xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 6355592e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75 
76 #include "book3s.h"
77 
78 #define CREATE_TRACE_POINTS
79 #include "trace_hv.h"
80 
81 /* #define EXIT_DEBUG */
82 /* #define EXIT_DEBUG_SIMPLE */
83 /* #define EXIT_DEBUG_INT */
84 
85 /* Used to indicate that a guest page fault needs to be handled */
86 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
87 /* Used to indicate that a guest passthrough interrupt needs to be handled */
88 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
89 
90 /* Used as a "null" value for timebase values */
91 #define TB_NIL	(~(u64)0)
92 
93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94 
95 static int dynamic_mt_modes = 6;
96 module_param(dynamic_mt_modes, int, 0644);
97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 static int target_smt_mode;
99 module_param(target_smt_mode, int, 0644);
100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101 
102 static bool indep_threads_mode = true;
103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105 
106 static bool one_vm_per_core;
107 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
109 
110 #ifdef CONFIG_KVM_XICS
111 static struct kernel_param_ops module_param_ops = {
112 	.set = param_set_int,
113 	.get = param_get_int,
114 };
115 
116 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
117 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
118 
119 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
120 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
121 #endif
122 
123 /* If set, guests are allowed to create and control nested guests */
124 static bool nested = true;
125 module_param(nested, bool, S_IRUGO | S_IWUSR);
126 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
127 
128 static inline bool nesting_enabled(struct kvm *kvm)
129 {
130 	return kvm->arch.nested_enable && kvm_is_radix(kvm);
131 }
132 
133 /* If set, the threads on each CPU core have to be in the same MMU mode */
134 static bool no_mixing_hpt_and_radix;
135 
136 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
137 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
138 
139 /*
140  * RWMR values for POWER8.  These control the rate at which PURR
141  * and SPURR count and should be set according to the number of
142  * online threads in the vcore being run.
143  */
144 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
145 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
146 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
147 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
148 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
149 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
150 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
151 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
152 
153 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
154 	RWMR_RPA_P8_1THREAD,
155 	RWMR_RPA_P8_1THREAD,
156 	RWMR_RPA_P8_2THREAD,
157 	RWMR_RPA_P8_3THREAD,
158 	RWMR_RPA_P8_4THREAD,
159 	RWMR_RPA_P8_5THREAD,
160 	RWMR_RPA_P8_6THREAD,
161 	RWMR_RPA_P8_7THREAD,
162 	RWMR_RPA_P8_8THREAD,
163 };
164 
165 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
166 		int *ip)
167 {
168 	int i = *ip;
169 	struct kvm_vcpu *vcpu;
170 
171 	while (++i < MAX_SMT_THREADS) {
172 		vcpu = READ_ONCE(vc->runnable_threads[i]);
173 		if (vcpu) {
174 			*ip = i;
175 			return vcpu;
176 		}
177 	}
178 	return NULL;
179 }
180 
181 /* Used to traverse the list of runnable threads for a given vcore */
182 #define for_each_runnable_thread(i, vcpu, vc) \
183 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
184 
185 static bool kvmppc_ipi_thread(int cpu)
186 {
187 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
188 
189 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
190 	if (kvmhv_on_pseries())
191 		return false;
192 
193 	/* On POWER9 we can use msgsnd to IPI any cpu */
194 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
195 		msg |= get_hard_smp_processor_id(cpu);
196 		smp_mb();
197 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
198 		return true;
199 	}
200 
201 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
202 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
203 		preempt_disable();
204 		if (cpu_first_thread_sibling(cpu) ==
205 		    cpu_first_thread_sibling(smp_processor_id())) {
206 			msg |= cpu_thread_in_core(cpu);
207 			smp_mb();
208 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
209 			preempt_enable();
210 			return true;
211 		}
212 		preempt_enable();
213 	}
214 
215 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
216 	if (cpu >= 0 && cpu < nr_cpu_ids) {
217 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
218 			xics_wake_cpu(cpu);
219 			return true;
220 		}
221 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
222 		return true;
223 	}
224 #endif
225 
226 	return false;
227 }
228 
229 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
230 {
231 	int cpu;
232 	struct swait_queue_head *wqp;
233 
234 	wqp = kvm_arch_vcpu_wq(vcpu);
235 	if (swq_has_sleeper(wqp)) {
236 		swake_up_one(wqp);
237 		++vcpu->stat.halt_wakeup;
238 	}
239 
240 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
241 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
242 		return;
243 
244 	/* CPU points to the first thread of the core */
245 	cpu = vcpu->cpu;
246 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
247 		smp_send_reschedule(cpu);
248 }
249 
250 /*
251  * We use the vcpu_load/put functions to measure stolen time.
252  * Stolen time is counted as time when either the vcpu is able to
253  * run as part of a virtual core, but the task running the vcore
254  * is preempted or sleeping, or when the vcpu needs something done
255  * in the kernel by the task running the vcpu, but that task is
256  * preempted or sleeping.  Those two things have to be counted
257  * separately, since one of the vcpu tasks will take on the job
258  * of running the core, and the other vcpu tasks in the vcore will
259  * sleep waiting for it to do that, but that sleep shouldn't count
260  * as stolen time.
261  *
262  * Hence we accumulate stolen time when the vcpu can run as part of
263  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
264  * needs its task to do other things in the kernel (for example,
265  * service a page fault) in busy_stolen.  We don't accumulate
266  * stolen time for a vcore when it is inactive, or for a vcpu
267  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
268  * a misnomer; it means that the vcpu task is not executing in
269  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
270  * the kernel.  We don't have any way of dividing up that time
271  * between time that the vcpu is genuinely stopped, time that
272  * the task is actively working on behalf of the vcpu, and time
273  * that the task is preempted, so we don't count any of it as
274  * stolen.
275  *
276  * Updates to busy_stolen are protected by arch.tbacct_lock;
277  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
278  * lock.  The stolen times are measured in units of timebase ticks.
279  * (Note that the != TB_NIL checks below are purely defensive;
280  * they should never fail.)
281  */
282 
283 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
284 {
285 	unsigned long flags;
286 
287 	spin_lock_irqsave(&vc->stoltb_lock, flags);
288 	vc->preempt_tb = mftb();
289 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
290 }
291 
292 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
293 {
294 	unsigned long flags;
295 
296 	spin_lock_irqsave(&vc->stoltb_lock, flags);
297 	if (vc->preempt_tb != TB_NIL) {
298 		vc->stolen_tb += mftb() - vc->preempt_tb;
299 		vc->preempt_tb = TB_NIL;
300 	}
301 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
302 }
303 
304 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
305 {
306 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
307 	unsigned long flags;
308 
309 	/*
310 	 * We can test vc->runner without taking the vcore lock,
311 	 * because only this task ever sets vc->runner to this
312 	 * vcpu, and once it is set to this vcpu, only this task
313 	 * ever sets it to NULL.
314 	 */
315 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
316 		kvmppc_core_end_stolen(vc);
317 
318 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
320 	    vcpu->arch.busy_preempt != TB_NIL) {
321 		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
322 		vcpu->arch.busy_preempt = TB_NIL;
323 	}
324 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
325 }
326 
327 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
328 {
329 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
330 	unsigned long flags;
331 
332 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
333 		kvmppc_core_start_stolen(vc);
334 
335 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
336 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
337 		vcpu->arch.busy_preempt = mftb();
338 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
339 }
340 
341 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
342 {
343 	/*
344 	 * Check for illegal transactional state bit combination
345 	 * and if we find it, force the TS field to a safe state.
346 	 */
347 	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
348 		msr &= ~MSR_TS_MASK;
349 	vcpu->arch.shregs.msr = msr;
350 	kvmppc_end_cede(vcpu);
351 }
352 
353 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
354 {
355 	vcpu->arch.pvr = pvr;
356 }
357 
358 /* Dummy value used in computing PCR value below */
359 #define PCR_ARCH_300	(PCR_ARCH_207 << 1)
360 
361 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
362 {
363 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
364 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
365 
366 	/* We can (emulate) our own architecture version and anything older */
367 	if (cpu_has_feature(CPU_FTR_ARCH_300))
368 		host_pcr_bit = PCR_ARCH_300;
369 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
370 		host_pcr_bit = PCR_ARCH_207;
371 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
372 		host_pcr_bit = PCR_ARCH_206;
373 	else
374 		host_pcr_bit = PCR_ARCH_205;
375 
376 	/* Determine lowest PCR bit needed to run guest in given PVR level */
377 	guest_pcr_bit = host_pcr_bit;
378 	if (arch_compat) {
379 		switch (arch_compat) {
380 		case PVR_ARCH_205:
381 			guest_pcr_bit = PCR_ARCH_205;
382 			break;
383 		case PVR_ARCH_206:
384 		case PVR_ARCH_206p:
385 			guest_pcr_bit = PCR_ARCH_206;
386 			break;
387 		case PVR_ARCH_207:
388 			guest_pcr_bit = PCR_ARCH_207;
389 			break;
390 		case PVR_ARCH_300:
391 			guest_pcr_bit = PCR_ARCH_300;
392 			break;
393 		default:
394 			return -EINVAL;
395 		}
396 	}
397 
398 	/* Check requested PCR bits don't exceed our capabilities */
399 	if (guest_pcr_bit > host_pcr_bit)
400 		return -EINVAL;
401 
402 	spin_lock(&vc->lock);
403 	vc->arch_compat = arch_compat;
404 	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
405 	vc->pcr = host_pcr_bit - guest_pcr_bit;
406 	spin_unlock(&vc->lock);
407 
408 	return 0;
409 }
410 
411 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
412 {
413 	int r;
414 
415 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
416 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
417 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
418 	for (r = 0; r < 16; ++r)
419 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
420 		       r, kvmppc_get_gpr(vcpu, r),
421 		       r+16, kvmppc_get_gpr(vcpu, r+16));
422 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
423 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
424 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
425 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
426 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
427 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
428 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
429 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
430 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
431 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
432 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
433 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
434 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
435 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
436 	for (r = 0; r < vcpu->arch.slb_max; ++r)
437 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
438 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
439 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
440 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
441 	       vcpu->arch.last_inst);
442 }
443 
444 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
445 {
446 	return kvm_get_vcpu_by_id(kvm, id);
447 }
448 
449 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
450 {
451 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
452 	vpa->yield_count = cpu_to_be32(1);
453 }
454 
455 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
456 		   unsigned long addr, unsigned long len)
457 {
458 	/* check address is cacheline aligned */
459 	if (addr & (L1_CACHE_BYTES - 1))
460 		return -EINVAL;
461 	spin_lock(&vcpu->arch.vpa_update_lock);
462 	if (v->next_gpa != addr || v->len != len) {
463 		v->next_gpa = addr;
464 		v->len = addr ? len : 0;
465 		v->update_pending = 1;
466 	}
467 	spin_unlock(&vcpu->arch.vpa_update_lock);
468 	return 0;
469 }
470 
471 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
472 struct reg_vpa {
473 	u32 dummy;
474 	union {
475 		__be16 hword;
476 		__be32 word;
477 	} length;
478 };
479 
480 static int vpa_is_registered(struct kvmppc_vpa *vpap)
481 {
482 	if (vpap->update_pending)
483 		return vpap->next_gpa != 0;
484 	return vpap->pinned_addr != NULL;
485 }
486 
487 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
488 				       unsigned long flags,
489 				       unsigned long vcpuid, unsigned long vpa)
490 {
491 	struct kvm *kvm = vcpu->kvm;
492 	unsigned long len, nb;
493 	void *va;
494 	struct kvm_vcpu *tvcpu;
495 	int err;
496 	int subfunc;
497 	struct kvmppc_vpa *vpap;
498 
499 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
500 	if (!tvcpu)
501 		return H_PARAMETER;
502 
503 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
504 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
505 	    subfunc == H_VPA_REG_SLB) {
506 		/* Registering new area - address must be cache-line aligned */
507 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
508 			return H_PARAMETER;
509 
510 		/* convert logical addr to kernel addr and read length */
511 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
512 		if (va == NULL)
513 			return H_PARAMETER;
514 		if (subfunc == H_VPA_REG_VPA)
515 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
516 		else
517 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
518 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
519 
520 		/* Check length */
521 		if (len > nb || len < sizeof(struct reg_vpa))
522 			return H_PARAMETER;
523 	} else {
524 		vpa = 0;
525 		len = 0;
526 	}
527 
528 	err = H_PARAMETER;
529 	vpap = NULL;
530 	spin_lock(&tvcpu->arch.vpa_update_lock);
531 
532 	switch (subfunc) {
533 	case H_VPA_REG_VPA:		/* register VPA */
534 		/*
535 		 * The size of our lppaca is 1kB because of the way we align
536 		 * it for the guest to avoid crossing a 4kB boundary. We only
537 		 * use 640 bytes of the structure though, so we should accept
538 		 * clients that set a size of 640.
539 		 */
540 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
541 		if (len < sizeof(struct lppaca))
542 			break;
543 		vpap = &tvcpu->arch.vpa;
544 		err = 0;
545 		break;
546 
547 	case H_VPA_REG_DTL:		/* register DTL */
548 		if (len < sizeof(struct dtl_entry))
549 			break;
550 		len -= len % sizeof(struct dtl_entry);
551 
552 		/* Check that they have previously registered a VPA */
553 		err = H_RESOURCE;
554 		if (!vpa_is_registered(&tvcpu->arch.vpa))
555 			break;
556 
557 		vpap = &tvcpu->arch.dtl;
558 		err = 0;
559 		break;
560 
561 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
562 		/* Check that they have previously registered a VPA */
563 		err = H_RESOURCE;
564 		if (!vpa_is_registered(&tvcpu->arch.vpa))
565 			break;
566 
567 		vpap = &tvcpu->arch.slb_shadow;
568 		err = 0;
569 		break;
570 
571 	case H_VPA_DEREG_VPA:		/* deregister VPA */
572 		/* Check they don't still have a DTL or SLB buf registered */
573 		err = H_RESOURCE;
574 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
575 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
576 			break;
577 
578 		vpap = &tvcpu->arch.vpa;
579 		err = 0;
580 		break;
581 
582 	case H_VPA_DEREG_DTL:		/* deregister DTL */
583 		vpap = &tvcpu->arch.dtl;
584 		err = 0;
585 		break;
586 
587 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
588 		vpap = &tvcpu->arch.slb_shadow;
589 		err = 0;
590 		break;
591 	}
592 
593 	if (vpap) {
594 		vpap->next_gpa = vpa;
595 		vpap->len = len;
596 		vpap->update_pending = 1;
597 	}
598 
599 	spin_unlock(&tvcpu->arch.vpa_update_lock);
600 
601 	return err;
602 }
603 
604 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
605 {
606 	struct kvm *kvm = vcpu->kvm;
607 	void *va;
608 	unsigned long nb;
609 	unsigned long gpa;
610 
611 	/*
612 	 * We need to pin the page pointed to by vpap->next_gpa,
613 	 * but we can't call kvmppc_pin_guest_page under the lock
614 	 * as it does get_user_pages() and down_read().  So we
615 	 * have to drop the lock, pin the page, then get the lock
616 	 * again and check that a new area didn't get registered
617 	 * in the meantime.
618 	 */
619 	for (;;) {
620 		gpa = vpap->next_gpa;
621 		spin_unlock(&vcpu->arch.vpa_update_lock);
622 		va = NULL;
623 		nb = 0;
624 		if (gpa)
625 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
626 		spin_lock(&vcpu->arch.vpa_update_lock);
627 		if (gpa == vpap->next_gpa)
628 			break;
629 		/* sigh... unpin that one and try again */
630 		if (va)
631 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
632 	}
633 
634 	vpap->update_pending = 0;
635 	if (va && nb < vpap->len) {
636 		/*
637 		 * If it's now too short, it must be that userspace
638 		 * has changed the mappings underlying guest memory,
639 		 * so unregister the region.
640 		 */
641 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
642 		va = NULL;
643 	}
644 	if (vpap->pinned_addr)
645 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
646 					vpap->dirty);
647 	vpap->gpa = gpa;
648 	vpap->pinned_addr = va;
649 	vpap->dirty = false;
650 	if (va)
651 		vpap->pinned_end = va + vpap->len;
652 }
653 
654 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
655 {
656 	if (!(vcpu->arch.vpa.update_pending ||
657 	      vcpu->arch.slb_shadow.update_pending ||
658 	      vcpu->arch.dtl.update_pending))
659 		return;
660 
661 	spin_lock(&vcpu->arch.vpa_update_lock);
662 	if (vcpu->arch.vpa.update_pending) {
663 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
664 		if (vcpu->arch.vpa.pinned_addr)
665 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
666 	}
667 	if (vcpu->arch.dtl.update_pending) {
668 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
669 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
670 		vcpu->arch.dtl_index = 0;
671 	}
672 	if (vcpu->arch.slb_shadow.update_pending)
673 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
674 	spin_unlock(&vcpu->arch.vpa_update_lock);
675 }
676 
677 /*
678  * Return the accumulated stolen time for the vcore up until `now'.
679  * The caller should hold the vcore lock.
680  */
681 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
682 {
683 	u64 p;
684 	unsigned long flags;
685 
686 	spin_lock_irqsave(&vc->stoltb_lock, flags);
687 	p = vc->stolen_tb;
688 	if (vc->vcore_state != VCORE_INACTIVE &&
689 	    vc->preempt_tb != TB_NIL)
690 		p += now - vc->preempt_tb;
691 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
692 	return p;
693 }
694 
695 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
696 				    struct kvmppc_vcore *vc)
697 {
698 	struct dtl_entry *dt;
699 	struct lppaca *vpa;
700 	unsigned long stolen;
701 	unsigned long core_stolen;
702 	u64 now;
703 	unsigned long flags;
704 
705 	dt = vcpu->arch.dtl_ptr;
706 	vpa = vcpu->arch.vpa.pinned_addr;
707 	now = mftb();
708 	core_stolen = vcore_stolen_time(vc, now);
709 	stolen = core_stolen - vcpu->arch.stolen_logged;
710 	vcpu->arch.stolen_logged = core_stolen;
711 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
712 	stolen += vcpu->arch.busy_stolen;
713 	vcpu->arch.busy_stolen = 0;
714 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
715 	if (!dt || !vpa)
716 		return;
717 	memset(dt, 0, sizeof(struct dtl_entry));
718 	dt->dispatch_reason = 7;
719 	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
720 	dt->timebase = cpu_to_be64(now + vc->tb_offset);
721 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
722 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
723 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
724 	++dt;
725 	if (dt == vcpu->arch.dtl.pinned_end)
726 		dt = vcpu->arch.dtl.pinned_addr;
727 	vcpu->arch.dtl_ptr = dt;
728 	/* order writing *dt vs. writing vpa->dtl_idx */
729 	smp_wmb();
730 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
731 	vcpu->arch.dtl.dirty = true;
732 }
733 
734 /* See if there is a doorbell interrupt pending for a vcpu */
735 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
736 {
737 	int thr;
738 	struct kvmppc_vcore *vc;
739 
740 	if (vcpu->arch.doorbell_request)
741 		return true;
742 	/*
743 	 * Ensure that the read of vcore->dpdes comes after the read
744 	 * of vcpu->doorbell_request.  This barrier matches the
745 	 * smp_wmb() in kvmppc_guest_entry_inject().
746 	 */
747 	smp_rmb();
748 	vc = vcpu->arch.vcore;
749 	thr = vcpu->vcpu_id - vc->first_vcpuid;
750 	return !!(vc->dpdes & (1 << thr));
751 }
752 
753 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
754 {
755 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
756 		return true;
757 	if ((!vcpu->arch.vcore->arch_compat) &&
758 	    cpu_has_feature(CPU_FTR_ARCH_207S))
759 		return true;
760 	return false;
761 }
762 
763 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
764 			     unsigned long resource, unsigned long value1,
765 			     unsigned long value2)
766 {
767 	switch (resource) {
768 	case H_SET_MODE_RESOURCE_SET_CIABR:
769 		if (!kvmppc_power8_compatible(vcpu))
770 			return H_P2;
771 		if (value2)
772 			return H_P4;
773 		if (mflags)
774 			return H_UNSUPPORTED_FLAG_START;
775 		/* Guests can't breakpoint the hypervisor */
776 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
777 			return H_P3;
778 		vcpu->arch.ciabr  = value1;
779 		return H_SUCCESS;
780 	case H_SET_MODE_RESOURCE_SET_DAWR:
781 		if (!kvmppc_power8_compatible(vcpu))
782 			return H_P2;
783 		if (!ppc_breakpoint_available())
784 			return H_P2;
785 		if (mflags)
786 			return H_UNSUPPORTED_FLAG_START;
787 		if (value2 & DABRX_HYP)
788 			return H_P4;
789 		vcpu->arch.dawr  = value1;
790 		vcpu->arch.dawrx = value2;
791 		return H_SUCCESS;
792 	default:
793 		return H_TOO_HARD;
794 	}
795 }
796 
797 /* Copy guest memory in place - must reside within a single memslot */
798 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
799 				  unsigned long len)
800 {
801 	struct kvm_memory_slot *to_memslot = NULL;
802 	struct kvm_memory_slot *from_memslot = NULL;
803 	unsigned long to_addr, from_addr;
804 	int r;
805 
806 	/* Get HPA for from address */
807 	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
808 	if (!from_memslot)
809 		return -EFAULT;
810 	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
811 			     << PAGE_SHIFT))
812 		return -EINVAL;
813 	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
814 	if (kvm_is_error_hva(from_addr))
815 		return -EFAULT;
816 	from_addr |= (from & (PAGE_SIZE - 1));
817 
818 	/* Get HPA for to address */
819 	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
820 	if (!to_memslot)
821 		return -EFAULT;
822 	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
823 			   << PAGE_SHIFT))
824 		return -EINVAL;
825 	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
826 	if (kvm_is_error_hva(to_addr))
827 		return -EFAULT;
828 	to_addr |= (to & (PAGE_SIZE - 1));
829 
830 	/* Perform copy */
831 	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
832 			     len);
833 	if (r)
834 		return -EFAULT;
835 	mark_page_dirty(kvm, to >> PAGE_SHIFT);
836 	return 0;
837 }
838 
839 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
840 			       unsigned long dest, unsigned long src)
841 {
842 	u64 pg_sz = SZ_4K;		/* 4K page size */
843 	u64 pg_mask = SZ_4K - 1;
844 	int ret;
845 
846 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
847 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
848 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
849 		return H_PARAMETER;
850 
851 	/* dest (and src if copy_page flag set) must be page aligned */
852 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
853 		return H_PARAMETER;
854 
855 	/* zero and/or copy the page as determined by the flags */
856 	if (flags & H_COPY_PAGE) {
857 		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
858 		if (ret < 0)
859 			return H_PARAMETER;
860 	} else if (flags & H_ZERO_PAGE) {
861 		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
862 		if (ret < 0)
863 			return H_PARAMETER;
864 	}
865 
866 	/* We can ignore the remaining flags */
867 
868 	return H_SUCCESS;
869 }
870 
871 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
872 {
873 	struct kvmppc_vcore *vcore = target->arch.vcore;
874 
875 	/*
876 	 * We expect to have been called by the real mode handler
877 	 * (kvmppc_rm_h_confer()) which would have directly returned
878 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
879 	 * have useful work to do and should not confer) so we don't
880 	 * recheck that here.
881 	 */
882 
883 	spin_lock(&vcore->lock);
884 	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
885 	    vcore->vcore_state != VCORE_INACTIVE &&
886 	    vcore->runner)
887 		target = vcore->runner;
888 	spin_unlock(&vcore->lock);
889 
890 	return kvm_vcpu_yield_to(target);
891 }
892 
893 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
894 {
895 	int yield_count = 0;
896 	struct lppaca *lppaca;
897 
898 	spin_lock(&vcpu->arch.vpa_update_lock);
899 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
900 	if (lppaca)
901 		yield_count = be32_to_cpu(lppaca->yield_count);
902 	spin_unlock(&vcpu->arch.vpa_update_lock);
903 	return yield_count;
904 }
905 
906 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
907 {
908 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
909 	unsigned long target, ret = H_SUCCESS;
910 	int yield_count;
911 	struct kvm_vcpu *tvcpu;
912 	int idx, rc;
913 
914 	if (req <= MAX_HCALL_OPCODE &&
915 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
916 		return RESUME_HOST;
917 
918 	switch (req) {
919 	case H_CEDE:
920 		break;
921 	case H_PROD:
922 		target = kvmppc_get_gpr(vcpu, 4);
923 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
924 		if (!tvcpu) {
925 			ret = H_PARAMETER;
926 			break;
927 		}
928 		tvcpu->arch.prodded = 1;
929 		smp_mb();
930 		if (tvcpu->arch.ceded)
931 			kvmppc_fast_vcpu_kick_hv(tvcpu);
932 		break;
933 	case H_CONFER:
934 		target = kvmppc_get_gpr(vcpu, 4);
935 		if (target == -1)
936 			break;
937 		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
938 		if (!tvcpu) {
939 			ret = H_PARAMETER;
940 			break;
941 		}
942 		yield_count = kvmppc_get_gpr(vcpu, 5);
943 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
944 			break;
945 		kvm_arch_vcpu_yield_to(tvcpu);
946 		break;
947 	case H_REGISTER_VPA:
948 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
949 					kvmppc_get_gpr(vcpu, 5),
950 					kvmppc_get_gpr(vcpu, 6));
951 		break;
952 	case H_RTAS:
953 		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
954 			return RESUME_HOST;
955 
956 		idx = srcu_read_lock(&vcpu->kvm->srcu);
957 		rc = kvmppc_rtas_hcall(vcpu);
958 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
959 
960 		if (rc == -ENOENT)
961 			return RESUME_HOST;
962 		else if (rc == 0)
963 			break;
964 
965 		/* Send the error out to userspace via KVM_RUN */
966 		return rc;
967 	case H_LOGICAL_CI_LOAD:
968 		ret = kvmppc_h_logical_ci_load(vcpu);
969 		if (ret == H_TOO_HARD)
970 			return RESUME_HOST;
971 		break;
972 	case H_LOGICAL_CI_STORE:
973 		ret = kvmppc_h_logical_ci_store(vcpu);
974 		if (ret == H_TOO_HARD)
975 			return RESUME_HOST;
976 		break;
977 	case H_SET_MODE:
978 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
979 					kvmppc_get_gpr(vcpu, 5),
980 					kvmppc_get_gpr(vcpu, 6),
981 					kvmppc_get_gpr(vcpu, 7));
982 		if (ret == H_TOO_HARD)
983 			return RESUME_HOST;
984 		break;
985 	case H_XIRR:
986 	case H_CPPR:
987 	case H_EOI:
988 	case H_IPI:
989 	case H_IPOLL:
990 	case H_XIRR_X:
991 		if (kvmppc_xics_enabled(vcpu)) {
992 			if (xics_on_xive()) {
993 				ret = H_NOT_AVAILABLE;
994 				return RESUME_GUEST;
995 			}
996 			ret = kvmppc_xics_hcall(vcpu, req);
997 			break;
998 		}
999 		return RESUME_HOST;
1000 	case H_SET_DABR:
1001 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1002 		break;
1003 	case H_SET_XDABR:
1004 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1005 						kvmppc_get_gpr(vcpu, 5));
1006 		break;
1007 #ifdef CONFIG_SPAPR_TCE_IOMMU
1008 	case H_GET_TCE:
1009 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1010 						kvmppc_get_gpr(vcpu, 5));
1011 		if (ret == H_TOO_HARD)
1012 			return RESUME_HOST;
1013 		break;
1014 	case H_PUT_TCE:
1015 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1016 						kvmppc_get_gpr(vcpu, 5),
1017 						kvmppc_get_gpr(vcpu, 6));
1018 		if (ret == H_TOO_HARD)
1019 			return RESUME_HOST;
1020 		break;
1021 	case H_PUT_TCE_INDIRECT:
1022 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1023 						kvmppc_get_gpr(vcpu, 5),
1024 						kvmppc_get_gpr(vcpu, 6),
1025 						kvmppc_get_gpr(vcpu, 7));
1026 		if (ret == H_TOO_HARD)
1027 			return RESUME_HOST;
1028 		break;
1029 	case H_STUFF_TCE:
1030 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1031 						kvmppc_get_gpr(vcpu, 5),
1032 						kvmppc_get_gpr(vcpu, 6),
1033 						kvmppc_get_gpr(vcpu, 7));
1034 		if (ret == H_TOO_HARD)
1035 			return RESUME_HOST;
1036 		break;
1037 #endif
1038 	case H_RANDOM:
1039 		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1040 			ret = H_HARDWARE;
1041 		break;
1042 
1043 	case H_SET_PARTITION_TABLE:
1044 		ret = H_FUNCTION;
1045 		if (nesting_enabled(vcpu->kvm))
1046 			ret = kvmhv_set_partition_table(vcpu);
1047 		break;
1048 	case H_ENTER_NESTED:
1049 		ret = H_FUNCTION;
1050 		if (!nesting_enabled(vcpu->kvm))
1051 			break;
1052 		ret = kvmhv_enter_nested_guest(vcpu);
1053 		if (ret == H_INTERRUPT) {
1054 			kvmppc_set_gpr(vcpu, 3, 0);
1055 			vcpu->arch.hcall_needed = 0;
1056 			return -EINTR;
1057 		} else if (ret == H_TOO_HARD) {
1058 			kvmppc_set_gpr(vcpu, 3, 0);
1059 			vcpu->arch.hcall_needed = 0;
1060 			return RESUME_HOST;
1061 		}
1062 		break;
1063 	case H_TLB_INVALIDATE:
1064 		ret = H_FUNCTION;
1065 		if (nesting_enabled(vcpu->kvm))
1066 			ret = kvmhv_do_nested_tlbie(vcpu);
1067 		break;
1068 	case H_COPY_TOFROM_GUEST:
1069 		ret = H_FUNCTION;
1070 		if (nesting_enabled(vcpu->kvm))
1071 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1072 		break;
1073 	case H_PAGE_INIT:
1074 		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1075 					 kvmppc_get_gpr(vcpu, 5),
1076 					 kvmppc_get_gpr(vcpu, 6));
1077 		break;
1078 	default:
1079 		return RESUME_HOST;
1080 	}
1081 	kvmppc_set_gpr(vcpu, 3, ret);
1082 	vcpu->arch.hcall_needed = 0;
1083 	return RESUME_GUEST;
1084 }
1085 
1086 /*
1087  * Handle H_CEDE in the nested virtualization case where we haven't
1088  * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1089  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1090  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1091  */
1092 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1093 {
1094 	vcpu->arch.shregs.msr |= MSR_EE;
1095 	vcpu->arch.ceded = 1;
1096 	smp_mb();
1097 	if (vcpu->arch.prodded) {
1098 		vcpu->arch.prodded = 0;
1099 		smp_mb();
1100 		vcpu->arch.ceded = 0;
1101 	}
1102 }
1103 
1104 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1105 {
1106 	switch (cmd) {
1107 	case H_CEDE:
1108 	case H_PROD:
1109 	case H_CONFER:
1110 	case H_REGISTER_VPA:
1111 	case H_SET_MODE:
1112 	case H_LOGICAL_CI_LOAD:
1113 	case H_LOGICAL_CI_STORE:
1114 #ifdef CONFIG_KVM_XICS
1115 	case H_XIRR:
1116 	case H_CPPR:
1117 	case H_EOI:
1118 	case H_IPI:
1119 	case H_IPOLL:
1120 	case H_XIRR_X:
1121 #endif
1122 	case H_PAGE_INIT:
1123 		return 1;
1124 	}
1125 
1126 	/* See if it's in the real-mode table */
1127 	return kvmppc_hcall_impl_hv_realmode(cmd);
1128 }
1129 
1130 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1131 					struct kvm_vcpu *vcpu)
1132 {
1133 	u32 last_inst;
1134 
1135 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1136 					EMULATE_DONE) {
1137 		/*
1138 		 * Fetch failed, so return to guest and
1139 		 * try executing it again.
1140 		 */
1141 		return RESUME_GUEST;
1142 	}
1143 
1144 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1145 		run->exit_reason = KVM_EXIT_DEBUG;
1146 		run->debug.arch.address = kvmppc_get_pc(vcpu);
1147 		return RESUME_HOST;
1148 	} else {
1149 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1150 		return RESUME_GUEST;
1151 	}
1152 }
1153 
1154 static void do_nothing(void *x)
1155 {
1156 }
1157 
1158 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1159 {
1160 	int thr, cpu, pcpu, nthreads;
1161 	struct kvm_vcpu *v;
1162 	unsigned long dpdes;
1163 
1164 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1165 	dpdes = 0;
1166 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1167 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1168 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1169 		if (!v)
1170 			continue;
1171 		/*
1172 		 * If the vcpu is currently running on a physical cpu thread,
1173 		 * interrupt it in order to pull it out of the guest briefly,
1174 		 * which will update its vcore->dpdes value.
1175 		 */
1176 		pcpu = READ_ONCE(v->cpu);
1177 		if (pcpu >= 0)
1178 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1179 		if (kvmppc_doorbell_pending(v))
1180 			dpdes |= 1 << thr;
1181 	}
1182 	return dpdes;
1183 }
1184 
1185 /*
1186  * On POWER9, emulate doorbell-related instructions in order to
1187  * give the guest the illusion of running on a multi-threaded core.
1188  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1189  * and mfspr DPDES.
1190  */
1191 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1192 {
1193 	u32 inst, rb, thr;
1194 	unsigned long arg;
1195 	struct kvm *kvm = vcpu->kvm;
1196 	struct kvm_vcpu *tvcpu;
1197 
1198 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1199 		return RESUME_GUEST;
1200 	if (get_op(inst) != 31)
1201 		return EMULATE_FAIL;
1202 	rb = get_rb(inst);
1203 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1204 	switch (get_xop(inst)) {
1205 	case OP_31_XOP_MSGSNDP:
1206 		arg = kvmppc_get_gpr(vcpu, rb);
1207 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1208 			break;
1209 		arg &= 0x3f;
1210 		if (arg >= kvm->arch.emul_smt_mode)
1211 			break;
1212 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1213 		if (!tvcpu)
1214 			break;
1215 		if (!tvcpu->arch.doorbell_request) {
1216 			tvcpu->arch.doorbell_request = 1;
1217 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1218 		}
1219 		break;
1220 	case OP_31_XOP_MSGCLRP:
1221 		arg = kvmppc_get_gpr(vcpu, rb);
1222 		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1223 			break;
1224 		vcpu->arch.vcore->dpdes = 0;
1225 		vcpu->arch.doorbell_request = 0;
1226 		break;
1227 	case OP_31_XOP_MFSPR:
1228 		switch (get_sprn(inst)) {
1229 		case SPRN_TIR:
1230 			arg = thr;
1231 			break;
1232 		case SPRN_DPDES:
1233 			arg = kvmppc_read_dpdes(vcpu);
1234 			break;
1235 		default:
1236 			return EMULATE_FAIL;
1237 		}
1238 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1239 		break;
1240 	default:
1241 		return EMULATE_FAIL;
1242 	}
1243 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1244 	return RESUME_GUEST;
1245 }
1246 
1247 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1248 				 struct task_struct *tsk)
1249 {
1250 	int r = RESUME_HOST;
1251 
1252 	vcpu->stat.sum_exits++;
1253 
1254 	/*
1255 	 * This can happen if an interrupt occurs in the last stages
1256 	 * of guest entry or the first stages of guest exit (i.e. after
1257 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1258 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1259 	 * That can happen due to a bug, or due to a machine check
1260 	 * occurring at just the wrong time.
1261 	 */
1262 	if (vcpu->arch.shregs.msr & MSR_HV) {
1263 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1264 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1265 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1266 			vcpu->arch.shregs.msr);
1267 		kvmppc_dump_regs(vcpu);
1268 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1269 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1270 		return RESUME_HOST;
1271 	}
1272 	run->exit_reason = KVM_EXIT_UNKNOWN;
1273 	run->ready_for_interrupt_injection = 1;
1274 	switch (vcpu->arch.trap) {
1275 	/* We're good on these - the host merely wanted to get our attention */
1276 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1277 		vcpu->stat.dec_exits++;
1278 		r = RESUME_GUEST;
1279 		break;
1280 	case BOOK3S_INTERRUPT_EXTERNAL:
1281 	case BOOK3S_INTERRUPT_H_DOORBELL:
1282 	case BOOK3S_INTERRUPT_H_VIRT:
1283 		vcpu->stat.ext_intr_exits++;
1284 		r = RESUME_GUEST;
1285 		break;
1286 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1287 	case BOOK3S_INTERRUPT_HMI:
1288 	case BOOK3S_INTERRUPT_PERFMON:
1289 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1290 		r = RESUME_GUEST;
1291 		break;
1292 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1293 		/* Print the MCE event to host console. */
1294 		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1295 
1296 		/*
1297 		 * If the guest can do FWNMI, exit to userspace so it can
1298 		 * deliver a FWNMI to the guest.
1299 		 * Otherwise we synthesize a machine check for the guest
1300 		 * so that it knows that the machine check occurred.
1301 		 */
1302 		if (!vcpu->kvm->arch.fwnmi_enabled) {
1303 			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1304 			kvmppc_core_queue_machine_check(vcpu, flags);
1305 			r = RESUME_GUEST;
1306 			break;
1307 		}
1308 
1309 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1310 		run->exit_reason = KVM_EXIT_NMI;
1311 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1312 		/* Clear out the old NMI status from run->flags */
1313 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1314 		/* Now set the NMI status */
1315 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1316 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1317 		else
1318 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1319 
1320 		r = RESUME_HOST;
1321 		break;
1322 	case BOOK3S_INTERRUPT_PROGRAM:
1323 	{
1324 		ulong flags;
1325 		/*
1326 		 * Normally program interrupts are delivered directly
1327 		 * to the guest by the hardware, but we can get here
1328 		 * as a result of a hypervisor emulation interrupt
1329 		 * (e40) getting turned into a 700 by BML RTAS.
1330 		 */
1331 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1332 		kvmppc_core_queue_program(vcpu, flags);
1333 		r = RESUME_GUEST;
1334 		break;
1335 	}
1336 	case BOOK3S_INTERRUPT_SYSCALL:
1337 	{
1338 		/* hcall - punt to userspace */
1339 		int i;
1340 
1341 		/* hypercall with MSR_PR has already been handled in rmode,
1342 		 * and never reaches here.
1343 		 */
1344 
1345 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1346 		for (i = 0; i < 9; ++i)
1347 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1348 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1349 		vcpu->arch.hcall_needed = 1;
1350 		r = RESUME_HOST;
1351 		break;
1352 	}
1353 	/*
1354 	 * We get these next two if the guest accesses a page which it thinks
1355 	 * it has mapped but which is not actually present, either because
1356 	 * it is for an emulated I/O device or because the corresonding
1357 	 * host page has been paged out.  Any other HDSI/HISI interrupts
1358 	 * have been handled already.
1359 	 */
1360 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1361 		r = RESUME_PAGE_FAULT;
1362 		break;
1363 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1364 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1365 		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1366 			DSISR_SRR1_MATCH_64S;
1367 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1368 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1369 		r = RESUME_PAGE_FAULT;
1370 		break;
1371 	/*
1372 	 * This occurs if the guest executes an illegal instruction.
1373 	 * If the guest debug is disabled, generate a program interrupt
1374 	 * to the guest. If guest debug is enabled, we need to check
1375 	 * whether the instruction is a software breakpoint instruction.
1376 	 * Accordingly return to Guest or Host.
1377 	 */
1378 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1379 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1380 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1381 				swab32(vcpu->arch.emul_inst) :
1382 				vcpu->arch.emul_inst;
1383 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1384 			r = kvmppc_emulate_debug_inst(run, vcpu);
1385 		} else {
1386 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1387 			r = RESUME_GUEST;
1388 		}
1389 		break;
1390 	/*
1391 	 * This occurs if the guest (kernel or userspace), does something that
1392 	 * is prohibited by HFSCR.
1393 	 * On POWER9, this could be a doorbell instruction that we need
1394 	 * to emulate.
1395 	 * Otherwise, we just generate a program interrupt to the guest.
1396 	 */
1397 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1398 		r = EMULATE_FAIL;
1399 		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1400 		    cpu_has_feature(CPU_FTR_ARCH_300))
1401 			r = kvmppc_emulate_doorbell_instr(vcpu);
1402 		if (r == EMULATE_FAIL) {
1403 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1404 			r = RESUME_GUEST;
1405 		}
1406 		break;
1407 
1408 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1409 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1410 		/*
1411 		 * This occurs for various TM-related instructions that
1412 		 * we need to emulate on POWER9 DD2.2.  We have already
1413 		 * handled the cases where the guest was in real-suspend
1414 		 * mode and was transitioning to transactional state.
1415 		 */
1416 		r = kvmhv_p9_tm_emulation(vcpu);
1417 		break;
1418 #endif
1419 
1420 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1421 		r = RESUME_PASSTHROUGH;
1422 		break;
1423 	default:
1424 		kvmppc_dump_regs(vcpu);
1425 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1426 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1427 			vcpu->arch.shregs.msr);
1428 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1429 		r = RESUME_HOST;
1430 		break;
1431 	}
1432 
1433 	return r;
1434 }
1435 
1436 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1437 {
1438 	int r;
1439 	int srcu_idx;
1440 
1441 	vcpu->stat.sum_exits++;
1442 
1443 	/*
1444 	 * This can happen if an interrupt occurs in the last stages
1445 	 * of guest entry or the first stages of guest exit (i.e. after
1446 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1447 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1448 	 * That can happen due to a bug, or due to a machine check
1449 	 * occurring at just the wrong time.
1450 	 */
1451 	if (vcpu->arch.shregs.msr & MSR_HV) {
1452 		pr_emerg("KVM trap in HV mode while nested!\n");
1453 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1454 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1455 			 vcpu->arch.shregs.msr);
1456 		kvmppc_dump_regs(vcpu);
1457 		return RESUME_HOST;
1458 	}
1459 	switch (vcpu->arch.trap) {
1460 	/* We're good on these - the host merely wanted to get our attention */
1461 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1462 		vcpu->stat.dec_exits++;
1463 		r = RESUME_GUEST;
1464 		break;
1465 	case BOOK3S_INTERRUPT_EXTERNAL:
1466 		vcpu->stat.ext_intr_exits++;
1467 		r = RESUME_HOST;
1468 		break;
1469 	case BOOK3S_INTERRUPT_H_DOORBELL:
1470 	case BOOK3S_INTERRUPT_H_VIRT:
1471 		vcpu->stat.ext_intr_exits++;
1472 		r = RESUME_GUEST;
1473 		break;
1474 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1475 	case BOOK3S_INTERRUPT_HMI:
1476 	case BOOK3S_INTERRUPT_PERFMON:
1477 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1478 		r = RESUME_GUEST;
1479 		break;
1480 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1481 		/* Pass the machine check to the L1 guest */
1482 		r = RESUME_HOST;
1483 		/* Print the MCE event to host console. */
1484 		machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1485 		break;
1486 	/*
1487 	 * We get these next two if the guest accesses a page which it thinks
1488 	 * it has mapped but which is not actually present, either because
1489 	 * it is for an emulated I/O device or because the corresonding
1490 	 * host page has been paged out.
1491 	 */
1492 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1493 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1494 		r = kvmhv_nested_page_fault(run, vcpu);
1495 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1496 		break;
1497 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1498 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1499 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1500 					 DSISR_SRR1_MATCH_64S;
1501 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1502 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1503 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1504 		r = kvmhv_nested_page_fault(run, vcpu);
1505 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1506 		break;
1507 
1508 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1509 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1510 		/*
1511 		 * This occurs for various TM-related instructions that
1512 		 * we need to emulate on POWER9 DD2.2.  We have already
1513 		 * handled the cases where the guest was in real-suspend
1514 		 * mode and was transitioning to transactional state.
1515 		 */
1516 		r = kvmhv_p9_tm_emulation(vcpu);
1517 		break;
1518 #endif
1519 
1520 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1521 		vcpu->arch.trap = 0;
1522 		r = RESUME_GUEST;
1523 		if (!xics_on_xive())
1524 			kvmppc_xics_rm_complete(vcpu, 0);
1525 		break;
1526 	default:
1527 		r = RESUME_HOST;
1528 		break;
1529 	}
1530 
1531 	return r;
1532 }
1533 
1534 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1535 					    struct kvm_sregs *sregs)
1536 {
1537 	int i;
1538 
1539 	memset(sregs, 0, sizeof(struct kvm_sregs));
1540 	sregs->pvr = vcpu->arch.pvr;
1541 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1542 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1543 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1544 	}
1545 
1546 	return 0;
1547 }
1548 
1549 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1550 					    struct kvm_sregs *sregs)
1551 {
1552 	int i, j;
1553 
1554 	/* Only accept the same PVR as the host's, since we can't spoof it */
1555 	if (sregs->pvr != vcpu->arch.pvr)
1556 		return -EINVAL;
1557 
1558 	j = 0;
1559 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
1560 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1561 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1562 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1563 			++j;
1564 		}
1565 	}
1566 	vcpu->arch.slb_max = j;
1567 
1568 	return 0;
1569 }
1570 
1571 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1572 		bool preserve_top32)
1573 {
1574 	struct kvm *kvm = vcpu->kvm;
1575 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
1576 	u64 mask;
1577 
1578 	spin_lock(&vc->lock);
1579 	/*
1580 	 * If ILE (interrupt little-endian) has changed, update the
1581 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1582 	 */
1583 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1584 		struct kvm_vcpu *vcpu;
1585 		int i;
1586 
1587 		kvm_for_each_vcpu(i, vcpu, kvm) {
1588 			if (vcpu->arch.vcore != vc)
1589 				continue;
1590 			if (new_lpcr & LPCR_ILE)
1591 				vcpu->arch.intr_msr |= MSR_LE;
1592 			else
1593 				vcpu->arch.intr_msr &= ~MSR_LE;
1594 		}
1595 	}
1596 
1597 	/*
1598 	 * Userspace can only modify DPFD (default prefetch depth),
1599 	 * ILE (interrupt little-endian) and TC (translation control).
1600 	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1601 	 */
1602 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1603 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
1604 		mask |= LPCR_AIL;
1605 	/*
1606 	 * On POWER9, allow userspace to enable large decrementer for the
1607 	 * guest, whether or not the host has it enabled.
1608 	 */
1609 	if (cpu_has_feature(CPU_FTR_ARCH_300))
1610 		mask |= LPCR_LD;
1611 
1612 	/* Broken 32-bit version of LPCR must not clear top bits */
1613 	if (preserve_top32)
1614 		mask &= 0xFFFFFFFF;
1615 	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1616 	spin_unlock(&vc->lock);
1617 }
1618 
1619 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1620 				 union kvmppc_one_reg *val)
1621 {
1622 	int r = 0;
1623 	long int i;
1624 
1625 	switch (id) {
1626 	case KVM_REG_PPC_DEBUG_INST:
1627 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1628 		break;
1629 	case KVM_REG_PPC_HIOR:
1630 		*val = get_reg_val(id, 0);
1631 		break;
1632 	case KVM_REG_PPC_DABR:
1633 		*val = get_reg_val(id, vcpu->arch.dabr);
1634 		break;
1635 	case KVM_REG_PPC_DABRX:
1636 		*val = get_reg_val(id, vcpu->arch.dabrx);
1637 		break;
1638 	case KVM_REG_PPC_DSCR:
1639 		*val = get_reg_val(id, vcpu->arch.dscr);
1640 		break;
1641 	case KVM_REG_PPC_PURR:
1642 		*val = get_reg_val(id, vcpu->arch.purr);
1643 		break;
1644 	case KVM_REG_PPC_SPURR:
1645 		*val = get_reg_val(id, vcpu->arch.spurr);
1646 		break;
1647 	case KVM_REG_PPC_AMR:
1648 		*val = get_reg_val(id, vcpu->arch.amr);
1649 		break;
1650 	case KVM_REG_PPC_UAMOR:
1651 		*val = get_reg_val(id, vcpu->arch.uamor);
1652 		break;
1653 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1654 		i = id - KVM_REG_PPC_MMCR0;
1655 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
1656 		break;
1657 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1658 		i = id - KVM_REG_PPC_PMC1;
1659 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1660 		break;
1661 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1662 		i = id - KVM_REG_PPC_SPMC1;
1663 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
1664 		break;
1665 	case KVM_REG_PPC_SIAR:
1666 		*val = get_reg_val(id, vcpu->arch.siar);
1667 		break;
1668 	case KVM_REG_PPC_SDAR:
1669 		*val = get_reg_val(id, vcpu->arch.sdar);
1670 		break;
1671 	case KVM_REG_PPC_SIER:
1672 		*val = get_reg_val(id, vcpu->arch.sier);
1673 		break;
1674 	case KVM_REG_PPC_IAMR:
1675 		*val = get_reg_val(id, vcpu->arch.iamr);
1676 		break;
1677 	case KVM_REG_PPC_PSPB:
1678 		*val = get_reg_val(id, vcpu->arch.pspb);
1679 		break;
1680 	case KVM_REG_PPC_DPDES:
1681 		/*
1682 		 * On POWER9, where we are emulating msgsndp etc.,
1683 		 * we return 1 bit for each vcpu, which can come from
1684 		 * either vcore->dpdes or doorbell_request.
1685 		 * On POWER8, doorbell_request is 0.
1686 		 */
1687 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1688 				   vcpu->arch.doorbell_request);
1689 		break;
1690 	case KVM_REG_PPC_VTB:
1691 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
1692 		break;
1693 	case KVM_REG_PPC_DAWR:
1694 		*val = get_reg_val(id, vcpu->arch.dawr);
1695 		break;
1696 	case KVM_REG_PPC_DAWRX:
1697 		*val = get_reg_val(id, vcpu->arch.dawrx);
1698 		break;
1699 	case KVM_REG_PPC_CIABR:
1700 		*val = get_reg_val(id, vcpu->arch.ciabr);
1701 		break;
1702 	case KVM_REG_PPC_CSIGR:
1703 		*val = get_reg_val(id, vcpu->arch.csigr);
1704 		break;
1705 	case KVM_REG_PPC_TACR:
1706 		*val = get_reg_val(id, vcpu->arch.tacr);
1707 		break;
1708 	case KVM_REG_PPC_TCSCR:
1709 		*val = get_reg_val(id, vcpu->arch.tcscr);
1710 		break;
1711 	case KVM_REG_PPC_PID:
1712 		*val = get_reg_val(id, vcpu->arch.pid);
1713 		break;
1714 	case KVM_REG_PPC_ACOP:
1715 		*val = get_reg_val(id, vcpu->arch.acop);
1716 		break;
1717 	case KVM_REG_PPC_WORT:
1718 		*val = get_reg_val(id, vcpu->arch.wort);
1719 		break;
1720 	case KVM_REG_PPC_TIDR:
1721 		*val = get_reg_val(id, vcpu->arch.tid);
1722 		break;
1723 	case KVM_REG_PPC_PSSCR:
1724 		*val = get_reg_val(id, vcpu->arch.psscr);
1725 		break;
1726 	case KVM_REG_PPC_VPA_ADDR:
1727 		spin_lock(&vcpu->arch.vpa_update_lock);
1728 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1729 		spin_unlock(&vcpu->arch.vpa_update_lock);
1730 		break;
1731 	case KVM_REG_PPC_VPA_SLB:
1732 		spin_lock(&vcpu->arch.vpa_update_lock);
1733 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1734 		val->vpaval.length = vcpu->arch.slb_shadow.len;
1735 		spin_unlock(&vcpu->arch.vpa_update_lock);
1736 		break;
1737 	case KVM_REG_PPC_VPA_DTL:
1738 		spin_lock(&vcpu->arch.vpa_update_lock);
1739 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1740 		val->vpaval.length = vcpu->arch.dtl.len;
1741 		spin_unlock(&vcpu->arch.vpa_update_lock);
1742 		break;
1743 	case KVM_REG_PPC_TB_OFFSET:
1744 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1745 		break;
1746 	case KVM_REG_PPC_LPCR:
1747 	case KVM_REG_PPC_LPCR_64:
1748 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1749 		break;
1750 	case KVM_REG_PPC_PPR:
1751 		*val = get_reg_val(id, vcpu->arch.ppr);
1752 		break;
1753 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1754 	case KVM_REG_PPC_TFHAR:
1755 		*val = get_reg_val(id, vcpu->arch.tfhar);
1756 		break;
1757 	case KVM_REG_PPC_TFIAR:
1758 		*val = get_reg_val(id, vcpu->arch.tfiar);
1759 		break;
1760 	case KVM_REG_PPC_TEXASR:
1761 		*val = get_reg_val(id, vcpu->arch.texasr);
1762 		break;
1763 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1764 		i = id - KVM_REG_PPC_TM_GPR0;
1765 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1766 		break;
1767 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1768 	{
1769 		int j;
1770 		i = id - KVM_REG_PPC_TM_VSR0;
1771 		if (i < 32)
1772 			for (j = 0; j < TS_FPRWIDTH; j++)
1773 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1774 		else {
1775 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
1776 				val->vval = vcpu->arch.vr_tm.vr[i-32];
1777 			else
1778 				r = -ENXIO;
1779 		}
1780 		break;
1781 	}
1782 	case KVM_REG_PPC_TM_CR:
1783 		*val = get_reg_val(id, vcpu->arch.cr_tm);
1784 		break;
1785 	case KVM_REG_PPC_TM_XER:
1786 		*val = get_reg_val(id, vcpu->arch.xer_tm);
1787 		break;
1788 	case KVM_REG_PPC_TM_LR:
1789 		*val = get_reg_val(id, vcpu->arch.lr_tm);
1790 		break;
1791 	case KVM_REG_PPC_TM_CTR:
1792 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
1793 		break;
1794 	case KVM_REG_PPC_TM_FPSCR:
1795 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1796 		break;
1797 	case KVM_REG_PPC_TM_AMR:
1798 		*val = get_reg_val(id, vcpu->arch.amr_tm);
1799 		break;
1800 	case KVM_REG_PPC_TM_PPR:
1801 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
1802 		break;
1803 	case KVM_REG_PPC_TM_VRSAVE:
1804 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
1805 		break;
1806 	case KVM_REG_PPC_TM_VSCR:
1807 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
1808 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1809 		else
1810 			r = -ENXIO;
1811 		break;
1812 	case KVM_REG_PPC_TM_DSCR:
1813 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
1814 		break;
1815 	case KVM_REG_PPC_TM_TAR:
1816 		*val = get_reg_val(id, vcpu->arch.tar_tm);
1817 		break;
1818 #endif
1819 	case KVM_REG_PPC_ARCH_COMPAT:
1820 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1821 		break;
1822 	case KVM_REG_PPC_DEC_EXPIRY:
1823 		*val = get_reg_val(id, vcpu->arch.dec_expires +
1824 				   vcpu->arch.vcore->tb_offset);
1825 		break;
1826 	case KVM_REG_PPC_ONLINE:
1827 		*val = get_reg_val(id, vcpu->arch.online);
1828 		break;
1829 	case KVM_REG_PPC_PTCR:
1830 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1831 		break;
1832 	default:
1833 		r = -EINVAL;
1834 		break;
1835 	}
1836 
1837 	return r;
1838 }
1839 
1840 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1841 				 union kvmppc_one_reg *val)
1842 {
1843 	int r = 0;
1844 	long int i;
1845 	unsigned long addr, len;
1846 
1847 	switch (id) {
1848 	case KVM_REG_PPC_HIOR:
1849 		/* Only allow this to be set to zero */
1850 		if (set_reg_val(id, *val))
1851 			r = -EINVAL;
1852 		break;
1853 	case KVM_REG_PPC_DABR:
1854 		vcpu->arch.dabr = set_reg_val(id, *val);
1855 		break;
1856 	case KVM_REG_PPC_DABRX:
1857 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1858 		break;
1859 	case KVM_REG_PPC_DSCR:
1860 		vcpu->arch.dscr = set_reg_val(id, *val);
1861 		break;
1862 	case KVM_REG_PPC_PURR:
1863 		vcpu->arch.purr = set_reg_val(id, *val);
1864 		break;
1865 	case KVM_REG_PPC_SPURR:
1866 		vcpu->arch.spurr = set_reg_val(id, *val);
1867 		break;
1868 	case KVM_REG_PPC_AMR:
1869 		vcpu->arch.amr = set_reg_val(id, *val);
1870 		break;
1871 	case KVM_REG_PPC_UAMOR:
1872 		vcpu->arch.uamor = set_reg_val(id, *val);
1873 		break;
1874 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1875 		i = id - KVM_REG_PPC_MMCR0;
1876 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1877 		break;
1878 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1879 		i = id - KVM_REG_PPC_PMC1;
1880 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
1881 		break;
1882 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1883 		i = id - KVM_REG_PPC_SPMC1;
1884 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
1885 		break;
1886 	case KVM_REG_PPC_SIAR:
1887 		vcpu->arch.siar = set_reg_val(id, *val);
1888 		break;
1889 	case KVM_REG_PPC_SDAR:
1890 		vcpu->arch.sdar = set_reg_val(id, *val);
1891 		break;
1892 	case KVM_REG_PPC_SIER:
1893 		vcpu->arch.sier = set_reg_val(id, *val);
1894 		break;
1895 	case KVM_REG_PPC_IAMR:
1896 		vcpu->arch.iamr = set_reg_val(id, *val);
1897 		break;
1898 	case KVM_REG_PPC_PSPB:
1899 		vcpu->arch.pspb = set_reg_val(id, *val);
1900 		break;
1901 	case KVM_REG_PPC_DPDES:
1902 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1903 		break;
1904 	case KVM_REG_PPC_VTB:
1905 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1906 		break;
1907 	case KVM_REG_PPC_DAWR:
1908 		vcpu->arch.dawr = set_reg_val(id, *val);
1909 		break;
1910 	case KVM_REG_PPC_DAWRX:
1911 		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1912 		break;
1913 	case KVM_REG_PPC_CIABR:
1914 		vcpu->arch.ciabr = set_reg_val(id, *val);
1915 		/* Don't allow setting breakpoints in hypervisor code */
1916 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1917 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
1918 		break;
1919 	case KVM_REG_PPC_CSIGR:
1920 		vcpu->arch.csigr = set_reg_val(id, *val);
1921 		break;
1922 	case KVM_REG_PPC_TACR:
1923 		vcpu->arch.tacr = set_reg_val(id, *val);
1924 		break;
1925 	case KVM_REG_PPC_TCSCR:
1926 		vcpu->arch.tcscr = set_reg_val(id, *val);
1927 		break;
1928 	case KVM_REG_PPC_PID:
1929 		vcpu->arch.pid = set_reg_val(id, *val);
1930 		break;
1931 	case KVM_REG_PPC_ACOP:
1932 		vcpu->arch.acop = set_reg_val(id, *val);
1933 		break;
1934 	case KVM_REG_PPC_WORT:
1935 		vcpu->arch.wort = set_reg_val(id, *val);
1936 		break;
1937 	case KVM_REG_PPC_TIDR:
1938 		vcpu->arch.tid = set_reg_val(id, *val);
1939 		break;
1940 	case KVM_REG_PPC_PSSCR:
1941 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1942 		break;
1943 	case KVM_REG_PPC_VPA_ADDR:
1944 		addr = set_reg_val(id, *val);
1945 		r = -EINVAL;
1946 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1947 			      vcpu->arch.dtl.next_gpa))
1948 			break;
1949 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1950 		break;
1951 	case KVM_REG_PPC_VPA_SLB:
1952 		addr = val->vpaval.addr;
1953 		len = val->vpaval.length;
1954 		r = -EINVAL;
1955 		if (addr && !vcpu->arch.vpa.next_gpa)
1956 			break;
1957 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1958 		break;
1959 	case KVM_REG_PPC_VPA_DTL:
1960 		addr = val->vpaval.addr;
1961 		len = val->vpaval.length;
1962 		r = -EINVAL;
1963 		if (addr && (len < sizeof(struct dtl_entry) ||
1964 			     !vcpu->arch.vpa.next_gpa))
1965 			break;
1966 		len -= len % sizeof(struct dtl_entry);
1967 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1968 		break;
1969 	case KVM_REG_PPC_TB_OFFSET:
1970 		/* round up to multiple of 2^24 */
1971 		vcpu->arch.vcore->tb_offset =
1972 			ALIGN(set_reg_val(id, *val), 1UL << 24);
1973 		break;
1974 	case KVM_REG_PPC_LPCR:
1975 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1976 		break;
1977 	case KVM_REG_PPC_LPCR_64:
1978 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1979 		break;
1980 	case KVM_REG_PPC_PPR:
1981 		vcpu->arch.ppr = set_reg_val(id, *val);
1982 		break;
1983 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1984 	case KVM_REG_PPC_TFHAR:
1985 		vcpu->arch.tfhar = set_reg_val(id, *val);
1986 		break;
1987 	case KVM_REG_PPC_TFIAR:
1988 		vcpu->arch.tfiar = set_reg_val(id, *val);
1989 		break;
1990 	case KVM_REG_PPC_TEXASR:
1991 		vcpu->arch.texasr = set_reg_val(id, *val);
1992 		break;
1993 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1994 		i = id - KVM_REG_PPC_TM_GPR0;
1995 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1996 		break;
1997 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1998 	{
1999 		int j;
2000 		i = id - KVM_REG_PPC_TM_VSR0;
2001 		if (i < 32)
2002 			for (j = 0; j < TS_FPRWIDTH; j++)
2003 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2004 		else
2005 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2006 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2007 			else
2008 				r = -ENXIO;
2009 		break;
2010 	}
2011 	case KVM_REG_PPC_TM_CR:
2012 		vcpu->arch.cr_tm = set_reg_val(id, *val);
2013 		break;
2014 	case KVM_REG_PPC_TM_XER:
2015 		vcpu->arch.xer_tm = set_reg_val(id, *val);
2016 		break;
2017 	case KVM_REG_PPC_TM_LR:
2018 		vcpu->arch.lr_tm = set_reg_val(id, *val);
2019 		break;
2020 	case KVM_REG_PPC_TM_CTR:
2021 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2022 		break;
2023 	case KVM_REG_PPC_TM_FPSCR:
2024 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2025 		break;
2026 	case KVM_REG_PPC_TM_AMR:
2027 		vcpu->arch.amr_tm = set_reg_val(id, *val);
2028 		break;
2029 	case KVM_REG_PPC_TM_PPR:
2030 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2031 		break;
2032 	case KVM_REG_PPC_TM_VRSAVE:
2033 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2034 		break;
2035 	case KVM_REG_PPC_TM_VSCR:
2036 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2037 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2038 		else
2039 			r = - ENXIO;
2040 		break;
2041 	case KVM_REG_PPC_TM_DSCR:
2042 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2043 		break;
2044 	case KVM_REG_PPC_TM_TAR:
2045 		vcpu->arch.tar_tm = set_reg_val(id, *val);
2046 		break;
2047 #endif
2048 	case KVM_REG_PPC_ARCH_COMPAT:
2049 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2050 		break;
2051 	case KVM_REG_PPC_DEC_EXPIRY:
2052 		vcpu->arch.dec_expires = set_reg_val(id, *val) -
2053 			vcpu->arch.vcore->tb_offset;
2054 		break;
2055 	case KVM_REG_PPC_ONLINE:
2056 		i = set_reg_val(id, *val);
2057 		if (i && !vcpu->arch.online)
2058 			atomic_inc(&vcpu->arch.vcore->online_count);
2059 		else if (!i && vcpu->arch.online)
2060 			atomic_dec(&vcpu->arch.vcore->online_count);
2061 		vcpu->arch.online = i;
2062 		break;
2063 	case KVM_REG_PPC_PTCR:
2064 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2065 		break;
2066 	default:
2067 		r = -EINVAL;
2068 		break;
2069 	}
2070 
2071 	return r;
2072 }
2073 
2074 /*
2075  * On POWER9, threads are independent and can be in different partitions.
2076  * Therefore we consider each thread to be a subcore.
2077  * There is a restriction that all threads have to be in the same
2078  * MMU mode (radix or HPT), unfortunately, but since we only support
2079  * HPT guests on a HPT host so far, that isn't an impediment yet.
2080  */
2081 static int threads_per_vcore(struct kvm *kvm)
2082 {
2083 	if (kvm->arch.threads_indep)
2084 		return 1;
2085 	return threads_per_subcore;
2086 }
2087 
2088 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2089 {
2090 	struct kvmppc_vcore *vcore;
2091 
2092 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2093 
2094 	if (vcore == NULL)
2095 		return NULL;
2096 
2097 	spin_lock_init(&vcore->lock);
2098 	spin_lock_init(&vcore->stoltb_lock);
2099 	init_swait_queue_head(&vcore->wq);
2100 	vcore->preempt_tb = TB_NIL;
2101 	vcore->lpcr = kvm->arch.lpcr;
2102 	vcore->first_vcpuid = id;
2103 	vcore->kvm = kvm;
2104 	INIT_LIST_HEAD(&vcore->preempt_list);
2105 
2106 	return vcore;
2107 }
2108 
2109 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2110 static struct debugfs_timings_element {
2111 	const char *name;
2112 	size_t offset;
2113 } timings[] = {
2114 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2115 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2116 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2117 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2118 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2119 };
2120 
2121 #define N_TIMINGS	(ARRAY_SIZE(timings))
2122 
2123 struct debugfs_timings_state {
2124 	struct kvm_vcpu	*vcpu;
2125 	unsigned int	buflen;
2126 	char		buf[N_TIMINGS * 100];
2127 };
2128 
2129 static int debugfs_timings_open(struct inode *inode, struct file *file)
2130 {
2131 	struct kvm_vcpu *vcpu = inode->i_private;
2132 	struct debugfs_timings_state *p;
2133 
2134 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2135 	if (!p)
2136 		return -ENOMEM;
2137 
2138 	kvm_get_kvm(vcpu->kvm);
2139 	p->vcpu = vcpu;
2140 	file->private_data = p;
2141 
2142 	return nonseekable_open(inode, file);
2143 }
2144 
2145 static int debugfs_timings_release(struct inode *inode, struct file *file)
2146 {
2147 	struct debugfs_timings_state *p = file->private_data;
2148 
2149 	kvm_put_kvm(p->vcpu->kvm);
2150 	kfree(p);
2151 	return 0;
2152 }
2153 
2154 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2155 				    size_t len, loff_t *ppos)
2156 {
2157 	struct debugfs_timings_state *p = file->private_data;
2158 	struct kvm_vcpu *vcpu = p->vcpu;
2159 	char *s, *buf_end;
2160 	struct kvmhv_tb_accumulator tb;
2161 	u64 count;
2162 	loff_t pos;
2163 	ssize_t n;
2164 	int i, loops;
2165 	bool ok;
2166 
2167 	if (!p->buflen) {
2168 		s = p->buf;
2169 		buf_end = s + sizeof(p->buf);
2170 		for (i = 0; i < N_TIMINGS; ++i) {
2171 			struct kvmhv_tb_accumulator *acc;
2172 
2173 			acc = (struct kvmhv_tb_accumulator *)
2174 				((unsigned long)vcpu + timings[i].offset);
2175 			ok = false;
2176 			for (loops = 0; loops < 1000; ++loops) {
2177 				count = acc->seqcount;
2178 				if (!(count & 1)) {
2179 					smp_rmb();
2180 					tb = *acc;
2181 					smp_rmb();
2182 					if (count == acc->seqcount) {
2183 						ok = true;
2184 						break;
2185 					}
2186 				}
2187 				udelay(1);
2188 			}
2189 			if (!ok)
2190 				snprintf(s, buf_end - s, "%s: stuck\n",
2191 					timings[i].name);
2192 			else
2193 				snprintf(s, buf_end - s,
2194 					"%s: %llu %llu %llu %llu\n",
2195 					timings[i].name, count / 2,
2196 					tb_to_ns(tb.tb_total),
2197 					tb_to_ns(tb.tb_min),
2198 					tb_to_ns(tb.tb_max));
2199 			s += strlen(s);
2200 		}
2201 		p->buflen = s - p->buf;
2202 	}
2203 
2204 	pos = *ppos;
2205 	if (pos >= p->buflen)
2206 		return 0;
2207 	if (len > p->buflen - pos)
2208 		len = p->buflen - pos;
2209 	n = copy_to_user(buf, p->buf + pos, len);
2210 	if (n) {
2211 		if (n == len)
2212 			return -EFAULT;
2213 		len -= n;
2214 	}
2215 	*ppos = pos + len;
2216 	return len;
2217 }
2218 
2219 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2220 				     size_t len, loff_t *ppos)
2221 {
2222 	return -EACCES;
2223 }
2224 
2225 static const struct file_operations debugfs_timings_ops = {
2226 	.owner	 = THIS_MODULE,
2227 	.open	 = debugfs_timings_open,
2228 	.release = debugfs_timings_release,
2229 	.read	 = debugfs_timings_read,
2230 	.write	 = debugfs_timings_write,
2231 	.llseek	 = generic_file_llseek,
2232 };
2233 
2234 /* Create a debugfs directory for the vcpu */
2235 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2236 {
2237 	char buf[16];
2238 	struct kvm *kvm = vcpu->kvm;
2239 
2240 	snprintf(buf, sizeof(buf), "vcpu%u", id);
2241 	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
2242 		return;
2243 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2244 	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
2245 		return;
2246 	vcpu->arch.debugfs_timings =
2247 		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
2248 				    vcpu, &debugfs_timings_ops);
2249 }
2250 
2251 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2252 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2253 {
2254 }
2255 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2256 
2257 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
2258 						   unsigned int id)
2259 {
2260 	struct kvm_vcpu *vcpu;
2261 	int err;
2262 	int core;
2263 	struct kvmppc_vcore *vcore;
2264 
2265 	err = -ENOMEM;
2266 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2267 	if (!vcpu)
2268 		goto out;
2269 
2270 	err = kvm_vcpu_init(vcpu, kvm, id);
2271 	if (err)
2272 		goto free_vcpu;
2273 
2274 	vcpu->arch.shared = &vcpu->arch.shregs;
2275 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2276 	/*
2277 	 * The shared struct is never shared on HV,
2278 	 * so we can always use host endianness
2279 	 */
2280 #ifdef __BIG_ENDIAN__
2281 	vcpu->arch.shared_big_endian = true;
2282 #else
2283 	vcpu->arch.shared_big_endian = false;
2284 #endif
2285 #endif
2286 	vcpu->arch.mmcr[0] = MMCR0_FC;
2287 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2288 	/* default to host PVR, since we can't spoof it */
2289 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2290 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2291 	spin_lock_init(&vcpu->arch.tbacct_lock);
2292 	vcpu->arch.busy_preempt = TB_NIL;
2293 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2294 
2295 	/*
2296 	 * Set the default HFSCR for the guest from the host value.
2297 	 * This value is only used on POWER9.
2298 	 * On POWER9, we want to virtualize the doorbell facility, so we
2299 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2300 	 * to trap and then we emulate them.
2301 	 */
2302 	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2303 		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2304 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2305 		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2306 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2307 			vcpu->arch.hfscr |= HFSCR_TM;
2308 	}
2309 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2310 		vcpu->arch.hfscr |= HFSCR_TM;
2311 
2312 	kvmppc_mmu_book3s_hv_init(vcpu);
2313 
2314 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2315 
2316 	init_waitqueue_head(&vcpu->arch.cpu_run);
2317 
2318 	mutex_lock(&kvm->lock);
2319 	vcore = NULL;
2320 	err = -EINVAL;
2321 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2322 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2323 			pr_devel("KVM: VCPU ID too high\n");
2324 			core = KVM_MAX_VCORES;
2325 		} else {
2326 			BUG_ON(kvm->arch.smt_mode != 1);
2327 			core = kvmppc_pack_vcpu_id(kvm, id);
2328 		}
2329 	} else {
2330 		core = id / kvm->arch.smt_mode;
2331 	}
2332 	if (core < KVM_MAX_VCORES) {
2333 		vcore = kvm->arch.vcores[core];
2334 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2335 			pr_devel("KVM: collision on id %u", id);
2336 			vcore = NULL;
2337 		} else if (!vcore) {
2338 			/*
2339 			 * Take mmu_setup_lock for mutual exclusion
2340 			 * with kvmppc_update_lpcr().
2341 			 */
2342 			err = -ENOMEM;
2343 			vcore = kvmppc_vcore_create(kvm,
2344 					id & ~(kvm->arch.smt_mode - 1));
2345 			mutex_lock(&kvm->arch.mmu_setup_lock);
2346 			kvm->arch.vcores[core] = vcore;
2347 			kvm->arch.online_vcores++;
2348 			mutex_unlock(&kvm->arch.mmu_setup_lock);
2349 		}
2350 	}
2351 	mutex_unlock(&kvm->lock);
2352 
2353 	if (!vcore)
2354 		goto free_vcpu;
2355 
2356 	spin_lock(&vcore->lock);
2357 	++vcore->num_threads;
2358 	spin_unlock(&vcore->lock);
2359 	vcpu->arch.vcore = vcore;
2360 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2361 	vcpu->arch.thread_cpu = -1;
2362 	vcpu->arch.prev_cpu = -1;
2363 
2364 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2365 	kvmppc_sanity_check(vcpu);
2366 
2367 	debugfs_vcpu_init(vcpu, id);
2368 
2369 	return vcpu;
2370 
2371 free_vcpu:
2372 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2373 out:
2374 	return ERR_PTR(err);
2375 }
2376 
2377 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2378 			      unsigned long flags)
2379 {
2380 	int err;
2381 	int esmt = 0;
2382 
2383 	if (flags)
2384 		return -EINVAL;
2385 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2386 		return -EINVAL;
2387 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2388 		/*
2389 		 * On POWER8 (or POWER7), the threading mode is "strict",
2390 		 * so we pack smt_mode vcpus per vcore.
2391 		 */
2392 		if (smt_mode > threads_per_subcore)
2393 			return -EINVAL;
2394 	} else {
2395 		/*
2396 		 * On POWER9, the threading mode is "loose",
2397 		 * so each vcpu gets its own vcore.
2398 		 */
2399 		esmt = smt_mode;
2400 		smt_mode = 1;
2401 	}
2402 	mutex_lock(&kvm->lock);
2403 	err = -EBUSY;
2404 	if (!kvm->arch.online_vcores) {
2405 		kvm->arch.smt_mode = smt_mode;
2406 		kvm->arch.emul_smt_mode = esmt;
2407 		err = 0;
2408 	}
2409 	mutex_unlock(&kvm->lock);
2410 
2411 	return err;
2412 }
2413 
2414 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2415 {
2416 	if (vpa->pinned_addr)
2417 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2418 					vpa->dirty);
2419 }
2420 
2421 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2422 {
2423 	spin_lock(&vcpu->arch.vpa_update_lock);
2424 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2425 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2426 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2427 	spin_unlock(&vcpu->arch.vpa_update_lock);
2428 	kvm_vcpu_uninit(vcpu);
2429 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2430 }
2431 
2432 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2433 {
2434 	/* Indicate we want to get back into the guest */
2435 	return 1;
2436 }
2437 
2438 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2439 {
2440 	unsigned long dec_nsec, now;
2441 
2442 	now = get_tb();
2443 	if (now > vcpu->arch.dec_expires) {
2444 		/* decrementer has already gone negative */
2445 		kvmppc_core_queue_dec(vcpu);
2446 		kvmppc_core_prepare_to_enter(vcpu);
2447 		return;
2448 	}
2449 	dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2450 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2451 	vcpu->arch.timer_running = 1;
2452 }
2453 
2454 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2455 {
2456 	vcpu->arch.ceded = 0;
2457 	if (vcpu->arch.timer_running) {
2458 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2459 		vcpu->arch.timer_running = 0;
2460 	}
2461 }
2462 
2463 extern int __kvmppc_vcore_entry(void);
2464 
2465 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2466 				   struct kvm_vcpu *vcpu)
2467 {
2468 	u64 now;
2469 
2470 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2471 		return;
2472 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2473 	now = mftb();
2474 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2475 		vcpu->arch.stolen_logged;
2476 	vcpu->arch.busy_preempt = now;
2477 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2478 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2479 	--vc->n_runnable;
2480 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2481 }
2482 
2483 static int kvmppc_grab_hwthread(int cpu)
2484 {
2485 	struct paca_struct *tpaca;
2486 	long timeout = 10000;
2487 
2488 	tpaca = paca_ptrs[cpu];
2489 
2490 	/* Ensure the thread won't go into the kernel if it wakes */
2491 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2492 	tpaca->kvm_hstate.kvm_vcore = NULL;
2493 	tpaca->kvm_hstate.napping = 0;
2494 	smp_wmb();
2495 	tpaca->kvm_hstate.hwthread_req = 1;
2496 
2497 	/*
2498 	 * If the thread is already executing in the kernel (e.g. handling
2499 	 * a stray interrupt), wait for it to get back to nap mode.
2500 	 * The smp_mb() is to ensure that our setting of hwthread_req
2501 	 * is visible before we look at hwthread_state, so if this
2502 	 * races with the code at system_reset_pSeries and the thread
2503 	 * misses our setting of hwthread_req, we are sure to see its
2504 	 * setting of hwthread_state, and vice versa.
2505 	 */
2506 	smp_mb();
2507 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2508 		if (--timeout <= 0) {
2509 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
2510 			return -EBUSY;
2511 		}
2512 		udelay(1);
2513 	}
2514 	return 0;
2515 }
2516 
2517 static void kvmppc_release_hwthread(int cpu)
2518 {
2519 	struct paca_struct *tpaca;
2520 
2521 	tpaca = paca_ptrs[cpu];
2522 	tpaca->kvm_hstate.hwthread_req = 0;
2523 	tpaca->kvm_hstate.kvm_vcpu = NULL;
2524 	tpaca->kvm_hstate.kvm_vcore = NULL;
2525 	tpaca->kvm_hstate.kvm_split_mode = NULL;
2526 }
2527 
2528 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2529 {
2530 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2531 	cpumask_t *cpu_in_guest;
2532 	int i;
2533 
2534 	cpu = cpu_first_thread_sibling(cpu);
2535 	if (nested) {
2536 		cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2537 		cpu_in_guest = &nested->cpu_in_guest;
2538 	} else {
2539 		cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2540 		cpu_in_guest = &kvm->arch.cpu_in_guest;
2541 	}
2542 	/*
2543 	 * Make sure setting of bit in need_tlb_flush precedes
2544 	 * testing of cpu_in_guest bits.  The matching barrier on
2545 	 * the other side is the first smp_mb() in kvmppc_run_core().
2546 	 */
2547 	smp_mb();
2548 	for (i = 0; i < threads_per_core; ++i)
2549 		if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2550 			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2551 }
2552 
2553 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2554 {
2555 	struct kvm_nested_guest *nested = vcpu->arch.nested;
2556 	struct kvm *kvm = vcpu->kvm;
2557 	int prev_cpu;
2558 
2559 	if (!cpu_has_feature(CPU_FTR_HVMODE))
2560 		return;
2561 
2562 	if (nested)
2563 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2564 	else
2565 		prev_cpu = vcpu->arch.prev_cpu;
2566 
2567 	/*
2568 	 * With radix, the guest can do TLB invalidations itself,
2569 	 * and it could choose to use the local form (tlbiel) if
2570 	 * it is invalidating a translation that has only ever been
2571 	 * used on one vcpu.  However, that doesn't mean it has
2572 	 * only ever been used on one physical cpu, since vcpus
2573 	 * can move around between pcpus.  To cope with this, when
2574 	 * a vcpu moves from one pcpu to another, we need to tell
2575 	 * any vcpus running on the same core as this vcpu previously
2576 	 * ran to flush the TLB.  The TLB is shared between threads,
2577 	 * so we use a single bit in .need_tlb_flush for all 4 threads.
2578 	 */
2579 	if (prev_cpu != pcpu) {
2580 		if (prev_cpu >= 0 &&
2581 		    cpu_first_thread_sibling(prev_cpu) !=
2582 		    cpu_first_thread_sibling(pcpu))
2583 			radix_flush_cpu(kvm, prev_cpu, vcpu);
2584 		if (nested)
2585 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2586 		else
2587 			vcpu->arch.prev_cpu = pcpu;
2588 	}
2589 }
2590 
2591 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2592 {
2593 	int cpu;
2594 	struct paca_struct *tpaca;
2595 	struct kvm *kvm = vc->kvm;
2596 
2597 	cpu = vc->pcpu;
2598 	if (vcpu) {
2599 		if (vcpu->arch.timer_running) {
2600 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2601 			vcpu->arch.timer_running = 0;
2602 		}
2603 		cpu += vcpu->arch.ptid;
2604 		vcpu->cpu = vc->pcpu;
2605 		vcpu->arch.thread_cpu = cpu;
2606 		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2607 	}
2608 	tpaca = paca_ptrs[cpu];
2609 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2610 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2611 	tpaca->kvm_hstate.fake_suspend = 0;
2612 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2613 	smp_wmb();
2614 	tpaca->kvm_hstate.kvm_vcore = vc;
2615 	if (cpu != smp_processor_id())
2616 		kvmppc_ipi_thread(cpu);
2617 }
2618 
2619 static void kvmppc_wait_for_nap(int n_threads)
2620 {
2621 	int cpu = smp_processor_id();
2622 	int i, loops;
2623 
2624 	if (n_threads <= 1)
2625 		return;
2626 	for (loops = 0; loops < 1000000; ++loops) {
2627 		/*
2628 		 * Check if all threads are finished.
2629 		 * We set the vcore pointer when starting a thread
2630 		 * and the thread clears it when finished, so we look
2631 		 * for any threads that still have a non-NULL vcore ptr.
2632 		 */
2633 		for (i = 1; i < n_threads; ++i)
2634 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2635 				break;
2636 		if (i == n_threads) {
2637 			HMT_medium();
2638 			return;
2639 		}
2640 		HMT_low();
2641 	}
2642 	HMT_medium();
2643 	for (i = 1; i < n_threads; ++i)
2644 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2645 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2646 }
2647 
2648 /*
2649  * Check that we are on thread 0 and that any other threads in
2650  * this core are off-line.  Then grab the threads so they can't
2651  * enter the kernel.
2652  */
2653 static int on_primary_thread(void)
2654 {
2655 	int cpu = smp_processor_id();
2656 	int thr;
2657 
2658 	/* Are we on a primary subcore? */
2659 	if (cpu_thread_in_subcore(cpu))
2660 		return 0;
2661 
2662 	thr = 0;
2663 	while (++thr < threads_per_subcore)
2664 		if (cpu_online(cpu + thr))
2665 			return 0;
2666 
2667 	/* Grab all hw threads so they can't go into the kernel */
2668 	for (thr = 1; thr < threads_per_subcore; ++thr) {
2669 		if (kvmppc_grab_hwthread(cpu + thr)) {
2670 			/* Couldn't grab one; let the others go */
2671 			do {
2672 				kvmppc_release_hwthread(cpu + thr);
2673 			} while (--thr > 0);
2674 			return 0;
2675 		}
2676 	}
2677 	return 1;
2678 }
2679 
2680 /*
2681  * A list of virtual cores for each physical CPU.
2682  * These are vcores that could run but their runner VCPU tasks are
2683  * (or may be) preempted.
2684  */
2685 struct preempted_vcore_list {
2686 	struct list_head	list;
2687 	spinlock_t		lock;
2688 };
2689 
2690 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2691 
2692 static void init_vcore_lists(void)
2693 {
2694 	int cpu;
2695 
2696 	for_each_possible_cpu(cpu) {
2697 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2698 		spin_lock_init(&lp->lock);
2699 		INIT_LIST_HEAD(&lp->list);
2700 	}
2701 }
2702 
2703 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2704 {
2705 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2706 
2707 	vc->vcore_state = VCORE_PREEMPT;
2708 	vc->pcpu = smp_processor_id();
2709 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2710 		spin_lock(&lp->lock);
2711 		list_add_tail(&vc->preempt_list, &lp->list);
2712 		spin_unlock(&lp->lock);
2713 	}
2714 
2715 	/* Start accumulating stolen time */
2716 	kvmppc_core_start_stolen(vc);
2717 }
2718 
2719 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2720 {
2721 	struct preempted_vcore_list *lp;
2722 
2723 	kvmppc_core_end_stolen(vc);
2724 	if (!list_empty(&vc->preempt_list)) {
2725 		lp = &per_cpu(preempted_vcores, vc->pcpu);
2726 		spin_lock(&lp->lock);
2727 		list_del_init(&vc->preempt_list);
2728 		spin_unlock(&lp->lock);
2729 	}
2730 	vc->vcore_state = VCORE_INACTIVE;
2731 }
2732 
2733 /*
2734  * This stores information about the virtual cores currently
2735  * assigned to a physical core.
2736  */
2737 struct core_info {
2738 	int		n_subcores;
2739 	int		max_subcore_threads;
2740 	int		total_threads;
2741 	int		subcore_threads[MAX_SUBCORES];
2742 	struct kvmppc_vcore *vc[MAX_SUBCORES];
2743 };
2744 
2745 /*
2746  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2747  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2748  */
2749 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2750 
2751 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2752 {
2753 	memset(cip, 0, sizeof(*cip));
2754 	cip->n_subcores = 1;
2755 	cip->max_subcore_threads = vc->num_threads;
2756 	cip->total_threads = vc->num_threads;
2757 	cip->subcore_threads[0] = vc->num_threads;
2758 	cip->vc[0] = vc;
2759 }
2760 
2761 static bool subcore_config_ok(int n_subcores, int n_threads)
2762 {
2763 	/*
2764 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2765 	 * split-core mode, with one thread per subcore.
2766 	 */
2767 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2768 		return n_subcores <= 4 && n_threads == 1;
2769 
2770 	/* On POWER8, can only dynamically split if unsplit to begin with */
2771 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2772 		return false;
2773 	if (n_subcores > MAX_SUBCORES)
2774 		return false;
2775 	if (n_subcores > 1) {
2776 		if (!(dynamic_mt_modes & 2))
2777 			n_subcores = 4;
2778 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2779 			return false;
2780 	}
2781 
2782 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2783 }
2784 
2785 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2786 {
2787 	vc->entry_exit_map = 0;
2788 	vc->in_guest = 0;
2789 	vc->napping_threads = 0;
2790 	vc->conferring_threads = 0;
2791 	vc->tb_offset_applied = 0;
2792 }
2793 
2794 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2795 {
2796 	int n_threads = vc->num_threads;
2797 	int sub;
2798 
2799 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2800 		return false;
2801 
2802 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
2803 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2804 		return false;
2805 
2806 	/* Some POWER9 chips require all threads to be in the same MMU mode */
2807 	if (no_mixing_hpt_and_radix &&
2808 	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2809 		return false;
2810 
2811 	if (n_threads < cip->max_subcore_threads)
2812 		n_threads = cip->max_subcore_threads;
2813 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2814 		return false;
2815 	cip->max_subcore_threads = n_threads;
2816 
2817 	sub = cip->n_subcores;
2818 	++cip->n_subcores;
2819 	cip->total_threads += vc->num_threads;
2820 	cip->subcore_threads[sub] = vc->num_threads;
2821 	cip->vc[sub] = vc;
2822 	init_vcore_to_run(vc);
2823 	list_del_init(&vc->preempt_list);
2824 
2825 	return true;
2826 }
2827 
2828 /*
2829  * Work out whether it is possible to piggyback the execution of
2830  * vcore *pvc onto the execution of the other vcores described in *cip.
2831  */
2832 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2833 			  int target_threads)
2834 {
2835 	if (cip->total_threads + pvc->num_threads > target_threads)
2836 		return false;
2837 
2838 	return can_dynamic_split(pvc, cip);
2839 }
2840 
2841 static void prepare_threads(struct kvmppc_vcore *vc)
2842 {
2843 	int i;
2844 	struct kvm_vcpu *vcpu;
2845 
2846 	for_each_runnable_thread(i, vcpu, vc) {
2847 		if (signal_pending(vcpu->arch.run_task))
2848 			vcpu->arch.ret = -EINTR;
2849 		else if (vcpu->arch.vpa.update_pending ||
2850 			 vcpu->arch.slb_shadow.update_pending ||
2851 			 vcpu->arch.dtl.update_pending)
2852 			vcpu->arch.ret = RESUME_GUEST;
2853 		else
2854 			continue;
2855 		kvmppc_remove_runnable(vc, vcpu);
2856 		wake_up(&vcpu->arch.cpu_run);
2857 	}
2858 }
2859 
2860 static void collect_piggybacks(struct core_info *cip, int target_threads)
2861 {
2862 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2863 	struct kvmppc_vcore *pvc, *vcnext;
2864 
2865 	spin_lock(&lp->lock);
2866 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2867 		if (!spin_trylock(&pvc->lock))
2868 			continue;
2869 		prepare_threads(pvc);
2870 		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2871 			list_del_init(&pvc->preempt_list);
2872 			if (pvc->runner == NULL) {
2873 				pvc->vcore_state = VCORE_INACTIVE;
2874 				kvmppc_core_end_stolen(pvc);
2875 			}
2876 			spin_unlock(&pvc->lock);
2877 			continue;
2878 		}
2879 		if (!can_piggyback(pvc, cip, target_threads)) {
2880 			spin_unlock(&pvc->lock);
2881 			continue;
2882 		}
2883 		kvmppc_core_end_stolen(pvc);
2884 		pvc->vcore_state = VCORE_PIGGYBACK;
2885 		if (cip->total_threads >= target_threads)
2886 			break;
2887 	}
2888 	spin_unlock(&lp->lock);
2889 }
2890 
2891 static bool recheck_signals_and_mmu(struct core_info *cip)
2892 {
2893 	int sub, i;
2894 	struct kvm_vcpu *vcpu;
2895 	struct kvmppc_vcore *vc;
2896 
2897 	for (sub = 0; sub < cip->n_subcores; ++sub) {
2898 		vc = cip->vc[sub];
2899 		if (!vc->kvm->arch.mmu_ready)
2900 			return true;
2901 		for_each_runnable_thread(i, vcpu, vc)
2902 			if (signal_pending(vcpu->arch.run_task))
2903 				return true;
2904 	}
2905 	return false;
2906 }
2907 
2908 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2909 {
2910 	int still_running = 0, i;
2911 	u64 now;
2912 	long ret;
2913 	struct kvm_vcpu *vcpu;
2914 
2915 	spin_lock(&vc->lock);
2916 	now = get_tb();
2917 	for_each_runnable_thread(i, vcpu, vc) {
2918 		/*
2919 		 * It's safe to unlock the vcore in the loop here, because
2920 		 * for_each_runnable_thread() is safe against removal of
2921 		 * the vcpu, and the vcore state is VCORE_EXITING here,
2922 		 * so any vcpus becoming runnable will have their arch.trap
2923 		 * set to zero and can't actually run in the guest.
2924 		 */
2925 		spin_unlock(&vc->lock);
2926 		/* cancel pending dec exception if dec is positive */
2927 		if (now < vcpu->arch.dec_expires &&
2928 		    kvmppc_core_pending_dec(vcpu))
2929 			kvmppc_core_dequeue_dec(vcpu);
2930 
2931 		trace_kvm_guest_exit(vcpu);
2932 
2933 		ret = RESUME_GUEST;
2934 		if (vcpu->arch.trap)
2935 			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2936 						    vcpu->arch.run_task);
2937 
2938 		vcpu->arch.ret = ret;
2939 		vcpu->arch.trap = 0;
2940 
2941 		spin_lock(&vc->lock);
2942 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2943 			if (vcpu->arch.pending_exceptions)
2944 				kvmppc_core_prepare_to_enter(vcpu);
2945 			if (vcpu->arch.ceded)
2946 				kvmppc_set_timer(vcpu);
2947 			else
2948 				++still_running;
2949 		} else {
2950 			kvmppc_remove_runnable(vc, vcpu);
2951 			wake_up(&vcpu->arch.cpu_run);
2952 		}
2953 	}
2954 	if (!is_master) {
2955 		if (still_running > 0) {
2956 			kvmppc_vcore_preempt(vc);
2957 		} else if (vc->runner) {
2958 			vc->vcore_state = VCORE_PREEMPT;
2959 			kvmppc_core_start_stolen(vc);
2960 		} else {
2961 			vc->vcore_state = VCORE_INACTIVE;
2962 		}
2963 		if (vc->n_runnable > 0 && vc->runner == NULL) {
2964 			/* make sure there's a candidate runner awake */
2965 			i = -1;
2966 			vcpu = next_runnable_thread(vc, &i);
2967 			wake_up(&vcpu->arch.cpu_run);
2968 		}
2969 	}
2970 	spin_unlock(&vc->lock);
2971 }
2972 
2973 /*
2974  * Clear core from the list of active host cores as we are about to
2975  * enter the guest. Only do this if it is the primary thread of the
2976  * core (not if a subcore) that is entering the guest.
2977  */
2978 static inline int kvmppc_clear_host_core(unsigned int cpu)
2979 {
2980 	int core;
2981 
2982 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2983 		return 0;
2984 	/*
2985 	 * Memory barrier can be omitted here as we will do a smp_wmb()
2986 	 * later in kvmppc_start_thread and we need ensure that state is
2987 	 * visible to other CPUs only after we enter guest.
2988 	 */
2989 	core = cpu >> threads_shift;
2990 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2991 	return 0;
2992 }
2993 
2994 /*
2995  * Advertise this core as an active host core since we exited the guest
2996  * Only need to do this if it is the primary thread of the core that is
2997  * exiting.
2998  */
2999 static inline int kvmppc_set_host_core(unsigned int cpu)
3000 {
3001 	int core;
3002 
3003 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3004 		return 0;
3005 
3006 	/*
3007 	 * Memory barrier can be omitted here because we do a spin_unlock
3008 	 * immediately after this which provides the memory barrier.
3009 	 */
3010 	core = cpu >> threads_shift;
3011 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3012 	return 0;
3013 }
3014 
3015 static void set_irq_happened(int trap)
3016 {
3017 	switch (trap) {
3018 	case BOOK3S_INTERRUPT_EXTERNAL:
3019 		local_paca->irq_happened |= PACA_IRQ_EE;
3020 		break;
3021 	case BOOK3S_INTERRUPT_H_DOORBELL:
3022 		local_paca->irq_happened |= PACA_IRQ_DBELL;
3023 		break;
3024 	case BOOK3S_INTERRUPT_HMI:
3025 		local_paca->irq_happened |= PACA_IRQ_HMI;
3026 		break;
3027 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3028 		replay_system_reset();
3029 		break;
3030 	}
3031 }
3032 
3033 /*
3034  * Run a set of guest threads on a physical core.
3035  * Called with vc->lock held.
3036  */
3037 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3038 {
3039 	struct kvm_vcpu *vcpu;
3040 	int i;
3041 	int srcu_idx;
3042 	struct core_info core_info;
3043 	struct kvmppc_vcore *pvc;
3044 	struct kvm_split_mode split_info, *sip;
3045 	int split, subcore_size, active;
3046 	int sub;
3047 	bool thr0_done;
3048 	unsigned long cmd_bit, stat_bit;
3049 	int pcpu, thr;
3050 	int target_threads;
3051 	int controlled_threads;
3052 	int trap;
3053 	bool is_power8;
3054 	bool hpt_on_radix;
3055 
3056 	/*
3057 	 * Remove from the list any threads that have a signal pending
3058 	 * or need a VPA update done
3059 	 */
3060 	prepare_threads(vc);
3061 
3062 	/* if the runner is no longer runnable, let the caller pick a new one */
3063 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3064 		return;
3065 
3066 	/*
3067 	 * Initialize *vc.
3068 	 */
3069 	init_vcore_to_run(vc);
3070 	vc->preempt_tb = TB_NIL;
3071 
3072 	/*
3073 	 * Number of threads that we will be controlling: the same as
3074 	 * the number of threads per subcore, except on POWER9,
3075 	 * where it's 1 because the threads are (mostly) independent.
3076 	 */
3077 	controlled_threads = threads_per_vcore(vc->kvm);
3078 
3079 	/*
3080 	 * Make sure we are running on primary threads, and that secondary
3081 	 * threads are offline.  Also check if the number of threads in this
3082 	 * guest are greater than the current system threads per guest.
3083 	 * On POWER9, we need to be not in independent-threads mode if
3084 	 * this is a HPT guest on a radix host machine where the
3085 	 * CPU threads may not be in different MMU modes.
3086 	 */
3087 	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3088 		!kvm_is_radix(vc->kvm);
3089 	if (((controlled_threads > 1) &&
3090 	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3091 	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3092 		for_each_runnable_thread(i, vcpu, vc) {
3093 			vcpu->arch.ret = -EBUSY;
3094 			kvmppc_remove_runnable(vc, vcpu);
3095 			wake_up(&vcpu->arch.cpu_run);
3096 		}
3097 		goto out;
3098 	}
3099 
3100 	/*
3101 	 * See if we could run any other vcores on the physical core
3102 	 * along with this one.
3103 	 */
3104 	init_core_info(&core_info, vc);
3105 	pcpu = smp_processor_id();
3106 	target_threads = controlled_threads;
3107 	if (target_smt_mode && target_smt_mode < target_threads)
3108 		target_threads = target_smt_mode;
3109 	if (vc->num_threads < target_threads)
3110 		collect_piggybacks(&core_info, target_threads);
3111 
3112 	/*
3113 	 * On radix, arrange for TLB flushing if necessary.
3114 	 * This has to be done before disabling interrupts since
3115 	 * it uses smp_call_function().
3116 	 */
3117 	pcpu = smp_processor_id();
3118 	if (kvm_is_radix(vc->kvm)) {
3119 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3120 			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3121 				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3122 	}
3123 
3124 	/*
3125 	 * Hard-disable interrupts, and check resched flag and signals.
3126 	 * If we need to reschedule or deliver a signal, clean up
3127 	 * and return without going into the guest(s).
3128 	 * If the mmu_ready flag has been cleared, don't go into the
3129 	 * guest because that means a HPT resize operation is in progress.
3130 	 */
3131 	local_irq_disable();
3132 	hard_irq_disable();
3133 	if (lazy_irq_pending() || need_resched() ||
3134 	    recheck_signals_and_mmu(&core_info)) {
3135 		local_irq_enable();
3136 		vc->vcore_state = VCORE_INACTIVE;
3137 		/* Unlock all except the primary vcore */
3138 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3139 			pvc = core_info.vc[sub];
3140 			/* Put back on to the preempted vcores list */
3141 			kvmppc_vcore_preempt(pvc);
3142 			spin_unlock(&pvc->lock);
3143 		}
3144 		for (i = 0; i < controlled_threads; ++i)
3145 			kvmppc_release_hwthread(pcpu + i);
3146 		return;
3147 	}
3148 
3149 	kvmppc_clear_host_core(pcpu);
3150 
3151 	/* Decide on micro-threading (split-core) mode */
3152 	subcore_size = threads_per_subcore;
3153 	cmd_bit = stat_bit = 0;
3154 	split = core_info.n_subcores;
3155 	sip = NULL;
3156 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3157 		&& !cpu_has_feature(CPU_FTR_ARCH_300);
3158 
3159 	if (split > 1 || hpt_on_radix) {
3160 		sip = &split_info;
3161 		memset(&split_info, 0, sizeof(split_info));
3162 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3163 			split_info.vc[sub] = core_info.vc[sub];
3164 
3165 		if (is_power8) {
3166 			if (split == 2 && (dynamic_mt_modes & 2)) {
3167 				cmd_bit = HID0_POWER8_1TO2LPAR;
3168 				stat_bit = HID0_POWER8_2LPARMODE;
3169 			} else {
3170 				split = 4;
3171 				cmd_bit = HID0_POWER8_1TO4LPAR;
3172 				stat_bit = HID0_POWER8_4LPARMODE;
3173 			}
3174 			subcore_size = MAX_SMT_THREADS / split;
3175 			split_info.rpr = mfspr(SPRN_RPR);
3176 			split_info.pmmar = mfspr(SPRN_PMMAR);
3177 			split_info.ldbar = mfspr(SPRN_LDBAR);
3178 			split_info.subcore_size = subcore_size;
3179 		} else {
3180 			split_info.subcore_size = 1;
3181 			if (hpt_on_radix) {
3182 				/* Use the split_info for LPCR/LPIDR changes */
3183 				split_info.lpcr_req = vc->lpcr;
3184 				split_info.lpidr_req = vc->kvm->arch.lpid;
3185 				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3186 				split_info.do_set = 1;
3187 			}
3188 		}
3189 
3190 		/* order writes to split_info before kvm_split_mode pointer */
3191 		smp_wmb();
3192 	}
3193 
3194 	for (thr = 0; thr < controlled_threads; ++thr) {
3195 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3196 
3197 		paca->kvm_hstate.tid = thr;
3198 		paca->kvm_hstate.napping = 0;
3199 		paca->kvm_hstate.kvm_split_mode = sip;
3200 	}
3201 
3202 	/* Initiate micro-threading (split-core) on POWER8 if required */
3203 	if (cmd_bit) {
3204 		unsigned long hid0 = mfspr(SPRN_HID0);
3205 
3206 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3207 		mb();
3208 		mtspr(SPRN_HID0, hid0);
3209 		isync();
3210 		for (;;) {
3211 			hid0 = mfspr(SPRN_HID0);
3212 			if (hid0 & stat_bit)
3213 				break;
3214 			cpu_relax();
3215 		}
3216 	}
3217 
3218 	/*
3219 	 * On POWER8, set RWMR register.
3220 	 * Since it only affects PURR and SPURR, it doesn't affect
3221 	 * the host, so we don't save/restore the host value.
3222 	 */
3223 	if (is_power8) {
3224 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3225 		int n_online = atomic_read(&vc->online_count);
3226 
3227 		/*
3228 		 * Use the 8-thread value if we're doing split-core
3229 		 * or if the vcore's online count looks bogus.
3230 		 */
3231 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3232 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3233 			rwmr_val = p8_rwmr_values[n_online];
3234 		mtspr(SPRN_RWMR, rwmr_val);
3235 	}
3236 
3237 	/* Start all the threads */
3238 	active = 0;
3239 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3240 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3241 		thr0_done = false;
3242 		active |= 1 << thr;
3243 		pvc = core_info.vc[sub];
3244 		pvc->pcpu = pcpu + thr;
3245 		for_each_runnable_thread(i, vcpu, pvc) {
3246 			kvmppc_start_thread(vcpu, pvc);
3247 			kvmppc_create_dtl_entry(vcpu, pvc);
3248 			trace_kvm_guest_enter(vcpu);
3249 			if (!vcpu->arch.ptid)
3250 				thr0_done = true;
3251 			active |= 1 << (thr + vcpu->arch.ptid);
3252 		}
3253 		/*
3254 		 * We need to start the first thread of each subcore
3255 		 * even if it doesn't have a vcpu.
3256 		 */
3257 		if (!thr0_done)
3258 			kvmppc_start_thread(NULL, pvc);
3259 	}
3260 
3261 	/*
3262 	 * Ensure that split_info.do_nap is set after setting
3263 	 * the vcore pointer in the PACA of the secondaries.
3264 	 */
3265 	smp_mb();
3266 
3267 	/*
3268 	 * When doing micro-threading, poke the inactive threads as well.
3269 	 * This gets them to the nap instruction after kvm_do_nap,
3270 	 * which reduces the time taken to unsplit later.
3271 	 * For POWER9 HPT guest on radix host, we need all the secondary
3272 	 * threads woken up so they can do the LPCR/LPIDR change.
3273 	 */
3274 	if (cmd_bit || hpt_on_radix) {
3275 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3276 		for (thr = 1; thr < threads_per_subcore; ++thr)
3277 			if (!(active & (1 << thr)))
3278 				kvmppc_ipi_thread(pcpu + thr);
3279 	}
3280 
3281 	vc->vcore_state = VCORE_RUNNING;
3282 	preempt_disable();
3283 
3284 	trace_kvmppc_run_core(vc, 0);
3285 
3286 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3287 		spin_unlock(&core_info.vc[sub]->lock);
3288 
3289 	guest_enter_irqoff();
3290 
3291 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3292 
3293 	this_cpu_disable_ftrace();
3294 
3295 	/*
3296 	 * Interrupts will be enabled once we get into the guest,
3297 	 * so tell lockdep that we're about to enable interrupts.
3298 	 */
3299 	trace_hardirqs_on();
3300 
3301 	trap = __kvmppc_vcore_entry();
3302 
3303 	trace_hardirqs_off();
3304 
3305 	this_cpu_enable_ftrace();
3306 
3307 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3308 
3309 	set_irq_happened(trap);
3310 
3311 	spin_lock(&vc->lock);
3312 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3313 	vc->vcore_state = VCORE_EXITING;
3314 
3315 	/* wait for secondary threads to finish writing their state to memory */
3316 	kvmppc_wait_for_nap(controlled_threads);
3317 
3318 	/* Return to whole-core mode if we split the core earlier */
3319 	if (cmd_bit) {
3320 		unsigned long hid0 = mfspr(SPRN_HID0);
3321 		unsigned long loops = 0;
3322 
3323 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3324 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3325 		mb();
3326 		mtspr(SPRN_HID0, hid0);
3327 		isync();
3328 		for (;;) {
3329 			hid0 = mfspr(SPRN_HID0);
3330 			if (!(hid0 & stat_bit))
3331 				break;
3332 			cpu_relax();
3333 			++loops;
3334 		}
3335 	} else if (hpt_on_radix) {
3336 		/* Wait for all threads to have seen final sync */
3337 		for (thr = 1; thr < controlled_threads; ++thr) {
3338 			struct paca_struct *paca = paca_ptrs[pcpu + thr];
3339 
3340 			while (paca->kvm_hstate.kvm_split_mode) {
3341 				HMT_low();
3342 				barrier();
3343 			}
3344 			HMT_medium();
3345 		}
3346 	}
3347 	split_info.do_nap = 0;
3348 
3349 	kvmppc_set_host_core(pcpu);
3350 
3351 	local_irq_enable();
3352 	guest_exit();
3353 
3354 	/* Let secondaries go back to the offline loop */
3355 	for (i = 0; i < controlled_threads; ++i) {
3356 		kvmppc_release_hwthread(pcpu + i);
3357 		if (sip && sip->napped[i])
3358 			kvmppc_ipi_thread(pcpu + i);
3359 		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3360 	}
3361 
3362 	spin_unlock(&vc->lock);
3363 
3364 	/* make sure updates to secondary vcpu structs are visible now */
3365 	smp_mb();
3366 
3367 	preempt_enable();
3368 
3369 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3370 		pvc = core_info.vc[sub];
3371 		post_guest_process(pvc, pvc == vc);
3372 	}
3373 
3374 	spin_lock(&vc->lock);
3375 
3376  out:
3377 	vc->vcore_state = VCORE_INACTIVE;
3378 	trace_kvmppc_run_core(vc, 1);
3379 }
3380 
3381 /*
3382  * Load up hypervisor-mode registers on P9.
3383  */
3384 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3385 				     unsigned long lpcr)
3386 {
3387 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3388 	s64 hdec;
3389 	u64 tb, purr, spurr;
3390 	int trap;
3391 	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3392 	unsigned long host_ciabr = mfspr(SPRN_CIABR);
3393 	unsigned long host_dawr = mfspr(SPRN_DAWR);
3394 	unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3395 	unsigned long host_psscr = mfspr(SPRN_PSSCR);
3396 	unsigned long host_pidr = mfspr(SPRN_PID);
3397 
3398 	hdec = time_limit - mftb();
3399 	if (hdec < 0)
3400 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3401 	mtspr(SPRN_HDEC, hdec);
3402 
3403 	if (vc->tb_offset) {
3404 		u64 new_tb = mftb() + vc->tb_offset;
3405 		mtspr(SPRN_TBU40, new_tb);
3406 		tb = mftb();
3407 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3408 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3409 		vc->tb_offset_applied = vc->tb_offset;
3410 	}
3411 
3412 	if (vc->pcr)
3413 		mtspr(SPRN_PCR, vc->pcr);
3414 	mtspr(SPRN_DPDES, vc->dpdes);
3415 	mtspr(SPRN_VTB, vc->vtb);
3416 
3417 	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3418 	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3419 	mtspr(SPRN_PURR, vcpu->arch.purr);
3420 	mtspr(SPRN_SPURR, vcpu->arch.spurr);
3421 
3422 	if (dawr_enabled()) {
3423 		mtspr(SPRN_DAWR, vcpu->arch.dawr);
3424 		mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3425 	}
3426 	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3427 	mtspr(SPRN_IC, vcpu->arch.ic);
3428 	mtspr(SPRN_PID, vcpu->arch.pid);
3429 
3430 	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3431 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3432 
3433 	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3434 
3435 	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3436 	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3437 	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3438 	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3439 
3440 	mtspr(SPRN_AMOR, ~0UL);
3441 
3442 	mtspr(SPRN_LPCR, lpcr);
3443 	isync();
3444 
3445 	kvmppc_xive_push_vcpu(vcpu);
3446 
3447 	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3448 	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3449 
3450 	trap = __kvmhv_vcpu_entry_p9(vcpu);
3451 
3452 	/* Advance host PURR/SPURR by the amount used by guest */
3453 	purr = mfspr(SPRN_PURR);
3454 	spurr = mfspr(SPRN_SPURR);
3455 	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3456 	      purr - vcpu->arch.purr);
3457 	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3458 	      spurr - vcpu->arch.spurr);
3459 	vcpu->arch.purr = purr;
3460 	vcpu->arch.spurr = spurr;
3461 
3462 	vcpu->arch.ic = mfspr(SPRN_IC);
3463 	vcpu->arch.pid = mfspr(SPRN_PID);
3464 	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3465 
3466 	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3467 	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3468 	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3469 	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3470 
3471 	/* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3472 	mtspr(SPRN_PSSCR, host_psscr |
3473 	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3474 	mtspr(SPRN_HFSCR, host_hfscr);
3475 	mtspr(SPRN_CIABR, host_ciabr);
3476 	mtspr(SPRN_DAWR, host_dawr);
3477 	mtspr(SPRN_DAWRX, host_dawrx);
3478 	mtspr(SPRN_PID, host_pidr);
3479 
3480 	/*
3481 	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3482 	 * case we interrupted the guest between a tlbie and a ptesync.
3483 	 */
3484 	asm volatile("eieio; tlbsync; ptesync");
3485 
3486 	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
3487 	isync();
3488 
3489 	vc->dpdes = mfspr(SPRN_DPDES);
3490 	vc->vtb = mfspr(SPRN_VTB);
3491 	mtspr(SPRN_DPDES, 0);
3492 	if (vc->pcr)
3493 		mtspr(SPRN_PCR, 0);
3494 
3495 	if (vc->tb_offset_applied) {
3496 		u64 new_tb = mftb() - vc->tb_offset_applied;
3497 		mtspr(SPRN_TBU40, new_tb);
3498 		tb = mftb();
3499 		if ((tb & 0xffffff) < (new_tb & 0xffffff))
3500 			mtspr(SPRN_TBU40, new_tb + 0x1000000);
3501 		vc->tb_offset_applied = 0;
3502 	}
3503 
3504 	mtspr(SPRN_HDEC, 0x7fffffff);
3505 	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3506 
3507 	return trap;
3508 }
3509 
3510 /*
3511  * Virtual-mode guest entry for POWER9 and later when the host and
3512  * guest are both using the radix MMU.  The LPIDR has already been set.
3513  */
3514 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3515 			 unsigned long lpcr)
3516 {
3517 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3518 	unsigned long host_dscr = mfspr(SPRN_DSCR);
3519 	unsigned long host_tidr = mfspr(SPRN_TIDR);
3520 	unsigned long host_iamr = mfspr(SPRN_IAMR);
3521 	unsigned long host_amr = mfspr(SPRN_AMR);
3522 	s64 dec;
3523 	u64 tb;
3524 	int trap, save_pmu;
3525 
3526 	dec = mfspr(SPRN_DEC);
3527 	tb = mftb();
3528 	if (dec < 512)
3529 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
3530 	local_paca->kvm_hstate.dec_expires = dec + tb;
3531 	if (local_paca->kvm_hstate.dec_expires < time_limit)
3532 		time_limit = local_paca->kvm_hstate.dec_expires;
3533 
3534 	vcpu->arch.ceded = 0;
3535 
3536 	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */
3537 
3538 	kvmppc_subcore_enter_guest();
3539 
3540 	vc->entry_exit_map = 1;
3541 	vc->in_guest = 1;
3542 
3543 	if (vcpu->arch.vpa.pinned_addr) {
3544 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3545 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3546 		lp->yield_count = cpu_to_be32(yield_count);
3547 		vcpu->arch.vpa.dirty = 1;
3548 	}
3549 
3550 	if (cpu_has_feature(CPU_FTR_TM) ||
3551 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3552 		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3553 
3554 	kvmhv_load_guest_pmu(vcpu);
3555 
3556 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3557 	load_fp_state(&vcpu->arch.fp);
3558 #ifdef CONFIG_ALTIVEC
3559 	load_vr_state(&vcpu->arch.vr);
3560 #endif
3561 	mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3562 
3563 	mtspr(SPRN_DSCR, vcpu->arch.dscr);
3564 	mtspr(SPRN_IAMR, vcpu->arch.iamr);
3565 	mtspr(SPRN_PSPB, vcpu->arch.pspb);
3566 	mtspr(SPRN_FSCR, vcpu->arch.fscr);
3567 	mtspr(SPRN_TAR, vcpu->arch.tar);
3568 	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3569 	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3570 	mtspr(SPRN_BESCR, vcpu->arch.bescr);
3571 	mtspr(SPRN_WORT, vcpu->arch.wort);
3572 	mtspr(SPRN_TIDR, vcpu->arch.tid);
3573 	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3574 	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3575 	mtspr(SPRN_AMR, vcpu->arch.amr);
3576 	mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3577 
3578 	if (!(vcpu->arch.ctrl & 1))
3579 		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3580 
3581 	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3582 
3583 	if (kvmhv_on_pseries()) {
3584 		/*
3585 		 * We need to save and restore the guest visible part of the
3586 		 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3587 		 * doesn't do this for us. Note only required if pseries since
3588 		 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3589 		 */
3590 		unsigned long host_psscr;
3591 		/* call our hypervisor to load up HV regs and go */
3592 		struct hv_guest_state hvregs;
3593 
3594 		host_psscr = mfspr(SPRN_PSSCR_PR);
3595 		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3596 		kvmhv_save_hv_regs(vcpu, &hvregs);
3597 		hvregs.lpcr = lpcr;
3598 		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3599 		hvregs.version = HV_GUEST_STATE_VERSION;
3600 		if (vcpu->arch.nested) {
3601 			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3602 			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3603 		} else {
3604 			hvregs.lpid = vcpu->kvm->arch.lpid;
3605 			hvregs.vcpu_token = vcpu->vcpu_id;
3606 		}
3607 		hvregs.hdec_expiry = time_limit;
3608 		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3609 					  __pa(&vcpu->arch.regs));
3610 		kvmhv_restore_hv_return_state(vcpu, &hvregs);
3611 		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3612 		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3613 		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3614 		vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3615 		mtspr(SPRN_PSSCR_PR, host_psscr);
3616 
3617 		/* H_CEDE has to be handled now, not later */
3618 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3619 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3620 			kvmppc_nested_cede(vcpu);
3621 			trap = 0;
3622 		}
3623 	} else {
3624 		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3625 	}
3626 
3627 	vcpu->arch.slb_max = 0;
3628 	dec = mfspr(SPRN_DEC);
3629 	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3630 		dec = (s32) dec;
3631 	tb = mftb();
3632 	vcpu->arch.dec_expires = dec + tb;
3633 	vcpu->cpu = -1;
3634 	vcpu->arch.thread_cpu = -1;
3635 	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3636 
3637 	vcpu->arch.iamr = mfspr(SPRN_IAMR);
3638 	vcpu->arch.pspb = mfspr(SPRN_PSPB);
3639 	vcpu->arch.fscr = mfspr(SPRN_FSCR);
3640 	vcpu->arch.tar = mfspr(SPRN_TAR);
3641 	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3642 	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3643 	vcpu->arch.bescr = mfspr(SPRN_BESCR);
3644 	vcpu->arch.wort = mfspr(SPRN_WORT);
3645 	vcpu->arch.tid = mfspr(SPRN_TIDR);
3646 	vcpu->arch.amr = mfspr(SPRN_AMR);
3647 	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3648 	vcpu->arch.dscr = mfspr(SPRN_DSCR);
3649 
3650 	mtspr(SPRN_PSPB, 0);
3651 	mtspr(SPRN_WORT, 0);
3652 	mtspr(SPRN_UAMOR, 0);
3653 	mtspr(SPRN_DSCR, host_dscr);
3654 	mtspr(SPRN_TIDR, host_tidr);
3655 	mtspr(SPRN_IAMR, host_iamr);
3656 	mtspr(SPRN_PSPB, 0);
3657 
3658 	if (host_amr != vcpu->arch.amr)
3659 		mtspr(SPRN_AMR, host_amr);
3660 
3661 	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3662 	store_fp_state(&vcpu->arch.fp);
3663 #ifdef CONFIG_ALTIVEC
3664 	store_vr_state(&vcpu->arch.vr);
3665 #endif
3666 	vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3667 
3668 	if (cpu_has_feature(CPU_FTR_TM) ||
3669 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3670 		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3671 
3672 	save_pmu = 1;
3673 	if (vcpu->arch.vpa.pinned_addr) {
3674 		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3675 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3676 		lp->yield_count = cpu_to_be32(yield_count);
3677 		vcpu->arch.vpa.dirty = 1;
3678 		save_pmu = lp->pmcregs_in_use;
3679 	}
3680 	/* Must save pmu if this guest is capable of running nested guests */
3681 	save_pmu |= nesting_enabled(vcpu->kvm);
3682 
3683 	kvmhv_save_guest_pmu(vcpu, save_pmu);
3684 
3685 	vc->entry_exit_map = 0x101;
3686 	vc->in_guest = 0;
3687 
3688 	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3689 	mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3690 
3691 	kvmhv_load_host_pmu();
3692 
3693 	kvmppc_subcore_exit_guest();
3694 
3695 	return trap;
3696 }
3697 
3698 /*
3699  * Wait for some other vcpu thread to execute us, and
3700  * wake us up when we need to handle something in the host.
3701  */
3702 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3703 				 struct kvm_vcpu *vcpu, int wait_state)
3704 {
3705 	DEFINE_WAIT(wait);
3706 
3707 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3708 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3709 		spin_unlock(&vc->lock);
3710 		schedule();
3711 		spin_lock(&vc->lock);
3712 	}
3713 	finish_wait(&vcpu->arch.cpu_run, &wait);
3714 }
3715 
3716 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3717 {
3718 	if (!halt_poll_ns_grow)
3719 		return;
3720 
3721 	vc->halt_poll_ns *= halt_poll_ns_grow;
3722 	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3723 		vc->halt_poll_ns = halt_poll_ns_grow_start;
3724 }
3725 
3726 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3727 {
3728 	if (halt_poll_ns_shrink == 0)
3729 		vc->halt_poll_ns = 0;
3730 	else
3731 		vc->halt_poll_ns /= halt_poll_ns_shrink;
3732 }
3733 
3734 #ifdef CONFIG_KVM_XICS
3735 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3736 {
3737 	if (!xics_on_xive())
3738 		return false;
3739 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3740 		vcpu->arch.xive_saved_state.cppr;
3741 }
3742 #else
3743 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3744 {
3745 	return false;
3746 }
3747 #endif /* CONFIG_KVM_XICS */
3748 
3749 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3750 {
3751 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3752 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3753 		return true;
3754 
3755 	return false;
3756 }
3757 
3758 /*
3759  * Check to see if any of the runnable vcpus on the vcore have pending
3760  * exceptions or are no longer ceded
3761  */
3762 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3763 {
3764 	struct kvm_vcpu *vcpu;
3765 	int i;
3766 
3767 	for_each_runnable_thread(i, vcpu, vc) {
3768 		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3769 			return 1;
3770 	}
3771 
3772 	return 0;
3773 }
3774 
3775 /*
3776  * All the vcpus in this vcore are idle, so wait for a decrementer
3777  * or external interrupt to one of the vcpus.  vc->lock is held.
3778  */
3779 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3780 {
3781 	ktime_t cur, start_poll, start_wait;
3782 	int do_sleep = 1;
3783 	u64 block_ns;
3784 	DECLARE_SWAITQUEUE(wait);
3785 
3786 	/* Poll for pending exceptions and ceded state */
3787 	cur = start_poll = ktime_get();
3788 	if (vc->halt_poll_ns) {
3789 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3790 		++vc->runner->stat.halt_attempted_poll;
3791 
3792 		vc->vcore_state = VCORE_POLLING;
3793 		spin_unlock(&vc->lock);
3794 
3795 		do {
3796 			if (kvmppc_vcore_check_block(vc)) {
3797 				do_sleep = 0;
3798 				break;
3799 			}
3800 			cur = ktime_get();
3801 		} while (single_task_running() && ktime_before(cur, stop));
3802 
3803 		spin_lock(&vc->lock);
3804 		vc->vcore_state = VCORE_INACTIVE;
3805 
3806 		if (!do_sleep) {
3807 			++vc->runner->stat.halt_successful_poll;
3808 			goto out;
3809 		}
3810 	}
3811 
3812 	prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3813 
3814 	if (kvmppc_vcore_check_block(vc)) {
3815 		finish_swait(&vc->wq, &wait);
3816 		do_sleep = 0;
3817 		/* If we polled, count this as a successful poll */
3818 		if (vc->halt_poll_ns)
3819 			++vc->runner->stat.halt_successful_poll;
3820 		goto out;
3821 	}
3822 
3823 	start_wait = ktime_get();
3824 
3825 	vc->vcore_state = VCORE_SLEEPING;
3826 	trace_kvmppc_vcore_blocked(vc, 0);
3827 	spin_unlock(&vc->lock);
3828 	schedule();
3829 	finish_swait(&vc->wq, &wait);
3830 	spin_lock(&vc->lock);
3831 	vc->vcore_state = VCORE_INACTIVE;
3832 	trace_kvmppc_vcore_blocked(vc, 1);
3833 	++vc->runner->stat.halt_successful_wait;
3834 
3835 	cur = ktime_get();
3836 
3837 out:
3838 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3839 
3840 	/* Attribute wait time */
3841 	if (do_sleep) {
3842 		vc->runner->stat.halt_wait_ns +=
3843 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
3844 		/* Attribute failed poll time */
3845 		if (vc->halt_poll_ns)
3846 			vc->runner->stat.halt_poll_fail_ns +=
3847 				ktime_to_ns(start_wait) -
3848 				ktime_to_ns(start_poll);
3849 	} else {
3850 		/* Attribute successful poll time */
3851 		if (vc->halt_poll_ns)
3852 			vc->runner->stat.halt_poll_success_ns +=
3853 				ktime_to_ns(cur) -
3854 				ktime_to_ns(start_poll);
3855 	}
3856 
3857 	/* Adjust poll time */
3858 	if (halt_poll_ns) {
3859 		if (block_ns <= vc->halt_poll_ns)
3860 			;
3861 		/* We slept and blocked for longer than the max halt time */
3862 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3863 			shrink_halt_poll_ns(vc);
3864 		/* We slept and our poll time is too small */
3865 		else if (vc->halt_poll_ns < halt_poll_ns &&
3866 				block_ns < halt_poll_ns)
3867 			grow_halt_poll_ns(vc);
3868 		if (vc->halt_poll_ns > halt_poll_ns)
3869 			vc->halt_poll_ns = halt_poll_ns;
3870 	} else
3871 		vc->halt_poll_ns = 0;
3872 
3873 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3874 }
3875 
3876 /*
3877  * This never fails for a radix guest, as none of the operations it does
3878  * for a radix guest can fail or have a way to report failure.
3879  * kvmhv_run_single_vcpu() relies on this fact.
3880  */
3881 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3882 {
3883 	int r = 0;
3884 	struct kvm *kvm = vcpu->kvm;
3885 
3886 	mutex_lock(&kvm->arch.mmu_setup_lock);
3887 	if (!kvm->arch.mmu_ready) {
3888 		if (!kvm_is_radix(kvm))
3889 			r = kvmppc_hv_setup_htab_rma(vcpu);
3890 		if (!r) {
3891 			if (cpu_has_feature(CPU_FTR_ARCH_300))
3892 				kvmppc_setup_partition_table(kvm);
3893 			kvm->arch.mmu_ready = 1;
3894 		}
3895 	}
3896 	mutex_unlock(&kvm->arch.mmu_setup_lock);
3897 	return r;
3898 }
3899 
3900 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3901 {
3902 	int n_ceded, i, r;
3903 	struct kvmppc_vcore *vc;
3904 	struct kvm_vcpu *v;
3905 
3906 	trace_kvmppc_run_vcpu_enter(vcpu);
3907 
3908 	kvm_run->exit_reason = 0;
3909 	vcpu->arch.ret = RESUME_GUEST;
3910 	vcpu->arch.trap = 0;
3911 	kvmppc_update_vpas(vcpu);
3912 
3913 	/*
3914 	 * Synchronize with other threads in this virtual core
3915 	 */
3916 	vc = vcpu->arch.vcore;
3917 	spin_lock(&vc->lock);
3918 	vcpu->arch.ceded = 0;
3919 	vcpu->arch.run_task = current;
3920 	vcpu->arch.kvm_run = kvm_run;
3921 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3922 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3923 	vcpu->arch.busy_preempt = TB_NIL;
3924 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3925 	++vc->n_runnable;
3926 
3927 	/*
3928 	 * This happens the first time this is called for a vcpu.
3929 	 * If the vcore is already running, we may be able to start
3930 	 * this thread straight away and have it join in.
3931 	 */
3932 	if (!signal_pending(current)) {
3933 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
3934 		     vc->vcore_state == VCORE_RUNNING) &&
3935 			   !VCORE_IS_EXITING(vc)) {
3936 			kvmppc_create_dtl_entry(vcpu, vc);
3937 			kvmppc_start_thread(vcpu, vc);
3938 			trace_kvm_guest_enter(vcpu);
3939 		} else if (vc->vcore_state == VCORE_SLEEPING) {
3940 			swake_up_one(&vc->wq);
3941 		}
3942 
3943 	}
3944 
3945 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3946 	       !signal_pending(current)) {
3947 		/* See if the MMU is ready to go */
3948 		if (!vcpu->kvm->arch.mmu_ready) {
3949 			spin_unlock(&vc->lock);
3950 			r = kvmhv_setup_mmu(vcpu);
3951 			spin_lock(&vc->lock);
3952 			if (r) {
3953 				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3954 				kvm_run->fail_entry.
3955 					hardware_entry_failure_reason = 0;
3956 				vcpu->arch.ret = r;
3957 				break;
3958 			}
3959 		}
3960 
3961 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3962 			kvmppc_vcore_end_preempt(vc);
3963 
3964 		if (vc->vcore_state != VCORE_INACTIVE) {
3965 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3966 			continue;
3967 		}
3968 		for_each_runnable_thread(i, v, vc) {
3969 			kvmppc_core_prepare_to_enter(v);
3970 			if (signal_pending(v->arch.run_task)) {
3971 				kvmppc_remove_runnable(vc, v);
3972 				v->stat.signal_exits++;
3973 				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3974 				v->arch.ret = -EINTR;
3975 				wake_up(&v->arch.cpu_run);
3976 			}
3977 		}
3978 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3979 			break;
3980 		n_ceded = 0;
3981 		for_each_runnable_thread(i, v, vc) {
3982 			if (!kvmppc_vcpu_woken(v))
3983 				n_ceded += v->arch.ceded;
3984 			else
3985 				v->arch.ceded = 0;
3986 		}
3987 		vc->runner = vcpu;
3988 		if (n_ceded == vc->n_runnable) {
3989 			kvmppc_vcore_blocked(vc);
3990 		} else if (need_resched()) {
3991 			kvmppc_vcore_preempt(vc);
3992 			/* Let something else run */
3993 			cond_resched_lock(&vc->lock);
3994 			if (vc->vcore_state == VCORE_PREEMPT)
3995 				kvmppc_vcore_end_preempt(vc);
3996 		} else {
3997 			kvmppc_run_core(vc);
3998 		}
3999 		vc->runner = NULL;
4000 	}
4001 
4002 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4003 	       (vc->vcore_state == VCORE_RUNNING ||
4004 		vc->vcore_state == VCORE_EXITING ||
4005 		vc->vcore_state == VCORE_PIGGYBACK))
4006 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4007 
4008 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4009 		kvmppc_vcore_end_preempt(vc);
4010 
4011 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4012 		kvmppc_remove_runnable(vc, vcpu);
4013 		vcpu->stat.signal_exits++;
4014 		kvm_run->exit_reason = KVM_EXIT_INTR;
4015 		vcpu->arch.ret = -EINTR;
4016 	}
4017 
4018 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4019 		/* Wake up some vcpu to run the core */
4020 		i = -1;
4021 		v = next_runnable_thread(vc, &i);
4022 		wake_up(&v->arch.cpu_run);
4023 	}
4024 
4025 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4026 	spin_unlock(&vc->lock);
4027 	return vcpu->arch.ret;
4028 }
4029 
4030 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
4031 			  struct kvm_vcpu *vcpu, u64 time_limit,
4032 			  unsigned long lpcr)
4033 {
4034 	int trap, r, pcpu;
4035 	int srcu_idx, lpid;
4036 	struct kvmppc_vcore *vc;
4037 	struct kvm *kvm = vcpu->kvm;
4038 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4039 
4040 	trace_kvmppc_run_vcpu_enter(vcpu);
4041 
4042 	kvm_run->exit_reason = 0;
4043 	vcpu->arch.ret = RESUME_GUEST;
4044 	vcpu->arch.trap = 0;
4045 
4046 	vc = vcpu->arch.vcore;
4047 	vcpu->arch.ceded = 0;
4048 	vcpu->arch.run_task = current;
4049 	vcpu->arch.kvm_run = kvm_run;
4050 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4051 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4052 	vcpu->arch.busy_preempt = TB_NIL;
4053 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4054 	vc->runnable_threads[0] = vcpu;
4055 	vc->n_runnable = 1;
4056 	vc->runner = vcpu;
4057 
4058 	/* See if the MMU is ready to go */
4059 	if (!kvm->arch.mmu_ready)
4060 		kvmhv_setup_mmu(vcpu);
4061 
4062 	if (need_resched())
4063 		cond_resched();
4064 
4065 	kvmppc_update_vpas(vcpu);
4066 
4067 	init_vcore_to_run(vc);
4068 	vc->preempt_tb = TB_NIL;
4069 
4070 	preempt_disable();
4071 	pcpu = smp_processor_id();
4072 	vc->pcpu = pcpu;
4073 	kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4074 
4075 	local_irq_disable();
4076 	hard_irq_disable();
4077 	if (signal_pending(current))
4078 		goto sigpend;
4079 	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4080 		goto out;
4081 
4082 	if (!nested) {
4083 		kvmppc_core_prepare_to_enter(vcpu);
4084 		if (vcpu->arch.doorbell_request) {
4085 			vc->dpdes = 1;
4086 			smp_wmb();
4087 			vcpu->arch.doorbell_request = 0;
4088 		}
4089 		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4090 			     &vcpu->arch.pending_exceptions))
4091 			lpcr |= LPCR_MER;
4092 	} else if (vcpu->arch.pending_exceptions ||
4093 		   vcpu->arch.doorbell_request ||
4094 		   xive_interrupt_pending(vcpu)) {
4095 		vcpu->arch.ret = RESUME_HOST;
4096 		goto out;
4097 	}
4098 
4099 	kvmppc_clear_host_core(pcpu);
4100 
4101 	local_paca->kvm_hstate.tid = 0;
4102 	local_paca->kvm_hstate.napping = 0;
4103 	local_paca->kvm_hstate.kvm_split_mode = NULL;
4104 	kvmppc_start_thread(vcpu, vc);
4105 	kvmppc_create_dtl_entry(vcpu, vc);
4106 	trace_kvm_guest_enter(vcpu);
4107 
4108 	vc->vcore_state = VCORE_RUNNING;
4109 	trace_kvmppc_run_core(vc, 0);
4110 
4111 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4112 		lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4113 		mtspr(SPRN_LPID, lpid);
4114 		isync();
4115 		kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4116 	}
4117 
4118 	guest_enter_irqoff();
4119 
4120 	srcu_idx = srcu_read_lock(&kvm->srcu);
4121 
4122 	this_cpu_disable_ftrace();
4123 
4124 	/* Tell lockdep that we're about to enable interrupts */
4125 	trace_hardirqs_on();
4126 
4127 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4128 	vcpu->arch.trap = trap;
4129 
4130 	trace_hardirqs_off();
4131 
4132 	this_cpu_enable_ftrace();
4133 
4134 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4135 
4136 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4137 		mtspr(SPRN_LPID, kvm->arch.host_lpid);
4138 		isync();
4139 	}
4140 
4141 	set_irq_happened(trap);
4142 
4143 	kvmppc_set_host_core(pcpu);
4144 
4145 	local_irq_enable();
4146 	guest_exit();
4147 
4148 	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4149 
4150 	preempt_enable();
4151 
4152 	/*
4153 	 * cancel pending decrementer exception if DEC is now positive, or if
4154 	 * entering a nested guest in which case the decrementer is now owned
4155 	 * by L2 and the L1 decrementer is provided in hdec_expires
4156 	 */
4157 	if (kvmppc_core_pending_dec(vcpu) &&
4158 			((get_tb() < vcpu->arch.dec_expires) ||
4159 			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4160 			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4161 		kvmppc_core_dequeue_dec(vcpu);
4162 
4163 	trace_kvm_guest_exit(vcpu);
4164 	r = RESUME_GUEST;
4165 	if (trap) {
4166 		if (!nested)
4167 			r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4168 		else
4169 			r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4170 	}
4171 	vcpu->arch.ret = r;
4172 
4173 	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4174 	    !kvmppc_vcpu_woken(vcpu)) {
4175 		kvmppc_set_timer(vcpu);
4176 		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4177 			if (signal_pending(current)) {
4178 				vcpu->stat.signal_exits++;
4179 				kvm_run->exit_reason = KVM_EXIT_INTR;
4180 				vcpu->arch.ret = -EINTR;
4181 				break;
4182 			}
4183 			spin_lock(&vc->lock);
4184 			kvmppc_vcore_blocked(vc);
4185 			spin_unlock(&vc->lock);
4186 		}
4187 	}
4188 	vcpu->arch.ceded = 0;
4189 
4190 	vc->vcore_state = VCORE_INACTIVE;
4191 	trace_kvmppc_run_core(vc, 1);
4192 
4193  done:
4194 	kvmppc_remove_runnable(vc, vcpu);
4195 	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4196 
4197 	return vcpu->arch.ret;
4198 
4199  sigpend:
4200 	vcpu->stat.signal_exits++;
4201 	kvm_run->exit_reason = KVM_EXIT_INTR;
4202 	vcpu->arch.ret = -EINTR;
4203  out:
4204 	local_irq_enable();
4205 	preempt_enable();
4206 	goto done;
4207 }
4208 
4209 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4210 {
4211 	int r;
4212 	int srcu_idx;
4213 	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4214 	unsigned long user_tar = 0;
4215 	unsigned int user_vrsave;
4216 	struct kvm *kvm;
4217 
4218 	if (!vcpu->arch.sane) {
4219 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4220 		return -EINVAL;
4221 	}
4222 
4223 	/*
4224 	 * Don't allow entry with a suspended transaction, because
4225 	 * the guest entry/exit code will lose it.
4226 	 * If the guest has TM enabled, save away their TM-related SPRs
4227 	 * (they will get restored by the TM unavailable interrupt).
4228 	 */
4229 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4230 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4231 	    (current->thread.regs->msr & MSR_TM)) {
4232 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4233 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4234 			run->fail_entry.hardware_entry_failure_reason = 0;
4235 			return -EINVAL;
4236 		}
4237 		/* Enable TM so we can read the TM SPRs */
4238 		mtmsr(mfmsr() | MSR_TM);
4239 		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4240 		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4241 		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4242 		current->thread.regs->msr &= ~MSR_TM;
4243 	}
4244 #endif
4245 
4246 	/*
4247 	 * Force online to 1 for the sake of old userspace which doesn't
4248 	 * set it.
4249 	 */
4250 	if (!vcpu->arch.online) {
4251 		atomic_inc(&vcpu->arch.vcore->online_count);
4252 		vcpu->arch.online = 1;
4253 	}
4254 
4255 	kvmppc_core_prepare_to_enter(vcpu);
4256 
4257 	/* No need to go into the guest when all we'll do is come back out */
4258 	if (signal_pending(current)) {
4259 		run->exit_reason = KVM_EXIT_INTR;
4260 		return -EINTR;
4261 	}
4262 
4263 	kvm = vcpu->kvm;
4264 	atomic_inc(&kvm->arch.vcpus_running);
4265 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4266 	smp_mb();
4267 
4268 	flush_all_to_thread(current);
4269 
4270 	/* Save userspace EBB and other register values */
4271 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4272 		ebb_regs[0] = mfspr(SPRN_EBBHR);
4273 		ebb_regs[1] = mfspr(SPRN_EBBRR);
4274 		ebb_regs[2] = mfspr(SPRN_BESCR);
4275 		user_tar = mfspr(SPRN_TAR);
4276 	}
4277 	user_vrsave = mfspr(SPRN_VRSAVE);
4278 
4279 	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4280 	vcpu->arch.pgdir = current->mm->pgd;
4281 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4282 
4283 	do {
4284 		/*
4285 		 * The early POWER9 chips that can't mix radix and HPT threads
4286 		 * on the same core also need the workaround for the problem
4287 		 * where the TLB would prefetch entries in the guest exit path
4288 		 * for radix guests using the guest PIDR value and LPID 0.
4289 		 * The workaround is in the old path (kvmppc_run_vcpu())
4290 		 * but not the new path (kvmhv_run_single_vcpu()).
4291 		 */
4292 		if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4293 		    !no_mixing_hpt_and_radix)
4294 			r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4295 						  vcpu->arch.vcore->lpcr);
4296 		else
4297 			r = kvmppc_run_vcpu(run, vcpu);
4298 
4299 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4300 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4301 			trace_kvm_hcall_enter(vcpu);
4302 			r = kvmppc_pseries_do_hcall(vcpu);
4303 			trace_kvm_hcall_exit(vcpu, r);
4304 			kvmppc_core_prepare_to_enter(vcpu);
4305 		} else if (r == RESUME_PAGE_FAULT) {
4306 			srcu_idx = srcu_read_lock(&kvm->srcu);
4307 			r = kvmppc_book3s_hv_page_fault(run, vcpu,
4308 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4309 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4310 		} else if (r == RESUME_PASSTHROUGH) {
4311 			if (WARN_ON(xics_on_xive()))
4312 				r = H_SUCCESS;
4313 			else
4314 				r = kvmppc_xics_rm_complete(vcpu, 0);
4315 		}
4316 	} while (is_kvmppc_resume_guest(r));
4317 
4318 	/* Restore userspace EBB and other register values */
4319 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4320 		mtspr(SPRN_EBBHR, ebb_regs[0]);
4321 		mtspr(SPRN_EBBRR, ebb_regs[1]);
4322 		mtspr(SPRN_BESCR, ebb_regs[2]);
4323 		mtspr(SPRN_TAR, user_tar);
4324 		mtspr(SPRN_FSCR, current->thread.fscr);
4325 	}
4326 	mtspr(SPRN_VRSAVE, user_vrsave);
4327 
4328 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4329 	atomic_dec(&kvm->arch.vcpus_running);
4330 	return r;
4331 }
4332 
4333 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4334 				     int shift, int sllp)
4335 {
4336 	(*sps)->page_shift = shift;
4337 	(*sps)->slb_enc = sllp;
4338 	(*sps)->enc[0].page_shift = shift;
4339 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4340 	/*
4341 	 * Add 16MB MPSS support (may get filtered out by userspace)
4342 	 */
4343 	if (shift != 24) {
4344 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4345 		if (penc != -1) {
4346 			(*sps)->enc[1].page_shift = 24;
4347 			(*sps)->enc[1].pte_enc = penc;
4348 		}
4349 	}
4350 	(*sps)++;
4351 }
4352 
4353 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4354 					 struct kvm_ppc_smmu_info *info)
4355 {
4356 	struct kvm_ppc_one_seg_page_size *sps;
4357 
4358 	/*
4359 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4360 	 * POWER7 doesn't support keys for instruction accesses,
4361 	 * POWER8 and POWER9 do.
4362 	 */
4363 	info->data_keys = 32;
4364 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4365 
4366 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4367 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4368 	info->slb_size = 32;
4369 
4370 	/* We only support these sizes for now, and no muti-size segments */
4371 	sps = &info->sps[0];
4372 	kvmppc_add_seg_page_size(&sps, 12, 0);
4373 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4374 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4375 
4376 	/* If running as a nested hypervisor, we don't support HPT guests */
4377 	if (kvmhv_on_pseries())
4378 		info->flags |= KVM_PPC_NO_HASH;
4379 
4380 	return 0;
4381 }
4382 
4383 /*
4384  * Get (and clear) the dirty memory log for a memory slot.
4385  */
4386 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4387 					 struct kvm_dirty_log *log)
4388 {
4389 	struct kvm_memslots *slots;
4390 	struct kvm_memory_slot *memslot;
4391 	int i, r;
4392 	unsigned long n;
4393 	unsigned long *buf, *p;
4394 	struct kvm_vcpu *vcpu;
4395 
4396 	mutex_lock(&kvm->slots_lock);
4397 
4398 	r = -EINVAL;
4399 	if (log->slot >= KVM_USER_MEM_SLOTS)
4400 		goto out;
4401 
4402 	slots = kvm_memslots(kvm);
4403 	memslot = id_to_memslot(slots, log->slot);
4404 	r = -ENOENT;
4405 	if (!memslot->dirty_bitmap)
4406 		goto out;
4407 
4408 	/*
4409 	 * Use second half of bitmap area because both HPT and radix
4410 	 * accumulate bits in the first half.
4411 	 */
4412 	n = kvm_dirty_bitmap_bytes(memslot);
4413 	buf = memslot->dirty_bitmap + n / sizeof(long);
4414 	memset(buf, 0, n);
4415 
4416 	if (kvm_is_radix(kvm))
4417 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4418 	else
4419 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4420 	if (r)
4421 		goto out;
4422 
4423 	/*
4424 	 * We accumulate dirty bits in the first half of the
4425 	 * memslot's dirty_bitmap area, for when pages are paged
4426 	 * out or modified by the host directly.  Pick up these
4427 	 * bits and add them to the map.
4428 	 */
4429 	p = memslot->dirty_bitmap;
4430 	for (i = 0; i < n / sizeof(long); ++i)
4431 		buf[i] |= xchg(&p[i], 0);
4432 
4433 	/* Harvest dirty bits from VPA and DTL updates */
4434 	/* Note: we never modify the SLB shadow buffer areas */
4435 	kvm_for_each_vcpu(i, vcpu, kvm) {
4436 		spin_lock(&vcpu->arch.vpa_update_lock);
4437 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4438 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4439 		spin_unlock(&vcpu->arch.vpa_update_lock);
4440 	}
4441 
4442 	r = -EFAULT;
4443 	if (copy_to_user(log->dirty_bitmap, buf, n))
4444 		goto out;
4445 
4446 	r = 0;
4447 out:
4448 	mutex_unlock(&kvm->slots_lock);
4449 	return r;
4450 }
4451 
4452 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
4453 					struct kvm_memory_slot *dont)
4454 {
4455 	if (!dont || free->arch.rmap != dont->arch.rmap) {
4456 		vfree(free->arch.rmap);
4457 		free->arch.rmap = NULL;
4458 	}
4459 }
4460 
4461 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
4462 					 unsigned long npages)
4463 {
4464 	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4465 	if (!slot->arch.rmap)
4466 		return -ENOMEM;
4467 
4468 	return 0;
4469 }
4470 
4471 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4472 					struct kvm_memory_slot *memslot,
4473 					const struct kvm_userspace_memory_region *mem)
4474 {
4475 	return 0;
4476 }
4477 
4478 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4479 				const struct kvm_userspace_memory_region *mem,
4480 				const struct kvm_memory_slot *old,
4481 				const struct kvm_memory_slot *new,
4482 				enum kvm_mr_change change)
4483 {
4484 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4485 
4486 	/*
4487 	 * If we are making a new memslot, it might make
4488 	 * some address that was previously cached as emulated
4489 	 * MMIO be no longer emulated MMIO, so invalidate
4490 	 * all the caches of emulated MMIO translations.
4491 	 */
4492 	if (npages)
4493 		atomic64_inc(&kvm->arch.mmio_update);
4494 
4495 	/*
4496 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4497 	 * have already called kvm_arch_flush_shadow_memslot() to
4498 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
4499 	 * previous mappings.  So the only case to handle is
4500 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4501 	 * has been changed.
4502 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4503 	 * to get rid of any THP PTEs in the partition-scoped page tables
4504 	 * so we can track dirtiness at the page level; we flush when
4505 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4506 	 * using THP PTEs.
4507 	 */
4508 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4509 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4510 		kvmppc_radix_flush_memslot(kvm, old);
4511 }
4512 
4513 /*
4514  * Update LPCR values in kvm->arch and in vcores.
4515  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4516  * of kvm->arch.lpcr update).
4517  */
4518 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4519 {
4520 	long int i;
4521 	u32 cores_done = 0;
4522 
4523 	if ((kvm->arch.lpcr & mask) == lpcr)
4524 		return;
4525 
4526 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4527 
4528 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
4529 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4530 		if (!vc)
4531 			continue;
4532 		spin_lock(&vc->lock);
4533 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4534 		spin_unlock(&vc->lock);
4535 		if (++cores_done >= kvm->arch.online_vcores)
4536 			break;
4537 	}
4538 }
4539 
4540 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
4541 {
4542 	return;
4543 }
4544 
4545 void kvmppc_setup_partition_table(struct kvm *kvm)
4546 {
4547 	unsigned long dw0, dw1;
4548 
4549 	if (!kvm_is_radix(kvm)) {
4550 		/* PS field - page size for VRMA */
4551 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4552 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4553 		/* HTABSIZE and HTABORG fields */
4554 		dw0 |= kvm->arch.sdr1;
4555 
4556 		/* Second dword as set by userspace */
4557 		dw1 = kvm->arch.process_table;
4558 	} else {
4559 		dw0 = PATB_HR | radix__get_tree_size() |
4560 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4561 		dw1 = PATB_GR | kvm->arch.process_table;
4562 	}
4563 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4564 }
4565 
4566 /*
4567  * Set up HPT (hashed page table) and RMA (real-mode area).
4568  * Must be called with kvm->arch.mmu_setup_lock held.
4569  */
4570 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4571 {
4572 	int err = 0;
4573 	struct kvm *kvm = vcpu->kvm;
4574 	unsigned long hva;
4575 	struct kvm_memory_slot *memslot;
4576 	struct vm_area_struct *vma;
4577 	unsigned long lpcr = 0, senc;
4578 	unsigned long psize, porder;
4579 	int srcu_idx;
4580 
4581 	/* Allocate hashed page table (if not done already) and reset it */
4582 	if (!kvm->arch.hpt.virt) {
4583 		int order = KVM_DEFAULT_HPT_ORDER;
4584 		struct kvm_hpt_info info;
4585 
4586 		err = kvmppc_allocate_hpt(&info, order);
4587 		/* If we get here, it means userspace didn't specify a
4588 		 * size explicitly.  So, try successively smaller
4589 		 * sizes if the default failed. */
4590 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4591 			err  = kvmppc_allocate_hpt(&info, order);
4592 
4593 		if (err < 0) {
4594 			pr_err("KVM: Couldn't alloc HPT\n");
4595 			goto out;
4596 		}
4597 
4598 		kvmppc_set_hpt(kvm, &info);
4599 	}
4600 
4601 	/* Look up the memslot for guest physical address 0 */
4602 	srcu_idx = srcu_read_lock(&kvm->srcu);
4603 	memslot = gfn_to_memslot(kvm, 0);
4604 
4605 	/* We must have some memory at 0 by now */
4606 	err = -EINVAL;
4607 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4608 		goto out_srcu;
4609 
4610 	/* Look up the VMA for the start of this memory slot */
4611 	hva = memslot->userspace_addr;
4612 	down_read(&current->mm->mmap_sem);
4613 	vma = find_vma(current->mm, hva);
4614 	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4615 		goto up_out;
4616 
4617 	psize = vma_kernel_pagesize(vma);
4618 
4619 	up_read(&current->mm->mmap_sem);
4620 
4621 	/* We can handle 4k, 64k or 16M pages in the VRMA */
4622 	if (psize >= 0x1000000)
4623 		psize = 0x1000000;
4624 	else if (psize >= 0x10000)
4625 		psize = 0x10000;
4626 	else
4627 		psize = 0x1000;
4628 	porder = __ilog2(psize);
4629 
4630 	senc = slb_pgsize_encoding(psize);
4631 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4632 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4633 	/* Create HPTEs in the hash page table for the VRMA */
4634 	kvmppc_map_vrma(vcpu, memslot, porder);
4635 
4636 	/* Update VRMASD field in the LPCR */
4637 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4638 		/* the -4 is to account for senc values starting at 0x10 */
4639 		lpcr = senc << (LPCR_VRMASD_SH - 4);
4640 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4641 	}
4642 
4643 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4644 	smp_wmb();
4645 	err = 0;
4646  out_srcu:
4647 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4648  out:
4649 	return err;
4650 
4651  up_out:
4652 	up_read(&current->mm->mmap_sem);
4653 	goto out_srcu;
4654 }
4655 
4656 /*
4657  * Must be called with kvm->arch.mmu_setup_lock held and
4658  * mmu_ready = 0 and no vcpus running.
4659  */
4660 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4661 {
4662 	if (nesting_enabled(kvm))
4663 		kvmhv_release_all_nested(kvm);
4664 	kvmppc_rmap_reset(kvm);
4665 	kvm->arch.process_table = 0;
4666 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4667 	spin_lock(&kvm->mmu_lock);
4668 	kvm->arch.radix = 0;
4669 	spin_unlock(&kvm->mmu_lock);
4670 	kvmppc_free_radix(kvm);
4671 	kvmppc_update_lpcr(kvm, LPCR_VPM1,
4672 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4673 	return 0;
4674 }
4675 
4676 /*
4677  * Must be called with kvm->arch.mmu_setup_lock held and
4678  * mmu_ready = 0 and no vcpus running.
4679  */
4680 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4681 {
4682 	int err;
4683 
4684 	err = kvmppc_init_vm_radix(kvm);
4685 	if (err)
4686 		return err;
4687 	kvmppc_rmap_reset(kvm);
4688 	/* Mutual exclusion with kvm_unmap_hva_range etc. */
4689 	spin_lock(&kvm->mmu_lock);
4690 	kvm->arch.radix = 1;
4691 	spin_unlock(&kvm->mmu_lock);
4692 	kvmppc_free_hpt(&kvm->arch.hpt);
4693 	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4694 			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4695 	return 0;
4696 }
4697 
4698 #ifdef CONFIG_KVM_XICS
4699 /*
4700  * Allocate a per-core structure for managing state about which cores are
4701  * running in the host versus the guest and for exchanging data between
4702  * real mode KVM and CPU running in the host.
4703  * This is only done for the first VM.
4704  * The allocated structure stays even if all VMs have stopped.
4705  * It is only freed when the kvm-hv module is unloaded.
4706  * It's OK for this routine to fail, we just don't support host
4707  * core operations like redirecting H_IPI wakeups.
4708  */
4709 void kvmppc_alloc_host_rm_ops(void)
4710 {
4711 	struct kvmppc_host_rm_ops *ops;
4712 	unsigned long l_ops;
4713 	int cpu, core;
4714 	int size;
4715 
4716 	/* Not the first time here ? */
4717 	if (kvmppc_host_rm_ops_hv != NULL)
4718 		return;
4719 
4720 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4721 	if (!ops)
4722 		return;
4723 
4724 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4725 	ops->rm_core = kzalloc(size, GFP_KERNEL);
4726 
4727 	if (!ops->rm_core) {
4728 		kfree(ops);
4729 		return;
4730 	}
4731 
4732 	cpus_read_lock();
4733 
4734 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4735 		if (!cpu_online(cpu))
4736 			continue;
4737 
4738 		core = cpu >> threads_shift;
4739 		ops->rm_core[core].rm_state.in_host = 1;
4740 	}
4741 
4742 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4743 
4744 	/*
4745 	 * Make the contents of the kvmppc_host_rm_ops structure visible
4746 	 * to other CPUs before we assign it to the global variable.
4747 	 * Do an atomic assignment (no locks used here), but if someone
4748 	 * beats us to it, just free our copy and return.
4749 	 */
4750 	smp_wmb();
4751 	l_ops = (unsigned long) ops;
4752 
4753 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4754 		cpus_read_unlock();
4755 		kfree(ops->rm_core);
4756 		kfree(ops);
4757 		return;
4758 	}
4759 
4760 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4761 					     "ppc/kvm_book3s:prepare",
4762 					     kvmppc_set_host_core,
4763 					     kvmppc_clear_host_core);
4764 	cpus_read_unlock();
4765 }
4766 
4767 void kvmppc_free_host_rm_ops(void)
4768 {
4769 	if (kvmppc_host_rm_ops_hv) {
4770 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4771 		kfree(kvmppc_host_rm_ops_hv->rm_core);
4772 		kfree(kvmppc_host_rm_ops_hv);
4773 		kvmppc_host_rm_ops_hv = NULL;
4774 	}
4775 }
4776 #endif
4777 
4778 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4779 {
4780 	unsigned long lpcr, lpid;
4781 	char buf[32];
4782 	int ret;
4783 
4784 	mutex_init(&kvm->arch.mmu_setup_lock);
4785 
4786 	/* Allocate the guest's logical partition ID */
4787 
4788 	lpid = kvmppc_alloc_lpid();
4789 	if ((long)lpid < 0)
4790 		return -ENOMEM;
4791 	kvm->arch.lpid = lpid;
4792 
4793 	kvmppc_alloc_host_rm_ops();
4794 
4795 	kvmhv_vm_nested_init(kvm);
4796 
4797 	/*
4798 	 * Since we don't flush the TLB when tearing down a VM,
4799 	 * and this lpid might have previously been used,
4800 	 * make sure we flush on each core before running the new VM.
4801 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4802 	 * does this flush for us.
4803 	 */
4804 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4805 		cpumask_setall(&kvm->arch.need_tlb_flush);
4806 
4807 	/* Start out with the default set of hcalls enabled */
4808 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4809 	       sizeof(kvm->arch.enabled_hcalls));
4810 
4811 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4812 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4813 
4814 	/* Init LPCR for virtual RMA mode */
4815 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
4816 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
4817 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4818 		lpcr &= LPCR_PECE | LPCR_LPES;
4819 	} else {
4820 		lpcr = 0;
4821 	}
4822 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4823 		LPCR_VPM0 | LPCR_VPM1;
4824 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4825 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
4826 	/* On POWER8 turn on online bit to enable PURR/SPURR */
4827 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
4828 		lpcr |= LPCR_ONL;
4829 	/*
4830 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4831 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4832 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4833 	 * be unnecessary but better safe than sorry in case we re-enable
4834 	 * EE in HV mode with this LPCR still set)
4835 	 */
4836 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4837 		lpcr &= ~LPCR_VPM0;
4838 		lpcr |= LPCR_HVICE | LPCR_HEIC;
4839 
4840 		/*
4841 		 * If xive is enabled, we route 0x500 interrupts directly
4842 		 * to the guest.
4843 		 */
4844 		if (xics_on_xive())
4845 			lpcr |= LPCR_LPES;
4846 	}
4847 
4848 	/*
4849 	 * If the host uses radix, the guest starts out as radix.
4850 	 */
4851 	if (radix_enabled()) {
4852 		kvm->arch.radix = 1;
4853 		kvm->arch.mmu_ready = 1;
4854 		lpcr &= ~LPCR_VPM1;
4855 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4856 		ret = kvmppc_init_vm_radix(kvm);
4857 		if (ret) {
4858 			kvmppc_free_lpid(kvm->arch.lpid);
4859 			return ret;
4860 		}
4861 		kvmppc_setup_partition_table(kvm);
4862 	}
4863 
4864 	kvm->arch.lpcr = lpcr;
4865 
4866 	/* Initialization for future HPT resizes */
4867 	kvm->arch.resize_hpt = NULL;
4868 
4869 	/*
4870 	 * Work out how many sets the TLB has, for the use of
4871 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4872 	 */
4873 	if (radix_enabled())
4874 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
4875 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4876 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
4877 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4878 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
4879 	else
4880 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
4881 
4882 	/*
4883 	 * Track that we now have a HV mode VM active. This blocks secondary
4884 	 * CPU threads from coming online.
4885 	 * On POWER9, we only need to do this if the "indep_threads_mode"
4886 	 * module parameter has been set to N.
4887 	 */
4888 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4889 		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4890 			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4891 			kvm->arch.threads_indep = true;
4892 		} else {
4893 			kvm->arch.threads_indep = indep_threads_mode;
4894 		}
4895 	}
4896 	if (!kvm->arch.threads_indep)
4897 		kvm_hv_vm_activated();
4898 
4899 	/*
4900 	 * Initialize smt_mode depending on processor.
4901 	 * POWER8 and earlier have to use "strict" threading, where
4902 	 * all vCPUs in a vcore have to run on the same (sub)core,
4903 	 * whereas on POWER9 the threads can each run a different
4904 	 * guest.
4905 	 */
4906 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4907 		kvm->arch.smt_mode = threads_per_subcore;
4908 	else
4909 		kvm->arch.smt_mode = 1;
4910 	kvm->arch.emul_smt_mode = 1;
4911 
4912 	/*
4913 	 * Create a debugfs directory for the VM
4914 	 */
4915 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
4916 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4917 	kvmppc_mmu_debugfs_init(kvm);
4918 	if (radix_enabled())
4919 		kvmhv_radix_debugfs_init(kvm);
4920 
4921 	return 0;
4922 }
4923 
4924 static void kvmppc_free_vcores(struct kvm *kvm)
4925 {
4926 	long int i;
4927 
4928 	for (i = 0; i < KVM_MAX_VCORES; ++i)
4929 		kfree(kvm->arch.vcores[i]);
4930 	kvm->arch.online_vcores = 0;
4931 }
4932 
4933 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4934 {
4935 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
4936 
4937 	if (!kvm->arch.threads_indep)
4938 		kvm_hv_vm_deactivated();
4939 
4940 	kvmppc_free_vcores(kvm);
4941 
4942 
4943 	if (kvm_is_radix(kvm))
4944 		kvmppc_free_radix(kvm);
4945 	else
4946 		kvmppc_free_hpt(&kvm->arch.hpt);
4947 
4948 	/* Perform global invalidation and return lpid to the pool */
4949 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4950 		if (nesting_enabled(kvm))
4951 			kvmhv_release_all_nested(kvm);
4952 		kvm->arch.process_table = 0;
4953 		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4954 	}
4955 	kvmppc_free_lpid(kvm->arch.lpid);
4956 
4957 	kvmppc_free_pimap(kvm);
4958 }
4959 
4960 /* We don't need to emulate any privileged instructions or dcbz */
4961 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4962 				     unsigned int inst, int *advance)
4963 {
4964 	return EMULATE_FAIL;
4965 }
4966 
4967 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4968 					ulong spr_val)
4969 {
4970 	return EMULATE_FAIL;
4971 }
4972 
4973 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4974 					ulong *spr_val)
4975 {
4976 	return EMULATE_FAIL;
4977 }
4978 
4979 static int kvmppc_core_check_processor_compat_hv(void)
4980 {
4981 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
4982 	    cpu_has_feature(CPU_FTR_ARCH_206))
4983 		return 0;
4984 
4985 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
4986 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
4987 		return 0;
4988 
4989 	return -EIO;
4990 }
4991 
4992 #ifdef CONFIG_KVM_XICS
4993 
4994 void kvmppc_free_pimap(struct kvm *kvm)
4995 {
4996 	kfree(kvm->arch.pimap);
4997 }
4998 
4999 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5000 {
5001 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5002 }
5003 
5004 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5005 {
5006 	struct irq_desc *desc;
5007 	struct kvmppc_irq_map *irq_map;
5008 	struct kvmppc_passthru_irqmap *pimap;
5009 	struct irq_chip *chip;
5010 	int i, rc = 0;
5011 
5012 	if (!kvm_irq_bypass)
5013 		return 1;
5014 
5015 	desc = irq_to_desc(host_irq);
5016 	if (!desc)
5017 		return -EIO;
5018 
5019 	mutex_lock(&kvm->lock);
5020 
5021 	pimap = kvm->arch.pimap;
5022 	if (pimap == NULL) {
5023 		/* First call, allocate structure to hold IRQ map */
5024 		pimap = kvmppc_alloc_pimap();
5025 		if (pimap == NULL) {
5026 			mutex_unlock(&kvm->lock);
5027 			return -ENOMEM;
5028 		}
5029 		kvm->arch.pimap = pimap;
5030 	}
5031 
5032 	/*
5033 	 * For now, we only support interrupts for which the EOI operation
5034 	 * is an OPAL call followed by a write to XIRR, since that's
5035 	 * what our real-mode EOI code does, or a XIVE interrupt
5036 	 */
5037 	chip = irq_data_get_irq_chip(&desc->irq_data);
5038 	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5039 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5040 			host_irq, guest_gsi);
5041 		mutex_unlock(&kvm->lock);
5042 		return -ENOENT;
5043 	}
5044 
5045 	/*
5046 	 * See if we already have an entry for this guest IRQ number.
5047 	 * If it's mapped to a hardware IRQ number, that's an error,
5048 	 * otherwise re-use this entry.
5049 	 */
5050 	for (i = 0; i < pimap->n_mapped; i++) {
5051 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5052 			if (pimap->mapped[i].r_hwirq) {
5053 				mutex_unlock(&kvm->lock);
5054 				return -EINVAL;
5055 			}
5056 			break;
5057 		}
5058 	}
5059 
5060 	if (i == KVMPPC_PIRQ_MAPPED) {
5061 		mutex_unlock(&kvm->lock);
5062 		return -EAGAIN;		/* table is full */
5063 	}
5064 
5065 	irq_map = &pimap->mapped[i];
5066 
5067 	irq_map->v_hwirq = guest_gsi;
5068 	irq_map->desc = desc;
5069 
5070 	/*
5071 	 * Order the above two stores before the next to serialize with
5072 	 * the KVM real mode handler.
5073 	 */
5074 	smp_wmb();
5075 	irq_map->r_hwirq = desc->irq_data.hwirq;
5076 
5077 	if (i == pimap->n_mapped)
5078 		pimap->n_mapped++;
5079 
5080 	if (xics_on_xive())
5081 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5082 	else
5083 		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5084 	if (rc)
5085 		irq_map->r_hwirq = 0;
5086 
5087 	mutex_unlock(&kvm->lock);
5088 
5089 	return 0;
5090 }
5091 
5092 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5093 {
5094 	struct irq_desc *desc;
5095 	struct kvmppc_passthru_irqmap *pimap;
5096 	int i, rc = 0;
5097 
5098 	if (!kvm_irq_bypass)
5099 		return 0;
5100 
5101 	desc = irq_to_desc(host_irq);
5102 	if (!desc)
5103 		return -EIO;
5104 
5105 	mutex_lock(&kvm->lock);
5106 	if (!kvm->arch.pimap)
5107 		goto unlock;
5108 
5109 	pimap = kvm->arch.pimap;
5110 
5111 	for (i = 0; i < pimap->n_mapped; i++) {
5112 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5113 			break;
5114 	}
5115 
5116 	if (i == pimap->n_mapped) {
5117 		mutex_unlock(&kvm->lock);
5118 		return -ENODEV;
5119 	}
5120 
5121 	if (xics_on_xive())
5122 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5123 	else
5124 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5125 
5126 	/* invalidate the entry (what do do on error from the above ?) */
5127 	pimap->mapped[i].r_hwirq = 0;
5128 
5129 	/*
5130 	 * We don't free this structure even when the count goes to
5131 	 * zero. The structure is freed when we destroy the VM.
5132 	 */
5133  unlock:
5134 	mutex_unlock(&kvm->lock);
5135 	return rc;
5136 }
5137 
5138 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5139 					     struct irq_bypass_producer *prod)
5140 {
5141 	int ret = 0;
5142 	struct kvm_kernel_irqfd *irqfd =
5143 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5144 
5145 	irqfd->producer = prod;
5146 
5147 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5148 	if (ret)
5149 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5150 			prod->irq, irqfd->gsi, ret);
5151 
5152 	return ret;
5153 }
5154 
5155 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5156 					      struct irq_bypass_producer *prod)
5157 {
5158 	int ret;
5159 	struct kvm_kernel_irqfd *irqfd =
5160 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5161 
5162 	irqfd->producer = NULL;
5163 
5164 	/*
5165 	 * When producer of consumer is unregistered, we change back to
5166 	 * default external interrupt handling mode - KVM real mode
5167 	 * will switch back to host.
5168 	 */
5169 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5170 	if (ret)
5171 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5172 			prod->irq, irqfd->gsi, ret);
5173 }
5174 #endif
5175 
5176 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5177 				 unsigned int ioctl, unsigned long arg)
5178 {
5179 	struct kvm *kvm __maybe_unused = filp->private_data;
5180 	void __user *argp = (void __user *)arg;
5181 	long r;
5182 
5183 	switch (ioctl) {
5184 
5185 	case KVM_PPC_ALLOCATE_HTAB: {
5186 		u32 htab_order;
5187 
5188 		r = -EFAULT;
5189 		if (get_user(htab_order, (u32 __user *)argp))
5190 			break;
5191 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5192 		if (r)
5193 			break;
5194 		r = 0;
5195 		break;
5196 	}
5197 
5198 	case KVM_PPC_GET_HTAB_FD: {
5199 		struct kvm_get_htab_fd ghf;
5200 
5201 		r = -EFAULT;
5202 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5203 			break;
5204 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5205 		break;
5206 	}
5207 
5208 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5209 		struct kvm_ppc_resize_hpt rhpt;
5210 
5211 		r = -EFAULT;
5212 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5213 			break;
5214 
5215 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5216 		break;
5217 	}
5218 
5219 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5220 		struct kvm_ppc_resize_hpt rhpt;
5221 
5222 		r = -EFAULT;
5223 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5224 			break;
5225 
5226 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5227 		break;
5228 	}
5229 
5230 	default:
5231 		r = -ENOTTY;
5232 	}
5233 
5234 	return r;
5235 }
5236 
5237 /*
5238  * List of hcall numbers to enable by default.
5239  * For compatibility with old userspace, we enable by default
5240  * all hcalls that were implemented before the hcall-enabling
5241  * facility was added.  Note this list should not include H_RTAS.
5242  */
5243 static unsigned int default_hcall_list[] = {
5244 	H_REMOVE,
5245 	H_ENTER,
5246 	H_READ,
5247 	H_PROTECT,
5248 	H_BULK_REMOVE,
5249 	H_GET_TCE,
5250 	H_PUT_TCE,
5251 	H_SET_DABR,
5252 	H_SET_XDABR,
5253 	H_CEDE,
5254 	H_PROD,
5255 	H_CONFER,
5256 	H_REGISTER_VPA,
5257 #ifdef CONFIG_KVM_XICS
5258 	H_EOI,
5259 	H_CPPR,
5260 	H_IPI,
5261 	H_IPOLL,
5262 	H_XIRR,
5263 	H_XIRR_X,
5264 #endif
5265 	0
5266 };
5267 
5268 static void init_default_hcalls(void)
5269 {
5270 	int i;
5271 	unsigned int hcall;
5272 
5273 	for (i = 0; default_hcall_list[i]; ++i) {
5274 		hcall = default_hcall_list[i];
5275 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5276 		__set_bit(hcall / 4, default_enabled_hcalls);
5277 	}
5278 }
5279 
5280 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5281 {
5282 	unsigned long lpcr;
5283 	int radix;
5284 	int err;
5285 
5286 	/* If not on a POWER9, reject it */
5287 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5288 		return -ENODEV;
5289 
5290 	/* If any unknown flags set, reject it */
5291 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5292 		return -EINVAL;
5293 
5294 	/* GR (guest radix) bit in process_table field must match */
5295 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5296 	if (!!(cfg->process_table & PATB_GR) != radix)
5297 		return -EINVAL;
5298 
5299 	/* Process table size field must be reasonable, i.e. <= 24 */
5300 	if ((cfg->process_table & PRTS_MASK) > 24)
5301 		return -EINVAL;
5302 
5303 	/* We can change a guest to/from radix now, if the host is radix */
5304 	if (radix && !radix_enabled())
5305 		return -EINVAL;
5306 
5307 	/* If we're a nested hypervisor, we currently only support radix */
5308 	if (kvmhv_on_pseries() && !radix)
5309 		return -EINVAL;
5310 
5311 	mutex_lock(&kvm->arch.mmu_setup_lock);
5312 	if (radix != kvm_is_radix(kvm)) {
5313 		if (kvm->arch.mmu_ready) {
5314 			kvm->arch.mmu_ready = 0;
5315 			/* order mmu_ready vs. vcpus_running */
5316 			smp_mb();
5317 			if (atomic_read(&kvm->arch.vcpus_running)) {
5318 				kvm->arch.mmu_ready = 1;
5319 				err = -EBUSY;
5320 				goto out_unlock;
5321 			}
5322 		}
5323 		if (radix)
5324 			err = kvmppc_switch_mmu_to_radix(kvm);
5325 		else
5326 			err = kvmppc_switch_mmu_to_hpt(kvm);
5327 		if (err)
5328 			goto out_unlock;
5329 	}
5330 
5331 	kvm->arch.process_table = cfg->process_table;
5332 	kvmppc_setup_partition_table(kvm);
5333 
5334 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5335 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5336 	err = 0;
5337 
5338  out_unlock:
5339 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5340 	return err;
5341 }
5342 
5343 static int kvmhv_enable_nested(struct kvm *kvm)
5344 {
5345 	if (!nested)
5346 		return -EPERM;
5347 	if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5348 		return -ENODEV;
5349 
5350 	/* kvm == NULL means the caller is testing if the capability exists */
5351 	if (kvm)
5352 		kvm->arch.nested_enable = true;
5353 	return 0;
5354 }
5355 
5356 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5357 				 int size)
5358 {
5359 	int rc = -EINVAL;
5360 
5361 	if (kvmhv_vcpu_is_radix(vcpu)) {
5362 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5363 
5364 		if (rc > 0)
5365 			rc = -EINVAL;
5366 	}
5367 
5368 	/* For now quadrants are the only way to access nested guest memory */
5369 	if (rc && vcpu->arch.nested)
5370 		rc = -EAGAIN;
5371 
5372 	return rc;
5373 }
5374 
5375 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5376 				int size)
5377 {
5378 	int rc = -EINVAL;
5379 
5380 	if (kvmhv_vcpu_is_radix(vcpu)) {
5381 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5382 
5383 		if (rc > 0)
5384 			rc = -EINVAL;
5385 	}
5386 
5387 	/* For now quadrants are the only way to access nested guest memory */
5388 	if (rc && vcpu->arch.nested)
5389 		rc = -EAGAIN;
5390 
5391 	return rc;
5392 }
5393 
5394 static struct kvmppc_ops kvm_ops_hv = {
5395 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5396 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5397 	.get_one_reg = kvmppc_get_one_reg_hv,
5398 	.set_one_reg = kvmppc_set_one_reg_hv,
5399 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
5400 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
5401 	.set_msr     = kvmppc_set_msr_hv,
5402 	.vcpu_run    = kvmppc_vcpu_run_hv,
5403 	.vcpu_create = kvmppc_core_vcpu_create_hv,
5404 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
5405 	.check_requests = kvmppc_core_check_requests_hv,
5406 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
5407 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
5408 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5409 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
5410 	.unmap_hva_range = kvm_unmap_hva_range_hv,
5411 	.age_hva  = kvm_age_hva_hv,
5412 	.test_age_hva = kvm_test_age_hva_hv,
5413 	.set_spte_hva = kvm_set_spte_hva_hv,
5414 	.mmu_destroy  = kvmppc_mmu_destroy_hv,
5415 	.free_memslot = kvmppc_core_free_memslot_hv,
5416 	.create_memslot = kvmppc_core_create_memslot_hv,
5417 	.init_vm =  kvmppc_core_init_vm_hv,
5418 	.destroy_vm = kvmppc_core_destroy_vm_hv,
5419 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5420 	.emulate_op = kvmppc_core_emulate_op_hv,
5421 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5422 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5423 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5424 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5425 	.hcall_implemented = kvmppc_hcall_impl_hv,
5426 #ifdef CONFIG_KVM_XICS
5427 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5428 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5429 #endif
5430 	.configure_mmu = kvmhv_configure_mmu,
5431 	.get_rmmu_info = kvmhv_get_rmmu_info,
5432 	.set_smt_mode = kvmhv_set_smt_mode,
5433 	.enable_nested = kvmhv_enable_nested,
5434 	.load_from_eaddr = kvmhv_load_from_eaddr,
5435 	.store_to_eaddr = kvmhv_store_to_eaddr,
5436 };
5437 
5438 static int kvm_init_subcore_bitmap(void)
5439 {
5440 	int i, j;
5441 	int nr_cores = cpu_nr_cores();
5442 	struct sibling_subcore_state *sibling_subcore_state;
5443 
5444 	for (i = 0; i < nr_cores; i++) {
5445 		int first_cpu = i * threads_per_core;
5446 		int node = cpu_to_node(first_cpu);
5447 
5448 		/* Ignore if it is already allocated. */
5449 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5450 			continue;
5451 
5452 		sibling_subcore_state =
5453 			kzalloc_node(sizeof(struct sibling_subcore_state),
5454 							GFP_KERNEL, node);
5455 		if (!sibling_subcore_state)
5456 			return -ENOMEM;
5457 
5458 
5459 		for (j = 0; j < threads_per_core; j++) {
5460 			int cpu = first_cpu + j;
5461 
5462 			paca_ptrs[cpu]->sibling_subcore_state =
5463 						sibling_subcore_state;
5464 		}
5465 	}
5466 	return 0;
5467 }
5468 
5469 static int kvmppc_radix_possible(void)
5470 {
5471 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5472 }
5473 
5474 static int kvmppc_book3s_init_hv(void)
5475 {
5476 	int r;
5477 	/*
5478 	 * FIXME!! Do we need to check on all cpus ?
5479 	 */
5480 	r = kvmppc_core_check_processor_compat_hv();
5481 	if (r < 0)
5482 		return -ENODEV;
5483 
5484 	r = kvmhv_nested_init();
5485 	if (r)
5486 		return r;
5487 
5488 	r = kvm_init_subcore_bitmap();
5489 	if (r)
5490 		return r;
5491 
5492 	/*
5493 	 * We need a way of accessing the XICS interrupt controller,
5494 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5495 	 * indirectly, via OPAL.
5496 	 */
5497 #ifdef CONFIG_SMP
5498 	if (!xics_on_xive() && !kvmhv_on_pseries() &&
5499 	    !local_paca->kvm_hstate.xics_phys) {
5500 		struct device_node *np;
5501 
5502 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5503 		if (!np) {
5504 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5505 			return -ENODEV;
5506 		}
5507 		/* presence of intc confirmed - node can be dropped again */
5508 		of_node_put(np);
5509 	}
5510 #endif
5511 
5512 	kvm_ops_hv.owner = THIS_MODULE;
5513 	kvmppc_hv_ops = &kvm_ops_hv;
5514 
5515 	init_default_hcalls();
5516 
5517 	init_vcore_lists();
5518 
5519 	r = kvmppc_mmu_hv_init();
5520 	if (r)
5521 		return r;
5522 
5523 	if (kvmppc_radix_possible())
5524 		r = kvmppc_radix_init();
5525 
5526 	/*
5527 	 * POWER9 chips before version 2.02 can't have some threads in
5528 	 * HPT mode and some in radix mode on the same core.
5529 	 */
5530 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5531 		unsigned int pvr = mfspr(SPRN_PVR);
5532 		if ((pvr >> 16) == PVR_POWER9 &&
5533 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5534 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5535 			no_mixing_hpt_and_radix = true;
5536 	}
5537 
5538 	return r;
5539 }
5540 
5541 static void kvmppc_book3s_exit_hv(void)
5542 {
5543 	kvmppc_free_host_rm_ops();
5544 	if (kvmppc_radix_possible())
5545 		kvmppc_radix_exit();
5546 	kvmppc_hv_ops = NULL;
5547 	kvmhv_nested_exit();
5548 }
5549 
5550 module_init(kvmppc_book3s_init_hv);
5551 module_exit(kvmppc_book3s_exit_hv);
5552 MODULE_LICENSE("GPL");
5553 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5554 MODULE_ALIAS("devname:kvm");
5555