1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 46 #include <asm/ftrace.h> 47 #include <asm/reg.h> 48 #include <asm/ppc-opcode.h> 49 #include <asm/asm-prototypes.h> 50 #include <asm/archrandom.h> 51 #include <asm/debug.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <linux/uaccess.h> 56 #include <asm/io.h> 57 #include <asm/kvm_ppc.h> 58 #include <asm/kvm_book3s.h> 59 #include <asm/mmu_context.h> 60 #include <asm/lppaca.h> 61 #include <asm/processor.h> 62 #include <asm/cputhreads.h> 63 #include <asm/page.h> 64 #include <asm/hvcall.h> 65 #include <asm/switch_to.h> 66 #include <asm/smp.h> 67 #include <asm/dbell.h> 68 #include <asm/hmi.h> 69 #include <asm/pnv-pci.h> 70 #include <asm/mmu.h> 71 #include <asm/opal.h> 72 #include <asm/xics.h> 73 #include <asm/xive.h> 74 #include <asm/hw_breakpoint.h> 75 76 #include "book3s.h" 77 78 #define CREATE_TRACE_POINTS 79 #include "trace_hv.h" 80 81 /* #define EXIT_DEBUG */ 82 /* #define EXIT_DEBUG_SIMPLE */ 83 /* #define EXIT_DEBUG_INT */ 84 85 /* Used to indicate that a guest page fault needs to be handled */ 86 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 87 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 88 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 89 90 /* Used as a "null" value for timebase values */ 91 #define TB_NIL (~(u64)0) 92 93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 94 95 static int dynamic_mt_modes = 6; 96 module_param(dynamic_mt_modes, int, 0644); 97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 98 static int target_smt_mode; 99 module_param(target_smt_mode, int, 0644); 100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 101 102 static bool indep_threads_mode = true; 103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 105 106 static bool one_vm_per_core; 107 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 108 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)"); 109 110 #ifdef CONFIG_KVM_XICS 111 static struct kernel_param_ops module_param_ops = { 112 .set = param_set_int, 113 .get = param_get_int, 114 }; 115 116 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 117 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 118 119 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 120 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 121 #endif 122 123 /* If set, guests are allowed to create and control nested guests */ 124 static bool nested = true; 125 module_param(nested, bool, S_IRUGO | S_IWUSR); 126 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 127 128 static inline bool nesting_enabled(struct kvm *kvm) 129 { 130 return kvm->arch.nested_enable && kvm_is_radix(kvm); 131 } 132 133 /* If set, the threads on each CPU core have to be in the same MMU mode */ 134 static bool no_mixing_hpt_and_radix; 135 136 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 137 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 138 139 /* 140 * RWMR values for POWER8. These control the rate at which PURR 141 * and SPURR count and should be set according to the number of 142 * online threads in the vcore being run. 143 */ 144 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 145 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 146 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 147 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 148 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 149 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 150 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 151 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 152 153 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 154 RWMR_RPA_P8_1THREAD, 155 RWMR_RPA_P8_1THREAD, 156 RWMR_RPA_P8_2THREAD, 157 RWMR_RPA_P8_3THREAD, 158 RWMR_RPA_P8_4THREAD, 159 RWMR_RPA_P8_5THREAD, 160 RWMR_RPA_P8_6THREAD, 161 RWMR_RPA_P8_7THREAD, 162 RWMR_RPA_P8_8THREAD, 163 }; 164 165 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 166 int *ip) 167 { 168 int i = *ip; 169 struct kvm_vcpu *vcpu; 170 171 while (++i < MAX_SMT_THREADS) { 172 vcpu = READ_ONCE(vc->runnable_threads[i]); 173 if (vcpu) { 174 *ip = i; 175 return vcpu; 176 } 177 } 178 return NULL; 179 } 180 181 /* Used to traverse the list of runnable threads for a given vcore */ 182 #define for_each_runnable_thread(i, vcpu, vc) \ 183 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 184 185 static bool kvmppc_ipi_thread(int cpu) 186 { 187 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 188 189 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 190 if (kvmhv_on_pseries()) 191 return false; 192 193 /* On POWER9 we can use msgsnd to IPI any cpu */ 194 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 195 msg |= get_hard_smp_processor_id(cpu); 196 smp_mb(); 197 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 198 return true; 199 } 200 201 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 202 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 203 preempt_disable(); 204 if (cpu_first_thread_sibling(cpu) == 205 cpu_first_thread_sibling(smp_processor_id())) { 206 msg |= cpu_thread_in_core(cpu); 207 smp_mb(); 208 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 209 preempt_enable(); 210 return true; 211 } 212 preempt_enable(); 213 } 214 215 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 216 if (cpu >= 0 && cpu < nr_cpu_ids) { 217 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 218 xics_wake_cpu(cpu); 219 return true; 220 } 221 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 222 return true; 223 } 224 #endif 225 226 return false; 227 } 228 229 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 230 { 231 int cpu; 232 struct swait_queue_head *wqp; 233 234 wqp = kvm_arch_vcpu_wq(vcpu); 235 if (swq_has_sleeper(wqp)) { 236 swake_up_one(wqp); 237 ++vcpu->stat.halt_wakeup; 238 } 239 240 cpu = READ_ONCE(vcpu->arch.thread_cpu); 241 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 242 return; 243 244 /* CPU points to the first thread of the core */ 245 cpu = vcpu->cpu; 246 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 247 smp_send_reschedule(cpu); 248 } 249 250 /* 251 * We use the vcpu_load/put functions to measure stolen time. 252 * Stolen time is counted as time when either the vcpu is able to 253 * run as part of a virtual core, but the task running the vcore 254 * is preempted or sleeping, or when the vcpu needs something done 255 * in the kernel by the task running the vcpu, but that task is 256 * preempted or sleeping. Those two things have to be counted 257 * separately, since one of the vcpu tasks will take on the job 258 * of running the core, and the other vcpu tasks in the vcore will 259 * sleep waiting for it to do that, but that sleep shouldn't count 260 * as stolen time. 261 * 262 * Hence we accumulate stolen time when the vcpu can run as part of 263 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 264 * needs its task to do other things in the kernel (for example, 265 * service a page fault) in busy_stolen. We don't accumulate 266 * stolen time for a vcore when it is inactive, or for a vcpu 267 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 268 * a misnomer; it means that the vcpu task is not executing in 269 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 270 * the kernel. We don't have any way of dividing up that time 271 * between time that the vcpu is genuinely stopped, time that 272 * the task is actively working on behalf of the vcpu, and time 273 * that the task is preempted, so we don't count any of it as 274 * stolen. 275 * 276 * Updates to busy_stolen are protected by arch.tbacct_lock; 277 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 278 * lock. The stolen times are measured in units of timebase ticks. 279 * (Note that the != TB_NIL checks below are purely defensive; 280 * they should never fail.) 281 */ 282 283 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 284 { 285 unsigned long flags; 286 287 spin_lock_irqsave(&vc->stoltb_lock, flags); 288 vc->preempt_tb = mftb(); 289 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 290 } 291 292 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 293 { 294 unsigned long flags; 295 296 spin_lock_irqsave(&vc->stoltb_lock, flags); 297 if (vc->preempt_tb != TB_NIL) { 298 vc->stolen_tb += mftb() - vc->preempt_tb; 299 vc->preempt_tb = TB_NIL; 300 } 301 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 302 } 303 304 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 305 { 306 struct kvmppc_vcore *vc = vcpu->arch.vcore; 307 unsigned long flags; 308 309 /* 310 * We can test vc->runner without taking the vcore lock, 311 * because only this task ever sets vc->runner to this 312 * vcpu, and once it is set to this vcpu, only this task 313 * ever sets it to NULL. 314 */ 315 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 316 kvmppc_core_end_stolen(vc); 317 318 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 319 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 320 vcpu->arch.busy_preempt != TB_NIL) { 321 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 322 vcpu->arch.busy_preempt = TB_NIL; 323 } 324 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 325 } 326 327 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 328 { 329 struct kvmppc_vcore *vc = vcpu->arch.vcore; 330 unsigned long flags; 331 332 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 333 kvmppc_core_start_stolen(vc); 334 335 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 336 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 337 vcpu->arch.busy_preempt = mftb(); 338 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 339 } 340 341 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 342 { 343 /* 344 * Check for illegal transactional state bit combination 345 * and if we find it, force the TS field to a safe state. 346 */ 347 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 348 msr &= ~MSR_TS_MASK; 349 vcpu->arch.shregs.msr = msr; 350 kvmppc_end_cede(vcpu); 351 } 352 353 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 354 { 355 vcpu->arch.pvr = pvr; 356 } 357 358 /* Dummy value used in computing PCR value below */ 359 #define PCR_ARCH_300 (PCR_ARCH_207 << 1) 360 361 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 362 { 363 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 364 struct kvmppc_vcore *vc = vcpu->arch.vcore; 365 366 /* We can (emulate) our own architecture version and anything older */ 367 if (cpu_has_feature(CPU_FTR_ARCH_300)) 368 host_pcr_bit = PCR_ARCH_300; 369 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 370 host_pcr_bit = PCR_ARCH_207; 371 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 372 host_pcr_bit = PCR_ARCH_206; 373 else 374 host_pcr_bit = PCR_ARCH_205; 375 376 /* Determine lowest PCR bit needed to run guest in given PVR level */ 377 guest_pcr_bit = host_pcr_bit; 378 if (arch_compat) { 379 switch (arch_compat) { 380 case PVR_ARCH_205: 381 guest_pcr_bit = PCR_ARCH_205; 382 break; 383 case PVR_ARCH_206: 384 case PVR_ARCH_206p: 385 guest_pcr_bit = PCR_ARCH_206; 386 break; 387 case PVR_ARCH_207: 388 guest_pcr_bit = PCR_ARCH_207; 389 break; 390 case PVR_ARCH_300: 391 guest_pcr_bit = PCR_ARCH_300; 392 break; 393 default: 394 return -EINVAL; 395 } 396 } 397 398 /* Check requested PCR bits don't exceed our capabilities */ 399 if (guest_pcr_bit > host_pcr_bit) 400 return -EINVAL; 401 402 spin_lock(&vc->lock); 403 vc->arch_compat = arch_compat; 404 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */ 405 vc->pcr = host_pcr_bit - guest_pcr_bit; 406 spin_unlock(&vc->lock); 407 408 return 0; 409 } 410 411 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 412 { 413 int r; 414 415 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 416 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 417 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 418 for (r = 0; r < 16; ++r) 419 pr_err("r%2d = %.16lx r%d = %.16lx\n", 420 r, kvmppc_get_gpr(vcpu, r), 421 r+16, kvmppc_get_gpr(vcpu, r+16)); 422 pr_err("ctr = %.16lx lr = %.16lx\n", 423 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 424 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 425 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 426 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 427 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 428 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 429 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 430 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 431 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 432 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 433 pr_err("fault dar = %.16lx dsisr = %.8x\n", 434 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 435 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 436 for (r = 0; r < vcpu->arch.slb_max; ++r) 437 pr_err(" ESID = %.16llx VSID = %.16llx\n", 438 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 439 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 440 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 441 vcpu->arch.last_inst); 442 } 443 444 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 445 { 446 return kvm_get_vcpu_by_id(kvm, id); 447 } 448 449 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 450 { 451 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 452 vpa->yield_count = cpu_to_be32(1); 453 } 454 455 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 456 unsigned long addr, unsigned long len) 457 { 458 /* check address is cacheline aligned */ 459 if (addr & (L1_CACHE_BYTES - 1)) 460 return -EINVAL; 461 spin_lock(&vcpu->arch.vpa_update_lock); 462 if (v->next_gpa != addr || v->len != len) { 463 v->next_gpa = addr; 464 v->len = addr ? len : 0; 465 v->update_pending = 1; 466 } 467 spin_unlock(&vcpu->arch.vpa_update_lock); 468 return 0; 469 } 470 471 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 472 struct reg_vpa { 473 u32 dummy; 474 union { 475 __be16 hword; 476 __be32 word; 477 } length; 478 }; 479 480 static int vpa_is_registered(struct kvmppc_vpa *vpap) 481 { 482 if (vpap->update_pending) 483 return vpap->next_gpa != 0; 484 return vpap->pinned_addr != NULL; 485 } 486 487 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 488 unsigned long flags, 489 unsigned long vcpuid, unsigned long vpa) 490 { 491 struct kvm *kvm = vcpu->kvm; 492 unsigned long len, nb; 493 void *va; 494 struct kvm_vcpu *tvcpu; 495 int err; 496 int subfunc; 497 struct kvmppc_vpa *vpap; 498 499 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 500 if (!tvcpu) 501 return H_PARAMETER; 502 503 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 504 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 505 subfunc == H_VPA_REG_SLB) { 506 /* Registering new area - address must be cache-line aligned */ 507 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 508 return H_PARAMETER; 509 510 /* convert logical addr to kernel addr and read length */ 511 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 512 if (va == NULL) 513 return H_PARAMETER; 514 if (subfunc == H_VPA_REG_VPA) 515 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 516 else 517 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 518 kvmppc_unpin_guest_page(kvm, va, vpa, false); 519 520 /* Check length */ 521 if (len > nb || len < sizeof(struct reg_vpa)) 522 return H_PARAMETER; 523 } else { 524 vpa = 0; 525 len = 0; 526 } 527 528 err = H_PARAMETER; 529 vpap = NULL; 530 spin_lock(&tvcpu->arch.vpa_update_lock); 531 532 switch (subfunc) { 533 case H_VPA_REG_VPA: /* register VPA */ 534 /* 535 * The size of our lppaca is 1kB because of the way we align 536 * it for the guest to avoid crossing a 4kB boundary. We only 537 * use 640 bytes of the structure though, so we should accept 538 * clients that set a size of 640. 539 */ 540 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 541 if (len < sizeof(struct lppaca)) 542 break; 543 vpap = &tvcpu->arch.vpa; 544 err = 0; 545 break; 546 547 case H_VPA_REG_DTL: /* register DTL */ 548 if (len < sizeof(struct dtl_entry)) 549 break; 550 len -= len % sizeof(struct dtl_entry); 551 552 /* Check that they have previously registered a VPA */ 553 err = H_RESOURCE; 554 if (!vpa_is_registered(&tvcpu->arch.vpa)) 555 break; 556 557 vpap = &tvcpu->arch.dtl; 558 err = 0; 559 break; 560 561 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 562 /* Check that they have previously registered a VPA */ 563 err = H_RESOURCE; 564 if (!vpa_is_registered(&tvcpu->arch.vpa)) 565 break; 566 567 vpap = &tvcpu->arch.slb_shadow; 568 err = 0; 569 break; 570 571 case H_VPA_DEREG_VPA: /* deregister VPA */ 572 /* Check they don't still have a DTL or SLB buf registered */ 573 err = H_RESOURCE; 574 if (vpa_is_registered(&tvcpu->arch.dtl) || 575 vpa_is_registered(&tvcpu->arch.slb_shadow)) 576 break; 577 578 vpap = &tvcpu->arch.vpa; 579 err = 0; 580 break; 581 582 case H_VPA_DEREG_DTL: /* deregister DTL */ 583 vpap = &tvcpu->arch.dtl; 584 err = 0; 585 break; 586 587 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 588 vpap = &tvcpu->arch.slb_shadow; 589 err = 0; 590 break; 591 } 592 593 if (vpap) { 594 vpap->next_gpa = vpa; 595 vpap->len = len; 596 vpap->update_pending = 1; 597 } 598 599 spin_unlock(&tvcpu->arch.vpa_update_lock); 600 601 return err; 602 } 603 604 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 605 { 606 struct kvm *kvm = vcpu->kvm; 607 void *va; 608 unsigned long nb; 609 unsigned long gpa; 610 611 /* 612 * We need to pin the page pointed to by vpap->next_gpa, 613 * but we can't call kvmppc_pin_guest_page under the lock 614 * as it does get_user_pages() and down_read(). So we 615 * have to drop the lock, pin the page, then get the lock 616 * again and check that a new area didn't get registered 617 * in the meantime. 618 */ 619 for (;;) { 620 gpa = vpap->next_gpa; 621 spin_unlock(&vcpu->arch.vpa_update_lock); 622 va = NULL; 623 nb = 0; 624 if (gpa) 625 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 626 spin_lock(&vcpu->arch.vpa_update_lock); 627 if (gpa == vpap->next_gpa) 628 break; 629 /* sigh... unpin that one and try again */ 630 if (va) 631 kvmppc_unpin_guest_page(kvm, va, gpa, false); 632 } 633 634 vpap->update_pending = 0; 635 if (va && nb < vpap->len) { 636 /* 637 * If it's now too short, it must be that userspace 638 * has changed the mappings underlying guest memory, 639 * so unregister the region. 640 */ 641 kvmppc_unpin_guest_page(kvm, va, gpa, false); 642 va = NULL; 643 } 644 if (vpap->pinned_addr) 645 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 646 vpap->dirty); 647 vpap->gpa = gpa; 648 vpap->pinned_addr = va; 649 vpap->dirty = false; 650 if (va) 651 vpap->pinned_end = va + vpap->len; 652 } 653 654 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 655 { 656 if (!(vcpu->arch.vpa.update_pending || 657 vcpu->arch.slb_shadow.update_pending || 658 vcpu->arch.dtl.update_pending)) 659 return; 660 661 spin_lock(&vcpu->arch.vpa_update_lock); 662 if (vcpu->arch.vpa.update_pending) { 663 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 664 if (vcpu->arch.vpa.pinned_addr) 665 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 666 } 667 if (vcpu->arch.dtl.update_pending) { 668 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 669 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 670 vcpu->arch.dtl_index = 0; 671 } 672 if (vcpu->arch.slb_shadow.update_pending) 673 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 674 spin_unlock(&vcpu->arch.vpa_update_lock); 675 } 676 677 /* 678 * Return the accumulated stolen time for the vcore up until `now'. 679 * The caller should hold the vcore lock. 680 */ 681 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 682 { 683 u64 p; 684 unsigned long flags; 685 686 spin_lock_irqsave(&vc->stoltb_lock, flags); 687 p = vc->stolen_tb; 688 if (vc->vcore_state != VCORE_INACTIVE && 689 vc->preempt_tb != TB_NIL) 690 p += now - vc->preempt_tb; 691 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 692 return p; 693 } 694 695 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 696 struct kvmppc_vcore *vc) 697 { 698 struct dtl_entry *dt; 699 struct lppaca *vpa; 700 unsigned long stolen; 701 unsigned long core_stolen; 702 u64 now; 703 unsigned long flags; 704 705 dt = vcpu->arch.dtl_ptr; 706 vpa = vcpu->arch.vpa.pinned_addr; 707 now = mftb(); 708 core_stolen = vcore_stolen_time(vc, now); 709 stolen = core_stolen - vcpu->arch.stolen_logged; 710 vcpu->arch.stolen_logged = core_stolen; 711 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 712 stolen += vcpu->arch.busy_stolen; 713 vcpu->arch.busy_stolen = 0; 714 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 715 if (!dt || !vpa) 716 return; 717 memset(dt, 0, sizeof(struct dtl_entry)); 718 dt->dispatch_reason = 7; 719 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 720 dt->timebase = cpu_to_be64(now + vc->tb_offset); 721 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 722 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 723 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 724 ++dt; 725 if (dt == vcpu->arch.dtl.pinned_end) 726 dt = vcpu->arch.dtl.pinned_addr; 727 vcpu->arch.dtl_ptr = dt; 728 /* order writing *dt vs. writing vpa->dtl_idx */ 729 smp_wmb(); 730 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 731 vcpu->arch.dtl.dirty = true; 732 } 733 734 /* See if there is a doorbell interrupt pending for a vcpu */ 735 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 736 { 737 int thr; 738 struct kvmppc_vcore *vc; 739 740 if (vcpu->arch.doorbell_request) 741 return true; 742 /* 743 * Ensure that the read of vcore->dpdes comes after the read 744 * of vcpu->doorbell_request. This barrier matches the 745 * smp_wmb() in kvmppc_guest_entry_inject(). 746 */ 747 smp_rmb(); 748 vc = vcpu->arch.vcore; 749 thr = vcpu->vcpu_id - vc->first_vcpuid; 750 return !!(vc->dpdes & (1 << thr)); 751 } 752 753 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 754 { 755 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 756 return true; 757 if ((!vcpu->arch.vcore->arch_compat) && 758 cpu_has_feature(CPU_FTR_ARCH_207S)) 759 return true; 760 return false; 761 } 762 763 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 764 unsigned long resource, unsigned long value1, 765 unsigned long value2) 766 { 767 switch (resource) { 768 case H_SET_MODE_RESOURCE_SET_CIABR: 769 if (!kvmppc_power8_compatible(vcpu)) 770 return H_P2; 771 if (value2) 772 return H_P4; 773 if (mflags) 774 return H_UNSUPPORTED_FLAG_START; 775 /* Guests can't breakpoint the hypervisor */ 776 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 777 return H_P3; 778 vcpu->arch.ciabr = value1; 779 return H_SUCCESS; 780 case H_SET_MODE_RESOURCE_SET_DAWR: 781 if (!kvmppc_power8_compatible(vcpu)) 782 return H_P2; 783 if (!ppc_breakpoint_available()) 784 return H_P2; 785 if (mflags) 786 return H_UNSUPPORTED_FLAG_START; 787 if (value2 & DABRX_HYP) 788 return H_P4; 789 vcpu->arch.dawr = value1; 790 vcpu->arch.dawrx = value2; 791 return H_SUCCESS; 792 default: 793 return H_TOO_HARD; 794 } 795 } 796 797 /* Copy guest memory in place - must reside within a single memslot */ 798 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 799 unsigned long len) 800 { 801 struct kvm_memory_slot *to_memslot = NULL; 802 struct kvm_memory_slot *from_memslot = NULL; 803 unsigned long to_addr, from_addr; 804 int r; 805 806 /* Get HPA for from address */ 807 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 808 if (!from_memslot) 809 return -EFAULT; 810 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 811 << PAGE_SHIFT)) 812 return -EINVAL; 813 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 814 if (kvm_is_error_hva(from_addr)) 815 return -EFAULT; 816 from_addr |= (from & (PAGE_SIZE - 1)); 817 818 /* Get HPA for to address */ 819 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 820 if (!to_memslot) 821 return -EFAULT; 822 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 823 << PAGE_SHIFT)) 824 return -EINVAL; 825 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 826 if (kvm_is_error_hva(to_addr)) 827 return -EFAULT; 828 to_addr |= (to & (PAGE_SIZE - 1)); 829 830 /* Perform copy */ 831 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 832 len); 833 if (r) 834 return -EFAULT; 835 mark_page_dirty(kvm, to >> PAGE_SHIFT); 836 return 0; 837 } 838 839 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 840 unsigned long dest, unsigned long src) 841 { 842 u64 pg_sz = SZ_4K; /* 4K page size */ 843 u64 pg_mask = SZ_4K - 1; 844 int ret; 845 846 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 847 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 848 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 849 return H_PARAMETER; 850 851 /* dest (and src if copy_page flag set) must be page aligned */ 852 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 853 return H_PARAMETER; 854 855 /* zero and/or copy the page as determined by the flags */ 856 if (flags & H_COPY_PAGE) { 857 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 858 if (ret < 0) 859 return H_PARAMETER; 860 } else if (flags & H_ZERO_PAGE) { 861 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 862 if (ret < 0) 863 return H_PARAMETER; 864 } 865 866 /* We can ignore the remaining flags */ 867 868 return H_SUCCESS; 869 } 870 871 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 872 { 873 struct kvmppc_vcore *vcore = target->arch.vcore; 874 875 /* 876 * We expect to have been called by the real mode handler 877 * (kvmppc_rm_h_confer()) which would have directly returned 878 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 879 * have useful work to do and should not confer) so we don't 880 * recheck that here. 881 */ 882 883 spin_lock(&vcore->lock); 884 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 885 vcore->vcore_state != VCORE_INACTIVE && 886 vcore->runner) 887 target = vcore->runner; 888 spin_unlock(&vcore->lock); 889 890 return kvm_vcpu_yield_to(target); 891 } 892 893 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 894 { 895 int yield_count = 0; 896 struct lppaca *lppaca; 897 898 spin_lock(&vcpu->arch.vpa_update_lock); 899 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 900 if (lppaca) 901 yield_count = be32_to_cpu(lppaca->yield_count); 902 spin_unlock(&vcpu->arch.vpa_update_lock); 903 return yield_count; 904 } 905 906 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 907 { 908 unsigned long req = kvmppc_get_gpr(vcpu, 3); 909 unsigned long target, ret = H_SUCCESS; 910 int yield_count; 911 struct kvm_vcpu *tvcpu; 912 int idx, rc; 913 914 if (req <= MAX_HCALL_OPCODE && 915 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 916 return RESUME_HOST; 917 918 switch (req) { 919 case H_CEDE: 920 break; 921 case H_PROD: 922 target = kvmppc_get_gpr(vcpu, 4); 923 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 924 if (!tvcpu) { 925 ret = H_PARAMETER; 926 break; 927 } 928 tvcpu->arch.prodded = 1; 929 smp_mb(); 930 if (tvcpu->arch.ceded) 931 kvmppc_fast_vcpu_kick_hv(tvcpu); 932 break; 933 case H_CONFER: 934 target = kvmppc_get_gpr(vcpu, 4); 935 if (target == -1) 936 break; 937 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 938 if (!tvcpu) { 939 ret = H_PARAMETER; 940 break; 941 } 942 yield_count = kvmppc_get_gpr(vcpu, 5); 943 if (kvmppc_get_yield_count(tvcpu) != yield_count) 944 break; 945 kvm_arch_vcpu_yield_to(tvcpu); 946 break; 947 case H_REGISTER_VPA: 948 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 949 kvmppc_get_gpr(vcpu, 5), 950 kvmppc_get_gpr(vcpu, 6)); 951 break; 952 case H_RTAS: 953 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 954 return RESUME_HOST; 955 956 idx = srcu_read_lock(&vcpu->kvm->srcu); 957 rc = kvmppc_rtas_hcall(vcpu); 958 srcu_read_unlock(&vcpu->kvm->srcu, idx); 959 960 if (rc == -ENOENT) 961 return RESUME_HOST; 962 else if (rc == 0) 963 break; 964 965 /* Send the error out to userspace via KVM_RUN */ 966 return rc; 967 case H_LOGICAL_CI_LOAD: 968 ret = kvmppc_h_logical_ci_load(vcpu); 969 if (ret == H_TOO_HARD) 970 return RESUME_HOST; 971 break; 972 case H_LOGICAL_CI_STORE: 973 ret = kvmppc_h_logical_ci_store(vcpu); 974 if (ret == H_TOO_HARD) 975 return RESUME_HOST; 976 break; 977 case H_SET_MODE: 978 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 979 kvmppc_get_gpr(vcpu, 5), 980 kvmppc_get_gpr(vcpu, 6), 981 kvmppc_get_gpr(vcpu, 7)); 982 if (ret == H_TOO_HARD) 983 return RESUME_HOST; 984 break; 985 case H_XIRR: 986 case H_CPPR: 987 case H_EOI: 988 case H_IPI: 989 case H_IPOLL: 990 case H_XIRR_X: 991 if (kvmppc_xics_enabled(vcpu)) { 992 if (xics_on_xive()) { 993 ret = H_NOT_AVAILABLE; 994 return RESUME_GUEST; 995 } 996 ret = kvmppc_xics_hcall(vcpu, req); 997 break; 998 } 999 return RESUME_HOST; 1000 case H_SET_DABR: 1001 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 1002 break; 1003 case H_SET_XDABR: 1004 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 1005 kvmppc_get_gpr(vcpu, 5)); 1006 break; 1007 #ifdef CONFIG_SPAPR_TCE_IOMMU 1008 case H_GET_TCE: 1009 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1010 kvmppc_get_gpr(vcpu, 5)); 1011 if (ret == H_TOO_HARD) 1012 return RESUME_HOST; 1013 break; 1014 case H_PUT_TCE: 1015 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1016 kvmppc_get_gpr(vcpu, 5), 1017 kvmppc_get_gpr(vcpu, 6)); 1018 if (ret == H_TOO_HARD) 1019 return RESUME_HOST; 1020 break; 1021 case H_PUT_TCE_INDIRECT: 1022 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1023 kvmppc_get_gpr(vcpu, 5), 1024 kvmppc_get_gpr(vcpu, 6), 1025 kvmppc_get_gpr(vcpu, 7)); 1026 if (ret == H_TOO_HARD) 1027 return RESUME_HOST; 1028 break; 1029 case H_STUFF_TCE: 1030 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1031 kvmppc_get_gpr(vcpu, 5), 1032 kvmppc_get_gpr(vcpu, 6), 1033 kvmppc_get_gpr(vcpu, 7)); 1034 if (ret == H_TOO_HARD) 1035 return RESUME_HOST; 1036 break; 1037 #endif 1038 case H_RANDOM: 1039 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4])) 1040 ret = H_HARDWARE; 1041 break; 1042 1043 case H_SET_PARTITION_TABLE: 1044 ret = H_FUNCTION; 1045 if (nesting_enabled(vcpu->kvm)) 1046 ret = kvmhv_set_partition_table(vcpu); 1047 break; 1048 case H_ENTER_NESTED: 1049 ret = H_FUNCTION; 1050 if (!nesting_enabled(vcpu->kvm)) 1051 break; 1052 ret = kvmhv_enter_nested_guest(vcpu); 1053 if (ret == H_INTERRUPT) { 1054 kvmppc_set_gpr(vcpu, 3, 0); 1055 vcpu->arch.hcall_needed = 0; 1056 return -EINTR; 1057 } else if (ret == H_TOO_HARD) { 1058 kvmppc_set_gpr(vcpu, 3, 0); 1059 vcpu->arch.hcall_needed = 0; 1060 return RESUME_HOST; 1061 } 1062 break; 1063 case H_TLB_INVALIDATE: 1064 ret = H_FUNCTION; 1065 if (nesting_enabled(vcpu->kvm)) 1066 ret = kvmhv_do_nested_tlbie(vcpu); 1067 break; 1068 case H_COPY_TOFROM_GUEST: 1069 ret = H_FUNCTION; 1070 if (nesting_enabled(vcpu->kvm)) 1071 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1072 break; 1073 case H_PAGE_INIT: 1074 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1075 kvmppc_get_gpr(vcpu, 5), 1076 kvmppc_get_gpr(vcpu, 6)); 1077 break; 1078 default: 1079 return RESUME_HOST; 1080 } 1081 kvmppc_set_gpr(vcpu, 3, ret); 1082 vcpu->arch.hcall_needed = 0; 1083 return RESUME_GUEST; 1084 } 1085 1086 /* 1087 * Handle H_CEDE in the nested virtualization case where we haven't 1088 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S. 1089 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1090 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1091 */ 1092 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu) 1093 { 1094 vcpu->arch.shregs.msr |= MSR_EE; 1095 vcpu->arch.ceded = 1; 1096 smp_mb(); 1097 if (vcpu->arch.prodded) { 1098 vcpu->arch.prodded = 0; 1099 smp_mb(); 1100 vcpu->arch.ceded = 0; 1101 } 1102 } 1103 1104 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1105 { 1106 switch (cmd) { 1107 case H_CEDE: 1108 case H_PROD: 1109 case H_CONFER: 1110 case H_REGISTER_VPA: 1111 case H_SET_MODE: 1112 case H_LOGICAL_CI_LOAD: 1113 case H_LOGICAL_CI_STORE: 1114 #ifdef CONFIG_KVM_XICS 1115 case H_XIRR: 1116 case H_CPPR: 1117 case H_EOI: 1118 case H_IPI: 1119 case H_IPOLL: 1120 case H_XIRR_X: 1121 #endif 1122 case H_PAGE_INIT: 1123 return 1; 1124 } 1125 1126 /* See if it's in the real-mode table */ 1127 return kvmppc_hcall_impl_hv_realmode(cmd); 1128 } 1129 1130 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 1131 struct kvm_vcpu *vcpu) 1132 { 1133 u32 last_inst; 1134 1135 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1136 EMULATE_DONE) { 1137 /* 1138 * Fetch failed, so return to guest and 1139 * try executing it again. 1140 */ 1141 return RESUME_GUEST; 1142 } 1143 1144 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1145 run->exit_reason = KVM_EXIT_DEBUG; 1146 run->debug.arch.address = kvmppc_get_pc(vcpu); 1147 return RESUME_HOST; 1148 } else { 1149 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1150 return RESUME_GUEST; 1151 } 1152 } 1153 1154 static void do_nothing(void *x) 1155 { 1156 } 1157 1158 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1159 { 1160 int thr, cpu, pcpu, nthreads; 1161 struct kvm_vcpu *v; 1162 unsigned long dpdes; 1163 1164 nthreads = vcpu->kvm->arch.emul_smt_mode; 1165 dpdes = 0; 1166 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1167 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1168 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1169 if (!v) 1170 continue; 1171 /* 1172 * If the vcpu is currently running on a physical cpu thread, 1173 * interrupt it in order to pull it out of the guest briefly, 1174 * which will update its vcore->dpdes value. 1175 */ 1176 pcpu = READ_ONCE(v->cpu); 1177 if (pcpu >= 0) 1178 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1179 if (kvmppc_doorbell_pending(v)) 1180 dpdes |= 1 << thr; 1181 } 1182 return dpdes; 1183 } 1184 1185 /* 1186 * On POWER9, emulate doorbell-related instructions in order to 1187 * give the guest the illusion of running on a multi-threaded core. 1188 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1189 * and mfspr DPDES. 1190 */ 1191 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1192 { 1193 u32 inst, rb, thr; 1194 unsigned long arg; 1195 struct kvm *kvm = vcpu->kvm; 1196 struct kvm_vcpu *tvcpu; 1197 1198 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1199 return RESUME_GUEST; 1200 if (get_op(inst) != 31) 1201 return EMULATE_FAIL; 1202 rb = get_rb(inst); 1203 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1204 switch (get_xop(inst)) { 1205 case OP_31_XOP_MSGSNDP: 1206 arg = kvmppc_get_gpr(vcpu, rb); 1207 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1208 break; 1209 arg &= 0x3f; 1210 if (arg >= kvm->arch.emul_smt_mode) 1211 break; 1212 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1213 if (!tvcpu) 1214 break; 1215 if (!tvcpu->arch.doorbell_request) { 1216 tvcpu->arch.doorbell_request = 1; 1217 kvmppc_fast_vcpu_kick_hv(tvcpu); 1218 } 1219 break; 1220 case OP_31_XOP_MSGCLRP: 1221 arg = kvmppc_get_gpr(vcpu, rb); 1222 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1223 break; 1224 vcpu->arch.vcore->dpdes = 0; 1225 vcpu->arch.doorbell_request = 0; 1226 break; 1227 case OP_31_XOP_MFSPR: 1228 switch (get_sprn(inst)) { 1229 case SPRN_TIR: 1230 arg = thr; 1231 break; 1232 case SPRN_DPDES: 1233 arg = kvmppc_read_dpdes(vcpu); 1234 break; 1235 default: 1236 return EMULATE_FAIL; 1237 } 1238 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1239 break; 1240 default: 1241 return EMULATE_FAIL; 1242 } 1243 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1244 return RESUME_GUEST; 1245 } 1246 1247 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 1248 struct task_struct *tsk) 1249 { 1250 int r = RESUME_HOST; 1251 1252 vcpu->stat.sum_exits++; 1253 1254 /* 1255 * This can happen if an interrupt occurs in the last stages 1256 * of guest entry or the first stages of guest exit (i.e. after 1257 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1258 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1259 * That can happen due to a bug, or due to a machine check 1260 * occurring at just the wrong time. 1261 */ 1262 if (vcpu->arch.shregs.msr & MSR_HV) { 1263 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1264 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1265 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1266 vcpu->arch.shregs.msr); 1267 kvmppc_dump_regs(vcpu); 1268 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1269 run->hw.hardware_exit_reason = vcpu->arch.trap; 1270 return RESUME_HOST; 1271 } 1272 run->exit_reason = KVM_EXIT_UNKNOWN; 1273 run->ready_for_interrupt_injection = 1; 1274 switch (vcpu->arch.trap) { 1275 /* We're good on these - the host merely wanted to get our attention */ 1276 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1277 vcpu->stat.dec_exits++; 1278 r = RESUME_GUEST; 1279 break; 1280 case BOOK3S_INTERRUPT_EXTERNAL: 1281 case BOOK3S_INTERRUPT_H_DOORBELL: 1282 case BOOK3S_INTERRUPT_H_VIRT: 1283 vcpu->stat.ext_intr_exits++; 1284 r = RESUME_GUEST; 1285 break; 1286 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1287 case BOOK3S_INTERRUPT_HMI: 1288 case BOOK3S_INTERRUPT_PERFMON: 1289 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1290 r = RESUME_GUEST; 1291 break; 1292 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1293 /* Print the MCE event to host console. */ 1294 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1295 1296 /* 1297 * If the guest can do FWNMI, exit to userspace so it can 1298 * deliver a FWNMI to the guest. 1299 * Otherwise we synthesize a machine check for the guest 1300 * so that it knows that the machine check occurred. 1301 */ 1302 if (!vcpu->kvm->arch.fwnmi_enabled) { 1303 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1304 kvmppc_core_queue_machine_check(vcpu, flags); 1305 r = RESUME_GUEST; 1306 break; 1307 } 1308 1309 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1310 run->exit_reason = KVM_EXIT_NMI; 1311 run->hw.hardware_exit_reason = vcpu->arch.trap; 1312 /* Clear out the old NMI status from run->flags */ 1313 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1314 /* Now set the NMI status */ 1315 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1316 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1317 else 1318 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1319 1320 r = RESUME_HOST; 1321 break; 1322 case BOOK3S_INTERRUPT_PROGRAM: 1323 { 1324 ulong flags; 1325 /* 1326 * Normally program interrupts are delivered directly 1327 * to the guest by the hardware, but we can get here 1328 * as a result of a hypervisor emulation interrupt 1329 * (e40) getting turned into a 700 by BML RTAS. 1330 */ 1331 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1332 kvmppc_core_queue_program(vcpu, flags); 1333 r = RESUME_GUEST; 1334 break; 1335 } 1336 case BOOK3S_INTERRUPT_SYSCALL: 1337 { 1338 /* hcall - punt to userspace */ 1339 int i; 1340 1341 /* hypercall with MSR_PR has already been handled in rmode, 1342 * and never reaches here. 1343 */ 1344 1345 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1346 for (i = 0; i < 9; ++i) 1347 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1348 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1349 vcpu->arch.hcall_needed = 1; 1350 r = RESUME_HOST; 1351 break; 1352 } 1353 /* 1354 * We get these next two if the guest accesses a page which it thinks 1355 * it has mapped but which is not actually present, either because 1356 * it is for an emulated I/O device or because the corresonding 1357 * host page has been paged out. Any other HDSI/HISI interrupts 1358 * have been handled already. 1359 */ 1360 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1361 r = RESUME_PAGE_FAULT; 1362 break; 1363 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1364 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1365 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1366 DSISR_SRR1_MATCH_64S; 1367 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1368 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1369 r = RESUME_PAGE_FAULT; 1370 break; 1371 /* 1372 * This occurs if the guest executes an illegal instruction. 1373 * If the guest debug is disabled, generate a program interrupt 1374 * to the guest. If guest debug is enabled, we need to check 1375 * whether the instruction is a software breakpoint instruction. 1376 * Accordingly return to Guest or Host. 1377 */ 1378 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1379 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1380 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1381 swab32(vcpu->arch.emul_inst) : 1382 vcpu->arch.emul_inst; 1383 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1384 r = kvmppc_emulate_debug_inst(run, vcpu); 1385 } else { 1386 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1387 r = RESUME_GUEST; 1388 } 1389 break; 1390 /* 1391 * This occurs if the guest (kernel or userspace), does something that 1392 * is prohibited by HFSCR. 1393 * On POWER9, this could be a doorbell instruction that we need 1394 * to emulate. 1395 * Otherwise, we just generate a program interrupt to the guest. 1396 */ 1397 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1398 r = EMULATE_FAIL; 1399 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1400 cpu_has_feature(CPU_FTR_ARCH_300)) 1401 r = kvmppc_emulate_doorbell_instr(vcpu); 1402 if (r == EMULATE_FAIL) { 1403 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1404 r = RESUME_GUEST; 1405 } 1406 break; 1407 1408 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1409 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1410 /* 1411 * This occurs for various TM-related instructions that 1412 * we need to emulate on POWER9 DD2.2. We have already 1413 * handled the cases where the guest was in real-suspend 1414 * mode and was transitioning to transactional state. 1415 */ 1416 r = kvmhv_p9_tm_emulation(vcpu); 1417 break; 1418 #endif 1419 1420 case BOOK3S_INTERRUPT_HV_RM_HARD: 1421 r = RESUME_PASSTHROUGH; 1422 break; 1423 default: 1424 kvmppc_dump_regs(vcpu); 1425 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1426 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1427 vcpu->arch.shregs.msr); 1428 run->hw.hardware_exit_reason = vcpu->arch.trap; 1429 r = RESUME_HOST; 1430 break; 1431 } 1432 1433 return r; 1434 } 1435 1436 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu) 1437 { 1438 int r; 1439 int srcu_idx; 1440 1441 vcpu->stat.sum_exits++; 1442 1443 /* 1444 * This can happen if an interrupt occurs in the last stages 1445 * of guest entry or the first stages of guest exit (i.e. after 1446 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1447 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1448 * That can happen due to a bug, or due to a machine check 1449 * occurring at just the wrong time. 1450 */ 1451 if (vcpu->arch.shregs.msr & MSR_HV) { 1452 pr_emerg("KVM trap in HV mode while nested!\n"); 1453 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1454 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1455 vcpu->arch.shregs.msr); 1456 kvmppc_dump_regs(vcpu); 1457 return RESUME_HOST; 1458 } 1459 switch (vcpu->arch.trap) { 1460 /* We're good on these - the host merely wanted to get our attention */ 1461 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1462 vcpu->stat.dec_exits++; 1463 r = RESUME_GUEST; 1464 break; 1465 case BOOK3S_INTERRUPT_EXTERNAL: 1466 vcpu->stat.ext_intr_exits++; 1467 r = RESUME_HOST; 1468 break; 1469 case BOOK3S_INTERRUPT_H_DOORBELL: 1470 case BOOK3S_INTERRUPT_H_VIRT: 1471 vcpu->stat.ext_intr_exits++; 1472 r = RESUME_GUEST; 1473 break; 1474 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1475 case BOOK3S_INTERRUPT_HMI: 1476 case BOOK3S_INTERRUPT_PERFMON: 1477 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1478 r = RESUME_GUEST; 1479 break; 1480 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1481 /* Pass the machine check to the L1 guest */ 1482 r = RESUME_HOST; 1483 /* Print the MCE event to host console. */ 1484 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1485 break; 1486 /* 1487 * We get these next two if the guest accesses a page which it thinks 1488 * it has mapped but which is not actually present, either because 1489 * it is for an emulated I/O device or because the corresonding 1490 * host page has been paged out. 1491 */ 1492 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1493 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1494 r = kvmhv_nested_page_fault(run, vcpu); 1495 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1496 break; 1497 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1498 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1499 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1500 DSISR_SRR1_MATCH_64S; 1501 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1502 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1503 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1504 r = kvmhv_nested_page_fault(run, vcpu); 1505 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1506 break; 1507 1508 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1509 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1510 /* 1511 * This occurs for various TM-related instructions that 1512 * we need to emulate on POWER9 DD2.2. We have already 1513 * handled the cases where the guest was in real-suspend 1514 * mode and was transitioning to transactional state. 1515 */ 1516 r = kvmhv_p9_tm_emulation(vcpu); 1517 break; 1518 #endif 1519 1520 case BOOK3S_INTERRUPT_HV_RM_HARD: 1521 vcpu->arch.trap = 0; 1522 r = RESUME_GUEST; 1523 if (!xics_on_xive()) 1524 kvmppc_xics_rm_complete(vcpu, 0); 1525 break; 1526 default: 1527 r = RESUME_HOST; 1528 break; 1529 } 1530 1531 return r; 1532 } 1533 1534 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1535 struct kvm_sregs *sregs) 1536 { 1537 int i; 1538 1539 memset(sregs, 0, sizeof(struct kvm_sregs)); 1540 sregs->pvr = vcpu->arch.pvr; 1541 for (i = 0; i < vcpu->arch.slb_max; i++) { 1542 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1543 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1544 } 1545 1546 return 0; 1547 } 1548 1549 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1550 struct kvm_sregs *sregs) 1551 { 1552 int i, j; 1553 1554 /* Only accept the same PVR as the host's, since we can't spoof it */ 1555 if (sregs->pvr != vcpu->arch.pvr) 1556 return -EINVAL; 1557 1558 j = 0; 1559 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1560 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1561 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1562 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1563 ++j; 1564 } 1565 } 1566 vcpu->arch.slb_max = j; 1567 1568 return 0; 1569 } 1570 1571 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1572 bool preserve_top32) 1573 { 1574 struct kvm *kvm = vcpu->kvm; 1575 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1576 u64 mask; 1577 1578 spin_lock(&vc->lock); 1579 /* 1580 * If ILE (interrupt little-endian) has changed, update the 1581 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1582 */ 1583 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1584 struct kvm_vcpu *vcpu; 1585 int i; 1586 1587 kvm_for_each_vcpu(i, vcpu, kvm) { 1588 if (vcpu->arch.vcore != vc) 1589 continue; 1590 if (new_lpcr & LPCR_ILE) 1591 vcpu->arch.intr_msr |= MSR_LE; 1592 else 1593 vcpu->arch.intr_msr &= ~MSR_LE; 1594 } 1595 } 1596 1597 /* 1598 * Userspace can only modify DPFD (default prefetch depth), 1599 * ILE (interrupt little-endian) and TC (translation control). 1600 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1601 */ 1602 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1603 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1604 mask |= LPCR_AIL; 1605 /* 1606 * On POWER9, allow userspace to enable large decrementer for the 1607 * guest, whether or not the host has it enabled. 1608 */ 1609 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1610 mask |= LPCR_LD; 1611 1612 /* Broken 32-bit version of LPCR must not clear top bits */ 1613 if (preserve_top32) 1614 mask &= 0xFFFFFFFF; 1615 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1616 spin_unlock(&vc->lock); 1617 } 1618 1619 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1620 union kvmppc_one_reg *val) 1621 { 1622 int r = 0; 1623 long int i; 1624 1625 switch (id) { 1626 case KVM_REG_PPC_DEBUG_INST: 1627 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1628 break; 1629 case KVM_REG_PPC_HIOR: 1630 *val = get_reg_val(id, 0); 1631 break; 1632 case KVM_REG_PPC_DABR: 1633 *val = get_reg_val(id, vcpu->arch.dabr); 1634 break; 1635 case KVM_REG_PPC_DABRX: 1636 *val = get_reg_val(id, vcpu->arch.dabrx); 1637 break; 1638 case KVM_REG_PPC_DSCR: 1639 *val = get_reg_val(id, vcpu->arch.dscr); 1640 break; 1641 case KVM_REG_PPC_PURR: 1642 *val = get_reg_val(id, vcpu->arch.purr); 1643 break; 1644 case KVM_REG_PPC_SPURR: 1645 *val = get_reg_val(id, vcpu->arch.spurr); 1646 break; 1647 case KVM_REG_PPC_AMR: 1648 *val = get_reg_val(id, vcpu->arch.amr); 1649 break; 1650 case KVM_REG_PPC_UAMOR: 1651 *val = get_reg_val(id, vcpu->arch.uamor); 1652 break; 1653 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1654 i = id - KVM_REG_PPC_MMCR0; 1655 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1656 break; 1657 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1658 i = id - KVM_REG_PPC_PMC1; 1659 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1660 break; 1661 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1662 i = id - KVM_REG_PPC_SPMC1; 1663 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1664 break; 1665 case KVM_REG_PPC_SIAR: 1666 *val = get_reg_val(id, vcpu->arch.siar); 1667 break; 1668 case KVM_REG_PPC_SDAR: 1669 *val = get_reg_val(id, vcpu->arch.sdar); 1670 break; 1671 case KVM_REG_PPC_SIER: 1672 *val = get_reg_val(id, vcpu->arch.sier); 1673 break; 1674 case KVM_REG_PPC_IAMR: 1675 *val = get_reg_val(id, vcpu->arch.iamr); 1676 break; 1677 case KVM_REG_PPC_PSPB: 1678 *val = get_reg_val(id, vcpu->arch.pspb); 1679 break; 1680 case KVM_REG_PPC_DPDES: 1681 /* 1682 * On POWER9, where we are emulating msgsndp etc., 1683 * we return 1 bit for each vcpu, which can come from 1684 * either vcore->dpdes or doorbell_request. 1685 * On POWER8, doorbell_request is 0. 1686 */ 1687 *val = get_reg_val(id, vcpu->arch.vcore->dpdes | 1688 vcpu->arch.doorbell_request); 1689 break; 1690 case KVM_REG_PPC_VTB: 1691 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1692 break; 1693 case KVM_REG_PPC_DAWR: 1694 *val = get_reg_val(id, vcpu->arch.dawr); 1695 break; 1696 case KVM_REG_PPC_DAWRX: 1697 *val = get_reg_val(id, vcpu->arch.dawrx); 1698 break; 1699 case KVM_REG_PPC_CIABR: 1700 *val = get_reg_val(id, vcpu->arch.ciabr); 1701 break; 1702 case KVM_REG_PPC_CSIGR: 1703 *val = get_reg_val(id, vcpu->arch.csigr); 1704 break; 1705 case KVM_REG_PPC_TACR: 1706 *val = get_reg_val(id, vcpu->arch.tacr); 1707 break; 1708 case KVM_REG_PPC_TCSCR: 1709 *val = get_reg_val(id, vcpu->arch.tcscr); 1710 break; 1711 case KVM_REG_PPC_PID: 1712 *val = get_reg_val(id, vcpu->arch.pid); 1713 break; 1714 case KVM_REG_PPC_ACOP: 1715 *val = get_reg_val(id, vcpu->arch.acop); 1716 break; 1717 case KVM_REG_PPC_WORT: 1718 *val = get_reg_val(id, vcpu->arch.wort); 1719 break; 1720 case KVM_REG_PPC_TIDR: 1721 *val = get_reg_val(id, vcpu->arch.tid); 1722 break; 1723 case KVM_REG_PPC_PSSCR: 1724 *val = get_reg_val(id, vcpu->arch.psscr); 1725 break; 1726 case KVM_REG_PPC_VPA_ADDR: 1727 spin_lock(&vcpu->arch.vpa_update_lock); 1728 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1729 spin_unlock(&vcpu->arch.vpa_update_lock); 1730 break; 1731 case KVM_REG_PPC_VPA_SLB: 1732 spin_lock(&vcpu->arch.vpa_update_lock); 1733 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1734 val->vpaval.length = vcpu->arch.slb_shadow.len; 1735 spin_unlock(&vcpu->arch.vpa_update_lock); 1736 break; 1737 case KVM_REG_PPC_VPA_DTL: 1738 spin_lock(&vcpu->arch.vpa_update_lock); 1739 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1740 val->vpaval.length = vcpu->arch.dtl.len; 1741 spin_unlock(&vcpu->arch.vpa_update_lock); 1742 break; 1743 case KVM_REG_PPC_TB_OFFSET: 1744 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1745 break; 1746 case KVM_REG_PPC_LPCR: 1747 case KVM_REG_PPC_LPCR_64: 1748 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1749 break; 1750 case KVM_REG_PPC_PPR: 1751 *val = get_reg_val(id, vcpu->arch.ppr); 1752 break; 1753 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1754 case KVM_REG_PPC_TFHAR: 1755 *val = get_reg_val(id, vcpu->arch.tfhar); 1756 break; 1757 case KVM_REG_PPC_TFIAR: 1758 *val = get_reg_val(id, vcpu->arch.tfiar); 1759 break; 1760 case KVM_REG_PPC_TEXASR: 1761 *val = get_reg_val(id, vcpu->arch.texasr); 1762 break; 1763 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1764 i = id - KVM_REG_PPC_TM_GPR0; 1765 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1766 break; 1767 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1768 { 1769 int j; 1770 i = id - KVM_REG_PPC_TM_VSR0; 1771 if (i < 32) 1772 for (j = 0; j < TS_FPRWIDTH; j++) 1773 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1774 else { 1775 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1776 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1777 else 1778 r = -ENXIO; 1779 } 1780 break; 1781 } 1782 case KVM_REG_PPC_TM_CR: 1783 *val = get_reg_val(id, vcpu->arch.cr_tm); 1784 break; 1785 case KVM_REG_PPC_TM_XER: 1786 *val = get_reg_val(id, vcpu->arch.xer_tm); 1787 break; 1788 case KVM_REG_PPC_TM_LR: 1789 *val = get_reg_val(id, vcpu->arch.lr_tm); 1790 break; 1791 case KVM_REG_PPC_TM_CTR: 1792 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1793 break; 1794 case KVM_REG_PPC_TM_FPSCR: 1795 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1796 break; 1797 case KVM_REG_PPC_TM_AMR: 1798 *val = get_reg_val(id, vcpu->arch.amr_tm); 1799 break; 1800 case KVM_REG_PPC_TM_PPR: 1801 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1802 break; 1803 case KVM_REG_PPC_TM_VRSAVE: 1804 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1805 break; 1806 case KVM_REG_PPC_TM_VSCR: 1807 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1808 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1809 else 1810 r = -ENXIO; 1811 break; 1812 case KVM_REG_PPC_TM_DSCR: 1813 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1814 break; 1815 case KVM_REG_PPC_TM_TAR: 1816 *val = get_reg_val(id, vcpu->arch.tar_tm); 1817 break; 1818 #endif 1819 case KVM_REG_PPC_ARCH_COMPAT: 1820 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1821 break; 1822 case KVM_REG_PPC_DEC_EXPIRY: 1823 *val = get_reg_val(id, vcpu->arch.dec_expires + 1824 vcpu->arch.vcore->tb_offset); 1825 break; 1826 case KVM_REG_PPC_ONLINE: 1827 *val = get_reg_val(id, vcpu->arch.online); 1828 break; 1829 case KVM_REG_PPC_PTCR: 1830 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 1831 break; 1832 default: 1833 r = -EINVAL; 1834 break; 1835 } 1836 1837 return r; 1838 } 1839 1840 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1841 union kvmppc_one_reg *val) 1842 { 1843 int r = 0; 1844 long int i; 1845 unsigned long addr, len; 1846 1847 switch (id) { 1848 case KVM_REG_PPC_HIOR: 1849 /* Only allow this to be set to zero */ 1850 if (set_reg_val(id, *val)) 1851 r = -EINVAL; 1852 break; 1853 case KVM_REG_PPC_DABR: 1854 vcpu->arch.dabr = set_reg_val(id, *val); 1855 break; 1856 case KVM_REG_PPC_DABRX: 1857 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1858 break; 1859 case KVM_REG_PPC_DSCR: 1860 vcpu->arch.dscr = set_reg_val(id, *val); 1861 break; 1862 case KVM_REG_PPC_PURR: 1863 vcpu->arch.purr = set_reg_val(id, *val); 1864 break; 1865 case KVM_REG_PPC_SPURR: 1866 vcpu->arch.spurr = set_reg_val(id, *val); 1867 break; 1868 case KVM_REG_PPC_AMR: 1869 vcpu->arch.amr = set_reg_val(id, *val); 1870 break; 1871 case KVM_REG_PPC_UAMOR: 1872 vcpu->arch.uamor = set_reg_val(id, *val); 1873 break; 1874 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1875 i = id - KVM_REG_PPC_MMCR0; 1876 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1877 break; 1878 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1879 i = id - KVM_REG_PPC_PMC1; 1880 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1881 break; 1882 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1883 i = id - KVM_REG_PPC_SPMC1; 1884 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1885 break; 1886 case KVM_REG_PPC_SIAR: 1887 vcpu->arch.siar = set_reg_val(id, *val); 1888 break; 1889 case KVM_REG_PPC_SDAR: 1890 vcpu->arch.sdar = set_reg_val(id, *val); 1891 break; 1892 case KVM_REG_PPC_SIER: 1893 vcpu->arch.sier = set_reg_val(id, *val); 1894 break; 1895 case KVM_REG_PPC_IAMR: 1896 vcpu->arch.iamr = set_reg_val(id, *val); 1897 break; 1898 case KVM_REG_PPC_PSPB: 1899 vcpu->arch.pspb = set_reg_val(id, *val); 1900 break; 1901 case KVM_REG_PPC_DPDES: 1902 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1903 break; 1904 case KVM_REG_PPC_VTB: 1905 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1906 break; 1907 case KVM_REG_PPC_DAWR: 1908 vcpu->arch.dawr = set_reg_val(id, *val); 1909 break; 1910 case KVM_REG_PPC_DAWRX: 1911 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1912 break; 1913 case KVM_REG_PPC_CIABR: 1914 vcpu->arch.ciabr = set_reg_val(id, *val); 1915 /* Don't allow setting breakpoints in hypervisor code */ 1916 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1917 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1918 break; 1919 case KVM_REG_PPC_CSIGR: 1920 vcpu->arch.csigr = set_reg_val(id, *val); 1921 break; 1922 case KVM_REG_PPC_TACR: 1923 vcpu->arch.tacr = set_reg_val(id, *val); 1924 break; 1925 case KVM_REG_PPC_TCSCR: 1926 vcpu->arch.tcscr = set_reg_val(id, *val); 1927 break; 1928 case KVM_REG_PPC_PID: 1929 vcpu->arch.pid = set_reg_val(id, *val); 1930 break; 1931 case KVM_REG_PPC_ACOP: 1932 vcpu->arch.acop = set_reg_val(id, *val); 1933 break; 1934 case KVM_REG_PPC_WORT: 1935 vcpu->arch.wort = set_reg_val(id, *val); 1936 break; 1937 case KVM_REG_PPC_TIDR: 1938 vcpu->arch.tid = set_reg_val(id, *val); 1939 break; 1940 case KVM_REG_PPC_PSSCR: 1941 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1942 break; 1943 case KVM_REG_PPC_VPA_ADDR: 1944 addr = set_reg_val(id, *val); 1945 r = -EINVAL; 1946 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1947 vcpu->arch.dtl.next_gpa)) 1948 break; 1949 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1950 break; 1951 case KVM_REG_PPC_VPA_SLB: 1952 addr = val->vpaval.addr; 1953 len = val->vpaval.length; 1954 r = -EINVAL; 1955 if (addr && !vcpu->arch.vpa.next_gpa) 1956 break; 1957 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1958 break; 1959 case KVM_REG_PPC_VPA_DTL: 1960 addr = val->vpaval.addr; 1961 len = val->vpaval.length; 1962 r = -EINVAL; 1963 if (addr && (len < sizeof(struct dtl_entry) || 1964 !vcpu->arch.vpa.next_gpa)) 1965 break; 1966 len -= len % sizeof(struct dtl_entry); 1967 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1968 break; 1969 case KVM_REG_PPC_TB_OFFSET: 1970 /* round up to multiple of 2^24 */ 1971 vcpu->arch.vcore->tb_offset = 1972 ALIGN(set_reg_val(id, *val), 1UL << 24); 1973 break; 1974 case KVM_REG_PPC_LPCR: 1975 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1976 break; 1977 case KVM_REG_PPC_LPCR_64: 1978 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1979 break; 1980 case KVM_REG_PPC_PPR: 1981 vcpu->arch.ppr = set_reg_val(id, *val); 1982 break; 1983 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1984 case KVM_REG_PPC_TFHAR: 1985 vcpu->arch.tfhar = set_reg_val(id, *val); 1986 break; 1987 case KVM_REG_PPC_TFIAR: 1988 vcpu->arch.tfiar = set_reg_val(id, *val); 1989 break; 1990 case KVM_REG_PPC_TEXASR: 1991 vcpu->arch.texasr = set_reg_val(id, *val); 1992 break; 1993 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1994 i = id - KVM_REG_PPC_TM_GPR0; 1995 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1996 break; 1997 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1998 { 1999 int j; 2000 i = id - KVM_REG_PPC_TM_VSR0; 2001 if (i < 32) 2002 for (j = 0; j < TS_FPRWIDTH; j++) 2003 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2004 else 2005 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2006 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2007 else 2008 r = -ENXIO; 2009 break; 2010 } 2011 case KVM_REG_PPC_TM_CR: 2012 vcpu->arch.cr_tm = set_reg_val(id, *val); 2013 break; 2014 case KVM_REG_PPC_TM_XER: 2015 vcpu->arch.xer_tm = set_reg_val(id, *val); 2016 break; 2017 case KVM_REG_PPC_TM_LR: 2018 vcpu->arch.lr_tm = set_reg_val(id, *val); 2019 break; 2020 case KVM_REG_PPC_TM_CTR: 2021 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2022 break; 2023 case KVM_REG_PPC_TM_FPSCR: 2024 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2025 break; 2026 case KVM_REG_PPC_TM_AMR: 2027 vcpu->arch.amr_tm = set_reg_val(id, *val); 2028 break; 2029 case KVM_REG_PPC_TM_PPR: 2030 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2031 break; 2032 case KVM_REG_PPC_TM_VRSAVE: 2033 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2034 break; 2035 case KVM_REG_PPC_TM_VSCR: 2036 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2037 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2038 else 2039 r = - ENXIO; 2040 break; 2041 case KVM_REG_PPC_TM_DSCR: 2042 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2043 break; 2044 case KVM_REG_PPC_TM_TAR: 2045 vcpu->arch.tar_tm = set_reg_val(id, *val); 2046 break; 2047 #endif 2048 case KVM_REG_PPC_ARCH_COMPAT: 2049 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2050 break; 2051 case KVM_REG_PPC_DEC_EXPIRY: 2052 vcpu->arch.dec_expires = set_reg_val(id, *val) - 2053 vcpu->arch.vcore->tb_offset; 2054 break; 2055 case KVM_REG_PPC_ONLINE: 2056 i = set_reg_val(id, *val); 2057 if (i && !vcpu->arch.online) 2058 atomic_inc(&vcpu->arch.vcore->online_count); 2059 else if (!i && vcpu->arch.online) 2060 atomic_dec(&vcpu->arch.vcore->online_count); 2061 vcpu->arch.online = i; 2062 break; 2063 case KVM_REG_PPC_PTCR: 2064 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2065 break; 2066 default: 2067 r = -EINVAL; 2068 break; 2069 } 2070 2071 return r; 2072 } 2073 2074 /* 2075 * On POWER9, threads are independent and can be in different partitions. 2076 * Therefore we consider each thread to be a subcore. 2077 * There is a restriction that all threads have to be in the same 2078 * MMU mode (radix or HPT), unfortunately, but since we only support 2079 * HPT guests on a HPT host so far, that isn't an impediment yet. 2080 */ 2081 static int threads_per_vcore(struct kvm *kvm) 2082 { 2083 if (kvm->arch.threads_indep) 2084 return 1; 2085 return threads_per_subcore; 2086 } 2087 2088 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2089 { 2090 struct kvmppc_vcore *vcore; 2091 2092 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2093 2094 if (vcore == NULL) 2095 return NULL; 2096 2097 spin_lock_init(&vcore->lock); 2098 spin_lock_init(&vcore->stoltb_lock); 2099 init_swait_queue_head(&vcore->wq); 2100 vcore->preempt_tb = TB_NIL; 2101 vcore->lpcr = kvm->arch.lpcr; 2102 vcore->first_vcpuid = id; 2103 vcore->kvm = kvm; 2104 INIT_LIST_HEAD(&vcore->preempt_list); 2105 2106 return vcore; 2107 } 2108 2109 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2110 static struct debugfs_timings_element { 2111 const char *name; 2112 size_t offset; 2113 } timings[] = { 2114 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2115 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2116 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2117 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2118 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2119 }; 2120 2121 #define N_TIMINGS (ARRAY_SIZE(timings)) 2122 2123 struct debugfs_timings_state { 2124 struct kvm_vcpu *vcpu; 2125 unsigned int buflen; 2126 char buf[N_TIMINGS * 100]; 2127 }; 2128 2129 static int debugfs_timings_open(struct inode *inode, struct file *file) 2130 { 2131 struct kvm_vcpu *vcpu = inode->i_private; 2132 struct debugfs_timings_state *p; 2133 2134 p = kzalloc(sizeof(*p), GFP_KERNEL); 2135 if (!p) 2136 return -ENOMEM; 2137 2138 kvm_get_kvm(vcpu->kvm); 2139 p->vcpu = vcpu; 2140 file->private_data = p; 2141 2142 return nonseekable_open(inode, file); 2143 } 2144 2145 static int debugfs_timings_release(struct inode *inode, struct file *file) 2146 { 2147 struct debugfs_timings_state *p = file->private_data; 2148 2149 kvm_put_kvm(p->vcpu->kvm); 2150 kfree(p); 2151 return 0; 2152 } 2153 2154 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2155 size_t len, loff_t *ppos) 2156 { 2157 struct debugfs_timings_state *p = file->private_data; 2158 struct kvm_vcpu *vcpu = p->vcpu; 2159 char *s, *buf_end; 2160 struct kvmhv_tb_accumulator tb; 2161 u64 count; 2162 loff_t pos; 2163 ssize_t n; 2164 int i, loops; 2165 bool ok; 2166 2167 if (!p->buflen) { 2168 s = p->buf; 2169 buf_end = s + sizeof(p->buf); 2170 for (i = 0; i < N_TIMINGS; ++i) { 2171 struct kvmhv_tb_accumulator *acc; 2172 2173 acc = (struct kvmhv_tb_accumulator *) 2174 ((unsigned long)vcpu + timings[i].offset); 2175 ok = false; 2176 for (loops = 0; loops < 1000; ++loops) { 2177 count = acc->seqcount; 2178 if (!(count & 1)) { 2179 smp_rmb(); 2180 tb = *acc; 2181 smp_rmb(); 2182 if (count == acc->seqcount) { 2183 ok = true; 2184 break; 2185 } 2186 } 2187 udelay(1); 2188 } 2189 if (!ok) 2190 snprintf(s, buf_end - s, "%s: stuck\n", 2191 timings[i].name); 2192 else 2193 snprintf(s, buf_end - s, 2194 "%s: %llu %llu %llu %llu\n", 2195 timings[i].name, count / 2, 2196 tb_to_ns(tb.tb_total), 2197 tb_to_ns(tb.tb_min), 2198 tb_to_ns(tb.tb_max)); 2199 s += strlen(s); 2200 } 2201 p->buflen = s - p->buf; 2202 } 2203 2204 pos = *ppos; 2205 if (pos >= p->buflen) 2206 return 0; 2207 if (len > p->buflen - pos) 2208 len = p->buflen - pos; 2209 n = copy_to_user(buf, p->buf + pos, len); 2210 if (n) { 2211 if (n == len) 2212 return -EFAULT; 2213 len -= n; 2214 } 2215 *ppos = pos + len; 2216 return len; 2217 } 2218 2219 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2220 size_t len, loff_t *ppos) 2221 { 2222 return -EACCES; 2223 } 2224 2225 static const struct file_operations debugfs_timings_ops = { 2226 .owner = THIS_MODULE, 2227 .open = debugfs_timings_open, 2228 .release = debugfs_timings_release, 2229 .read = debugfs_timings_read, 2230 .write = debugfs_timings_write, 2231 .llseek = generic_file_llseek, 2232 }; 2233 2234 /* Create a debugfs directory for the vcpu */ 2235 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2236 { 2237 char buf[16]; 2238 struct kvm *kvm = vcpu->kvm; 2239 2240 snprintf(buf, sizeof(buf), "vcpu%u", id); 2241 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 2242 return; 2243 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 2244 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 2245 return; 2246 vcpu->arch.debugfs_timings = 2247 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 2248 vcpu, &debugfs_timings_ops); 2249 } 2250 2251 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2252 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2253 { 2254 } 2255 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2256 2257 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 2258 unsigned int id) 2259 { 2260 struct kvm_vcpu *vcpu; 2261 int err; 2262 int core; 2263 struct kvmppc_vcore *vcore; 2264 2265 err = -ENOMEM; 2266 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 2267 if (!vcpu) 2268 goto out; 2269 2270 err = kvm_vcpu_init(vcpu, kvm, id); 2271 if (err) 2272 goto free_vcpu; 2273 2274 vcpu->arch.shared = &vcpu->arch.shregs; 2275 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2276 /* 2277 * The shared struct is never shared on HV, 2278 * so we can always use host endianness 2279 */ 2280 #ifdef __BIG_ENDIAN__ 2281 vcpu->arch.shared_big_endian = true; 2282 #else 2283 vcpu->arch.shared_big_endian = false; 2284 #endif 2285 #endif 2286 vcpu->arch.mmcr[0] = MMCR0_FC; 2287 vcpu->arch.ctrl = CTRL_RUNLATCH; 2288 /* default to host PVR, since we can't spoof it */ 2289 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2290 spin_lock_init(&vcpu->arch.vpa_update_lock); 2291 spin_lock_init(&vcpu->arch.tbacct_lock); 2292 vcpu->arch.busy_preempt = TB_NIL; 2293 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2294 2295 /* 2296 * Set the default HFSCR for the guest from the host value. 2297 * This value is only used on POWER9. 2298 * On POWER9, we want to virtualize the doorbell facility, so we 2299 * don't set the HFSCR_MSGP bit, and that causes those instructions 2300 * to trap and then we emulate them. 2301 */ 2302 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2303 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP; 2304 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2305 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2306 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2307 vcpu->arch.hfscr |= HFSCR_TM; 2308 } 2309 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2310 vcpu->arch.hfscr |= HFSCR_TM; 2311 2312 kvmppc_mmu_book3s_hv_init(vcpu); 2313 2314 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2315 2316 init_waitqueue_head(&vcpu->arch.cpu_run); 2317 2318 mutex_lock(&kvm->lock); 2319 vcore = NULL; 2320 err = -EINVAL; 2321 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2322 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2323 pr_devel("KVM: VCPU ID too high\n"); 2324 core = KVM_MAX_VCORES; 2325 } else { 2326 BUG_ON(kvm->arch.smt_mode != 1); 2327 core = kvmppc_pack_vcpu_id(kvm, id); 2328 } 2329 } else { 2330 core = id / kvm->arch.smt_mode; 2331 } 2332 if (core < KVM_MAX_VCORES) { 2333 vcore = kvm->arch.vcores[core]; 2334 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2335 pr_devel("KVM: collision on id %u", id); 2336 vcore = NULL; 2337 } else if (!vcore) { 2338 /* 2339 * Take mmu_setup_lock for mutual exclusion 2340 * with kvmppc_update_lpcr(). 2341 */ 2342 err = -ENOMEM; 2343 vcore = kvmppc_vcore_create(kvm, 2344 id & ~(kvm->arch.smt_mode - 1)); 2345 mutex_lock(&kvm->arch.mmu_setup_lock); 2346 kvm->arch.vcores[core] = vcore; 2347 kvm->arch.online_vcores++; 2348 mutex_unlock(&kvm->arch.mmu_setup_lock); 2349 } 2350 } 2351 mutex_unlock(&kvm->lock); 2352 2353 if (!vcore) 2354 goto free_vcpu; 2355 2356 spin_lock(&vcore->lock); 2357 ++vcore->num_threads; 2358 spin_unlock(&vcore->lock); 2359 vcpu->arch.vcore = vcore; 2360 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2361 vcpu->arch.thread_cpu = -1; 2362 vcpu->arch.prev_cpu = -1; 2363 2364 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2365 kvmppc_sanity_check(vcpu); 2366 2367 debugfs_vcpu_init(vcpu, id); 2368 2369 return vcpu; 2370 2371 free_vcpu: 2372 kmem_cache_free(kvm_vcpu_cache, vcpu); 2373 out: 2374 return ERR_PTR(err); 2375 } 2376 2377 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2378 unsigned long flags) 2379 { 2380 int err; 2381 int esmt = 0; 2382 2383 if (flags) 2384 return -EINVAL; 2385 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2386 return -EINVAL; 2387 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2388 /* 2389 * On POWER8 (or POWER7), the threading mode is "strict", 2390 * so we pack smt_mode vcpus per vcore. 2391 */ 2392 if (smt_mode > threads_per_subcore) 2393 return -EINVAL; 2394 } else { 2395 /* 2396 * On POWER9, the threading mode is "loose", 2397 * so each vcpu gets its own vcore. 2398 */ 2399 esmt = smt_mode; 2400 smt_mode = 1; 2401 } 2402 mutex_lock(&kvm->lock); 2403 err = -EBUSY; 2404 if (!kvm->arch.online_vcores) { 2405 kvm->arch.smt_mode = smt_mode; 2406 kvm->arch.emul_smt_mode = esmt; 2407 err = 0; 2408 } 2409 mutex_unlock(&kvm->lock); 2410 2411 return err; 2412 } 2413 2414 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2415 { 2416 if (vpa->pinned_addr) 2417 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2418 vpa->dirty); 2419 } 2420 2421 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2422 { 2423 spin_lock(&vcpu->arch.vpa_update_lock); 2424 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2425 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2426 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2427 spin_unlock(&vcpu->arch.vpa_update_lock); 2428 kvm_vcpu_uninit(vcpu); 2429 kmem_cache_free(kvm_vcpu_cache, vcpu); 2430 } 2431 2432 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2433 { 2434 /* Indicate we want to get back into the guest */ 2435 return 1; 2436 } 2437 2438 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2439 { 2440 unsigned long dec_nsec, now; 2441 2442 now = get_tb(); 2443 if (now > vcpu->arch.dec_expires) { 2444 /* decrementer has already gone negative */ 2445 kvmppc_core_queue_dec(vcpu); 2446 kvmppc_core_prepare_to_enter(vcpu); 2447 return; 2448 } 2449 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now); 2450 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2451 vcpu->arch.timer_running = 1; 2452 } 2453 2454 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 2455 { 2456 vcpu->arch.ceded = 0; 2457 if (vcpu->arch.timer_running) { 2458 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2459 vcpu->arch.timer_running = 0; 2460 } 2461 } 2462 2463 extern int __kvmppc_vcore_entry(void); 2464 2465 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2466 struct kvm_vcpu *vcpu) 2467 { 2468 u64 now; 2469 2470 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2471 return; 2472 spin_lock_irq(&vcpu->arch.tbacct_lock); 2473 now = mftb(); 2474 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2475 vcpu->arch.stolen_logged; 2476 vcpu->arch.busy_preempt = now; 2477 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2478 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2479 --vc->n_runnable; 2480 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2481 } 2482 2483 static int kvmppc_grab_hwthread(int cpu) 2484 { 2485 struct paca_struct *tpaca; 2486 long timeout = 10000; 2487 2488 tpaca = paca_ptrs[cpu]; 2489 2490 /* Ensure the thread won't go into the kernel if it wakes */ 2491 tpaca->kvm_hstate.kvm_vcpu = NULL; 2492 tpaca->kvm_hstate.kvm_vcore = NULL; 2493 tpaca->kvm_hstate.napping = 0; 2494 smp_wmb(); 2495 tpaca->kvm_hstate.hwthread_req = 1; 2496 2497 /* 2498 * If the thread is already executing in the kernel (e.g. handling 2499 * a stray interrupt), wait for it to get back to nap mode. 2500 * The smp_mb() is to ensure that our setting of hwthread_req 2501 * is visible before we look at hwthread_state, so if this 2502 * races with the code at system_reset_pSeries and the thread 2503 * misses our setting of hwthread_req, we are sure to see its 2504 * setting of hwthread_state, and vice versa. 2505 */ 2506 smp_mb(); 2507 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2508 if (--timeout <= 0) { 2509 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2510 return -EBUSY; 2511 } 2512 udelay(1); 2513 } 2514 return 0; 2515 } 2516 2517 static void kvmppc_release_hwthread(int cpu) 2518 { 2519 struct paca_struct *tpaca; 2520 2521 tpaca = paca_ptrs[cpu]; 2522 tpaca->kvm_hstate.hwthread_req = 0; 2523 tpaca->kvm_hstate.kvm_vcpu = NULL; 2524 tpaca->kvm_hstate.kvm_vcore = NULL; 2525 tpaca->kvm_hstate.kvm_split_mode = NULL; 2526 } 2527 2528 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2529 { 2530 struct kvm_nested_guest *nested = vcpu->arch.nested; 2531 cpumask_t *cpu_in_guest; 2532 int i; 2533 2534 cpu = cpu_first_thread_sibling(cpu); 2535 if (nested) { 2536 cpumask_set_cpu(cpu, &nested->need_tlb_flush); 2537 cpu_in_guest = &nested->cpu_in_guest; 2538 } else { 2539 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2540 cpu_in_guest = &kvm->arch.cpu_in_guest; 2541 } 2542 /* 2543 * Make sure setting of bit in need_tlb_flush precedes 2544 * testing of cpu_in_guest bits. The matching barrier on 2545 * the other side is the first smp_mb() in kvmppc_run_core(). 2546 */ 2547 smp_mb(); 2548 for (i = 0; i < threads_per_core; ++i) 2549 if (cpumask_test_cpu(cpu + i, cpu_in_guest)) 2550 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2551 } 2552 2553 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2554 { 2555 struct kvm_nested_guest *nested = vcpu->arch.nested; 2556 struct kvm *kvm = vcpu->kvm; 2557 int prev_cpu; 2558 2559 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2560 return; 2561 2562 if (nested) 2563 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 2564 else 2565 prev_cpu = vcpu->arch.prev_cpu; 2566 2567 /* 2568 * With radix, the guest can do TLB invalidations itself, 2569 * and it could choose to use the local form (tlbiel) if 2570 * it is invalidating a translation that has only ever been 2571 * used on one vcpu. However, that doesn't mean it has 2572 * only ever been used on one physical cpu, since vcpus 2573 * can move around between pcpus. To cope with this, when 2574 * a vcpu moves from one pcpu to another, we need to tell 2575 * any vcpus running on the same core as this vcpu previously 2576 * ran to flush the TLB. The TLB is shared between threads, 2577 * so we use a single bit in .need_tlb_flush for all 4 threads. 2578 */ 2579 if (prev_cpu != pcpu) { 2580 if (prev_cpu >= 0 && 2581 cpu_first_thread_sibling(prev_cpu) != 2582 cpu_first_thread_sibling(pcpu)) 2583 radix_flush_cpu(kvm, prev_cpu, vcpu); 2584 if (nested) 2585 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 2586 else 2587 vcpu->arch.prev_cpu = pcpu; 2588 } 2589 } 2590 2591 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2592 { 2593 int cpu; 2594 struct paca_struct *tpaca; 2595 struct kvm *kvm = vc->kvm; 2596 2597 cpu = vc->pcpu; 2598 if (vcpu) { 2599 if (vcpu->arch.timer_running) { 2600 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2601 vcpu->arch.timer_running = 0; 2602 } 2603 cpu += vcpu->arch.ptid; 2604 vcpu->cpu = vc->pcpu; 2605 vcpu->arch.thread_cpu = cpu; 2606 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2607 } 2608 tpaca = paca_ptrs[cpu]; 2609 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2610 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2611 tpaca->kvm_hstate.fake_suspend = 0; 2612 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2613 smp_wmb(); 2614 tpaca->kvm_hstate.kvm_vcore = vc; 2615 if (cpu != smp_processor_id()) 2616 kvmppc_ipi_thread(cpu); 2617 } 2618 2619 static void kvmppc_wait_for_nap(int n_threads) 2620 { 2621 int cpu = smp_processor_id(); 2622 int i, loops; 2623 2624 if (n_threads <= 1) 2625 return; 2626 for (loops = 0; loops < 1000000; ++loops) { 2627 /* 2628 * Check if all threads are finished. 2629 * We set the vcore pointer when starting a thread 2630 * and the thread clears it when finished, so we look 2631 * for any threads that still have a non-NULL vcore ptr. 2632 */ 2633 for (i = 1; i < n_threads; ++i) 2634 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2635 break; 2636 if (i == n_threads) { 2637 HMT_medium(); 2638 return; 2639 } 2640 HMT_low(); 2641 } 2642 HMT_medium(); 2643 for (i = 1; i < n_threads; ++i) 2644 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2645 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2646 } 2647 2648 /* 2649 * Check that we are on thread 0 and that any other threads in 2650 * this core are off-line. Then grab the threads so they can't 2651 * enter the kernel. 2652 */ 2653 static int on_primary_thread(void) 2654 { 2655 int cpu = smp_processor_id(); 2656 int thr; 2657 2658 /* Are we on a primary subcore? */ 2659 if (cpu_thread_in_subcore(cpu)) 2660 return 0; 2661 2662 thr = 0; 2663 while (++thr < threads_per_subcore) 2664 if (cpu_online(cpu + thr)) 2665 return 0; 2666 2667 /* Grab all hw threads so they can't go into the kernel */ 2668 for (thr = 1; thr < threads_per_subcore; ++thr) { 2669 if (kvmppc_grab_hwthread(cpu + thr)) { 2670 /* Couldn't grab one; let the others go */ 2671 do { 2672 kvmppc_release_hwthread(cpu + thr); 2673 } while (--thr > 0); 2674 return 0; 2675 } 2676 } 2677 return 1; 2678 } 2679 2680 /* 2681 * A list of virtual cores for each physical CPU. 2682 * These are vcores that could run but their runner VCPU tasks are 2683 * (or may be) preempted. 2684 */ 2685 struct preempted_vcore_list { 2686 struct list_head list; 2687 spinlock_t lock; 2688 }; 2689 2690 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2691 2692 static void init_vcore_lists(void) 2693 { 2694 int cpu; 2695 2696 for_each_possible_cpu(cpu) { 2697 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2698 spin_lock_init(&lp->lock); 2699 INIT_LIST_HEAD(&lp->list); 2700 } 2701 } 2702 2703 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2704 { 2705 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2706 2707 vc->vcore_state = VCORE_PREEMPT; 2708 vc->pcpu = smp_processor_id(); 2709 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2710 spin_lock(&lp->lock); 2711 list_add_tail(&vc->preempt_list, &lp->list); 2712 spin_unlock(&lp->lock); 2713 } 2714 2715 /* Start accumulating stolen time */ 2716 kvmppc_core_start_stolen(vc); 2717 } 2718 2719 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2720 { 2721 struct preempted_vcore_list *lp; 2722 2723 kvmppc_core_end_stolen(vc); 2724 if (!list_empty(&vc->preempt_list)) { 2725 lp = &per_cpu(preempted_vcores, vc->pcpu); 2726 spin_lock(&lp->lock); 2727 list_del_init(&vc->preempt_list); 2728 spin_unlock(&lp->lock); 2729 } 2730 vc->vcore_state = VCORE_INACTIVE; 2731 } 2732 2733 /* 2734 * This stores information about the virtual cores currently 2735 * assigned to a physical core. 2736 */ 2737 struct core_info { 2738 int n_subcores; 2739 int max_subcore_threads; 2740 int total_threads; 2741 int subcore_threads[MAX_SUBCORES]; 2742 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2743 }; 2744 2745 /* 2746 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2747 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2748 */ 2749 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2750 2751 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2752 { 2753 memset(cip, 0, sizeof(*cip)); 2754 cip->n_subcores = 1; 2755 cip->max_subcore_threads = vc->num_threads; 2756 cip->total_threads = vc->num_threads; 2757 cip->subcore_threads[0] = vc->num_threads; 2758 cip->vc[0] = vc; 2759 } 2760 2761 static bool subcore_config_ok(int n_subcores, int n_threads) 2762 { 2763 /* 2764 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 2765 * split-core mode, with one thread per subcore. 2766 */ 2767 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2768 return n_subcores <= 4 && n_threads == 1; 2769 2770 /* On POWER8, can only dynamically split if unsplit to begin with */ 2771 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2772 return false; 2773 if (n_subcores > MAX_SUBCORES) 2774 return false; 2775 if (n_subcores > 1) { 2776 if (!(dynamic_mt_modes & 2)) 2777 n_subcores = 4; 2778 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2779 return false; 2780 } 2781 2782 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2783 } 2784 2785 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2786 { 2787 vc->entry_exit_map = 0; 2788 vc->in_guest = 0; 2789 vc->napping_threads = 0; 2790 vc->conferring_threads = 0; 2791 vc->tb_offset_applied = 0; 2792 } 2793 2794 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2795 { 2796 int n_threads = vc->num_threads; 2797 int sub; 2798 2799 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2800 return false; 2801 2802 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 2803 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 2804 return false; 2805 2806 /* Some POWER9 chips require all threads to be in the same MMU mode */ 2807 if (no_mixing_hpt_and_radix && 2808 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm)) 2809 return false; 2810 2811 if (n_threads < cip->max_subcore_threads) 2812 n_threads = cip->max_subcore_threads; 2813 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2814 return false; 2815 cip->max_subcore_threads = n_threads; 2816 2817 sub = cip->n_subcores; 2818 ++cip->n_subcores; 2819 cip->total_threads += vc->num_threads; 2820 cip->subcore_threads[sub] = vc->num_threads; 2821 cip->vc[sub] = vc; 2822 init_vcore_to_run(vc); 2823 list_del_init(&vc->preempt_list); 2824 2825 return true; 2826 } 2827 2828 /* 2829 * Work out whether it is possible to piggyback the execution of 2830 * vcore *pvc onto the execution of the other vcores described in *cip. 2831 */ 2832 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2833 int target_threads) 2834 { 2835 if (cip->total_threads + pvc->num_threads > target_threads) 2836 return false; 2837 2838 return can_dynamic_split(pvc, cip); 2839 } 2840 2841 static void prepare_threads(struct kvmppc_vcore *vc) 2842 { 2843 int i; 2844 struct kvm_vcpu *vcpu; 2845 2846 for_each_runnable_thread(i, vcpu, vc) { 2847 if (signal_pending(vcpu->arch.run_task)) 2848 vcpu->arch.ret = -EINTR; 2849 else if (vcpu->arch.vpa.update_pending || 2850 vcpu->arch.slb_shadow.update_pending || 2851 vcpu->arch.dtl.update_pending) 2852 vcpu->arch.ret = RESUME_GUEST; 2853 else 2854 continue; 2855 kvmppc_remove_runnable(vc, vcpu); 2856 wake_up(&vcpu->arch.cpu_run); 2857 } 2858 } 2859 2860 static void collect_piggybacks(struct core_info *cip, int target_threads) 2861 { 2862 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2863 struct kvmppc_vcore *pvc, *vcnext; 2864 2865 spin_lock(&lp->lock); 2866 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2867 if (!spin_trylock(&pvc->lock)) 2868 continue; 2869 prepare_threads(pvc); 2870 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 2871 list_del_init(&pvc->preempt_list); 2872 if (pvc->runner == NULL) { 2873 pvc->vcore_state = VCORE_INACTIVE; 2874 kvmppc_core_end_stolen(pvc); 2875 } 2876 spin_unlock(&pvc->lock); 2877 continue; 2878 } 2879 if (!can_piggyback(pvc, cip, target_threads)) { 2880 spin_unlock(&pvc->lock); 2881 continue; 2882 } 2883 kvmppc_core_end_stolen(pvc); 2884 pvc->vcore_state = VCORE_PIGGYBACK; 2885 if (cip->total_threads >= target_threads) 2886 break; 2887 } 2888 spin_unlock(&lp->lock); 2889 } 2890 2891 static bool recheck_signals_and_mmu(struct core_info *cip) 2892 { 2893 int sub, i; 2894 struct kvm_vcpu *vcpu; 2895 struct kvmppc_vcore *vc; 2896 2897 for (sub = 0; sub < cip->n_subcores; ++sub) { 2898 vc = cip->vc[sub]; 2899 if (!vc->kvm->arch.mmu_ready) 2900 return true; 2901 for_each_runnable_thread(i, vcpu, vc) 2902 if (signal_pending(vcpu->arch.run_task)) 2903 return true; 2904 } 2905 return false; 2906 } 2907 2908 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2909 { 2910 int still_running = 0, i; 2911 u64 now; 2912 long ret; 2913 struct kvm_vcpu *vcpu; 2914 2915 spin_lock(&vc->lock); 2916 now = get_tb(); 2917 for_each_runnable_thread(i, vcpu, vc) { 2918 /* 2919 * It's safe to unlock the vcore in the loop here, because 2920 * for_each_runnable_thread() is safe against removal of 2921 * the vcpu, and the vcore state is VCORE_EXITING here, 2922 * so any vcpus becoming runnable will have their arch.trap 2923 * set to zero and can't actually run in the guest. 2924 */ 2925 spin_unlock(&vc->lock); 2926 /* cancel pending dec exception if dec is positive */ 2927 if (now < vcpu->arch.dec_expires && 2928 kvmppc_core_pending_dec(vcpu)) 2929 kvmppc_core_dequeue_dec(vcpu); 2930 2931 trace_kvm_guest_exit(vcpu); 2932 2933 ret = RESUME_GUEST; 2934 if (vcpu->arch.trap) 2935 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2936 vcpu->arch.run_task); 2937 2938 vcpu->arch.ret = ret; 2939 vcpu->arch.trap = 0; 2940 2941 spin_lock(&vc->lock); 2942 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2943 if (vcpu->arch.pending_exceptions) 2944 kvmppc_core_prepare_to_enter(vcpu); 2945 if (vcpu->arch.ceded) 2946 kvmppc_set_timer(vcpu); 2947 else 2948 ++still_running; 2949 } else { 2950 kvmppc_remove_runnable(vc, vcpu); 2951 wake_up(&vcpu->arch.cpu_run); 2952 } 2953 } 2954 if (!is_master) { 2955 if (still_running > 0) { 2956 kvmppc_vcore_preempt(vc); 2957 } else if (vc->runner) { 2958 vc->vcore_state = VCORE_PREEMPT; 2959 kvmppc_core_start_stolen(vc); 2960 } else { 2961 vc->vcore_state = VCORE_INACTIVE; 2962 } 2963 if (vc->n_runnable > 0 && vc->runner == NULL) { 2964 /* make sure there's a candidate runner awake */ 2965 i = -1; 2966 vcpu = next_runnable_thread(vc, &i); 2967 wake_up(&vcpu->arch.cpu_run); 2968 } 2969 } 2970 spin_unlock(&vc->lock); 2971 } 2972 2973 /* 2974 * Clear core from the list of active host cores as we are about to 2975 * enter the guest. Only do this if it is the primary thread of the 2976 * core (not if a subcore) that is entering the guest. 2977 */ 2978 static inline int kvmppc_clear_host_core(unsigned int cpu) 2979 { 2980 int core; 2981 2982 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2983 return 0; 2984 /* 2985 * Memory barrier can be omitted here as we will do a smp_wmb() 2986 * later in kvmppc_start_thread and we need ensure that state is 2987 * visible to other CPUs only after we enter guest. 2988 */ 2989 core = cpu >> threads_shift; 2990 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2991 return 0; 2992 } 2993 2994 /* 2995 * Advertise this core as an active host core since we exited the guest 2996 * Only need to do this if it is the primary thread of the core that is 2997 * exiting. 2998 */ 2999 static inline int kvmppc_set_host_core(unsigned int cpu) 3000 { 3001 int core; 3002 3003 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3004 return 0; 3005 3006 /* 3007 * Memory barrier can be omitted here because we do a spin_unlock 3008 * immediately after this which provides the memory barrier. 3009 */ 3010 core = cpu >> threads_shift; 3011 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3012 return 0; 3013 } 3014 3015 static void set_irq_happened(int trap) 3016 { 3017 switch (trap) { 3018 case BOOK3S_INTERRUPT_EXTERNAL: 3019 local_paca->irq_happened |= PACA_IRQ_EE; 3020 break; 3021 case BOOK3S_INTERRUPT_H_DOORBELL: 3022 local_paca->irq_happened |= PACA_IRQ_DBELL; 3023 break; 3024 case BOOK3S_INTERRUPT_HMI: 3025 local_paca->irq_happened |= PACA_IRQ_HMI; 3026 break; 3027 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3028 replay_system_reset(); 3029 break; 3030 } 3031 } 3032 3033 /* 3034 * Run a set of guest threads on a physical core. 3035 * Called with vc->lock held. 3036 */ 3037 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3038 { 3039 struct kvm_vcpu *vcpu; 3040 int i; 3041 int srcu_idx; 3042 struct core_info core_info; 3043 struct kvmppc_vcore *pvc; 3044 struct kvm_split_mode split_info, *sip; 3045 int split, subcore_size, active; 3046 int sub; 3047 bool thr0_done; 3048 unsigned long cmd_bit, stat_bit; 3049 int pcpu, thr; 3050 int target_threads; 3051 int controlled_threads; 3052 int trap; 3053 bool is_power8; 3054 bool hpt_on_radix; 3055 3056 /* 3057 * Remove from the list any threads that have a signal pending 3058 * or need a VPA update done 3059 */ 3060 prepare_threads(vc); 3061 3062 /* if the runner is no longer runnable, let the caller pick a new one */ 3063 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3064 return; 3065 3066 /* 3067 * Initialize *vc. 3068 */ 3069 init_vcore_to_run(vc); 3070 vc->preempt_tb = TB_NIL; 3071 3072 /* 3073 * Number of threads that we will be controlling: the same as 3074 * the number of threads per subcore, except on POWER9, 3075 * where it's 1 because the threads are (mostly) independent. 3076 */ 3077 controlled_threads = threads_per_vcore(vc->kvm); 3078 3079 /* 3080 * Make sure we are running on primary threads, and that secondary 3081 * threads are offline. Also check if the number of threads in this 3082 * guest are greater than the current system threads per guest. 3083 * On POWER9, we need to be not in independent-threads mode if 3084 * this is a HPT guest on a radix host machine where the 3085 * CPU threads may not be in different MMU modes. 3086 */ 3087 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() && 3088 !kvm_is_radix(vc->kvm); 3089 if (((controlled_threads > 1) && 3090 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) || 3091 (hpt_on_radix && vc->kvm->arch.threads_indep)) { 3092 for_each_runnable_thread(i, vcpu, vc) { 3093 vcpu->arch.ret = -EBUSY; 3094 kvmppc_remove_runnable(vc, vcpu); 3095 wake_up(&vcpu->arch.cpu_run); 3096 } 3097 goto out; 3098 } 3099 3100 /* 3101 * See if we could run any other vcores on the physical core 3102 * along with this one. 3103 */ 3104 init_core_info(&core_info, vc); 3105 pcpu = smp_processor_id(); 3106 target_threads = controlled_threads; 3107 if (target_smt_mode && target_smt_mode < target_threads) 3108 target_threads = target_smt_mode; 3109 if (vc->num_threads < target_threads) 3110 collect_piggybacks(&core_info, target_threads); 3111 3112 /* 3113 * On radix, arrange for TLB flushing if necessary. 3114 * This has to be done before disabling interrupts since 3115 * it uses smp_call_function(). 3116 */ 3117 pcpu = smp_processor_id(); 3118 if (kvm_is_radix(vc->kvm)) { 3119 for (sub = 0; sub < core_info.n_subcores; ++sub) 3120 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 3121 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 3122 } 3123 3124 /* 3125 * Hard-disable interrupts, and check resched flag and signals. 3126 * If we need to reschedule or deliver a signal, clean up 3127 * and return without going into the guest(s). 3128 * If the mmu_ready flag has been cleared, don't go into the 3129 * guest because that means a HPT resize operation is in progress. 3130 */ 3131 local_irq_disable(); 3132 hard_irq_disable(); 3133 if (lazy_irq_pending() || need_resched() || 3134 recheck_signals_and_mmu(&core_info)) { 3135 local_irq_enable(); 3136 vc->vcore_state = VCORE_INACTIVE; 3137 /* Unlock all except the primary vcore */ 3138 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3139 pvc = core_info.vc[sub]; 3140 /* Put back on to the preempted vcores list */ 3141 kvmppc_vcore_preempt(pvc); 3142 spin_unlock(&pvc->lock); 3143 } 3144 for (i = 0; i < controlled_threads; ++i) 3145 kvmppc_release_hwthread(pcpu + i); 3146 return; 3147 } 3148 3149 kvmppc_clear_host_core(pcpu); 3150 3151 /* Decide on micro-threading (split-core) mode */ 3152 subcore_size = threads_per_subcore; 3153 cmd_bit = stat_bit = 0; 3154 split = core_info.n_subcores; 3155 sip = NULL; 3156 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 3157 && !cpu_has_feature(CPU_FTR_ARCH_300); 3158 3159 if (split > 1 || hpt_on_radix) { 3160 sip = &split_info; 3161 memset(&split_info, 0, sizeof(split_info)); 3162 for (sub = 0; sub < core_info.n_subcores; ++sub) 3163 split_info.vc[sub] = core_info.vc[sub]; 3164 3165 if (is_power8) { 3166 if (split == 2 && (dynamic_mt_modes & 2)) { 3167 cmd_bit = HID0_POWER8_1TO2LPAR; 3168 stat_bit = HID0_POWER8_2LPARMODE; 3169 } else { 3170 split = 4; 3171 cmd_bit = HID0_POWER8_1TO4LPAR; 3172 stat_bit = HID0_POWER8_4LPARMODE; 3173 } 3174 subcore_size = MAX_SMT_THREADS / split; 3175 split_info.rpr = mfspr(SPRN_RPR); 3176 split_info.pmmar = mfspr(SPRN_PMMAR); 3177 split_info.ldbar = mfspr(SPRN_LDBAR); 3178 split_info.subcore_size = subcore_size; 3179 } else { 3180 split_info.subcore_size = 1; 3181 if (hpt_on_radix) { 3182 /* Use the split_info for LPCR/LPIDR changes */ 3183 split_info.lpcr_req = vc->lpcr; 3184 split_info.lpidr_req = vc->kvm->arch.lpid; 3185 split_info.host_lpcr = vc->kvm->arch.host_lpcr; 3186 split_info.do_set = 1; 3187 } 3188 } 3189 3190 /* order writes to split_info before kvm_split_mode pointer */ 3191 smp_wmb(); 3192 } 3193 3194 for (thr = 0; thr < controlled_threads; ++thr) { 3195 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3196 3197 paca->kvm_hstate.tid = thr; 3198 paca->kvm_hstate.napping = 0; 3199 paca->kvm_hstate.kvm_split_mode = sip; 3200 } 3201 3202 /* Initiate micro-threading (split-core) on POWER8 if required */ 3203 if (cmd_bit) { 3204 unsigned long hid0 = mfspr(SPRN_HID0); 3205 3206 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3207 mb(); 3208 mtspr(SPRN_HID0, hid0); 3209 isync(); 3210 for (;;) { 3211 hid0 = mfspr(SPRN_HID0); 3212 if (hid0 & stat_bit) 3213 break; 3214 cpu_relax(); 3215 } 3216 } 3217 3218 /* 3219 * On POWER8, set RWMR register. 3220 * Since it only affects PURR and SPURR, it doesn't affect 3221 * the host, so we don't save/restore the host value. 3222 */ 3223 if (is_power8) { 3224 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3225 int n_online = atomic_read(&vc->online_count); 3226 3227 /* 3228 * Use the 8-thread value if we're doing split-core 3229 * or if the vcore's online count looks bogus. 3230 */ 3231 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3232 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3233 rwmr_val = p8_rwmr_values[n_online]; 3234 mtspr(SPRN_RWMR, rwmr_val); 3235 } 3236 3237 /* Start all the threads */ 3238 active = 0; 3239 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3240 thr = is_power8 ? subcore_thread_map[sub] : sub; 3241 thr0_done = false; 3242 active |= 1 << thr; 3243 pvc = core_info.vc[sub]; 3244 pvc->pcpu = pcpu + thr; 3245 for_each_runnable_thread(i, vcpu, pvc) { 3246 kvmppc_start_thread(vcpu, pvc); 3247 kvmppc_create_dtl_entry(vcpu, pvc); 3248 trace_kvm_guest_enter(vcpu); 3249 if (!vcpu->arch.ptid) 3250 thr0_done = true; 3251 active |= 1 << (thr + vcpu->arch.ptid); 3252 } 3253 /* 3254 * We need to start the first thread of each subcore 3255 * even if it doesn't have a vcpu. 3256 */ 3257 if (!thr0_done) 3258 kvmppc_start_thread(NULL, pvc); 3259 } 3260 3261 /* 3262 * Ensure that split_info.do_nap is set after setting 3263 * the vcore pointer in the PACA of the secondaries. 3264 */ 3265 smp_mb(); 3266 3267 /* 3268 * When doing micro-threading, poke the inactive threads as well. 3269 * This gets them to the nap instruction after kvm_do_nap, 3270 * which reduces the time taken to unsplit later. 3271 * For POWER9 HPT guest on radix host, we need all the secondary 3272 * threads woken up so they can do the LPCR/LPIDR change. 3273 */ 3274 if (cmd_bit || hpt_on_radix) { 3275 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3276 for (thr = 1; thr < threads_per_subcore; ++thr) 3277 if (!(active & (1 << thr))) 3278 kvmppc_ipi_thread(pcpu + thr); 3279 } 3280 3281 vc->vcore_state = VCORE_RUNNING; 3282 preempt_disable(); 3283 3284 trace_kvmppc_run_core(vc, 0); 3285 3286 for (sub = 0; sub < core_info.n_subcores; ++sub) 3287 spin_unlock(&core_info.vc[sub]->lock); 3288 3289 guest_enter_irqoff(); 3290 3291 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3292 3293 this_cpu_disable_ftrace(); 3294 3295 /* 3296 * Interrupts will be enabled once we get into the guest, 3297 * so tell lockdep that we're about to enable interrupts. 3298 */ 3299 trace_hardirqs_on(); 3300 3301 trap = __kvmppc_vcore_entry(); 3302 3303 trace_hardirqs_off(); 3304 3305 this_cpu_enable_ftrace(); 3306 3307 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3308 3309 set_irq_happened(trap); 3310 3311 spin_lock(&vc->lock); 3312 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3313 vc->vcore_state = VCORE_EXITING; 3314 3315 /* wait for secondary threads to finish writing their state to memory */ 3316 kvmppc_wait_for_nap(controlled_threads); 3317 3318 /* Return to whole-core mode if we split the core earlier */ 3319 if (cmd_bit) { 3320 unsigned long hid0 = mfspr(SPRN_HID0); 3321 unsigned long loops = 0; 3322 3323 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3324 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3325 mb(); 3326 mtspr(SPRN_HID0, hid0); 3327 isync(); 3328 for (;;) { 3329 hid0 = mfspr(SPRN_HID0); 3330 if (!(hid0 & stat_bit)) 3331 break; 3332 cpu_relax(); 3333 ++loops; 3334 } 3335 } else if (hpt_on_radix) { 3336 /* Wait for all threads to have seen final sync */ 3337 for (thr = 1; thr < controlled_threads; ++thr) { 3338 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3339 3340 while (paca->kvm_hstate.kvm_split_mode) { 3341 HMT_low(); 3342 barrier(); 3343 } 3344 HMT_medium(); 3345 } 3346 } 3347 split_info.do_nap = 0; 3348 3349 kvmppc_set_host_core(pcpu); 3350 3351 local_irq_enable(); 3352 guest_exit(); 3353 3354 /* Let secondaries go back to the offline loop */ 3355 for (i = 0; i < controlled_threads; ++i) { 3356 kvmppc_release_hwthread(pcpu + i); 3357 if (sip && sip->napped[i]) 3358 kvmppc_ipi_thread(pcpu + i); 3359 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 3360 } 3361 3362 spin_unlock(&vc->lock); 3363 3364 /* make sure updates to secondary vcpu structs are visible now */ 3365 smp_mb(); 3366 3367 preempt_enable(); 3368 3369 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3370 pvc = core_info.vc[sub]; 3371 post_guest_process(pvc, pvc == vc); 3372 } 3373 3374 spin_lock(&vc->lock); 3375 3376 out: 3377 vc->vcore_state = VCORE_INACTIVE; 3378 trace_kvmppc_run_core(vc, 1); 3379 } 3380 3381 /* 3382 * Load up hypervisor-mode registers on P9. 3383 */ 3384 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit, 3385 unsigned long lpcr) 3386 { 3387 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3388 s64 hdec; 3389 u64 tb, purr, spurr; 3390 int trap; 3391 unsigned long host_hfscr = mfspr(SPRN_HFSCR); 3392 unsigned long host_ciabr = mfspr(SPRN_CIABR); 3393 unsigned long host_dawr = mfspr(SPRN_DAWR); 3394 unsigned long host_dawrx = mfspr(SPRN_DAWRX); 3395 unsigned long host_psscr = mfspr(SPRN_PSSCR); 3396 unsigned long host_pidr = mfspr(SPRN_PID); 3397 3398 hdec = time_limit - mftb(); 3399 if (hdec < 0) 3400 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3401 mtspr(SPRN_HDEC, hdec); 3402 3403 if (vc->tb_offset) { 3404 u64 new_tb = mftb() + vc->tb_offset; 3405 mtspr(SPRN_TBU40, new_tb); 3406 tb = mftb(); 3407 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3408 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3409 vc->tb_offset_applied = vc->tb_offset; 3410 } 3411 3412 if (vc->pcr) 3413 mtspr(SPRN_PCR, vc->pcr); 3414 mtspr(SPRN_DPDES, vc->dpdes); 3415 mtspr(SPRN_VTB, vc->vtb); 3416 3417 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR); 3418 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR); 3419 mtspr(SPRN_PURR, vcpu->arch.purr); 3420 mtspr(SPRN_SPURR, vcpu->arch.spurr); 3421 3422 if (dawr_enabled()) { 3423 mtspr(SPRN_DAWR, vcpu->arch.dawr); 3424 mtspr(SPRN_DAWRX, vcpu->arch.dawrx); 3425 } 3426 mtspr(SPRN_CIABR, vcpu->arch.ciabr); 3427 mtspr(SPRN_IC, vcpu->arch.ic); 3428 mtspr(SPRN_PID, vcpu->arch.pid); 3429 3430 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC | 3431 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3432 3433 mtspr(SPRN_HFSCR, vcpu->arch.hfscr); 3434 3435 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0); 3436 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1); 3437 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2); 3438 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3); 3439 3440 mtspr(SPRN_AMOR, ~0UL); 3441 3442 mtspr(SPRN_LPCR, lpcr); 3443 isync(); 3444 3445 kvmppc_xive_push_vcpu(vcpu); 3446 3447 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0); 3448 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1); 3449 3450 trap = __kvmhv_vcpu_entry_p9(vcpu); 3451 3452 /* Advance host PURR/SPURR by the amount used by guest */ 3453 purr = mfspr(SPRN_PURR); 3454 spurr = mfspr(SPRN_SPURR); 3455 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr + 3456 purr - vcpu->arch.purr); 3457 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr + 3458 spurr - vcpu->arch.spurr); 3459 vcpu->arch.purr = purr; 3460 vcpu->arch.spurr = spurr; 3461 3462 vcpu->arch.ic = mfspr(SPRN_IC); 3463 vcpu->arch.pid = mfspr(SPRN_PID); 3464 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS; 3465 3466 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0); 3467 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1); 3468 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2); 3469 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3); 3470 3471 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */ 3472 mtspr(SPRN_PSSCR, host_psscr | 3473 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3474 mtspr(SPRN_HFSCR, host_hfscr); 3475 mtspr(SPRN_CIABR, host_ciabr); 3476 mtspr(SPRN_DAWR, host_dawr); 3477 mtspr(SPRN_DAWRX, host_dawrx); 3478 mtspr(SPRN_PID, host_pidr); 3479 3480 /* 3481 * Since this is radix, do a eieio; tlbsync; ptesync sequence in 3482 * case we interrupted the guest between a tlbie and a ptesync. 3483 */ 3484 asm volatile("eieio; tlbsync; ptesync"); 3485 3486 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */ 3487 isync(); 3488 3489 vc->dpdes = mfspr(SPRN_DPDES); 3490 vc->vtb = mfspr(SPRN_VTB); 3491 mtspr(SPRN_DPDES, 0); 3492 if (vc->pcr) 3493 mtspr(SPRN_PCR, 0); 3494 3495 if (vc->tb_offset_applied) { 3496 u64 new_tb = mftb() - vc->tb_offset_applied; 3497 mtspr(SPRN_TBU40, new_tb); 3498 tb = mftb(); 3499 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3500 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3501 vc->tb_offset_applied = 0; 3502 } 3503 3504 mtspr(SPRN_HDEC, 0x7fffffff); 3505 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr); 3506 3507 return trap; 3508 } 3509 3510 /* 3511 * Virtual-mode guest entry for POWER9 and later when the host and 3512 * guest are both using the radix MMU. The LPIDR has already been set. 3513 */ 3514 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 3515 unsigned long lpcr) 3516 { 3517 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3518 unsigned long host_dscr = mfspr(SPRN_DSCR); 3519 unsigned long host_tidr = mfspr(SPRN_TIDR); 3520 unsigned long host_iamr = mfspr(SPRN_IAMR); 3521 unsigned long host_amr = mfspr(SPRN_AMR); 3522 s64 dec; 3523 u64 tb; 3524 int trap, save_pmu; 3525 3526 dec = mfspr(SPRN_DEC); 3527 tb = mftb(); 3528 if (dec < 512) 3529 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3530 local_paca->kvm_hstate.dec_expires = dec + tb; 3531 if (local_paca->kvm_hstate.dec_expires < time_limit) 3532 time_limit = local_paca->kvm_hstate.dec_expires; 3533 3534 vcpu->arch.ceded = 0; 3535 3536 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */ 3537 3538 kvmppc_subcore_enter_guest(); 3539 3540 vc->entry_exit_map = 1; 3541 vc->in_guest = 1; 3542 3543 if (vcpu->arch.vpa.pinned_addr) { 3544 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3545 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3546 lp->yield_count = cpu_to_be32(yield_count); 3547 vcpu->arch.vpa.dirty = 1; 3548 } 3549 3550 if (cpu_has_feature(CPU_FTR_TM) || 3551 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3552 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3553 3554 kvmhv_load_guest_pmu(vcpu); 3555 3556 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3557 load_fp_state(&vcpu->arch.fp); 3558 #ifdef CONFIG_ALTIVEC 3559 load_vr_state(&vcpu->arch.vr); 3560 #endif 3561 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 3562 3563 mtspr(SPRN_DSCR, vcpu->arch.dscr); 3564 mtspr(SPRN_IAMR, vcpu->arch.iamr); 3565 mtspr(SPRN_PSPB, vcpu->arch.pspb); 3566 mtspr(SPRN_FSCR, vcpu->arch.fscr); 3567 mtspr(SPRN_TAR, vcpu->arch.tar); 3568 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr); 3569 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr); 3570 mtspr(SPRN_BESCR, vcpu->arch.bescr); 3571 mtspr(SPRN_WORT, vcpu->arch.wort); 3572 mtspr(SPRN_TIDR, vcpu->arch.tid); 3573 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 3574 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 3575 mtspr(SPRN_AMR, vcpu->arch.amr); 3576 mtspr(SPRN_UAMOR, vcpu->arch.uamor); 3577 3578 if (!(vcpu->arch.ctrl & 1)) 3579 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1); 3580 3581 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb()); 3582 3583 if (kvmhv_on_pseries()) { 3584 /* 3585 * We need to save and restore the guest visible part of the 3586 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 3587 * doesn't do this for us. Note only required if pseries since 3588 * this is done in kvmhv_load_hv_regs_and_go() below otherwise. 3589 */ 3590 unsigned long host_psscr; 3591 /* call our hypervisor to load up HV regs and go */ 3592 struct hv_guest_state hvregs; 3593 3594 host_psscr = mfspr(SPRN_PSSCR_PR); 3595 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 3596 kvmhv_save_hv_regs(vcpu, &hvregs); 3597 hvregs.lpcr = lpcr; 3598 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 3599 hvregs.version = HV_GUEST_STATE_VERSION; 3600 if (vcpu->arch.nested) { 3601 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 3602 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 3603 } else { 3604 hvregs.lpid = vcpu->kvm->arch.lpid; 3605 hvregs.vcpu_token = vcpu->vcpu_id; 3606 } 3607 hvregs.hdec_expiry = time_limit; 3608 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 3609 __pa(&vcpu->arch.regs)); 3610 kvmhv_restore_hv_return_state(vcpu, &hvregs); 3611 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 3612 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 3613 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 3614 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 3615 mtspr(SPRN_PSSCR_PR, host_psscr); 3616 3617 /* H_CEDE has to be handled now, not later */ 3618 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 3619 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 3620 kvmppc_nested_cede(vcpu); 3621 trap = 0; 3622 } 3623 } else { 3624 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr); 3625 } 3626 3627 vcpu->arch.slb_max = 0; 3628 dec = mfspr(SPRN_DEC); 3629 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 3630 dec = (s32) dec; 3631 tb = mftb(); 3632 vcpu->arch.dec_expires = dec + tb; 3633 vcpu->cpu = -1; 3634 vcpu->arch.thread_cpu = -1; 3635 vcpu->arch.ctrl = mfspr(SPRN_CTRLF); 3636 3637 vcpu->arch.iamr = mfspr(SPRN_IAMR); 3638 vcpu->arch.pspb = mfspr(SPRN_PSPB); 3639 vcpu->arch.fscr = mfspr(SPRN_FSCR); 3640 vcpu->arch.tar = mfspr(SPRN_TAR); 3641 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR); 3642 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR); 3643 vcpu->arch.bescr = mfspr(SPRN_BESCR); 3644 vcpu->arch.wort = mfspr(SPRN_WORT); 3645 vcpu->arch.tid = mfspr(SPRN_TIDR); 3646 vcpu->arch.amr = mfspr(SPRN_AMR); 3647 vcpu->arch.uamor = mfspr(SPRN_UAMOR); 3648 vcpu->arch.dscr = mfspr(SPRN_DSCR); 3649 3650 mtspr(SPRN_PSPB, 0); 3651 mtspr(SPRN_WORT, 0); 3652 mtspr(SPRN_UAMOR, 0); 3653 mtspr(SPRN_DSCR, host_dscr); 3654 mtspr(SPRN_TIDR, host_tidr); 3655 mtspr(SPRN_IAMR, host_iamr); 3656 mtspr(SPRN_PSPB, 0); 3657 3658 if (host_amr != vcpu->arch.amr) 3659 mtspr(SPRN_AMR, host_amr); 3660 3661 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3662 store_fp_state(&vcpu->arch.fp); 3663 #ifdef CONFIG_ALTIVEC 3664 store_vr_state(&vcpu->arch.vr); 3665 #endif 3666 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 3667 3668 if (cpu_has_feature(CPU_FTR_TM) || 3669 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3670 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3671 3672 save_pmu = 1; 3673 if (vcpu->arch.vpa.pinned_addr) { 3674 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3675 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3676 lp->yield_count = cpu_to_be32(yield_count); 3677 vcpu->arch.vpa.dirty = 1; 3678 save_pmu = lp->pmcregs_in_use; 3679 } 3680 /* Must save pmu if this guest is capable of running nested guests */ 3681 save_pmu |= nesting_enabled(vcpu->kvm); 3682 3683 kvmhv_save_guest_pmu(vcpu, save_pmu); 3684 3685 vc->entry_exit_map = 0x101; 3686 vc->in_guest = 0; 3687 3688 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb()); 3689 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso); 3690 3691 kvmhv_load_host_pmu(); 3692 3693 kvmppc_subcore_exit_guest(); 3694 3695 return trap; 3696 } 3697 3698 /* 3699 * Wait for some other vcpu thread to execute us, and 3700 * wake us up when we need to handle something in the host. 3701 */ 3702 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 3703 struct kvm_vcpu *vcpu, int wait_state) 3704 { 3705 DEFINE_WAIT(wait); 3706 3707 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 3708 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3709 spin_unlock(&vc->lock); 3710 schedule(); 3711 spin_lock(&vc->lock); 3712 } 3713 finish_wait(&vcpu->arch.cpu_run, &wait); 3714 } 3715 3716 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 3717 { 3718 if (!halt_poll_ns_grow) 3719 return; 3720 3721 vc->halt_poll_ns *= halt_poll_ns_grow; 3722 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 3723 vc->halt_poll_ns = halt_poll_ns_grow_start; 3724 } 3725 3726 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 3727 { 3728 if (halt_poll_ns_shrink == 0) 3729 vc->halt_poll_ns = 0; 3730 else 3731 vc->halt_poll_ns /= halt_poll_ns_shrink; 3732 } 3733 3734 #ifdef CONFIG_KVM_XICS 3735 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3736 { 3737 if (!xics_on_xive()) 3738 return false; 3739 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 3740 vcpu->arch.xive_saved_state.cppr; 3741 } 3742 #else 3743 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3744 { 3745 return false; 3746 } 3747 #endif /* CONFIG_KVM_XICS */ 3748 3749 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3750 { 3751 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3752 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3753 return true; 3754 3755 return false; 3756 } 3757 3758 /* 3759 * Check to see if any of the runnable vcpus on the vcore have pending 3760 * exceptions or are no longer ceded 3761 */ 3762 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3763 { 3764 struct kvm_vcpu *vcpu; 3765 int i; 3766 3767 for_each_runnable_thread(i, vcpu, vc) { 3768 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3769 return 1; 3770 } 3771 3772 return 0; 3773 } 3774 3775 /* 3776 * All the vcpus in this vcore are idle, so wait for a decrementer 3777 * or external interrupt to one of the vcpus. vc->lock is held. 3778 */ 3779 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3780 { 3781 ktime_t cur, start_poll, start_wait; 3782 int do_sleep = 1; 3783 u64 block_ns; 3784 DECLARE_SWAITQUEUE(wait); 3785 3786 /* Poll for pending exceptions and ceded state */ 3787 cur = start_poll = ktime_get(); 3788 if (vc->halt_poll_ns) { 3789 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3790 ++vc->runner->stat.halt_attempted_poll; 3791 3792 vc->vcore_state = VCORE_POLLING; 3793 spin_unlock(&vc->lock); 3794 3795 do { 3796 if (kvmppc_vcore_check_block(vc)) { 3797 do_sleep = 0; 3798 break; 3799 } 3800 cur = ktime_get(); 3801 } while (single_task_running() && ktime_before(cur, stop)); 3802 3803 spin_lock(&vc->lock); 3804 vc->vcore_state = VCORE_INACTIVE; 3805 3806 if (!do_sleep) { 3807 ++vc->runner->stat.halt_successful_poll; 3808 goto out; 3809 } 3810 } 3811 3812 prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE); 3813 3814 if (kvmppc_vcore_check_block(vc)) { 3815 finish_swait(&vc->wq, &wait); 3816 do_sleep = 0; 3817 /* If we polled, count this as a successful poll */ 3818 if (vc->halt_poll_ns) 3819 ++vc->runner->stat.halt_successful_poll; 3820 goto out; 3821 } 3822 3823 start_wait = ktime_get(); 3824 3825 vc->vcore_state = VCORE_SLEEPING; 3826 trace_kvmppc_vcore_blocked(vc, 0); 3827 spin_unlock(&vc->lock); 3828 schedule(); 3829 finish_swait(&vc->wq, &wait); 3830 spin_lock(&vc->lock); 3831 vc->vcore_state = VCORE_INACTIVE; 3832 trace_kvmppc_vcore_blocked(vc, 1); 3833 ++vc->runner->stat.halt_successful_wait; 3834 3835 cur = ktime_get(); 3836 3837 out: 3838 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3839 3840 /* Attribute wait time */ 3841 if (do_sleep) { 3842 vc->runner->stat.halt_wait_ns += 3843 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3844 /* Attribute failed poll time */ 3845 if (vc->halt_poll_ns) 3846 vc->runner->stat.halt_poll_fail_ns += 3847 ktime_to_ns(start_wait) - 3848 ktime_to_ns(start_poll); 3849 } else { 3850 /* Attribute successful poll time */ 3851 if (vc->halt_poll_ns) 3852 vc->runner->stat.halt_poll_success_ns += 3853 ktime_to_ns(cur) - 3854 ktime_to_ns(start_poll); 3855 } 3856 3857 /* Adjust poll time */ 3858 if (halt_poll_ns) { 3859 if (block_ns <= vc->halt_poll_ns) 3860 ; 3861 /* We slept and blocked for longer than the max halt time */ 3862 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3863 shrink_halt_poll_ns(vc); 3864 /* We slept and our poll time is too small */ 3865 else if (vc->halt_poll_ns < halt_poll_ns && 3866 block_ns < halt_poll_ns) 3867 grow_halt_poll_ns(vc); 3868 if (vc->halt_poll_ns > halt_poll_ns) 3869 vc->halt_poll_ns = halt_poll_ns; 3870 } else 3871 vc->halt_poll_ns = 0; 3872 3873 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3874 } 3875 3876 /* 3877 * This never fails for a radix guest, as none of the operations it does 3878 * for a radix guest can fail or have a way to report failure. 3879 * kvmhv_run_single_vcpu() relies on this fact. 3880 */ 3881 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 3882 { 3883 int r = 0; 3884 struct kvm *kvm = vcpu->kvm; 3885 3886 mutex_lock(&kvm->arch.mmu_setup_lock); 3887 if (!kvm->arch.mmu_ready) { 3888 if (!kvm_is_radix(kvm)) 3889 r = kvmppc_hv_setup_htab_rma(vcpu); 3890 if (!r) { 3891 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3892 kvmppc_setup_partition_table(kvm); 3893 kvm->arch.mmu_ready = 1; 3894 } 3895 } 3896 mutex_unlock(&kvm->arch.mmu_setup_lock); 3897 return r; 3898 } 3899 3900 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 3901 { 3902 int n_ceded, i, r; 3903 struct kvmppc_vcore *vc; 3904 struct kvm_vcpu *v; 3905 3906 trace_kvmppc_run_vcpu_enter(vcpu); 3907 3908 kvm_run->exit_reason = 0; 3909 vcpu->arch.ret = RESUME_GUEST; 3910 vcpu->arch.trap = 0; 3911 kvmppc_update_vpas(vcpu); 3912 3913 /* 3914 * Synchronize with other threads in this virtual core 3915 */ 3916 vc = vcpu->arch.vcore; 3917 spin_lock(&vc->lock); 3918 vcpu->arch.ceded = 0; 3919 vcpu->arch.run_task = current; 3920 vcpu->arch.kvm_run = kvm_run; 3921 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3922 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3923 vcpu->arch.busy_preempt = TB_NIL; 3924 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 3925 ++vc->n_runnable; 3926 3927 /* 3928 * This happens the first time this is called for a vcpu. 3929 * If the vcore is already running, we may be able to start 3930 * this thread straight away and have it join in. 3931 */ 3932 if (!signal_pending(current)) { 3933 if ((vc->vcore_state == VCORE_PIGGYBACK || 3934 vc->vcore_state == VCORE_RUNNING) && 3935 !VCORE_IS_EXITING(vc)) { 3936 kvmppc_create_dtl_entry(vcpu, vc); 3937 kvmppc_start_thread(vcpu, vc); 3938 trace_kvm_guest_enter(vcpu); 3939 } else if (vc->vcore_state == VCORE_SLEEPING) { 3940 swake_up_one(&vc->wq); 3941 } 3942 3943 } 3944 3945 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3946 !signal_pending(current)) { 3947 /* See if the MMU is ready to go */ 3948 if (!vcpu->kvm->arch.mmu_ready) { 3949 spin_unlock(&vc->lock); 3950 r = kvmhv_setup_mmu(vcpu); 3951 spin_lock(&vc->lock); 3952 if (r) { 3953 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3954 kvm_run->fail_entry. 3955 hardware_entry_failure_reason = 0; 3956 vcpu->arch.ret = r; 3957 break; 3958 } 3959 } 3960 3961 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3962 kvmppc_vcore_end_preempt(vc); 3963 3964 if (vc->vcore_state != VCORE_INACTIVE) { 3965 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 3966 continue; 3967 } 3968 for_each_runnable_thread(i, v, vc) { 3969 kvmppc_core_prepare_to_enter(v); 3970 if (signal_pending(v->arch.run_task)) { 3971 kvmppc_remove_runnable(vc, v); 3972 v->stat.signal_exits++; 3973 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 3974 v->arch.ret = -EINTR; 3975 wake_up(&v->arch.cpu_run); 3976 } 3977 } 3978 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3979 break; 3980 n_ceded = 0; 3981 for_each_runnable_thread(i, v, vc) { 3982 if (!kvmppc_vcpu_woken(v)) 3983 n_ceded += v->arch.ceded; 3984 else 3985 v->arch.ceded = 0; 3986 } 3987 vc->runner = vcpu; 3988 if (n_ceded == vc->n_runnable) { 3989 kvmppc_vcore_blocked(vc); 3990 } else if (need_resched()) { 3991 kvmppc_vcore_preempt(vc); 3992 /* Let something else run */ 3993 cond_resched_lock(&vc->lock); 3994 if (vc->vcore_state == VCORE_PREEMPT) 3995 kvmppc_vcore_end_preempt(vc); 3996 } else { 3997 kvmppc_run_core(vc); 3998 } 3999 vc->runner = NULL; 4000 } 4001 4002 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4003 (vc->vcore_state == VCORE_RUNNING || 4004 vc->vcore_state == VCORE_EXITING || 4005 vc->vcore_state == VCORE_PIGGYBACK)) 4006 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4007 4008 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4009 kvmppc_vcore_end_preempt(vc); 4010 4011 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4012 kvmppc_remove_runnable(vc, vcpu); 4013 vcpu->stat.signal_exits++; 4014 kvm_run->exit_reason = KVM_EXIT_INTR; 4015 vcpu->arch.ret = -EINTR; 4016 } 4017 4018 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4019 /* Wake up some vcpu to run the core */ 4020 i = -1; 4021 v = next_runnable_thread(vc, &i); 4022 wake_up(&v->arch.cpu_run); 4023 } 4024 4025 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 4026 spin_unlock(&vc->lock); 4027 return vcpu->arch.ret; 4028 } 4029 4030 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run, 4031 struct kvm_vcpu *vcpu, u64 time_limit, 4032 unsigned long lpcr) 4033 { 4034 int trap, r, pcpu; 4035 int srcu_idx, lpid; 4036 struct kvmppc_vcore *vc; 4037 struct kvm *kvm = vcpu->kvm; 4038 struct kvm_nested_guest *nested = vcpu->arch.nested; 4039 4040 trace_kvmppc_run_vcpu_enter(vcpu); 4041 4042 kvm_run->exit_reason = 0; 4043 vcpu->arch.ret = RESUME_GUEST; 4044 vcpu->arch.trap = 0; 4045 4046 vc = vcpu->arch.vcore; 4047 vcpu->arch.ceded = 0; 4048 vcpu->arch.run_task = current; 4049 vcpu->arch.kvm_run = kvm_run; 4050 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4051 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4052 vcpu->arch.busy_preempt = TB_NIL; 4053 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4054 vc->runnable_threads[0] = vcpu; 4055 vc->n_runnable = 1; 4056 vc->runner = vcpu; 4057 4058 /* See if the MMU is ready to go */ 4059 if (!kvm->arch.mmu_ready) 4060 kvmhv_setup_mmu(vcpu); 4061 4062 if (need_resched()) 4063 cond_resched(); 4064 4065 kvmppc_update_vpas(vcpu); 4066 4067 init_vcore_to_run(vc); 4068 vc->preempt_tb = TB_NIL; 4069 4070 preempt_disable(); 4071 pcpu = smp_processor_id(); 4072 vc->pcpu = pcpu; 4073 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4074 4075 local_irq_disable(); 4076 hard_irq_disable(); 4077 if (signal_pending(current)) 4078 goto sigpend; 4079 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready) 4080 goto out; 4081 4082 if (!nested) { 4083 kvmppc_core_prepare_to_enter(vcpu); 4084 if (vcpu->arch.doorbell_request) { 4085 vc->dpdes = 1; 4086 smp_wmb(); 4087 vcpu->arch.doorbell_request = 0; 4088 } 4089 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4090 &vcpu->arch.pending_exceptions)) 4091 lpcr |= LPCR_MER; 4092 } else if (vcpu->arch.pending_exceptions || 4093 vcpu->arch.doorbell_request || 4094 xive_interrupt_pending(vcpu)) { 4095 vcpu->arch.ret = RESUME_HOST; 4096 goto out; 4097 } 4098 4099 kvmppc_clear_host_core(pcpu); 4100 4101 local_paca->kvm_hstate.tid = 0; 4102 local_paca->kvm_hstate.napping = 0; 4103 local_paca->kvm_hstate.kvm_split_mode = NULL; 4104 kvmppc_start_thread(vcpu, vc); 4105 kvmppc_create_dtl_entry(vcpu, vc); 4106 trace_kvm_guest_enter(vcpu); 4107 4108 vc->vcore_state = VCORE_RUNNING; 4109 trace_kvmppc_run_core(vc, 0); 4110 4111 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4112 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid; 4113 mtspr(SPRN_LPID, lpid); 4114 isync(); 4115 kvmppc_check_need_tlb_flush(kvm, pcpu, nested); 4116 } 4117 4118 guest_enter_irqoff(); 4119 4120 srcu_idx = srcu_read_lock(&kvm->srcu); 4121 4122 this_cpu_disable_ftrace(); 4123 4124 /* Tell lockdep that we're about to enable interrupts */ 4125 trace_hardirqs_on(); 4126 4127 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr); 4128 vcpu->arch.trap = trap; 4129 4130 trace_hardirqs_off(); 4131 4132 this_cpu_enable_ftrace(); 4133 4134 srcu_read_unlock(&kvm->srcu, srcu_idx); 4135 4136 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4137 mtspr(SPRN_LPID, kvm->arch.host_lpid); 4138 isync(); 4139 } 4140 4141 set_irq_happened(trap); 4142 4143 kvmppc_set_host_core(pcpu); 4144 4145 local_irq_enable(); 4146 guest_exit(); 4147 4148 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest); 4149 4150 preempt_enable(); 4151 4152 /* 4153 * cancel pending decrementer exception if DEC is now positive, or if 4154 * entering a nested guest in which case the decrementer is now owned 4155 * by L2 and the L1 decrementer is provided in hdec_expires 4156 */ 4157 if (kvmppc_core_pending_dec(vcpu) && 4158 ((get_tb() < vcpu->arch.dec_expires) || 4159 (trap == BOOK3S_INTERRUPT_SYSCALL && 4160 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4161 kvmppc_core_dequeue_dec(vcpu); 4162 4163 trace_kvm_guest_exit(vcpu); 4164 r = RESUME_GUEST; 4165 if (trap) { 4166 if (!nested) 4167 r = kvmppc_handle_exit_hv(kvm_run, vcpu, current); 4168 else 4169 r = kvmppc_handle_nested_exit(kvm_run, vcpu); 4170 } 4171 vcpu->arch.ret = r; 4172 4173 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded && 4174 !kvmppc_vcpu_woken(vcpu)) { 4175 kvmppc_set_timer(vcpu); 4176 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) { 4177 if (signal_pending(current)) { 4178 vcpu->stat.signal_exits++; 4179 kvm_run->exit_reason = KVM_EXIT_INTR; 4180 vcpu->arch.ret = -EINTR; 4181 break; 4182 } 4183 spin_lock(&vc->lock); 4184 kvmppc_vcore_blocked(vc); 4185 spin_unlock(&vc->lock); 4186 } 4187 } 4188 vcpu->arch.ceded = 0; 4189 4190 vc->vcore_state = VCORE_INACTIVE; 4191 trace_kvmppc_run_core(vc, 1); 4192 4193 done: 4194 kvmppc_remove_runnable(vc, vcpu); 4195 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 4196 4197 return vcpu->arch.ret; 4198 4199 sigpend: 4200 vcpu->stat.signal_exits++; 4201 kvm_run->exit_reason = KVM_EXIT_INTR; 4202 vcpu->arch.ret = -EINTR; 4203 out: 4204 local_irq_enable(); 4205 preempt_enable(); 4206 goto done; 4207 } 4208 4209 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 4210 { 4211 int r; 4212 int srcu_idx; 4213 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 4214 unsigned long user_tar = 0; 4215 unsigned int user_vrsave; 4216 struct kvm *kvm; 4217 4218 if (!vcpu->arch.sane) { 4219 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4220 return -EINVAL; 4221 } 4222 4223 /* 4224 * Don't allow entry with a suspended transaction, because 4225 * the guest entry/exit code will lose it. 4226 * If the guest has TM enabled, save away their TM-related SPRs 4227 * (they will get restored by the TM unavailable interrupt). 4228 */ 4229 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4230 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4231 (current->thread.regs->msr & MSR_TM)) { 4232 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4233 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4234 run->fail_entry.hardware_entry_failure_reason = 0; 4235 return -EINVAL; 4236 } 4237 /* Enable TM so we can read the TM SPRs */ 4238 mtmsr(mfmsr() | MSR_TM); 4239 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 4240 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 4241 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 4242 current->thread.regs->msr &= ~MSR_TM; 4243 } 4244 #endif 4245 4246 /* 4247 * Force online to 1 for the sake of old userspace which doesn't 4248 * set it. 4249 */ 4250 if (!vcpu->arch.online) { 4251 atomic_inc(&vcpu->arch.vcore->online_count); 4252 vcpu->arch.online = 1; 4253 } 4254 4255 kvmppc_core_prepare_to_enter(vcpu); 4256 4257 /* No need to go into the guest when all we'll do is come back out */ 4258 if (signal_pending(current)) { 4259 run->exit_reason = KVM_EXIT_INTR; 4260 return -EINTR; 4261 } 4262 4263 kvm = vcpu->kvm; 4264 atomic_inc(&kvm->arch.vcpus_running); 4265 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4266 smp_mb(); 4267 4268 flush_all_to_thread(current); 4269 4270 /* Save userspace EBB and other register values */ 4271 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4272 ebb_regs[0] = mfspr(SPRN_EBBHR); 4273 ebb_regs[1] = mfspr(SPRN_EBBRR); 4274 ebb_regs[2] = mfspr(SPRN_BESCR); 4275 user_tar = mfspr(SPRN_TAR); 4276 } 4277 user_vrsave = mfspr(SPRN_VRSAVE); 4278 4279 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 4280 vcpu->arch.pgdir = current->mm->pgd; 4281 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4282 4283 do { 4284 /* 4285 * The early POWER9 chips that can't mix radix and HPT threads 4286 * on the same core also need the workaround for the problem 4287 * where the TLB would prefetch entries in the guest exit path 4288 * for radix guests using the guest PIDR value and LPID 0. 4289 * The workaround is in the old path (kvmppc_run_vcpu()) 4290 * but not the new path (kvmhv_run_single_vcpu()). 4291 */ 4292 if (kvm->arch.threads_indep && kvm_is_radix(kvm) && 4293 !no_mixing_hpt_and_radix) 4294 r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0, 4295 vcpu->arch.vcore->lpcr); 4296 else 4297 r = kvmppc_run_vcpu(run, vcpu); 4298 4299 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 4300 !(vcpu->arch.shregs.msr & MSR_PR)) { 4301 trace_kvm_hcall_enter(vcpu); 4302 r = kvmppc_pseries_do_hcall(vcpu); 4303 trace_kvm_hcall_exit(vcpu, r); 4304 kvmppc_core_prepare_to_enter(vcpu); 4305 } else if (r == RESUME_PAGE_FAULT) { 4306 srcu_idx = srcu_read_lock(&kvm->srcu); 4307 r = kvmppc_book3s_hv_page_fault(run, vcpu, 4308 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4309 srcu_read_unlock(&kvm->srcu, srcu_idx); 4310 } else if (r == RESUME_PASSTHROUGH) { 4311 if (WARN_ON(xics_on_xive())) 4312 r = H_SUCCESS; 4313 else 4314 r = kvmppc_xics_rm_complete(vcpu, 0); 4315 } 4316 } while (is_kvmppc_resume_guest(r)); 4317 4318 /* Restore userspace EBB and other register values */ 4319 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4320 mtspr(SPRN_EBBHR, ebb_regs[0]); 4321 mtspr(SPRN_EBBRR, ebb_regs[1]); 4322 mtspr(SPRN_BESCR, ebb_regs[2]); 4323 mtspr(SPRN_TAR, user_tar); 4324 mtspr(SPRN_FSCR, current->thread.fscr); 4325 } 4326 mtspr(SPRN_VRSAVE, user_vrsave); 4327 4328 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4329 atomic_dec(&kvm->arch.vcpus_running); 4330 return r; 4331 } 4332 4333 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4334 int shift, int sllp) 4335 { 4336 (*sps)->page_shift = shift; 4337 (*sps)->slb_enc = sllp; 4338 (*sps)->enc[0].page_shift = shift; 4339 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4340 /* 4341 * Add 16MB MPSS support (may get filtered out by userspace) 4342 */ 4343 if (shift != 24) { 4344 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4345 if (penc != -1) { 4346 (*sps)->enc[1].page_shift = 24; 4347 (*sps)->enc[1].pte_enc = penc; 4348 } 4349 } 4350 (*sps)++; 4351 } 4352 4353 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4354 struct kvm_ppc_smmu_info *info) 4355 { 4356 struct kvm_ppc_one_seg_page_size *sps; 4357 4358 /* 4359 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4360 * POWER7 doesn't support keys for instruction accesses, 4361 * POWER8 and POWER9 do. 4362 */ 4363 info->data_keys = 32; 4364 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4365 4366 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4367 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4368 info->slb_size = 32; 4369 4370 /* We only support these sizes for now, and no muti-size segments */ 4371 sps = &info->sps[0]; 4372 kvmppc_add_seg_page_size(&sps, 12, 0); 4373 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4374 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4375 4376 /* If running as a nested hypervisor, we don't support HPT guests */ 4377 if (kvmhv_on_pseries()) 4378 info->flags |= KVM_PPC_NO_HASH; 4379 4380 return 0; 4381 } 4382 4383 /* 4384 * Get (and clear) the dirty memory log for a memory slot. 4385 */ 4386 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4387 struct kvm_dirty_log *log) 4388 { 4389 struct kvm_memslots *slots; 4390 struct kvm_memory_slot *memslot; 4391 int i, r; 4392 unsigned long n; 4393 unsigned long *buf, *p; 4394 struct kvm_vcpu *vcpu; 4395 4396 mutex_lock(&kvm->slots_lock); 4397 4398 r = -EINVAL; 4399 if (log->slot >= KVM_USER_MEM_SLOTS) 4400 goto out; 4401 4402 slots = kvm_memslots(kvm); 4403 memslot = id_to_memslot(slots, log->slot); 4404 r = -ENOENT; 4405 if (!memslot->dirty_bitmap) 4406 goto out; 4407 4408 /* 4409 * Use second half of bitmap area because both HPT and radix 4410 * accumulate bits in the first half. 4411 */ 4412 n = kvm_dirty_bitmap_bytes(memslot); 4413 buf = memslot->dirty_bitmap + n / sizeof(long); 4414 memset(buf, 0, n); 4415 4416 if (kvm_is_radix(kvm)) 4417 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4418 else 4419 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4420 if (r) 4421 goto out; 4422 4423 /* 4424 * We accumulate dirty bits in the first half of the 4425 * memslot's dirty_bitmap area, for when pages are paged 4426 * out or modified by the host directly. Pick up these 4427 * bits and add them to the map. 4428 */ 4429 p = memslot->dirty_bitmap; 4430 for (i = 0; i < n / sizeof(long); ++i) 4431 buf[i] |= xchg(&p[i], 0); 4432 4433 /* Harvest dirty bits from VPA and DTL updates */ 4434 /* Note: we never modify the SLB shadow buffer areas */ 4435 kvm_for_each_vcpu(i, vcpu, kvm) { 4436 spin_lock(&vcpu->arch.vpa_update_lock); 4437 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4438 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4439 spin_unlock(&vcpu->arch.vpa_update_lock); 4440 } 4441 4442 r = -EFAULT; 4443 if (copy_to_user(log->dirty_bitmap, buf, n)) 4444 goto out; 4445 4446 r = 0; 4447 out: 4448 mutex_unlock(&kvm->slots_lock); 4449 return r; 4450 } 4451 4452 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 4453 struct kvm_memory_slot *dont) 4454 { 4455 if (!dont || free->arch.rmap != dont->arch.rmap) { 4456 vfree(free->arch.rmap); 4457 free->arch.rmap = NULL; 4458 } 4459 } 4460 4461 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 4462 unsigned long npages) 4463 { 4464 slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap))); 4465 if (!slot->arch.rmap) 4466 return -ENOMEM; 4467 4468 return 0; 4469 } 4470 4471 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 4472 struct kvm_memory_slot *memslot, 4473 const struct kvm_userspace_memory_region *mem) 4474 { 4475 return 0; 4476 } 4477 4478 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 4479 const struct kvm_userspace_memory_region *mem, 4480 const struct kvm_memory_slot *old, 4481 const struct kvm_memory_slot *new, 4482 enum kvm_mr_change change) 4483 { 4484 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4485 4486 /* 4487 * If we are making a new memslot, it might make 4488 * some address that was previously cached as emulated 4489 * MMIO be no longer emulated MMIO, so invalidate 4490 * all the caches of emulated MMIO translations. 4491 */ 4492 if (npages) 4493 atomic64_inc(&kvm->arch.mmio_update); 4494 4495 /* 4496 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 4497 * have already called kvm_arch_flush_shadow_memslot() to 4498 * flush shadow mappings. For KVM_MR_CREATE we have no 4499 * previous mappings. So the only case to handle is 4500 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 4501 * has been changed. 4502 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 4503 * to get rid of any THP PTEs in the partition-scoped page tables 4504 * so we can track dirtiness at the page level; we flush when 4505 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 4506 * using THP PTEs. 4507 */ 4508 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 4509 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 4510 kvmppc_radix_flush_memslot(kvm, old); 4511 } 4512 4513 /* 4514 * Update LPCR values in kvm->arch and in vcores. 4515 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 4516 * of kvm->arch.lpcr update). 4517 */ 4518 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 4519 { 4520 long int i; 4521 u32 cores_done = 0; 4522 4523 if ((kvm->arch.lpcr & mask) == lpcr) 4524 return; 4525 4526 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 4527 4528 for (i = 0; i < KVM_MAX_VCORES; ++i) { 4529 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 4530 if (!vc) 4531 continue; 4532 spin_lock(&vc->lock); 4533 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 4534 spin_unlock(&vc->lock); 4535 if (++cores_done >= kvm->arch.online_vcores) 4536 break; 4537 } 4538 } 4539 4540 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 4541 { 4542 return; 4543 } 4544 4545 void kvmppc_setup_partition_table(struct kvm *kvm) 4546 { 4547 unsigned long dw0, dw1; 4548 4549 if (!kvm_is_radix(kvm)) { 4550 /* PS field - page size for VRMA */ 4551 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 4552 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 4553 /* HTABSIZE and HTABORG fields */ 4554 dw0 |= kvm->arch.sdr1; 4555 4556 /* Second dword as set by userspace */ 4557 dw1 = kvm->arch.process_table; 4558 } else { 4559 dw0 = PATB_HR | radix__get_tree_size() | 4560 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 4561 dw1 = PATB_GR | kvm->arch.process_table; 4562 } 4563 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 4564 } 4565 4566 /* 4567 * Set up HPT (hashed page table) and RMA (real-mode area). 4568 * Must be called with kvm->arch.mmu_setup_lock held. 4569 */ 4570 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 4571 { 4572 int err = 0; 4573 struct kvm *kvm = vcpu->kvm; 4574 unsigned long hva; 4575 struct kvm_memory_slot *memslot; 4576 struct vm_area_struct *vma; 4577 unsigned long lpcr = 0, senc; 4578 unsigned long psize, porder; 4579 int srcu_idx; 4580 4581 /* Allocate hashed page table (if not done already) and reset it */ 4582 if (!kvm->arch.hpt.virt) { 4583 int order = KVM_DEFAULT_HPT_ORDER; 4584 struct kvm_hpt_info info; 4585 4586 err = kvmppc_allocate_hpt(&info, order); 4587 /* If we get here, it means userspace didn't specify a 4588 * size explicitly. So, try successively smaller 4589 * sizes if the default failed. */ 4590 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 4591 err = kvmppc_allocate_hpt(&info, order); 4592 4593 if (err < 0) { 4594 pr_err("KVM: Couldn't alloc HPT\n"); 4595 goto out; 4596 } 4597 4598 kvmppc_set_hpt(kvm, &info); 4599 } 4600 4601 /* Look up the memslot for guest physical address 0 */ 4602 srcu_idx = srcu_read_lock(&kvm->srcu); 4603 memslot = gfn_to_memslot(kvm, 0); 4604 4605 /* We must have some memory at 0 by now */ 4606 err = -EINVAL; 4607 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 4608 goto out_srcu; 4609 4610 /* Look up the VMA for the start of this memory slot */ 4611 hva = memslot->userspace_addr; 4612 down_read(¤t->mm->mmap_sem); 4613 vma = find_vma(current->mm, hva); 4614 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 4615 goto up_out; 4616 4617 psize = vma_kernel_pagesize(vma); 4618 4619 up_read(¤t->mm->mmap_sem); 4620 4621 /* We can handle 4k, 64k or 16M pages in the VRMA */ 4622 if (psize >= 0x1000000) 4623 psize = 0x1000000; 4624 else if (psize >= 0x10000) 4625 psize = 0x10000; 4626 else 4627 psize = 0x1000; 4628 porder = __ilog2(psize); 4629 4630 senc = slb_pgsize_encoding(psize); 4631 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 4632 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4633 /* Create HPTEs in the hash page table for the VRMA */ 4634 kvmppc_map_vrma(vcpu, memslot, porder); 4635 4636 /* Update VRMASD field in the LPCR */ 4637 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 4638 /* the -4 is to account for senc values starting at 0x10 */ 4639 lpcr = senc << (LPCR_VRMASD_SH - 4); 4640 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 4641 } 4642 4643 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 4644 smp_wmb(); 4645 err = 0; 4646 out_srcu: 4647 srcu_read_unlock(&kvm->srcu, srcu_idx); 4648 out: 4649 return err; 4650 4651 up_out: 4652 up_read(¤t->mm->mmap_sem); 4653 goto out_srcu; 4654 } 4655 4656 /* 4657 * Must be called with kvm->arch.mmu_setup_lock held and 4658 * mmu_ready = 0 and no vcpus running. 4659 */ 4660 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 4661 { 4662 if (nesting_enabled(kvm)) 4663 kvmhv_release_all_nested(kvm); 4664 kvmppc_rmap_reset(kvm); 4665 kvm->arch.process_table = 0; 4666 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4667 spin_lock(&kvm->mmu_lock); 4668 kvm->arch.radix = 0; 4669 spin_unlock(&kvm->mmu_lock); 4670 kvmppc_free_radix(kvm); 4671 kvmppc_update_lpcr(kvm, LPCR_VPM1, 4672 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4673 return 0; 4674 } 4675 4676 /* 4677 * Must be called with kvm->arch.mmu_setup_lock held and 4678 * mmu_ready = 0 and no vcpus running. 4679 */ 4680 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 4681 { 4682 int err; 4683 4684 err = kvmppc_init_vm_radix(kvm); 4685 if (err) 4686 return err; 4687 kvmppc_rmap_reset(kvm); 4688 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4689 spin_lock(&kvm->mmu_lock); 4690 kvm->arch.radix = 1; 4691 spin_unlock(&kvm->mmu_lock); 4692 kvmppc_free_hpt(&kvm->arch.hpt); 4693 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 4694 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4695 return 0; 4696 } 4697 4698 #ifdef CONFIG_KVM_XICS 4699 /* 4700 * Allocate a per-core structure for managing state about which cores are 4701 * running in the host versus the guest and for exchanging data between 4702 * real mode KVM and CPU running in the host. 4703 * This is only done for the first VM. 4704 * The allocated structure stays even if all VMs have stopped. 4705 * It is only freed when the kvm-hv module is unloaded. 4706 * It's OK for this routine to fail, we just don't support host 4707 * core operations like redirecting H_IPI wakeups. 4708 */ 4709 void kvmppc_alloc_host_rm_ops(void) 4710 { 4711 struct kvmppc_host_rm_ops *ops; 4712 unsigned long l_ops; 4713 int cpu, core; 4714 int size; 4715 4716 /* Not the first time here ? */ 4717 if (kvmppc_host_rm_ops_hv != NULL) 4718 return; 4719 4720 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 4721 if (!ops) 4722 return; 4723 4724 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 4725 ops->rm_core = kzalloc(size, GFP_KERNEL); 4726 4727 if (!ops->rm_core) { 4728 kfree(ops); 4729 return; 4730 } 4731 4732 cpus_read_lock(); 4733 4734 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 4735 if (!cpu_online(cpu)) 4736 continue; 4737 4738 core = cpu >> threads_shift; 4739 ops->rm_core[core].rm_state.in_host = 1; 4740 } 4741 4742 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 4743 4744 /* 4745 * Make the contents of the kvmppc_host_rm_ops structure visible 4746 * to other CPUs before we assign it to the global variable. 4747 * Do an atomic assignment (no locks used here), but if someone 4748 * beats us to it, just free our copy and return. 4749 */ 4750 smp_wmb(); 4751 l_ops = (unsigned long) ops; 4752 4753 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 4754 cpus_read_unlock(); 4755 kfree(ops->rm_core); 4756 kfree(ops); 4757 return; 4758 } 4759 4760 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 4761 "ppc/kvm_book3s:prepare", 4762 kvmppc_set_host_core, 4763 kvmppc_clear_host_core); 4764 cpus_read_unlock(); 4765 } 4766 4767 void kvmppc_free_host_rm_ops(void) 4768 { 4769 if (kvmppc_host_rm_ops_hv) { 4770 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 4771 kfree(kvmppc_host_rm_ops_hv->rm_core); 4772 kfree(kvmppc_host_rm_ops_hv); 4773 kvmppc_host_rm_ops_hv = NULL; 4774 } 4775 } 4776 #endif 4777 4778 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 4779 { 4780 unsigned long lpcr, lpid; 4781 char buf[32]; 4782 int ret; 4783 4784 mutex_init(&kvm->arch.mmu_setup_lock); 4785 4786 /* Allocate the guest's logical partition ID */ 4787 4788 lpid = kvmppc_alloc_lpid(); 4789 if ((long)lpid < 0) 4790 return -ENOMEM; 4791 kvm->arch.lpid = lpid; 4792 4793 kvmppc_alloc_host_rm_ops(); 4794 4795 kvmhv_vm_nested_init(kvm); 4796 4797 /* 4798 * Since we don't flush the TLB when tearing down a VM, 4799 * and this lpid might have previously been used, 4800 * make sure we flush on each core before running the new VM. 4801 * On POWER9, the tlbie in mmu_partition_table_set_entry() 4802 * does this flush for us. 4803 */ 4804 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4805 cpumask_setall(&kvm->arch.need_tlb_flush); 4806 4807 /* Start out with the default set of hcalls enabled */ 4808 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 4809 sizeof(kvm->arch.enabled_hcalls)); 4810 4811 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4812 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 4813 4814 /* Init LPCR for virtual RMA mode */ 4815 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4816 kvm->arch.host_lpid = mfspr(SPRN_LPID); 4817 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 4818 lpcr &= LPCR_PECE | LPCR_LPES; 4819 } else { 4820 lpcr = 0; 4821 } 4822 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 4823 LPCR_VPM0 | LPCR_VPM1; 4824 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 4825 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4826 /* On POWER8 turn on online bit to enable PURR/SPURR */ 4827 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4828 lpcr |= LPCR_ONL; 4829 /* 4830 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 4831 * Set HVICE bit to enable hypervisor virtualization interrupts. 4832 * Set HEIC to prevent OS interrupts to go to hypervisor (should 4833 * be unnecessary but better safe than sorry in case we re-enable 4834 * EE in HV mode with this LPCR still set) 4835 */ 4836 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4837 lpcr &= ~LPCR_VPM0; 4838 lpcr |= LPCR_HVICE | LPCR_HEIC; 4839 4840 /* 4841 * If xive is enabled, we route 0x500 interrupts directly 4842 * to the guest. 4843 */ 4844 if (xics_on_xive()) 4845 lpcr |= LPCR_LPES; 4846 } 4847 4848 /* 4849 * If the host uses radix, the guest starts out as radix. 4850 */ 4851 if (radix_enabled()) { 4852 kvm->arch.radix = 1; 4853 kvm->arch.mmu_ready = 1; 4854 lpcr &= ~LPCR_VPM1; 4855 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 4856 ret = kvmppc_init_vm_radix(kvm); 4857 if (ret) { 4858 kvmppc_free_lpid(kvm->arch.lpid); 4859 return ret; 4860 } 4861 kvmppc_setup_partition_table(kvm); 4862 } 4863 4864 kvm->arch.lpcr = lpcr; 4865 4866 /* Initialization for future HPT resizes */ 4867 kvm->arch.resize_hpt = NULL; 4868 4869 /* 4870 * Work out how many sets the TLB has, for the use of 4871 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 4872 */ 4873 if (radix_enabled()) 4874 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 4875 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 4876 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 4877 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4878 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 4879 else 4880 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 4881 4882 /* 4883 * Track that we now have a HV mode VM active. This blocks secondary 4884 * CPU threads from coming online. 4885 * On POWER9, we only need to do this if the "indep_threads_mode" 4886 * module parameter has been set to N. 4887 */ 4888 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4889 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) { 4890 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n"); 4891 kvm->arch.threads_indep = true; 4892 } else { 4893 kvm->arch.threads_indep = indep_threads_mode; 4894 } 4895 } 4896 if (!kvm->arch.threads_indep) 4897 kvm_hv_vm_activated(); 4898 4899 /* 4900 * Initialize smt_mode depending on processor. 4901 * POWER8 and earlier have to use "strict" threading, where 4902 * all vCPUs in a vcore have to run on the same (sub)core, 4903 * whereas on POWER9 the threads can each run a different 4904 * guest. 4905 */ 4906 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4907 kvm->arch.smt_mode = threads_per_subcore; 4908 else 4909 kvm->arch.smt_mode = 1; 4910 kvm->arch.emul_smt_mode = 1; 4911 4912 /* 4913 * Create a debugfs directory for the VM 4914 */ 4915 snprintf(buf, sizeof(buf), "vm%d", current->pid); 4916 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 4917 kvmppc_mmu_debugfs_init(kvm); 4918 if (radix_enabled()) 4919 kvmhv_radix_debugfs_init(kvm); 4920 4921 return 0; 4922 } 4923 4924 static void kvmppc_free_vcores(struct kvm *kvm) 4925 { 4926 long int i; 4927 4928 for (i = 0; i < KVM_MAX_VCORES; ++i) 4929 kfree(kvm->arch.vcores[i]); 4930 kvm->arch.online_vcores = 0; 4931 } 4932 4933 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 4934 { 4935 debugfs_remove_recursive(kvm->arch.debugfs_dir); 4936 4937 if (!kvm->arch.threads_indep) 4938 kvm_hv_vm_deactivated(); 4939 4940 kvmppc_free_vcores(kvm); 4941 4942 4943 if (kvm_is_radix(kvm)) 4944 kvmppc_free_radix(kvm); 4945 else 4946 kvmppc_free_hpt(&kvm->arch.hpt); 4947 4948 /* Perform global invalidation and return lpid to the pool */ 4949 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4950 if (nesting_enabled(kvm)) 4951 kvmhv_release_all_nested(kvm); 4952 kvm->arch.process_table = 0; 4953 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 4954 } 4955 kvmppc_free_lpid(kvm->arch.lpid); 4956 4957 kvmppc_free_pimap(kvm); 4958 } 4959 4960 /* We don't need to emulate any privileged instructions or dcbz */ 4961 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 4962 unsigned int inst, int *advance) 4963 { 4964 return EMULATE_FAIL; 4965 } 4966 4967 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 4968 ulong spr_val) 4969 { 4970 return EMULATE_FAIL; 4971 } 4972 4973 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 4974 ulong *spr_val) 4975 { 4976 return EMULATE_FAIL; 4977 } 4978 4979 static int kvmppc_core_check_processor_compat_hv(void) 4980 { 4981 if (cpu_has_feature(CPU_FTR_HVMODE) && 4982 cpu_has_feature(CPU_FTR_ARCH_206)) 4983 return 0; 4984 4985 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 4986 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 4987 return 0; 4988 4989 return -EIO; 4990 } 4991 4992 #ifdef CONFIG_KVM_XICS 4993 4994 void kvmppc_free_pimap(struct kvm *kvm) 4995 { 4996 kfree(kvm->arch.pimap); 4997 } 4998 4999 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5000 { 5001 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5002 } 5003 5004 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5005 { 5006 struct irq_desc *desc; 5007 struct kvmppc_irq_map *irq_map; 5008 struct kvmppc_passthru_irqmap *pimap; 5009 struct irq_chip *chip; 5010 int i, rc = 0; 5011 5012 if (!kvm_irq_bypass) 5013 return 1; 5014 5015 desc = irq_to_desc(host_irq); 5016 if (!desc) 5017 return -EIO; 5018 5019 mutex_lock(&kvm->lock); 5020 5021 pimap = kvm->arch.pimap; 5022 if (pimap == NULL) { 5023 /* First call, allocate structure to hold IRQ map */ 5024 pimap = kvmppc_alloc_pimap(); 5025 if (pimap == NULL) { 5026 mutex_unlock(&kvm->lock); 5027 return -ENOMEM; 5028 } 5029 kvm->arch.pimap = pimap; 5030 } 5031 5032 /* 5033 * For now, we only support interrupts for which the EOI operation 5034 * is an OPAL call followed by a write to XIRR, since that's 5035 * what our real-mode EOI code does, or a XIVE interrupt 5036 */ 5037 chip = irq_data_get_irq_chip(&desc->irq_data); 5038 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 5039 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5040 host_irq, guest_gsi); 5041 mutex_unlock(&kvm->lock); 5042 return -ENOENT; 5043 } 5044 5045 /* 5046 * See if we already have an entry for this guest IRQ number. 5047 * If it's mapped to a hardware IRQ number, that's an error, 5048 * otherwise re-use this entry. 5049 */ 5050 for (i = 0; i < pimap->n_mapped; i++) { 5051 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5052 if (pimap->mapped[i].r_hwirq) { 5053 mutex_unlock(&kvm->lock); 5054 return -EINVAL; 5055 } 5056 break; 5057 } 5058 } 5059 5060 if (i == KVMPPC_PIRQ_MAPPED) { 5061 mutex_unlock(&kvm->lock); 5062 return -EAGAIN; /* table is full */ 5063 } 5064 5065 irq_map = &pimap->mapped[i]; 5066 5067 irq_map->v_hwirq = guest_gsi; 5068 irq_map->desc = desc; 5069 5070 /* 5071 * Order the above two stores before the next to serialize with 5072 * the KVM real mode handler. 5073 */ 5074 smp_wmb(); 5075 irq_map->r_hwirq = desc->irq_data.hwirq; 5076 5077 if (i == pimap->n_mapped) 5078 pimap->n_mapped++; 5079 5080 if (xics_on_xive()) 5081 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 5082 else 5083 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 5084 if (rc) 5085 irq_map->r_hwirq = 0; 5086 5087 mutex_unlock(&kvm->lock); 5088 5089 return 0; 5090 } 5091 5092 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5093 { 5094 struct irq_desc *desc; 5095 struct kvmppc_passthru_irqmap *pimap; 5096 int i, rc = 0; 5097 5098 if (!kvm_irq_bypass) 5099 return 0; 5100 5101 desc = irq_to_desc(host_irq); 5102 if (!desc) 5103 return -EIO; 5104 5105 mutex_lock(&kvm->lock); 5106 if (!kvm->arch.pimap) 5107 goto unlock; 5108 5109 pimap = kvm->arch.pimap; 5110 5111 for (i = 0; i < pimap->n_mapped; i++) { 5112 if (guest_gsi == pimap->mapped[i].v_hwirq) 5113 break; 5114 } 5115 5116 if (i == pimap->n_mapped) { 5117 mutex_unlock(&kvm->lock); 5118 return -ENODEV; 5119 } 5120 5121 if (xics_on_xive()) 5122 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 5123 else 5124 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5125 5126 /* invalidate the entry (what do do on error from the above ?) */ 5127 pimap->mapped[i].r_hwirq = 0; 5128 5129 /* 5130 * We don't free this structure even when the count goes to 5131 * zero. The structure is freed when we destroy the VM. 5132 */ 5133 unlock: 5134 mutex_unlock(&kvm->lock); 5135 return rc; 5136 } 5137 5138 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5139 struct irq_bypass_producer *prod) 5140 { 5141 int ret = 0; 5142 struct kvm_kernel_irqfd *irqfd = 5143 container_of(cons, struct kvm_kernel_irqfd, consumer); 5144 5145 irqfd->producer = prod; 5146 5147 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5148 if (ret) 5149 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5150 prod->irq, irqfd->gsi, ret); 5151 5152 return ret; 5153 } 5154 5155 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5156 struct irq_bypass_producer *prod) 5157 { 5158 int ret; 5159 struct kvm_kernel_irqfd *irqfd = 5160 container_of(cons, struct kvm_kernel_irqfd, consumer); 5161 5162 irqfd->producer = NULL; 5163 5164 /* 5165 * When producer of consumer is unregistered, we change back to 5166 * default external interrupt handling mode - KVM real mode 5167 * will switch back to host. 5168 */ 5169 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5170 if (ret) 5171 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5172 prod->irq, irqfd->gsi, ret); 5173 } 5174 #endif 5175 5176 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5177 unsigned int ioctl, unsigned long arg) 5178 { 5179 struct kvm *kvm __maybe_unused = filp->private_data; 5180 void __user *argp = (void __user *)arg; 5181 long r; 5182 5183 switch (ioctl) { 5184 5185 case KVM_PPC_ALLOCATE_HTAB: { 5186 u32 htab_order; 5187 5188 r = -EFAULT; 5189 if (get_user(htab_order, (u32 __user *)argp)) 5190 break; 5191 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5192 if (r) 5193 break; 5194 r = 0; 5195 break; 5196 } 5197 5198 case KVM_PPC_GET_HTAB_FD: { 5199 struct kvm_get_htab_fd ghf; 5200 5201 r = -EFAULT; 5202 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5203 break; 5204 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5205 break; 5206 } 5207 5208 case KVM_PPC_RESIZE_HPT_PREPARE: { 5209 struct kvm_ppc_resize_hpt rhpt; 5210 5211 r = -EFAULT; 5212 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5213 break; 5214 5215 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5216 break; 5217 } 5218 5219 case KVM_PPC_RESIZE_HPT_COMMIT: { 5220 struct kvm_ppc_resize_hpt rhpt; 5221 5222 r = -EFAULT; 5223 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5224 break; 5225 5226 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5227 break; 5228 } 5229 5230 default: 5231 r = -ENOTTY; 5232 } 5233 5234 return r; 5235 } 5236 5237 /* 5238 * List of hcall numbers to enable by default. 5239 * For compatibility with old userspace, we enable by default 5240 * all hcalls that were implemented before the hcall-enabling 5241 * facility was added. Note this list should not include H_RTAS. 5242 */ 5243 static unsigned int default_hcall_list[] = { 5244 H_REMOVE, 5245 H_ENTER, 5246 H_READ, 5247 H_PROTECT, 5248 H_BULK_REMOVE, 5249 H_GET_TCE, 5250 H_PUT_TCE, 5251 H_SET_DABR, 5252 H_SET_XDABR, 5253 H_CEDE, 5254 H_PROD, 5255 H_CONFER, 5256 H_REGISTER_VPA, 5257 #ifdef CONFIG_KVM_XICS 5258 H_EOI, 5259 H_CPPR, 5260 H_IPI, 5261 H_IPOLL, 5262 H_XIRR, 5263 H_XIRR_X, 5264 #endif 5265 0 5266 }; 5267 5268 static void init_default_hcalls(void) 5269 { 5270 int i; 5271 unsigned int hcall; 5272 5273 for (i = 0; default_hcall_list[i]; ++i) { 5274 hcall = default_hcall_list[i]; 5275 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5276 __set_bit(hcall / 4, default_enabled_hcalls); 5277 } 5278 } 5279 5280 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5281 { 5282 unsigned long lpcr; 5283 int radix; 5284 int err; 5285 5286 /* If not on a POWER9, reject it */ 5287 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5288 return -ENODEV; 5289 5290 /* If any unknown flags set, reject it */ 5291 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5292 return -EINVAL; 5293 5294 /* GR (guest radix) bit in process_table field must match */ 5295 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5296 if (!!(cfg->process_table & PATB_GR) != radix) 5297 return -EINVAL; 5298 5299 /* Process table size field must be reasonable, i.e. <= 24 */ 5300 if ((cfg->process_table & PRTS_MASK) > 24) 5301 return -EINVAL; 5302 5303 /* We can change a guest to/from radix now, if the host is radix */ 5304 if (radix && !radix_enabled()) 5305 return -EINVAL; 5306 5307 /* If we're a nested hypervisor, we currently only support radix */ 5308 if (kvmhv_on_pseries() && !radix) 5309 return -EINVAL; 5310 5311 mutex_lock(&kvm->arch.mmu_setup_lock); 5312 if (radix != kvm_is_radix(kvm)) { 5313 if (kvm->arch.mmu_ready) { 5314 kvm->arch.mmu_ready = 0; 5315 /* order mmu_ready vs. vcpus_running */ 5316 smp_mb(); 5317 if (atomic_read(&kvm->arch.vcpus_running)) { 5318 kvm->arch.mmu_ready = 1; 5319 err = -EBUSY; 5320 goto out_unlock; 5321 } 5322 } 5323 if (radix) 5324 err = kvmppc_switch_mmu_to_radix(kvm); 5325 else 5326 err = kvmppc_switch_mmu_to_hpt(kvm); 5327 if (err) 5328 goto out_unlock; 5329 } 5330 5331 kvm->arch.process_table = cfg->process_table; 5332 kvmppc_setup_partition_table(kvm); 5333 5334 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5335 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5336 err = 0; 5337 5338 out_unlock: 5339 mutex_unlock(&kvm->arch.mmu_setup_lock); 5340 return err; 5341 } 5342 5343 static int kvmhv_enable_nested(struct kvm *kvm) 5344 { 5345 if (!nested) 5346 return -EPERM; 5347 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix) 5348 return -ENODEV; 5349 5350 /* kvm == NULL means the caller is testing if the capability exists */ 5351 if (kvm) 5352 kvm->arch.nested_enable = true; 5353 return 0; 5354 } 5355 5356 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5357 int size) 5358 { 5359 int rc = -EINVAL; 5360 5361 if (kvmhv_vcpu_is_radix(vcpu)) { 5362 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5363 5364 if (rc > 0) 5365 rc = -EINVAL; 5366 } 5367 5368 /* For now quadrants are the only way to access nested guest memory */ 5369 if (rc && vcpu->arch.nested) 5370 rc = -EAGAIN; 5371 5372 return rc; 5373 } 5374 5375 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5376 int size) 5377 { 5378 int rc = -EINVAL; 5379 5380 if (kvmhv_vcpu_is_radix(vcpu)) { 5381 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5382 5383 if (rc > 0) 5384 rc = -EINVAL; 5385 } 5386 5387 /* For now quadrants are the only way to access nested guest memory */ 5388 if (rc && vcpu->arch.nested) 5389 rc = -EAGAIN; 5390 5391 return rc; 5392 } 5393 5394 static struct kvmppc_ops kvm_ops_hv = { 5395 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 5396 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 5397 .get_one_reg = kvmppc_get_one_reg_hv, 5398 .set_one_reg = kvmppc_set_one_reg_hv, 5399 .vcpu_load = kvmppc_core_vcpu_load_hv, 5400 .vcpu_put = kvmppc_core_vcpu_put_hv, 5401 .set_msr = kvmppc_set_msr_hv, 5402 .vcpu_run = kvmppc_vcpu_run_hv, 5403 .vcpu_create = kvmppc_core_vcpu_create_hv, 5404 .vcpu_free = kvmppc_core_vcpu_free_hv, 5405 .check_requests = kvmppc_core_check_requests_hv, 5406 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 5407 .flush_memslot = kvmppc_core_flush_memslot_hv, 5408 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 5409 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 5410 .unmap_hva_range = kvm_unmap_hva_range_hv, 5411 .age_hva = kvm_age_hva_hv, 5412 .test_age_hva = kvm_test_age_hva_hv, 5413 .set_spte_hva = kvm_set_spte_hva_hv, 5414 .mmu_destroy = kvmppc_mmu_destroy_hv, 5415 .free_memslot = kvmppc_core_free_memslot_hv, 5416 .create_memslot = kvmppc_core_create_memslot_hv, 5417 .init_vm = kvmppc_core_init_vm_hv, 5418 .destroy_vm = kvmppc_core_destroy_vm_hv, 5419 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 5420 .emulate_op = kvmppc_core_emulate_op_hv, 5421 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 5422 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 5423 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 5424 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 5425 .hcall_implemented = kvmppc_hcall_impl_hv, 5426 #ifdef CONFIG_KVM_XICS 5427 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 5428 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 5429 #endif 5430 .configure_mmu = kvmhv_configure_mmu, 5431 .get_rmmu_info = kvmhv_get_rmmu_info, 5432 .set_smt_mode = kvmhv_set_smt_mode, 5433 .enable_nested = kvmhv_enable_nested, 5434 .load_from_eaddr = kvmhv_load_from_eaddr, 5435 .store_to_eaddr = kvmhv_store_to_eaddr, 5436 }; 5437 5438 static int kvm_init_subcore_bitmap(void) 5439 { 5440 int i, j; 5441 int nr_cores = cpu_nr_cores(); 5442 struct sibling_subcore_state *sibling_subcore_state; 5443 5444 for (i = 0; i < nr_cores; i++) { 5445 int first_cpu = i * threads_per_core; 5446 int node = cpu_to_node(first_cpu); 5447 5448 /* Ignore if it is already allocated. */ 5449 if (paca_ptrs[first_cpu]->sibling_subcore_state) 5450 continue; 5451 5452 sibling_subcore_state = 5453 kzalloc_node(sizeof(struct sibling_subcore_state), 5454 GFP_KERNEL, node); 5455 if (!sibling_subcore_state) 5456 return -ENOMEM; 5457 5458 5459 for (j = 0; j < threads_per_core; j++) { 5460 int cpu = first_cpu + j; 5461 5462 paca_ptrs[cpu]->sibling_subcore_state = 5463 sibling_subcore_state; 5464 } 5465 } 5466 return 0; 5467 } 5468 5469 static int kvmppc_radix_possible(void) 5470 { 5471 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 5472 } 5473 5474 static int kvmppc_book3s_init_hv(void) 5475 { 5476 int r; 5477 /* 5478 * FIXME!! Do we need to check on all cpus ? 5479 */ 5480 r = kvmppc_core_check_processor_compat_hv(); 5481 if (r < 0) 5482 return -ENODEV; 5483 5484 r = kvmhv_nested_init(); 5485 if (r) 5486 return r; 5487 5488 r = kvm_init_subcore_bitmap(); 5489 if (r) 5490 return r; 5491 5492 /* 5493 * We need a way of accessing the XICS interrupt controller, 5494 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 5495 * indirectly, via OPAL. 5496 */ 5497 #ifdef CONFIG_SMP 5498 if (!xics_on_xive() && !kvmhv_on_pseries() && 5499 !local_paca->kvm_hstate.xics_phys) { 5500 struct device_node *np; 5501 5502 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 5503 if (!np) { 5504 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 5505 return -ENODEV; 5506 } 5507 /* presence of intc confirmed - node can be dropped again */ 5508 of_node_put(np); 5509 } 5510 #endif 5511 5512 kvm_ops_hv.owner = THIS_MODULE; 5513 kvmppc_hv_ops = &kvm_ops_hv; 5514 5515 init_default_hcalls(); 5516 5517 init_vcore_lists(); 5518 5519 r = kvmppc_mmu_hv_init(); 5520 if (r) 5521 return r; 5522 5523 if (kvmppc_radix_possible()) 5524 r = kvmppc_radix_init(); 5525 5526 /* 5527 * POWER9 chips before version 2.02 can't have some threads in 5528 * HPT mode and some in radix mode on the same core. 5529 */ 5530 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5531 unsigned int pvr = mfspr(SPRN_PVR); 5532 if ((pvr >> 16) == PVR_POWER9 && 5533 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 5534 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 5535 no_mixing_hpt_and_radix = true; 5536 } 5537 5538 return r; 5539 } 5540 5541 static void kvmppc_book3s_exit_hv(void) 5542 { 5543 kvmppc_free_host_rm_ops(); 5544 if (kvmppc_radix_possible()) 5545 kvmppc_radix_exit(); 5546 kvmppc_hv_ops = NULL; 5547 kvmhv_nested_exit(); 5548 } 5549 5550 module_init(kvmppc_book3s_init_hv); 5551 module_exit(kvmppc_book3s_exit_hv); 5552 MODULE_LICENSE("GPL"); 5553 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5554 MODULE_ALIAS("devname:kvm"); 5555