); 2042 break; 2043 case KVM_REG_PPC_PID: 2044 vcpu->arch.pid = set_reg_val(id, *val); 2045 break; 2046 case KVM_REG_PPC_ACOP: 2047 vcpu->arch.acop = set_reg_val(id, *val); 2048 break; 2049 case KVM_REG_PPC_WORT: 2050 vcpu->arch.wort = set_reg_val(id, *val); 2051 break; 2052 case KVM_REG_PPC_TIDR: 2053 vcpu->arch.tid = set_reg_val(id, *val); 2054 break; 2055 case KVM_REG_PPC_PSSCR: 2056 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 2057 break; 2058 case KVM_REG_PPC_VPA_ADDR: 2059 addr = set_reg_val(id, *val); 2060 r = -EINVAL; 2061 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 2062 vcpu->arch.dtl.next_gpa)) 2063 break; 2064 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 2065 break; 2066 case KVM_REG_PPC_VPA_SLB: 2067 addr = val->vpaval.addr; 2068 len = val->vpaval.length; 2069 r = -EINVAL; 2070 if (addr && !vcpu->arch.vpa.next_gpa) 2071 break; 2072 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 2073 break; 2074 case KVM_REG_PPC_VPA_DTL: 2075 addr = val->vpaval.addr; 2076 len = val->vpaval.length; 2077 r = -EINVAL; 2078 if (addr && (len < sizeof(struct dtl_entry) || 2079 !vcpu->arch.vpa.next_gpa)) 2080 break; 2081 len -= len % sizeof(struct dtl_entry); 2082 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 2083 break; 2084 case KVM_REG_PPC_TB_OFFSET: 2085 /* round up to multiple of 2^24 */ 2086 vcpu->arch.vcore->tb_offset = 2087 ALIGN(set_reg_val(id, *val), 1UL << 24); 2088 break; 2089 case KVM_REG_PPC_LPCR: 2090 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 2091 break; 2092 case KVM_REG_PPC_LPCR_64: 2093 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 2094 break; 2095 case KVM_REG_PPC_PPR: 2096 vcpu->arch.ppr = set_reg_val(id, *val); 2097 break; 2098 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2099 case KVM_REG_PPC_TFHAR: 2100 vcpu->arch.tfhar = set_reg_val(id, *val); 2101 break; 2102 case KVM_REG_PPC_TFIAR: 2103 vcpu->arch.tfiar = set_reg_val(id, *val); 2104 break; 2105 case KVM_REG_PPC_TEXASR: 2106 vcpu->arch.texasr = set_reg_val(id, *val); 2107 break; 2108 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2109 i = id - KVM_REG_PPC_TM_GPR0; 2110 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2111 break; 2112 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2113 { 2114 int j; 2115 i = id - KVM_REG_PPC_TM_VSR0; 2116 if (i < 32) 2117 for (j = 0; j < TS_FPRWIDTH; j++) 2118 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2119 else 2120 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2121 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2122 else 2123 r = -ENXIO; 2124 break; 2125 } 2126 case KVM_REG_PPC_TM_CR: 2127 vcpu->arch.cr_tm = set_reg_val(id, *val); 2128 break; 2129 case KVM_REG_PPC_TM_XER: 2130 vcpu->arch.xer_tm = set_reg_val(id, *val); 2131 break; 2132 case KVM_REG_PPC_TM_LR: 2133 vcpu->arch.lr_tm = set_reg_val(id, *val); 2134 break; 2135 case KVM_REG_PPC_TM_CTR: 2136 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2137 break; 2138 case KVM_REG_PPC_TM_FPSCR: 2139 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2140 break; 2141 case KVM_REG_PPC_TM_AMR: 2142 vcpu->arch.amr_tm = set_reg_val(id, *val); 2143 break; 2144 case KVM_REG_PPC_TM_PPR: 2145 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2146 break; 2147 case KVM_REG_PPC_TM_VRSAVE: 2148 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2149 break; 2150 case KVM_REG_PPC_TM_VSCR: 2151 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2152 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2153 else 2154 r = - ENXIO; 2155 break; 2156 case KVM_REG_PPC_TM_DSCR: 2157 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2158 break; 2159 case KVM_REG_PPC_TM_TAR: 2160 vcpu->arch.tar_tm = set_reg_val(id, *val); 2161 break; 2162 #endif 2163 case KVM_REG_PPC_ARCH_COMPAT: 2164 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2165 break; 2166 case KVM_REG_PPC_DEC_EXPIRY: 2167 vcpu->arch.dec_expires = set_reg_val(id, *val) - 2168 vcpu->arch.vcore->tb_offset; 2169 break; 2170 case KVM_REG_PPC_ONLINE: 2171 i = set_reg_val(id, *val); 2172 if (i && !vcpu->arch.online) 2173 atomic_inc(&vcpu->arch.vcore->online_count); 2174 else if (!i && vcpu->arch.online) 2175 atomic_dec(&vcpu->arch.vcore->online_count); 2176 vcpu->arch.online = i; 2177 break; 2178 case KVM_REG_PPC_PTCR: 2179 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2180 break; 2181 default: 2182 r = -EINVAL; 2183 break; 2184 } 2185 2186 return r; 2187 } 2188 2189 /* 2190 * On POWER9, threads are independent and can be in different partitions. 2191 * Therefore we consider each thread to be a subcore. 2192 * There is a restriction that all threads have to be in the same 2193 * MMU mode (radix or HPT), unfortunately, but since we only support 2194 * HPT guests on a HPT host so far, that isn't an impediment yet. 2195 */ 2196 static int threads_per_vcore(struct kvm *kvm) 2197 { 2198 if (kvm->arch.threads_indep) 2199 return 1; 2200 return threads_per_subcore; 2201 } 2202 2203 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2204 { 2205 struct kvmppc_vcore *vcore; 2206 2207 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2208 2209 if (vcore == NULL) 2210 return NULL; 2211 2212 spin_lock_init(&vcore->lock); 2213 spin_lock_init(&vcore->stoltb_lock); 2214 rcuwait_init(&vcore->wait); 2215 vcore->preempt_tb = TB_NIL; 2216 vcore->lpcr = kvm->arch.lpcr; 2217 vcore->first_vcpuid = id; 2218 vcore->kvm = kvm; 2219 INIT_LIST_HEAD(&vcore->preempt_list); 2220 2221 return vcore; 2222 } 2223 2224 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2225 static struct debugfs_timings_element { 2226 const char *name; 2227 size_t offset; 2228 } timings[] = { 2229 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2230 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2231 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2232 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2233 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2234 }; 2235 2236 #define N_TIMINGS (ARRAY_SIZE(timings)) 2237 2238 struct debugfs_timings_state { 2239 struct kvm_vcpu *vcpu; 2240 unsigned int buflen; 2241 char buf[N_TIMINGS * 100]; 2242 }; 2243 2244 static int debugfs_timings_open(struct inode *inode, struct file *file) 2245 { 2246 struct kvm_vcpu *vcpu = inode->i_private; 2247 struct debugfs_timings_state *p; 2248 2249 p = kzalloc(sizeof(*p), GFP_KERNEL); 2250 if (!p) 2251 return -ENOMEM; 2252 2253 kvm_get_kvm(vcpu->kvm); 2254 p->vcpu = vcpu; 2255 file->private_data = p; 2256 2257 return nonseekable_open(inode, file); 2258 } 2259 2260 static int debugfs_timings_release(struct inode *inode, struct file *file) 2261 { 2262 struct debugfs_timings_state *p = file->private_data; 2263 2264 kvm_put_kvm(p->vcpu->kvm); 2265 kfree(p); 2266 return 0; 2267 } 2268 2269 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2270 size_t len, loff_t *ppos) 2271 { 2272 struct debugfs_timings_state *p = file->private_data; 2273 struct kvm_vcpu *vcpu = p->vcpu; 2274 char *s, *buf_end; 2275 struct kvmhv_tb_accumulator tb; 2276 u64 count; 2277 loff_t pos; 2278 ssize_t n; 2279 int i, loops; 2280 bool ok; 2281 2282 if (!p->buflen) { 2283 s = p->buf; 2284 buf_end = s + sizeof(p->buf); 2285 for (i = 0; i < N_TIMINGS; ++i) { 2286 struct kvmhv_tb_accumulator *acc; 2287 2288 acc = (struct kvmhv_tb_accumulator *) 2289 ((unsigned long)vcpu + timings[i].offset); 2290 ok = false; 2291 for (loops = 0; loops < 1000; ++loops) { 2292 count = acc->seqcount; 2293 if (!(count & 1)) { 2294 smp_rmb(); 2295 tb = *acc; 2296 smp_rmb(); 2297 if (count == acc->seqcount) { 2298 ok = true; 2299 break; 2300 } 2301 } 2302 udelay(1); 2303 } 2304 if (!ok) 2305 snprintf(s, buf_end - s, "%s: stuck\n", 2306 timings[i].name); 2307 else 2308 snprintf(s, buf_end - s, 2309 "%s: %llu %llu %llu %llu\n", 2310 timings[i].name, count / 2, 2311 tb_to_ns(tb.tb_total), 2312 tb_to_ns(tb.tb_min), 2313 tb_to_ns(tb.tb_max)); 2314 s += strlen(s); 2315 } 2316 p->buflen = s - p->buf; 2317 } 2318 2319 pos = *ppos; 2320 if (pos >= p->buflen) 2321 return 0; 2322 if (len > p->buflen - pos) 2323 len = p->buflen - pos; 2324 n = copy_to_user(buf, p->buf + pos, len); 2325 if (n) { 2326 if (n == len) 2327 return -EFAULT; 2328 len -= n; 2329 } 2330 *ppos = pos + len; 2331 return len; 2332 } 2333 2334 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2335 size_t len, loff_t *ppos) 2336 { 2337 return -EACCES; 2338 } 2339 2340 static const struct file_operations debugfs_timings_ops = { 2341 .owner = THIS_MODULE, 2342 .open = debugfs_timings_open, 2343 .release = debugfs_timings_release, 2344 .read = debugfs_timings_read, 2345 .write = debugfs_timings_write, 2346 .llseek = generic_file_llseek, 2347 }; 2348 2349 /* Create a debugfs directory for the vcpu */ 2350 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2351 { 2352 char buf[16]; 2353 struct kvm *kvm = vcpu->kvm; 2354 2355 snprintf(buf, sizeof(buf), "vcpu%u", id); 2356 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 2357 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu, 2358 &debugfs_timings_ops); 2359 } 2360 2361 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2362 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2363 { 2364 } 2365 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2366 2367 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2368 { 2369 int err; 2370 int core; 2371 struct kvmppc_vcore *vcore; 2372 struct kvm *kvm; 2373 unsigned int id; 2374 2375 kvm = vcpu->kvm; 2376 id = vcpu->vcpu_id; 2377 2378 vcpu->arch.shared = &vcpu->arch.shregs; 2379 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2380 /* 2381 * The shared struct is never shared on HV, 2382 * so we can always use host endianness 2383 */ 2384 #ifdef __BIG_ENDIAN__ 2385 vcpu->arch.shared_big_endian = true; 2386 #else 2387 vcpu->arch.shared_big_endian = false; 2388 #endif 2389 #endif 2390 vcpu->arch.mmcr[0] = MMCR0_FC; 2391 vcpu->arch.ctrl = CTRL_RUNLATCH; 2392 /* default to host PVR, since we can't spoof it */ 2393 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2394 spin_lock_init(&vcpu->arch.vpa_update_lock); 2395 spin_lock_init(&vcpu->arch.tbacct_lock); 2396 vcpu->arch.busy_preempt = TB_NIL; 2397 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2398 2399 /* 2400 * Set the default HFSCR for the guest from the host value. 2401 * This value is only used on POWER9. 2402 * On POWER9, we want to virtualize the doorbell facility, so we 2403 * don't set the HFSCR_MSGP bit, and that causes those instructions 2404 * to trap and then we emulate them. 2405 */ 2406 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2407 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX; 2408 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2409 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2410 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2411 vcpu->arch.hfscr |= HFSCR_TM; 2412 } 2413 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2414 vcpu->arch.hfscr |= HFSCR_TM; 2415 2416 kvmppc_mmu_book3s_hv_init(vcpu); 2417 2418 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2419 2420 init_waitqueue_head(&vcpu->arch.cpu_run); 2421 2422 mutex_lock(&kvm->lock); 2423 vcore = NULL; 2424 err = -EINVAL; 2425 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2426 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2427 pr_devel("KVM: VCPU ID too high\n"); 2428 core = KVM_MAX_VCORES; 2429 } else { 2430 BUG_ON(kvm->arch.smt_mode != 1); 2431 core = kvmppc_pack_vcpu_id(kvm, id); 2432 } 2433 } else { 2434 core = id / kvm->arch.smt_mode; 2435 } 2436 if (core < KVM_MAX_VCORES) { 2437 vcore = kvm->arch.vcores[core]; 2438 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2439 pr_devel("KVM: collision on id %u", id); 2440 vcore = NULL; 2441 } else if (!vcore) { 2442 /* 2443 * Take mmu_setup_lock for mutual exclusion 2444 * with kvmppc_update_lpcr(). 2445 */ 2446 err = -ENOMEM; 2447 vcore = kvmppc_vcore_create(kvm, 2448 id & ~(kvm->arch.smt_mode - 1)); 2449 mutex_lock(&kvm->arch.mmu_setup_lock); 2450 kvm->arch.vcores[core] = vcore; 2451 kvm->arch.online_vcores++; 2452 mutex_unlock(&kvm->arch.mmu_setup_lock); 2453 } 2454 } 2455 mutex_unlock(&kvm->lock); 2456 2457 if (!vcore) 2458 return err; 2459 2460 spin_lock(&vcore->lock); 2461 ++vcore->num_threads; 2462 spin_unlock(&vcore->lock); 2463 vcpu->arch.vcore = vcore; 2464 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2465 vcpu->arch.thread_cpu = -1; 2466 vcpu->arch.prev_cpu = -1; 2467 2468 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2469 kvmppc_sanity_check(vcpu); 2470 2471 debugfs_vcpu_init(vcpu, id); 2472 2473 return 0; 2474 } 2475 2476 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2477 unsigned long flags) 2478 { 2479 int err; 2480 int esmt = 0; 2481 2482 if (flags) 2483 return -EINVAL; 2484 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2485 return -EINVAL; 2486 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2487 /* 2488 * On POWER8 (or POWER7), the threading mode is "strict", 2489 * so we pack smt_mode vcpus per vcore. 2490 */ 2491 if (smt_mode > threads_per_subcore) 2492 return -EINVAL; 2493 } else { 2494 /* 2495 * On POWER9, the threading mode is "loose", 2496 * so each vcpu gets its own vcore. 2497 */ 2498 esmt = smt_mode; 2499 smt_mode = 1; 2500 } 2501 mutex_lock(&kvm->lock); 2502 err = -EBUSY; 2503 if (!kvm->arch.online_vcores) { 2504 kvm->arch.smt_mode = smt_mode; 2505 kvm->arch.emul_smt_mode = esmt; 2506 err = 0; 2507 } 2508 mutex_unlock(&kvm->lock); 2509 2510 return err; 2511 } 2512 2513 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2514 { 2515 if (vpa->pinned_addr) 2516 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2517 vpa->dirty); 2518 } 2519 2520 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2521 { 2522 spin_lock(&vcpu->arch.vpa_update_lock); 2523 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2524 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2525 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2526 spin_unlock(&vcpu->arch.vpa_update_lock); 2527 } 2528 2529 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2530 { 2531 /* Indicate we want to get back into the guest */ 2532 return 1; 2533 } 2534 2535 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2536 { 2537 unsigned long dec_nsec, now; 2538 2539 now = get_tb(); 2540 if (now > vcpu->arch.dec_expires) { 2541 /* decrementer has already gone negative */ 2542 kvmppc_core_queue_dec(vcpu); 2543 kvmppc_core_prepare_to_enter(vcpu); 2544 return; 2545 } 2546 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now); 2547 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2548 vcpu->arch.timer_running = 1; 2549 } 2550 2551 extern int __kvmppc_vcore_entry(void); 2552 2553 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2554 struct kvm_vcpu *vcpu) 2555 { 2556 u64 now; 2557 2558 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2559 return; 2560 spin_lock_irq(&vcpu->arch.tbacct_lock); 2561 now = mftb(); 2562 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2563 vcpu->arch.stolen_logged; 2564 vcpu->arch.busy_preempt = now; 2565 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2566 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2567 --vc->n_runnable; 2568 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2569 } 2570 2571 static int kvmppc_grab_hwthread(int cpu) 2572 { 2573 struct paca_struct *tpaca; 2574 long timeout = 10000; 2575 2576 tpaca = paca_ptrs[cpu]; 2577 2578 /* Ensure the thread won't go into the kernel if it wakes */ 2579 tpaca->kvm_hstate.kvm_vcpu = NULL; 2580 tpaca->kvm_hstate.kvm_vcore = NULL; 2581 tpaca->kvm_hstate.napping = 0; 2582 smp_wmb(); 2583 tpaca->kvm_hstate.hwthread_req = 1; 2584 2585 /* 2586 * If the thread is already executing in the kernel (e.g. handling 2587 * a stray interrupt), wait for it to get back to nap mode. 2588 * The smp_mb() is to ensure that our setting of hwthread_req 2589 * is visible before we look at hwthread_state, so if this 2590 * races with the code at system_reset_pSeries and the thread 2591 * misses our setting of hwthread_req, we are sure to see its 2592 * setting of hwthread_state, and vice versa. 2593 */ 2594 smp_mb(); 2595 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2596 if (--timeout <= 0) { 2597 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2598 return -EBUSY; 2599 } 2600 udelay(1); 2601 } 2602 return 0; 2603 } 2604 2605 static void kvmppc_release_hwthread(int cpu) 2606 { 2607 struct paca_struct *tpaca; 2608 2609 tpaca = paca_ptrs[cpu]; 2610 tpaca->kvm_hstate.hwthread_req = 0; 2611 tpaca->kvm_hstate.kvm_vcpu = NULL; 2612 tpaca->kvm_hstate.kvm_vcore = NULL; 2613 tpaca->kvm_hstate.kvm_split_mode = NULL; 2614 } 2615 2616 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2617 { 2618 struct kvm_nested_guest *nested = vcpu->arch.nested; 2619 cpumask_t *cpu_in_guest; 2620 int i; 2621 2622 cpu = cpu_first_thread_sibling(cpu); 2623 if (nested) { 2624 cpumask_set_cpu(cpu, &nested->need_tlb_flush); 2625 cpu_in_guest = &nested->cpu_in_guest; 2626 } else { 2627 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2628 cpu_in_guest = &kvm->arch.cpu_in_guest; 2629 } 2630 /* 2631 * Make sure setting of bit in need_tlb_flush precedes 2632 * testing of cpu_in_guest bits. The matching barrier on 2633 * the other side is the first smp_mb() in kvmppc_run_core(). 2634 */ 2635 smp_mb(); 2636 for (i = 0; i < threads_per_core; ++i) 2637 if (cpumask_test_cpu(cpu + i, cpu_in_guest)) 2638 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2639 } 2640 2641 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2642 { 2643 struct kvm_nested_guest *nested = vcpu->arch.nested; 2644 struct kvm *kvm = vcpu->kvm; 2645 int prev_cpu; 2646 2647 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2648 return; 2649 2650 if (nested) 2651 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 2652 else 2653 prev_cpu = vcpu->arch.prev_cpu; 2654 2655 /* 2656 * With radix, the guest can do TLB invalidations itself, 2657 * and it could choose to use the local form (tlbiel) if 2658 * it is invalidating a translation that has only ever been 2659 * used on one vcpu. However, that doesn't mean it has 2660 * only ever been used on one physical cpu, since vcpus 2661 * can move around between pcpus. To cope with this, when 2662 * a vcpu moves from one pcpu to another, we need to tell 2663 * any vcpus running on the same core as this vcpu previously 2664 * ran to flush the TLB. The TLB is shared between threads, 2665 * so we use a single bit in .need_tlb_flush for all 4 threads. 2666 */ 2667 if (prev_cpu != pcpu) { 2668 if (prev_cpu >= 0 && 2669 cpu_first_thread_sibling(prev_cpu) != 2670 cpu_first_thread_sibling(pcpu)) 2671 radix_flush_cpu(kvm, prev_cpu, vcpu); 2672 if (nested) 2673 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 2674 else 2675 vcpu->arch.prev_cpu = pcpu; 2676 } 2677 } 2678 2679 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2680 { 2681 int cpu; 2682 struct paca_struct *tpaca; 2683 struct kvm *kvm = vc->kvm; 2684 2685 cpu = vc->pcpu; 2686 if (vcpu) { 2687 if (vcpu->arch.timer_running) { 2688 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2689 vcpu->arch.timer_running = 0; 2690 } 2691 cpu += vcpu->arch.ptid; 2692 vcpu->cpu = vc->pcpu; 2693 vcpu->arch.thread_cpu = cpu; 2694 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2695 } 2696 tpaca = paca_ptrs[cpu]; 2697 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2698 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2699 tpaca->kvm_hstate.fake_suspend = 0; 2700 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2701 smp_wmb(); 2702 tpaca->kvm_hstate.kvm_vcore = vc; 2703 if (cpu != smp_processor_id()) 2704 kvmppc_ipi_thread(cpu); 2705 } 2706 2707 static void kvmppc_wait_for_nap(int n_threads) 2708 { 2709 int cpu = smp_processor_id(); 2710 int i, loops; 2711 2712 if (n_threads <= 1) 2713 return; 2714 for (loops = 0; loops < 1000000; ++loops) { 2715 /* 2716 * Check if all threads are finished. 2717 * We set the vcore pointer when starting a thread 2718 * and the thread clears it when finished, so we look 2719 * for any threads that still have a non-NULL vcore ptr. 2720 */ 2721 for (i = 1; i < n_threads; ++i) 2722 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2723 break; 2724 if (i == n_threads) { 2725 HMT_medium(); 2726 return; 2727 } 2728 HMT_low(); 2729 } 2730 HMT_medium(); 2731 for (i = 1; i < n_threads; ++i) 2732 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2733 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2734 } 2735 2736 /* 2737 * Check that we are on thread 0 and that any other threads in 2738 * this core are off-line. Then grab the threads so they can't 2739 * enter the kernel. 2740 */ 2741 static int on_primary_thread(void) 2742 { 2743 int cpu = smp_processor_id(); 2744 int thr; 2745 2746 /* Are we on a primary subcore? */ 2747 if (cpu_thread_in_subcore(cpu)) 2748 return 0; 2749 2750 thr = 0; 2751 while (++thr < threads_per_subcore) 2752 if (cpu_online(cpu + thr)) 2753 return 0; 2754 2755 /* Grab all hw threads so they can't go into the kernel */ 2756 for (thr = 1; thr < threads_per_subcore; ++thr) { 2757 if (kvmppc_grab_hwthread(cpu + thr)) { 2758 /* Couldn't grab one; let the others go */ 2759 do { 2760 kvmppc_release_hwthread(cpu + thr); 2761 } while (--thr > 0); 2762 return 0; 2763 } 2764 } 2765 return 1; 2766 } 2767 2768 /* 2769 * A list of virtual cores for each physical CPU. 2770 * These are vcores that could run but their runner VCPU tasks are 2771 * (or may be) preempted. 2772 */ 2773 struct preempted_vcore_list { 2774 struct list_head list; 2775 spinlock_t lock; 2776 }; 2777 2778 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2779 2780 static void init_vcore_lists(void) 2781 { 2782 int cpu; 2783 2784 for_each_possible_cpu(cpu) { 2785 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2786 spin_lock_init(&lp->lock); 2787 INIT_LIST_HEAD(&lp->list); 2788 } 2789 } 2790 2791 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2792 { 2793 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2794 2795 vc->vcore_state = VCORE_PREEMPT; 2796 vc->pcpu = smp_processor_id(); 2797 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2798 spin_lock(&lp->lock); 2799 list_add_tail(&vc->preempt_list, &lp->list); 2800 spin_unlock(&lp->lock); 2801 } 2802 2803 /* Start accumulating stolen time */ 2804 kvmppc_core_start_stolen(vc); 2805 } 2806 2807 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2808 { 2809 struct preempted_vcore_list *lp; 2810 2811 kvmppc_core_end_stolen(vc); 2812 if (!list_empty(&vc->preempt_list)) { 2813 lp = &per_cpu(preempted_vcores, vc->pcpu); 2814 spin_lock(&lp->lock); 2815 list_del_init(&vc->preempt_list); 2816 spin_unlock(&lp->lock); 2817 } 2818 vc->vcore_state = VCORE_INACTIVE; 2819 } 2820 2821 /* 2822 * This stores information about the virtual cores currently 2823 * assigned to a physical core. 2824 */ 2825 struct core_info { 2826 int n_subcores; 2827 int max_subcore_threads; 2828 int total_threads; 2829 int subcore_threads[MAX_SUBCORES]; 2830 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2831 }; 2832 2833 /* 2834 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2835 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2836 */ 2837 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2838 2839 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2840 { 2841 memset(cip, 0, sizeof(*cip)); 2842 cip->n_subcores = 1; 2843 cip->max_subcore_threads = vc->num_threads; 2844 cip->total_threads = vc->num_threads; 2845 cip->subcore_threads[0] = vc->num_threads; 2846 cip->vc[0] = vc; 2847 } 2848 2849 static bool subcore_config_ok(int n_subcores, int n_threads) 2850 { 2851 /* 2852 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 2853 * split-core mode, with one thread per subcore. 2854 */ 2855 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2856 return n_subcores <= 4 && n_threads == 1; 2857 2858 /* On POWER8, can only dynamically split if unsplit to begin with */ 2859 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2860 return false; 2861 if (n_subcores > MAX_SUBCORES) 2862 return false; 2863 if (n_subcores > 1) { 2864 if (!(dynamic_mt_modes & 2)) 2865 n_subcores = 4; 2866 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2867 return false; 2868 } 2869 2870 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2871 } 2872 2873 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2874 { 2875 vc->entry_exit_map = 0; 2876 vc->in_guest = 0; 2877 vc->napping_threads = 0; 2878 vc->conferring_threads = 0; 2879 vc->tb_offset_applied = 0; 2880 } 2881 2882 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2883 { 2884 int n_threads = vc->num_threads; 2885 int sub; 2886 2887 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2888 return false; 2889 2890 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 2891 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 2892 return false; 2893 2894 if (n_threads < cip->max_subcore_threads) 2895 n_threads = cip->max_subcore_threads; 2896 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2897 return false; 2898 cip->max_subcore_threads = n_threads; 2899 2900 sub = cip->n_subcores; 2901 ++cip->n_subcores; 2902 cip->total_threads += vc->num_threads; 2903 cip->subcore_threads[sub] = vc->num_threads; 2904 cip->vc[sub] = vc; 2905 init_vcore_to_run(vc); 2906 list_del_init(&vc->preempt_list); 2907 2908 return true; 2909 } 2910 2911 /* 2912 * Work out whether it is possible to piggyback the execution of 2913 * vcore *pvc onto the execution of the other vcores described in *cip. 2914 */ 2915 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2916 int target_threads) 2917 { 2918 if (cip->total_threads + pvc->num_threads > target_threads) 2919 return false; 2920 2921 return can_dynamic_split(pvc, cip); 2922 } 2923 2924 static void prepare_threads(struct kvmppc_vcore *vc) 2925 { 2926 int i; 2927 struct kvm_vcpu *vcpu; 2928 2929 for_each_runnable_thread(i, vcpu, vc) { 2930 if (signal_pending(vcpu->arch.run_task)) 2931 vcpu->arch.ret = -EINTR; 2932 else if (no_mixing_hpt_and_radix && 2933 kvm_is_radix(vc->kvm) != radix_enabled()) 2934 vcpu->arch.ret = -EINVAL; 2935 else if (vcpu->arch.vpa.update_pending || 2936 vcpu->arch.slb_shadow.update_pending || 2937 vcpu->arch.dtl.update_pending) 2938 vcpu->arch.ret = RESUME_GUEST; 2939 else 2940 continue; 2941 kvmppc_remove_runnable(vc, vcpu); 2942 wake_up(&vcpu->arch.cpu_run); 2943 } 2944 } 2945 2946 static void collect_piggybacks(struct core_info *cip, int target_threads) 2947 { 2948 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2949 struct kvmppc_vcore *pvc, *vcnext; 2950 2951 spin_lock(&lp->lock); 2952 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2953 if (!spin_trylock(&pvc->lock)) 2954 continue; 2955 prepare_threads(pvc); 2956 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 2957 list_del_init(&pvc->preempt_list); 2958 if (pvc->runner == NULL) { 2959 pvc->vcore_state = VCORE_INACTIVE; 2960 kvmppc_core_end_stolen(pvc); 2961 } 2962 spin_unlock(&pvc->lock); 2963 continue; 2964 } 2965 if (!can_piggyback(pvc, cip, target_threads)) { 2966 spin_unlock(&pvc->lock); 2967 continue; 2968 } 2969 kvmppc_core_end_stolen(pvc); 2970 pvc->vcore_state = VCORE_PIGGYBACK; 2971 if (cip->total_threads >= target_threads) 2972 break; 2973 } 2974 spin_unlock(&lp->lock); 2975 } 2976 2977 static bool recheck_signals_and_mmu(struct core_info *cip) 2978 { 2979 int sub, i; 2980 struct kvm_vcpu *vcpu; 2981 struct kvmppc_vcore *vc; 2982 2983 for (sub = 0; sub < cip->n_subcores; ++sub) { 2984 vc = cip->vc[sub]; 2985 if (!vc->kvm->arch.mmu_ready) 2986 return true; 2987 for_each_runnable_thread(i, vcpu, vc) 2988 if (signal_pending(vcpu->arch.run_task)) 2989 return true; 2990 } 2991 return false; 2992 } 2993 2994 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2995 { 2996 int still_running = 0, i; 2997 u64 now; 2998 long ret; 2999 struct kvm_vcpu *vcpu; 3000 3001 spin_lock(&vc->lock); 3002 now = get_tb(); 3003 for_each_runnable_thread(i, vcpu, vc) { 3004 /* 3005 * It's safe to unlock the vcore in the loop here, because 3006 * for_each_runnable_thread() is safe against removal of 3007 * the vcpu, and the vcore state is VCORE_EXITING here, 3008 * so any vcpus becoming runnable will have their arch.trap 3009 * set to zero and can't actually run in the guest. 3010 */ 3011 spin_unlock(&vc->lock); 3012 /* cancel pending dec exception if dec is positive */ 3013 if (now < vcpu->arch.dec_expires && 3014 kvmppc_core_pending_dec(vcpu)) 3015 kvmppc_core_dequeue_dec(vcpu); 3016 3017 trace_kvm_guest_exit(vcpu); 3018 3019 ret = RESUME_GUEST; 3020 if (vcpu->arch.trap) 3021 ret = kvmppc_handle_exit_hv(vcpu, 3022 vcpu->arch.run_task); 3023 3024 vcpu->arch.ret = ret; 3025 vcpu->arch.trap = 0; 3026 3027 spin_lock(&vc->lock); 3028 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 3029 if (vcpu->arch.pending_exceptions) 3030 kvmppc_core_prepare_to_enter(vcpu); 3031 if (vcpu->arch.ceded) 3032 kvmppc_set_timer(vcpu); 3033 else 3034 ++still_running; 3035 } else { 3036 kvmppc_remove_runnable(vc, vcpu); 3037 wake_up(&vcpu->arch.cpu_run); 3038 } 3039 } 3040 if (!is_master) { 3041 if (still_running > 0) { 3042 kvmppc_vcore_preempt(vc); 3043 } else if (vc->runner) { 3044 vc->vcore_state = VCORE_PREEMPT; 3045 kvmppc_core_start_stolen(vc); 3046 } else { 3047 vc->vcore_state = VCORE_INACTIVE; 3048 } 3049 if (vc->n_runnable > 0 && vc->runner == NULL) { 3050 /* make sure there's a candidate runner awake */ 3051 i = -1; 3052 vcpu = next_runnable_thread(vc, &i); 3053 wake_up(&vcpu->arch.cpu_run); 3054 } 3055 } 3056 spin_unlock(&vc->lock); 3057 } 3058 3059 /* 3060 * Clear core from the list of active host cores as we are about to 3061 * enter the guest. Only do this if it is the primary thread of the 3062 * core (not if a subcore) that is entering the guest. 3063 */ 3064 static inline int kvmppc_clear_host_core(unsigned int cpu) 3065 { 3066 int core; 3067 3068 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3069 return 0; 3070 /* 3071 * Memory barrier can be omitted here as we will do a smp_wmb() 3072 * later in kvmppc_start_thread and we need ensure that state is 3073 * visible to other CPUs only after we enter guest. 3074 */ 3075 core = cpu >> threads_shift; 3076 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 3077 return 0; 3078 } 3079 3080 /* 3081 * Advertise this core as an active host core since we exited the guest 3082 * Only need to do this if it is the primary thread of the core that is 3083 * exiting. 3084 */ 3085 static inline int kvmppc_set_host_core(unsigned int cpu) 3086 { 3087 int core; 3088 3089 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3090 return 0; 3091 3092 /* 3093 * Memory barrier can be omitted here because we do a spin_unlock 3094 * immediately after this which provides the memory barrier. 3095 */ 3096 core = cpu >> threads_shift; 3097 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3098 return 0; 3099 } 3100 3101 static void set_irq_happened(int trap) 3102 { 3103 switch (trap) { 3104 case BOOK3S_INTERRUPT_EXTERNAL: 3105 local_paca->irq_happened |= PACA_IRQ_EE; 3106 break; 3107 case BOOK3S_INTERRUPT_H_DOORBELL: 3108 local_paca->irq_happened |= PACA_IRQ_DBELL; 3109 break; 3110 case BOOK3S_INTERRUPT_HMI: 3111 local_paca->irq_happened |= PACA_IRQ_HMI; 3112 break; 3113 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3114 replay_system_reset(); 3115 break; 3116 } 3117 } 3118 3119 /* 3120 * Run a set of guest threads on a physical core. 3121 * Called with vc->lock held. 3122 */ 3123 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3124 { 3125 struct kvm_vcpu *vcpu; 3126 int i; 3127 int srcu_idx; 3128 struct core_info core_info; 3129 struct kvmppc_vcore *pvc; 3130 struct kvm_split_mode split_info, *sip; 3131 int split, subcore_size, active; 3132 int sub; 3133 bool thr0_done; 3134 unsigned long cmd_bit, stat_bit; 3135 int pcpu, thr; 3136 int target_threads; 3137 int controlled_threads; 3138 int trap; 3139 bool is_power8; 3140 3141 /* 3142 * Remove from the list any threads that have a signal pending 3143 * or need a VPA update done 3144 */ 3145 prepare_threads(vc); 3146 3147 /* if the runner is no longer runnable, let the caller pick a new one */ 3148 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3149 return; 3150 3151 /* 3152 * Initialize *vc. 3153 */ 3154 init_vcore_to_run(vc); 3155 vc->preempt_tb = TB_NIL; 3156 3157 /* 3158 * Number of threads that we will be controlling: the same as 3159 * the number of threads per subcore, except on POWER9, 3160 * where it's 1 because the threads are (mostly) independent. 3161 */ 3162 controlled_threads = threads_per_vcore(vc->kvm); 3163 3164 /* 3165 * Make sure we are running on primary threads, and that secondary 3166 * threads are offline. Also check if the number of threads in this 3167 * guest are greater than the current system threads per guest. 3168 * On POWER9, we need to be not in independent-threads mode if 3169 * this is a HPT guest on a radix host machine where the 3170 * CPU threads may not be in different MMU modes. 3171 */ 3172 if ((controlled_threads > 1) && 3173 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) { 3174 for_each_runnable_thread(i, vcpu, vc) { 3175 vcpu->arch.ret = -EBUSY; 3176 kvmppc_remove_runnable(vc, vcpu); 3177 wake_up(&vcpu->arch.cpu_run); 3178 } 3179 goto out; 3180 } 3181 3182 /* 3183 * See if we could run any other vcores on the physical core 3184 * along with this one. 3185 */ 3186 init_core_info(&core_info, vc); 3187 pcpu = smp_processor_id(); 3188 target_threads = controlled_threads; 3189 if (target_smt_mode && target_smt_mode < target_threads) 3190 target_threads = target_smt_mode; 3191 if (vc->num_threads < target_threads) 3192 collect_piggybacks(&core_info, target_threads); 3193 3194 /* 3195 * On radix, arrange for TLB flushing if necessary. 3196 * This has to be done before disabling interrupts since 3197 * it uses smp_call_function(). 3198 */ 3199 pcpu = smp_processor_id(); 3200 if (kvm_is_radix(vc->kvm)) { 3201 for (sub = 0; sub < core_info.n_subcores; ++sub) 3202 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 3203 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 3204 } 3205 3206 /* 3207 * Hard-disable interrupts, and check resched flag and signals. 3208 * If we need to reschedule or deliver a signal, clean up 3209 * and return without going into the guest(s). 3210 * If the mmu_ready flag has been cleared, don't go into the 3211 * guest because that means a HPT resize operation is in progress. 3212 */ 3213 local_irq_disable(); 3214 hard_irq_disable(); 3215 if (lazy_irq_pending() || need_resched() || 3216 recheck_signals_and_mmu(&core_info)) { 3217 local_irq_enable(); 3218 vc->vcore_state = VCORE_INACTIVE; 3219 /* Unlock all except the primary vcore */ 3220 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3221 pvc = core_info.vc[sub]; 3222 /* Put back on to the preempted vcores list */ 3223 kvmppc_vcore_preempt(pvc); 3224 spin_unlock(&pvc->lock); 3225 } 3226 for (i = 0; i < controlled_threads; ++i) 3227 kvmppc_release_hwthread(pcpu + i); 3228 return; 3229 } 3230 3231 kvmppc_clear_host_core(pcpu); 3232 3233 /* Decide on micro-threading (split-core) mode */ 3234 subcore_size = threads_per_subcore; 3235 cmd_bit = stat_bit = 0; 3236 split = core_info.n_subcores; 3237 sip = NULL; 3238 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 3239 && !cpu_has_feature(CPU_FTR_ARCH_300); 3240 3241 if (split > 1) { 3242 sip = &split_info; 3243 memset(&split_info, 0, sizeof(split_info)); 3244 for (sub = 0; sub < core_info.n_subcores; ++sub) 3245 split_info.vc[sub] = core_info.vc[sub]; 3246 3247 if (is_power8) { 3248 if (split == 2 && (dynamic_mt_modes & 2)) { 3249 cmd_bit = HID0_POWER8_1TO2LPAR; 3250 stat_bit = HID0_POWER8_2LPARMODE; 3251 } else { 3252 split = 4; 3253 cmd_bit = HID0_POWER8_1TO4LPAR; 3254 stat_bit = HID0_POWER8_4LPARMODE; 3255 } 3256 subcore_size = MAX_SMT_THREADS / split; 3257 split_info.rpr = mfspr(SPRN_RPR); 3258 split_info.pmmar = mfspr(SPRN_PMMAR); 3259 split_info.ldbar = mfspr(SPRN_LDBAR); 3260 split_info.subcore_size = subcore_size; 3261 } else { 3262 split_info.subcore_size = 1; 3263 } 3264 3265 /* order writes to split_info before kvm_split_mode pointer */ 3266 smp_wmb(); 3267 } 3268 3269 for (thr = 0; thr < controlled_threads; ++thr) { 3270 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3271 3272 paca->kvm_hstate.napping = 0; 3273 paca->kvm_hstate.kvm_split_mode = sip; 3274 } 3275 3276 /* Initiate micro-threading (split-core) on POWER8 if required */ 3277 if (cmd_bit) { 3278 unsigned long hid0 = mfspr(SPRN_HID0); 3279 3280 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3281 mb(); 3282 mtspr(SPRN_HID0, hid0); 3283 isync(); 3284 for (;;) { 3285 hid0 = mfspr(SPRN_HID0); 3286 if (hid0 & stat_bit) 3287 break; 3288 cpu_relax(); 3289 } 3290 } 3291 3292 /* 3293 * On POWER8, set RWMR register. 3294 * Since it only affects PURR and SPURR, it doesn't affect 3295 * the host, so we don't save/restore the host value. 3296 */ 3297 if (is_power8) { 3298 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3299 int n_online = atomic_read(&vc->online_count); 3300 3301 /* 3302 * Use the 8-thread value if we're doing split-core 3303 * or if the vcore's online count looks bogus. 3304 */ 3305 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3306 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3307 rwmr_val = p8_rwmr_values[n_online]; 3308 mtspr(SPRN_RWMR, rwmr_val); 3309 } 3310 3311 /* Start all the threads */ 3312 active = 0; 3313 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3314 thr = is_power8 ? subcore_thread_map[sub] : sub; 3315 thr0_done = false; 3316 active |= 1 << thr; 3317 pvc = core_info.vc[sub]; 3318 pvc->pcpu = pcpu + thr; 3319 for_each_runnable_thread(i, vcpu, pvc) { 3320 kvmppc_start_thread(vcpu, pvc); 3321 kvmppc_create_dtl_entry(vcpu, pvc); 3322 trace_kvm_guest_enter(vcpu); 3323 if (!vcpu->arch.ptid) 3324 thr0_done = true; 3325 active |= 1 << (thr + vcpu->arch.ptid); 3326 } 3327 /* 3328 * We need to start the first thread of each subcore 3329 * even if it doesn't have a vcpu. 3330 */ 3331 if (!thr0_done) 3332 kvmppc_start_thread(NULL, pvc); 3333 } 3334 3335 /* 3336 * Ensure that split_info.do_nap is set after setting 3337 * the vcore pointer in the PACA of the secondaries. 3338 */ 3339 smp_mb(); 3340 3341 /* 3342 * When doing micro-threading, poke the inactive threads as well. 3343 * This gets them to the nap instruction after kvm_do_nap, 3344 * which reduces the time taken to unsplit later. 3345 */ 3346 if (cmd_bit) { 3347 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3348 for (thr = 1; thr < threads_per_subcore; ++thr) 3349 if (!(active & (1 << thr))) 3350 kvmppc_ipi_thread(pcpu + thr); 3351 } 3352 3353 vc->vcore_state = VCORE_RUNNING; 3354 preempt_disable(); 3355 3356 trace_kvmppc_run_core(vc, 0); 3357 3358 for (sub = 0; sub < core_info.n_subcores; ++sub) 3359 spin_unlock(&core_info.vc[sub]->lock); 3360 3361 guest_enter_irqoff(); 3362 3363 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3364 3365 this_cpu_disable_ftrace(); 3366 3367 /* 3368 * Interrupts will be enabled once we get into the guest, 3369 * so tell lockdep that we're about to enable interrupts. 3370 */ 3371 trace_hardirqs_on(); 3372 3373 trap = __kvmppc_vcore_entry(); 3374 3375 trace_hardirqs_off(); 3376 3377 this_cpu_enable_ftrace(); 3378 3379 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3380 3381 set_irq_happened(trap); 3382 3383 spin_lock(&vc->lock); 3384 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3385 vc->vcore_state = VCORE_EXITING; 3386 3387 /* wait for secondary threads to finish writing their state to memory */ 3388 kvmppc_wait_for_nap(controlled_threads); 3389 3390 /* Return to whole-core mode if we split the core earlier */ 3391 if (cmd_bit) { 3392 unsigned long hid0 = mfspr(SPRN_HID0); 3393 unsigned long loops = 0; 3394 3395 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3396 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3397 mb(); 3398 mtspr(SPRN_HID0, hid0); 3399 isync(); 3400 for (;;) { 3401 hid0 = mfspr(SPRN_HID0); 3402 if (!(hid0 & stat_bit)) 3403 break; 3404 cpu_relax(); 3405 ++loops; 3406 } 3407 split_info.do_nap = 0; 3408 } 3409 3410 kvmppc_set_host_core(pcpu); 3411 3412 guest_exit_irqoff(); 3413 3414 local_irq_enable(); 3415 3416 /* Let secondaries go back to the offline loop */ 3417 for (i = 0; i < controlled_threads; ++i) { 3418 kvmppc_release_hwthread(pcpu + i); 3419 if (sip && sip->napped[i]) 3420 kvmppc_ipi_thread(pcpu + i); 3421 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 3422 } 3423 3424 spin_unlock(&vc->lock); 3425 3426 /* make sure updates to secondary vcpu structs are visible now */ 3427 smp_mb(); 3428 3429 preempt_enable(); 3430 3431 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3432 pvc = core_info.vc[sub]; 3433 post_guest_process(pvc, pvc == vc); 3434 } 3435 3436 spin_lock(&vc->lock); 3437 3438 out: 3439 vc->vcore_state = VCORE_INACTIVE; 3440 trace_kvmppc_run_core(vc, 1); 3441 } 3442 3443 /* 3444 * Load up hypervisor-mode registers on P9. 3445 */ 3446 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit, 3447 unsigned long lpcr) 3448 { 3449 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3450 s64 hdec; 3451 u64 tb, purr, spurr; 3452 int trap; 3453 unsigned long host_hfscr = mfspr(SPRN_HFSCR); 3454 unsigned long host_ciabr = mfspr(SPRN_CIABR); 3455 unsigned long host_dawr0 = mfspr(SPRN_DAWR0); 3456 unsigned long host_dawrx0 = mfspr(SPRN_DAWRX0); 3457 unsigned long host_psscr = mfspr(SPRN_PSSCR); 3458 unsigned long host_pidr = mfspr(SPRN_PID); 3459 unsigned long host_dawr1 = 0; 3460 unsigned long host_dawrx1 = 0; 3461 3462 if (cpu_has_feature(CPU_FTR_DAWR1)) { 3463 host_dawr1 = mfspr(SPRN_DAWR1); 3464 host_dawrx1 = mfspr(SPRN_DAWRX1); 3465 } 3466 3467 /* 3468 * P8 and P9 suppress the HDEC exception when LPCR[HDICE] = 0, 3469 * so set HDICE before writing HDEC. 3470 */ 3471 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr | LPCR_HDICE); 3472 isync(); 3473 3474 hdec = time_limit - mftb(); 3475 if (hdec < 0) { 3476 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr); 3477 isync(); 3478 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3479 } 3480 mtspr(SPRN_HDEC, hdec); 3481 3482 if (vc->tb_offset) { 3483 u64 new_tb = mftb() + vc->tb_offset; 3484 mtspr(SPRN_TBU40, new_tb); 3485 tb = mftb(); 3486 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3487 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3488 vc->tb_offset_applied = vc->tb_offset; 3489 } 3490 3491 if (vc->pcr) 3492 mtspr(SPRN_PCR, vc->pcr | PCR_MASK); 3493 mtspr(SPRN_DPDES, vc->dpdes); 3494 mtspr(SPRN_VTB, vc->vtb); 3495 3496 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR); 3497 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR); 3498 mtspr(SPRN_PURR, vcpu->arch.purr); 3499 mtspr(SPRN_SPURR, vcpu->arch.spurr); 3500 3501 if (dawr_enabled()) { 3502 mtspr(SPRN_DAWR0, vcpu->arch.dawr0); 3503 mtspr(SPRN_DAWRX0, vcpu->arch.dawrx0); 3504 if (cpu_has_feature(CPU_FTR_DAWR1)) { 3505 mtspr(SPRN_DAWR1, vcpu->arch.dawr1); 3506 mtspr(SPRN_DAWRX1, vcpu->arch.dawrx1); 3507 } 3508 } 3509 mtspr(SPRN_CIABR, vcpu->arch.ciabr); 3510 mtspr(SPRN_IC, vcpu->arch.ic); 3511 mtspr(SPRN_PID, vcpu->arch.pid); 3512 3513 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC | 3514 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3515 3516 mtspr(SPRN_HFSCR, vcpu->arch.hfscr); 3517 3518 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0); 3519 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1); 3520 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2); 3521 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3); 3522 3523 mtspr(SPRN_AMOR, ~0UL); 3524 3525 mtspr(SPRN_LPCR, lpcr); 3526 isync(); 3527 3528 kvmppc_xive_push_vcpu(vcpu); 3529 3530 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0); 3531 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1); 3532 3533 trap = __kvmhv_vcpu_entry_p9(vcpu); 3534 3535 /* Advance host PURR/SPURR by the amount used by guest */ 3536 purr = mfspr(SPRN_PURR); 3537 spurr = mfspr(SPRN_SPURR); 3538 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr + 3539 purr - vcpu->arch.purr); 3540 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr + 3541 spurr - vcpu->arch.spurr); 3542 vcpu->arch.purr = purr; 3543 vcpu->arch.spurr = spurr; 3544 3545 vcpu->arch.ic = mfspr(SPRN_IC); 3546 vcpu->arch.pid = mfspr(SPRN_PID); 3547 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS; 3548 3549 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0); 3550 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1); 3551 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2); 3552 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3); 3553 3554 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */ 3555 mtspr(SPRN_PSSCR, host_psscr | 3556 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3557 mtspr(SPRN_HFSCR, host_hfscr); 3558 mtspr(SPRN_CIABR, host_ciabr); 3559 mtspr(SPRN_DAWR0, host_dawr0); 3560 mtspr(SPRN_DAWRX0, host_dawrx0); 3561 if (cpu_has_feature(CPU_FTR_DAWR1)) { 3562 mtspr(SPRN_DAWR1, host_dawr1); 3563 mtspr(SPRN_DAWRX1, host_dawrx1); 3564 } 3565 mtspr(SPRN_PID, host_pidr); 3566 3567 /* 3568 * Since this is radix, do a eieio; tlbsync; ptesync sequence in 3569 * case we interrupted the guest between a tlbie and a ptesync. 3570 */ 3571 asm volatile("eieio; tlbsync; ptesync"); 3572 3573 /* 3574 * cp_abort is required if the processor supports local copy-paste 3575 * to clear the copy buffer that was under control of the guest. 3576 */ 3577 if (cpu_has_feature(CPU_FTR_ARCH_31)) 3578 asm volatile(PPC_CP_ABORT); 3579 3580 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */ 3581 isync(); 3582 3583 vc->dpdes = mfspr(SPRN_DPDES); 3584 vc->vtb = mfspr(SPRN_VTB); 3585 mtspr(SPRN_DPDES, 0); 3586 if (vc->pcr) 3587 mtspr(SPRN_PCR, PCR_MASK); 3588 3589 if (vc->tb_offset_applied) { 3590 u64 new_tb = mftb() - vc->tb_offset_applied; 3591 mtspr(SPRN_TBU40, new_tb); 3592 tb = mftb(); 3593 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3594 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3595 vc->tb_offset_applied = 0; 3596 } 3597 3598 mtspr(SPRN_HDEC, 0x7fffffff); 3599 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr); 3600 3601 return trap; 3602 } 3603 3604 /* 3605 * Virtual-mode guest entry for POWER9 and later when the host and 3606 * guest are both using the radix MMU. The LPIDR has already been set. 3607 */ 3608 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 3609 unsigned long lpcr) 3610 { 3611 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3612 unsigned long host_dscr = mfspr(SPRN_DSCR); 3613 unsigned long host_tidr = mfspr(SPRN_TIDR); 3614 unsigned long host_iamr = mfspr(SPRN_IAMR); 3615 unsigned long host_amr = mfspr(SPRN_AMR); 3616 unsigned long host_fscr = mfspr(SPRN_FSCR); 3617 s64 dec; 3618 u64 tb; 3619 int trap, save_pmu; 3620 3621 dec = mfspr(SPRN_DEC); 3622 tb = mftb(); 3623 if (dec < 0) 3624 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3625 local_paca->kvm_hstate.dec_expires = dec + tb; 3626 if (local_paca->kvm_hstate.dec_expires < time_limit) 3627 time_limit = local_paca->kvm_hstate.dec_expires; 3628 3629 vcpu->arch.ceded = 0; 3630 3631 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */ 3632 3633 kvmppc_subcore_enter_guest(); 3634 3635 vc->entry_exit_map = 1; 3636 vc->in_guest = 1; 3637 3638 if (vcpu->arch.vpa.pinned_addr) { 3639 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3640 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3641 lp->yield_count = cpu_to_be32(yield_count); 3642 vcpu->arch.vpa.dirty = 1; 3643 } 3644 3645 if (cpu_has_feature(CPU_FTR_TM) || 3646 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3647 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3648 3649 kvmhv_load_guest_pmu(vcpu); 3650 3651 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3652 load_fp_state(&vcpu->arch.fp); 3653 #ifdef CONFIG_ALTIVEC 3654 load_vr_state(&vcpu->arch.vr); 3655 #endif 3656 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 3657 3658 mtspr(SPRN_DSCR, vcpu->arch.dscr); 3659 mtspr(SPRN_IAMR, vcpu->arch.iamr); 3660 mtspr(SPRN_PSPB, vcpu->arch.pspb); 3661 mtspr(SPRN_FSCR, vcpu->arch.fscr); 3662 mtspr(SPRN_TAR, vcpu->arch.tar); 3663 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr); 3664 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr); 3665 mtspr(SPRN_BESCR, vcpu->arch.bescr); 3666 mtspr(SPRN_WORT, vcpu->arch.wort); 3667 mtspr(SPRN_TIDR, vcpu->arch.tid); 3668 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 3669 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 3670 mtspr(SPRN_AMR, vcpu->arch.amr); 3671 mtspr(SPRN_UAMOR, vcpu->arch.uamor); 3672 3673 if (!(vcpu->arch.ctrl & 1)) 3674 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1); 3675 3676 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb()); 3677 3678 if (kvmhv_on_pseries()) { 3679 /* 3680 * We need to save and restore the guest visible part of the 3681 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 3682 * doesn't do this for us. Note only required if pseries since 3683 * this is done in kvmhv_load_hv_regs_and_go() below otherwise. 3684 */ 3685 unsigned long host_psscr; 3686 /* call our hypervisor to load up HV regs and go */ 3687 struct hv_guest_state hvregs; 3688 3689 host_psscr = mfspr(SPRN_PSSCR_PR); 3690 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 3691 kvmhv_save_hv_regs(vcpu, &hvregs); 3692 hvregs.lpcr = lpcr; 3693 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 3694 hvregs.version = HV_GUEST_STATE_VERSION; 3695 if (vcpu->arch.nested) { 3696 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 3697 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 3698 } else { 3699 hvregs.lpid = vcpu->kvm->arch.lpid; 3700 hvregs.vcpu_token = vcpu->vcpu_id; 3701 } 3702 hvregs.hdec_expiry = time_limit; 3703 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 3704 __pa(&vcpu->arch.regs)); 3705 kvmhv_restore_hv_return_state(vcpu, &hvregs); 3706 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 3707 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 3708 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 3709 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 3710 mtspr(SPRN_PSSCR_PR, host_psscr); 3711 3712 /* H_CEDE has to be handled now, not later */ 3713 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 3714 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 3715 kvmppc_nested_cede(vcpu); 3716 kvmppc_set_gpr(vcpu, 3, 0); 3717 trap = 0; 3718 } 3719 } else { 3720 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr); 3721 } 3722 3723 vcpu->arch.slb_max = 0; 3724 dec = mfspr(SPRN_DEC); 3725 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 3726 dec = (s32) dec; 3727 tb = mftb(); 3728 vcpu->arch.dec_expires = dec + tb; 3729 vcpu->cpu = -1; 3730 vcpu->arch.thread_cpu = -1; 3731 vcpu->arch.ctrl = mfspr(SPRN_CTRLF); 3732 3733 vcpu->arch.iamr = mfspr(SPRN_IAMR); 3734 vcpu->arch.pspb = mfspr(SPRN_PSPB); 3735 vcpu->arch.fscr = mfspr(SPRN_FSCR); 3736 vcpu->arch.tar = mfspr(SPRN_TAR); 3737 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR); 3738 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR); 3739 vcpu->arch.bescr = mfspr(SPRN_BESCR); 3740 vcpu->arch.wort = mfspr(SPRN_WORT); 3741 vcpu->arch.tid = mfspr(SPRN_TIDR); 3742 vcpu->arch.amr = mfspr(SPRN_AMR); 3743 vcpu->arch.uamor = mfspr(SPRN_UAMOR); 3744 vcpu->arch.dscr = mfspr(SPRN_DSCR); 3745 3746 mtspr(SPRN_PSPB, 0); 3747 mtspr(SPRN_WORT, 0); 3748 mtspr(SPRN_UAMOR, 0); 3749 mtspr(SPRN_DSCR, host_dscr); 3750 mtspr(SPRN_TIDR, host_tidr); 3751 mtspr(SPRN_IAMR, host_iamr); 3752 mtspr(SPRN_PSPB, 0); 3753 3754 if (host_amr != vcpu->arch.amr) 3755 mtspr(SPRN_AMR, host_amr); 3756 3757 if (host_fscr != vcpu->arch.fscr) 3758 mtspr(SPRN_FSCR, host_fscr); 3759 3760 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3761 store_fp_state(&vcpu->arch.fp); 3762 #ifdef CONFIG_ALTIVEC 3763 store_vr_state(&vcpu->arch.vr); 3764 #endif 3765 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 3766 3767 if (cpu_has_feature(CPU_FTR_TM) || 3768 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3769 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3770 3771 save_pmu = 1; 3772 if (vcpu->arch.vpa.pinned_addr) { 3773 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3774 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3775 lp->yield_count = cpu_to_be32(yield_count); 3776 vcpu->arch.vpa.dirty = 1; 3777 save_pmu = lp->pmcregs_in_use; 3778 } 3779 /* Must save pmu if this guest is capable of running nested guests */ 3780 save_pmu |= nesting_enabled(vcpu->kvm); 3781 3782 kvmhv_save_guest_pmu(vcpu, save_pmu); 3783 3784 vc->entry_exit_map = 0x101; 3785 vc->in_guest = 0; 3786 3787 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb()); 3788 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso); 3789 3790 kvmhv_load_host_pmu(); 3791 3792 kvmppc_subcore_exit_guest(); 3793 3794 return trap; 3795 } 3796 3797 /* 3798 * Wait for some other vcpu thread to execute us, and 3799 * wake us up when we need to handle something in the host. 3800 */ 3801 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 3802 struct kvm_vcpu *vcpu, int wait_state) 3803 { 3804 DEFINE_WAIT(wait); 3805 3806 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 3807 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3808 spin_unlock(&vc->lock); 3809 schedule(); 3810 spin_lock(&vc->lock); 3811 } 3812 finish_wait(&vcpu->arch.cpu_run, &wait); 3813 } 3814 3815 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 3816 { 3817 if (!halt_poll_ns_grow) 3818 return; 3819 3820 vc->halt_poll_ns *= halt_poll_ns_grow; 3821 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 3822 vc->halt_poll_ns = halt_poll_ns_grow_start; 3823 } 3824 3825 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 3826 { 3827 if (halt_poll_ns_shrink == 0) 3828 vc->halt_poll_ns = 0; 3829 else 3830 vc->halt_poll_ns /= halt_poll_ns_shrink; 3831 } 3832 3833 #ifdef CONFIG_KVM_XICS 3834 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3835 { 3836 if (!xics_on_xive()) 3837 return false; 3838 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 3839 vcpu->arch.xive_saved_state.cppr; 3840 } 3841 #else 3842 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3843 { 3844 return false; 3845 } 3846 #endif /* CONFIG_KVM_XICS */ 3847 3848 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3849 { 3850 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3851 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3852 return true; 3853 3854 return false; 3855 } 3856 3857 /* 3858 * Check to see if any of the runnable vcpus on the vcore have pending 3859 * exceptions or are no longer ceded 3860 */ 3861 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3862 { 3863 struct kvm_vcpu *vcpu; 3864 int i; 3865 3866 for_each_runnable_thread(i, vcpu, vc) { 3867 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3868 return 1; 3869 } 3870 3871 return 0; 3872 } 3873 3874 /* 3875 * All the vcpus in this vcore are idle, so wait for a decrementer 3876 * or external interrupt to one of the vcpus. vc->lock is held. 3877 */ 3878 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3879 { 3880 ktime_t cur, start_poll, start_wait; 3881 int do_sleep = 1; 3882 u64 block_ns; 3883 3884 /* Poll for pending exceptions and ceded state */ 3885 cur = start_poll = ktime_get(); 3886 if (vc->halt_poll_ns) { 3887 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3888 ++vc->runner->stat.halt_attempted_poll; 3889 3890 vc->vcore_state = VCORE_POLLING; 3891 spin_unlock(&vc->lock); 3892 3893 do { 3894 if (kvmppc_vcore_check_block(vc)) { 3895 do_sleep = 0; 3896 break; 3897 } 3898 cur = ktime_get(); 3899 } while (single_task_running() && ktime_before(cur, stop)); 3900 3901 spin_lock(&vc->lock); 3902 vc->vcore_state = VCORE_INACTIVE; 3903 3904 if (!do_sleep) { 3905 ++vc->runner->stat.halt_successful_poll; 3906 goto out; 3907 } 3908 } 3909 3910 prepare_to_rcuwait(&vc->wait); 3911 set_current_state(TASK_INTERRUPTIBLE); 3912 if (kvmppc_vcore_check_block(vc)) { 3913 finish_rcuwait(&vc->wait); 3914 do_sleep = 0; 3915 /* If we polled, count this as a successful poll */ 3916 if (vc->halt_poll_ns) 3917 ++vc->runner->stat.halt_successful_poll; 3918 goto out; 3919 } 3920 3921 start_wait = ktime_get(); 3922 3923 vc->vcore_state = VCORE_SLEEPING; 3924 trace_kvmppc_vcore_blocked(vc, 0); 3925 spin_unlock(&vc->lock); 3926 schedule(); 3927 finish_rcuwait(&vc->wait); 3928 spin_lock(&vc->lock); 3929 vc->vcore_state = VCORE_INACTIVE; 3930 trace_kvmppc_vcore_blocked(vc, 1); 3931 ++vc->runner->stat.halt_successful_wait; 3932 3933 cur = ktime_get(); 3934 3935 out: 3936 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3937 3938 /* Attribute wait time */ 3939 if (do_sleep) { 3940 vc->runner->stat.halt_wait_ns += 3941 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3942 /* Attribute failed poll time */ 3943 if (vc->halt_poll_ns) 3944 vc->runner->stat.halt_poll_fail_ns += 3945 ktime_to_ns(start_wait) - 3946 ktime_to_ns(start_poll); 3947 } else { 3948 /* Attribute successful poll time */ 3949 if (vc->halt_poll_ns) 3950 vc->runner->stat.halt_poll_success_ns += 3951 ktime_to_ns(cur) - 3952 ktime_to_ns(start_poll); 3953 } 3954 3955 /* Adjust poll time */ 3956 if (halt_poll_ns) { 3957 if (block_ns <= vc->halt_poll_ns) 3958 ; 3959 /* We slept and blocked for longer than the max halt time */ 3960 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3961 shrink_halt_poll_ns(vc); 3962 /* We slept and our poll time is too small */ 3963 else if (vc->halt_poll_ns < halt_poll_ns && 3964 block_ns < halt_poll_ns) 3965 grow_halt_poll_ns(vc); 3966 if (vc->halt_poll_ns > halt_poll_ns) 3967 vc->halt_poll_ns = halt_poll_ns; 3968 } else 3969 vc->halt_poll_ns = 0; 3970 3971 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3972 } 3973 3974 /* 3975 * This never fails for a radix guest, as none of the operations it does 3976 * for a radix guest can fail or have a way to report failure. 3977 * kvmhv_run_single_vcpu() relies on this fact. 3978 */ 3979 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 3980 { 3981 int r = 0; 3982 struct kvm *kvm = vcpu->kvm; 3983 3984 mutex_lock(&kvm->arch.mmu_setup_lock); 3985 if (!kvm->arch.mmu_ready) { 3986 if (!kvm_is_radix(kvm)) 3987 r = kvmppc_hv_setup_htab_rma(vcpu); 3988 if (!r) { 3989 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3990 kvmppc_setup_partition_table(kvm); 3991 kvm->arch.mmu_ready = 1; 3992 } 3993 } 3994 mutex_unlock(&kvm->arch.mmu_setup_lock); 3995 return r; 3996 } 3997 3998 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) 3999 { 4000 struct kvm_run *run = vcpu->run; 4001 int n_ceded, i, r; 4002 struct kvmppc_vcore *vc; 4003 struct kvm_vcpu *v; 4004 4005 trace_kvmppc_run_vcpu_enter(vcpu); 4006 4007 run->exit_reason = 0; 4008 vcpu->arch.ret = RESUME_GUEST; 4009 vcpu->arch.trap = 0; 4010 kvmppc_update_vpas(vcpu); 4011 4012 /* 4013 * Synchronize with other threads in this virtual core 4014 */ 4015 vc = vcpu->arch.vcore; 4016 spin_lock(&vc->lock); 4017 vcpu->arch.ceded = 0; 4018 vcpu->arch.run_task = current; 4019 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4020 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4021 vcpu->arch.busy_preempt = TB_NIL; 4022 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 4023 ++vc->n_runnable; 4024 4025 /* 4026 * This happens the first time this is called for a vcpu. 4027 * If the vcore is already running, we may be able to start 4028 * this thread straight away and have it join in. 4029 */ 4030 if (!signal_pending(current)) { 4031 if ((vc->vcore_state == VCORE_PIGGYBACK || 4032 vc->vcore_state == VCORE_RUNNING) && 4033 !VCORE_IS_EXITING(vc)) { 4034 kvmppc_create_dtl_entry(vcpu, vc); 4035 kvmppc_start_thread(vcpu, vc); 4036 trace_kvm_guest_enter(vcpu); 4037 } else if (vc->vcore_state == VCORE_SLEEPING) { 4038 rcuwait_wake_up(&vc->wait); 4039 } 4040 4041 } 4042 4043 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4044 !signal_pending(current)) { 4045 /* See if the MMU is ready to go */ 4046 if (!vcpu->kvm->arch.mmu_ready) { 4047 spin_unlock(&vc->lock); 4048 r = kvmhv_setup_mmu(vcpu); 4049 spin_lock(&vc->lock); 4050 if (r) { 4051 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4052 run->fail_entry. 4053 hardware_entry_failure_reason = 0; 4054 vcpu->arch.ret = r; 4055 break; 4056 } 4057 } 4058 4059 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4060 kvmppc_vcore_end_preempt(vc); 4061 4062 if (vc->vcore_state != VCORE_INACTIVE) { 4063 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 4064 continue; 4065 } 4066 for_each_runnable_thread(i, v, vc) { 4067 kvmppc_core_prepare_to_enter(v); 4068 if (signal_pending(v->arch.run_task)) { 4069 kvmppc_remove_runnable(vc, v); 4070 v->stat.signal_exits++; 4071 v->run->exit_reason = KVM_EXIT_INTR; 4072 v->arch.ret = -EINTR; 4073 wake_up(&v->arch.cpu_run); 4074 } 4075 } 4076 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 4077 break; 4078 n_ceded = 0; 4079 for_each_runnable_thread(i, v, vc) { 4080 if (!kvmppc_vcpu_woken(v)) 4081 n_ceded += v->arch.ceded; 4082 else 4083 v->arch.ceded = 0; 4084 } 4085 vc->runner = vcpu; 4086 if (n_ceded == vc->n_runnable) { 4087 kvmppc_vcore_blocked(vc); 4088 } else if (need_resched()) { 4089 kvmppc_vcore_preempt(vc); 4090 /* Let something else run */ 4091 cond_resched_lock(&vc->lock); 4092 if (vc->vcore_state == VCORE_PREEMPT) 4093 kvmppc_vcore_end_preempt(vc); 4094 } else { 4095 kvmppc_run_core(vc); 4096 } 4097 vc->runner = NULL; 4098 } 4099 4100 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4101 (vc->vcore_state == VCORE_RUNNING || 4102 vc->vcore_state == VCORE_EXITING || 4103 vc->vcore_state == VCORE_PIGGYBACK)) 4104 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4105 4106 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4107 kvmppc_vcore_end_preempt(vc); 4108 4109 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4110 kvmppc_remove_runnable(vc, vcpu); 4111 vcpu->stat.signal_exits++; 4112 run->exit_reason = KVM_EXIT_INTR; 4113 vcpu->arch.ret = -EINTR; 4114 } 4115 4116 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4117 /* Wake up some vcpu to run the core */ 4118 i = -1; 4119 v = next_runnable_thread(vc, &i); 4120 wake_up(&v->arch.cpu_run); 4121 } 4122 4123 trace_kvmppc_run_vcpu_exit(vcpu); 4124 spin_unlock(&vc->lock); 4125 return vcpu->arch.ret; 4126 } 4127 4128 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, 4129 unsigned long lpcr) 4130 { 4131 struct kvm_run *run = vcpu->run; 4132 int trap, r, pcpu; 4133 int srcu_idx, lpid; 4134 struct kvmppc_vcore *vc; 4135 struct kvm *kvm = vcpu->kvm; 4136 struct kvm_nested_guest *nested = vcpu->arch.nested; 4137 4138 trace_kvmppc_run_vcpu_enter(vcpu); 4139 4140 run->exit_reason = 0; 4141 vcpu->arch.ret = RESUME_GUEST; 4142 vcpu->arch.trap = 0; 4143 4144 vc = vcpu->arch.vcore; 4145 vcpu->arch.ceded = 0; 4146 vcpu->arch.run_task = current; 4147 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4148 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4149 vcpu->arch.busy_preempt = TB_NIL; 4150 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4151 vc->runnable_threads[0] = vcpu; 4152 vc->n_runnable = 1; 4153 vc->runner = vcpu; 4154 4155 /* See if the MMU is ready to go */ 4156 if (!kvm->arch.mmu_ready) 4157 kvmhv_setup_mmu(vcpu); 4158 4159 if (need_resched()) 4160 cond_resched(); 4161 4162 kvmppc_update_vpas(vcpu); 4163 4164 init_vcore_to_run(vc); 4165 vc->preempt_tb = TB_NIL; 4166 4167 preempt_disable(); 4168 pcpu = smp_processor_id(); 4169 vc->pcpu = pcpu; 4170 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4171 4172 local_irq_disable(); 4173 hard_irq_disable(); 4174 if (signal_pending(current)) 4175 goto sigpend; 4176 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready) 4177 goto out; 4178 4179 if (!nested) { 4180 kvmppc_core_prepare_to_enter(vcpu); 4181 if (vcpu->arch.doorbell_request) { 4182 vc->dpdes = 1; 4183 smp_wmb(); 4184 vcpu->arch.doorbell_request = 0; 4185 } 4186 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4187 &vcpu->arch.pending_exceptions)) 4188 lpcr |= LPCR_MER; 4189 } else if (vcpu->arch.pending_exceptions || 4190 vcpu->arch.doorbell_request || 4191 xive_interrupt_pending(vcpu)) { 4192 vcpu->arch.ret = RESUME_HOST; 4193 goto out; 4194 } 4195 4196 kvmppc_clear_host_core(pcpu); 4197 4198 local_paca->kvm_hstate.napping = 0; 4199 local_paca->kvm_hstate.kvm_split_mode = NULL; 4200 kvmppc_start_thread(vcpu, vc); 4201 kvmppc_create_dtl_entry(vcpu, vc); 4202 trace_kvm_guest_enter(vcpu); 4203 4204 vc->vcore_state = VCORE_RUNNING; 4205 trace_kvmppc_run_core(vc, 0); 4206 4207 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4208 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid; 4209 mtspr(SPRN_LPID, lpid); 4210 isync(); 4211 kvmppc_check_need_tlb_flush(kvm, pcpu, nested); 4212 } 4213 4214 guest_enter_irqoff(); 4215 4216 srcu_idx = srcu_read_lock(&kvm->srcu); 4217 4218 this_cpu_disable_ftrace(); 4219 4220 /* Tell lockdep that we're about to enable interrupts */ 4221 trace_hardirqs_on(); 4222 4223 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr); 4224 vcpu->arch.trap = trap; 4225 4226 trace_hardirqs_off(); 4227 4228 this_cpu_enable_ftrace(); 4229 4230 srcu_read_unlock(&kvm->srcu, srcu_idx); 4231 4232 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4233 mtspr(SPRN_LPID, kvm->arch.host_lpid); 4234 isync(); 4235 } 4236 4237 set_irq_happened(trap); 4238 4239 kvmppc_set_host_core(pcpu); 4240 4241 guest_exit_irqoff(); 4242 4243 local_irq_enable(); 4244 4245 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest); 4246 4247 preempt_enable(); 4248 4249 /* 4250 * cancel pending decrementer exception if DEC is now positive, or if 4251 * entering a nested guest in which case the decrementer is now owned 4252 * by L2 and the L1 decrementer is provided in hdec_expires 4253 */ 4254 if (kvmppc_core_pending_dec(vcpu) && 4255 ((get_tb() < vcpu->arch.dec_expires) || 4256 (trap == BOOK3S_INTERRUPT_SYSCALL && 4257 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4258 kvmppc_core_dequeue_dec(vcpu); 4259 4260 trace_kvm_guest_exit(vcpu); 4261 r = RESUME_GUEST; 4262 if (trap) { 4263 if (!nested) 4264 r = kvmppc_handle_exit_hv(vcpu, current); 4265 else 4266 r = kvmppc_handle_nested_exit(vcpu); 4267 } 4268 vcpu->arch.ret = r; 4269 4270 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded && 4271 !kvmppc_vcpu_woken(vcpu)) { 4272 kvmppc_set_timer(vcpu); 4273 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) { 4274 if (signal_pending(current)) { 4275 vcpu->stat.signal_exits++; 4276 run->exit_reason = KVM_EXIT_INTR; 4277 vcpu->arch.ret = -EINTR; 4278 break; 4279 } 4280 spin_lock(&vc->lock); 4281 kvmppc_vcore_blocked(vc); 4282 spin_unlock(&vc->lock); 4283 } 4284 } 4285 vcpu->arch.ceded = 0; 4286 4287 vc->vcore_state = VCORE_INACTIVE; 4288 trace_kvmppc_run_core(vc, 1); 4289 4290 done: 4291 kvmppc_remove_runnable(vc, vcpu); 4292 trace_kvmppc_run_vcpu_exit(vcpu); 4293 4294 return vcpu->arch.ret; 4295 4296 sigpend: 4297 vcpu->stat.signal_exits++; 4298 run->exit_reason = KVM_EXIT_INTR; 4299 vcpu->arch.ret = -EINTR; 4300 out: 4301 local_irq_enable(); 4302 preempt_enable(); 4303 goto done; 4304 } 4305 4306 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) 4307 { 4308 struct kvm_run *run = vcpu->run; 4309 int r; 4310 int srcu_idx; 4311 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 4312 unsigned long user_tar = 0; 4313 unsigned int user_vrsave; 4314 struct kvm *kvm; 4315 4316 if (!vcpu->arch.sane) { 4317 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4318 return -EINVAL; 4319 } 4320 4321 /* 4322 * Don't allow entry with a suspended transaction, because 4323 * the guest entry/exit code will lose it. 4324 * If the guest has TM enabled, save away their TM-related SPRs 4325 * (they will get restored by the TM unavailable interrupt). 4326 */ 4327 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4328 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4329 (current->thread.regs->msr & MSR_TM)) { 4330 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4331 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4332 run->fail_entry.hardware_entry_failure_reason = 0; 4333 return -EINVAL; 4334 } 4335 /* Enable TM so we can read the TM SPRs */ 4336 mtmsr(mfmsr() | MSR_TM); 4337 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 4338 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 4339 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 4340 current->thread.regs->msr &= ~MSR_TM; 4341 } 4342 #endif 4343 4344 /* 4345 * Force online to 1 for the sake of old userspace which doesn't 4346 * set it. 4347 */ 4348 if (!vcpu->arch.online) { 4349 atomic_inc(&vcpu->arch.vcore->online_count); 4350 vcpu->arch.online = 1; 4351 } 4352 4353 kvmppc_core_prepare_to_enter(vcpu); 4354 4355 /* No need to go into the guest when all we'll do is come back out */ 4356 if (signal_pending(current)) { 4357 run->exit_reason = KVM_EXIT_INTR; 4358 return -EINTR; 4359 } 4360 4361 kvm = vcpu->kvm; 4362 atomic_inc(&kvm->arch.vcpus_running); 4363 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4364 smp_mb(); 4365 4366 flush_all_to_thread(current); 4367 4368 /* Save userspace EBB and other register values */ 4369 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4370 ebb_regs[0] = mfspr(SPRN_EBBHR); 4371 ebb_regs[1] = mfspr(SPRN_EBBRR); 4372 ebb_regs[2] = mfspr(SPRN_BESCR); 4373 user_tar = mfspr(SPRN_TAR); 4374 } 4375 user_vrsave = mfspr(SPRN_VRSAVE); 4376 4377 vcpu->arch.waitp = &vcpu->arch.vcore->wait; 4378 vcpu->arch.pgdir = kvm->mm->pgd; 4379 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4380 4381 do { 4382 /* 4383 * The TLB prefetch bug fixup is only in the kvmppc_run_vcpu 4384 * path, which also handles hash and dependent threads mode. 4385 */ 4386 if (kvm->arch.threads_indep && kvm_is_radix(kvm) && 4387 !cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) 4388 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, 4389 vcpu->arch.vcore->lpcr); 4390 else 4391 r = kvmppc_run_vcpu(vcpu); 4392 4393 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 4394 !(vcpu->arch.shregs.msr & MSR_PR)) { 4395 trace_kvm_hcall_enter(vcpu); 4396 r = kvmppc_pseries_do_hcall(vcpu); 4397 trace_kvm_hcall_exit(vcpu, r); 4398 kvmppc_core_prepare_to_enter(vcpu); 4399 } else if (r == RESUME_PAGE_FAULT) { 4400 srcu_idx = srcu_read_lock(&kvm->srcu); 4401 r = kvmppc_book3s_hv_page_fault(vcpu, 4402 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4403 srcu_read_unlock(&kvm->srcu, srcu_idx); 4404 } else if (r == RESUME_PASSTHROUGH) { 4405 if (WARN_ON(xics_on_xive())) 4406 r = H_SUCCESS; 4407 else 4408 r = kvmppc_xics_rm_complete(vcpu, 0); 4409 } 4410 } while (is_kvmppc_resume_guest(r)); 4411 4412 /* Restore userspace EBB and other register values */ 4413 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4414 mtspr(SPRN_EBBHR, ebb_regs[0]); 4415 mtspr(SPRN_EBBRR, ebb_regs[1]); 4416 mtspr(SPRN_BESCR, ebb_regs[2]); 4417 mtspr(SPRN_TAR, user_tar); 4418 mtspr(SPRN_FSCR, current->thread.fscr); 4419 } 4420 mtspr(SPRN_VRSAVE, user_vrsave); 4421 4422 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4423 atomic_dec(&kvm->arch.vcpus_running); 4424 return r; 4425 } 4426 4427 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4428 int shift, int sllp) 4429 { 4430 (*sps)->page_shift = shift; 4431 (*sps)->slb_enc = sllp; 4432 (*sps)->enc[0].page_shift = shift; 4433 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4434 /* 4435 * Add 16MB MPSS support (may get filtered out by userspace) 4436 */ 4437 if (shift != 24) { 4438 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4439 if (penc != -1) { 4440 (*sps)->enc[1].page_shift = 24; 4441 (*sps)->enc[1].pte_enc = penc; 4442 } 4443 } 4444 (*sps)++; 4445 } 4446 4447 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4448 struct kvm_ppc_smmu_info *info) 4449 { 4450 struct kvm_ppc_one_seg_page_size *sps; 4451 4452 /* 4453 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4454 * POWER7 doesn't support keys for instruction accesses, 4455 * POWER8 and POWER9 do. 4456 */ 4457 info->data_keys = 32; 4458 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4459 4460 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4461 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4462 info->slb_size = 32; 4463 4464 /* We only support these sizes for now, and no muti-size segments */ 4465 sps = &info->sps[0]; 4466 kvmppc_add_seg_page_size(&sps, 12, 0); 4467 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4468 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4469 4470 /* If running as a nested hypervisor, we don't support HPT guests */ 4471 if (kvmhv_on_pseries()) 4472 info->flags |= KVM_PPC_NO_HASH; 4473 4474 return 0; 4475 } 4476 4477 /* 4478 * Get (and clear) the dirty memory log for a memory slot. 4479 */ 4480 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4481 struct kvm_dirty_log *log) 4482 { 4483 struct kvm_memslots *slots; 4484 struct kvm_memory_slot *memslot; 4485 int i, r; 4486 unsigned long n; 4487 unsigned long *buf, *p; 4488 struct kvm_vcpu *vcpu; 4489 4490 mutex_lock(&kvm->slots_lock); 4491 4492 r = -EINVAL; 4493 if (log->slot >= KVM_USER_MEM_SLOTS) 4494 goto out; 4495 4496 slots = kvm_memslots(kvm); 4497 memslot = id_to_memslot(slots, log->slot); 4498 r = -ENOENT; 4499 if (!memslot || !memslot->dirty_bitmap) 4500 goto out; 4501 4502 /* 4503 * Use second half of bitmap area because both HPT and radix 4504 * accumulate bits in the first half. 4505 */ 4506 n = kvm_dirty_bitmap_bytes(memslot); 4507 buf = memslot->dirty_bitmap + n / sizeof(long); 4508 memset(buf, 0, n); 4509 4510 if (kvm_is_radix(kvm)) 4511 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4512 else 4513 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4514 if (r) 4515 goto out; 4516 4517 /* 4518 * We accumulate dirty bits in the first half of the 4519 * memslot's dirty_bitmap area, for when pages are paged 4520 * out or modified by the host directly. Pick up these 4521 * bits and add them to the map. 4522 */ 4523 p = memslot->dirty_bitmap; 4524 for (i = 0; i < n / sizeof(long); ++i) 4525 buf[i] |= xchg(&p[i], 0); 4526 4527 /* Harvest dirty bits from VPA and DTL updates */ 4528 /* Note: we never modify the SLB shadow buffer areas */ 4529 kvm_for_each_vcpu(i, vcpu, kvm) { 4530 spin_lock(&vcpu->arch.vpa_update_lock); 4531 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4532 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4533 spin_unlock(&vcpu->arch.vpa_update_lock); 4534 } 4535 4536 r = -EFAULT; 4537 if (copy_to_user(log->dirty_bitmap, buf, n)) 4538 goto out; 4539 4540 r = 0; 4541 out: 4542 mutex_unlock(&kvm->slots_lock); 4543 return r; 4544 } 4545 4546 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) 4547 { 4548 vfree(slot->arch.rmap); 4549 slot->arch.rmap = NULL; 4550 } 4551 4552 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 4553 struct kvm_memory_slot *slot, 4554 const struct kvm_userspace_memory_region *mem, 4555 enum kvm_mr_change change) 4556 { 4557 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4558 4559 if (change == KVM_MR_CREATE) { 4560 slot->arch.rmap = vzalloc(array_size(npages, 4561 sizeof(*slot->arch.rmap))); 4562 if (!slot->arch.rmap) 4563 return -ENOMEM; 4564 } 4565 4566 return 0; 4567 } 4568 4569 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 4570 const struct kvm_userspace_memory_region *mem, 4571 const struct kvm_memory_slot *old, 4572 const struct kvm_memory_slot *new, 4573 enum kvm_mr_change change) 4574 { 4575 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4576 4577 /* 4578 * If we are making a new memslot, it might make 4579 * some address that was previously cached as emulated 4580 * MMIO be no longer emulated MMIO, so invalidate 4581 * all the caches of emulated MMIO translations. 4582 */ 4583 if (npages) 4584 atomic64_inc(&kvm->arch.mmio_update); 4585 4586 /* 4587 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 4588 * have already called kvm_arch_flush_shadow_memslot() to 4589 * flush shadow mappings. For KVM_MR_CREATE we have no 4590 * previous mappings. So the only case to handle is 4591 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 4592 * has been changed. 4593 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 4594 * to get rid of any THP PTEs in the partition-scoped page tables 4595 * so we can track dirtiness at the page level; we flush when 4596 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 4597 * using THP PTEs. 4598 */ 4599 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 4600 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 4601 kvmppc_radix_flush_memslot(kvm, old); 4602 /* 4603 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 4604 */ 4605 if (!kvm->arch.secure_guest) 4606 return; 4607 4608 switch (change) { 4609 case KVM_MR_CREATE: 4610 /* 4611 * @TODO kvmppc_uvmem_memslot_create() can fail and 4612 * return error. Fix this. 4613 */ 4614 kvmppc_uvmem_memslot_create(kvm, new); 4615 break; 4616 case KVM_MR_DELETE: 4617 kvmppc_uvmem_memslot_delete(kvm, old); 4618 break; 4619 default: 4620 /* TODO: Handle KVM_MR_MOVE */ 4621 break; 4622 } 4623 } 4624 4625 /* 4626 * Update LPCR values in kvm->arch and in vcores. 4627 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 4628 * of kvm->arch.lpcr update). 4629 */ 4630 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 4631 { 4632 long int i; 4633 u32 cores_done = 0; 4634 4635 if ((kvm->arch.lpcr & mask) == lpcr) 4636 return; 4637 4638 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 4639 4640 for (i = 0; i < KVM_MAX_VCORES; ++i) { 4641 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 4642 if (!vc) 4643 continue; 4644 spin_lock(&vc->lock); 4645 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 4646 spin_unlock(&vc->lock); 4647 if (++cores_done >= kvm->arch.online_vcores) 4648 break; 4649 } 4650 } 4651 4652 void kvmppc_setup_partition_table(struct kvm *kvm) 4653 { 4654 unsigned long dw0, dw1; 4655 4656 if (!kvm_is_radix(kvm)) { 4657 /* PS field - page size for VRMA */ 4658 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 4659 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 4660 /* HTABSIZE and HTABORG fields */ 4661 dw0 |= kvm->arch.sdr1; 4662 4663 /* Second dword as set by userspace */ 4664 dw1 = kvm->arch.process_table; 4665 } else { 4666 dw0 = PATB_HR | radix__get_tree_size() | 4667 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 4668 dw1 = PATB_GR | kvm->arch.process_table; 4669 } 4670 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 4671 } 4672 4673 /* 4674 * Set up HPT (hashed page table) and RMA (real-mode area). 4675 * Must be called with kvm->arch.mmu_setup_lock held. 4676 */ 4677 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 4678 { 4679 int err = 0; 4680 struct kvm *kvm = vcpu->kvm; 4681 unsigned long hva; 4682 struct kvm_memory_slot *memslot; 4683 struct vm_area_struct *vma; 4684 unsigned long lpcr = 0, senc; 4685 unsigned long psize, porder; 4686 int srcu_idx; 4687 4688 /* Allocate hashed page table (if not done already) and reset it */ 4689 if (!kvm->arch.hpt.virt) { 4690 int order = KVM_DEFAULT_HPT_ORDER; 4691 struct kvm_hpt_info info; 4692 4693 err = kvmppc_allocate_hpt(&info, order); 4694 /* If we get here, it means userspace didn't specify a 4695 * size explicitly. So, try successively smaller 4696 * sizes if the default failed. */ 4697 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 4698 err = kvmppc_allocate_hpt(&info, order); 4699 4700 if (err < 0) { 4701 pr_err("KVM: Couldn't alloc HPT\n"); 4702 goto out; 4703 } 4704 4705 kvmppc_set_hpt(kvm, &info); 4706 } 4707 4708 /* Look up the memslot for guest physical address 0 */ 4709 srcu_idx = srcu_read_lock(&kvm->srcu); 4710 memslot = gfn_to_memslot(kvm, 0); 4711 4712 /* We must have some memory at 0 by now */ 4713 err = -EINVAL; 4714 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 4715 goto out_srcu; 4716 4717 /* Look up the VMA for the start of this memory slot */ 4718 hva = memslot->userspace_addr; 4719 mmap_read_lock(kvm->mm); 4720 vma = find_vma(kvm->mm, hva); 4721 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 4722 goto up_out; 4723 4724 psize = vma_kernel_pagesize(vma); 4725 4726 mmap_read_unlock(kvm->mm); 4727 4728 /* We can handle 4k, 64k or 16M pages in the VRMA */ 4729 if (psize >= 0x1000000) 4730 psize = 0x1000000; 4731 else if (psize >= 0x10000) 4732 psize = 0x10000; 4733 else 4734 psize = 0x1000; 4735 porder = __ilog2(psize); 4736 4737 senc = slb_pgsize_encoding(psize); 4738 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 4739 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4740 /* Create HPTEs in the hash page table for the VRMA */ 4741 kvmppc_map_vrma(vcpu, memslot, porder); 4742 4743 /* Update VRMASD field in the LPCR */ 4744 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 4745 /* the -4 is to account for senc values starting at 0x10 */ 4746 lpcr = senc << (LPCR_VRMASD_SH - 4); 4747 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 4748 } 4749 4750 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 4751 smp_wmb(); 4752 err = 0; 4753 out_srcu: 4754 srcu_read_unlock(&kvm->srcu, srcu_idx); 4755 out: 4756 return err; 4757 4758 up_out: 4759 mmap_read_unlock(kvm->mm); 4760 goto out_srcu; 4761 } 4762 4763 /* 4764 * Must be called with kvm->arch.mmu_setup_lock held and 4765 * mmu_ready = 0 and no vcpus running. 4766 */ 4767 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 4768 { 4769 if (nesting_enabled(kvm)) 4770 kvmhv_release_all_nested(kvm); 4771 kvmppc_rmap_reset(kvm); 4772 kvm->arch.process_table = 0; 4773 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4774 spin_lock(&kvm->mmu_lock); 4775 kvm->arch.radix = 0; 4776 spin_unlock(&kvm->mmu_lock); 4777 kvmppc_free_radix(kvm); 4778 kvmppc_update_lpcr(kvm, LPCR_VPM1, 4779 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4780 return 0; 4781 } 4782 4783 /* 4784 * Must be called with kvm->arch.mmu_setup_lock held and 4785 * mmu_ready = 0 and no vcpus running. 4786 */ 4787 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 4788 { 4789 int err; 4790 4791 err = kvmppc_init_vm_radix(kvm); 4792 if (err) 4793 return err; 4794 kvmppc_rmap_reset(kvm); 4795 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4796 spin_lock(&kvm->mmu_lock); 4797 kvm->arch.radix = 1; 4798 spin_unlock(&kvm->mmu_lock); 4799 kvmppc_free_hpt(&kvm->arch.hpt); 4800 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 4801 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4802 return 0; 4803 } 4804 4805 #ifdef CONFIG_KVM_XICS 4806 /* 4807 * Allocate a per-core structure for managing state about which cores are 4808 * running in the host versus the guest and for exchanging data between 4809 * real mode KVM and CPU running in the host. 4810 * This is only done for the first VM. 4811 * The allocated structure stays even if all VMs have stopped. 4812 * It is only freed when the kvm-hv module is unloaded. 4813 * It's OK for this routine to fail, we just don't support host 4814 * core operations like redirecting H_IPI wakeups. 4815 */ 4816 void kvmppc_alloc_host_rm_ops(void) 4817 { 4818 struct kvmppc_host_rm_ops *ops; 4819 unsigned long l_ops; 4820 int cpu, core; 4821 int size; 4822 4823 /* Not the first time here ? */ 4824 if (kvmppc_host_rm_ops_hv != NULL) 4825 return; 4826 4827 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 4828 if (!ops) 4829 return; 4830 4831 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 4832 ops->rm_core = kzalloc(size, GFP_KERNEL); 4833 4834 if (!ops->rm_core) { 4835 kfree(ops); 4836 return; 4837 } 4838 4839 cpus_read_lock(); 4840 4841 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 4842 if (!cpu_online(cpu)) 4843 continue; 4844 4845 core = cpu >> threads_shift; 4846 ops->rm_core[core].rm_state.in_host = 1; 4847 } 4848 4849 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 4850 4851 /* 4852 * Make the contents of the kvmppc_host_rm_ops structure visible 4853 * to other CPUs before we assign it to the global variable. 4854 * Do an atomic assignment (no locks used here), but if someone 4855 * beats us to it, just free our copy and return. 4856 */ 4857 smp_wmb(); 4858 l_ops = (unsigned long) ops; 4859 4860 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 4861 cpus_read_unlock(); 4862 kfree(ops->rm_core); 4863 kfree(ops); 4864 return; 4865 } 4866 4867 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 4868 "ppc/kvm_book3s:prepare", 4869 kvmppc_set_host_core, 4870 kvmppc_clear_host_core); 4871 cpus_read_unlock(); 4872 } 4873 4874 void kvmppc_free_host_rm_ops(void) 4875 { 4876 if (kvmppc_host_rm_ops_hv) { 4877 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 4878 kfree(kvmppc_host_rm_ops_hv->rm_core); 4879 kfree(kvmppc_host_rm_ops_hv); 4880 kvmppc_host_rm_ops_hv = NULL; 4881 } 4882 } 4883 #endif 4884 4885 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 4886 { 4887 unsigned long lpcr, lpid; 4888 char buf[32]; 4889 int ret; 4890 4891 mutex_init(&kvm->arch.uvmem_lock); 4892 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 4893 mutex_init(&kvm->arch.mmu_setup_lock); 4894 4895 /* Allocate the guest's logical partition ID */ 4896 4897 lpid = kvmppc_alloc_lpid(); 4898 if ((long)lpid < 0) 4899 return -ENOMEM; 4900 kvm->arch.lpid = lpid; 4901 4902 kvmppc_alloc_host_rm_ops(); 4903 4904 kvmhv_vm_nested_init(kvm); 4905 4906 /* 4907 * Since we don't flush the TLB when tearing down a VM, 4908 * and this lpid might have previously been used, 4909 * make sure we flush on each core before running the new VM. 4910 * On POWER9, the tlbie in mmu_partition_table_set_entry() 4911 * does this flush for us. 4912 */ 4913 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4914 cpumask_setall(&kvm->arch.need_tlb_flush); 4915 4916 /* Start out with the default set of hcalls enabled */ 4917 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 4918 sizeof(kvm->arch.enabled_hcalls)); 4919 4920 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4921 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 4922 4923 /* Init LPCR for virtual RMA mode */ 4924 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4925 kvm->arch.host_lpid = mfspr(SPRN_LPID); 4926 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 4927 lpcr &= LPCR_PECE | LPCR_LPES; 4928 } else { 4929 lpcr = 0; 4930 } 4931 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 4932 LPCR_VPM0 | LPCR_VPM1; 4933 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 4934 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4935 /* On POWER8 turn on online bit to enable PURR/SPURR */ 4936 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4937 lpcr |= LPCR_ONL; 4938 /* 4939 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 4940 * Set HVICE bit to enable hypervisor virtualization interrupts. 4941 * Set HEIC to prevent OS interrupts to go to hypervisor (should 4942 * be unnecessary but better safe than sorry in case we re-enable 4943 * EE in HV mode with this LPCR still set) 4944 */ 4945 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4946 lpcr &= ~LPCR_VPM0; 4947 lpcr |= LPCR_HVICE | LPCR_HEIC; 4948 4949 /* 4950 * If xive is enabled, we route 0x500 interrupts directly 4951 * to the guest. 4952 */ 4953 if (xics_on_xive()) 4954 lpcr |= LPCR_LPES; 4955 } 4956 4957 /* 4958 * If the host uses radix, the guest starts out as radix. 4959 */ 4960 if (radix_enabled()) { 4961 kvm->arch.radix = 1; 4962 kvm->arch.mmu_ready = 1; 4963 lpcr &= ~LPCR_VPM1; 4964 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 4965 ret = kvmppc_init_vm_radix(kvm); 4966 if (ret) { 4967 kvmppc_free_lpid(kvm->arch.lpid); 4968 return ret; 4969 } 4970 kvmppc_setup_partition_table(kvm); 4971 } 4972 4973 kvm->arch.lpcr = lpcr; 4974 4975 /* Initialization for future HPT resizes */ 4976 kvm->arch.resize_hpt = NULL; 4977 4978 /* 4979 * Work out how many sets the TLB has, for the use of 4980 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 4981 */ 4982 if (cpu_has_feature(CPU_FTR_ARCH_31)) { 4983 /* 4984 * P10 will flush all the congruence class with a single tlbiel 4985 */ 4986 kvm->arch.tlb_sets = 1; 4987 } else if (radix_enabled()) 4988 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 4989 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 4990 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 4991 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4992 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 4993 else 4994 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 4995 4996 /* 4997 * Track that we now have a HV mode VM active. This blocks secondary 4998 * CPU threads from coming online. 4999 * On POWER9, we only need to do this if the "indep_threads_mode" 5000 * module parameter has been set to N. 5001 */ 5002 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5003 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) { 5004 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n"); 5005 kvm->arch.threads_indep = true; 5006 } else { 5007 kvm->arch.threads_indep = indep_threads_mode; 5008 } 5009 } 5010 if (!kvm->arch.threads_indep) 5011 kvm_hv_vm_activated(); 5012 5013 /* 5014 * Initialize smt_mode depending on processor. 5015 * POWER8 and earlier have to use "strict" threading, where 5016 * all vCPUs in a vcore have to run on the same (sub)core, 5017 * whereas on POWER9 the threads can each run a different 5018 * guest. 5019 */ 5020 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5021 kvm->arch.smt_mode = threads_per_subcore; 5022 else 5023 kvm->arch.smt_mode = 1; 5024 kvm->arch.emul_smt_mode = 1; 5025 5026 /* 5027 * Create a debugfs directory for the VM 5028 */ 5029 snprintf(buf, sizeof(buf), "vm%d", current->pid); 5030 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 5031 kvmppc_mmu_debugfs_init(kvm); 5032 if (radix_enabled()) 5033 kvmhv_radix_debugfs_init(kvm); 5034 5035 return 0; 5036 } 5037 5038 static void kvmppc_free_vcores(struct kvm *kvm) 5039 { 5040 long int i; 5041 5042 for (i = 0; i < KVM_MAX_VCORES; ++i) 5043 kfree(kvm->arch.vcores[i]); 5044 kvm->arch.online_vcores = 0; 5045 } 5046 5047 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 5048 { 5049 debugfs_remove_recursive(kvm->arch.debugfs_dir); 5050 5051 if (!kvm->arch.threads_indep) 5052 kvm_hv_vm_deactivated(); 5053 5054 kvmppc_free_vcores(kvm); 5055 5056 5057 if (kvm_is_radix(kvm)) 5058 kvmppc_free_radix(kvm); 5059 else 5060 kvmppc_free_hpt(&kvm->arch.hpt); 5061 5062 /* Perform global invalidation and return lpid to the pool */ 5063 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5064 if (nesting_enabled(kvm)) 5065 kvmhv_release_all_nested(kvm); 5066 kvm->arch.process_table = 0; 5067 if (kvm->arch.secure_guest) 5068 uv_svm_terminate(kvm->arch.lpid); 5069 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 5070 } 5071 5072 kvmppc_free_lpid(kvm->arch.lpid); 5073 5074 kvmppc_free_pimap(kvm); 5075 } 5076 5077 /* We don't need to emulate any privileged instructions or dcbz */ 5078 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, 5079 unsigned int inst, int *advance) 5080 { 5081 return EMULATE_FAIL; 5082 } 5083 5084 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 5085 ulong spr_val) 5086 { 5087 return EMULATE_FAIL; 5088 } 5089 5090 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 5091 ulong *spr_val) 5092 { 5093 return EMULATE_FAIL; 5094 } 5095 5096 static int kvmppc_core_check_processor_compat_hv(void) 5097 { 5098 if (cpu_has_feature(CPU_FTR_HVMODE) && 5099 cpu_has_feature(CPU_FTR_ARCH_206)) 5100 return 0; 5101 5102 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5103 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5104 return 0; 5105 5106 return -EIO; 5107 } 5108 5109 #ifdef CONFIG_KVM_XICS 5110 5111 void kvmppc_free_pimap(struct kvm *kvm) 5112 { 5113 kfree(kvm->arch.pimap); 5114 } 5115 5116 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5117 { 5118 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5119 } 5120 5121 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5122 { 5123 struct irq_desc *desc; 5124 struct kvmppc_irq_map *irq_map; 5125 struct kvmppc_passthru_irqmap *pimap; 5126 struct irq_chip *chip; 5127 int i, rc = 0; 5128 5129 if (!kvm_irq_bypass) 5130 return 1; 5131 5132 desc = irq_to_desc(host_irq); 5133 if (!desc) 5134 return -EIO; 5135 5136 mutex_lock(&kvm->lock); 5137 5138 pimap = kvm->arch.pimap; 5139 if (pimap == NULL) { 5140 /* First call, allocate structure to hold IRQ map */ 5141 pimap = kvmppc_alloc_pimap(); 5142 if (pimap == NULL) { 5143 mutex_unlock(&kvm->lock); 5144 return -ENOMEM; 5145 } 5146 kvm->arch.pimap = pimap; 5147 } 5148 5149 /* 5150 * For now, we only support interrupts for which the EOI operation 5151 * is an OPAL call followed by a write to XIRR, since that's 5152 * what our real-mode EOI code does, or a XIVE interrupt 5153 */ 5154 chip = irq_data_get_irq_chip(&desc->irq_data); 5155 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 5156 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5157 host_irq, guest_gsi); 5158 mutex_unlock(&kvm->lock); 5159 return -ENOENT; 5160 } 5161 5162 /* 5163 * See if we already have an entry for this guest IRQ number. 5164 * If it's mapped to a hardware IRQ number, that's an error, 5165 * otherwise re-use this entry. 5166 */ 5167 for (i = 0; i < pimap->n_mapped; i++) { 5168 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5169 if (pimap->mapped[i].r_hwirq) { 5170 mutex_unlock(&kvm->lock); 5171 return -EINVAL; 5172 } 5173 break; 5174 } 5175 } 5176 5177 if (i == KVMPPC_PIRQ_MAPPED) { 5178 mutex_unlock(&kvm->lock); 5179 return -EAGAIN; /* table is full */ 5180 } 5181 5182 irq_map = &pimap->mapped[i]; 5183 5184 irq_map->v_hwirq = guest_gsi; 5185 irq_map->desc = desc; 5186 5187 /* 5188 * Order the above two stores before the next to serialize with 5189 * the KVM real mode handler. 5190 */ 5191 smp_wmb(); 5192 irq_map->r_hwirq = desc->irq_data.hwirq; 5193 5194 if (i == pimap->n_mapped) 5195 pimap->n_mapped++; 5196 5197 if (xics_on_xive()) 5198 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 5199 else 5200 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 5201 if (rc) 5202 irq_map->r_hwirq = 0; 5203 5204 mutex_unlock(&kvm->lock); 5205 5206 return 0; 5207 } 5208 5209 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5210 { 5211 struct irq_desc *desc; 5212 struct kvmppc_passthru_irqmap *pimap; 5213 int i, rc = 0; 5214 5215 if (!kvm_irq_bypass) 5216 return 0; 5217 5218 desc = irq_to_desc(host_irq); 5219 if (!desc) 5220 return -EIO; 5221 5222 mutex_lock(&kvm->lock); 5223 if (!kvm->arch.pimap) 5224 goto unlock; 5225 5226 pimap = kvm->arch.pimap; 5227 5228 for (i = 0; i < pimap->n_mapped; i++) { 5229 if (guest_gsi == pimap->mapped[i].v_hwirq) 5230 break; 5231 } 5232 5233 if (i == pimap->n_mapped) { 5234 mutex_unlock(&kvm->lock); 5235 return -ENODEV; 5236 } 5237 5238 if (xics_on_xive()) 5239 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 5240 else 5241 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5242 5243 /* invalidate the entry (what do do on error from the above ?) */ 5244 pimap->mapped[i].r_hwirq = 0; 5245 5246 /* 5247 * We don't free this structure even when the count goes to 5248 * zero. The structure is freed when we destroy the VM. 5249 */ 5250 unlock: 5251 mutex_unlock(&kvm->lock); 5252 return rc; 5253 } 5254 5255 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5256 struct irq_bypass_producer *prod) 5257 { 5258 int ret = 0; 5259 struct kvm_kernel_irqfd *irqfd = 5260 container_of(cons, struct kvm_kernel_irqfd, consumer); 5261 5262 irqfd->producer = prod; 5263 5264 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5265 if (ret) 5266 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5267 prod->irq, irqfd->gsi, ret); 5268 5269 return ret; 5270 } 5271 5272 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5273 struct irq_bypass_producer *prod) 5274 { 5275 int ret; 5276 struct kvm_kernel_irqfd *irqfd = 5277 container_of(cons, struct kvm_kernel_irqfd, consumer); 5278 5279 irqfd->producer = NULL; 5280 5281 /* 5282 * When producer of consumer is unregistered, we change back to 5283 * default external interrupt handling mode - KVM real mode 5284 * will switch back to host. 5285 */ 5286 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5287 if (ret) 5288 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5289 prod->irq, irqfd->gsi, ret); 5290 } 5291 #endif 5292 5293 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5294 unsigned int ioctl, unsigned long arg) 5295 { 5296 struct kvm *kvm __maybe_unused = filp->private_data; 5297 void __user *argp = (void __user *)arg; 5298 long r; 5299 5300 switch (ioctl) { 5301 5302 case KVM_PPC_ALLOCATE_HTAB: { 5303 u32 htab_order; 5304 5305 /* If we're a nested hypervisor, we currently only support radix */ 5306 if (kvmhv_on_pseries()) { 5307 r = -EOPNOTSUPP; 5308 break; 5309 } 5310 5311 r = -EFAULT; 5312 if (get_user(htab_order, (u32 __user *)argp)) 5313 break; 5314 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5315 if (r) 5316 break; 5317 r = 0; 5318 break; 5319 } 5320 5321 case KVM_PPC_GET_HTAB_FD: { 5322 struct kvm_get_htab_fd ghf; 5323 5324 r = -EFAULT; 5325 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5326 break; 5327 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5328 break; 5329 } 5330 5331 case KVM_PPC_RESIZE_HPT_PREPARE: { 5332 struct kvm_ppc_resize_hpt rhpt; 5333 5334 r = -EFAULT; 5335 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5336 break; 5337 5338 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5339 break; 5340 } 5341 5342 case KVM_PPC_RESIZE_HPT_COMMIT: { 5343 struct kvm_ppc_resize_hpt rhpt; 5344 5345 r = -EFAULT; 5346 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5347 break; 5348 5349 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5350 break; 5351 } 5352 5353 default: 5354 r = -ENOTTY; 5355 } 5356 5357 return r; 5358 } 5359 5360 /* 5361 * List of hcall numbers to enable by default. 5362 * For compatibility with old userspace, we enable by default 5363 * all hcalls that were implemented before the hcall-enabling 5364 * facility was added. Note this list should not include H_RTAS. 5365 */ 5366 static unsigned int default_hcall_list[] = { 5367 H_REMOVE, 5368 H_ENTER, 5369 H_READ, 5370 H_PROTECT, 5371 H_BULK_REMOVE, 5372 H_GET_TCE, 5373 H_PUT_TCE, 5374 H_SET_DABR, 5375 H_SET_XDABR, 5376 H_CEDE, 5377 H_PROD, 5378 H_CONFER, 5379 H_REGISTER_VPA, 5380 #ifdef CONFIG_KVM_XICS 5381 H_EOI, 5382 H_CPPR, 5383 H_IPI, 5384 H_IPOLL, 5385 H_XIRR, 5386 H_XIRR_X, 5387 #endif 5388 0 5389 }; 5390 5391 static void init_default_hcalls(void) 5392 { 5393 int i; 5394 unsigned int hcall; 5395 5396 for (i = 0; default_hcall_list[i]; ++i) { 5397 hcall = default_hcall_list[i]; 5398 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5399 __set_bit(hcall / 4, default_enabled_hcalls); 5400 } 5401 } 5402 5403 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5404 { 5405 unsigned long lpcr; 5406 int radix; 5407 int err; 5408 5409 /* If not on a POWER9, reject it */ 5410 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5411 return -ENODEV; 5412 5413 /* If any unknown flags set, reject it */ 5414 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5415 return -EINVAL; 5416 5417 /* GR (guest radix) bit in process_table field must match */ 5418 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5419 if (!!(cfg->process_table & PATB_GR) != radix) 5420 return -EINVAL; 5421 5422 /* Process table size field must be reasonable, i.e. <= 24 */ 5423 if ((cfg->process_table & PRTS_MASK) > 24) 5424 return -EINVAL; 5425 5426 /* We can change a guest to/from radix now, if the host is radix */ 5427 if (radix && !radix_enabled()) 5428 return -EINVAL; 5429 5430 /* If we're a nested hypervisor, we currently only support radix */ 5431 if (kvmhv_on_pseries() && !radix) 5432 return -EINVAL; 5433 5434 mutex_lock(&kvm->arch.mmu_setup_lock); 5435 if (radix != kvm_is_radix(kvm)) { 5436 if (kvm->arch.mmu_ready) { 5437 kvm->arch.mmu_ready = 0; 5438 /* order mmu_ready vs. vcpus_running */ 5439 smp_mb(); 5440 if (atomic_read(&kvm->arch.vcpus_running)) { 5441 kvm->arch.mmu_ready = 1; 5442 err = -EBUSY; 5443 goto out_unlock; 5444 } 5445 } 5446 if (radix) 5447 err = kvmppc_switch_mmu_to_radix(kvm); 5448 else 5449 err = kvmppc_switch_mmu_to_hpt(kvm); 5450 if (err) 5451 goto out_unlock; 5452 } 5453 5454 kvm->arch.process_table = cfg->process_table; 5455 kvmppc_setup_partition_table(kvm); 5456 5457 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5458 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5459 err = 0; 5460 5461 out_unlock: 5462 mutex_unlock(&kvm->arch.mmu_setup_lock); 5463 return err; 5464 } 5465 5466 static int kvmhv_enable_nested(struct kvm *kvm) 5467 { 5468 if (!nested) 5469 return -EPERM; 5470 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix) 5471 return -ENODEV; 5472 5473 /* kvm == NULL means the caller is testing if the capability exists */ 5474 if (kvm) 5475 kvm->arch.nested_enable = true; 5476 return 0; 5477 } 5478 5479 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5480 int size) 5481 { 5482 int rc = -EINVAL; 5483 5484 if (kvmhv_vcpu_is_radix(vcpu)) { 5485 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5486 5487 if (rc > 0) 5488 rc = -EINVAL; 5489 } 5490 5491 /* For now quadrants are the only way to access nested guest memory */ 5492 if (rc && vcpu->arch.nested) 5493 rc = -EAGAIN; 5494 5495 return rc; 5496 } 5497 5498 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5499 int size) 5500 { 5501 int rc = -EINVAL; 5502 5503 if (kvmhv_vcpu_is_radix(vcpu)) { 5504 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5505 5506 if (rc > 0) 5507 rc = -EINVAL; 5508 } 5509 5510 /* For now quadrants are the only way to access nested guest memory */ 5511 if (rc && vcpu->arch.nested) 5512 rc = -EAGAIN; 5513 5514 return rc; 5515 } 5516 5517 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 5518 { 5519 unpin_vpa(kvm, vpa); 5520 vpa->gpa = 0; 5521 vpa->pinned_addr = NULL; 5522 vpa->dirty = false; 5523 vpa->update_pending = 0; 5524 } 5525 5526 /* 5527 * Enable a guest to become a secure VM, or test whether 5528 * that could be enabled. 5529 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is 5530 * tested (kvm == NULL) or enabled (kvm != NULL). 5531 */ 5532 static int kvmhv_enable_svm(struct kvm *kvm) 5533 { 5534 if (!kvmppc_uvmem_available()) 5535 return -EINVAL; 5536 if (kvm) 5537 kvm->arch.svm_enabled = 1; 5538 return 0; 5539 } 5540 5541 /* 5542 * IOCTL handler to turn off secure mode of guest 5543 * 5544 * - Release all device pages 5545 * - Issue ucall to terminate the guest on the UV side 5546 * - Unpin the VPA pages. 5547 * - Reinit the partition scoped page tables 5548 */ 5549 static int kvmhv_svm_off(struct kvm *kvm) 5550 { 5551 struct kvm_vcpu *vcpu; 5552 int mmu_was_ready; 5553 int srcu_idx; 5554 int ret = 0; 5555 int i; 5556 5557 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 5558 return ret; 5559 5560 mutex_lock(&kvm->arch.mmu_setup_lock); 5561 mmu_was_ready = kvm->arch.mmu_ready; 5562 if (kvm->arch.mmu_ready) { 5563 kvm->arch.mmu_ready = 0; 5564 /* order mmu_ready vs. vcpus_running */ 5565 smp_mb(); 5566 if (atomic_read(&kvm->arch.vcpus_running)) { 5567 kvm->arch.mmu_ready = 1; 5568 ret = -EBUSY; 5569 goto out; 5570 } 5571 } 5572 5573 srcu_idx = srcu_read_lock(&kvm->srcu); 5574 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5575 struct kvm_memory_slot *memslot; 5576 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 5577 5578 if (!slots) 5579 continue; 5580 5581 kvm_for_each_memslot(memslot, slots) { 5582 kvmppc_uvmem_drop_pages(memslot, kvm, true); 5583 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 5584 } 5585 } 5586 srcu_read_unlock(&kvm->srcu, srcu_idx); 5587 5588 ret = uv_svm_terminate(kvm->arch.lpid); 5589 if (ret != U_SUCCESS) { 5590 ret = -EINVAL; 5591 goto out; 5592 } 5593 5594 /* 5595 * When secure guest is reset, all the guest pages are sent 5596 * to UV via UV_PAGE_IN before the non-boot vcpus get a 5597 * chance to run and unpin their VPA pages. Unpinning of all 5598 * VPA pages is done here explicitly so that VPA pages 5599 * can be migrated to the secure side. 5600 * 5601 * This is required to for the secure SMP guest to reboot 5602 * correctly. 5603 */ 5604 kvm_for_each_vcpu(i, vcpu, kvm) { 5605 spin_lock(&vcpu->arch.vpa_update_lock); 5606 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 5607 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 5608 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 5609 spin_unlock(&vcpu->arch.vpa_update_lock); 5610 } 5611 5612 kvmppc_setup_partition_table(kvm); 5613 kvm->arch.secure_guest = 0; 5614 kvm->arch.mmu_ready = mmu_was_ready; 5615 out: 5616 mutex_unlock(&kvm->arch.mmu_setup_lock); 5617 return ret; 5618 } 5619 5620 static int kvmhv_enable_dawr1(struct kvm *kvm) 5621 { 5622 if (!cpu_has_feature(CPU_FTR_DAWR1)) 5623 return -ENODEV; 5624 5625 /* kvm == NULL means the caller is testing if the capability exists */ 5626 if (kvm) 5627 kvm->arch.dawr1_enabled = true; 5628 return 0; 5629 } 5630 5631 static bool kvmppc_hash_v3_possible(void) 5632 { 5633 if (radix_enabled() && no_mixing_hpt_and_radix) 5634 return false; 5635 5636 return cpu_has_feature(CPU_FTR_ARCH_300) && 5637 cpu_has_feature(CPU_FTR_HVMODE); 5638 } 5639 5640 static struct kvmppc_ops kvm_ops_hv = { 5641 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 5642 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 5643 .get_one_reg = kvmppc_get_one_reg_hv, 5644 .set_one_reg = kvmppc_set_one_reg_hv, 5645 .vcpu_load = kvmppc_core_vcpu_load_hv, 5646 .vcpu_put = kvmppc_core_vcpu_put_hv, 5647 .inject_interrupt = kvmppc_inject_interrupt_hv, 5648 .set_msr = kvmppc_set_msr_hv, 5649 .vcpu_run = kvmppc_vcpu_run_hv, 5650 .vcpu_create = kvmppc_core_vcpu_create_hv, 5651 .vcpu_free = kvmppc_core_vcpu_free_hv, 5652 .check_requests = kvmppc_core_check_requests_hv, 5653 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 5654 .flush_memslot = kvmppc_core_flush_memslot_hv, 5655 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 5656 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 5657 .unmap_hva_range = kvm_unmap_hva_range_hv, 5658 .age_hva = kvm_age_hva_hv, 5659 .test_age_hva = kvm_test_age_hva_hv, 5660 .set_spte_hva = kvm_set_spte_hva_hv, 5661 .free_memslot = kvmppc_core_free_memslot_hv, 5662 .init_vm = kvmppc_core_init_vm_hv, 5663 .destroy_vm = kvmppc_core_destroy_vm_hv, 5664 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 5665 .emulate_op = kvmppc_core_emulate_op_hv, 5666 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 5667 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 5668 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 5669 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 5670 .hcall_implemented = kvmppc_hcall_impl_hv, 5671 #ifdef CONFIG_KVM_XICS 5672 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 5673 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 5674 #endif 5675 .configure_mmu = kvmhv_configure_mmu, 5676 .get_rmmu_info = kvmhv_get_rmmu_info, 5677 .set_smt_mode = kvmhv_set_smt_mode, 5678 .enable_nested = kvmhv_enable_nested, 5679 .load_from_eaddr = kvmhv_load_from_eaddr, 5680 .store_to_eaddr = kvmhv_store_to_eaddr, 5681 .enable_svm = kvmhv_enable_svm, 5682 .svm_off = kvmhv_svm_off, 5683 .enable_dawr1 = kvmhv_enable_dawr1, 5684 .hash_v3_possible = kvmppc_hash_v3_possible, 5685 }; 5686 5687 static int kvm_init_subcore_bitmap(void) 5688 { 5689 int i, j; 5690 int nr_cores = cpu_nr_cores(); 5691 struct sibling_subcore_state *sibling_subcore_state; 5692 5693 for (i = 0; i < nr_cores; i++) { 5694 int first_cpu = i * threads_per_core; 5695 int node = cpu_to_node(first_cpu); 5696 5697 /* Ignore if it is already allocated. */ 5698 if (paca_ptrs[first_cpu]->sibling_subcore_state) 5699 continue; 5700 5701 sibling_subcore_state = 5702 kzalloc_node(sizeof(struct sibling_subcore_state), 5703 GFP_KERNEL, node); 5704 if (!sibling_subcore_state) 5705 return -ENOMEM; 5706 5707 5708 for (j = 0; j < threads_per_core; j++) { 5709 int cpu = first_cpu + j; 5710 5711 paca_ptrs[cpu]->sibling_subcore_state = 5712 sibling_subcore_state; 5713 } 5714 } 5715 return 0; 5716 } 5717 5718 static int kvmppc_radix_possible(void) 5719 { 5720 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 5721 } 5722 5723 static int kvmppc_book3s_init_hv(void) 5724 { 5725 int r; 5726 5727 if (!tlbie_capable) { 5728 pr_err("KVM-HV: Host does not support TLBIE\n"); 5729 return -ENODEV; 5730 } 5731 5732 /* 5733 * FIXME!! Do we need to check on all cpus ? 5734 */ 5735 r = kvmppc_core_check_processor_compat_hv(); 5736 if (r < 0) 5737 return -ENODEV; 5738 5739 r = kvmhv_nested_init(); 5740 if (r) 5741 return r; 5742 5743 r = kvm_init_subcore_bitmap(); 5744 if (r) 5745 return r; 5746 5747 /* 5748 * We need a way of accessing the XICS interrupt controller, 5749 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 5750 * indirectly, via OPAL. 5751 */ 5752 #ifdef CONFIG_SMP 5753 if (!xics_on_xive() && !kvmhv_on_pseries() && 5754 !local_paca->kvm_hstate.xics_phys) { 5755 struct device_node *np; 5756 5757 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 5758 if (!np) { 5759 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 5760 return -ENODEV; 5761 } 5762 /* presence of intc confirmed - node can be dropped again */ 5763 of_node_put(np); 5764 } 5765 #endif 5766 5767 kvm_ops_hv.owner = THIS_MODULE; 5768 kvmppc_hv_ops = &kvm_ops_hv; 5769 5770 init_default_hcalls(); 5771 5772 init_vcore_lists(); 5773 5774 r = kvmppc_mmu_hv_init(); 5775 if (r) 5776 return r; 5777 5778 if (kvmppc_radix_possible()) 5779 r = kvmppc_radix_init(); 5780 5781 /* 5782 * POWER9 chips before version 2.02 can't have some threads in 5783 * HPT mode and some in radix mode on the same core. 5784 */ 5785 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5786 unsigned int pvr = mfspr(SPRN_PVR); 5787 if ((pvr >> 16) == PVR_POWER9 && 5788 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 5789 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 5790 no_mixing_hpt_and_radix = true; 5791 } 5792 5793 r = kvmppc_uvmem_init(); 5794 if (r < 0) 5795 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 5796 5797 return r; 5798 } 5799 5800 static void kvmppc_book3s_exit_hv(void) 5801 { 5802 kvmppc_uvmem_free(); 5803 kvmppc_free_host_rm_ops(); 5804 if (kvmppc_radix_possible()) 5805 kvmppc_radix_exit(); 5806 kvmppc_hv_ops = NULL; 5807 kvmhv_nested_exit(); 5808 } 5809 5810 module_init(kvmppc_book3s_init_hv); 5811 module_exit(kvmppc_book3s_exit_hv); 5812 MODULE_LICENSE("GPL"); 5813 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5814 MODULE_ALIAS("devname:kvm"); 5815