1 /* 2 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 3 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 4 * 5 * Authors: 6 * Paul Mackerras <paulus@au1.ibm.com> 7 * Alexander Graf <agraf@suse.de> 8 * Kevin Wolf <mail@kevin-wolf.de> 9 * 10 * Description: KVM functions specific to running on Book 3S 11 * processors in hypervisor mode (specifically POWER7 and later). 12 * 13 * This file is derived from arch/powerpc/kvm/book3s.c, 14 * by Alexander Graf <agraf@suse.de>. 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License, version 2, as 18 * published by the Free Software Foundation. 19 */ 20 21 #include <linux/kvm_host.h> 22 #include <linux/kernel.h> 23 #include <linux/err.h> 24 #include <linux/slab.h> 25 #include <linux/preempt.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sched/stat.h> 28 #include <linux/delay.h> 29 #include <linux/export.h> 30 #include <linux/fs.h> 31 #include <linux/anon_inodes.h> 32 #include <linux/cpu.h> 33 #include <linux/cpumask.h> 34 #include <linux/spinlock.h> 35 #include <linux/page-flags.h> 36 #include <linux/srcu.h> 37 #include <linux/miscdevice.h> 38 #include <linux/debugfs.h> 39 #include <linux/gfp.h> 40 #include <linux/vmalloc.h> 41 #include <linux/highmem.h> 42 #include <linux/hugetlb.h> 43 #include <linux/kvm_irqfd.h> 44 #include <linux/irqbypass.h> 45 #include <linux/module.h> 46 #include <linux/compiler.h> 47 #include <linux/of.h> 48 49 #include <asm/ftrace.h> 50 #include <asm/reg.h> 51 #include <asm/ppc-opcode.h> 52 #include <asm/asm-prototypes.h> 53 #include <asm/archrandom.h> 54 #include <asm/debug.h> 55 #include <asm/disassemble.h> 56 #include <asm/cputable.h> 57 #include <asm/cacheflush.h> 58 #include <linux/uaccess.h> 59 #include <asm/io.h> 60 #include <asm/kvm_ppc.h> 61 #include <asm/kvm_book3s.h> 62 #include <asm/mmu_context.h> 63 #include <asm/lppaca.h> 64 #include <asm/processor.h> 65 #include <asm/cputhreads.h> 66 #include <asm/page.h> 67 #include <asm/hvcall.h> 68 #include <asm/switch_to.h> 69 #include <asm/smp.h> 70 #include <asm/dbell.h> 71 #include <asm/hmi.h> 72 #include <asm/pnv-pci.h> 73 #include <asm/mmu.h> 74 #include <asm/opal.h> 75 #include <asm/xics.h> 76 #include <asm/xive.h> 77 78 #include "book3s.h" 79 80 #define CREATE_TRACE_POINTS 81 #include "trace_hv.h" 82 83 /* #define EXIT_DEBUG */ 84 /* #define EXIT_DEBUG_SIMPLE */ 85 /* #define EXIT_DEBUG_INT */ 86 87 /* Used to indicate that a guest page fault needs to be handled */ 88 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 89 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 90 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 91 92 /* Used as a "null" value for timebase values */ 93 #define TB_NIL (~(u64)0) 94 95 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 96 97 static int dynamic_mt_modes = 6; 98 module_param(dynamic_mt_modes, int, 0644); 99 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 100 static int target_smt_mode; 101 module_param(target_smt_mode, int, 0644); 102 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 103 104 static bool indep_threads_mode = true; 105 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 106 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 107 108 static bool one_vm_per_core; 109 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 110 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)"); 111 112 #ifdef CONFIG_KVM_XICS 113 static struct kernel_param_ops module_param_ops = { 114 .set = param_set_int, 115 .get = param_get_int, 116 }; 117 118 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 119 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 120 121 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 122 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 123 #endif 124 125 /* If set, guests are allowed to create and control nested guests */ 126 static bool nested = true; 127 module_param(nested, bool, S_IRUGO | S_IWUSR); 128 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 129 130 static inline bool nesting_enabled(struct kvm *kvm) 131 { 132 return kvm->arch.nested_enable && kvm_is_radix(kvm); 133 } 134 135 /* If set, the threads on each CPU core have to be in the same MMU mode */ 136 static bool no_mixing_hpt_and_radix; 137 138 static void kvmppc_end_cede(struct kvm_vcpu *vcpu); 139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 140 141 /* 142 * RWMR values for POWER8. These control the rate at which PURR 143 * and SPURR count and should be set according to the number of 144 * online threads in the vcore being run. 145 */ 146 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 147 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 148 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 149 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 150 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 151 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 152 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 153 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 154 155 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 156 RWMR_RPA_P8_1THREAD, 157 RWMR_RPA_P8_1THREAD, 158 RWMR_RPA_P8_2THREAD, 159 RWMR_RPA_P8_3THREAD, 160 RWMR_RPA_P8_4THREAD, 161 RWMR_RPA_P8_5THREAD, 162 RWMR_RPA_P8_6THREAD, 163 RWMR_RPA_P8_7THREAD, 164 RWMR_RPA_P8_8THREAD, 165 }; 166 167 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 168 int *ip) 169 { 170 int i = *ip; 171 struct kvm_vcpu *vcpu; 172 173 while (++i < MAX_SMT_THREADS) { 174 vcpu = READ_ONCE(vc->runnable_threads[i]); 175 if (vcpu) { 176 *ip = i; 177 return vcpu; 178 } 179 } 180 return NULL; 181 } 182 183 /* Used to traverse the list of runnable threads for a given vcore */ 184 #define for_each_runnable_thread(i, vcpu, vc) \ 185 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 186 187 static bool kvmppc_ipi_thread(int cpu) 188 { 189 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 190 191 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 192 if (kvmhv_on_pseries()) 193 return false; 194 195 /* On POWER9 we can use msgsnd to IPI any cpu */ 196 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 197 msg |= get_hard_smp_processor_id(cpu); 198 smp_mb(); 199 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 200 return true; 201 } 202 203 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 204 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 205 preempt_disable(); 206 if (cpu_first_thread_sibling(cpu) == 207 cpu_first_thread_sibling(smp_processor_id())) { 208 msg |= cpu_thread_in_core(cpu); 209 smp_mb(); 210 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 211 preempt_enable(); 212 return true; 213 } 214 preempt_enable(); 215 } 216 217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 218 if (cpu >= 0 && cpu < nr_cpu_ids) { 219 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 220 xics_wake_cpu(cpu); 221 return true; 222 } 223 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 224 return true; 225 } 226 #endif 227 228 return false; 229 } 230 231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 232 { 233 int cpu; 234 struct swait_queue_head *wqp; 235 236 wqp = kvm_arch_vcpu_wq(vcpu); 237 if (swq_has_sleeper(wqp)) { 238 swake_up_one(wqp); 239 ++vcpu->stat.halt_wakeup; 240 } 241 242 cpu = READ_ONCE(vcpu->arch.thread_cpu); 243 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 244 return; 245 246 /* CPU points to the first thread of the core */ 247 cpu = vcpu->cpu; 248 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 249 smp_send_reschedule(cpu); 250 } 251 252 /* 253 * We use the vcpu_load/put functions to measure stolen time. 254 * Stolen time is counted as time when either the vcpu is able to 255 * run as part of a virtual core, but the task running the vcore 256 * is preempted or sleeping, or when the vcpu needs something done 257 * in the kernel by the task running the vcpu, but that task is 258 * preempted or sleeping. Those two things have to be counted 259 * separately, since one of the vcpu tasks will take on the job 260 * of running the core, and the other vcpu tasks in the vcore will 261 * sleep waiting for it to do that, but that sleep shouldn't count 262 * as stolen time. 263 * 264 * Hence we accumulate stolen time when the vcpu can run as part of 265 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 266 * needs its task to do other things in the kernel (for example, 267 * service a page fault) in busy_stolen. We don't accumulate 268 * stolen time for a vcore when it is inactive, or for a vcpu 269 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 270 * a misnomer; it means that the vcpu task is not executing in 271 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 272 * the kernel. We don't have any way of dividing up that time 273 * between time that the vcpu is genuinely stopped, time that 274 * the task is actively working on behalf of the vcpu, and time 275 * that the task is preempted, so we don't count any of it as 276 * stolen. 277 * 278 * Updates to busy_stolen are protected by arch.tbacct_lock; 279 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 280 * lock. The stolen times are measured in units of timebase ticks. 281 * (Note that the != TB_NIL checks below are purely defensive; 282 * they should never fail.) 283 */ 284 285 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 286 { 287 unsigned long flags; 288 289 spin_lock_irqsave(&vc->stoltb_lock, flags); 290 vc->preempt_tb = mftb(); 291 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 292 } 293 294 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 295 { 296 unsigned long flags; 297 298 spin_lock_irqsave(&vc->stoltb_lock, flags); 299 if (vc->preempt_tb != TB_NIL) { 300 vc->stolen_tb += mftb() - vc->preempt_tb; 301 vc->preempt_tb = TB_NIL; 302 } 303 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 304 } 305 306 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 307 { 308 struct kvmppc_vcore *vc = vcpu->arch.vcore; 309 unsigned long flags; 310 311 /* 312 * We can test vc->runner without taking the vcore lock, 313 * because only this task ever sets vc->runner to this 314 * vcpu, and once it is set to this vcpu, only this task 315 * ever sets it to NULL. 316 */ 317 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 318 kvmppc_core_end_stolen(vc); 319 320 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 321 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 322 vcpu->arch.busy_preempt != TB_NIL) { 323 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 324 vcpu->arch.busy_preempt = TB_NIL; 325 } 326 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 327 } 328 329 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 330 { 331 struct kvmppc_vcore *vc = vcpu->arch.vcore; 332 unsigned long flags; 333 334 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 335 kvmppc_core_start_stolen(vc); 336 337 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 338 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 339 vcpu->arch.busy_preempt = mftb(); 340 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 341 } 342 343 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) 344 { 345 /* 346 * Check for illegal transactional state bit combination 347 * and if we find it, force the TS field to a safe state. 348 */ 349 if ((msr & MSR_TS_MASK) == MSR_TS_MASK) 350 msr &= ~MSR_TS_MASK; 351 vcpu->arch.shregs.msr = msr; 352 kvmppc_end_cede(vcpu); 353 } 354 355 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 356 { 357 vcpu->arch.pvr = pvr; 358 } 359 360 /* Dummy value used in computing PCR value below */ 361 #define PCR_ARCH_300 (PCR_ARCH_207 << 1) 362 363 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 364 { 365 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 366 struct kvmppc_vcore *vc = vcpu->arch.vcore; 367 368 /* We can (emulate) our own architecture version and anything older */ 369 if (cpu_has_feature(CPU_FTR_ARCH_300)) 370 host_pcr_bit = PCR_ARCH_300; 371 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 372 host_pcr_bit = PCR_ARCH_207; 373 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 374 host_pcr_bit = PCR_ARCH_206; 375 else 376 host_pcr_bit = PCR_ARCH_205; 377 378 /* Determine lowest PCR bit needed to run guest in given PVR level */ 379 guest_pcr_bit = host_pcr_bit; 380 if (arch_compat) { 381 switch (arch_compat) { 382 case PVR_ARCH_205: 383 guest_pcr_bit = PCR_ARCH_205; 384 break; 385 case PVR_ARCH_206: 386 case PVR_ARCH_206p: 387 guest_pcr_bit = PCR_ARCH_206; 388 break; 389 case PVR_ARCH_207: 390 guest_pcr_bit = PCR_ARCH_207; 391 break; 392 case PVR_ARCH_300: 393 guest_pcr_bit = PCR_ARCH_300; 394 break; 395 default: 396 return -EINVAL; 397 } 398 } 399 400 /* Check requested PCR bits don't exceed our capabilities */ 401 if (guest_pcr_bit > host_pcr_bit) 402 return -EINVAL; 403 404 spin_lock(&vc->lock); 405 vc->arch_compat = arch_compat; 406 /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */ 407 vc->pcr = host_pcr_bit - guest_pcr_bit; 408 spin_unlock(&vc->lock); 409 410 return 0; 411 } 412 413 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 414 { 415 int r; 416 417 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 418 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 419 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 420 for (r = 0; r < 16; ++r) 421 pr_err("r%2d = %.16lx r%d = %.16lx\n", 422 r, kvmppc_get_gpr(vcpu, r), 423 r+16, kvmppc_get_gpr(vcpu, r+16)); 424 pr_err("ctr = %.16lx lr = %.16lx\n", 425 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 426 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 427 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 428 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 429 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 430 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 431 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 432 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 433 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 434 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 435 pr_err("fault dar = %.16lx dsisr = %.8x\n", 436 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 437 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 438 for (r = 0; r < vcpu->arch.slb_max; ++r) 439 pr_err(" ESID = %.16llx VSID = %.16llx\n", 440 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 441 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 442 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 443 vcpu->arch.last_inst); 444 } 445 446 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 447 { 448 struct kvm_vcpu *ret; 449 450 mutex_lock(&kvm->lock); 451 ret = kvm_get_vcpu_by_id(kvm, id); 452 mutex_unlock(&kvm->lock); 453 return ret; 454 } 455 456 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 457 { 458 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 459 vpa->yield_count = cpu_to_be32(1); 460 } 461 462 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 463 unsigned long addr, unsigned long len) 464 { 465 /* check address is cacheline aligned */ 466 if (addr & (L1_CACHE_BYTES - 1)) 467 return -EINVAL; 468 spin_lock(&vcpu->arch.vpa_update_lock); 469 if (v->next_gpa != addr || v->len != len) { 470 v->next_gpa = addr; 471 v->len = addr ? len : 0; 472 v->update_pending = 1; 473 } 474 spin_unlock(&vcpu->arch.vpa_update_lock); 475 return 0; 476 } 477 478 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 479 struct reg_vpa { 480 u32 dummy; 481 union { 482 __be16 hword; 483 __be32 word; 484 } length; 485 }; 486 487 static int vpa_is_registered(struct kvmppc_vpa *vpap) 488 { 489 if (vpap->update_pending) 490 return vpap->next_gpa != 0; 491 return vpap->pinned_addr != NULL; 492 } 493 494 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 495 unsigned long flags, 496 unsigned long vcpuid, unsigned long vpa) 497 { 498 struct kvm *kvm = vcpu->kvm; 499 unsigned long len, nb; 500 void *va; 501 struct kvm_vcpu *tvcpu; 502 int err; 503 int subfunc; 504 struct kvmppc_vpa *vpap; 505 506 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 507 if (!tvcpu) 508 return H_PARAMETER; 509 510 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 511 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 512 subfunc == H_VPA_REG_SLB) { 513 /* Registering new area - address must be cache-line aligned */ 514 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 515 return H_PARAMETER; 516 517 /* convert logical addr to kernel addr and read length */ 518 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 519 if (va == NULL) 520 return H_PARAMETER; 521 if (subfunc == H_VPA_REG_VPA) 522 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 523 else 524 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 525 kvmppc_unpin_guest_page(kvm, va, vpa, false); 526 527 /* Check length */ 528 if (len > nb || len < sizeof(struct reg_vpa)) 529 return H_PARAMETER; 530 } else { 531 vpa = 0; 532 len = 0; 533 } 534 535 err = H_PARAMETER; 536 vpap = NULL; 537 spin_lock(&tvcpu->arch.vpa_update_lock); 538 539 switch (subfunc) { 540 case H_VPA_REG_VPA: /* register VPA */ 541 /* 542 * The size of our lppaca is 1kB because of the way we align 543 * it for the guest to avoid crossing a 4kB boundary. We only 544 * use 640 bytes of the structure though, so we should accept 545 * clients that set a size of 640. 546 */ 547 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 548 if (len < sizeof(struct lppaca)) 549 break; 550 vpap = &tvcpu->arch.vpa; 551 err = 0; 552 break; 553 554 case H_VPA_REG_DTL: /* register DTL */ 555 if (len < sizeof(struct dtl_entry)) 556 break; 557 len -= len % sizeof(struct dtl_entry); 558 559 /* Check that they have previously registered a VPA */ 560 err = H_RESOURCE; 561 if (!vpa_is_registered(&tvcpu->arch.vpa)) 562 break; 563 564 vpap = &tvcpu->arch.dtl; 565 err = 0; 566 break; 567 568 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 569 /* Check that they have previously registered a VPA */ 570 err = H_RESOURCE; 571 if (!vpa_is_registered(&tvcpu->arch.vpa)) 572 break; 573 574 vpap = &tvcpu->arch.slb_shadow; 575 err = 0; 576 break; 577 578 case H_VPA_DEREG_VPA: /* deregister VPA */ 579 /* Check they don't still have a DTL or SLB buf registered */ 580 err = H_RESOURCE; 581 if (vpa_is_registered(&tvcpu->arch.dtl) || 582 vpa_is_registered(&tvcpu->arch.slb_shadow)) 583 break; 584 585 vpap = &tvcpu->arch.vpa; 586 err = 0; 587 break; 588 589 case H_VPA_DEREG_DTL: /* deregister DTL */ 590 vpap = &tvcpu->arch.dtl; 591 err = 0; 592 break; 593 594 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 595 vpap = &tvcpu->arch.slb_shadow; 596 err = 0; 597 break; 598 } 599 600 if (vpap) { 601 vpap->next_gpa = vpa; 602 vpap->len = len; 603 vpap->update_pending = 1; 604 } 605 606 spin_unlock(&tvcpu->arch.vpa_update_lock); 607 608 return err; 609 } 610 611 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 612 { 613 struct kvm *kvm = vcpu->kvm; 614 void *va; 615 unsigned long nb; 616 unsigned long gpa; 617 618 /* 619 * We need to pin the page pointed to by vpap->next_gpa, 620 * but we can't call kvmppc_pin_guest_page under the lock 621 * as it does get_user_pages() and down_read(). So we 622 * have to drop the lock, pin the page, then get the lock 623 * again and check that a new area didn't get registered 624 * in the meantime. 625 */ 626 for (;;) { 627 gpa = vpap->next_gpa; 628 spin_unlock(&vcpu->arch.vpa_update_lock); 629 va = NULL; 630 nb = 0; 631 if (gpa) 632 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 633 spin_lock(&vcpu->arch.vpa_update_lock); 634 if (gpa == vpap->next_gpa) 635 break; 636 /* sigh... unpin that one and try again */ 637 if (va) 638 kvmppc_unpin_guest_page(kvm, va, gpa, false); 639 } 640 641 vpap->update_pending = 0; 642 if (va && nb < vpap->len) { 643 /* 644 * If it's now too short, it must be that userspace 645 * has changed the mappings underlying guest memory, 646 * so unregister the region. 647 */ 648 kvmppc_unpin_guest_page(kvm, va, gpa, false); 649 va = NULL; 650 } 651 if (vpap->pinned_addr) 652 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 653 vpap->dirty); 654 vpap->gpa = gpa; 655 vpap->pinned_addr = va; 656 vpap->dirty = false; 657 if (va) 658 vpap->pinned_end = va + vpap->len; 659 } 660 661 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 662 { 663 if (!(vcpu->arch.vpa.update_pending || 664 vcpu->arch.slb_shadow.update_pending || 665 vcpu->arch.dtl.update_pending)) 666 return; 667 668 spin_lock(&vcpu->arch.vpa_update_lock); 669 if (vcpu->arch.vpa.update_pending) { 670 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 671 if (vcpu->arch.vpa.pinned_addr) 672 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 673 } 674 if (vcpu->arch.dtl.update_pending) { 675 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 676 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 677 vcpu->arch.dtl_index = 0; 678 } 679 if (vcpu->arch.slb_shadow.update_pending) 680 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 681 spin_unlock(&vcpu->arch.vpa_update_lock); 682 } 683 684 /* 685 * Return the accumulated stolen time for the vcore up until `now'. 686 * The caller should hold the vcore lock. 687 */ 688 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 689 { 690 u64 p; 691 unsigned long flags; 692 693 spin_lock_irqsave(&vc->stoltb_lock, flags); 694 p = vc->stolen_tb; 695 if (vc->vcore_state != VCORE_INACTIVE && 696 vc->preempt_tb != TB_NIL) 697 p += now - vc->preempt_tb; 698 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 699 return p; 700 } 701 702 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 703 struct kvmppc_vcore *vc) 704 { 705 struct dtl_entry *dt; 706 struct lppaca *vpa; 707 unsigned long stolen; 708 unsigned long core_stolen; 709 u64 now; 710 unsigned long flags; 711 712 dt = vcpu->arch.dtl_ptr; 713 vpa = vcpu->arch.vpa.pinned_addr; 714 now = mftb(); 715 core_stolen = vcore_stolen_time(vc, now); 716 stolen = core_stolen - vcpu->arch.stolen_logged; 717 vcpu->arch.stolen_logged = core_stolen; 718 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 719 stolen += vcpu->arch.busy_stolen; 720 vcpu->arch.busy_stolen = 0; 721 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 722 if (!dt || !vpa) 723 return; 724 memset(dt, 0, sizeof(struct dtl_entry)); 725 dt->dispatch_reason = 7; 726 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 727 dt->timebase = cpu_to_be64(now + vc->tb_offset); 728 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 729 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 730 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 731 ++dt; 732 if (dt == vcpu->arch.dtl.pinned_end) 733 dt = vcpu->arch.dtl.pinned_addr; 734 vcpu->arch.dtl_ptr = dt; 735 /* order writing *dt vs. writing vpa->dtl_idx */ 736 smp_wmb(); 737 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 738 vcpu->arch.dtl.dirty = true; 739 } 740 741 /* See if there is a doorbell interrupt pending for a vcpu */ 742 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 743 { 744 int thr; 745 struct kvmppc_vcore *vc; 746 747 if (vcpu->arch.doorbell_request) 748 return true; 749 /* 750 * Ensure that the read of vcore->dpdes comes after the read 751 * of vcpu->doorbell_request. This barrier matches the 752 * smb_wmb() in kvmppc_guest_entry_inject(). 753 */ 754 smp_rmb(); 755 vc = vcpu->arch.vcore; 756 thr = vcpu->vcpu_id - vc->first_vcpuid; 757 return !!(vc->dpdes & (1 << thr)); 758 } 759 760 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 761 { 762 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 763 return true; 764 if ((!vcpu->arch.vcore->arch_compat) && 765 cpu_has_feature(CPU_FTR_ARCH_207S)) 766 return true; 767 return false; 768 } 769 770 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 771 unsigned long resource, unsigned long value1, 772 unsigned long value2) 773 { 774 switch (resource) { 775 case H_SET_MODE_RESOURCE_SET_CIABR: 776 if (!kvmppc_power8_compatible(vcpu)) 777 return H_P2; 778 if (value2) 779 return H_P4; 780 if (mflags) 781 return H_UNSUPPORTED_FLAG_START; 782 /* Guests can't breakpoint the hypervisor */ 783 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 784 return H_P3; 785 vcpu->arch.ciabr = value1; 786 return H_SUCCESS; 787 case H_SET_MODE_RESOURCE_SET_DAWR: 788 if (!kvmppc_power8_compatible(vcpu)) 789 return H_P2; 790 if (!ppc_breakpoint_available()) 791 return H_P2; 792 if (mflags) 793 return H_UNSUPPORTED_FLAG_START; 794 if (value2 & DABRX_HYP) 795 return H_P4; 796 vcpu->arch.dawr = value1; 797 vcpu->arch.dawrx = value2; 798 return H_SUCCESS; 799 default: 800 return H_TOO_HARD; 801 } 802 } 803 804 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 805 { 806 struct kvmppc_vcore *vcore = target->arch.vcore; 807 808 /* 809 * We expect to have been called by the real mode handler 810 * (kvmppc_rm_h_confer()) which would have directly returned 811 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 812 * have useful work to do and should not confer) so we don't 813 * recheck that here. 814 */ 815 816 spin_lock(&vcore->lock); 817 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 818 vcore->vcore_state != VCORE_INACTIVE && 819 vcore->runner) 820 target = vcore->runner; 821 spin_unlock(&vcore->lock); 822 823 return kvm_vcpu_yield_to(target); 824 } 825 826 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 827 { 828 int yield_count = 0; 829 struct lppaca *lppaca; 830 831 spin_lock(&vcpu->arch.vpa_update_lock); 832 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 833 if (lppaca) 834 yield_count = be32_to_cpu(lppaca->yield_count); 835 spin_unlock(&vcpu->arch.vpa_update_lock); 836 return yield_count; 837 } 838 839 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 840 { 841 unsigned long req = kvmppc_get_gpr(vcpu, 3); 842 unsigned long target, ret = H_SUCCESS; 843 int yield_count; 844 struct kvm_vcpu *tvcpu; 845 int idx, rc; 846 847 if (req <= MAX_HCALL_OPCODE && 848 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 849 return RESUME_HOST; 850 851 switch (req) { 852 case H_CEDE: 853 break; 854 case H_PROD: 855 target = kvmppc_get_gpr(vcpu, 4); 856 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 857 if (!tvcpu) { 858 ret = H_PARAMETER; 859 break; 860 } 861 tvcpu->arch.prodded = 1; 862 smp_mb(); 863 if (tvcpu->arch.ceded) 864 kvmppc_fast_vcpu_kick_hv(tvcpu); 865 break; 866 case H_CONFER: 867 target = kvmppc_get_gpr(vcpu, 4); 868 if (target == -1) 869 break; 870 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 871 if (!tvcpu) { 872 ret = H_PARAMETER; 873 break; 874 } 875 yield_count = kvmppc_get_gpr(vcpu, 5); 876 if (kvmppc_get_yield_count(tvcpu) != yield_count) 877 break; 878 kvm_arch_vcpu_yield_to(tvcpu); 879 break; 880 case H_REGISTER_VPA: 881 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 882 kvmppc_get_gpr(vcpu, 5), 883 kvmppc_get_gpr(vcpu, 6)); 884 break; 885 case H_RTAS: 886 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 887 return RESUME_HOST; 888 889 idx = srcu_read_lock(&vcpu->kvm->srcu); 890 rc = kvmppc_rtas_hcall(vcpu); 891 srcu_read_unlock(&vcpu->kvm->srcu, idx); 892 893 if (rc == -ENOENT) 894 return RESUME_HOST; 895 else if (rc == 0) 896 break; 897 898 /* Send the error out to userspace via KVM_RUN */ 899 return rc; 900 case H_LOGICAL_CI_LOAD: 901 ret = kvmppc_h_logical_ci_load(vcpu); 902 if (ret == H_TOO_HARD) 903 return RESUME_HOST; 904 break; 905 case H_LOGICAL_CI_STORE: 906 ret = kvmppc_h_logical_ci_store(vcpu); 907 if (ret == H_TOO_HARD) 908 return RESUME_HOST; 909 break; 910 case H_SET_MODE: 911 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 912 kvmppc_get_gpr(vcpu, 5), 913 kvmppc_get_gpr(vcpu, 6), 914 kvmppc_get_gpr(vcpu, 7)); 915 if (ret == H_TOO_HARD) 916 return RESUME_HOST; 917 break; 918 case H_XIRR: 919 case H_CPPR: 920 case H_EOI: 921 case H_IPI: 922 case H_IPOLL: 923 case H_XIRR_X: 924 if (kvmppc_xics_enabled(vcpu)) { 925 if (xics_on_xive()) { 926 ret = H_NOT_AVAILABLE; 927 return RESUME_GUEST; 928 } 929 ret = kvmppc_xics_hcall(vcpu, req); 930 break; 931 } 932 return RESUME_HOST; 933 case H_SET_DABR: 934 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 935 break; 936 case H_SET_XDABR: 937 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 938 kvmppc_get_gpr(vcpu, 5)); 939 break; 940 #ifdef CONFIG_SPAPR_TCE_IOMMU 941 case H_GET_TCE: 942 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 943 kvmppc_get_gpr(vcpu, 5)); 944 if (ret == H_TOO_HARD) 945 return RESUME_HOST; 946 break; 947 case H_PUT_TCE: 948 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 949 kvmppc_get_gpr(vcpu, 5), 950 kvmppc_get_gpr(vcpu, 6)); 951 if (ret == H_TOO_HARD) 952 return RESUME_HOST; 953 break; 954 case H_PUT_TCE_INDIRECT: 955 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 956 kvmppc_get_gpr(vcpu, 5), 957 kvmppc_get_gpr(vcpu, 6), 958 kvmppc_get_gpr(vcpu, 7)); 959 if (ret == H_TOO_HARD) 960 return RESUME_HOST; 961 break; 962 case H_STUFF_TCE: 963 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 964 kvmppc_get_gpr(vcpu, 5), 965 kvmppc_get_gpr(vcpu, 6), 966 kvmppc_get_gpr(vcpu, 7)); 967 if (ret == H_TOO_HARD) 968 return RESUME_HOST; 969 break; 970 #endif 971 case H_RANDOM: 972 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4])) 973 ret = H_HARDWARE; 974 break; 975 976 case H_SET_PARTITION_TABLE: 977 ret = H_FUNCTION; 978 if (nesting_enabled(vcpu->kvm)) 979 ret = kvmhv_set_partition_table(vcpu); 980 break; 981 case H_ENTER_NESTED: 982 ret = H_FUNCTION; 983 if (!nesting_enabled(vcpu->kvm)) 984 break; 985 ret = kvmhv_enter_nested_guest(vcpu); 986 if (ret == H_INTERRUPT) { 987 kvmppc_set_gpr(vcpu, 3, 0); 988 vcpu->arch.hcall_needed = 0; 989 return -EINTR; 990 } else if (ret == H_TOO_HARD) { 991 kvmppc_set_gpr(vcpu, 3, 0); 992 vcpu->arch.hcall_needed = 0; 993 return RESUME_HOST; 994 } 995 break; 996 case H_TLB_INVALIDATE: 997 ret = H_FUNCTION; 998 if (nesting_enabled(vcpu->kvm)) 999 ret = kvmhv_do_nested_tlbie(vcpu); 1000 break; 1001 case H_COPY_TOFROM_GUEST: 1002 ret = H_FUNCTION; 1003 if (nesting_enabled(vcpu->kvm)) 1004 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1005 break; 1006 default: 1007 return RESUME_HOST; 1008 } 1009 kvmppc_set_gpr(vcpu, 3, ret); 1010 vcpu->arch.hcall_needed = 0; 1011 return RESUME_GUEST; 1012 } 1013 1014 /* 1015 * Handle H_CEDE in the nested virtualization case where we haven't 1016 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S. 1017 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1018 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1019 */ 1020 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu) 1021 { 1022 vcpu->arch.shregs.msr |= MSR_EE; 1023 vcpu->arch.ceded = 1; 1024 smp_mb(); 1025 if (vcpu->arch.prodded) { 1026 vcpu->arch.prodded = 0; 1027 smp_mb(); 1028 vcpu->arch.ceded = 0; 1029 } 1030 } 1031 1032 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1033 { 1034 switch (cmd) { 1035 case H_CEDE: 1036 case H_PROD: 1037 case H_CONFER: 1038 case H_REGISTER_VPA: 1039 case H_SET_MODE: 1040 case H_LOGICAL_CI_LOAD: 1041 case H_LOGICAL_CI_STORE: 1042 #ifdef CONFIG_KVM_XICS 1043 case H_XIRR: 1044 case H_CPPR: 1045 case H_EOI: 1046 case H_IPI: 1047 case H_IPOLL: 1048 case H_XIRR_X: 1049 #endif 1050 return 1; 1051 } 1052 1053 /* See if it's in the real-mode table */ 1054 return kvmppc_hcall_impl_hv_realmode(cmd); 1055 } 1056 1057 static int kvmppc_emulate_debug_inst(struct kvm_run *run, 1058 struct kvm_vcpu *vcpu) 1059 { 1060 u32 last_inst; 1061 1062 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1063 EMULATE_DONE) { 1064 /* 1065 * Fetch failed, so return to guest and 1066 * try executing it again. 1067 */ 1068 return RESUME_GUEST; 1069 } 1070 1071 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1072 run->exit_reason = KVM_EXIT_DEBUG; 1073 run->debug.arch.address = kvmppc_get_pc(vcpu); 1074 return RESUME_HOST; 1075 } else { 1076 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1077 return RESUME_GUEST; 1078 } 1079 } 1080 1081 static void do_nothing(void *x) 1082 { 1083 } 1084 1085 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1086 { 1087 int thr, cpu, pcpu, nthreads; 1088 struct kvm_vcpu *v; 1089 unsigned long dpdes; 1090 1091 nthreads = vcpu->kvm->arch.emul_smt_mode; 1092 dpdes = 0; 1093 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1094 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1095 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1096 if (!v) 1097 continue; 1098 /* 1099 * If the vcpu is currently running on a physical cpu thread, 1100 * interrupt it in order to pull it out of the guest briefly, 1101 * which will update its vcore->dpdes value. 1102 */ 1103 pcpu = READ_ONCE(v->cpu); 1104 if (pcpu >= 0) 1105 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1106 if (kvmppc_doorbell_pending(v)) 1107 dpdes |= 1 << thr; 1108 } 1109 return dpdes; 1110 } 1111 1112 /* 1113 * On POWER9, emulate doorbell-related instructions in order to 1114 * give the guest the illusion of running on a multi-threaded core. 1115 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1116 * and mfspr DPDES. 1117 */ 1118 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1119 { 1120 u32 inst, rb, thr; 1121 unsigned long arg; 1122 struct kvm *kvm = vcpu->kvm; 1123 struct kvm_vcpu *tvcpu; 1124 1125 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1126 return RESUME_GUEST; 1127 if (get_op(inst) != 31) 1128 return EMULATE_FAIL; 1129 rb = get_rb(inst); 1130 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1131 switch (get_xop(inst)) { 1132 case OP_31_XOP_MSGSNDP: 1133 arg = kvmppc_get_gpr(vcpu, rb); 1134 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1135 break; 1136 arg &= 0x3f; 1137 if (arg >= kvm->arch.emul_smt_mode) 1138 break; 1139 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1140 if (!tvcpu) 1141 break; 1142 if (!tvcpu->arch.doorbell_request) { 1143 tvcpu->arch.doorbell_request = 1; 1144 kvmppc_fast_vcpu_kick_hv(tvcpu); 1145 } 1146 break; 1147 case OP_31_XOP_MSGCLRP: 1148 arg = kvmppc_get_gpr(vcpu, rb); 1149 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1150 break; 1151 vcpu->arch.vcore->dpdes = 0; 1152 vcpu->arch.doorbell_request = 0; 1153 break; 1154 case OP_31_XOP_MFSPR: 1155 switch (get_sprn(inst)) { 1156 case SPRN_TIR: 1157 arg = thr; 1158 break; 1159 case SPRN_DPDES: 1160 arg = kvmppc_read_dpdes(vcpu); 1161 break; 1162 default: 1163 return EMULATE_FAIL; 1164 } 1165 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1166 break; 1167 default: 1168 return EMULATE_FAIL; 1169 } 1170 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1171 return RESUME_GUEST; 1172 } 1173 1174 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 1175 struct task_struct *tsk) 1176 { 1177 int r = RESUME_HOST; 1178 1179 vcpu->stat.sum_exits++; 1180 1181 /* 1182 * This can happen if an interrupt occurs in the last stages 1183 * of guest entry or the first stages of guest exit (i.e. after 1184 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1185 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1186 * That can happen due to a bug, or due to a machine check 1187 * occurring at just the wrong time. 1188 */ 1189 if (vcpu->arch.shregs.msr & MSR_HV) { 1190 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1191 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1192 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1193 vcpu->arch.shregs.msr); 1194 kvmppc_dump_regs(vcpu); 1195 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1196 run->hw.hardware_exit_reason = vcpu->arch.trap; 1197 return RESUME_HOST; 1198 } 1199 run->exit_reason = KVM_EXIT_UNKNOWN; 1200 run->ready_for_interrupt_injection = 1; 1201 switch (vcpu->arch.trap) { 1202 /* We're good on these - the host merely wanted to get our attention */ 1203 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1204 vcpu->stat.dec_exits++; 1205 r = RESUME_GUEST; 1206 break; 1207 case BOOK3S_INTERRUPT_EXTERNAL: 1208 case BOOK3S_INTERRUPT_H_DOORBELL: 1209 case BOOK3S_INTERRUPT_H_VIRT: 1210 vcpu->stat.ext_intr_exits++; 1211 r = RESUME_GUEST; 1212 break; 1213 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1214 case BOOK3S_INTERRUPT_HMI: 1215 case BOOK3S_INTERRUPT_PERFMON: 1216 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1217 r = RESUME_GUEST; 1218 break; 1219 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1220 /* Print the MCE event to host console. */ 1221 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1222 1223 /* 1224 * If the guest can do FWNMI, exit to userspace so it can 1225 * deliver a FWNMI to the guest. 1226 * Otherwise we synthesize a machine check for the guest 1227 * so that it knows that the machine check occurred. 1228 */ 1229 if (!vcpu->kvm->arch.fwnmi_enabled) { 1230 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1231 kvmppc_core_queue_machine_check(vcpu, flags); 1232 r = RESUME_GUEST; 1233 break; 1234 } 1235 1236 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1237 run->exit_reason = KVM_EXIT_NMI; 1238 run->hw.hardware_exit_reason = vcpu->arch.trap; 1239 /* Clear out the old NMI status from run->flags */ 1240 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1241 /* Now set the NMI status */ 1242 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1243 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1244 else 1245 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1246 1247 r = RESUME_HOST; 1248 break; 1249 case BOOK3S_INTERRUPT_PROGRAM: 1250 { 1251 ulong flags; 1252 /* 1253 * Normally program interrupts are delivered directly 1254 * to the guest by the hardware, but we can get here 1255 * as a result of a hypervisor emulation interrupt 1256 * (e40) getting turned into a 700 by BML RTAS. 1257 */ 1258 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1259 kvmppc_core_queue_program(vcpu, flags); 1260 r = RESUME_GUEST; 1261 break; 1262 } 1263 case BOOK3S_INTERRUPT_SYSCALL: 1264 { 1265 /* hcall - punt to userspace */ 1266 int i; 1267 1268 /* hypercall with MSR_PR has already been handled in rmode, 1269 * and never reaches here. 1270 */ 1271 1272 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1273 for (i = 0; i < 9; ++i) 1274 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1275 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1276 vcpu->arch.hcall_needed = 1; 1277 r = RESUME_HOST; 1278 break; 1279 } 1280 /* 1281 * We get these next two if the guest accesses a page which it thinks 1282 * it has mapped but which is not actually present, either because 1283 * it is for an emulated I/O device or because the corresonding 1284 * host page has been paged out. Any other HDSI/HISI interrupts 1285 * have been handled already. 1286 */ 1287 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1288 r = RESUME_PAGE_FAULT; 1289 break; 1290 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1291 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1292 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1293 DSISR_SRR1_MATCH_64S; 1294 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1295 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1296 r = RESUME_PAGE_FAULT; 1297 break; 1298 /* 1299 * This occurs if the guest executes an illegal instruction. 1300 * If the guest debug is disabled, generate a program interrupt 1301 * to the guest. If guest debug is enabled, we need to check 1302 * whether the instruction is a software breakpoint instruction. 1303 * Accordingly return to Guest or Host. 1304 */ 1305 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1306 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1307 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1308 swab32(vcpu->arch.emul_inst) : 1309 vcpu->arch.emul_inst; 1310 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1311 r = kvmppc_emulate_debug_inst(run, vcpu); 1312 } else { 1313 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1314 r = RESUME_GUEST; 1315 } 1316 break; 1317 /* 1318 * This occurs if the guest (kernel or userspace), does something that 1319 * is prohibited by HFSCR. 1320 * On POWER9, this could be a doorbell instruction that we need 1321 * to emulate. 1322 * Otherwise, we just generate a program interrupt to the guest. 1323 */ 1324 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1325 r = EMULATE_FAIL; 1326 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1327 cpu_has_feature(CPU_FTR_ARCH_300)) 1328 r = kvmppc_emulate_doorbell_instr(vcpu); 1329 if (r == EMULATE_FAIL) { 1330 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1331 r = RESUME_GUEST; 1332 } 1333 break; 1334 1335 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1336 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1337 /* 1338 * This occurs for various TM-related instructions that 1339 * we need to emulate on POWER9 DD2.2. We have already 1340 * handled the cases where the guest was in real-suspend 1341 * mode and was transitioning to transactional state. 1342 */ 1343 r = kvmhv_p9_tm_emulation(vcpu); 1344 break; 1345 #endif 1346 1347 case BOOK3S_INTERRUPT_HV_RM_HARD: 1348 r = RESUME_PASSTHROUGH; 1349 break; 1350 default: 1351 kvmppc_dump_regs(vcpu); 1352 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1353 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1354 vcpu->arch.shregs.msr); 1355 run->hw.hardware_exit_reason = vcpu->arch.trap; 1356 r = RESUME_HOST; 1357 break; 1358 } 1359 1360 return r; 1361 } 1362 1363 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu) 1364 { 1365 int r; 1366 int srcu_idx; 1367 1368 vcpu->stat.sum_exits++; 1369 1370 /* 1371 * This can happen if an interrupt occurs in the last stages 1372 * of guest entry or the first stages of guest exit (i.e. after 1373 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1374 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1375 * That can happen due to a bug, or due to a machine check 1376 * occurring at just the wrong time. 1377 */ 1378 if (vcpu->arch.shregs.msr & MSR_HV) { 1379 pr_emerg("KVM trap in HV mode while nested!\n"); 1380 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1381 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1382 vcpu->arch.shregs.msr); 1383 kvmppc_dump_regs(vcpu); 1384 return RESUME_HOST; 1385 } 1386 switch (vcpu->arch.trap) { 1387 /* We're good on these - the host merely wanted to get our attention */ 1388 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1389 vcpu->stat.dec_exits++; 1390 r = RESUME_GUEST; 1391 break; 1392 case BOOK3S_INTERRUPT_EXTERNAL: 1393 vcpu->stat.ext_intr_exits++; 1394 r = RESUME_HOST; 1395 break; 1396 case BOOK3S_INTERRUPT_H_DOORBELL: 1397 case BOOK3S_INTERRUPT_H_VIRT: 1398 vcpu->stat.ext_intr_exits++; 1399 r = RESUME_GUEST; 1400 break; 1401 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1402 case BOOK3S_INTERRUPT_HMI: 1403 case BOOK3S_INTERRUPT_PERFMON: 1404 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1405 r = RESUME_GUEST; 1406 break; 1407 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1408 /* Pass the machine check to the L1 guest */ 1409 r = RESUME_HOST; 1410 /* Print the MCE event to host console. */ 1411 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1412 break; 1413 /* 1414 * We get these next two if the guest accesses a page which it thinks 1415 * it has mapped but which is not actually present, either because 1416 * it is for an emulated I/O device or because the corresonding 1417 * host page has been paged out. 1418 */ 1419 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1420 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1421 r = kvmhv_nested_page_fault(run, vcpu); 1422 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1423 break; 1424 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1425 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1426 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1427 DSISR_SRR1_MATCH_64S; 1428 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1429 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1430 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1431 r = kvmhv_nested_page_fault(run, vcpu); 1432 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1433 break; 1434 1435 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1436 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1437 /* 1438 * This occurs for various TM-related instructions that 1439 * we need to emulate on POWER9 DD2.2. We have already 1440 * handled the cases where the guest was in real-suspend 1441 * mode and was transitioning to transactional state. 1442 */ 1443 r = kvmhv_p9_tm_emulation(vcpu); 1444 break; 1445 #endif 1446 1447 case BOOK3S_INTERRUPT_HV_RM_HARD: 1448 vcpu->arch.trap = 0; 1449 r = RESUME_GUEST; 1450 if (!xics_on_xive()) 1451 kvmppc_xics_rm_complete(vcpu, 0); 1452 break; 1453 default: 1454 r = RESUME_HOST; 1455 break; 1456 } 1457 1458 return r; 1459 } 1460 1461 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1462 struct kvm_sregs *sregs) 1463 { 1464 int i; 1465 1466 memset(sregs, 0, sizeof(struct kvm_sregs)); 1467 sregs->pvr = vcpu->arch.pvr; 1468 for (i = 0; i < vcpu->arch.slb_max; i++) { 1469 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1470 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1471 } 1472 1473 return 0; 1474 } 1475 1476 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1477 struct kvm_sregs *sregs) 1478 { 1479 int i, j; 1480 1481 /* Only accept the same PVR as the host's, since we can't spoof it */ 1482 if (sregs->pvr != vcpu->arch.pvr) 1483 return -EINVAL; 1484 1485 j = 0; 1486 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1487 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1488 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1489 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1490 ++j; 1491 } 1492 } 1493 vcpu->arch.slb_max = j; 1494 1495 return 0; 1496 } 1497 1498 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1499 bool preserve_top32) 1500 { 1501 struct kvm *kvm = vcpu->kvm; 1502 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1503 u64 mask; 1504 1505 mutex_lock(&kvm->lock); 1506 spin_lock(&vc->lock); 1507 /* 1508 * If ILE (interrupt little-endian) has changed, update the 1509 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1510 */ 1511 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1512 struct kvm_vcpu *vcpu; 1513 int i; 1514 1515 kvm_for_each_vcpu(i, vcpu, kvm) { 1516 if (vcpu->arch.vcore != vc) 1517 continue; 1518 if (new_lpcr & LPCR_ILE) 1519 vcpu->arch.intr_msr |= MSR_LE; 1520 else 1521 vcpu->arch.intr_msr &= ~MSR_LE; 1522 } 1523 } 1524 1525 /* 1526 * Userspace can only modify DPFD (default prefetch depth), 1527 * ILE (interrupt little-endian) and TC (translation control). 1528 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1529 */ 1530 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1531 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1532 mask |= LPCR_AIL; 1533 /* 1534 * On POWER9, allow userspace to enable large decrementer for the 1535 * guest, whether or not the host has it enabled. 1536 */ 1537 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1538 mask |= LPCR_LD; 1539 1540 /* Broken 32-bit version of LPCR must not clear top bits */ 1541 if (preserve_top32) 1542 mask &= 0xFFFFFFFF; 1543 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1544 spin_unlock(&vc->lock); 1545 mutex_unlock(&kvm->lock); 1546 } 1547 1548 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1549 union kvmppc_one_reg *val) 1550 { 1551 int r = 0; 1552 long int i; 1553 1554 switch (id) { 1555 case KVM_REG_PPC_DEBUG_INST: 1556 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1557 break; 1558 case KVM_REG_PPC_HIOR: 1559 *val = get_reg_val(id, 0); 1560 break; 1561 case KVM_REG_PPC_DABR: 1562 *val = get_reg_val(id, vcpu->arch.dabr); 1563 break; 1564 case KVM_REG_PPC_DABRX: 1565 *val = get_reg_val(id, vcpu->arch.dabrx); 1566 break; 1567 case KVM_REG_PPC_DSCR: 1568 *val = get_reg_val(id, vcpu->arch.dscr); 1569 break; 1570 case KVM_REG_PPC_PURR: 1571 *val = get_reg_val(id, vcpu->arch.purr); 1572 break; 1573 case KVM_REG_PPC_SPURR: 1574 *val = get_reg_val(id, vcpu->arch.spurr); 1575 break; 1576 case KVM_REG_PPC_AMR: 1577 *val = get_reg_val(id, vcpu->arch.amr); 1578 break; 1579 case KVM_REG_PPC_UAMOR: 1580 *val = get_reg_val(id, vcpu->arch.uamor); 1581 break; 1582 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1583 i = id - KVM_REG_PPC_MMCR0; 1584 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1585 break; 1586 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1587 i = id - KVM_REG_PPC_PMC1; 1588 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1589 break; 1590 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1591 i = id - KVM_REG_PPC_SPMC1; 1592 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1593 break; 1594 case KVM_REG_PPC_SIAR: 1595 *val = get_reg_val(id, vcpu->arch.siar); 1596 break; 1597 case KVM_REG_PPC_SDAR: 1598 *val = get_reg_val(id, vcpu->arch.sdar); 1599 break; 1600 case KVM_REG_PPC_SIER: 1601 *val = get_reg_val(id, vcpu->arch.sier); 1602 break; 1603 case KVM_REG_PPC_IAMR: 1604 *val = get_reg_val(id, vcpu->arch.iamr); 1605 break; 1606 case KVM_REG_PPC_PSPB: 1607 *val = get_reg_val(id, vcpu->arch.pspb); 1608 break; 1609 case KVM_REG_PPC_DPDES: 1610 *val = get_reg_val(id, vcpu->arch.vcore->dpdes); 1611 break; 1612 case KVM_REG_PPC_VTB: 1613 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1614 break; 1615 case KVM_REG_PPC_DAWR: 1616 *val = get_reg_val(id, vcpu->arch.dawr); 1617 break; 1618 case KVM_REG_PPC_DAWRX: 1619 *val = get_reg_val(id, vcpu->arch.dawrx); 1620 break; 1621 case KVM_REG_PPC_CIABR: 1622 *val = get_reg_val(id, vcpu->arch.ciabr); 1623 break; 1624 case KVM_REG_PPC_CSIGR: 1625 *val = get_reg_val(id, vcpu->arch.csigr); 1626 break; 1627 case KVM_REG_PPC_TACR: 1628 *val = get_reg_val(id, vcpu->arch.tacr); 1629 break; 1630 case KVM_REG_PPC_TCSCR: 1631 *val = get_reg_val(id, vcpu->arch.tcscr); 1632 break; 1633 case KVM_REG_PPC_PID: 1634 *val = get_reg_val(id, vcpu->arch.pid); 1635 break; 1636 case KVM_REG_PPC_ACOP: 1637 *val = get_reg_val(id, vcpu->arch.acop); 1638 break; 1639 case KVM_REG_PPC_WORT: 1640 *val = get_reg_val(id, vcpu->arch.wort); 1641 break; 1642 case KVM_REG_PPC_TIDR: 1643 *val = get_reg_val(id, vcpu->arch.tid); 1644 break; 1645 case KVM_REG_PPC_PSSCR: 1646 *val = get_reg_val(id, vcpu->arch.psscr); 1647 break; 1648 case KVM_REG_PPC_VPA_ADDR: 1649 spin_lock(&vcpu->arch.vpa_update_lock); 1650 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1651 spin_unlock(&vcpu->arch.vpa_update_lock); 1652 break; 1653 case KVM_REG_PPC_VPA_SLB: 1654 spin_lock(&vcpu->arch.vpa_update_lock); 1655 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1656 val->vpaval.length = vcpu->arch.slb_shadow.len; 1657 spin_unlock(&vcpu->arch.vpa_update_lock); 1658 break; 1659 case KVM_REG_PPC_VPA_DTL: 1660 spin_lock(&vcpu->arch.vpa_update_lock); 1661 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1662 val->vpaval.length = vcpu->arch.dtl.len; 1663 spin_unlock(&vcpu->arch.vpa_update_lock); 1664 break; 1665 case KVM_REG_PPC_TB_OFFSET: 1666 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1667 break; 1668 case KVM_REG_PPC_LPCR: 1669 case KVM_REG_PPC_LPCR_64: 1670 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1671 break; 1672 case KVM_REG_PPC_PPR: 1673 *val = get_reg_val(id, vcpu->arch.ppr); 1674 break; 1675 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1676 case KVM_REG_PPC_TFHAR: 1677 *val = get_reg_val(id, vcpu->arch.tfhar); 1678 break; 1679 case KVM_REG_PPC_TFIAR: 1680 *val = get_reg_val(id, vcpu->arch.tfiar); 1681 break; 1682 case KVM_REG_PPC_TEXASR: 1683 *val = get_reg_val(id, vcpu->arch.texasr); 1684 break; 1685 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1686 i = id - KVM_REG_PPC_TM_GPR0; 1687 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1688 break; 1689 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1690 { 1691 int j; 1692 i = id - KVM_REG_PPC_TM_VSR0; 1693 if (i < 32) 1694 for (j = 0; j < TS_FPRWIDTH; j++) 1695 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1696 else { 1697 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1698 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1699 else 1700 r = -ENXIO; 1701 } 1702 break; 1703 } 1704 case KVM_REG_PPC_TM_CR: 1705 *val = get_reg_val(id, vcpu->arch.cr_tm); 1706 break; 1707 case KVM_REG_PPC_TM_XER: 1708 *val = get_reg_val(id, vcpu->arch.xer_tm); 1709 break; 1710 case KVM_REG_PPC_TM_LR: 1711 *val = get_reg_val(id, vcpu->arch.lr_tm); 1712 break; 1713 case KVM_REG_PPC_TM_CTR: 1714 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1715 break; 1716 case KVM_REG_PPC_TM_FPSCR: 1717 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1718 break; 1719 case KVM_REG_PPC_TM_AMR: 1720 *val = get_reg_val(id, vcpu->arch.amr_tm); 1721 break; 1722 case KVM_REG_PPC_TM_PPR: 1723 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1724 break; 1725 case KVM_REG_PPC_TM_VRSAVE: 1726 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1727 break; 1728 case KVM_REG_PPC_TM_VSCR: 1729 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1730 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1731 else 1732 r = -ENXIO; 1733 break; 1734 case KVM_REG_PPC_TM_DSCR: 1735 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1736 break; 1737 case KVM_REG_PPC_TM_TAR: 1738 *val = get_reg_val(id, vcpu->arch.tar_tm); 1739 break; 1740 #endif 1741 case KVM_REG_PPC_ARCH_COMPAT: 1742 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1743 break; 1744 case KVM_REG_PPC_DEC_EXPIRY: 1745 *val = get_reg_val(id, vcpu->arch.dec_expires + 1746 vcpu->arch.vcore->tb_offset); 1747 break; 1748 case KVM_REG_PPC_ONLINE: 1749 *val = get_reg_val(id, vcpu->arch.online); 1750 break; 1751 case KVM_REG_PPC_PTCR: 1752 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 1753 break; 1754 default: 1755 r = -EINVAL; 1756 break; 1757 } 1758 1759 return r; 1760 } 1761 1762 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1763 union kvmppc_one_reg *val) 1764 { 1765 int r = 0; 1766 long int i; 1767 unsigned long addr, len; 1768 1769 switch (id) { 1770 case KVM_REG_PPC_HIOR: 1771 /* Only allow this to be set to zero */ 1772 if (set_reg_val(id, *val)) 1773 r = -EINVAL; 1774 break; 1775 case KVM_REG_PPC_DABR: 1776 vcpu->arch.dabr = set_reg_val(id, *val); 1777 break; 1778 case KVM_REG_PPC_DABRX: 1779 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1780 break; 1781 case KVM_REG_PPC_DSCR: 1782 vcpu->arch.dscr = set_reg_val(id, *val); 1783 break; 1784 case KVM_REG_PPC_PURR: 1785 vcpu->arch.purr = set_reg_val(id, *val); 1786 break; 1787 case KVM_REG_PPC_SPURR: 1788 vcpu->arch.spurr = set_reg_val(id, *val); 1789 break; 1790 case KVM_REG_PPC_AMR: 1791 vcpu->arch.amr = set_reg_val(id, *val); 1792 break; 1793 case KVM_REG_PPC_UAMOR: 1794 vcpu->arch.uamor = set_reg_val(id, *val); 1795 break; 1796 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1797 i = id - KVM_REG_PPC_MMCR0; 1798 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1799 break; 1800 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1801 i = id - KVM_REG_PPC_PMC1; 1802 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1803 break; 1804 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1805 i = id - KVM_REG_PPC_SPMC1; 1806 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1807 break; 1808 case KVM_REG_PPC_SIAR: 1809 vcpu->arch.siar = set_reg_val(id, *val); 1810 break; 1811 case KVM_REG_PPC_SDAR: 1812 vcpu->arch.sdar = set_reg_val(id, *val); 1813 break; 1814 case KVM_REG_PPC_SIER: 1815 vcpu->arch.sier = set_reg_val(id, *val); 1816 break; 1817 case KVM_REG_PPC_IAMR: 1818 vcpu->arch.iamr = set_reg_val(id, *val); 1819 break; 1820 case KVM_REG_PPC_PSPB: 1821 vcpu->arch.pspb = set_reg_val(id, *val); 1822 break; 1823 case KVM_REG_PPC_DPDES: 1824 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1825 break; 1826 case KVM_REG_PPC_VTB: 1827 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1828 break; 1829 case KVM_REG_PPC_DAWR: 1830 vcpu->arch.dawr = set_reg_val(id, *val); 1831 break; 1832 case KVM_REG_PPC_DAWRX: 1833 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1834 break; 1835 case KVM_REG_PPC_CIABR: 1836 vcpu->arch.ciabr = set_reg_val(id, *val); 1837 /* Don't allow setting breakpoints in hypervisor code */ 1838 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1839 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1840 break; 1841 case KVM_REG_PPC_CSIGR: 1842 vcpu->arch.csigr = set_reg_val(id, *val); 1843 break; 1844 case KVM_REG_PPC_TACR: 1845 vcpu->arch.tacr = set_reg_val(id, *val); 1846 break; 1847 case KVM_REG_PPC_TCSCR: 1848 vcpu->arch.tcscr = set_reg_val(id, *val); 1849 break; 1850 case KVM_REG_PPC_PID: 1851 vcpu->arch.pid = set_reg_val(id, *val); 1852 break; 1853 case KVM_REG_PPC_ACOP: 1854 vcpu->arch.acop = set_reg_val(id, *val); 1855 break; 1856 case KVM_REG_PPC_WORT: 1857 vcpu->arch.wort = set_reg_val(id, *val); 1858 break; 1859 case KVM_REG_PPC_TIDR: 1860 vcpu->arch.tid = set_reg_val(id, *val); 1861 break; 1862 case KVM_REG_PPC_PSSCR: 1863 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1864 break; 1865 case KVM_REG_PPC_VPA_ADDR: 1866 addr = set_reg_val(id, *val); 1867 r = -EINVAL; 1868 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1869 vcpu->arch.dtl.next_gpa)) 1870 break; 1871 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1872 break; 1873 case KVM_REG_PPC_VPA_SLB: 1874 addr = val->vpaval.addr; 1875 len = val->vpaval.length; 1876 r = -EINVAL; 1877 if (addr && !vcpu->arch.vpa.next_gpa) 1878 break; 1879 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1880 break; 1881 case KVM_REG_PPC_VPA_DTL: 1882 addr = val->vpaval.addr; 1883 len = val->vpaval.length; 1884 r = -EINVAL; 1885 if (addr && (len < sizeof(struct dtl_entry) || 1886 !vcpu->arch.vpa.next_gpa)) 1887 break; 1888 len -= len % sizeof(struct dtl_entry); 1889 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1890 break; 1891 case KVM_REG_PPC_TB_OFFSET: 1892 /* round up to multiple of 2^24 */ 1893 vcpu->arch.vcore->tb_offset = 1894 ALIGN(set_reg_val(id, *val), 1UL << 24); 1895 break; 1896 case KVM_REG_PPC_LPCR: 1897 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 1898 break; 1899 case KVM_REG_PPC_LPCR_64: 1900 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 1901 break; 1902 case KVM_REG_PPC_PPR: 1903 vcpu->arch.ppr = set_reg_val(id, *val); 1904 break; 1905 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1906 case KVM_REG_PPC_TFHAR: 1907 vcpu->arch.tfhar = set_reg_val(id, *val); 1908 break; 1909 case KVM_REG_PPC_TFIAR: 1910 vcpu->arch.tfiar = set_reg_val(id, *val); 1911 break; 1912 case KVM_REG_PPC_TEXASR: 1913 vcpu->arch.texasr = set_reg_val(id, *val); 1914 break; 1915 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1916 i = id - KVM_REG_PPC_TM_GPR0; 1917 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 1918 break; 1919 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1920 { 1921 int j; 1922 i = id - KVM_REG_PPC_TM_VSR0; 1923 if (i < 32) 1924 for (j = 0; j < TS_FPRWIDTH; j++) 1925 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 1926 else 1927 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1928 vcpu->arch.vr_tm.vr[i-32] = val->vval; 1929 else 1930 r = -ENXIO; 1931 break; 1932 } 1933 case KVM_REG_PPC_TM_CR: 1934 vcpu->arch.cr_tm = set_reg_val(id, *val); 1935 break; 1936 case KVM_REG_PPC_TM_XER: 1937 vcpu->arch.xer_tm = set_reg_val(id, *val); 1938 break; 1939 case KVM_REG_PPC_TM_LR: 1940 vcpu->arch.lr_tm = set_reg_val(id, *val); 1941 break; 1942 case KVM_REG_PPC_TM_CTR: 1943 vcpu->arch.ctr_tm = set_reg_val(id, *val); 1944 break; 1945 case KVM_REG_PPC_TM_FPSCR: 1946 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 1947 break; 1948 case KVM_REG_PPC_TM_AMR: 1949 vcpu->arch.amr_tm = set_reg_val(id, *val); 1950 break; 1951 case KVM_REG_PPC_TM_PPR: 1952 vcpu->arch.ppr_tm = set_reg_val(id, *val); 1953 break; 1954 case KVM_REG_PPC_TM_VRSAVE: 1955 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 1956 break; 1957 case KVM_REG_PPC_TM_VSCR: 1958 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1959 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 1960 else 1961 r = - ENXIO; 1962 break; 1963 case KVM_REG_PPC_TM_DSCR: 1964 vcpu->arch.dscr_tm = set_reg_val(id, *val); 1965 break; 1966 case KVM_REG_PPC_TM_TAR: 1967 vcpu->arch.tar_tm = set_reg_val(id, *val); 1968 break; 1969 #endif 1970 case KVM_REG_PPC_ARCH_COMPAT: 1971 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 1972 break; 1973 case KVM_REG_PPC_DEC_EXPIRY: 1974 vcpu->arch.dec_expires = set_reg_val(id, *val) - 1975 vcpu->arch.vcore->tb_offset; 1976 break; 1977 case KVM_REG_PPC_ONLINE: 1978 i = set_reg_val(id, *val); 1979 if (i && !vcpu->arch.online) 1980 atomic_inc(&vcpu->arch.vcore->online_count); 1981 else if (!i && vcpu->arch.online) 1982 atomic_dec(&vcpu->arch.vcore->online_count); 1983 vcpu->arch.online = i; 1984 break; 1985 case KVM_REG_PPC_PTCR: 1986 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 1987 break; 1988 default: 1989 r = -EINVAL; 1990 break; 1991 } 1992 1993 return r; 1994 } 1995 1996 /* 1997 * On POWER9, threads are independent and can be in different partitions. 1998 * Therefore we consider each thread to be a subcore. 1999 * There is a restriction that all threads have to be in the same 2000 * MMU mode (radix or HPT), unfortunately, but since we only support 2001 * HPT guests on a HPT host so far, that isn't an impediment yet. 2002 */ 2003 static int threads_per_vcore(struct kvm *kvm) 2004 { 2005 if (kvm->arch.threads_indep) 2006 return 1; 2007 return threads_per_subcore; 2008 } 2009 2010 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2011 { 2012 struct kvmppc_vcore *vcore; 2013 2014 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2015 2016 if (vcore == NULL) 2017 return NULL; 2018 2019 spin_lock_init(&vcore->lock); 2020 spin_lock_init(&vcore->stoltb_lock); 2021 init_swait_queue_head(&vcore->wq); 2022 vcore->preempt_tb = TB_NIL; 2023 vcore->lpcr = kvm->arch.lpcr; 2024 vcore->first_vcpuid = id; 2025 vcore->kvm = kvm; 2026 INIT_LIST_HEAD(&vcore->preempt_list); 2027 2028 return vcore; 2029 } 2030 2031 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2032 static struct debugfs_timings_element { 2033 const char *name; 2034 size_t offset; 2035 } timings[] = { 2036 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2037 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2038 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2039 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2040 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2041 }; 2042 2043 #define N_TIMINGS (ARRAY_SIZE(timings)) 2044 2045 struct debugfs_timings_state { 2046 struct kvm_vcpu *vcpu; 2047 unsigned int buflen; 2048 char buf[N_TIMINGS * 100]; 2049 }; 2050 2051 static int debugfs_timings_open(struct inode *inode, struct file *file) 2052 { 2053 struct kvm_vcpu *vcpu = inode->i_private; 2054 struct debugfs_timings_state *p; 2055 2056 p = kzalloc(sizeof(*p), GFP_KERNEL); 2057 if (!p) 2058 return -ENOMEM; 2059 2060 kvm_get_kvm(vcpu->kvm); 2061 p->vcpu = vcpu; 2062 file->private_data = p; 2063 2064 return nonseekable_open(inode, file); 2065 } 2066 2067 static int debugfs_timings_release(struct inode *inode, struct file *file) 2068 { 2069 struct debugfs_timings_state *p = file->private_data; 2070 2071 kvm_put_kvm(p->vcpu->kvm); 2072 kfree(p); 2073 return 0; 2074 } 2075 2076 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2077 size_t len, loff_t *ppos) 2078 { 2079 struct debugfs_timings_state *p = file->private_data; 2080 struct kvm_vcpu *vcpu = p->vcpu; 2081 char *s, *buf_end; 2082 struct kvmhv_tb_accumulator tb; 2083 u64 count; 2084 loff_t pos; 2085 ssize_t n; 2086 int i, loops; 2087 bool ok; 2088 2089 if (!p->buflen) { 2090 s = p->buf; 2091 buf_end = s + sizeof(p->buf); 2092 for (i = 0; i < N_TIMINGS; ++i) { 2093 struct kvmhv_tb_accumulator *acc; 2094 2095 acc = (struct kvmhv_tb_accumulator *) 2096 ((unsigned long)vcpu + timings[i].offset); 2097 ok = false; 2098 for (loops = 0; loops < 1000; ++loops) { 2099 count = acc->seqcount; 2100 if (!(count & 1)) { 2101 smp_rmb(); 2102 tb = *acc; 2103 smp_rmb(); 2104 if (count == acc->seqcount) { 2105 ok = true; 2106 break; 2107 } 2108 } 2109 udelay(1); 2110 } 2111 if (!ok) 2112 snprintf(s, buf_end - s, "%s: stuck\n", 2113 timings[i].name); 2114 else 2115 snprintf(s, buf_end - s, 2116 "%s: %llu %llu %llu %llu\n", 2117 timings[i].name, count / 2, 2118 tb_to_ns(tb.tb_total), 2119 tb_to_ns(tb.tb_min), 2120 tb_to_ns(tb.tb_max)); 2121 s += strlen(s); 2122 } 2123 p->buflen = s - p->buf; 2124 } 2125 2126 pos = *ppos; 2127 if (pos >= p->buflen) 2128 return 0; 2129 if (len > p->buflen - pos) 2130 len = p->buflen - pos; 2131 n = copy_to_user(buf, p->buf + pos, len); 2132 if (n) { 2133 if (n == len) 2134 return -EFAULT; 2135 len -= n; 2136 } 2137 *ppos = pos + len; 2138 return len; 2139 } 2140 2141 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2142 size_t len, loff_t *ppos) 2143 { 2144 return -EACCES; 2145 } 2146 2147 static const struct file_operations debugfs_timings_ops = { 2148 .owner = THIS_MODULE, 2149 .open = debugfs_timings_open, 2150 .release = debugfs_timings_release, 2151 .read = debugfs_timings_read, 2152 .write = debugfs_timings_write, 2153 .llseek = generic_file_llseek, 2154 }; 2155 2156 /* Create a debugfs directory for the vcpu */ 2157 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2158 { 2159 char buf[16]; 2160 struct kvm *kvm = vcpu->kvm; 2161 2162 snprintf(buf, sizeof(buf), "vcpu%u", id); 2163 if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir)) 2164 return; 2165 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 2166 if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir)) 2167 return; 2168 vcpu->arch.debugfs_timings = 2169 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, 2170 vcpu, &debugfs_timings_ops); 2171 } 2172 2173 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2174 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2175 { 2176 } 2177 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2178 2179 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm, 2180 unsigned int id) 2181 { 2182 struct kvm_vcpu *vcpu; 2183 int err; 2184 int core; 2185 struct kvmppc_vcore *vcore; 2186 2187 err = -ENOMEM; 2188 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 2189 if (!vcpu) 2190 goto out; 2191 2192 err = kvm_vcpu_init(vcpu, kvm, id); 2193 if (err) 2194 goto free_vcpu; 2195 2196 vcpu->arch.shared = &vcpu->arch.shregs; 2197 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2198 /* 2199 * The shared struct is never shared on HV, 2200 * so we can always use host endianness 2201 */ 2202 #ifdef __BIG_ENDIAN__ 2203 vcpu->arch.shared_big_endian = true; 2204 #else 2205 vcpu->arch.shared_big_endian = false; 2206 #endif 2207 #endif 2208 vcpu->arch.mmcr[0] = MMCR0_FC; 2209 vcpu->arch.ctrl = CTRL_RUNLATCH; 2210 /* default to host PVR, since we can't spoof it */ 2211 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2212 spin_lock_init(&vcpu->arch.vpa_update_lock); 2213 spin_lock_init(&vcpu->arch.tbacct_lock); 2214 vcpu->arch.busy_preempt = TB_NIL; 2215 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2216 2217 /* 2218 * Set the default HFSCR for the guest from the host value. 2219 * This value is only used on POWER9. 2220 * On POWER9, we want to virtualize the doorbell facility, so we 2221 * don't set the HFSCR_MSGP bit, and that causes those instructions 2222 * to trap and then we emulate them. 2223 */ 2224 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2225 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP; 2226 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2227 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2228 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2229 vcpu->arch.hfscr |= HFSCR_TM; 2230 } 2231 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2232 vcpu->arch.hfscr |= HFSCR_TM; 2233 2234 kvmppc_mmu_book3s_hv_init(vcpu); 2235 2236 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2237 2238 init_waitqueue_head(&vcpu->arch.cpu_run); 2239 2240 mutex_lock(&kvm->lock); 2241 vcore = NULL; 2242 err = -EINVAL; 2243 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2244 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2245 pr_devel("KVM: VCPU ID too high\n"); 2246 core = KVM_MAX_VCORES; 2247 } else { 2248 BUG_ON(kvm->arch.smt_mode != 1); 2249 core = kvmppc_pack_vcpu_id(kvm, id); 2250 } 2251 } else { 2252 core = id / kvm->arch.smt_mode; 2253 } 2254 if (core < KVM_MAX_VCORES) { 2255 vcore = kvm->arch.vcores[core]; 2256 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2257 pr_devel("KVM: collision on id %u", id); 2258 vcore = NULL; 2259 } else if (!vcore) { 2260 err = -ENOMEM; 2261 vcore = kvmppc_vcore_create(kvm, 2262 id & ~(kvm->arch.smt_mode - 1)); 2263 kvm->arch.vcores[core] = vcore; 2264 kvm->arch.online_vcores++; 2265 } 2266 } 2267 mutex_unlock(&kvm->lock); 2268 2269 if (!vcore) 2270 goto free_vcpu; 2271 2272 spin_lock(&vcore->lock); 2273 ++vcore->num_threads; 2274 spin_unlock(&vcore->lock); 2275 vcpu->arch.vcore = vcore; 2276 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2277 vcpu->arch.thread_cpu = -1; 2278 vcpu->arch.prev_cpu = -1; 2279 2280 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2281 kvmppc_sanity_check(vcpu); 2282 2283 debugfs_vcpu_init(vcpu, id); 2284 2285 return vcpu; 2286 2287 free_vcpu: 2288 kmem_cache_free(kvm_vcpu_cache, vcpu); 2289 out: 2290 return ERR_PTR(err); 2291 } 2292 2293 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2294 unsigned long flags) 2295 { 2296 int err; 2297 int esmt = 0; 2298 2299 if (flags) 2300 return -EINVAL; 2301 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2302 return -EINVAL; 2303 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2304 /* 2305 * On POWER8 (or POWER7), the threading mode is "strict", 2306 * so we pack smt_mode vcpus per vcore. 2307 */ 2308 if (smt_mode > threads_per_subcore) 2309 return -EINVAL; 2310 } else { 2311 /* 2312 * On POWER9, the threading mode is "loose", 2313 * so each vcpu gets its own vcore. 2314 */ 2315 esmt = smt_mode; 2316 smt_mode = 1; 2317 } 2318 mutex_lock(&kvm->lock); 2319 err = -EBUSY; 2320 if (!kvm->arch.online_vcores) { 2321 kvm->arch.smt_mode = smt_mode; 2322 kvm->arch.emul_smt_mode = esmt; 2323 err = 0; 2324 } 2325 mutex_unlock(&kvm->lock); 2326 2327 return err; 2328 } 2329 2330 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2331 { 2332 if (vpa->pinned_addr) 2333 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2334 vpa->dirty); 2335 } 2336 2337 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2338 { 2339 spin_lock(&vcpu->arch.vpa_update_lock); 2340 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2341 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2342 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2343 spin_unlock(&vcpu->arch.vpa_update_lock); 2344 kvm_vcpu_uninit(vcpu); 2345 kmem_cache_free(kvm_vcpu_cache, vcpu); 2346 } 2347 2348 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2349 { 2350 /* Indicate we want to get back into the guest */ 2351 return 1; 2352 } 2353 2354 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2355 { 2356 unsigned long dec_nsec, now; 2357 2358 now = get_tb(); 2359 if (now > vcpu->arch.dec_expires) { 2360 /* decrementer has already gone negative */ 2361 kvmppc_core_queue_dec(vcpu); 2362 kvmppc_core_prepare_to_enter(vcpu); 2363 return; 2364 } 2365 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now); 2366 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2367 vcpu->arch.timer_running = 1; 2368 } 2369 2370 static void kvmppc_end_cede(struct kvm_vcpu *vcpu) 2371 { 2372 vcpu->arch.ceded = 0; 2373 if (vcpu->arch.timer_running) { 2374 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2375 vcpu->arch.timer_running = 0; 2376 } 2377 } 2378 2379 extern int __kvmppc_vcore_entry(void); 2380 2381 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2382 struct kvm_vcpu *vcpu) 2383 { 2384 u64 now; 2385 2386 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2387 return; 2388 spin_lock_irq(&vcpu->arch.tbacct_lock); 2389 now = mftb(); 2390 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2391 vcpu->arch.stolen_logged; 2392 vcpu->arch.busy_preempt = now; 2393 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2394 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2395 --vc->n_runnable; 2396 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2397 } 2398 2399 static int kvmppc_grab_hwthread(int cpu) 2400 { 2401 struct paca_struct *tpaca; 2402 long timeout = 10000; 2403 2404 tpaca = paca_ptrs[cpu]; 2405 2406 /* Ensure the thread won't go into the kernel if it wakes */ 2407 tpaca->kvm_hstate.kvm_vcpu = NULL; 2408 tpaca->kvm_hstate.kvm_vcore = NULL; 2409 tpaca->kvm_hstate.napping = 0; 2410 smp_wmb(); 2411 tpaca->kvm_hstate.hwthread_req = 1; 2412 2413 /* 2414 * If the thread is already executing in the kernel (e.g. handling 2415 * a stray interrupt), wait for it to get back to nap mode. 2416 * The smp_mb() is to ensure that our setting of hwthread_req 2417 * is visible before we look at hwthread_state, so if this 2418 * races with the code at system_reset_pSeries and the thread 2419 * misses our setting of hwthread_req, we are sure to see its 2420 * setting of hwthread_state, and vice versa. 2421 */ 2422 smp_mb(); 2423 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2424 if (--timeout <= 0) { 2425 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2426 return -EBUSY; 2427 } 2428 udelay(1); 2429 } 2430 return 0; 2431 } 2432 2433 static void kvmppc_release_hwthread(int cpu) 2434 { 2435 struct paca_struct *tpaca; 2436 2437 tpaca = paca_ptrs[cpu]; 2438 tpaca->kvm_hstate.hwthread_req = 0; 2439 tpaca->kvm_hstate.kvm_vcpu = NULL; 2440 tpaca->kvm_hstate.kvm_vcore = NULL; 2441 tpaca->kvm_hstate.kvm_split_mode = NULL; 2442 } 2443 2444 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2445 { 2446 struct kvm_nested_guest *nested = vcpu->arch.nested; 2447 cpumask_t *cpu_in_guest; 2448 int i; 2449 2450 cpu = cpu_first_thread_sibling(cpu); 2451 if (nested) { 2452 cpumask_set_cpu(cpu, &nested->need_tlb_flush); 2453 cpu_in_guest = &nested->cpu_in_guest; 2454 } else { 2455 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2456 cpu_in_guest = &kvm->arch.cpu_in_guest; 2457 } 2458 /* 2459 * Make sure setting of bit in need_tlb_flush precedes 2460 * testing of cpu_in_guest bits. The matching barrier on 2461 * the other side is the first smp_mb() in kvmppc_run_core(). 2462 */ 2463 smp_mb(); 2464 for (i = 0; i < threads_per_core; ++i) 2465 if (cpumask_test_cpu(cpu + i, cpu_in_guest)) 2466 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2467 } 2468 2469 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2470 { 2471 struct kvm_nested_guest *nested = vcpu->arch.nested; 2472 struct kvm *kvm = vcpu->kvm; 2473 int prev_cpu; 2474 2475 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2476 return; 2477 2478 if (nested) 2479 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 2480 else 2481 prev_cpu = vcpu->arch.prev_cpu; 2482 2483 /* 2484 * With radix, the guest can do TLB invalidations itself, 2485 * and it could choose to use the local form (tlbiel) if 2486 * it is invalidating a translation that has only ever been 2487 * used on one vcpu. However, that doesn't mean it has 2488 * only ever been used on one physical cpu, since vcpus 2489 * can move around between pcpus. To cope with this, when 2490 * a vcpu moves from one pcpu to another, we need to tell 2491 * any vcpus running on the same core as this vcpu previously 2492 * ran to flush the TLB. The TLB is shared between threads, 2493 * so we use a single bit in .need_tlb_flush for all 4 threads. 2494 */ 2495 if (prev_cpu != pcpu) { 2496 if (prev_cpu >= 0 && 2497 cpu_first_thread_sibling(prev_cpu) != 2498 cpu_first_thread_sibling(pcpu)) 2499 radix_flush_cpu(kvm, prev_cpu, vcpu); 2500 if (nested) 2501 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 2502 else 2503 vcpu->arch.prev_cpu = pcpu; 2504 } 2505 } 2506 2507 static void kvmppc_radix_check_need_tlb_flush(struct kvm *kvm, int pcpu, 2508 struct kvm_nested_guest *nested) 2509 { 2510 cpumask_t *need_tlb_flush; 2511 int lpid; 2512 2513 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2514 return; 2515 2516 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2517 pcpu &= ~0x3UL; 2518 2519 if (nested) { 2520 lpid = nested->shadow_lpid; 2521 need_tlb_flush = &nested->need_tlb_flush; 2522 } else { 2523 lpid = kvm->arch.lpid; 2524 need_tlb_flush = &kvm->arch.need_tlb_flush; 2525 } 2526 2527 mtspr(SPRN_LPID, lpid); 2528 isync(); 2529 smp_mb(); 2530 2531 if (cpumask_test_cpu(pcpu, need_tlb_flush)) { 2532 radix__local_flush_tlb_lpid_guest(lpid); 2533 /* Clear the bit after the TLB flush */ 2534 cpumask_clear_cpu(pcpu, need_tlb_flush); 2535 } 2536 } 2537 2538 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2539 { 2540 int cpu; 2541 struct paca_struct *tpaca; 2542 struct kvm *kvm = vc->kvm; 2543 2544 cpu = vc->pcpu; 2545 if (vcpu) { 2546 if (vcpu->arch.timer_running) { 2547 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2548 vcpu->arch.timer_running = 0; 2549 } 2550 cpu += vcpu->arch.ptid; 2551 vcpu->cpu = vc->pcpu; 2552 vcpu->arch.thread_cpu = cpu; 2553 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2554 } 2555 tpaca = paca_ptrs[cpu]; 2556 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2557 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2558 tpaca->kvm_hstate.fake_suspend = 0; 2559 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2560 smp_wmb(); 2561 tpaca->kvm_hstate.kvm_vcore = vc; 2562 if (cpu != smp_processor_id()) 2563 kvmppc_ipi_thread(cpu); 2564 } 2565 2566 static void kvmppc_wait_for_nap(int n_threads) 2567 { 2568 int cpu = smp_processor_id(); 2569 int i, loops; 2570 2571 if (n_threads <= 1) 2572 return; 2573 for (loops = 0; loops < 1000000; ++loops) { 2574 /* 2575 * Check if all threads are finished. 2576 * We set the vcore pointer when starting a thread 2577 * and the thread clears it when finished, so we look 2578 * for any threads that still have a non-NULL vcore ptr. 2579 */ 2580 for (i = 1; i < n_threads; ++i) 2581 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2582 break; 2583 if (i == n_threads) { 2584 HMT_medium(); 2585 return; 2586 } 2587 HMT_low(); 2588 } 2589 HMT_medium(); 2590 for (i = 1; i < n_threads; ++i) 2591 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2592 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2593 } 2594 2595 /* 2596 * Check that we are on thread 0 and that any other threads in 2597 * this core are off-line. Then grab the threads so they can't 2598 * enter the kernel. 2599 */ 2600 static int on_primary_thread(void) 2601 { 2602 int cpu = smp_processor_id(); 2603 int thr; 2604 2605 /* Are we on a primary subcore? */ 2606 if (cpu_thread_in_subcore(cpu)) 2607 return 0; 2608 2609 thr = 0; 2610 while (++thr < threads_per_subcore) 2611 if (cpu_online(cpu + thr)) 2612 return 0; 2613 2614 /* Grab all hw threads so they can't go into the kernel */ 2615 for (thr = 1; thr < threads_per_subcore; ++thr) { 2616 if (kvmppc_grab_hwthread(cpu + thr)) { 2617 /* Couldn't grab one; let the others go */ 2618 do { 2619 kvmppc_release_hwthread(cpu + thr); 2620 } while (--thr > 0); 2621 return 0; 2622 } 2623 } 2624 return 1; 2625 } 2626 2627 /* 2628 * A list of virtual cores for each physical CPU. 2629 * These are vcores that could run but their runner VCPU tasks are 2630 * (or may be) preempted. 2631 */ 2632 struct preempted_vcore_list { 2633 struct list_head list; 2634 spinlock_t lock; 2635 }; 2636 2637 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2638 2639 static void init_vcore_lists(void) 2640 { 2641 int cpu; 2642 2643 for_each_possible_cpu(cpu) { 2644 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2645 spin_lock_init(&lp->lock); 2646 INIT_LIST_HEAD(&lp->list); 2647 } 2648 } 2649 2650 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2651 { 2652 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2653 2654 vc->vcore_state = VCORE_PREEMPT; 2655 vc->pcpu = smp_processor_id(); 2656 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2657 spin_lock(&lp->lock); 2658 list_add_tail(&vc->preempt_list, &lp->list); 2659 spin_unlock(&lp->lock); 2660 } 2661 2662 /* Start accumulating stolen time */ 2663 kvmppc_core_start_stolen(vc); 2664 } 2665 2666 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2667 { 2668 struct preempted_vcore_list *lp; 2669 2670 kvmppc_core_end_stolen(vc); 2671 if (!list_empty(&vc->preempt_list)) { 2672 lp = &per_cpu(preempted_vcores, vc->pcpu); 2673 spin_lock(&lp->lock); 2674 list_del_init(&vc->preempt_list); 2675 spin_unlock(&lp->lock); 2676 } 2677 vc->vcore_state = VCORE_INACTIVE; 2678 } 2679 2680 /* 2681 * This stores information about the virtual cores currently 2682 * assigned to a physical core. 2683 */ 2684 struct core_info { 2685 int n_subcores; 2686 int max_subcore_threads; 2687 int total_threads; 2688 int subcore_threads[MAX_SUBCORES]; 2689 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2690 }; 2691 2692 /* 2693 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2694 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2695 */ 2696 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2697 2698 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2699 { 2700 memset(cip, 0, sizeof(*cip)); 2701 cip->n_subcores = 1; 2702 cip->max_subcore_threads = vc->num_threads; 2703 cip->total_threads = vc->num_threads; 2704 cip->subcore_threads[0] = vc->num_threads; 2705 cip->vc[0] = vc; 2706 } 2707 2708 static bool subcore_config_ok(int n_subcores, int n_threads) 2709 { 2710 /* 2711 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 2712 * split-core mode, with one thread per subcore. 2713 */ 2714 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2715 return n_subcores <= 4 && n_threads == 1; 2716 2717 /* On POWER8, can only dynamically split if unsplit to begin with */ 2718 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2719 return false; 2720 if (n_subcores > MAX_SUBCORES) 2721 return false; 2722 if (n_subcores > 1) { 2723 if (!(dynamic_mt_modes & 2)) 2724 n_subcores = 4; 2725 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2726 return false; 2727 } 2728 2729 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2730 } 2731 2732 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2733 { 2734 vc->entry_exit_map = 0; 2735 vc->in_guest = 0; 2736 vc->napping_threads = 0; 2737 vc->conferring_threads = 0; 2738 vc->tb_offset_applied = 0; 2739 } 2740 2741 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2742 { 2743 int n_threads = vc->num_threads; 2744 int sub; 2745 2746 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2747 return false; 2748 2749 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 2750 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 2751 return false; 2752 2753 /* Some POWER9 chips require all threads to be in the same MMU mode */ 2754 if (no_mixing_hpt_and_radix && 2755 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm)) 2756 return false; 2757 2758 if (n_threads < cip->max_subcore_threads) 2759 n_threads = cip->max_subcore_threads; 2760 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2761 return false; 2762 cip->max_subcore_threads = n_threads; 2763 2764 sub = cip->n_subcores; 2765 ++cip->n_subcores; 2766 cip->total_threads += vc->num_threads; 2767 cip->subcore_threads[sub] = vc->num_threads; 2768 cip->vc[sub] = vc; 2769 init_vcore_to_run(vc); 2770 list_del_init(&vc->preempt_list); 2771 2772 return true; 2773 } 2774 2775 /* 2776 * Work out whether it is possible to piggyback the execution of 2777 * vcore *pvc onto the execution of the other vcores described in *cip. 2778 */ 2779 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2780 int target_threads) 2781 { 2782 if (cip->total_threads + pvc->num_threads > target_threads) 2783 return false; 2784 2785 return can_dynamic_split(pvc, cip); 2786 } 2787 2788 static void prepare_threads(struct kvmppc_vcore *vc) 2789 { 2790 int i; 2791 struct kvm_vcpu *vcpu; 2792 2793 for_each_runnable_thread(i, vcpu, vc) { 2794 if (signal_pending(vcpu->arch.run_task)) 2795 vcpu->arch.ret = -EINTR; 2796 else if (vcpu->arch.vpa.update_pending || 2797 vcpu->arch.slb_shadow.update_pending || 2798 vcpu->arch.dtl.update_pending) 2799 vcpu->arch.ret = RESUME_GUEST; 2800 else 2801 continue; 2802 kvmppc_remove_runnable(vc, vcpu); 2803 wake_up(&vcpu->arch.cpu_run); 2804 } 2805 } 2806 2807 static void collect_piggybacks(struct core_info *cip, int target_threads) 2808 { 2809 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2810 struct kvmppc_vcore *pvc, *vcnext; 2811 2812 spin_lock(&lp->lock); 2813 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2814 if (!spin_trylock(&pvc->lock)) 2815 continue; 2816 prepare_threads(pvc); 2817 if (!pvc->n_runnable) { 2818 list_del_init(&pvc->preempt_list); 2819 if (pvc->runner == NULL) { 2820 pvc->vcore_state = VCORE_INACTIVE; 2821 kvmppc_core_end_stolen(pvc); 2822 } 2823 spin_unlock(&pvc->lock); 2824 continue; 2825 } 2826 if (!can_piggyback(pvc, cip, target_threads)) { 2827 spin_unlock(&pvc->lock); 2828 continue; 2829 } 2830 kvmppc_core_end_stolen(pvc); 2831 pvc->vcore_state = VCORE_PIGGYBACK; 2832 if (cip->total_threads >= target_threads) 2833 break; 2834 } 2835 spin_unlock(&lp->lock); 2836 } 2837 2838 static bool recheck_signals(struct core_info *cip) 2839 { 2840 int sub, i; 2841 struct kvm_vcpu *vcpu; 2842 2843 for (sub = 0; sub < cip->n_subcores; ++sub) 2844 for_each_runnable_thread(i, vcpu, cip->vc[sub]) 2845 if (signal_pending(vcpu->arch.run_task)) 2846 return true; 2847 return false; 2848 } 2849 2850 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2851 { 2852 int still_running = 0, i; 2853 u64 now; 2854 long ret; 2855 struct kvm_vcpu *vcpu; 2856 2857 spin_lock(&vc->lock); 2858 now = get_tb(); 2859 for_each_runnable_thread(i, vcpu, vc) { 2860 /* 2861 * It's safe to unlock the vcore in the loop here, because 2862 * for_each_runnable_thread() is safe against removal of 2863 * the vcpu, and the vcore state is VCORE_EXITING here, 2864 * so any vcpus becoming runnable will have their arch.trap 2865 * set to zero and can't actually run in the guest. 2866 */ 2867 spin_unlock(&vc->lock); 2868 /* cancel pending dec exception if dec is positive */ 2869 if (now < vcpu->arch.dec_expires && 2870 kvmppc_core_pending_dec(vcpu)) 2871 kvmppc_core_dequeue_dec(vcpu); 2872 2873 trace_kvm_guest_exit(vcpu); 2874 2875 ret = RESUME_GUEST; 2876 if (vcpu->arch.trap) 2877 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu, 2878 vcpu->arch.run_task); 2879 2880 vcpu->arch.ret = ret; 2881 vcpu->arch.trap = 0; 2882 2883 spin_lock(&vc->lock); 2884 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2885 if (vcpu->arch.pending_exceptions) 2886 kvmppc_core_prepare_to_enter(vcpu); 2887 if (vcpu->arch.ceded) 2888 kvmppc_set_timer(vcpu); 2889 else 2890 ++still_running; 2891 } else { 2892 kvmppc_remove_runnable(vc, vcpu); 2893 wake_up(&vcpu->arch.cpu_run); 2894 } 2895 } 2896 if (!is_master) { 2897 if (still_running > 0) { 2898 kvmppc_vcore_preempt(vc); 2899 } else if (vc->runner) { 2900 vc->vcore_state = VCORE_PREEMPT; 2901 kvmppc_core_start_stolen(vc); 2902 } else { 2903 vc->vcore_state = VCORE_INACTIVE; 2904 } 2905 if (vc->n_runnable > 0 && vc->runner == NULL) { 2906 /* make sure there's a candidate runner awake */ 2907 i = -1; 2908 vcpu = next_runnable_thread(vc, &i); 2909 wake_up(&vcpu->arch.cpu_run); 2910 } 2911 } 2912 spin_unlock(&vc->lock); 2913 } 2914 2915 /* 2916 * Clear core from the list of active host cores as we are about to 2917 * enter the guest. Only do this if it is the primary thread of the 2918 * core (not if a subcore) that is entering the guest. 2919 */ 2920 static inline int kvmppc_clear_host_core(unsigned int cpu) 2921 { 2922 int core; 2923 2924 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2925 return 0; 2926 /* 2927 * Memory barrier can be omitted here as we will do a smp_wmb() 2928 * later in kvmppc_start_thread and we need ensure that state is 2929 * visible to other CPUs only after we enter guest. 2930 */ 2931 core = cpu >> threads_shift; 2932 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2933 return 0; 2934 } 2935 2936 /* 2937 * Advertise this core as an active host core since we exited the guest 2938 * Only need to do this if it is the primary thread of the core that is 2939 * exiting. 2940 */ 2941 static inline int kvmppc_set_host_core(unsigned int cpu) 2942 { 2943 int core; 2944 2945 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2946 return 0; 2947 2948 /* 2949 * Memory barrier can be omitted here because we do a spin_unlock 2950 * immediately after this which provides the memory barrier. 2951 */ 2952 core = cpu >> threads_shift; 2953 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 2954 return 0; 2955 } 2956 2957 static void set_irq_happened(int trap) 2958 { 2959 switch (trap) { 2960 case BOOK3S_INTERRUPT_EXTERNAL: 2961 local_paca->irq_happened |= PACA_IRQ_EE; 2962 break; 2963 case BOOK3S_INTERRUPT_H_DOORBELL: 2964 local_paca->irq_happened |= PACA_IRQ_DBELL; 2965 break; 2966 case BOOK3S_INTERRUPT_HMI: 2967 local_paca->irq_happened |= PACA_IRQ_HMI; 2968 break; 2969 case BOOK3S_INTERRUPT_SYSTEM_RESET: 2970 replay_system_reset(); 2971 break; 2972 } 2973 } 2974 2975 /* 2976 * Run a set of guest threads on a physical core. 2977 * Called with vc->lock held. 2978 */ 2979 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 2980 { 2981 struct kvm_vcpu *vcpu; 2982 int i; 2983 int srcu_idx; 2984 struct core_info core_info; 2985 struct kvmppc_vcore *pvc; 2986 struct kvm_split_mode split_info, *sip; 2987 int split, subcore_size, active; 2988 int sub; 2989 bool thr0_done; 2990 unsigned long cmd_bit, stat_bit; 2991 int pcpu, thr; 2992 int target_threads; 2993 int controlled_threads; 2994 int trap; 2995 bool is_power8; 2996 bool hpt_on_radix; 2997 2998 /* 2999 * Remove from the list any threads that have a signal pending 3000 * or need a VPA update done 3001 */ 3002 prepare_threads(vc); 3003 3004 /* if the runner is no longer runnable, let the caller pick a new one */ 3005 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3006 return; 3007 3008 /* 3009 * Initialize *vc. 3010 */ 3011 init_vcore_to_run(vc); 3012 vc->preempt_tb = TB_NIL; 3013 3014 /* 3015 * Number of threads that we will be controlling: the same as 3016 * the number of threads per subcore, except on POWER9, 3017 * where it's 1 because the threads are (mostly) independent. 3018 */ 3019 controlled_threads = threads_per_vcore(vc->kvm); 3020 3021 /* 3022 * Make sure we are running on primary threads, and that secondary 3023 * threads are offline. Also check if the number of threads in this 3024 * guest are greater than the current system threads per guest. 3025 * On POWER9, we need to be not in independent-threads mode if 3026 * this is a HPT guest on a radix host machine where the 3027 * CPU threads may not be in different MMU modes. 3028 */ 3029 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() && 3030 !kvm_is_radix(vc->kvm); 3031 if (((controlled_threads > 1) && 3032 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) || 3033 (hpt_on_radix && vc->kvm->arch.threads_indep)) { 3034 for_each_runnable_thread(i, vcpu, vc) { 3035 vcpu->arch.ret = -EBUSY; 3036 kvmppc_remove_runnable(vc, vcpu); 3037 wake_up(&vcpu->arch.cpu_run); 3038 } 3039 goto out; 3040 } 3041 3042 /* 3043 * See if we could run any other vcores on the physical core 3044 * along with this one. 3045 */ 3046 init_core_info(&core_info, vc); 3047 pcpu = smp_processor_id(); 3048 target_threads = controlled_threads; 3049 if (target_smt_mode && target_smt_mode < target_threads) 3050 target_threads = target_smt_mode; 3051 if (vc->num_threads < target_threads) 3052 collect_piggybacks(&core_info, target_threads); 3053 3054 /* 3055 * On radix, arrange for TLB flushing if necessary. 3056 * This has to be done before disabling interrupts since 3057 * it uses smp_call_function(). 3058 */ 3059 pcpu = smp_processor_id(); 3060 if (kvm_is_radix(vc->kvm)) { 3061 for (sub = 0; sub < core_info.n_subcores; ++sub) 3062 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 3063 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 3064 } 3065 3066 /* 3067 * Hard-disable interrupts, and check resched flag and signals. 3068 * If we need to reschedule or deliver a signal, clean up 3069 * and return without going into the guest(s). 3070 * If the mmu_ready flag has been cleared, don't go into the 3071 * guest because that means a HPT resize operation is in progress. 3072 */ 3073 local_irq_disable(); 3074 hard_irq_disable(); 3075 if (lazy_irq_pending() || need_resched() || 3076 recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) { 3077 local_irq_enable(); 3078 vc->vcore_state = VCORE_INACTIVE; 3079 /* Unlock all except the primary vcore */ 3080 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3081 pvc = core_info.vc[sub]; 3082 /* Put back on to the preempted vcores list */ 3083 kvmppc_vcore_preempt(pvc); 3084 spin_unlock(&pvc->lock); 3085 } 3086 for (i = 0; i < controlled_threads; ++i) 3087 kvmppc_release_hwthread(pcpu + i); 3088 return; 3089 } 3090 3091 kvmppc_clear_host_core(pcpu); 3092 3093 /* Decide on micro-threading (split-core) mode */ 3094 subcore_size = threads_per_subcore; 3095 cmd_bit = stat_bit = 0; 3096 split = core_info.n_subcores; 3097 sip = NULL; 3098 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 3099 && !cpu_has_feature(CPU_FTR_ARCH_300); 3100 3101 if (split > 1 || hpt_on_radix) { 3102 sip = &split_info; 3103 memset(&split_info, 0, sizeof(split_info)); 3104 for (sub = 0; sub < core_info.n_subcores; ++sub) 3105 split_info.vc[sub] = core_info.vc[sub]; 3106 3107 if (is_power8) { 3108 if (split == 2 && (dynamic_mt_modes & 2)) { 3109 cmd_bit = HID0_POWER8_1TO2LPAR; 3110 stat_bit = HID0_POWER8_2LPARMODE; 3111 } else { 3112 split = 4; 3113 cmd_bit = HID0_POWER8_1TO4LPAR; 3114 stat_bit = HID0_POWER8_4LPARMODE; 3115 } 3116 subcore_size = MAX_SMT_THREADS / split; 3117 split_info.rpr = mfspr(SPRN_RPR); 3118 split_info.pmmar = mfspr(SPRN_PMMAR); 3119 split_info.ldbar = mfspr(SPRN_LDBAR); 3120 split_info.subcore_size = subcore_size; 3121 } else { 3122 split_info.subcore_size = 1; 3123 if (hpt_on_radix) { 3124 /* Use the split_info for LPCR/LPIDR changes */ 3125 split_info.lpcr_req = vc->lpcr; 3126 split_info.lpidr_req = vc->kvm->arch.lpid; 3127 split_info.host_lpcr = vc->kvm->arch.host_lpcr; 3128 split_info.do_set = 1; 3129 } 3130 } 3131 3132 /* order writes to split_info before kvm_split_mode pointer */ 3133 smp_wmb(); 3134 } 3135 3136 for (thr = 0; thr < controlled_threads; ++thr) { 3137 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3138 3139 paca->kvm_hstate.tid = thr; 3140 paca->kvm_hstate.napping = 0; 3141 paca->kvm_hstate.kvm_split_mode = sip; 3142 } 3143 3144 /* Initiate micro-threading (split-core) on POWER8 if required */ 3145 if (cmd_bit) { 3146 unsigned long hid0 = mfspr(SPRN_HID0); 3147 3148 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3149 mb(); 3150 mtspr(SPRN_HID0, hid0); 3151 isync(); 3152 for (;;) { 3153 hid0 = mfspr(SPRN_HID0); 3154 if (hid0 & stat_bit) 3155 break; 3156 cpu_relax(); 3157 } 3158 } 3159 3160 /* 3161 * On POWER8, set RWMR register. 3162 * Since it only affects PURR and SPURR, it doesn't affect 3163 * the host, so we don't save/restore the host value. 3164 */ 3165 if (is_power8) { 3166 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3167 int n_online = atomic_read(&vc->online_count); 3168 3169 /* 3170 * Use the 8-thread value if we're doing split-core 3171 * or if the vcore's online count looks bogus. 3172 */ 3173 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3174 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3175 rwmr_val = p8_rwmr_values[n_online]; 3176 mtspr(SPRN_RWMR, rwmr_val); 3177 } 3178 3179 /* Start all the threads */ 3180 active = 0; 3181 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3182 thr = is_power8 ? subcore_thread_map[sub] : sub; 3183 thr0_done = false; 3184 active |= 1 << thr; 3185 pvc = core_info.vc[sub]; 3186 pvc->pcpu = pcpu + thr; 3187 for_each_runnable_thread(i, vcpu, pvc) { 3188 kvmppc_start_thread(vcpu, pvc); 3189 kvmppc_create_dtl_entry(vcpu, pvc); 3190 trace_kvm_guest_enter(vcpu); 3191 if (!vcpu->arch.ptid) 3192 thr0_done = true; 3193 active |= 1 << (thr + vcpu->arch.ptid); 3194 } 3195 /* 3196 * We need to start the first thread of each subcore 3197 * even if it doesn't have a vcpu. 3198 */ 3199 if (!thr0_done) 3200 kvmppc_start_thread(NULL, pvc); 3201 } 3202 3203 /* 3204 * Ensure that split_info.do_nap is set after setting 3205 * the vcore pointer in the PACA of the secondaries. 3206 */ 3207 smp_mb(); 3208 3209 /* 3210 * When doing micro-threading, poke the inactive threads as well. 3211 * This gets them to the nap instruction after kvm_do_nap, 3212 * which reduces the time taken to unsplit later. 3213 * For POWER9 HPT guest on radix host, we need all the secondary 3214 * threads woken up so they can do the LPCR/LPIDR change. 3215 */ 3216 if (cmd_bit || hpt_on_radix) { 3217 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3218 for (thr = 1; thr < threads_per_subcore; ++thr) 3219 if (!(active & (1 << thr))) 3220 kvmppc_ipi_thread(pcpu + thr); 3221 } 3222 3223 vc->vcore_state = VCORE_RUNNING; 3224 preempt_disable(); 3225 3226 trace_kvmppc_run_core(vc, 0); 3227 3228 for (sub = 0; sub < core_info.n_subcores; ++sub) 3229 spin_unlock(&core_info.vc[sub]->lock); 3230 3231 if (kvm_is_radix(vc->kvm)) { 3232 /* 3233 * Do we need to flush the process scoped TLB for the LPAR? 3234 * 3235 * On POWER9, individual threads can come in here, but the 3236 * TLB is shared between the 4 threads in a core, hence 3237 * invalidating on one thread invalidates for all. 3238 * Thus we make all 4 threads use the same bit here. 3239 * 3240 * Hash must be flushed in realmode in order to use tlbiel. 3241 */ 3242 kvmppc_radix_check_need_tlb_flush(vc->kvm, pcpu, NULL); 3243 } 3244 3245 /* 3246 * Interrupts will be enabled once we get into the guest, 3247 * so tell lockdep that we're about to enable interrupts. 3248 */ 3249 trace_hardirqs_on(); 3250 3251 guest_enter_irqoff(); 3252 3253 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3254 3255 this_cpu_disable_ftrace(); 3256 3257 trap = __kvmppc_vcore_entry(); 3258 3259 this_cpu_enable_ftrace(); 3260 3261 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3262 3263 trace_hardirqs_off(); 3264 set_irq_happened(trap); 3265 3266 spin_lock(&vc->lock); 3267 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3268 vc->vcore_state = VCORE_EXITING; 3269 3270 /* wait for secondary threads to finish writing their state to memory */ 3271 kvmppc_wait_for_nap(controlled_threads); 3272 3273 /* Return to whole-core mode if we split the core earlier */ 3274 if (cmd_bit) { 3275 unsigned long hid0 = mfspr(SPRN_HID0); 3276 unsigned long loops = 0; 3277 3278 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3279 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3280 mb(); 3281 mtspr(SPRN_HID0, hid0); 3282 isync(); 3283 for (;;) { 3284 hid0 = mfspr(SPRN_HID0); 3285 if (!(hid0 & stat_bit)) 3286 break; 3287 cpu_relax(); 3288 ++loops; 3289 } 3290 } else if (hpt_on_radix) { 3291 /* Wait for all threads to have seen final sync */ 3292 for (thr = 1; thr < controlled_threads; ++thr) { 3293 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3294 3295 while (paca->kvm_hstate.kvm_split_mode) { 3296 HMT_low(); 3297 barrier(); 3298 } 3299 HMT_medium(); 3300 } 3301 } 3302 split_info.do_nap = 0; 3303 3304 kvmppc_set_host_core(pcpu); 3305 3306 local_irq_enable(); 3307 guest_exit(); 3308 3309 /* Let secondaries go back to the offline loop */ 3310 for (i = 0; i < controlled_threads; ++i) { 3311 kvmppc_release_hwthread(pcpu + i); 3312 if (sip && sip->napped[i]) 3313 kvmppc_ipi_thread(pcpu + i); 3314 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 3315 } 3316 3317 spin_unlock(&vc->lock); 3318 3319 /* make sure updates to secondary vcpu structs are visible now */ 3320 smp_mb(); 3321 3322 preempt_enable(); 3323 3324 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3325 pvc = core_info.vc[sub]; 3326 post_guest_process(pvc, pvc == vc); 3327 } 3328 3329 spin_lock(&vc->lock); 3330 3331 out: 3332 vc->vcore_state = VCORE_INACTIVE; 3333 trace_kvmppc_run_core(vc, 1); 3334 } 3335 3336 /* 3337 * Load up hypervisor-mode registers on P9. 3338 */ 3339 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit, 3340 unsigned long lpcr) 3341 { 3342 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3343 s64 hdec; 3344 u64 tb, purr, spurr; 3345 int trap; 3346 unsigned long host_hfscr = mfspr(SPRN_HFSCR); 3347 unsigned long host_ciabr = mfspr(SPRN_CIABR); 3348 unsigned long host_dawr = mfspr(SPRN_DAWR); 3349 unsigned long host_dawrx = mfspr(SPRN_DAWRX); 3350 unsigned long host_psscr = mfspr(SPRN_PSSCR); 3351 unsigned long host_pidr = mfspr(SPRN_PID); 3352 3353 hdec = time_limit - mftb(); 3354 if (hdec < 0) 3355 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3356 mtspr(SPRN_HDEC, hdec); 3357 3358 if (vc->tb_offset) { 3359 u64 new_tb = mftb() + vc->tb_offset; 3360 mtspr(SPRN_TBU40, new_tb); 3361 tb = mftb(); 3362 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3363 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3364 vc->tb_offset_applied = vc->tb_offset; 3365 } 3366 3367 if (vc->pcr) 3368 mtspr(SPRN_PCR, vc->pcr); 3369 mtspr(SPRN_DPDES, vc->dpdes); 3370 mtspr(SPRN_VTB, vc->vtb); 3371 3372 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR); 3373 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR); 3374 mtspr(SPRN_PURR, vcpu->arch.purr); 3375 mtspr(SPRN_SPURR, vcpu->arch.spurr); 3376 3377 if (cpu_has_feature(CPU_FTR_DAWR)) { 3378 mtspr(SPRN_DAWR, vcpu->arch.dawr); 3379 mtspr(SPRN_DAWRX, vcpu->arch.dawrx); 3380 } 3381 mtspr(SPRN_CIABR, vcpu->arch.ciabr); 3382 mtspr(SPRN_IC, vcpu->arch.ic); 3383 mtspr(SPRN_PID, vcpu->arch.pid); 3384 3385 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC | 3386 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3387 3388 mtspr(SPRN_HFSCR, vcpu->arch.hfscr); 3389 3390 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0); 3391 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1); 3392 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2); 3393 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3); 3394 3395 mtspr(SPRN_AMOR, ~0UL); 3396 3397 mtspr(SPRN_LPCR, lpcr); 3398 isync(); 3399 3400 kvmppc_xive_push_vcpu(vcpu); 3401 3402 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0); 3403 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1); 3404 3405 trap = __kvmhv_vcpu_entry_p9(vcpu); 3406 3407 /* Advance host PURR/SPURR by the amount used by guest */ 3408 purr = mfspr(SPRN_PURR); 3409 spurr = mfspr(SPRN_SPURR); 3410 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr + 3411 purr - vcpu->arch.purr); 3412 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr + 3413 spurr - vcpu->arch.spurr); 3414 vcpu->arch.purr = purr; 3415 vcpu->arch.spurr = spurr; 3416 3417 vcpu->arch.ic = mfspr(SPRN_IC); 3418 vcpu->arch.pid = mfspr(SPRN_PID); 3419 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS; 3420 3421 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0); 3422 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1); 3423 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2); 3424 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3); 3425 3426 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */ 3427 mtspr(SPRN_PSSCR, host_psscr | 3428 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3429 mtspr(SPRN_HFSCR, host_hfscr); 3430 mtspr(SPRN_CIABR, host_ciabr); 3431 mtspr(SPRN_DAWR, host_dawr); 3432 mtspr(SPRN_DAWRX, host_dawrx); 3433 mtspr(SPRN_PID, host_pidr); 3434 3435 /* 3436 * Since this is radix, do a eieio; tlbsync; ptesync sequence in 3437 * case we interrupted the guest between a tlbie and a ptesync. 3438 */ 3439 asm volatile("eieio; tlbsync; ptesync"); 3440 3441 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */ 3442 isync(); 3443 3444 vc->dpdes = mfspr(SPRN_DPDES); 3445 vc->vtb = mfspr(SPRN_VTB); 3446 mtspr(SPRN_DPDES, 0); 3447 if (vc->pcr) 3448 mtspr(SPRN_PCR, 0); 3449 3450 if (vc->tb_offset_applied) { 3451 u64 new_tb = mftb() - vc->tb_offset_applied; 3452 mtspr(SPRN_TBU40, new_tb); 3453 tb = mftb(); 3454 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3455 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3456 vc->tb_offset_applied = 0; 3457 } 3458 3459 mtspr(SPRN_HDEC, 0x7fffffff); 3460 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr); 3461 3462 return trap; 3463 } 3464 3465 /* 3466 * Virtual-mode guest entry for POWER9 and later when the host and 3467 * guest are both using the radix MMU. The LPIDR has already been set. 3468 */ 3469 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 3470 unsigned long lpcr) 3471 { 3472 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3473 unsigned long host_dscr = mfspr(SPRN_DSCR); 3474 unsigned long host_tidr = mfspr(SPRN_TIDR); 3475 unsigned long host_iamr = mfspr(SPRN_IAMR); 3476 unsigned long host_amr = mfspr(SPRN_AMR); 3477 s64 dec; 3478 u64 tb; 3479 int trap, save_pmu; 3480 3481 dec = mfspr(SPRN_DEC); 3482 tb = mftb(); 3483 if (dec < 512) 3484 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3485 local_paca->kvm_hstate.dec_expires = dec + tb; 3486 if (local_paca->kvm_hstate.dec_expires < time_limit) 3487 time_limit = local_paca->kvm_hstate.dec_expires; 3488 3489 vcpu->arch.ceded = 0; 3490 3491 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */ 3492 3493 kvmppc_subcore_enter_guest(); 3494 3495 vc->entry_exit_map = 1; 3496 vc->in_guest = 1; 3497 3498 if (vcpu->arch.vpa.pinned_addr) { 3499 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3500 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3501 lp->yield_count = cpu_to_be32(yield_count); 3502 vcpu->arch.vpa.dirty = 1; 3503 } 3504 3505 if (cpu_has_feature(CPU_FTR_TM) || 3506 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3507 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3508 3509 kvmhv_load_guest_pmu(vcpu); 3510 3511 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3512 load_fp_state(&vcpu->arch.fp); 3513 #ifdef CONFIG_ALTIVEC 3514 load_vr_state(&vcpu->arch.vr); 3515 #endif 3516 3517 mtspr(SPRN_DSCR, vcpu->arch.dscr); 3518 mtspr(SPRN_IAMR, vcpu->arch.iamr); 3519 mtspr(SPRN_PSPB, vcpu->arch.pspb); 3520 mtspr(SPRN_FSCR, vcpu->arch.fscr); 3521 mtspr(SPRN_TAR, vcpu->arch.tar); 3522 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr); 3523 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr); 3524 mtspr(SPRN_BESCR, vcpu->arch.bescr); 3525 mtspr(SPRN_WORT, vcpu->arch.wort); 3526 mtspr(SPRN_TIDR, vcpu->arch.tid); 3527 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 3528 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 3529 mtspr(SPRN_AMR, vcpu->arch.amr); 3530 mtspr(SPRN_UAMOR, vcpu->arch.uamor); 3531 3532 if (!(vcpu->arch.ctrl & 1)) 3533 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1); 3534 3535 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb()); 3536 3537 if (kvmhv_on_pseries()) { 3538 /* call our hypervisor to load up HV regs and go */ 3539 struct hv_guest_state hvregs; 3540 3541 kvmhv_save_hv_regs(vcpu, &hvregs); 3542 hvregs.lpcr = lpcr; 3543 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 3544 hvregs.version = HV_GUEST_STATE_VERSION; 3545 if (vcpu->arch.nested) { 3546 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 3547 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 3548 } else { 3549 hvregs.lpid = vcpu->kvm->arch.lpid; 3550 hvregs.vcpu_token = vcpu->vcpu_id; 3551 } 3552 hvregs.hdec_expiry = time_limit; 3553 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 3554 __pa(&vcpu->arch.regs)); 3555 kvmhv_restore_hv_return_state(vcpu, &hvregs); 3556 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 3557 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 3558 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 3559 3560 /* H_CEDE has to be handled now, not later */ 3561 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 3562 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 3563 kvmppc_nested_cede(vcpu); 3564 trap = 0; 3565 } 3566 } else { 3567 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr); 3568 } 3569 3570 vcpu->arch.slb_max = 0; 3571 dec = mfspr(SPRN_DEC); 3572 tb = mftb(); 3573 vcpu->arch.dec_expires = dec + tb; 3574 vcpu->cpu = -1; 3575 vcpu->arch.thread_cpu = -1; 3576 vcpu->arch.ctrl = mfspr(SPRN_CTRLF); 3577 3578 vcpu->arch.iamr = mfspr(SPRN_IAMR); 3579 vcpu->arch.pspb = mfspr(SPRN_PSPB); 3580 vcpu->arch.fscr = mfspr(SPRN_FSCR); 3581 vcpu->arch.tar = mfspr(SPRN_TAR); 3582 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR); 3583 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR); 3584 vcpu->arch.bescr = mfspr(SPRN_BESCR); 3585 vcpu->arch.wort = mfspr(SPRN_WORT); 3586 vcpu->arch.tid = mfspr(SPRN_TIDR); 3587 vcpu->arch.amr = mfspr(SPRN_AMR); 3588 vcpu->arch.uamor = mfspr(SPRN_UAMOR); 3589 vcpu->arch.dscr = mfspr(SPRN_DSCR); 3590 3591 mtspr(SPRN_PSPB, 0); 3592 mtspr(SPRN_WORT, 0); 3593 mtspr(SPRN_UAMOR, 0); 3594 mtspr(SPRN_DSCR, host_dscr); 3595 mtspr(SPRN_TIDR, host_tidr); 3596 mtspr(SPRN_IAMR, host_iamr); 3597 mtspr(SPRN_PSPB, 0); 3598 3599 if (host_amr != vcpu->arch.amr) 3600 mtspr(SPRN_AMR, host_amr); 3601 3602 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3603 store_fp_state(&vcpu->arch.fp); 3604 #ifdef CONFIG_ALTIVEC 3605 store_vr_state(&vcpu->arch.vr); 3606 #endif 3607 3608 if (cpu_has_feature(CPU_FTR_TM) || 3609 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3610 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3611 3612 save_pmu = 1; 3613 if (vcpu->arch.vpa.pinned_addr) { 3614 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3615 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3616 lp->yield_count = cpu_to_be32(yield_count); 3617 vcpu->arch.vpa.dirty = 1; 3618 save_pmu = lp->pmcregs_in_use; 3619 } 3620 3621 kvmhv_save_guest_pmu(vcpu, save_pmu); 3622 3623 vc->entry_exit_map = 0x101; 3624 vc->in_guest = 0; 3625 3626 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb()); 3627 3628 kvmhv_load_host_pmu(); 3629 3630 kvmppc_subcore_exit_guest(); 3631 3632 return trap; 3633 } 3634 3635 /* 3636 * Wait for some other vcpu thread to execute us, and 3637 * wake us up when we need to handle something in the host. 3638 */ 3639 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 3640 struct kvm_vcpu *vcpu, int wait_state) 3641 { 3642 DEFINE_WAIT(wait); 3643 3644 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 3645 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3646 spin_unlock(&vc->lock); 3647 schedule(); 3648 spin_lock(&vc->lock); 3649 } 3650 finish_wait(&vcpu->arch.cpu_run, &wait); 3651 } 3652 3653 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 3654 { 3655 if (!halt_poll_ns_grow) 3656 return; 3657 3658 vc->halt_poll_ns *= halt_poll_ns_grow; 3659 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 3660 vc->halt_poll_ns = halt_poll_ns_grow_start; 3661 } 3662 3663 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 3664 { 3665 if (halt_poll_ns_shrink == 0) 3666 vc->halt_poll_ns = 0; 3667 else 3668 vc->halt_poll_ns /= halt_poll_ns_shrink; 3669 } 3670 3671 #ifdef CONFIG_KVM_XICS 3672 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3673 { 3674 if (!xics_on_xive()) 3675 return false; 3676 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 3677 vcpu->arch.xive_saved_state.cppr; 3678 } 3679 #else 3680 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3681 { 3682 return false; 3683 } 3684 #endif /* CONFIG_KVM_XICS */ 3685 3686 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3687 { 3688 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3689 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3690 return true; 3691 3692 return false; 3693 } 3694 3695 /* 3696 * Check to see if any of the runnable vcpus on the vcore have pending 3697 * exceptions or are no longer ceded 3698 */ 3699 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3700 { 3701 struct kvm_vcpu *vcpu; 3702 int i; 3703 3704 for_each_runnable_thread(i, vcpu, vc) { 3705 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3706 return 1; 3707 } 3708 3709 return 0; 3710 } 3711 3712 /* 3713 * All the vcpus in this vcore are idle, so wait for a decrementer 3714 * or external interrupt to one of the vcpus. vc->lock is held. 3715 */ 3716 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3717 { 3718 ktime_t cur, start_poll, start_wait; 3719 int do_sleep = 1; 3720 u64 block_ns; 3721 DECLARE_SWAITQUEUE(wait); 3722 3723 /* Poll for pending exceptions and ceded state */ 3724 cur = start_poll = ktime_get(); 3725 if (vc->halt_poll_ns) { 3726 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3727 ++vc->runner->stat.halt_attempted_poll; 3728 3729 vc->vcore_state = VCORE_POLLING; 3730 spin_unlock(&vc->lock); 3731 3732 do { 3733 if (kvmppc_vcore_check_block(vc)) { 3734 do_sleep = 0; 3735 break; 3736 } 3737 cur = ktime_get(); 3738 } while (single_task_running() && ktime_before(cur, stop)); 3739 3740 spin_lock(&vc->lock); 3741 vc->vcore_state = VCORE_INACTIVE; 3742 3743 if (!do_sleep) { 3744 ++vc->runner->stat.halt_successful_poll; 3745 goto out; 3746 } 3747 } 3748 3749 prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE); 3750 3751 if (kvmppc_vcore_check_block(vc)) { 3752 finish_swait(&vc->wq, &wait); 3753 do_sleep = 0; 3754 /* If we polled, count this as a successful poll */ 3755 if (vc->halt_poll_ns) 3756 ++vc->runner->stat.halt_successful_poll; 3757 goto out; 3758 } 3759 3760 start_wait = ktime_get(); 3761 3762 vc->vcore_state = VCORE_SLEEPING; 3763 trace_kvmppc_vcore_blocked(vc, 0); 3764 spin_unlock(&vc->lock); 3765 schedule(); 3766 finish_swait(&vc->wq, &wait); 3767 spin_lock(&vc->lock); 3768 vc->vcore_state = VCORE_INACTIVE; 3769 trace_kvmppc_vcore_blocked(vc, 1); 3770 ++vc->runner->stat.halt_successful_wait; 3771 3772 cur = ktime_get(); 3773 3774 out: 3775 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3776 3777 /* Attribute wait time */ 3778 if (do_sleep) { 3779 vc->runner->stat.halt_wait_ns += 3780 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3781 /* Attribute failed poll time */ 3782 if (vc->halt_poll_ns) 3783 vc->runner->stat.halt_poll_fail_ns += 3784 ktime_to_ns(start_wait) - 3785 ktime_to_ns(start_poll); 3786 } else { 3787 /* Attribute successful poll time */ 3788 if (vc->halt_poll_ns) 3789 vc->runner->stat.halt_poll_success_ns += 3790 ktime_to_ns(cur) - 3791 ktime_to_ns(start_poll); 3792 } 3793 3794 /* Adjust poll time */ 3795 if (halt_poll_ns) { 3796 if (block_ns <= vc->halt_poll_ns) 3797 ; 3798 /* We slept and blocked for longer than the max halt time */ 3799 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3800 shrink_halt_poll_ns(vc); 3801 /* We slept and our poll time is too small */ 3802 else if (vc->halt_poll_ns < halt_poll_ns && 3803 block_ns < halt_poll_ns) 3804 grow_halt_poll_ns(vc); 3805 if (vc->halt_poll_ns > halt_poll_ns) 3806 vc->halt_poll_ns = halt_poll_ns; 3807 } else 3808 vc->halt_poll_ns = 0; 3809 3810 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3811 } 3812 3813 /* 3814 * This never fails for a radix guest, as none of the operations it does 3815 * for a radix guest can fail or have a way to report failure. 3816 * kvmhv_run_single_vcpu() relies on this fact. 3817 */ 3818 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 3819 { 3820 int r = 0; 3821 struct kvm *kvm = vcpu->kvm; 3822 3823 mutex_lock(&kvm->lock); 3824 if (!kvm->arch.mmu_ready) { 3825 if (!kvm_is_radix(kvm)) 3826 r = kvmppc_hv_setup_htab_rma(vcpu); 3827 if (!r) { 3828 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3829 kvmppc_setup_partition_table(kvm); 3830 kvm->arch.mmu_ready = 1; 3831 } 3832 } 3833 mutex_unlock(&kvm->lock); 3834 return r; 3835 } 3836 3837 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) 3838 { 3839 int n_ceded, i, r; 3840 struct kvmppc_vcore *vc; 3841 struct kvm_vcpu *v; 3842 3843 trace_kvmppc_run_vcpu_enter(vcpu); 3844 3845 kvm_run->exit_reason = 0; 3846 vcpu->arch.ret = RESUME_GUEST; 3847 vcpu->arch.trap = 0; 3848 kvmppc_update_vpas(vcpu); 3849 3850 /* 3851 * Synchronize with other threads in this virtual core 3852 */ 3853 vc = vcpu->arch.vcore; 3854 spin_lock(&vc->lock); 3855 vcpu->arch.ceded = 0; 3856 vcpu->arch.run_task = current; 3857 vcpu->arch.kvm_run = kvm_run; 3858 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3859 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3860 vcpu->arch.busy_preempt = TB_NIL; 3861 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 3862 ++vc->n_runnable; 3863 3864 /* 3865 * This happens the first time this is called for a vcpu. 3866 * If the vcore is already running, we may be able to start 3867 * this thread straight away and have it join in. 3868 */ 3869 if (!signal_pending(current)) { 3870 if ((vc->vcore_state == VCORE_PIGGYBACK || 3871 vc->vcore_state == VCORE_RUNNING) && 3872 !VCORE_IS_EXITING(vc)) { 3873 kvmppc_create_dtl_entry(vcpu, vc); 3874 kvmppc_start_thread(vcpu, vc); 3875 trace_kvm_guest_enter(vcpu); 3876 } else if (vc->vcore_state == VCORE_SLEEPING) { 3877 swake_up_one(&vc->wq); 3878 } 3879 3880 } 3881 3882 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3883 !signal_pending(current)) { 3884 /* See if the MMU is ready to go */ 3885 if (!vcpu->kvm->arch.mmu_ready) { 3886 spin_unlock(&vc->lock); 3887 r = kvmhv_setup_mmu(vcpu); 3888 spin_lock(&vc->lock); 3889 if (r) { 3890 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3891 kvm_run->fail_entry. 3892 hardware_entry_failure_reason = 0; 3893 vcpu->arch.ret = r; 3894 break; 3895 } 3896 } 3897 3898 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3899 kvmppc_vcore_end_preempt(vc); 3900 3901 if (vc->vcore_state != VCORE_INACTIVE) { 3902 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 3903 continue; 3904 } 3905 for_each_runnable_thread(i, v, vc) { 3906 kvmppc_core_prepare_to_enter(v); 3907 if (signal_pending(v->arch.run_task)) { 3908 kvmppc_remove_runnable(vc, v); 3909 v->stat.signal_exits++; 3910 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR; 3911 v->arch.ret = -EINTR; 3912 wake_up(&v->arch.cpu_run); 3913 } 3914 } 3915 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3916 break; 3917 n_ceded = 0; 3918 for_each_runnable_thread(i, v, vc) { 3919 if (!kvmppc_vcpu_woken(v)) 3920 n_ceded += v->arch.ceded; 3921 else 3922 v->arch.ceded = 0; 3923 } 3924 vc->runner = vcpu; 3925 if (n_ceded == vc->n_runnable) { 3926 kvmppc_vcore_blocked(vc); 3927 } else if (need_resched()) { 3928 kvmppc_vcore_preempt(vc); 3929 /* Let something else run */ 3930 cond_resched_lock(&vc->lock); 3931 if (vc->vcore_state == VCORE_PREEMPT) 3932 kvmppc_vcore_end_preempt(vc); 3933 } else { 3934 kvmppc_run_core(vc); 3935 } 3936 vc->runner = NULL; 3937 } 3938 3939 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3940 (vc->vcore_state == VCORE_RUNNING || 3941 vc->vcore_state == VCORE_EXITING || 3942 vc->vcore_state == VCORE_PIGGYBACK)) 3943 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 3944 3945 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3946 kvmppc_vcore_end_preempt(vc); 3947 3948 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3949 kvmppc_remove_runnable(vc, vcpu); 3950 vcpu->stat.signal_exits++; 3951 kvm_run->exit_reason = KVM_EXIT_INTR; 3952 vcpu->arch.ret = -EINTR; 3953 } 3954 3955 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 3956 /* Wake up some vcpu to run the core */ 3957 i = -1; 3958 v = next_runnable_thread(vc, &i); 3959 wake_up(&v->arch.cpu_run); 3960 } 3961 3962 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 3963 spin_unlock(&vc->lock); 3964 return vcpu->arch.ret; 3965 } 3966 3967 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run, 3968 struct kvm_vcpu *vcpu, u64 time_limit, 3969 unsigned long lpcr) 3970 { 3971 int trap, r, pcpu; 3972 int srcu_idx; 3973 struct kvmppc_vcore *vc; 3974 struct kvm *kvm = vcpu->kvm; 3975 struct kvm_nested_guest *nested = vcpu->arch.nested; 3976 3977 trace_kvmppc_run_vcpu_enter(vcpu); 3978 3979 kvm_run->exit_reason = 0; 3980 vcpu->arch.ret = RESUME_GUEST; 3981 vcpu->arch.trap = 0; 3982 3983 vc = vcpu->arch.vcore; 3984 vcpu->arch.ceded = 0; 3985 vcpu->arch.run_task = current; 3986 vcpu->arch.kvm_run = kvm_run; 3987 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3988 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3989 vcpu->arch.busy_preempt = TB_NIL; 3990 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 3991 vc->runnable_threads[0] = vcpu; 3992 vc->n_runnable = 1; 3993 vc->runner = vcpu; 3994 3995 /* See if the MMU is ready to go */ 3996 if (!kvm->arch.mmu_ready) 3997 kvmhv_setup_mmu(vcpu); 3998 3999 if (need_resched()) 4000 cond_resched(); 4001 4002 kvmppc_update_vpas(vcpu); 4003 4004 init_vcore_to_run(vc); 4005 vc->preempt_tb = TB_NIL; 4006 4007 preempt_disable(); 4008 pcpu = smp_processor_id(); 4009 vc->pcpu = pcpu; 4010 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4011 4012 local_irq_disable(); 4013 hard_irq_disable(); 4014 if (signal_pending(current)) 4015 goto sigpend; 4016 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready) 4017 goto out; 4018 4019 if (!nested) { 4020 kvmppc_core_prepare_to_enter(vcpu); 4021 if (vcpu->arch.doorbell_request) { 4022 vc->dpdes = 1; 4023 smp_wmb(); 4024 vcpu->arch.doorbell_request = 0; 4025 } 4026 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4027 &vcpu->arch.pending_exceptions)) 4028 lpcr |= LPCR_MER; 4029 } else if (vcpu->arch.pending_exceptions || 4030 vcpu->arch.doorbell_request || 4031 xive_interrupt_pending(vcpu)) { 4032 vcpu->arch.ret = RESUME_HOST; 4033 goto out; 4034 } 4035 4036 kvmppc_clear_host_core(pcpu); 4037 4038 local_paca->kvm_hstate.tid = 0; 4039 local_paca->kvm_hstate.napping = 0; 4040 local_paca->kvm_hstate.kvm_split_mode = NULL; 4041 kvmppc_start_thread(vcpu, vc); 4042 kvmppc_create_dtl_entry(vcpu, vc); 4043 trace_kvm_guest_enter(vcpu); 4044 4045 vc->vcore_state = VCORE_RUNNING; 4046 trace_kvmppc_run_core(vc, 0); 4047 4048 if (cpu_has_feature(CPU_FTR_HVMODE)) 4049 kvmppc_radix_check_need_tlb_flush(kvm, pcpu, nested); 4050 4051 trace_hardirqs_on(); 4052 guest_enter_irqoff(); 4053 4054 srcu_idx = srcu_read_lock(&kvm->srcu); 4055 4056 this_cpu_disable_ftrace(); 4057 4058 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr); 4059 vcpu->arch.trap = trap; 4060 4061 this_cpu_enable_ftrace(); 4062 4063 srcu_read_unlock(&kvm->srcu, srcu_idx); 4064 4065 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4066 mtspr(SPRN_LPID, kvm->arch.host_lpid); 4067 isync(); 4068 } 4069 4070 trace_hardirqs_off(); 4071 set_irq_happened(trap); 4072 4073 kvmppc_set_host_core(pcpu); 4074 4075 local_irq_enable(); 4076 guest_exit(); 4077 4078 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest); 4079 4080 preempt_enable(); 4081 4082 /* cancel pending decrementer exception if DEC is now positive */ 4083 if (get_tb() < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu)) 4084 kvmppc_core_dequeue_dec(vcpu); 4085 4086 trace_kvm_guest_exit(vcpu); 4087 r = RESUME_GUEST; 4088 if (trap) { 4089 if (!nested) 4090 r = kvmppc_handle_exit_hv(kvm_run, vcpu, current); 4091 else 4092 r = kvmppc_handle_nested_exit(kvm_run, vcpu); 4093 } 4094 vcpu->arch.ret = r; 4095 4096 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded && 4097 !kvmppc_vcpu_woken(vcpu)) { 4098 kvmppc_set_timer(vcpu); 4099 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) { 4100 if (signal_pending(current)) { 4101 vcpu->stat.signal_exits++; 4102 kvm_run->exit_reason = KVM_EXIT_INTR; 4103 vcpu->arch.ret = -EINTR; 4104 break; 4105 } 4106 spin_lock(&vc->lock); 4107 kvmppc_vcore_blocked(vc); 4108 spin_unlock(&vc->lock); 4109 } 4110 } 4111 vcpu->arch.ceded = 0; 4112 4113 vc->vcore_state = VCORE_INACTIVE; 4114 trace_kvmppc_run_core(vc, 1); 4115 4116 done: 4117 kvmppc_remove_runnable(vc, vcpu); 4118 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run); 4119 4120 return vcpu->arch.ret; 4121 4122 sigpend: 4123 vcpu->stat.signal_exits++; 4124 kvm_run->exit_reason = KVM_EXIT_INTR; 4125 vcpu->arch.ret = -EINTR; 4126 out: 4127 local_irq_enable(); 4128 preempt_enable(); 4129 goto done; 4130 } 4131 4132 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu) 4133 { 4134 int r; 4135 int srcu_idx; 4136 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 4137 unsigned long user_tar = 0; 4138 unsigned int user_vrsave; 4139 struct kvm *kvm; 4140 4141 if (!vcpu->arch.sane) { 4142 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4143 return -EINVAL; 4144 } 4145 4146 /* 4147 * Don't allow entry with a suspended transaction, because 4148 * the guest entry/exit code will lose it. 4149 * If the guest has TM enabled, save away their TM-related SPRs 4150 * (they will get restored by the TM unavailable interrupt). 4151 */ 4152 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4153 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4154 (current->thread.regs->msr & MSR_TM)) { 4155 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4156 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4157 run->fail_entry.hardware_entry_failure_reason = 0; 4158 return -EINVAL; 4159 } 4160 /* Enable TM so we can read the TM SPRs */ 4161 mtmsr(mfmsr() | MSR_TM); 4162 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 4163 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 4164 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 4165 current->thread.regs->msr &= ~MSR_TM; 4166 } 4167 #endif 4168 4169 /* 4170 * Force online to 1 for the sake of old userspace which doesn't 4171 * set it. 4172 */ 4173 if (!vcpu->arch.online) { 4174 atomic_inc(&vcpu->arch.vcore->online_count); 4175 vcpu->arch.online = 1; 4176 } 4177 4178 kvmppc_core_prepare_to_enter(vcpu); 4179 4180 /* No need to go into the guest when all we'll do is come back out */ 4181 if (signal_pending(current)) { 4182 run->exit_reason = KVM_EXIT_INTR; 4183 return -EINTR; 4184 } 4185 4186 kvm = vcpu->kvm; 4187 atomic_inc(&kvm->arch.vcpus_running); 4188 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4189 smp_mb(); 4190 4191 flush_all_to_thread(current); 4192 4193 /* Save userspace EBB and other register values */ 4194 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4195 ebb_regs[0] = mfspr(SPRN_EBBHR); 4196 ebb_regs[1] = mfspr(SPRN_EBBRR); 4197 ebb_regs[2] = mfspr(SPRN_BESCR); 4198 user_tar = mfspr(SPRN_TAR); 4199 } 4200 user_vrsave = mfspr(SPRN_VRSAVE); 4201 4202 vcpu->arch.wqp = &vcpu->arch.vcore->wq; 4203 vcpu->arch.pgdir = current->mm->pgd; 4204 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4205 4206 do { 4207 /* 4208 * The early POWER9 chips that can't mix radix and HPT threads 4209 * on the same core also need the workaround for the problem 4210 * where the TLB would prefetch entries in the guest exit path 4211 * for radix guests using the guest PIDR value and LPID 0. 4212 * The workaround is in the old path (kvmppc_run_vcpu()) 4213 * but not the new path (kvmhv_run_single_vcpu()). 4214 */ 4215 if (kvm->arch.threads_indep && kvm_is_radix(kvm) && 4216 !no_mixing_hpt_and_radix) 4217 r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0, 4218 vcpu->arch.vcore->lpcr); 4219 else 4220 r = kvmppc_run_vcpu(run, vcpu); 4221 4222 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 4223 !(vcpu->arch.shregs.msr & MSR_PR)) { 4224 trace_kvm_hcall_enter(vcpu); 4225 r = kvmppc_pseries_do_hcall(vcpu); 4226 trace_kvm_hcall_exit(vcpu, r); 4227 kvmppc_core_prepare_to_enter(vcpu); 4228 } else if (r == RESUME_PAGE_FAULT) { 4229 srcu_idx = srcu_read_lock(&kvm->srcu); 4230 r = kvmppc_book3s_hv_page_fault(run, vcpu, 4231 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4232 srcu_read_unlock(&kvm->srcu, srcu_idx); 4233 } else if (r == RESUME_PASSTHROUGH) { 4234 if (WARN_ON(xics_on_xive())) 4235 r = H_SUCCESS; 4236 else 4237 r = kvmppc_xics_rm_complete(vcpu, 0); 4238 } 4239 } while (is_kvmppc_resume_guest(r)); 4240 4241 /* Restore userspace EBB and other register values */ 4242 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4243 mtspr(SPRN_EBBHR, ebb_regs[0]); 4244 mtspr(SPRN_EBBRR, ebb_regs[1]); 4245 mtspr(SPRN_BESCR, ebb_regs[2]); 4246 mtspr(SPRN_TAR, user_tar); 4247 mtspr(SPRN_FSCR, current->thread.fscr); 4248 } 4249 mtspr(SPRN_VRSAVE, user_vrsave); 4250 4251 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4252 atomic_dec(&kvm->arch.vcpus_running); 4253 return r; 4254 } 4255 4256 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4257 int shift, int sllp) 4258 { 4259 (*sps)->page_shift = shift; 4260 (*sps)->slb_enc = sllp; 4261 (*sps)->enc[0].page_shift = shift; 4262 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4263 /* 4264 * Add 16MB MPSS support (may get filtered out by userspace) 4265 */ 4266 if (shift != 24) { 4267 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4268 if (penc != -1) { 4269 (*sps)->enc[1].page_shift = 24; 4270 (*sps)->enc[1].pte_enc = penc; 4271 } 4272 } 4273 (*sps)++; 4274 } 4275 4276 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4277 struct kvm_ppc_smmu_info *info) 4278 { 4279 struct kvm_ppc_one_seg_page_size *sps; 4280 4281 /* 4282 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4283 * POWER7 doesn't support keys for instruction accesses, 4284 * POWER8 and POWER9 do. 4285 */ 4286 info->data_keys = 32; 4287 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4288 4289 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4290 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4291 info->slb_size = 32; 4292 4293 /* We only support these sizes for now, and no muti-size segments */ 4294 sps = &info->sps[0]; 4295 kvmppc_add_seg_page_size(&sps, 12, 0); 4296 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4297 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4298 4299 /* If running as a nested hypervisor, we don't support HPT guests */ 4300 if (kvmhv_on_pseries()) 4301 info->flags |= KVM_PPC_NO_HASH; 4302 4303 return 0; 4304 } 4305 4306 /* 4307 * Get (and clear) the dirty memory log for a memory slot. 4308 */ 4309 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4310 struct kvm_dirty_log *log) 4311 { 4312 struct kvm_memslots *slots; 4313 struct kvm_memory_slot *memslot; 4314 int i, r; 4315 unsigned long n; 4316 unsigned long *buf, *p; 4317 struct kvm_vcpu *vcpu; 4318 4319 mutex_lock(&kvm->slots_lock); 4320 4321 r = -EINVAL; 4322 if (log->slot >= KVM_USER_MEM_SLOTS) 4323 goto out; 4324 4325 slots = kvm_memslots(kvm); 4326 memslot = id_to_memslot(slots, log->slot); 4327 r = -ENOENT; 4328 if (!memslot->dirty_bitmap) 4329 goto out; 4330 4331 /* 4332 * Use second half of bitmap area because both HPT and radix 4333 * accumulate bits in the first half. 4334 */ 4335 n = kvm_dirty_bitmap_bytes(memslot); 4336 buf = memslot->dirty_bitmap + n / sizeof(long); 4337 memset(buf, 0, n); 4338 4339 if (kvm_is_radix(kvm)) 4340 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4341 else 4342 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4343 if (r) 4344 goto out; 4345 4346 /* 4347 * We accumulate dirty bits in the first half of the 4348 * memslot's dirty_bitmap area, for when pages are paged 4349 * out or modified by the host directly. Pick up these 4350 * bits and add them to the map. 4351 */ 4352 p = memslot->dirty_bitmap; 4353 for (i = 0; i < n / sizeof(long); ++i) 4354 buf[i] |= xchg(&p[i], 0); 4355 4356 /* Harvest dirty bits from VPA and DTL updates */ 4357 /* Note: we never modify the SLB shadow buffer areas */ 4358 kvm_for_each_vcpu(i, vcpu, kvm) { 4359 spin_lock(&vcpu->arch.vpa_update_lock); 4360 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4361 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4362 spin_unlock(&vcpu->arch.vpa_update_lock); 4363 } 4364 4365 r = -EFAULT; 4366 if (copy_to_user(log->dirty_bitmap, buf, n)) 4367 goto out; 4368 4369 r = 0; 4370 out: 4371 mutex_unlock(&kvm->slots_lock); 4372 return r; 4373 } 4374 4375 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free, 4376 struct kvm_memory_slot *dont) 4377 { 4378 if (!dont || free->arch.rmap != dont->arch.rmap) { 4379 vfree(free->arch.rmap); 4380 free->arch.rmap = NULL; 4381 } 4382 } 4383 4384 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot, 4385 unsigned long npages) 4386 { 4387 slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap))); 4388 if (!slot->arch.rmap) 4389 return -ENOMEM; 4390 4391 return 0; 4392 } 4393 4394 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 4395 struct kvm_memory_slot *memslot, 4396 const struct kvm_userspace_memory_region *mem) 4397 { 4398 return 0; 4399 } 4400 4401 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 4402 const struct kvm_userspace_memory_region *mem, 4403 const struct kvm_memory_slot *old, 4404 const struct kvm_memory_slot *new, 4405 enum kvm_mr_change change) 4406 { 4407 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4408 4409 /* 4410 * If we are making a new memslot, it might make 4411 * some address that was previously cached as emulated 4412 * MMIO be no longer emulated MMIO, so invalidate 4413 * all the caches of emulated MMIO translations. 4414 */ 4415 if (npages) 4416 atomic64_inc(&kvm->arch.mmio_update); 4417 4418 /* 4419 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 4420 * have already called kvm_arch_flush_shadow_memslot() to 4421 * flush shadow mappings. For KVM_MR_CREATE we have no 4422 * previous mappings. So the only case to handle is 4423 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 4424 * has been changed. 4425 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 4426 * to get rid of any THP PTEs in the partition-scoped page tables 4427 * so we can track dirtiness at the page level; we flush when 4428 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 4429 * using THP PTEs. 4430 */ 4431 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 4432 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 4433 kvmppc_radix_flush_memslot(kvm, old); 4434 } 4435 4436 /* 4437 * Update LPCR values in kvm->arch and in vcores. 4438 * Caller must hold kvm->lock. 4439 */ 4440 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 4441 { 4442 long int i; 4443 u32 cores_done = 0; 4444 4445 if ((kvm->arch.lpcr & mask) == lpcr) 4446 return; 4447 4448 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 4449 4450 for (i = 0; i < KVM_MAX_VCORES; ++i) { 4451 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 4452 if (!vc) 4453 continue; 4454 spin_lock(&vc->lock); 4455 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 4456 spin_unlock(&vc->lock); 4457 if (++cores_done >= kvm->arch.online_vcores) 4458 break; 4459 } 4460 } 4461 4462 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu) 4463 { 4464 return; 4465 } 4466 4467 void kvmppc_setup_partition_table(struct kvm *kvm) 4468 { 4469 unsigned long dw0, dw1; 4470 4471 if (!kvm_is_radix(kvm)) { 4472 /* PS field - page size for VRMA */ 4473 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 4474 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 4475 /* HTABSIZE and HTABORG fields */ 4476 dw0 |= kvm->arch.sdr1; 4477 4478 /* Second dword as set by userspace */ 4479 dw1 = kvm->arch.process_table; 4480 } else { 4481 dw0 = PATB_HR | radix__get_tree_size() | 4482 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 4483 dw1 = PATB_GR | kvm->arch.process_table; 4484 } 4485 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 4486 } 4487 4488 /* 4489 * Set up HPT (hashed page table) and RMA (real-mode area). 4490 * Must be called with kvm->lock held. 4491 */ 4492 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 4493 { 4494 int err = 0; 4495 struct kvm *kvm = vcpu->kvm; 4496 unsigned long hva; 4497 struct kvm_memory_slot *memslot; 4498 struct vm_area_struct *vma; 4499 unsigned long lpcr = 0, senc; 4500 unsigned long psize, porder; 4501 int srcu_idx; 4502 4503 /* Allocate hashed page table (if not done already) and reset it */ 4504 if (!kvm->arch.hpt.virt) { 4505 int order = KVM_DEFAULT_HPT_ORDER; 4506 struct kvm_hpt_info info; 4507 4508 err = kvmppc_allocate_hpt(&info, order); 4509 /* If we get here, it means userspace didn't specify a 4510 * size explicitly. So, try successively smaller 4511 * sizes if the default failed. */ 4512 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 4513 err = kvmppc_allocate_hpt(&info, order); 4514 4515 if (err < 0) { 4516 pr_err("KVM: Couldn't alloc HPT\n"); 4517 goto out; 4518 } 4519 4520 kvmppc_set_hpt(kvm, &info); 4521 } 4522 4523 /* Look up the memslot for guest physical address 0 */ 4524 srcu_idx = srcu_read_lock(&kvm->srcu); 4525 memslot = gfn_to_memslot(kvm, 0); 4526 4527 /* We must have some memory at 0 by now */ 4528 err = -EINVAL; 4529 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 4530 goto out_srcu; 4531 4532 /* Look up the VMA for the start of this memory slot */ 4533 hva = memslot->userspace_addr; 4534 down_read(¤t->mm->mmap_sem); 4535 vma = find_vma(current->mm, hva); 4536 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 4537 goto up_out; 4538 4539 psize = vma_kernel_pagesize(vma); 4540 4541 up_read(¤t->mm->mmap_sem); 4542 4543 /* We can handle 4k, 64k or 16M pages in the VRMA */ 4544 if (psize >= 0x1000000) 4545 psize = 0x1000000; 4546 else if (psize >= 0x10000) 4547 psize = 0x10000; 4548 else 4549 psize = 0x1000; 4550 porder = __ilog2(psize); 4551 4552 senc = slb_pgsize_encoding(psize); 4553 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 4554 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4555 /* Create HPTEs in the hash page table for the VRMA */ 4556 kvmppc_map_vrma(vcpu, memslot, porder); 4557 4558 /* Update VRMASD field in the LPCR */ 4559 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 4560 /* the -4 is to account for senc values starting at 0x10 */ 4561 lpcr = senc << (LPCR_VRMASD_SH - 4); 4562 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 4563 } 4564 4565 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 4566 smp_wmb(); 4567 err = 0; 4568 out_srcu: 4569 srcu_read_unlock(&kvm->srcu, srcu_idx); 4570 out: 4571 return err; 4572 4573 up_out: 4574 up_read(¤t->mm->mmap_sem); 4575 goto out_srcu; 4576 } 4577 4578 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */ 4579 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 4580 { 4581 if (nesting_enabled(kvm)) 4582 kvmhv_release_all_nested(kvm); 4583 kvmppc_rmap_reset(kvm); 4584 kvm->arch.process_table = 0; 4585 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4586 spin_lock(&kvm->mmu_lock); 4587 kvm->arch.radix = 0; 4588 spin_unlock(&kvm->mmu_lock); 4589 kvmppc_free_radix(kvm); 4590 kvmppc_update_lpcr(kvm, LPCR_VPM1, 4591 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4592 return 0; 4593 } 4594 4595 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */ 4596 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 4597 { 4598 int err; 4599 4600 err = kvmppc_init_vm_radix(kvm); 4601 if (err) 4602 return err; 4603 kvmppc_rmap_reset(kvm); 4604 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4605 spin_lock(&kvm->mmu_lock); 4606 kvm->arch.radix = 1; 4607 spin_unlock(&kvm->mmu_lock); 4608 kvmppc_free_hpt(&kvm->arch.hpt); 4609 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 4610 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4611 return 0; 4612 } 4613 4614 #ifdef CONFIG_KVM_XICS 4615 /* 4616 * Allocate a per-core structure for managing state about which cores are 4617 * running in the host versus the guest and for exchanging data between 4618 * real mode KVM and CPU running in the host. 4619 * This is only done for the first VM. 4620 * The allocated structure stays even if all VMs have stopped. 4621 * It is only freed when the kvm-hv module is unloaded. 4622 * It's OK for this routine to fail, we just don't support host 4623 * core operations like redirecting H_IPI wakeups. 4624 */ 4625 void kvmppc_alloc_host_rm_ops(void) 4626 { 4627 struct kvmppc_host_rm_ops *ops; 4628 unsigned long l_ops; 4629 int cpu, core; 4630 int size; 4631 4632 /* Not the first time here ? */ 4633 if (kvmppc_host_rm_ops_hv != NULL) 4634 return; 4635 4636 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 4637 if (!ops) 4638 return; 4639 4640 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 4641 ops->rm_core = kzalloc(size, GFP_KERNEL); 4642 4643 if (!ops->rm_core) { 4644 kfree(ops); 4645 return; 4646 } 4647 4648 cpus_read_lock(); 4649 4650 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 4651 if (!cpu_online(cpu)) 4652 continue; 4653 4654 core = cpu >> threads_shift; 4655 ops->rm_core[core].rm_state.in_host = 1; 4656 } 4657 4658 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 4659 4660 /* 4661 * Make the contents of the kvmppc_host_rm_ops structure visible 4662 * to other CPUs before we assign it to the global variable. 4663 * Do an atomic assignment (no locks used here), but if someone 4664 * beats us to it, just free our copy and return. 4665 */ 4666 smp_wmb(); 4667 l_ops = (unsigned long) ops; 4668 4669 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 4670 cpus_read_unlock(); 4671 kfree(ops->rm_core); 4672 kfree(ops); 4673 return; 4674 } 4675 4676 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 4677 "ppc/kvm_book3s:prepare", 4678 kvmppc_set_host_core, 4679 kvmppc_clear_host_core); 4680 cpus_read_unlock(); 4681 } 4682 4683 void kvmppc_free_host_rm_ops(void) 4684 { 4685 if (kvmppc_host_rm_ops_hv) { 4686 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 4687 kfree(kvmppc_host_rm_ops_hv->rm_core); 4688 kfree(kvmppc_host_rm_ops_hv); 4689 kvmppc_host_rm_ops_hv = NULL; 4690 } 4691 } 4692 #endif 4693 4694 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 4695 { 4696 unsigned long lpcr, lpid; 4697 char buf[32]; 4698 int ret; 4699 4700 /* Allocate the guest's logical partition ID */ 4701 4702 lpid = kvmppc_alloc_lpid(); 4703 if ((long)lpid < 0) 4704 return -ENOMEM; 4705 kvm->arch.lpid = lpid; 4706 4707 kvmppc_alloc_host_rm_ops(); 4708 4709 kvmhv_vm_nested_init(kvm); 4710 4711 /* 4712 * Since we don't flush the TLB when tearing down a VM, 4713 * and this lpid might have previously been used, 4714 * make sure we flush on each core before running the new VM. 4715 * On POWER9, the tlbie in mmu_partition_table_set_entry() 4716 * does this flush for us. 4717 */ 4718 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4719 cpumask_setall(&kvm->arch.need_tlb_flush); 4720 4721 /* Start out with the default set of hcalls enabled */ 4722 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 4723 sizeof(kvm->arch.enabled_hcalls)); 4724 4725 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4726 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 4727 4728 /* Init LPCR for virtual RMA mode */ 4729 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4730 kvm->arch.host_lpid = mfspr(SPRN_LPID); 4731 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 4732 lpcr &= LPCR_PECE | LPCR_LPES; 4733 } else { 4734 lpcr = 0; 4735 } 4736 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 4737 LPCR_VPM0 | LPCR_VPM1; 4738 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 4739 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4740 /* On POWER8 turn on online bit to enable PURR/SPURR */ 4741 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4742 lpcr |= LPCR_ONL; 4743 /* 4744 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 4745 * Set HVICE bit to enable hypervisor virtualization interrupts. 4746 * Set HEIC to prevent OS interrupts to go to hypervisor (should 4747 * be unnecessary but better safe than sorry in case we re-enable 4748 * EE in HV mode with this LPCR still set) 4749 */ 4750 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4751 lpcr &= ~LPCR_VPM0; 4752 lpcr |= LPCR_HVICE | LPCR_HEIC; 4753 4754 /* 4755 * If xive is enabled, we route 0x500 interrupts directly 4756 * to the guest. 4757 */ 4758 if (xics_on_xive()) 4759 lpcr |= LPCR_LPES; 4760 } 4761 4762 /* 4763 * If the host uses radix, the guest starts out as radix. 4764 */ 4765 if (radix_enabled()) { 4766 kvm->arch.radix = 1; 4767 kvm->arch.mmu_ready = 1; 4768 lpcr &= ~LPCR_VPM1; 4769 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 4770 ret = kvmppc_init_vm_radix(kvm); 4771 if (ret) { 4772 kvmppc_free_lpid(kvm->arch.lpid); 4773 return ret; 4774 } 4775 kvmppc_setup_partition_table(kvm); 4776 } 4777 4778 kvm->arch.lpcr = lpcr; 4779 4780 /* Initialization for future HPT resizes */ 4781 kvm->arch.resize_hpt = NULL; 4782 4783 /* 4784 * Work out how many sets the TLB has, for the use of 4785 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 4786 */ 4787 if (radix_enabled()) 4788 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 4789 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 4790 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 4791 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4792 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 4793 else 4794 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 4795 4796 /* 4797 * Track that we now have a HV mode VM active. This blocks secondary 4798 * CPU threads from coming online. 4799 * On POWER9, we only need to do this if the "indep_threads_mode" 4800 * module parameter has been set to N. 4801 */ 4802 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4803 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) { 4804 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n"); 4805 kvm->arch.threads_indep = true; 4806 } else { 4807 kvm->arch.threads_indep = indep_threads_mode; 4808 } 4809 } 4810 if (!kvm->arch.threads_indep) 4811 kvm_hv_vm_activated(); 4812 4813 /* 4814 * Initialize smt_mode depending on processor. 4815 * POWER8 and earlier have to use "strict" threading, where 4816 * all vCPUs in a vcore have to run on the same (sub)core, 4817 * whereas on POWER9 the threads can each run a different 4818 * guest. 4819 */ 4820 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4821 kvm->arch.smt_mode = threads_per_subcore; 4822 else 4823 kvm->arch.smt_mode = 1; 4824 kvm->arch.emul_smt_mode = 1; 4825 4826 /* 4827 * Create a debugfs directory for the VM 4828 */ 4829 snprintf(buf, sizeof(buf), "vm%d", current->pid); 4830 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 4831 kvmppc_mmu_debugfs_init(kvm); 4832 if (radix_enabled()) 4833 kvmhv_radix_debugfs_init(kvm); 4834 4835 return 0; 4836 } 4837 4838 static void kvmppc_free_vcores(struct kvm *kvm) 4839 { 4840 long int i; 4841 4842 for (i = 0; i < KVM_MAX_VCORES; ++i) 4843 kfree(kvm->arch.vcores[i]); 4844 kvm->arch.online_vcores = 0; 4845 } 4846 4847 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 4848 { 4849 debugfs_remove_recursive(kvm->arch.debugfs_dir); 4850 4851 if (!kvm->arch.threads_indep) 4852 kvm_hv_vm_deactivated(); 4853 4854 kvmppc_free_vcores(kvm); 4855 4856 4857 if (kvm_is_radix(kvm)) 4858 kvmppc_free_radix(kvm); 4859 else 4860 kvmppc_free_hpt(&kvm->arch.hpt); 4861 4862 /* Perform global invalidation and return lpid to the pool */ 4863 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4864 if (nesting_enabled(kvm)) 4865 kvmhv_release_all_nested(kvm); 4866 kvm->arch.process_table = 0; 4867 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 4868 } 4869 kvmppc_free_lpid(kvm->arch.lpid); 4870 4871 kvmppc_free_pimap(kvm); 4872 } 4873 4874 /* We don't need to emulate any privileged instructions or dcbz */ 4875 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu, 4876 unsigned int inst, int *advance) 4877 { 4878 return EMULATE_FAIL; 4879 } 4880 4881 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 4882 ulong spr_val) 4883 { 4884 return EMULATE_FAIL; 4885 } 4886 4887 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 4888 ulong *spr_val) 4889 { 4890 return EMULATE_FAIL; 4891 } 4892 4893 static int kvmppc_core_check_processor_compat_hv(void) 4894 { 4895 if (cpu_has_feature(CPU_FTR_HVMODE) && 4896 cpu_has_feature(CPU_FTR_ARCH_206)) 4897 return 0; 4898 4899 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 4900 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 4901 return 0; 4902 4903 return -EIO; 4904 } 4905 4906 #ifdef CONFIG_KVM_XICS 4907 4908 void kvmppc_free_pimap(struct kvm *kvm) 4909 { 4910 kfree(kvm->arch.pimap); 4911 } 4912 4913 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 4914 { 4915 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 4916 } 4917 4918 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 4919 { 4920 struct irq_desc *desc; 4921 struct kvmppc_irq_map *irq_map; 4922 struct kvmppc_passthru_irqmap *pimap; 4923 struct irq_chip *chip; 4924 int i, rc = 0; 4925 4926 if (!kvm_irq_bypass) 4927 return 1; 4928 4929 desc = irq_to_desc(host_irq); 4930 if (!desc) 4931 return -EIO; 4932 4933 mutex_lock(&kvm->lock); 4934 4935 pimap = kvm->arch.pimap; 4936 if (pimap == NULL) { 4937 /* First call, allocate structure to hold IRQ map */ 4938 pimap = kvmppc_alloc_pimap(); 4939 if (pimap == NULL) { 4940 mutex_unlock(&kvm->lock); 4941 return -ENOMEM; 4942 } 4943 kvm->arch.pimap = pimap; 4944 } 4945 4946 /* 4947 * For now, we only support interrupts for which the EOI operation 4948 * is an OPAL call followed by a write to XIRR, since that's 4949 * what our real-mode EOI code does, or a XIVE interrupt 4950 */ 4951 chip = irq_data_get_irq_chip(&desc->irq_data); 4952 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 4953 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 4954 host_irq, guest_gsi); 4955 mutex_unlock(&kvm->lock); 4956 return -ENOENT; 4957 } 4958 4959 /* 4960 * See if we already have an entry for this guest IRQ number. 4961 * If it's mapped to a hardware IRQ number, that's an error, 4962 * otherwise re-use this entry. 4963 */ 4964 for (i = 0; i < pimap->n_mapped; i++) { 4965 if (guest_gsi == pimap->mapped[i].v_hwirq) { 4966 if (pimap->mapped[i].r_hwirq) { 4967 mutex_unlock(&kvm->lock); 4968 return -EINVAL; 4969 } 4970 break; 4971 } 4972 } 4973 4974 if (i == KVMPPC_PIRQ_MAPPED) { 4975 mutex_unlock(&kvm->lock); 4976 return -EAGAIN; /* table is full */ 4977 } 4978 4979 irq_map = &pimap->mapped[i]; 4980 4981 irq_map->v_hwirq = guest_gsi; 4982 irq_map->desc = desc; 4983 4984 /* 4985 * Order the above two stores before the next to serialize with 4986 * the KVM real mode handler. 4987 */ 4988 smp_wmb(); 4989 irq_map->r_hwirq = desc->irq_data.hwirq; 4990 4991 if (i == pimap->n_mapped) 4992 pimap->n_mapped++; 4993 4994 if (xics_on_xive()) 4995 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 4996 else 4997 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 4998 if (rc) 4999 irq_map->r_hwirq = 0; 5000 5001 mutex_unlock(&kvm->lock); 5002 5003 return 0; 5004 } 5005 5006 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5007 { 5008 struct irq_desc *desc; 5009 struct kvmppc_passthru_irqmap *pimap; 5010 int i, rc = 0; 5011 5012 if (!kvm_irq_bypass) 5013 return 0; 5014 5015 desc = irq_to_desc(host_irq); 5016 if (!desc) 5017 return -EIO; 5018 5019 mutex_lock(&kvm->lock); 5020 if (!kvm->arch.pimap) 5021 goto unlock; 5022 5023 pimap = kvm->arch.pimap; 5024 5025 for (i = 0; i < pimap->n_mapped; i++) { 5026 if (guest_gsi == pimap->mapped[i].v_hwirq) 5027 break; 5028 } 5029 5030 if (i == pimap->n_mapped) { 5031 mutex_unlock(&kvm->lock); 5032 return -ENODEV; 5033 } 5034 5035 if (xics_on_xive()) 5036 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 5037 else 5038 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5039 5040 /* invalidate the entry (what do do on error from the above ?) */ 5041 pimap->mapped[i].r_hwirq = 0; 5042 5043 /* 5044 * We don't free this structure even when the count goes to 5045 * zero. The structure is freed when we destroy the VM. 5046 */ 5047 unlock: 5048 mutex_unlock(&kvm->lock); 5049 return rc; 5050 } 5051 5052 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5053 struct irq_bypass_producer *prod) 5054 { 5055 int ret = 0; 5056 struct kvm_kernel_irqfd *irqfd = 5057 container_of(cons, struct kvm_kernel_irqfd, consumer); 5058 5059 irqfd->producer = prod; 5060 5061 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5062 if (ret) 5063 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5064 prod->irq, irqfd->gsi, ret); 5065 5066 return ret; 5067 } 5068 5069 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5070 struct irq_bypass_producer *prod) 5071 { 5072 int ret; 5073 struct kvm_kernel_irqfd *irqfd = 5074 container_of(cons, struct kvm_kernel_irqfd, consumer); 5075 5076 irqfd->producer = NULL; 5077 5078 /* 5079 * When producer of consumer is unregistered, we change back to 5080 * default external interrupt handling mode - KVM real mode 5081 * will switch back to host. 5082 */ 5083 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5084 if (ret) 5085 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5086 prod->irq, irqfd->gsi, ret); 5087 } 5088 #endif 5089 5090 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5091 unsigned int ioctl, unsigned long arg) 5092 { 5093 struct kvm *kvm __maybe_unused = filp->private_data; 5094 void __user *argp = (void __user *)arg; 5095 long r; 5096 5097 switch (ioctl) { 5098 5099 case KVM_PPC_ALLOCATE_HTAB: { 5100 u32 htab_order; 5101 5102 r = -EFAULT; 5103 if (get_user(htab_order, (u32 __user *)argp)) 5104 break; 5105 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5106 if (r) 5107 break; 5108 r = 0; 5109 break; 5110 } 5111 5112 case KVM_PPC_GET_HTAB_FD: { 5113 struct kvm_get_htab_fd ghf; 5114 5115 r = -EFAULT; 5116 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5117 break; 5118 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5119 break; 5120 } 5121 5122 case KVM_PPC_RESIZE_HPT_PREPARE: { 5123 struct kvm_ppc_resize_hpt rhpt; 5124 5125 r = -EFAULT; 5126 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5127 break; 5128 5129 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5130 break; 5131 } 5132 5133 case KVM_PPC_RESIZE_HPT_COMMIT: { 5134 struct kvm_ppc_resize_hpt rhpt; 5135 5136 r = -EFAULT; 5137 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5138 break; 5139 5140 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5141 break; 5142 } 5143 5144 default: 5145 r = -ENOTTY; 5146 } 5147 5148 return r; 5149 } 5150 5151 /* 5152 * List of hcall numbers to enable by default. 5153 * For compatibility with old userspace, we enable by default 5154 * all hcalls that were implemented before the hcall-enabling 5155 * facility was added. Note this list should not include H_RTAS. 5156 */ 5157 static unsigned int default_hcall_list[] = { 5158 H_REMOVE, 5159 H_ENTER, 5160 H_READ, 5161 H_PROTECT, 5162 H_BULK_REMOVE, 5163 H_GET_TCE, 5164 H_PUT_TCE, 5165 H_SET_DABR, 5166 H_SET_XDABR, 5167 H_CEDE, 5168 H_PROD, 5169 H_CONFER, 5170 H_REGISTER_VPA, 5171 #ifdef CONFIG_KVM_XICS 5172 H_EOI, 5173 H_CPPR, 5174 H_IPI, 5175 H_IPOLL, 5176 H_XIRR, 5177 H_XIRR_X, 5178 #endif 5179 0 5180 }; 5181 5182 static void init_default_hcalls(void) 5183 { 5184 int i; 5185 unsigned int hcall; 5186 5187 for (i = 0; default_hcall_list[i]; ++i) { 5188 hcall = default_hcall_list[i]; 5189 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5190 __set_bit(hcall / 4, default_enabled_hcalls); 5191 } 5192 } 5193 5194 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5195 { 5196 unsigned long lpcr; 5197 int radix; 5198 int err; 5199 5200 /* If not on a POWER9, reject it */ 5201 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5202 return -ENODEV; 5203 5204 /* If any unknown flags set, reject it */ 5205 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5206 return -EINVAL; 5207 5208 /* GR (guest radix) bit in process_table field must match */ 5209 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5210 if (!!(cfg->process_table & PATB_GR) != radix) 5211 return -EINVAL; 5212 5213 /* Process table size field must be reasonable, i.e. <= 24 */ 5214 if ((cfg->process_table & PRTS_MASK) > 24) 5215 return -EINVAL; 5216 5217 /* We can change a guest to/from radix now, if the host is radix */ 5218 if (radix && !radix_enabled()) 5219 return -EINVAL; 5220 5221 /* If we're a nested hypervisor, we currently only support radix */ 5222 if (kvmhv_on_pseries() && !radix) 5223 return -EINVAL; 5224 5225 mutex_lock(&kvm->lock); 5226 if (radix != kvm_is_radix(kvm)) { 5227 if (kvm->arch.mmu_ready) { 5228 kvm->arch.mmu_ready = 0; 5229 /* order mmu_ready vs. vcpus_running */ 5230 smp_mb(); 5231 if (atomic_read(&kvm->arch.vcpus_running)) { 5232 kvm->arch.mmu_ready = 1; 5233 err = -EBUSY; 5234 goto out_unlock; 5235 } 5236 } 5237 if (radix) 5238 err = kvmppc_switch_mmu_to_radix(kvm); 5239 else 5240 err = kvmppc_switch_mmu_to_hpt(kvm); 5241 if (err) 5242 goto out_unlock; 5243 } 5244 5245 kvm->arch.process_table = cfg->process_table; 5246 kvmppc_setup_partition_table(kvm); 5247 5248 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5249 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5250 err = 0; 5251 5252 out_unlock: 5253 mutex_unlock(&kvm->lock); 5254 return err; 5255 } 5256 5257 static int kvmhv_enable_nested(struct kvm *kvm) 5258 { 5259 if (!nested) 5260 return -EPERM; 5261 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix) 5262 return -ENODEV; 5263 5264 /* kvm == NULL means the caller is testing if the capability exists */ 5265 if (kvm) 5266 kvm->arch.nested_enable = true; 5267 return 0; 5268 } 5269 5270 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5271 int size) 5272 { 5273 int rc = -EINVAL; 5274 5275 if (kvmhv_vcpu_is_radix(vcpu)) { 5276 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5277 5278 if (rc > 0) 5279 rc = -EINVAL; 5280 } 5281 5282 /* For now quadrants are the only way to access nested guest memory */ 5283 if (rc && vcpu->arch.nested) 5284 rc = -EAGAIN; 5285 5286 return rc; 5287 } 5288 5289 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5290 int size) 5291 { 5292 int rc = -EINVAL; 5293 5294 if (kvmhv_vcpu_is_radix(vcpu)) { 5295 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5296 5297 if (rc > 0) 5298 rc = -EINVAL; 5299 } 5300 5301 /* For now quadrants are the only way to access nested guest memory */ 5302 if (rc && vcpu->arch.nested) 5303 rc = -EAGAIN; 5304 5305 return rc; 5306 } 5307 5308 static struct kvmppc_ops kvm_ops_hv = { 5309 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 5310 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 5311 .get_one_reg = kvmppc_get_one_reg_hv, 5312 .set_one_reg = kvmppc_set_one_reg_hv, 5313 .vcpu_load = kvmppc_core_vcpu_load_hv, 5314 .vcpu_put = kvmppc_core_vcpu_put_hv, 5315 .set_msr = kvmppc_set_msr_hv, 5316 .vcpu_run = kvmppc_vcpu_run_hv, 5317 .vcpu_create = kvmppc_core_vcpu_create_hv, 5318 .vcpu_free = kvmppc_core_vcpu_free_hv, 5319 .check_requests = kvmppc_core_check_requests_hv, 5320 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 5321 .flush_memslot = kvmppc_core_flush_memslot_hv, 5322 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 5323 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 5324 .unmap_hva_range = kvm_unmap_hva_range_hv, 5325 .age_hva = kvm_age_hva_hv, 5326 .test_age_hva = kvm_test_age_hva_hv, 5327 .set_spte_hva = kvm_set_spte_hva_hv, 5328 .mmu_destroy = kvmppc_mmu_destroy_hv, 5329 .free_memslot = kvmppc_core_free_memslot_hv, 5330 .create_memslot = kvmppc_core_create_memslot_hv, 5331 .init_vm = kvmppc_core_init_vm_hv, 5332 .destroy_vm = kvmppc_core_destroy_vm_hv, 5333 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 5334 .emulate_op = kvmppc_core_emulate_op_hv, 5335 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 5336 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 5337 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 5338 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 5339 .hcall_implemented = kvmppc_hcall_impl_hv, 5340 #ifdef CONFIG_KVM_XICS 5341 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 5342 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 5343 #endif 5344 .configure_mmu = kvmhv_configure_mmu, 5345 .get_rmmu_info = kvmhv_get_rmmu_info, 5346 .set_smt_mode = kvmhv_set_smt_mode, 5347 .enable_nested = kvmhv_enable_nested, 5348 .load_from_eaddr = kvmhv_load_from_eaddr, 5349 .store_to_eaddr = kvmhv_store_to_eaddr, 5350 }; 5351 5352 static int kvm_init_subcore_bitmap(void) 5353 { 5354 int i, j; 5355 int nr_cores = cpu_nr_cores(); 5356 struct sibling_subcore_state *sibling_subcore_state; 5357 5358 for (i = 0; i < nr_cores; i++) { 5359 int first_cpu = i * threads_per_core; 5360 int node = cpu_to_node(first_cpu); 5361 5362 /* Ignore if it is already allocated. */ 5363 if (paca_ptrs[first_cpu]->sibling_subcore_state) 5364 continue; 5365 5366 sibling_subcore_state = 5367 kzalloc_node(sizeof(struct sibling_subcore_state), 5368 GFP_KERNEL, node); 5369 if (!sibling_subcore_state) 5370 return -ENOMEM; 5371 5372 5373 for (j = 0; j < threads_per_core; j++) { 5374 int cpu = first_cpu + j; 5375 5376 paca_ptrs[cpu]->sibling_subcore_state = 5377 sibling_subcore_state; 5378 } 5379 } 5380 return 0; 5381 } 5382 5383 static int kvmppc_radix_possible(void) 5384 { 5385 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 5386 } 5387 5388 static int kvmppc_book3s_init_hv(void) 5389 { 5390 int r; 5391 /* 5392 * FIXME!! Do we need to check on all cpus ? 5393 */ 5394 r = kvmppc_core_check_processor_compat_hv(); 5395 if (r < 0) 5396 return -ENODEV; 5397 5398 r = kvmhv_nested_init(); 5399 if (r) 5400 return r; 5401 5402 r = kvm_init_subcore_bitmap(); 5403 if (r) 5404 return r; 5405 5406 /* 5407 * We need a way of accessing the XICS interrupt controller, 5408 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 5409 * indirectly, via OPAL. 5410 */ 5411 #ifdef CONFIG_SMP 5412 if (!xics_on_xive() && !kvmhv_on_pseries() && 5413 !local_paca->kvm_hstate.xics_phys) { 5414 struct device_node *np; 5415 5416 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 5417 if (!np) { 5418 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 5419 return -ENODEV; 5420 } 5421 /* presence of intc confirmed - node can be dropped again */ 5422 of_node_put(np); 5423 } 5424 #endif 5425 5426 kvm_ops_hv.owner = THIS_MODULE; 5427 kvmppc_hv_ops = &kvm_ops_hv; 5428 5429 init_default_hcalls(); 5430 5431 init_vcore_lists(); 5432 5433 r = kvmppc_mmu_hv_init(); 5434 if (r) 5435 return r; 5436 5437 if (kvmppc_radix_possible()) 5438 r = kvmppc_radix_init(); 5439 5440 /* 5441 * POWER9 chips before version 2.02 can't have some threads in 5442 * HPT mode and some in radix mode on the same core. 5443 */ 5444 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5445 unsigned int pvr = mfspr(SPRN_PVR); 5446 if ((pvr >> 16) == PVR_POWER9 && 5447 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 5448 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 5449 no_mixing_hpt_and_radix = true; 5450 } 5451 5452 return r; 5453 } 5454 5455 static void kvmppc_book3s_exit_hv(void) 5456 { 5457 kvmppc_free_host_rm_ops(); 5458 if (kvmppc_radix_possible()) 5459 kvmppc_radix_exit(); 5460 kvmppc_hv_ops = NULL; 5461 kvmhv_nested_exit(); 5462 } 5463 5464 module_init(kvmppc_book3s_init_hv); 5465 module_exit(kvmppc_book3s_exit_hv); 5466 MODULE_LICENSE("GPL"); 5467 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5468 MODULE_ALIAS("devname:kvm"); 5469