xref: /openbmc/linux/arch/powerpc/kvm/book3s_hv.c (revision 617326ff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5  *
6  * Authors:
7  *    Paul Mackerras <paulus@au1.ibm.com>
8  *    Alexander Graf <agraf@suse.de>
9  *    Kevin Wolf <mail@kevin-wolf.de>
10  *
11  * Description: KVM functions specific to running on Book 3S
12  * processors in hypervisor mode (specifically POWER7 and later).
13  *
14  * This file is derived from arch/powerpc/kvm/book3s.c,
15  * by Alexander Graf <agraf@suse.de>.
16  */
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45 
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/interrupt.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/pmc.h>
63 #include <asm/processor.h>
64 #include <asm/cputhreads.h>
65 #include <asm/page.h>
66 #include <asm/hvcall.h>
67 #include <asm/switch_to.h>
68 #include <asm/smp.h>
69 #include <asm/dbell.h>
70 #include <asm/hmi.h>
71 #include <asm/pnv-pci.h>
72 #include <asm/mmu.h>
73 #include <asm/opal.h>
74 #include <asm/xics.h>
75 #include <asm/xive.h>
76 #include <asm/hw_breakpoint.h>
77 #include <asm/kvm_book3s_uvmem.h>
78 #include <asm/ultravisor.h>
79 #include <asm/dtl.h>
80 #include <asm/plpar_wrappers.h>
81 
82 #include "book3s.h"
83 #include "book3s_hv.h"
84 
85 #define CREATE_TRACE_POINTS
86 #include "trace_hv.h"
87 
88 /* #define EXIT_DEBUG */
89 /* #define EXIT_DEBUG_SIMPLE */
90 /* #define EXIT_DEBUG_INT */
91 
92 /* Used to indicate that a guest page fault needs to be handled */
93 #define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
94 /* Used to indicate that a guest passthrough interrupt needs to be handled */
95 #define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
96 
97 /* Used as a "null" value for timebase values */
98 #define TB_NIL	(~(u64)0)
99 
100 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
101 
102 static int dynamic_mt_modes = 6;
103 module_param(dynamic_mt_modes, int, 0644);
104 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
105 static int target_smt_mode;
106 module_param(target_smt_mode, int, 0644);
107 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
108 
109 static bool one_vm_per_core;
110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
112 
113 #ifdef CONFIG_KVM_XICS
114 static const struct kernel_param_ops module_param_ops = {
115 	.set = param_set_int,
116 	.get = param_get_int,
117 };
118 
119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
121 
122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
124 #endif
125 
126 /* If set, guests are allowed to create and control nested guests */
127 static bool nested = true;
128 module_param(nested, bool, S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
130 
131 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
132 
133 /*
134  * RWMR values for POWER8.  These control the rate at which PURR
135  * and SPURR count and should be set according to the number of
136  * online threads in the vcore being run.
137  */
138 #define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
139 #define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
140 #define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
141 #define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
142 #define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
143 #define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
144 #define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
145 #define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
146 
147 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
148 	RWMR_RPA_P8_1THREAD,
149 	RWMR_RPA_P8_1THREAD,
150 	RWMR_RPA_P8_2THREAD,
151 	RWMR_RPA_P8_3THREAD,
152 	RWMR_RPA_P8_4THREAD,
153 	RWMR_RPA_P8_5THREAD,
154 	RWMR_RPA_P8_6THREAD,
155 	RWMR_RPA_P8_7THREAD,
156 	RWMR_RPA_P8_8THREAD,
157 };
158 
159 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
160 		int *ip)
161 {
162 	int i = *ip;
163 	struct kvm_vcpu *vcpu;
164 
165 	while (++i < MAX_SMT_THREADS) {
166 		vcpu = READ_ONCE(vc->runnable_threads[i]);
167 		if (vcpu) {
168 			*ip = i;
169 			return vcpu;
170 		}
171 	}
172 	return NULL;
173 }
174 
175 /* Used to traverse the list of runnable threads for a given vcore */
176 #define for_each_runnable_thread(i, vcpu, vc) \
177 	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
178 
179 static bool kvmppc_ipi_thread(int cpu)
180 {
181 	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
182 
183 	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
184 	if (kvmhv_on_pseries())
185 		return false;
186 
187 	/* On POWER9 we can use msgsnd to IPI any cpu */
188 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
189 		msg |= get_hard_smp_processor_id(cpu);
190 		smp_mb();
191 		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
192 		return true;
193 	}
194 
195 	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
196 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
197 		preempt_disable();
198 		if (cpu_first_thread_sibling(cpu) ==
199 		    cpu_first_thread_sibling(smp_processor_id())) {
200 			msg |= cpu_thread_in_core(cpu);
201 			smp_mb();
202 			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
203 			preempt_enable();
204 			return true;
205 		}
206 		preempt_enable();
207 	}
208 
209 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
210 	if (cpu >= 0 && cpu < nr_cpu_ids) {
211 		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
212 			xics_wake_cpu(cpu);
213 			return true;
214 		}
215 		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
216 		return true;
217 	}
218 #endif
219 
220 	return false;
221 }
222 
223 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
224 {
225 	int cpu;
226 	struct rcuwait *waitp;
227 
228 	waitp = kvm_arch_vcpu_get_wait(vcpu);
229 	if (rcuwait_wake_up(waitp))
230 		++vcpu->stat.generic.halt_wakeup;
231 
232 	cpu = READ_ONCE(vcpu->arch.thread_cpu);
233 	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
234 		return;
235 
236 	/* CPU points to the first thread of the core */
237 	cpu = vcpu->cpu;
238 	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
239 		smp_send_reschedule(cpu);
240 }
241 
242 /*
243  * We use the vcpu_load/put functions to measure stolen time.
244  * Stolen time is counted as time when either the vcpu is able to
245  * run as part of a virtual core, but the task running the vcore
246  * is preempted or sleeping, or when the vcpu needs something done
247  * in the kernel by the task running the vcpu, but that task is
248  * preempted or sleeping.  Those two things have to be counted
249  * separately, since one of the vcpu tasks will take on the job
250  * of running the core, and the other vcpu tasks in the vcore will
251  * sleep waiting for it to do that, but that sleep shouldn't count
252  * as stolen time.
253  *
254  * Hence we accumulate stolen time when the vcpu can run as part of
255  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
256  * needs its task to do other things in the kernel (for example,
257  * service a page fault) in busy_stolen.  We don't accumulate
258  * stolen time for a vcore when it is inactive, or for a vcpu
259  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
260  * a misnomer; it means that the vcpu task is not executing in
261  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
262  * the kernel.  We don't have any way of dividing up that time
263  * between time that the vcpu is genuinely stopped, time that
264  * the task is actively working on behalf of the vcpu, and time
265  * that the task is preempted, so we don't count any of it as
266  * stolen.
267  *
268  * Updates to busy_stolen are protected by arch.tbacct_lock;
269  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
270  * lock.  The stolen times are measured in units of timebase ticks.
271  * (Note that the != TB_NIL checks below are purely defensive;
272  * they should never fail.)
273  */
274 
275 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
276 {
277 	unsigned long flags;
278 
279 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
280 
281 	spin_lock_irqsave(&vc->stoltb_lock, flags);
282 	vc->preempt_tb = tb;
283 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
284 }
285 
286 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
287 {
288 	unsigned long flags;
289 
290 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
291 
292 	spin_lock_irqsave(&vc->stoltb_lock, flags);
293 	if (vc->preempt_tb != TB_NIL) {
294 		vc->stolen_tb += tb - vc->preempt_tb;
295 		vc->preempt_tb = TB_NIL;
296 	}
297 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
298 }
299 
300 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
301 {
302 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
303 	unsigned long flags;
304 	u64 now;
305 
306 	if (cpu_has_feature(CPU_FTR_ARCH_300))
307 		return;
308 
309 	now = mftb();
310 
311 	/*
312 	 * We can test vc->runner without taking the vcore lock,
313 	 * because only this task ever sets vc->runner to this
314 	 * vcpu, and once it is set to this vcpu, only this task
315 	 * ever sets it to NULL.
316 	 */
317 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
318 		kvmppc_core_end_stolen(vc, now);
319 
320 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
321 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
322 	    vcpu->arch.busy_preempt != TB_NIL) {
323 		vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
324 		vcpu->arch.busy_preempt = TB_NIL;
325 	}
326 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
327 }
328 
329 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
330 {
331 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
332 	unsigned long flags;
333 	u64 now;
334 
335 	if (cpu_has_feature(CPU_FTR_ARCH_300))
336 		return;
337 
338 	now = mftb();
339 
340 	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
341 		kvmppc_core_start_stolen(vc, now);
342 
343 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
344 	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
345 		vcpu->arch.busy_preempt = now;
346 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
347 }
348 
349 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
350 {
351 	vcpu->arch.pvr = pvr;
352 }
353 
354 /* Dummy value used in computing PCR value below */
355 #define PCR_ARCH_31    (PCR_ARCH_300 << 1)
356 
357 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
358 {
359 	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
360 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
361 
362 	/* We can (emulate) our own architecture version and anything older */
363 	if (cpu_has_feature(CPU_FTR_ARCH_31))
364 		host_pcr_bit = PCR_ARCH_31;
365 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
366 		host_pcr_bit = PCR_ARCH_300;
367 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
368 		host_pcr_bit = PCR_ARCH_207;
369 	else if (cpu_has_feature(CPU_FTR_ARCH_206))
370 		host_pcr_bit = PCR_ARCH_206;
371 	else
372 		host_pcr_bit = PCR_ARCH_205;
373 
374 	/* Determine lowest PCR bit needed to run guest in given PVR level */
375 	guest_pcr_bit = host_pcr_bit;
376 	if (arch_compat) {
377 		switch (arch_compat) {
378 		case PVR_ARCH_205:
379 			guest_pcr_bit = PCR_ARCH_205;
380 			break;
381 		case PVR_ARCH_206:
382 		case PVR_ARCH_206p:
383 			guest_pcr_bit = PCR_ARCH_206;
384 			break;
385 		case PVR_ARCH_207:
386 			guest_pcr_bit = PCR_ARCH_207;
387 			break;
388 		case PVR_ARCH_300:
389 			guest_pcr_bit = PCR_ARCH_300;
390 			break;
391 		case PVR_ARCH_31:
392 			guest_pcr_bit = PCR_ARCH_31;
393 			break;
394 		default:
395 			return -EINVAL;
396 		}
397 	}
398 
399 	/* Check requested PCR bits don't exceed our capabilities */
400 	if (guest_pcr_bit > host_pcr_bit)
401 		return -EINVAL;
402 
403 	spin_lock(&vc->lock);
404 	vc->arch_compat = arch_compat;
405 	/*
406 	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
407 	 * Also set all reserved PCR bits
408 	 */
409 	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
410 	spin_unlock(&vc->lock);
411 
412 	return 0;
413 }
414 
415 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
416 {
417 	int r;
418 
419 	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
420 	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
421 	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
422 	for (r = 0; r < 16; ++r)
423 		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
424 		       r, kvmppc_get_gpr(vcpu, r),
425 		       r+16, kvmppc_get_gpr(vcpu, r+16));
426 	pr_err("ctr = %.16lx  lr  = %.16lx\n",
427 	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
428 	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
429 	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
430 	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
431 	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
432 	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
433 	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
434 	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
435 	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
436 	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
437 	pr_err("fault dar = %.16lx dsisr = %.8x\n",
438 	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
439 	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
440 	for (r = 0; r < vcpu->arch.slb_max; ++r)
441 		pr_err("  ESID = %.16llx VSID = %.16llx\n",
442 		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
443 	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
444 	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
445 	       vcpu->arch.last_inst);
446 }
447 
448 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
449 {
450 	return kvm_get_vcpu_by_id(kvm, id);
451 }
452 
453 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
454 {
455 	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
456 	vpa->yield_count = cpu_to_be32(1);
457 }
458 
459 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
460 		   unsigned long addr, unsigned long len)
461 {
462 	/* check address is cacheline aligned */
463 	if (addr & (L1_CACHE_BYTES - 1))
464 		return -EINVAL;
465 	spin_lock(&vcpu->arch.vpa_update_lock);
466 	if (v->next_gpa != addr || v->len != len) {
467 		v->next_gpa = addr;
468 		v->len = addr ? len : 0;
469 		v->update_pending = 1;
470 	}
471 	spin_unlock(&vcpu->arch.vpa_update_lock);
472 	return 0;
473 }
474 
475 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
476 struct reg_vpa {
477 	u32 dummy;
478 	union {
479 		__be16 hword;
480 		__be32 word;
481 	} length;
482 };
483 
484 static int vpa_is_registered(struct kvmppc_vpa *vpap)
485 {
486 	if (vpap->update_pending)
487 		return vpap->next_gpa != 0;
488 	return vpap->pinned_addr != NULL;
489 }
490 
491 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
492 				       unsigned long flags,
493 				       unsigned long vcpuid, unsigned long vpa)
494 {
495 	struct kvm *kvm = vcpu->kvm;
496 	unsigned long len, nb;
497 	void *va;
498 	struct kvm_vcpu *tvcpu;
499 	int err;
500 	int subfunc;
501 	struct kvmppc_vpa *vpap;
502 
503 	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
504 	if (!tvcpu)
505 		return H_PARAMETER;
506 
507 	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
508 	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
509 	    subfunc == H_VPA_REG_SLB) {
510 		/* Registering new area - address must be cache-line aligned */
511 		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
512 			return H_PARAMETER;
513 
514 		/* convert logical addr to kernel addr and read length */
515 		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
516 		if (va == NULL)
517 			return H_PARAMETER;
518 		if (subfunc == H_VPA_REG_VPA)
519 			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
520 		else
521 			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
522 		kvmppc_unpin_guest_page(kvm, va, vpa, false);
523 
524 		/* Check length */
525 		if (len > nb || len < sizeof(struct reg_vpa))
526 			return H_PARAMETER;
527 	} else {
528 		vpa = 0;
529 		len = 0;
530 	}
531 
532 	err = H_PARAMETER;
533 	vpap = NULL;
534 	spin_lock(&tvcpu->arch.vpa_update_lock);
535 
536 	switch (subfunc) {
537 	case H_VPA_REG_VPA:		/* register VPA */
538 		/*
539 		 * The size of our lppaca is 1kB because of the way we align
540 		 * it for the guest to avoid crossing a 4kB boundary. We only
541 		 * use 640 bytes of the structure though, so we should accept
542 		 * clients that set a size of 640.
543 		 */
544 		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
545 		if (len < sizeof(struct lppaca))
546 			break;
547 		vpap = &tvcpu->arch.vpa;
548 		err = 0;
549 		break;
550 
551 	case H_VPA_REG_DTL:		/* register DTL */
552 		if (len < sizeof(struct dtl_entry))
553 			break;
554 		len -= len % sizeof(struct dtl_entry);
555 
556 		/* Check that they have previously registered a VPA */
557 		err = H_RESOURCE;
558 		if (!vpa_is_registered(&tvcpu->arch.vpa))
559 			break;
560 
561 		vpap = &tvcpu->arch.dtl;
562 		err = 0;
563 		break;
564 
565 	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
566 		/* Check that they have previously registered a VPA */
567 		err = H_RESOURCE;
568 		if (!vpa_is_registered(&tvcpu->arch.vpa))
569 			break;
570 
571 		vpap = &tvcpu->arch.slb_shadow;
572 		err = 0;
573 		break;
574 
575 	case H_VPA_DEREG_VPA:		/* deregister VPA */
576 		/* Check they don't still have a DTL or SLB buf registered */
577 		err = H_RESOURCE;
578 		if (vpa_is_registered(&tvcpu->arch.dtl) ||
579 		    vpa_is_registered(&tvcpu->arch.slb_shadow))
580 			break;
581 
582 		vpap = &tvcpu->arch.vpa;
583 		err = 0;
584 		break;
585 
586 	case H_VPA_DEREG_DTL:		/* deregister DTL */
587 		vpap = &tvcpu->arch.dtl;
588 		err = 0;
589 		break;
590 
591 	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
592 		vpap = &tvcpu->arch.slb_shadow;
593 		err = 0;
594 		break;
595 	}
596 
597 	if (vpap) {
598 		vpap->next_gpa = vpa;
599 		vpap->len = len;
600 		vpap->update_pending = 1;
601 	}
602 
603 	spin_unlock(&tvcpu->arch.vpa_update_lock);
604 
605 	return err;
606 }
607 
608 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
609 {
610 	struct kvm *kvm = vcpu->kvm;
611 	void *va;
612 	unsigned long nb;
613 	unsigned long gpa;
614 
615 	/*
616 	 * We need to pin the page pointed to by vpap->next_gpa,
617 	 * but we can't call kvmppc_pin_guest_page under the lock
618 	 * as it does get_user_pages() and down_read().  So we
619 	 * have to drop the lock, pin the page, then get the lock
620 	 * again and check that a new area didn't get registered
621 	 * in the meantime.
622 	 */
623 	for (;;) {
624 		gpa = vpap->next_gpa;
625 		spin_unlock(&vcpu->arch.vpa_update_lock);
626 		va = NULL;
627 		nb = 0;
628 		if (gpa)
629 			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
630 		spin_lock(&vcpu->arch.vpa_update_lock);
631 		if (gpa == vpap->next_gpa)
632 			break;
633 		/* sigh... unpin that one and try again */
634 		if (va)
635 			kvmppc_unpin_guest_page(kvm, va, gpa, false);
636 	}
637 
638 	vpap->update_pending = 0;
639 	if (va && nb < vpap->len) {
640 		/*
641 		 * If it's now too short, it must be that userspace
642 		 * has changed the mappings underlying guest memory,
643 		 * so unregister the region.
644 		 */
645 		kvmppc_unpin_guest_page(kvm, va, gpa, false);
646 		va = NULL;
647 	}
648 	if (vpap->pinned_addr)
649 		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
650 					vpap->dirty);
651 	vpap->gpa = gpa;
652 	vpap->pinned_addr = va;
653 	vpap->dirty = false;
654 	if (va)
655 		vpap->pinned_end = va + vpap->len;
656 }
657 
658 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
659 {
660 	if (!(vcpu->arch.vpa.update_pending ||
661 	      vcpu->arch.slb_shadow.update_pending ||
662 	      vcpu->arch.dtl.update_pending))
663 		return;
664 
665 	spin_lock(&vcpu->arch.vpa_update_lock);
666 	if (vcpu->arch.vpa.update_pending) {
667 		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
668 		if (vcpu->arch.vpa.pinned_addr)
669 			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
670 	}
671 	if (vcpu->arch.dtl.update_pending) {
672 		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
673 		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
674 		vcpu->arch.dtl_index = 0;
675 	}
676 	if (vcpu->arch.slb_shadow.update_pending)
677 		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
678 	spin_unlock(&vcpu->arch.vpa_update_lock);
679 }
680 
681 /*
682  * Return the accumulated stolen time for the vcore up until `now'.
683  * The caller should hold the vcore lock.
684  */
685 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
686 {
687 	u64 p;
688 	unsigned long flags;
689 
690 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
691 
692 	spin_lock_irqsave(&vc->stoltb_lock, flags);
693 	p = vc->stolen_tb;
694 	if (vc->vcore_state != VCORE_INACTIVE &&
695 	    vc->preempt_tb != TB_NIL)
696 		p += now - vc->preempt_tb;
697 	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
698 	return p;
699 }
700 
701 static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
702 					unsigned int pcpu, u64 now,
703 					unsigned long stolen)
704 {
705 	struct dtl_entry *dt;
706 	struct lppaca *vpa;
707 
708 	dt = vcpu->arch.dtl_ptr;
709 	vpa = vcpu->arch.vpa.pinned_addr;
710 
711 	if (!dt || !vpa)
712 		return;
713 
714 	dt->dispatch_reason = 7;
715 	dt->preempt_reason = 0;
716 	dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
717 	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
718 	dt->ready_to_enqueue_time = 0;
719 	dt->waiting_to_ready_time = 0;
720 	dt->timebase = cpu_to_be64(now);
721 	dt->fault_addr = 0;
722 	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
723 	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
724 
725 	++dt;
726 	if (dt == vcpu->arch.dtl.pinned_end)
727 		dt = vcpu->arch.dtl.pinned_addr;
728 	vcpu->arch.dtl_ptr = dt;
729 	/* order writing *dt vs. writing vpa->dtl_idx */
730 	smp_wmb();
731 	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
732 	vcpu->arch.dtl.dirty = true;
733 }
734 
735 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
736 				    struct kvmppc_vcore *vc)
737 {
738 	unsigned long stolen;
739 	unsigned long core_stolen;
740 	u64 now;
741 	unsigned long flags;
742 
743 	now = mftb();
744 
745 	core_stolen = vcore_stolen_time(vc, now);
746 	stolen = core_stolen - vcpu->arch.stolen_logged;
747 	vcpu->arch.stolen_logged = core_stolen;
748 	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
749 	stolen += vcpu->arch.busy_stolen;
750 	vcpu->arch.busy_stolen = 0;
751 	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
752 
753 	__kvmppc_create_dtl_entry(vcpu, vc->pcpu, now + vc->tb_offset, stolen);
754 }
755 
756 /* See if there is a doorbell interrupt pending for a vcpu */
757 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
758 {
759 	int thr;
760 	struct kvmppc_vcore *vc;
761 
762 	if (vcpu->arch.doorbell_request)
763 		return true;
764 	/*
765 	 * Ensure that the read of vcore->dpdes comes after the read
766 	 * of vcpu->doorbell_request.  This barrier matches the
767 	 * smp_wmb() in kvmppc_guest_entry_inject().
768 	 */
769 	smp_rmb();
770 	vc = vcpu->arch.vcore;
771 	thr = vcpu->vcpu_id - vc->first_vcpuid;
772 	return !!(vc->dpdes & (1 << thr));
773 }
774 
775 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
776 {
777 	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
778 		return true;
779 	if ((!vcpu->arch.vcore->arch_compat) &&
780 	    cpu_has_feature(CPU_FTR_ARCH_207S))
781 		return true;
782 	return false;
783 }
784 
785 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
786 			     unsigned long resource, unsigned long value1,
787 			     unsigned long value2)
788 {
789 	switch (resource) {
790 	case H_SET_MODE_RESOURCE_SET_CIABR:
791 		if (!kvmppc_power8_compatible(vcpu))
792 			return H_P2;
793 		if (value2)
794 			return H_P4;
795 		if (mflags)
796 			return H_UNSUPPORTED_FLAG_START;
797 		/* Guests can't breakpoint the hypervisor */
798 		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
799 			return H_P3;
800 		vcpu->arch.ciabr  = value1;
801 		return H_SUCCESS;
802 	case H_SET_MODE_RESOURCE_SET_DAWR0:
803 		if (!kvmppc_power8_compatible(vcpu))
804 			return H_P2;
805 		if (!ppc_breakpoint_available())
806 			return H_P2;
807 		if (mflags)
808 			return H_UNSUPPORTED_FLAG_START;
809 		if (value2 & DABRX_HYP)
810 			return H_P4;
811 		vcpu->arch.dawr0  = value1;
812 		vcpu->arch.dawrx0 = value2;
813 		return H_SUCCESS;
814 	case H_SET_MODE_RESOURCE_SET_DAWR1:
815 		if (!kvmppc_power8_compatible(vcpu))
816 			return H_P2;
817 		if (!ppc_breakpoint_available())
818 			return H_P2;
819 		if (!cpu_has_feature(CPU_FTR_DAWR1))
820 			return H_P2;
821 		if (!vcpu->kvm->arch.dawr1_enabled)
822 			return H_FUNCTION;
823 		if (mflags)
824 			return H_UNSUPPORTED_FLAG_START;
825 		if (value2 & DABRX_HYP)
826 			return H_P4;
827 		vcpu->arch.dawr1  = value1;
828 		vcpu->arch.dawrx1 = value2;
829 		return H_SUCCESS;
830 	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
831 		/*
832 		 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
833 		 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
834 		 */
835 		if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
836 				kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
837 			return H_UNSUPPORTED_FLAG_START;
838 		return H_TOO_HARD;
839 	default:
840 		return H_TOO_HARD;
841 	}
842 }
843 
844 /* Copy guest memory in place - must reside within a single memslot */
845 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
846 				  unsigned long len)
847 {
848 	struct kvm_memory_slot *to_memslot = NULL;
849 	struct kvm_memory_slot *from_memslot = NULL;
850 	unsigned long to_addr, from_addr;
851 	int r;
852 
853 	/* Get HPA for from address */
854 	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
855 	if (!from_memslot)
856 		return -EFAULT;
857 	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
858 			     << PAGE_SHIFT))
859 		return -EINVAL;
860 	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
861 	if (kvm_is_error_hva(from_addr))
862 		return -EFAULT;
863 	from_addr |= (from & (PAGE_SIZE - 1));
864 
865 	/* Get HPA for to address */
866 	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
867 	if (!to_memslot)
868 		return -EFAULT;
869 	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
870 			   << PAGE_SHIFT))
871 		return -EINVAL;
872 	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
873 	if (kvm_is_error_hva(to_addr))
874 		return -EFAULT;
875 	to_addr |= (to & (PAGE_SIZE - 1));
876 
877 	/* Perform copy */
878 	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
879 			     len);
880 	if (r)
881 		return -EFAULT;
882 	mark_page_dirty(kvm, to >> PAGE_SHIFT);
883 	return 0;
884 }
885 
886 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
887 			       unsigned long dest, unsigned long src)
888 {
889 	u64 pg_sz = SZ_4K;		/* 4K page size */
890 	u64 pg_mask = SZ_4K - 1;
891 	int ret;
892 
893 	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
894 	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
895 		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
896 		return H_PARAMETER;
897 
898 	/* dest (and src if copy_page flag set) must be page aligned */
899 	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
900 		return H_PARAMETER;
901 
902 	/* zero and/or copy the page as determined by the flags */
903 	if (flags & H_COPY_PAGE) {
904 		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
905 		if (ret < 0)
906 			return H_PARAMETER;
907 	} else if (flags & H_ZERO_PAGE) {
908 		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
909 		if (ret < 0)
910 			return H_PARAMETER;
911 	}
912 
913 	/* We can ignore the remaining flags */
914 
915 	return H_SUCCESS;
916 }
917 
918 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
919 {
920 	struct kvmppc_vcore *vcore = target->arch.vcore;
921 
922 	/*
923 	 * We expect to have been called by the real mode handler
924 	 * (kvmppc_rm_h_confer()) which would have directly returned
925 	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
926 	 * have useful work to do and should not confer) so we don't
927 	 * recheck that here.
928 	 *
929 	 * In the case of the P9 single vcpu per vcore case, the real
930 	 * mode handler is not called but no other threads are in the
931 	 * source vcore.
932 	 */
933 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
934 		spin_lock(&vcore->lock);
935 		if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
936 		    vcore->vcore_state != VCORE_INACTIVE &&
937 		    vcore->runner)
938 			target = vcore->runner;
939 		spin_unlock(&vcore->lock);
940 	}
941 
942 	return kvm_vcpu_yield_to(target);
943 }
944 
945 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
946 {
947 	int yield_count = 0;
948 	struct lppaca *lppaca;
949 
950 	spin_lock(&vcpu->arch.vpa_update_lock);
951 	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
952 	if (lppaca)
953 		yield_count = be32_to_cpu(lppaca->yield_count);
954 	spin_unlock(&vcpu->arch.vpa_update_lock);
955 	return yield_count;
956 }
957 
958 /*
959  * H_RPT_INVALIDATE hcall handler for nested guests.
960  *
961  * Handles only nested process-scoped invalidation requests in L0.
962  */
963 static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
964 {
965 	unsigned long type = kvmppc_get_gpr(vcpu, 6);
966 	unsigned long pid, pg_sizes, start, end;
967 
968 	/*
969 	 * The partition-scoped invalidations aren't handled here in L0.
970 	 */
971 	if (type & H_RPTI_TYPE_NESTED)
972 		return RESUME_HOST;
973 
974 	pid = kvmppc_get_gpr(vcpu, 4);
975 	pg_sizes = kvmppc_get_gpr(vcpu, 7);
976 	start = kvmppc_get_gpr(vcpu, 8);
977 	end = kvmppc_get_gpr(vcpu, 9);
978 
979 	do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
980 				type, pg_sizes, start, end);
981 
982 	kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
983 	return RESUME_GUEST;
984 }
985 
986 static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
987 				    unsigned long id, unsigned long target,
988 				    unsigned long type, unsigned long pg_sizes,
989 				    unsigned long start, unsigned long end)
990 {
991 	if (!kvm_is_radix(vcpu->kvm))
992 		return H_UNSUPPORTED;
993 
994 	if (end < start)
995 		return H_P5;
996 
997 	/*
998 	 * Partition-scoped invalidation for nested guests.
999 	 */
1000 	if (type & H_RPTI_TYPE_NESTED) {
1001 		if (!nesting_enabled(vcpu->kvm))
1002 			return H_FUNCTION;
1003 
1004 		/* Support only cores as target */
1005 		if (target != H_RPTI_TARGET_CMMU)
1006 			return H_P2;
1007 
1008 		return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1009 					       start, end);
1010 	}
1011 
1012 	/*
1013 	 * Process-scoped invalidation for L1 guests.
1014 	 */
1015 	do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1016 				type, pg_sizes, start, end);
1017 	return H_SUCCESS;
1018 }
1019 
1020 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1021 {
1022 	struct kvm *kvm = vcpu->kvm;
1023 	unsigned long req = kvmppc_get_gpr(vcpu, 3);
1024 	unsigned long target, ret = H_SUCCESS;
1025 	int yield_count;
1026 	struct kvm_vcpu *tvcpu;
1027 	int idx, rc;
1028 
1029 	if (req <= MAX_HCALL_OPCODE &&
1030 	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1031 		return RESUME_HOST;
1032 
1033 	switch (req) {
1034 	case H_REMOVE:
1035 		ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1036 					kvmppc_get_gpr(vcpu, 5),
1037 					kvmppc_get_gpr(vcpu, 6));
1038 		if (ret == H_TOO_HARD)
1039 			return RESUME_HOST;
1040 		break;
1041 	case H_ENTER:
1042 		ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1043 					kvmppc_get_gpr(vcpu, 5),
1044 					kvmppc_get_gpr(vcpu, 6),
1045 					kvmppc_get_gpr(vcpu, 7));
1046 		if (ret == H_TOO_HARD)
1047 			return RESUME_HOST;
1048 		break;
1049 	case H_READ:
1050 		ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1051 					kvmppc_get_gpr(vcpu, 5));
1052 		if (ret == H_TOO_HARD)
1053 			return RESUME_HOST;
1054 		break;
1055 	case H_CLEAR_MOD:
1056 		ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1057 					kvmppc_get_gpr(vcpu, 5));
1058 		if (ret == H_TOO_HARD)
1059 			return RESUME_HOST;
1060 		break;
1061 	case H_CLEAR_REF:
1062 		ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1063 					kvmppc_get_gpr(vcpu, 5));
1064 		if (ret == H_TOO_HARD)
1065 			return RESUME_HOST;
1066 		break;
1067 	case H_PROTECT:
1068 		ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1069 					kvmppc_get_gpr(vcpu, 5),
1070 					kvmppc_get_gpr(vcpu, 6));
1071 		if (ret == H_TOO_HARD)
1072 			return RESUME_HOST;
1073 		break;
1074 	case H_BULK_REMOVE:
1075 		ret = kvmppc_h_bulk_remove(vcpu);
1076 		if (ret == H_TOO_HARD)
1077 			return RESUME_HOST;
1078 		break;
1079 
1080 	case H_CEDE:
1081 		break;
1082 	case H_PROD:
1083 		target = kvmppc_get_gpr(vcpu, 4);
1084 		tvcpu = kvmppc_find_vcpu(kvm, target);
1085 		if (!tvcpu) {
1086 			ret = H_PARAMETER;
1087 			break;
1088 		}
1089 		tvcpu->arch.prodded = 1;
1090 		smp_mb();
1091 		if (tvcpu->arch.ceded)
1092 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1093 		break;
1094 	case H_CONFER:
1095 		target = kvmppc_get_gpr(vcpu, 4);
1096 		if (target == -1)
1097 			break;
1098 		tvcpu = kvmppc_find_vcpu(kvm, target);
1099 		if (!tvcpu) {
1100 			ret = H_PARAMETER;
1101 			break;
1102 		}
1103 		yield_count = kvmppc_get_gpr(vcpu, 5);
1104 		if (kvmppc_get_yield_count(tvcpu) != yield_count)
1105 			break;
1106 		kvm_arch_vcpu_yield_to(tvcpu);
1107 		break;
1108 	case H_REGISTER_VPA:
1109 		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1110 					kvmppc_get_gpr(vcpu, 5),
1111 					kvmppc_get_gpr(vcpu, 6));
1112 		break;
1113 	case H_RTAS:
1114 		if (list_empty(&kvm->arch.rtas_tokens))
1115 			return RESUME_HOST;
1116 
1117 		idx = srcu_read_lock(&kvm->srcu);
1118 		rc = kvmppc_rtas_hcall(vcpu);
1119 		srcu_read_unlock(&kvm->srcu, idx);
1120 
1121 		if (rc == -ENOENT)
1122 			return RESUME_HOST;
1123 		else if (rc == 0)
1124 			break;
1125 
1126 		/* Send the error out to userspace via KVM_RUN */
1127 		return rc;
1128 	case H_LOGICAL_CI_LOAD:
1129 		ret = kvmppc_h_logical_ci_load(vcpu);
1130 		if (ret == H_TOO_HARD)
1131 			return RESUME_HOST;
1132 		break;
1133 	case H_LOGICAL_CI_STORE:
1134 		ret = kvmppc_h_logical_ci_store(vcpu);
1135 		if (ret == H_TOO_HARD)
1136 			return RESUME_HOST;
1137 		break;
1138 	case H_SET_MODE:
1139 		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1140 					kvmppc_get_gpr(vcpu, 5),
1141 					kvmppc_get_gpr(vcpu, 6),
1142 					kvmppc_get_gpr(vcpu, 7));
1143 		if (ret == H_TOO_HARD)
1144 			return RESUME_HOST;
1145 		break;
1146 	case H_XIRR:
1147 	case H_CPPR:
1148 	case H_EOI:
1149 	case H_IPI:
1150 	case H_IPOLL:
1151 	case H_XIRR_X:
1152 		if (kvmppc_xics_enabled(vcpu)) {
1153 			if (xics_on_xive()) {
1154 				ret = H_NOT_AVAILABLE;
1155 				return RESUME_GUEST;
1156 			}
1157 			ret = kvmppc_xics_hcall(vcpu, req);
1158 			break;
1159 		}
1160 		return RESUME_HOST;
1161 	case H_SET_DABR:
1162 		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1163 		break;
1164 	case H_SET_XDABR:
1165 		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1166 						kvmppc_get_gpr(vcpu, 5));
1167 		break;
1168 #ifdef CONFIG_SPAPR_TCE_IOMMU
1169 	case H_GET_TCE:
1170 		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1171 						kvmppc_get_gpr(vcpu, 5));
1172 		if (ret == H_TOO_HARD)
1173 			return RESUME_HOST;
1174 		break;
1175 	case H_PUT_TCE:
1176 		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1177 						kvmppc_get_gpr(vcpu, 5),
1178 						kvmppc_get_gpr(vcpu, 6));
1179 		if (ret == H_TOO_HARD)
1180 			return RESUME_HOST;
1181 		break;
1182 	case H_PUT_TCE_INDIRECT:
1183 		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1184 						kvmppc_get_gpr(vcpu, 5),
1185 						kvmppc_get_gpr(vcpu, 6),
1186 						kvmppc_get_gpr(vcpu, 7));
1187 		if (ret == H_TOO_HARD)
1188 			return RESUME_HOST;
1189 		break;
1190 	case H_STUFF_TCE:
1191 		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1192 						kvmppc_get_gpr(vcpu, 5),
1193 						kvmppc_get_gpr(vcpu, 6),
1194 						kvmppc_get_gpr(vcpu, 7));
1195 		if (ret == H_TOO_HARD)
1196 			return RESUME_HOST;
1197 		break;
1198 #endif
1199 	case H_RANDOM:
1200 		if (!arch_get_random_seed_long(&vcpu->arch.regs.gpr[4]))
1201 			ret = H_HARDWARE;
1202 		break;
1203 	case H_RPT_INVALIDATE:
1204 		ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1205 					      kvmppc_get_gpr(vcpu, 5),
1206 					      kvmppc_get_gpr(vcpu, 6),
1207 					      kvmppc_get_gpr(vcpu, 7),
1208 					      kvmppc_get_gpr(vcpu, 8),
1209 					      kvmppc_get_gpr(vcpu, 9));
1210 		break;
1211 
1212 	case H_SET_PARTITION_TABLE:
1213 		ret = H_FUNCTION;
1214 		if (nesting_enabled(kvm))
1215 			ret = kvmhv_set_partition_table(vcpu);
1216 		break;
1217 	case H_ENTER_NESTED:
1218 		ret = H_FUNCTION;
1219 		if (!nesting_enabled(kvm))
1220 			break;
1221 		ret = kvmhv_enter_nested_guest(vcpu);
1222 		if (ret == H_INTERRUPT) {
1223 			kvmppc_set_gpr(vcpu, 3, 0);
1224 			vcpu->arch.hcall_needed = 0;
1225 			return -EINTR;
1226 		} else if (ret == H_TOO_HARD) {
1227 			kvmppc_set_gpr(vcpu, 3, 0);
1228 			vcpu->arch.hcall_needed = 0;
1229 			return RESUME_HOST;
1230 		}
1231 		break;
1232 	case H_TLB_INVALIDATE:
1233 		ret = H_FUNCTION;
1234 		if (nesting_enabled(kvm))
1235 			ret = kvmhv_do_nested_tlbie(vcpu);
1236 		break;
1237 	case H_COPY_TOFROM_GUEST:
1238 		ret = H_FUNCTION;
1239 		if (nesting_enabled(kvm))
1240 			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1241 		break;
1242 	case H_PAGE_INIT:
1243 		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1244 					 kvmppc_get_gpr(vcpu, 5),
1245 					 kvmppc_get_gpr(vcpu, 6));
1246 		break;
1247 	case H_SVM_PAGE_IN:
1248 		ret = H_UNSUPPORTED;
1249 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1250 			ret = kvmppc_h_svm_page_in(kvm,
1251 						   kvmppc_get_gpr(vcpu, 4),
1252 						   kvmppc_get_gpr(vcpu, 5),
1253 						   kvmppc_get_gpr(vcpu, 6));
1254 		break;
1255 	case H_SVM_PAGE_OUT:
1256 		ret = H_UNSUPPORTED;
1257 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1258 			ret = kvmppc_h_svm_page_out(kvm,
1259 						    kvmppc_get_gpr(vcpu, 4),
1260 						    kvmppc_get_gpr(vcpu, 5),
1261 						    kvmppc_get_gpr(vcpu, 6));
1262 		break;
1263 	case H_SVM_INIT_START:
1264 		ret = H_UNSUPPORTED;
1265 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1266 			ret = kvmppc_h_svm_init_start(kvm);
1267 		break;
1268 	case H_SVM_INIT_DONE:
1269 		ret = H_UNSUPPORTED;
1270 		if (kvmppc_get_srr1(vcpu) & MSR_S)
1271 			ret = kvmppc_h_svm_init_done(kvm);
1272 		break;
1273 	case H_SVM_INIT_ABORT:
1274 		/*
1275 		 * Even if that call is made by the Ultravisor, the SSR1 value
1276 		 * is the guest context one, with the secure bit clear as it has
1277 		 * not yet been secured. So we can't check it here.
1278 		 * Instead the kvm->arch.secure_guest flag is checked inside
1279 		 * kvmppc_h_svm_init_abort().
1280 		 */
1281 		ret = kvmppc_h_svm_init_abort(kvm);
1282 		break;
1283 
1284 	default:
1285 		return RESUME_HOST;
1286 	}
1287 	WARN_ON_ONCE(ret == H_TOO_HARD);
1288 	kvmppc_set_gpr(vcpu, 3, ret);
1289 	vcpu->arch.hcall_needed = 0;
1290 	return RESUME_GUEST;
1291 }
1292 
1293 /*
1294  * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1295  * handlers in book3s_hv_rmhandlers.S.
1296  *
1297  * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1298  * that the cede logic in kvmppc_run_single_vcpu() works properly.
1299  */
1300 static void kvmppc_cede(struct kvm_vcpu *vcpu)
1301 {
1302 	vcpu->arch.shregs.msr |= MSR_EE;
1303 	vcpu->arch.ceded = 1;
1304 	smp_mb();
1305 	if (vcpu->arch.prodded) {
1306 		vcpu->arch.prodded = 0;
1307 		smp_mb();
1308 		vcpu->arch.ceded = 0;
1309 	}
1310 }
1311 
1312 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1313 {
1314 	switch (cmd) {
1315 	case H_CEDE:
1316 	case H_PROD:
1317 	case H_CONFER:
1318 	case H_REGISTER_VPA:
1319 	case H_SET_MODE:
1320 	case H_LOGICAL_CI_LOAD:
1321 	case H_LOGICAL_CI_STORE:
1322 #ifdef CONFIG_KVM_XICS
1323 	case H_XIRR:
1324 	case H_CPPR:
1325 	case H_EOI:
1326 	case H_IPI:
1327 	case H_IPOLL:
1328 	case H_XIRR_X:
1329 #endif
1330 	case H_PAGE_INIT:
1331 	case H_RPT_INVALIDATE:
1332 		return 1;
1333 	}
1334 
1335 	/* See if it's in the real-mode table */
1336 	return kvmppc_hcall_impl_hv_realmode(cmd);
1337 }
1338 
1339 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1340 {
1341 	u32 last_inst;
1342 
1343 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1344 					EMULATE_DONE) {
1345 		/*
1346 		 * Fetch failed, so return to guest and
1347 		 * try executing it again.
1348 		 */
1349 		return RESUME_GUEST;
1350 	}
1351 
1352 	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1353 		vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1354 		vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1355 		return RESUME_HOST;
1356 	} else {
1357 		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1358 		return RESUME_GUEST;
1359 	}
1360 }
1361 
1362 static void do_nothing(void *x)
1363 {
1364 }
1365 
1366 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1367 {
1368 	int thr, cpu, pcpu, nthreads;
1369 	struct kvm_vcpu *v;
1370 	unsigned long dpdes;
1371 
1372 	nthreads = vcpu->kvm->arch.emul_smt_mode;
1373 	dpdes = 0;
1374 	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1375 	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1376 		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1377 		if (!v)
1378 			continue;
1379 		/*
1380 		 * If the vcpu is currently running on a physical cpu thread,
1381 		 * interrupt it in order to pull it out of the guest briefly,
1382 		 * which will update its vcore->dpdes value.
1383 		 */
1384 		pcpu = READ_ONCE(v->cpu);
1385 		if (pcpu >= 0)
1386 			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1387 		if (kvmppc_doorbell_pending(v))
1388 			dpdes |= 1 << thr;
1389 	}
1390 	return dpdes;
1391 }
1392 
1393 /*
1394  * On POWER9, emulate doorbell-related instructions in order to
1395  * give the guest the illusion of running on a multi-threaded core.
1396  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1397  * and mfspr DPDES.
1398  */
1399 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1400 {
1401 	u32 inst, rb, thr;
1402 	unsigned long arg;
1403 	struct kvm *kvm = vcpu->kvm;
1404 	struct kvm_vcpu *tvcpu;
1405 
1406 	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1407 		return RESUME_GUEST;
1408 	if (get_op(inst) != 31)
1409 		return EMULATE_FAIL;
1410 	rb = get_rb(inst);
1411 	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1412 	switch (get_xop(inst)) {
1413 	case OP_31_XOP_MSGSNDP:
1414 		arg = kvmppc_get_gpr(vcpu, rb);
1415 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1416 			break;
1417 		arg &= 0x7f;
1418 		if (arg >= kvm->arch.emul_smt_mode)
1419 			break;
1420 		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1421 		if (!tvcpu)
1422 			break;
1423 		if (!tvcpu->arch.doorbell_request) {
1424 			tvcpu->arch.doorbell_request = 1;
1425 			kvmppc_fast_vcpu_kick_hv(tvcpu);
1426 		}
1427 		break;
1428 	case OP_31_XOP_MSGCLRP:
1429 		arg = kvmppc_get_gpr(vcpu, rb);
1430 		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1431 			break;
1432 		vcpu->arch.vcore->dpdes = 0;
1433 		vcpu->arch.doorbell_request = 0;
1434 		break;
1435 	case OP_31_XOP_MFSPR:
1436 		switch (get_sprn(inst)) {
1437 		case SPRN_TIR:
1438 			arg = thr;
1439 			break;
1440 		case SPRN_DPDES:
1441 			arg = kvmppc_read_dpdes(vcpu);
1442 			break;
1443 		default:
1444 			return EMULATE_FAIL;
1445 		}
1446 		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1447 		break;
1448 	default:
1449 		return EMULATE_FAIL;
1450 	}
1451 	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1452 	return RESUME_GUEST;
1453 }
1454 
1455 /*
1456  * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1457  * HFSCR_PM is cleared for next entry. If the guest then tries to access
1458  * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1459  * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1460  * allow the guest access to continue.
1461  */
1462 static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1463 {
1464 	if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1465 		return EMULATE_FAIL;
1466 
1467 	vcpu->arch.hfscr |= HFSCR_PM;
1468 
1469 	return RESUME_GUEST;
1470 }
1471 
1472 static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1473 {
1474 	if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1475 		return EMULATE_FAIL;
1476 
1477 	vcpu->arch.hfscr |= HFSCR_EBB;
1478 
1479 	return RESUME_GUEST;
1480 }
1481 
1482 static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1483 {
1484 	if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1485 		return EMULATE_FAIL;
1486 
1487 	vcpu->arch.hfscr |= HFSCR_TM;
1488 
1489 	return RESUME_GUEST;
1490 }
1491 
1492 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1493 				 struct task_struct *tsk)
1494 {
1495 	struct kvm_run *run = vcpu->run;
1496 	int r = RESUME_HOST;
1497 
1498 	vcpu->stat.sum_exits++;
1499 
1500 	/*
1501 	 * This can happen if an interrupt occurs in the last stages
1502 	 * of guest entry or the first stages of guest exit (i.e. after
1503 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1504 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1505 	 * That can happen due to a bug, or due to a machine check
1506 	 * occurring at just the wrong time.
1507 	 */
1508 	if (vcpu->arch.shregs.msr & MSR_HV) {
1509 		printk(KERN_EMERG "KVM trap in HV mode!\n");
1510 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1511 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1512 			vcpu->arch.shregs.msr);
1513 		kvmppc_dump_regs(vcpu);
1514 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1515 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1516 		return RESUME_HOST;
1517 	}
1518 	run->exit_reason = KVM_EXIT_UNKNOWN;
1519 	run->ready_for_interrupt_injection = 1;
1520 	switch (vcpu->arch.trap) {
1521 	/* We're good on these - the host merely wanted to get our attention */
1522 	case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1523 		WARN_ON_ONCE(1); /* Should never happen */
1524 		vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1525 		fallthrough;
1526 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1527 		vcpu->stat.dec_exits++;
1528 		r = RESUME_GUEST;
1529 		break;
1530 	case BOOK3S_INTERRUPT_EXTERNAL:
1531 	case BOOK3S_INTERRUPT_H_DOORBELL:
1532 	case BOOK3S_INTERRUPT_H_VIRT:
1533 		vcpu->stat.ext_intr_exits++;
1534 		r = RESUME_GUEST;
1535 		break;
1536 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1537 	case BOOK3S_INTERRUPT_HMI:
1538 	case BOOK3S_INTERRUPT_PERFMON:
1539 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1540 		r = RESUME_GUEST;
1541 		break;
1542 	case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1543 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1544 					      DEFAULT_RATELIMIT_BURST);
1545 		/*
1546 		 * Print the MCE event to host console. Ratelimit so the guest
1547 		 * can't flood the host log.
1548 		 */
1549 		if (__ratelimit(&rs))
1550 			machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1551 
1552 		/*
1553 		 * If the guest can do FWNMI, exit to userspace so it can
1554 		 * deliver a FWNMI to the guest.
1555 		 * Otherwise we synthesize a machine check for the guest
1556 		 * so that it knows that the machine check occurred.
1557 		 */
1558 		if (!vcpu->kvm->arch.fwnmi_enabled) {
1559 			ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1560 			kvmppc_core_queue_machine_check(vcpu, flags);
1561 			r = RESUME_GUEST;
1562 			break;
1563 		}
1564 
1565 		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1566 		run->exit_reason = KVM_EXIT_NMI;
1567 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1568 		/* Clear out the old NMI status from run->flags */
1569 		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1570 		/* Now set the NMI status */
1571 		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1572 			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1573 		else
1574 			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1575 
1576 		r = RESUME_HOST;
1577 		break;
1578 	}
1579 	case BOOK3S_INTERRUPT_PROGRAM:
1580 	{
1581 		ulong flags;
1582 		/*
1583 		 * Normally program interrupts are delivered directly
1584 		 * to the guest by the hardware, but we can get here
1585 		 * as a result of a hypervisor emulation interrupt
1586 		 * (e40) getting turned into a 700 by BML RTAS.
1587 		 */
1588 		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1589 		kvmppc_core_queue_program(vcpu, flags);
1590 		r = RESUME_GUEST;
1591 		break;
1592 	}
1593 	case BOOK3S_INTERRUPT_SYSCALL:
1594 	{
1595 		int i;
1596 
1597 		if (unlikely(vcpu->arch.shregs.msr & MSR_PR)) {
1598 			/*
1599 			 * Guest userspace executed sc 1. This can only be
1600 			 * reached by the P9 path because the old path
1601 			 * handles this case in realmode hcall handlers.
1602 			 */
1603 			if (!kvmhv_vcpu_is_radix(vcpu)) {
1604 				/*
1605 				 * A guest could be running PR KVM, so this
1606 				 * may be a PR KVM hcall. It must be reflected
1607 				 * to the guest kernel as a sc interrupt.
1608 				 */
1609 				kvmppc_core_queue_syscall(vcpu);
1610 			} else {
1611 				/*
1612 				 * Radix guests can not run PR KVM or nested HV
1613 				 * hash guests which might run PR KVM, so this
1614 				 * is always a privilege fault. Send a program
1615 				 * check to guest kernel.
1616 				 */
1617 				kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1618 			}
1619 			r = RESUME_GUEST;
1620 			break;
1621 		}
1622 
1623 		/*
1624 		 * hcall - gather args and set exit_reason. This will next be
1625 		 * handled by kvmppc_pseries_do_hcall which may be able to deal
1626 		 * with it and resume guest, or may punt to userspace.
1627 		 */
1628 		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1629 		for (i = 0; i < 9; ++i)
1630 			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1631 		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1632 		vcpu->arch.hcall_needed = 1;
1633 		r = RESUME_HOST;
1634 		break;
1635 	}
1636 	/*
1637 	 * We get these next two if the guest accesses a page which it thinks
1638 	 * it has mapped but which is not actually present, either because
1639 	 * it is for an emulated I/O device or because the corresonding
1640 	 * host page has been paged out.
1641 	 *
1642 	 * Any other HDSI/HISI interrupts have been handled already for P7/8
1643 	 * guests. For POWER9 hash guests not using rmhandlers, basic hash
1644 	 * fault handling is done here.
1645 	 */
1646 	case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1647 		unsigned long vsid;
1648 		long err;
1649 
1650 		if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1651 		    unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1652 			r = RESUME_GUEST; /* Just retry if it's the canary */
1653 			break;
1654 		}
1655 
1656 		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1657 			/*
1658 			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1659 			 * already attempted to handle this in rmhandlers. The
1660 			 * hash fault handling below is v3 only (it uses ASDR
1661 			 * via fault_gpa).
1662 			 */
1663 			r = RESUME_PAGE_FAULT;
1664 			break;
1665 		}
1666 
1667 		if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1668 			kvmppc_core_queue_data_storage(vcpu,
1669 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1670 			r = RESUME_GUEST;
1671 			break;
1672 		}
1673 
1674 		if (!(vcpu->arch.shregs.msr & MSR_DR))
1675 			vsid = vcpu->kvm->arch.vrma_slb_v;
1676 		else
1677 			vsid = vcpu->arch.fault_gpa;
1678 
1679 		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1680 				vsid, vcpu->arch.fault_dsisr, true);
1681 		if (err == 0) {
1682 			r = RESUME_GUEST;
1683 		} else if (err == -1 || err == -2) {
1684 			r = RESUME_PAGE_FAULT;
1685 		} else {
1686 			kvmppc_core_queue_data_storage(vcpu,
1687 				vcpu->arch.fault_dar, err);
1688 			r = RESUME_GUEST;
1689 		}
1690 		break;
1691 	}
1692 	case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1693 		unsigned long vsid;
1694 		long err;
1695 
1696 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1697 		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1698 			DSISR_SRR1_MATCH_64S;
1699 		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1700 			/*
1701 			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1702 			 * already attempted to handle this in rmhandlers. The
1703 			 * hash fault handling below is v3 only (it uses ASDR
1704 			 * via fault_gpa).
1705 			 */
1706 			if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1707 				vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1708 			r = RESUME_PAGE_FAULT;
1709 			break;
1710 		}
1711 
1712 		if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1713 			kvmppc_core_queue_inst_storage(vcpu,
1714 				vcpu->arch.fault_dsisr);
1715 			r = RESUME_GUEST;
1716 			break;
1717 		}
1718 
1719 		if (!(vcpu->arch.shregs.msr & MSR_IR))
1720 			vsid = vcpu->kvm->arch.vrma_slb_v;
1721 		else
1722 			vsid = vcpu->arch.fault_gpa;
1723 
1724 		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1725 				vsid, vcpu->arch.fault_dsisr, false);
1726 		if (err == 0) {
1727 			r = RESUME_GUEST;
1728 		} else if (err == -1) {
1729 			r = RESUME_PAGE_FAULT;
1730 		} else {
1731 			kvmppc_core_queue_inst_storage(vcpu, err);
1732 			r = RESUME_GUEST;
1733 		}
1734 		break;
1735 	}
1736 
1737 	/*
1738 	 * This occurs if the guest executes an illegal instruction.
1739 	 * If the guest debug is disabled, generate a program interrupt
1740 	 * to the guest. If guest debug is enabled, we need to check
1741 	 * whether the instruction is a software breakpoint instruction.
1742 	 * Accordingly return to Guest or Host.
1743 	 */
1744 	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1745 		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1746 			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1747 				swab32(vcpu->arch.emul_inst) :
1748 				vcpu->arch.emul_inst;
1749 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1750 			r = kvmppc_emulate_debug_inst(vcpu);
1751 		} else {
1752 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1753 			r = RESUME_GUEST;
1754 		}
1755 		break;
1756 
1757 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1758 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1759 		/*
1760 		 * This occurs for various TM-related instructions that
1761 		 * we need to emulate on POWER9 DD2.2.  We have already
1762 		 * handled the cases where the guest was in real-suspend
1763 		 * mode and was transitioning to transactional state.
1764 		 */
1765 		r = kvmhv_p9_tm_emulation(vcpu);
1766 		if (r != -1)
1767 			break;
1768 		fallthrough; /* go to facility unavailable handler */
1769 #endif
1770 
1771 	/*
1772 	 * This occurs if the guest (kernel or userspace), does something that
1773 	 * is prohibited by HFSCR.
1774 	 * On POWER9, this could be a doorbell instruction that we need
1775 	 * to emulate.
1776 	 * Otherwise, we just generate a program interrupt to the guest.
1777 	 */
1778 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1779 		u64 cause = vcpu->arch.hfscr >> 56;
1780 
1781 		r = EMULATE_FAIL;
1782 		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1783 			if (cause == FSCR_MSGP_LG)
1784 				r = kvmppc_emulate_doorbell_instr(vcpu);
1785 			if (cause == FSCR_PM_LG)
1786 				r = kvmppc_pmu_unavailable(vcpu);
1787 			if (cause == FSCR_EBB_LG)
1788 				r = kvmppc_ebb_unavailable(vcpu);
1789 			if (cause == FSCR_TM_LG)
1790 				r = kvmppc_tm_unavailable(vcpu);
1791 		}
1792 		if (r == EMULATE_FAIL) {
1793 			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1794 			r = RESUME_GUEST;
1795 		}
1796 		break;
1797 	}
1798 
1799 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1800 		r = RESUME_PASSTHROUGH;
1801 		break;
1802 	default:
1803 		kvmppc_dump_regs(vcpu);
1804 		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1805 			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1806 			vcpu->arch.shregs.msr);
1807 		run->hw.hardware_exit_reason = vcpu->arch.trap;
1808 		r = RESUME_HOST;
1809 		break;
1810 	}
1811 
1812 	return r;
1813 }
1814 
1815 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1816 {
1817 	struct kvm_nested_guest *nested = vcpu->arch.nested;
1818 	int r;
1819 	int srcu_idx;
1820 
1821 	vcpu->stat.sum_exits++;
1822 
1823 	/*
1824 	 * This can happen if an interrupt occurs in the last stages
1825 	 * of guest entry or the first stages of guest exit (i.e. after
1826 	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1827 	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1828 	 * That can happen due to a bug, or due to a machine check
1829 	 * occurring at just the wrong time.
1830 	 */
1831 	if (vcpu->arch.shregs.msr & MSR_HV) {
1832 		pr_emerg("KVM trap in HV mode while nested!\n");
1833 		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1834 			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1835 			 vcpu->arch.shregs.msr);
1836 		kvmppc_dump_regs(vcpu);
1837 		return RESUME_HOST;
1838 	}
1839 	switch (vcpu->arch.trap) {
1840 	/* We're good on these - the host merely wanted to get our attention */
1841 	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1842 		vcpu->stat.dec_exits++;
1843 		r = RESUME_GUEST;
1844 		break;
1845 	case BOOK3S_INTERRUPT_EXTERNAL:
1846 		vcpu->stat.ext_intr_exits++;
1847 		r = RESUME_HOST;
1848 		break;
1849 	case BOOK3S_INTERRUPT_H_DOORBELL:
1850 	case BOOK3S_INTERRUPT_H_VIRT:
1851 		vcpu->stat.ext_intr_exits++;
1852 		r = RESUME_GUEST;
1853 		break;
1854 	/* These need to go to the nested HV */
1855 	case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1856 		vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1857 		vcpu->stat.dec_exits++;
1858 		r = RESUME_HOST;
1859 		break;
1860 	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1861 	case BOOK3S_INTERRUPT_HMI:
1862 	case BOOK3S_INTERRUPT_PERFMON:
1863 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1864 		r = RESUME_GUEST;
1865 		break;
1866 	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1867 	{
1868 		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1869 					      DEFAULT_RATELIMIT_BURST);
1870 		/* Pass the machine check to the L1 guest */
1871 		r = RESUME_HOST;
1872 		/* Print the MCE event to host console. */
1873 		if (__ratelimit(&rs))
1874 			machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1875 		break;
1876 	}
1877 	/*
1878 	 * We get these next two if the guest accesses a page which it thinks
1879 	 * it has mapped but which is not actually present, either because
1880 	 * it is for an emulated I/O device or because the corresonding
1881 	 * host page has been paged out.
1882 	 */
1883 	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1884 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1885 		r = kvmhv_nested_page_fault(vcpu);
1886 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1887 		break;
1888 	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1889 		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1890 		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1891 					 DSISR_SRR1_MATCH_64S;
1892 		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1893 			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1894 		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1895 		r = kvmhv_nested_page_fault(vcpu);
1896 		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1897 		break;
1898 
1899 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1900 	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1901 		/*
1902 		 * This occurs for various TM-related instructions that
1903 		 * we need to emulate on POWER9 DD2.2.  We have already
1904 		 * handled the cases where the guest was in real-suspend
1905 		 * mode and was transitioning to transactional state.
1906 		 */
1907 		r = kvmhv_p9_tm_emulation(vcpu);
1908 		if (r != -1)
1909 			break;
1910 		fallthrough; /* go to facility unavailable handler */
1911 #endif
1912 
1913 	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1914 		u64 cause = vcpu->arch.hfscr >> 56;
1915 
1916 		/*
1917 		 * Only pass HFU interrupts to the L1 if the facility is
1918 		 * permitted but disabled by the L1's HFSCR, otherwise
1919 		 * the interrupt does not make sense to the L1 so turn
1920 		 * it into a HEAI.
1921 		 */
1922 		if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
1923 					(nested->hfscr & (1UL << cause))) {
1924 			vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
1925 
1926 			/*
1927 			 * If the fetch failed, return to guest and
1928 			 * try executing it again.
1929 			 */
1930 			r = kvmppc_get_last_inst(vcpu, INST_GENERIC,
1931 						 &vcpu->arch.emul_inst);
1932 			if (r != EMULATE_DONE)
1933 				r = RESUME_GUEST;
1934 			else
1935 				r = RESUME_HOST;
1936 		} else {
1937 			r = RESUME_HOST;
1938 		}
1939 
1940 		break;
1941 	}
1942 
1943 	case BOOK3S_INTERRUPT_HV_RM_HARD:
1944 		vcpu->arch.trap = 0;
1945 		r = RESUME_GUEST;
1946 		if (!xics_on_xive())
1947 			kvmppc_xics_rm_complete(vcpu, 0);
1948 		break;
1949 	case BOOK3S_INTERRUPT_SYSCALL:
1950 	{
1951 		unsigned long req = kvmppc_get_gpr(vcpu, 3);
1952 
1953 		/*
1954 		 * The H_RPT_INVALIDATE hcalls issued by nested
1955 		 * guests for process-scoped invalidations when
1956 		 * GTSE=0, are handled here in L0.
1957 		 */
1958 		if (req == H_RPT_INVALIDATE) {
1959 			r = kvmppc_nested_h_rpt_invalidate(vcpu);
1960 			break;
1961 		}
1962 
1963 		r = RESUME_HOST;
1964 		break;
1965 	}
1966 	default:
1967 		r = RESUME_HOST;
1968 		break;
1969 	}
1970 
1971 	return r;
1972 }
1973 
1974 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1975 					    struct kvm_sregs *sregs)
1976 {
1977 	int i;
1978 
1979 	memset(sregs, 0, sizeof(struct kvm_sregs));
1980 	sregs->pvr = vcpu->arch.pvr;
1981 	for (i = 0; i < vcpu->arch.slb_max; i++) {
1982 		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1983 		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1990 					    struct kvm_sregs *sregs)
1991 {
1992 	int i, j;
1993 
1994 	/* Only accept the same PVR as the host's, since we can't spoof it */
1995 	if (sregs->pvr != vcpu->arch.pvr)
1996 		return -EINVAL;
1997 
1998 	j = 0;
1999 	for (i = 0; i < vcpu->arch.slb_nr; i++) {
2000 		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2001 			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2002 			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2003 			++j;
2004 		}
2005 	}
2006 	vcpu->arch.slb_max = j;
2007 
2008 	return 0;
2009 }
2010 
2011 /*
2012  * Enforce limits on guest LPCR values based on hardware availability,
2013  * guest configuration, and possibly hypervisor support and security
2014  * concerns.
2015  */
2016 unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2017 {
2018 	/* LPCR_TC only applies to HPT guests */
2019 	if (kvm_is_radix(kvm))
2020 		lpcr &= ~LPCR_TC;
2021 
2022 	/* On POWER8 and above, userspace can modify AIL */
2023 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2024 		lpcr &= ~LPCR_AIL;
2025 	if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2026 		lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2027 	/*
2028 	 * On some POWER9s we force AIL off for radix guests to prevent
2029 	 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2030 	 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2031 	 * be cached, which the host TLB management does not expect.
2032 	 */
2033 	if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2034 		lpcr &= ~LPCR_AIL;
2035 
2036 	/*
2037 	 * On POWER9, allow userspace to enable large decrementer for the
2038 	 * guest, whether or not the host has it enabled.
2039 	 */
2040 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
2041 		lpcr &= ~LPCR_LD;
2042 
2043 	return lpcr;
2044 }
2045 
2046 static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2047 {
2048 	if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2049 		WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2050 			  lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2051 	}
2052 }
2053 
2054 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2055 		bool preserve_top32)
2056 {
2057 	struct kvm *kvm = vcpu->kvm;
2058 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
2059 	u64 mask;
2060 
2061 	spin_lock(&vc->lock);
2062 
2063 	/*
2064 	 * Userspace can only modify
2065 	 * DPFD (default prefetch depth), ILE (interrupt little-endian),
2066 	 * TC (translation control), AIL (alternate interrupt location),
2067 	 * LD (large decrementer).
2068 	 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2069 	 */
2070 	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2071 
2072 	/* Broken 32-bit version of LPCR must not clear top bits */
2073 	if (preserve_top32)
2074 		mask &= 0xFFFFFFFF;
2075 
2076 	new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2077 			(vc->lpcr & ~mask) | (new_lpcr & mask));
2078 
2079 	/*
2080 	 * If ILE (interrupt little-endian) has changed, update the
2081 	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2082 	 */
2083 	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2084 		struct kvm_vcpu *vcpu;
2085 		int i;
2086 
2087 		kvm_for_each_vcpu(i, vcpu, kvm) {
2088 			if (vcpu->arch.vcore != vc)
2089 				continue;
2090 			if (new_lpcr & LPCR_ILE)
2091 				vcpu->arch.intr_msr |= MSR_LE;
2092 			else
2093 				vcpu->arch.intr_msr &= ~MSR_LE;
2094 		}
2095 	}
2096 
2097 	vc->lpcr = new_lpcr;
2098 
2099 	spin_unlock(&vc->lock);
2100 }
2101 
2102 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2103 				 union kvmppc_one_reg *val)
2104 {
2105 	int r = 0;
2106 	long int i;
2107 
2108 	switch (id) {
2109 	case KVM_REG_PPC_DEBUG_INST:
2110 		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2111 		break;
2112 	case KVM_REG_PPC_HIOR:
2113 		*val = get_reg_val(id, 0);
2114 		break;
2115 	case KVM_REG_PPC_DABR:
2116 		*val = get_reg_val(id, vcpu->arch.dabr);
2117 		break;
2118 	case KVM_REG_PPC_DABRX:
2119 		*val = get_reg_val(id, vcpu->arch.dabrx);
2120 		break;
2121 	case KVM_REG_PPC_DSCR:
2122 		*val = get_reg_val(id, vcpu->arch.dscr);
2123 		break;
2124 	case KVM_REG_PPC_PURR:
2125 		*val = get_reg_val(id, vcpu->arch.purr);
2126 		break;
2127 	case KVM_REG_PPC_SPURR:
2128 		*val = get_reg_val(id, vcpu->arch.spurr);
2129 		break;
2130 	case KVM_REG_PPC_AMR:
2131 		*val = get_reg_val(id, vcpu->arch.amr);
2132 		break;
2133 	case KVM_REG_PPC_UAMOR:
2134 		*val = get_reg_val(id, vcpu->arch.uamor);
2135 		break;
2136 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2137 		i = id - KVM_REG_PPC_MMCR0;
2138 		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
2139 		break;
2140 	case KVM_REG_PPC_MMCR2:
2141 		*val = get_reg_val(id, vcpu->arch.mmcr[2]);
2142 		break;
2143 	case KVM_REG_PPC_MMCRA:
2144 		*val = get_reg_val(id, vcpu->arch.mmcra);
2145 		break;
2146 	case KVM_REG_PPC_MMCRS:
2147 		*val = get_reg_val(id, vcpu->arch.mmcrs);
2148 		break;
2149 	case KVM_REG_PPC_MMCR3:
2150 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
2151 		break;
2152 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2153 		i = id - KVM_REG_PPC_PMC1;
2154 		*val = get_reg_val(id, vcpu->arch.pmc[i]);
2155 		break;
2156 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2157 		i = id - KVM_REG_PPC_SPMC1;
2158 		*val = get_reg_val(id, vcpu->arch.spmc[i]);
2159 		break;
2160 	case KVM_REG_PPC_SIAR:
2161 		*val = get_reg_val(id, vcpu->arch.siar);
2162 		break;
2163 	case KVM_REG_PPC_SDAR:
2164 		*val = get_reg_val(id, vcpu->arch.sdar);
2165 		break;
2166 	case KVM_REG_PPC_SIER:
2167 		*val = get_reg_val(id, vcpu->arch.sier[0]);
2168 		break;
2169 	case KVM_REG_PPC_SIER2:
2170 		*val = get_reg_val(id, vcpu->arch.sier[1]);
2171 		break;
2172 	case KVM_REG_PPC_SIER3:
2173 		*val = get_reg_val(id, vcpu->arch.sier[2]);
2174 		break;
2175 	case KVM_REG_PPC_IAMR:
2176 		*val = get_reg_val(id, vcpu->arch.iamr);
2177 		break;
2178 	case KVM_REG_PPC_PSPB:
2179 		*val = get_reg_val(id, vcpu->arch.pspb);
2180 		break;
2181 	case KVM_REG_PPC_DPDES:
2182 		/*
2183 		 * On POWER9, where we are emulating msgsndp etc.,
2184 		 * we return 1 bit for each vcpu, which can come from
2185 		 * either vcore->dpdes or doorbell_request.
2186 		 * On POWER8, doorbell_request is 0.
2187 		 */
2188 		*val = get_reg_val(id, vcpu->arch.vcore->dpdes |
2189 				   vcpu->arch.doorbell_request);
2190 		break;
2191 	case KVM_REG_PPC_VTB:
2192 		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
2193 		break;
2194 	case KVM_REG_PPC_DAWR:
2195 		*val = get_reg_val(id, vcpu->arch.dawr0);
2196 		break;
2197 	case KVM_REG_PPC_DAWRX:
2198 		*val = get_reg_val(id, vcpu->arch.dawrx0);
2199 		break;
2200 	case KVM_REG_PPC_DAWR1:
2201 		*val = get_reg_val(id, vcpu->arch.dawr1);
2202 		break;
2203 	case KVM_REG_PPC_DAWRX1:
2204 		*val = get_reg_val(id, vcpu->arch.dawrx1);
2205 		break;
2206 	case KVM_REG_PPC_CIABR:
2207 		*val = get_reg_val(id, vcpu->arch.ciabr);
2208 		break;
2209 	case KVM_REG_PPC_CSIGR:
2210 		*val = get_reg_val(id, vcpu->arch.csigr);
2211 		break;
2212 	case KVM_REG_PPC_TACR:
2213 		*val = get_reg_val(id, vcpu->arch.tacr);
2214 		break;
2215 	case KVM_REG_PPC_TCSCR:
2216 		*val = get_reg_val(id, vcpu->arch.tcscr);
2217 		break;
2218 	case KVM_REG_PPC_PID:
2219 		*val = get_reg_val(id, vcpu->arch.pid);
2220 		break;
2221 	case KVM_REG_PPC_ACOP:
2222 		*val = get_reg_val(id, vcpu->arch.acop);
2223 		break;
2224 	case KVM_REG_PPC_WORT:
2225 		*val = get_reg_val(id, vcpu->arch.wort);
2226 		break;
2227 	case KVM_REG_PPC_TIDR:
2228 		*val = get_reg_val(id, vcpu->arch.tid);
2229 		break;
2230 	case KVM_REG_PPC_PSSCR:
2231 		*val = get_reg_val(id, vcpu->arch.psscr);
2232 		break;
2233 	case KVM_REG_PPC_VPA_ADDR:
2234 		spin_lock(&vcpu->arch.vpa_update_lock);
2235 		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2236 		spin_unlock(&vcpu->arch.vpa_update_lock);
2237 		break;
2238 	case KVM_REG_PPC_VPA_SLB:
2239 		spin_lock(&vcpu->arch.vpa_update_lock);
2240 		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2241 		val->vpaval.length = vcpu->arch.slb_shadow.len;
2242 		spin_unlock(&vcpu->arch.vpa_update_lock);
2243 		break;
2244 	case KVM_REG_PPC_VPA_DTL:
2245 		spin_lock(&vcpu->arch.vpa_update_lock);
2246 		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2247 		val->vpaval.length = vcpu->arch.dtl.len;
2248 		spin_unlock(&vcpu->arch.vpa_update_lock);
2249 		break;
2250 	case KVM_REG_PPC_TB_OFFSET:
2251 		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2252 		break;
2253 	case KVM_REG_PPC_LPCR:
2254 	case KVM_REG_PPC_LPCR_64:
2255 		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2256 		break;
2257 	case KVM_REG_PPC_PPR:
2258 		*val = get_reg_val(id, vcpu->arch.ppr);
2259 		break;
2260 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2261 	case KVM_REG_PPC_TFHAR:
2262 		*val = get_reg_val(id, vcpu->arch.tfhar);
2263 		break;
2264 	case KVM_REG_PPC_TFIAR:
2265 		*val = get_reg_val(id, vcpu->arch.tfiar);
2266 		break;
2267 	case KVM_REG_PPC_TEXASR:
2268 		*val = get_reg_val(id, vcpu->arch.texasr);
2269 		break;
2270 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2271 		i = id - KVM_REG_PPC_TM_GPR0;
2272 		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2273 		break;
2274 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2275 	{
2276 		int j;
2277 		i = id - KVM_REG_PPC_TM_VSR0;
2278 		if (i < 32)
2279 			for (j = 0; j < TS_FPRWIDTH; j++)
2280 				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2281 		else {
2282 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2283 				val->vval = vcpu->arch.vr_tm.vr[i-32];
2284 			else
2285 				r = -ENXIO;
2286 		}
2287 		break;
2288 	}
2289 	case KVM_REG_PPC_TM_CR:
2290 		*val = get_reg_val(id, vcpu->arch.cr_tm);
2291 		break;
2292 	case KVM_REG_PPC_TM_XER:
2293 		*val = get_reg_val(id, vcpu->arch.xer_tm);
2294 		break;
2295 	case KVM_REG_PPC_TM_LR:
2296 		*val = get_reg_val(id, vcpu->arch.lr_tm);
2297 		break;
2298 	case KVM_REG_PPC_TM_CTR:
2299 		*val = get_reg_val(id, vcpu->arch.ctr_tm);
2300 		break;
2301 	case KVM_REG_PPC_TM_FPSCR:
2302 		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2303 		break;
2304 	case KVM_REG_PPC_TM_AMR:
2305 		*val = get_reg_val(id, vcpu->arch.amr_tm);
2306 		break;
2307 	case KVM_REG_PPC_TM_PPR:
2308 		*val = get_reg_val(id, vcpu->arch.ppr_tm);
2309 		break;
2310 	case KVM_REG_PPC_TM_VRSAVE:
2311 		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
2312 		break;
2313 	case KVM_REG_PPC_TM_VSCR:
2314 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2315 			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2316 		else
2317 			r = -ENXIO;
2318 		break;
2319 	case KVM_REG_PPC_TM_DSCR:
2320 		*val = get_reg_val(id, vcpu->arch.dscr_tm);
2321 		break;
2322 	case KVM_REG_PPC_TM_TAR:
2323 		*val = get_reg_val(id, vcpu->arch.tar_tm);
2324 		break;
2325 #endif
2326 	case KVM_REG_PPC_ARCH_COMPAT:
2327 		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2328 		break;
2329 	case KVM_REG_PPC_DEC_EXPIRY:
2330 		*val = get_reg_val(id, vcpu->arch.dec_expires);
2331 		break;
2332 	case KVM_REG_PPC_ONLINE:
2333 		*val = get_reg_val(id, vcpu->arch.online);
2334 		break;
2335 	case KVM_REG_PPC_PTCR:
2336 		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2337 		break;
2338 	default:
2339 		r = -EINVAL;
2340 		break;
2341 	}
2342 
2343 	return r;
2344 }
2345 
2346 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2347 				 union kvmppc_one_reg *val)
2348 {
2349 	int r = 0;
2350 	long int i;
2351 	unsigned long addr, len;
2352 
2353 	switch (id) {
2354 	case KVM_REG_PPC_HIOR:
2355 		/* Only allow this to be set to zero */
2356 		if (set_reg_val(id, *val))
2357 			r = -EINVAL;
2358 		break;
2359 	case KVM_REG_PPC_DABR:
2360 		vcpu->arch.dabr = set_reg_val(id, *val);
2361 		break;
2362 	case KVM_REG_PPC_DABRX:
2363 		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2364 		break;
2365 	case KVM_REG_PPC_DSCR:
2366 		vcpu->arch.dscr = set_reg_val(id, *val);
2367 		break;
2368 	case KVM_REG_PPC_PURR:
2369 		vcpu->arch.purr = set_reg_val(id, *val);
2370 		break;
2371 	case KVM_REG_PPC_SPURR:
2372 		vcpu->arch.spurr = set_reg_val(id, *val);
2373 		break;
2374 	case KVM_REG_PPC_AMR:
2375 		vcpu->arch.amr = set_reg_val(id, *val);
2376 		break;
2377 	case KVM_REG_PPC_UAMOR:
2378 		vcpu->arch.uamor = set_reg_val(id, *val);
2379 		break;
2380 	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2381 		i = id - KVM_REG_PPC_MMCR0;
2382 		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
2383 		break;
2384 	case KVM_REG_PPC_MMCR2:
2385 		vcpu->arch.mmcr[2] = set_reg_val(id, *val);
2386 		break;
2387 	case KVM_REG_PPC_MMCRA:
2388 		vcpu->arch.mmcra = set_reg_val(id, *val);
2389 		break;
2390 	case KVM_REG_PPC_MMCRS:
2391 		vcpu->arch.mmcrs = set_reg_val(id, *val);
2392 		break;
2393 	case KVM_REG_PPC_MMCR3:
2394 		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
2395 		break;
2396 	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2397 		i = id - KVM_REG_PPC_PMC1;
2398 		vcpu->arch.pmc[i] = set_reg_val(id, *val);
2399 		break;
2400 	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2401 		i = id - KVM_REG_PPC_SPMC1;
2402 		vcpu->arch.spmc[i] = set_reg_val(id, *val);
2403 		break;
2404 	case KVM_REG_PPC_SIAR:
2405 		vcpu->arch.siar = set_reg_val(id, *val);
2406 		break;
2407 	case KVM_REG_PPC_SDAR:
2408 		vcpu->arch.sdar = set_reg_val(id, *val);
2409 		break;
2410 	case KVM_REG_PPC_SIER:
2411 		vcpu->arch.sier[0] = set_reg_val(id, *val);
2412 		break;
2413 	case KVM_REG_PPC_SIER2:
2414 		vcpu->arch.sier[1] = set_reg_val(id, *val);
2415 		break;
2416 	case KVM_REG_PPC_SIER3:
2417 		vcpu->arch.sier[2] = set_reg_val(id, *val);
2418 		break;
2419 	case KVM_REG_PPC_IAMR:
2420 		vcpu->arch.iamr = set_reg_val(id, *val);
2421 		break;
2422 	case KVM_REG_PPC_PSPB:
2423 		vcpu->arch.pspb = set_reg_val(id, *val);
2424 		break;
2425 	case KVM_REG_PPC_DPDES:
2426 		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2427 		break;
2428 	case KVM_REG_PPC_VTB:
2429 		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2430 		break;
2431 	case KVM_REG_PPC_DAWR:
2432 		vcpu->arch.dawr0 = set_reg_val(id, *val);
2433 		break;
2434 	case KVM_REG_PPC_DAWRX:
2435 		vcpu->arch.dawrx0 = set_reg_val(id, *val) & ~DAWRX_HYP;
2436 		break;
2437 	case KVM_REG_PPC_DAWR1:
2438 		vcpu->arch.dawr1 = set_reg_val(id, *val);
2439 		break;
2440 	case KVM_REG_PPC_DAWRX1:
2441 		vcpu->arch.dawrx1 = set_reg_val(id, *val) & ~DAWRX_HYP;
2442 		break;
2443 	case KVM_REG_PPC_CIABR:
2444 		vcpu->arch.ciabr = set_reg_val(id, *val);
2445 		/* Don't allow setting breakpoints in hypervisor code */
2446 		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
2447 			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
2448 		break;
2449 	case KVM_REG_PPC_CSIGR:
2450 		vcpu->arch.csigr = set_reg_val(id, *val);
2451 		break;
2452 	case KVM_REG_PPC_TACR:
2453 		vcpu->arch.tacr = set_reg_val(id, *val);
2454 		break;
2455 	case KVM_REG_PPC_TCSCR:
2456 		vcpu->arch.tcscr = set_reg_val(id, *val);
2457 		break;
2458 	case KVM_REG_PPC_PID:
2459 		vcpu->arch.pid = set_reg_val(id, *val);
2460 		break;
2461 	case KVM_REG_PPC_ACOP:
2462 		vcpu->arch.acop = set_reg_val(id, *val);
2463 		break;
2464 	case KVM_REG_PPC_WORT:
2465 		vcpu->arch.wort = set_reg_val(id, *val);
2466 		break;
2467 	case KVM_REG_PPC_TIDR:
2468 		vcpu->arch.tid = set_reg_val(id, *val);
2469 		break;
2470 	case KVM_REG_PPC_PSSCR:
2471 		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2472 		break;
2473 	case KVM_REG_PPC_VPA_ADDR:
2474 		addr = set_reg_val(id, *val);
2475 		r = -EINVAL;
2476 		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2477 			      vcpu->arch.dtl.next_gpa))
2478 			break;
2479 		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2480 		break;
2481 	case KVM_REG_PPC_VPA_SLB:
2482 		addr = val->vpaval.addr;
2483 		len = val->vpaval.length;
2484 		r = -EINVAL;
2485 		if (addr && !vcpu->arch.vpa.next_gpa)
2486 			break;
2487 		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2488 		break;
2489 	case KVM_REG_PPC_VPA_DTL:
2490 		addr = val->vpaval.addr;
2491 		len = val->vpaval.length;
2492 		r = -EINVAL;
2493 		if (addr && (len < sizeof(struct dtl_entry) ||
2494 			     !vcpu->arch.vpa.next_gpa))
2495 			break;
2496 		len -= len % sizeof(struct dtl_entry);
2497 		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2498 		break;
2499 	case KVM_REG_PPC_TB_OFFSET:
2500 		/* round up to multiple of 2^24 */
2501 		vcpu->arch.vcore->tb_offset =
2502 			ALIGN(set_reg_val(id, *val), 1UL << 24);
2503 		break;
2504 	case KVM_REG_PPC_LPCR:
2505 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2506 		break;
2507 	case KVM_REG_PPC_LPCR_64:
2508 		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2509 		break;
2510 	case KVM_REG_PPC_PPR:
2511 		vcpu->arch.ppr = set_reg_val(id, *val);
2512 		break;
2513 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2514 	case KVM_REG_PPC_TFHAR:
2515 		vcpu->arch.tfhar = set_reg_val(id, *val);
2516 		break;
2517 	case KVM_REG_PPC_TFIAR:
2518 		vcpu->arch.tfiar = set_reg_val(id, *val);
2519 		break;
2520 	case KVM_REG_PPC_TEXASR:
2521 		vcpu->arch.texasr = set_reg_val(id, *val);
2522 		break;
2523 	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2524 		i = id - KVM_REG_PPC_TM_GPR0;
2525 		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2526 		break;
2527 	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2528 	{
2529 		int j;
2530 		i = id - KVM_REG_PPC_TM_VSR0;
2531 		if (i < 32)
2532 			for (j = 0; j < TS_FPRWIDTH; j++)
2533 				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2534 		else
2535 			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2536 				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2537 			else
2538 				r = -ENXIO;
2539 		break;
2540 	}
2541 	case KVM_REG_PPC_TM_CR:
2542 		vcpu->arch.cr_tm = set_reg_val(id, *val);
2543 		break;
2544 	case KVM_REG_PPC_TM_XER:
2545 		vcpu->arch.xer_tm = set_reg_val(id, *val);
2546 		break;
2547 	case KVM_REG_PPC_TM_LR:
2548 		vcpu->arch.lr_tm = set_reg_val(id, *val);
2549 		break;
2550 	case KVM_REG_PPC_TM_CTR:
2551 		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2552 		break;
2553 	case KVM_REG_PPC_TM_FPSCR:
2554 		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2555 		break;
2556 	case KVM_REG_PPC_TM_AMR:
2557 		vcpu->arch.amr_tm = set_reg_val(id, *val);
2558 		break;
2559 	case KVM_REG_PPC_TM_PPR:
2560 		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2561 		break;
2562 	case KVM_REG_PPC_TM_VRSAVE:
2563 		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2564 		break;
2565 	case KVM_REG_PPC_TM_VSCR:
2566 		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2567 			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2568 		else
2569 			r = - ENXIO;
2570 		break;
2571 	case KVM_REG_PPC_TM_DSCR:
2572 		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2573 		break;
2574 	case KVM_REG_PPC_TM_TAR:
2575 		vcpu->arch.tar_tm = set_reg_val(id, *val);
2576 		break;
2577 #endif
2578 	case KVM_REG_PPC_ARCH_COMPAT:
2579 		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2580 		break;
2581 	case KVM_REG_PPC_DEC_EXPIRY:
2582 		vcpu->arch.dec_expires = set_reg_val(id, *val);
2583 		break;
2584 	case KVM_REG_PPC_ONLINE:
2585 		i = set_reg_val(id, *val);
2586 		if (i && !vcpu->arch.online)
2587 			atomic_inc(&vcpu->arch.vcore->online_count);
2588 		else if (!i && vcpu->arch.online)
2589 			atomic_dec(&vcpu->arch.vcore->online_count);
2590 		vcpu->arch.online = i;
2591 		break;
2592 	case KVM_REG_PPC_PTCR:
2593 		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2594 		break;
2595 	default:
2596 		r = -EINVAL;
2597 		break;
2598 	}
2599 
2600 	return r;
2601 }
2602 
2603 /*
2604  * On POWER9, threads are independent and can be in different partitions.
2605  * Therefore we consider each thread to be a subcore.
2606  * There is a restriction that all threads have to be in the same
2607  * MMU mode (radix or HPT), unfortunately, but since we only support
2608  * HPT guests on a HPT host so far, that isn't an impediment yet.
2609  */
2610 static int threads_per_vcore(struct kvm *kvm)
2611 {
2612 	if (cpu_has_feature(CPU_FTR_ARCH_300))
2613 		return 1;
2614 	return threads_per_subcore;
2615 }
2616 
2617 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2618 {
2619 	struct kvmppc_vcore *vcore;
2620 
2621 	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2622 
2623 	if (vcore == NULL)
2624 		return NULL;
2625 
2626 	spin_lock_init(&vcore->lock);
2627 	spin_lock_init(&vcore->stoltb_lock);
2628 	rcuwait_init(&vcore->wait);
2629 	vcore->preempt_tb = TB_NIL;
2630 	vcore->lpcr = kvm->arch.lpcr;
2631 	vcore->first_vcpuid = id;
2632 	vcore->kvm = kvm;
2633 	INIT_LIST_HEAD(&vcore->preempt_list);
2634 
2635 	return vcore;
2636 }
2637 
2638 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2639 static struct debugfs_timings_element {
2640 	const char *name;
2641 	size_t offset;
2642 } timings[] = {
2643 	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2644 	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2645 	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2646 	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2647 	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2648 };
2649 
2650 #define N_TIMINGS	(ARRAY_SIZE(timings))
2651 
2652 struct debugfs_timings_state {
2653 	struct kvm_vcpu	*vcpu;
2654 	unsigned int	buflen;
2655 	char		buf[N_TIMINGS * 100];
2656 };
2657 
2658 static int debugfs_timings_open(struct inode *inode, struct file *file)
2659 {
2660 	struct kvm_vcpu *vcpu = inode->i_private;
2661 	struct debugfs_timings_state *p;
2662 
2663 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2664 	if (!p)
2665 		return -ENOMEM;
2666 
2667 	kvm_get_kvm(vcpu->kvm);
2668 	p->vcpu = vcpu;
2669 	file->private_data = p;
2670 
2671 	return nonseekable_open(inode, file);
2672 }
2673 
2674 static int debugfs_timings_release(struct inode *inode, struct file *file)
2675 {
2676 	struct debugfs_timings_state *p = file->private_data;
2677 
2678 	kvm_put_kvm(p->vcpu->kvm);
2679 	kfree(p);
2680 	return 0;
2681 }
2682 
2683 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2684 				    size_t len, loff_t *ppos)
2685 {
2686 	struct debugfs_timings_state *p = file->private_data;
2687 	struct kvm_vcpu *vcpu = p->vcpu;
2688 	char *s, *buf_end;
2689 	struct kvmhv_tb_accumulator tb;
2690 	u64 count;
2691 	loff_t pos;
2692 	ssize_t n;
2693 	int i, loops;
2694 	bool ok;
2695 
2696 	if (!p->buflen) {
2697 		s = p->buf;
2698 		buf_end = s + sizeof(p->buf);
2699 		for (i = 0; i < N_TIMINGS; ++i) {
2700 			struct kvmhv_tb_accumulator *acc;
2701 
2702 			acc = (struct kvmhv_tb_accumulator *)
2703 				((unsigned long)vcpu + timings[i].offset);
2704 			ok = false;
2705 			for (loops = 0; loops < 1000; ++loops) {
2706 				count = acc->seqcount;
2707 				if (!(count & 1)) {
2708 					smp_rmb();
2709 					tb = *acc;
2710 					smp_rmb();
2711 					if (count == acc->seqcount) {
2712 						ok = true;
2713 						break;
2714 					}
2715 				}
2716 				udelay(1);
2717 			}
2718 			if (!ok)
2719 				snprintf(s, buf_end - s, "%s: stuck\n",
2720 					timings[i].name);
2721 			else
2722 				snprintf(s, buf_end - s,
2723 					"%s: %llu %llu %llu %llu\n",
2724 					timings[i].name, count / 2,
2725 					tb_to_ns(tb.tb_total),
2726 					tb_to_ns(tb.tb_min),
2727 					tb_to_ns(tb.tb_max));
2728 			s += strlen(s);
2729 		}
2730 		p->buflen = s - p->buf;
2731 	}
2732 
2733 	pos = *ppos;
2734 	if (pos >= p->buflen)
2735 		return 0;
2736 	if (len > p->buflen - pos)
2737 		len = p->buflen - pos;
2738 	n = copy_to_user(buf, p->buf + pos, len);
2739 	if (n) {
2740 		if (n == len)
2741 			return -EFAULT;
2742 		len -= n;
2743 	}
2744 	*ppos = pos + len;
2745 	return len;
2746 }
2747 
2748 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2749 				     size_t len, loff_t *ppos)
2750 {
2751 	return -EACCES;
2752 }
2753 
2754 static const struct file_operations debugfs_timings_ops = {
2755 	.owner	 = THIS_MODULE,
2756 	.open	 = debugfs_timings_open,
2757 	.release = debugfs_timings_release,
2758 	.read	 = debugfs_timings_read,
2759 	.write	 = debugfs_timings_write,
2760 	.llseek	 = generic_file_llseek,
2761 };
2762 
2763 /* Create a debugfs directory for the vcpu */
2764 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2765 {
2766 	char buf[16];
2767 	struct kvm *kvm = vcpu->kvm;
2768 
2769 	snprintf(buf, sizeof(buf), "vcpu%u", id);
2770 	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2771 	debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2772 			    &debugfs_timings_ops);
2773 }
2774 
2775 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2776 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2777 {
2778 }
2779 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2780 
2781 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2782 {
2783 	int err;
2784 	int core;
2785 	struct kvmppc_vcore *vcore;
2786 	struct kvm *kvm;
2787 	unsigned int id;
2788 
2789 	kvm = vcpu->kvm;
2790 	id = vcpu->vcpu_id;
2791 
2792 	vcpu->arch.shared = &vcpu->arch.shregs;
2793 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2794 	/*
2795 	 * The shared struct is never shared on HV,
2796 	 * so we can always use host endianness
2797 	 */
2798 #ifdef __BIG_ENDIAN__
2799 	vcpu->arch.shared_big_endian = true;
2800 #else
2801 	vcpu->arch.shared_big_endian = false;
2802 #endif
2803 #endif
2804 	vcpu->arch.mmcr[0] = MMCR0_FC;
2805 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2806 		vcpu->arch.mmcr[0] |= MMCR0_PMCCEXT;
2807 		vcpu->arch.mmcra = MMCRA_BHRB_DISABLE;
2808 	}
2809 
2810 	vcpu->arch.ctrl = CTRL_RUNLATCH;
2811 	/* default to host PVR, since we can't spoof it */
2812 	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2813 	spin_lock_init(&vcpu->arch.vpa_update_lock);
2814 	spin_lock_init(&vcpu->arch.tbacct_lock);
2815 	vcpu->arch.busy_preempt = TB_NIL;
2816 	vcpu->arch.shregs.msr = MSR_ME;
2817 	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2818 
2819 	/*
2820 	 * Set the default HFSCR for the guest from the host value.
2821 	 * This value is only used on POWER9.
2822 	 * On POWER9, we want to virtualize the doorbell facility, so we
2823 	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2824 	 * to trap and then we emulate them.
2825 	 */
2826 	vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2827 		HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2828 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2829 		vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2830 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2831 		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2832 			vcpu->arch.hfscr |= HFSCR_TM;
2833 #endif
2834 	}
2835 	if (cpu_has_feature(CPU_FTR_TM_COMP))
2836 		vcpu->arch.hfscr |= HFSCR_TM;
2837 
2838 	vcpu->arch.hfscr_permitted = vcpu->arch.hfscr;
2839 
2840 	/*
2841 	 * PM, EBB, TM are demand-faulted so start with it clear.
2842 	 */
2843 	vcpu->arch.hfscr &= ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM);
2844 
2845 	kvmppc_mmu_book3s_hv_init(vcpu);
2846 
2847 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2848 
2849 	init_waitqueue_head(&vcpu->arch.cpu_run);
2850 
2851 	mutex_lock(&kvm->lock);
2852 	vcore = NULL;
2853 	err = -EINVAL;
2854 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2855 		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2856 			pr_devel("KVM: VCPU ID too high\n");
2857 			core = KVM_MAX_VCORES;
2858 		} else {
2859 			BUG_ON(kvm->arch.smt_mode != 1);
2860 			core = kvmppc_pack_vcpu_id(kvm, id);
2861 		}
2862 	} else {
2863 		core = id / kvm->arch.smt_mode;
2864 	}
2865 	if (core < KVM_MAX_VCORES) {
2866 		vcore = kvm->arch.vcores[core];
2867 		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2868 			pr_devel("KVM: collision on id %u", id);
2869 			vcore = NULL;
2870 		} else if (!vcore) {
2871 			/*
2872 			 * Take mmu_setup_lock for mutual exclusion
2873 			 * with kvmppc_update_lpcr().
2874 			 */
2875 			err = -ENOMEM;
2876 			vcore = kvmppc_vcore_create(kvm,
2877 					id & ~(kvm->arch.smt_mode - 1));
2878 			mutex_lock(&kvm->arch.mmu_setup_lock);
2879 			kvm->arch.vcores[core] = vcore;
2880 			kvm->arch.online_vcores++;
2881 			mutex_unlock(&kvm->arch.mmu_setup_lock);
2882 		}
2883 	}
2884 	mutex_unlock(&kvm->lock);
2885 
2886 	if (!vcore)
2887 		return err;
2888 
2889 	spin_lock(&vcore->lock);
2890 	++vcore->num_threads;
2891 	spin_unlock(&vcore->lock);
2892 	vcpu->arch.vcore = vcore;
2893 	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2894 	vcpu->arch.thread_cpu = -1;
2895 	vcpu->arch.prev_cpu = -1;
2896 
2897 	vcpu->arch.cpu_type = KVM_CPU_3S_64;
2898 	kvmppc_sanity_check(vcpu);
2899 
2900 	debugfs_vcpu_init(vcpu, id);
2901 
2902 	return 0;
2903 }
2904 
2905 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2906 			      unsigned long flags)
2907 {
2908 	int err;
2909 	int esmt = 0;
2910 
2911 	if (flags)
2912 		return -EINVAL;
2913 	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2914 		return -EINVAL;
2915 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2916 		/*
2917 		 * On POWER8 (or POWER7), the threading mode is "strict",
2918 		 * so we pack smt_mode vcpus per vcore.
2919 		 */
2920 		if (smt_mode > threads_per_subcore)
2921 			return -EINVAL;
2922 	} else {
2923 		/*
2924 		 * On POWER9, the threading mode is "loose",
2925 		 * so each vcpu gets its own vcore.
2926 		 */
2927 		esmt = smt_mode;
2928 		smt_mode = 1;
2929 	}
2930 	mutex_lock(&kvm->lock);
2931 	err = -EBUSY;
2932 	if (!kvm->arch.online_vcores) {
2933 		kvm->arch.smt_mode = smt_mode;
2934 		kvm->arch.emul_smt_mode = esmt;
2935 		err = 0;
2936 	}
2937 	mutex_unlock(&kvm->lock);
2938 
2939 	return err;
2940 }
2941 
2942 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2943 {
2944 	if (vpa->pinned_addr)
2945 		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2946 					vpa->dirty);
2947 }
2948 
2949 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2950 {
2951 	spin_lock(&vcpu->arch.vpa_update_lock);
2952 	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2953 	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2954 	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2955 	spin_unlock(&vcpu->arch.vpa_update_lock);
2956 }
2957 
2958 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2959 {
2960 	/* Indicate we want to get back into the guest */
2961 	return 1;
2962 }
2963 
2964 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2965 {
2966 	unsigned long dec_nsec, now;
2967 
2968 	now = get_tb();
2969 	if (now > kvmppc_dec_expires_host_tb(vcpu)) {
2970 		/* decrementer has already gone negative */
2971 		kvmppc_core_queue_dec(vcpu);
2972 		kvmppc_core_prepare_to_enter(vcpu);
2973 		return;
2974 	}
2975 	dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
2976 	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2977 	vcpu->arch.timer_running = 1;
2978 }
2979 
2980 extern int __kvmppc_vcore_entry(void);
2981 
2982 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2983 				   struct kvm_vcpu *vcpu, u64 tb)
2984 {
2985 	u64 now;
2986 
2987 	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2988 		return;
2989 	spin_lock_irq(&vcpu->arch.tbacct_lock);
2990 	now = tb;
2991 	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2992 		vcpu->arch.stolen_logged;
2993 	vcpu->arch.busy_preempt = now;
2994 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2995 	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2996 	--vc->n_runnable;
2997 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2998 }
2999 
3000 static int kvmppc_grab_hwthread(int cpu)
3001 {
3002 	struct paca_struct *tpaca;
3003 	long timeout = 10000;
3004 
3005 	tpaca = paca_ptrs[cpu];
3006 
3007 	/* Ensure the thread won't go into the kernel if it wakes */
3008 	tpaca->kvm_hstate.kvm_vcpu = NULL;
3009 	tpaca->kvm_hstate.kvm_vcore = NULL;
3010 	tpaca->kvm_hstate.napping = 0;
3011 	smp_wmb();
3012 	tpaca->kvm_hstate.hwthread_req = 1;
3013 
3014 	/*
3015 	 * If the thread is already executing in the kernel (e.g. handling
3016 	 * a stray interrupt), wait for it to get back to nap mode.
3017 	 * The smp_mb() is to ensure that our setting of hwthread_req
3018 	 * is visible before we look at hwthread_state, so if this
3019 	 * races with the code at system_reset_pSeries and the thread
3020 	 * misses our setting of hwthread_req, we are sure to see its
3021 	 * setting of hwthread_state, and vice versa.
3022 	 */
3023 	smp_mb();
3024 	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3025 		if (--timeout <= 0) {
3026 			pr_err("KVM: couldn't grab cpu %d\n", cpu);
3027 			return -EBUSY;
3028 		}
3029 		udelay(1);
3030 	}
3031 	return 0;
3032 }
3033 
3034 static void kvmppc_release_hwthread(int cpu)
3035 {
3036 	struct paca_struct *tpaca;
3037 
3038 	tpaca = paca_ptrs[cpu];
3039 	tpaca->kvm_hstate.hwthread_req = 0;
3040 	tpaca->kvm_hstate.kvm_vcpu = NULL;
3041 	tpaca->kvm_hstate.kvm_vcore = NULL;
3042 	tpaca->kvm_hstate.kvm_split_mode = NULL;
3043 }
3044 
3045 static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3046 
3047 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3048 {
3049 	struct kvm_nested_guest *nested = vcpu->arch.nested;
3050 	cpumask_t *need_tlb_flush;
3051 	int i;
3052 
3053 	if (nested)
3054 		need_tlb_flush = &nested->need_tlb_flush;
3055 	else
3056 		need_tlb_flush = &kvm->arch.need_tlb_flush;
3057 
3058 	cpu = cpu_first_tlb_thread_sibling(cpu);
3059 	for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3060 					i += cpu_tlb_thread_sibling_step())
3061 		cpumask_set_cpu(i, need_tlb_flush);
3062 
3063 	/*
3064 	 * Make sure setting of bit in need_tlb_flush precedes testing of
3065 	 * cpu_in_guest. The matching barrier on the other side is hwsync
3066 	 * when switching to guest MMU mode, which happens between
3067 	 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3068 	 * being tested.
3069 	 */
3070 	smp_mb();
3071 
3072 	for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3073 					i += cpu_tlb_thread_sibling_step()) {
3074 		struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3075 
3076 		if (running == kvm)
3077 			smp_call_function_single(i, do_nothing, NULL, 1);
3078 	}
3079 }
3080 
3081 static void do_migrate_away_vcpu(void *arg)
3082 {
3083 	struct kvm_vcpu *vcpu = arg;
3084 	struct kvm *kvm = vcpu->kvm;
3085 
3086 	/*
3087 	 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3088 	 * ptesync sequence on the old CPU before migrating to a new one, in
3089 	 * case we interrupted the guest between a tlbie ; eieio ;
3090 	 * tlbsync; ptesync sequence.
3091 	 *
3092 	 * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3093 	 */
3094 	if (kvm->arch.lpcr & LPCR_GTSE)
3095 		asm volatile("eieio; tlbsync; ptesync");
3096 	else
3097 		asm volatile("ptesync");
3098 }
3099 
3100 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3101 {
3102 	struct kvm_nested_guest *nested = vcpu->arch.nested;
3103 	struct kvm *kvm = vcpu->kvm;
3104 	int prev_cpu;
3105 
3106 	if (!cpu_has_feature(CPU_FTR_HVMODE))
3107 		return;
3108 
3109 	if (nested)
3110 		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3111 	else
3112 		prev_cpu = vcpu->arch.prev_cpu;
3113 
3114 	/*
3115 	 * With radix, the guest can do TLB invalidations itself,
3116 	 * and it could choose to use the local form (tlbiel) if
3117 	 * it is invalidating a translation that has only ever been
3118 	 * used on one vcpu.  However, that doesn't mean it has
3119 	 * only ever been used on one physical cpu, since vcpus
3120 	 * can move around between pcpus.  To cope with this, when
3121 	 * a vcpu moves from one pcpu to another, we need to tell
3122 	 * any vcpus running on the same core as this vcpu previously
3123 	 * ran to flush the TLB.
3124 	 */
3125 	if (prev_cpu != pcpu) {
3126 		if (prev_cpu >= 0) {
3127 			if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3128 			    cpu_first_tlb_thread_sibling(pcpu))
3129 				radix_flush_cpu(kvm, prev_cpu, vcpu);
3130 
3131 			smp_call_function_single(prev_cpu,
3132 					do_migrate_away_vcpu, vcpu, 1);
3133 		}
3134 		if (nested)
3135 			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3136 		else
3137 			vcpu->arch.prev_cpu = pcpu;
3138 	}
3139 }
3140 
3141 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3142 {
3143 	int cpu;
3144 	struct paca_struct *tpaca;
3145 
3146 	cpu = vc->pcpu;
3147 	if (vcpu) {
3148 		if (vcpu->arch.timer_running) {
3149 			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3150 			vcpu->arch.timer_running = 0;
3151 		}
3152 		cpu += vcpu->arch.ptid;
3153 		vcpu->cpu = vc->pcpu;
3154 		vcpu->arch.thread_cpu = cpu;
3155 	}
3156 	tpaca = paca_ptrs[cpu];
3157 	tpaca->kvm_hstate.kvm_vcpu = vcpu;
3158 	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3159 	tpaca->kvm_hstate.fake_suspend = 0;
3160 	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3161 	smp_wmb();
3162 	tpaca->kvm_hstate.kvm_vcore = vc;
3163 	if (cpu != smp_processor_id())
3164 		kvmppc_ipi_thread(cpu);
3165 }
3166 
3167 static void kvmppc_wait_for_nap(int n_threads)
3168 {
3169 	int cpu = smp_processor_id();
3170 	int i, loops;
3171 
3172 	if (n_threads <= 1)
3173 		return;
3174 	for (loops = 0; loops < 1000000; ++loops) {
3175 		/*
3176 		 * Check if all threads are finished.
3177 		 * We set the vcore pointer when starting a thread
3178 		 * and the thread clears it when finished, so we look
3179 		 * for any threads that still have a non-NULL vcore ptr.
3180 		 */
3181 		for (i = 1; i < n_threads; ++i)
3182 			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3183 				break;
3184 		if (i == n_threads) {
3185 			HMT_medium();
3186 			return;
3187 		}
3188 		HMT_low();
3189 	}
3190 	HMT_medium();
3191 	for (i = 1; i < n_threads; ++i)
3192 		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3193 			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3194 }
3195 
3196 /*
3197  * Check that we are on thread 0 and that any other threads in
3198  * this core are off-line.  Then grab the threads so they can't
3199  * enter the kernel.
3200  */
3201 static int on_primary_thread(void)
3202 {
3203 	int cpu = smp_processor_id();
3204 	int thr;
3205 
3206 	/* Are we on a primary subcore? */
3207 	if (cpu_thread_in_subcore(cpu))
3208 		return 0;
3209 
3210 	thr = 0;
3211 	while (++thr < threads_per_subcore)
3212 		if (cpu_online(cpu + thr))
3213 			return 0;
3214 
3215 	/* Grab all hw threads so they can't go into the kernel */
3216 	for (thr = 1; thr < threads_per_subcore; ++thr) {
3217 		if (kvmppc_grab_hwthread(cpu + thr)) {
3218 			/* Couldn't grab one; let the others go */
3219 			do {
3220 				kvmppc_release_hwthread(cpu + thr);
3221 			} while (--thr > 0);
3222 			return 0;
3223 		}
3224 	}
3225 	return 1;
3226 }
3227 
3228 /*
3229  * A list of virtual cores for each physical CPU.
3230  * These are vcores that could run but their runner VCPU tasks are
3231  * (or may be) preempted.
3232  */
3233 struct preempted_vcore_list {
3234 	struct list_head	list;
3235 	spinlock_t		lock;
3236 };
3237 
3238 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3239 
3240 static void init_vcore_lists(void)
3241 {
3242 	int cpu;
3243 
3244 	for_each_possible_cpu(cpu) {
3245 		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3246 		spin_lock_init(&lp->lock);
3247 		INIT_LIST_HEAD(&lp->list);
3248 	}
3249 }
3250 
3251 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3252 {
3253 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3254 
3255 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3256 
3257 	vc->vcore_state = VCORE_PREEMPT;
3258 	vc->pcpu = smp_processor_id();
3259 	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3260 		spin_lock(&lp->lock);
3261 		list_add_tail(&vc->preempt_list, &lp->list);
3262 		spin_unlock(&lp->lock);
3263 	}
3264 
3265 	/* Start accumulating stolen time */
3266 	kvmppc_core_start_stolen(vc, mftb());
3267 }
3268 
3269 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3270 {
3271 	struct preempted_vcore_list *lp;
3272 
3273 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3274 
3275 	kvmppc_core_end_stolen(vc, mftb());
3276 	if (!list_empty(&vc->preempt_list)) {
3277 		lp = &per_cpu(preempted_vcores, vc->pcpu);
3278 		spin_lock(&lp->lock);
3279 		list_del_init(&vc->preempt_list);
3280 		spin_unlock(&lp->lock);
3281 	}
3282 	vc->vcore_state = VCORE_INACTIVE;
3283 }
3284 
3285 /*
3286  * This stores information about the virtual cores currently
3287  * assigned to a physical core.
3288  */
3289 struct core_info {
3290 	int		n_subcores;
3291 	int		max_subcore_threads;
3292 	int		total_threads;
3293 	int		subcore_threads[MAX_SUBCORES];
3294 	struct kvmppc_vcore *vc[MAX_SUBCORES];
3295 };
3296 
3297 /*
3298  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3299  * respectively in 2-way micro-threading (split-core) mode on POWER8.
3300  */
3301 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3302 
3303 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3304 {
3305 	memset(cip, 0, sizeof(*cip));
3306 	cip->n_subcores = 1;
3307 	cip->max_subcore_threads = vc->num_threads;
3308 	cip->total_threads = vc->num_threads;
3309 	cip->subcore_threads[0] = vc->num_threads;
3310 	cip->vc[0] = vc;
3311 }
3312 
3313 static bool subcore_config_ok(int n_subcores, int n_threads)
3314 {
3315 	/*
3316 	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3317 	 * split-core mode, with one thread per subcore.
3318 	 */
3319 	if (cpu_has_feature(CPU_FTR_ARCH_300))
3320 		return n_subcores <= 4 && n_threads == 1;
3321 
3322 	/* On POWER8, can only dynamically split if unsplit to begin with */
3323 	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3324 		return false;
3325 	if (n_subcores > MAX_SUBCORES)
3326 		return false;
3327 	if (n_subcores > 1) {
3328 		if (!(dynamic_mt_modes & 2))
3329 			n_subcores = 4;
3330 		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3331 			return false;
3332 	}
3333 
3334 	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3335 }
3336 
3337 static void init_vcore_to_run(struct kvmppc_vcore *vc)
3338 {
3339 	vc->entry_exit_map = 0;
3340 	vc->in_guest = 0;
3341 	vc->napping_threads = 0;
3342 	vc->conferring_threads = 0;
3343 	vc->tb_offset_applied = 0;
3344 }
3345 
3346 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3347 {
3348 	int n_threads = vc->num_threads;
3349 	int sub;
3350 
3351 	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3352 		return false;
3353 
3354 	/* In one_vm_per_core mode, require all vcores to be from the same vm */
3355 	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3356 		return false;
3357 
3358 	if (n_threads < cip->max_subcore_threads)
3359 		n_threads = cip->max_subcore_threads;
3360 	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3361 		return false;
3362 	cip->max_subcore_threads = n_threads;
3363 
3364 	sub = cip->n_subcores;
3365 	++cip->n_subcores;
3366 	cip->total_threads += vc->num_threads;
3367 	cip->subcore_threads[sub] = vc->num_threads;
3368 	cip->vc[sub] = vc;
3369 	init_vcore_to_run(vc);
3370 	list_del_init(&vc->preempt_list);
3371 
3372 	return true;
3373 }
3374 
3375 /*
3376  * Work out whether it is possible to piggyback the execution of
3377  * vcore *pvc onto the execution of the other vcores described in *cip.
3378  */
3379 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3380 			  int target_threads)
3381 {
3382 	if (cip->total_threads + pvc->num_threads > target_threads)
3383 		return false;
3384 
3385 	return can_dynamic_split(pvc, cip);
3386 }
3387 
3388 static void prepare_threads(struct kvmppc_vcore *vc)
3389 {
3390 	int i;
3391 	struct kvm_vcpu *vcpu;
3392 
3393 	for_each_runnable_thread(i, vcpu, vc) {
3394 		if (signal_pending(vcpu->arch.run_task))
3395 			vcpu->arch.ret = -EINTR;
3396 		else if (vcpu->arch.vpa.update_pending ||
3397 			 vcpu->arch.slb_shadow.update_pending ||
3398 			 vcpu->arch.dtl.update_pending)
3399 			vcpu->arch.ret = RESUME_GUEST;
3400 		else
3401 			continue;
3402 		kvmppc_remove_runnable(vc, vcpu, mftb());
3403 		wake_up(&vcpu->arch.cpu_run);
3404 	}
3405 }
3406 
3407 static void collect_piggybacks(struct core_info *cip, int target_threads)
3408 {
3409 	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3410 	struct kvmppc_vcore *pvc, *vcnext;
3411 
3412 	spin_lock(&lp->lock);
3413 	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3414 		if (!spin_trylock(&pvc->lock))
3415 			continue;
3416 		prepare_threads(pvc);
3417 		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3418 			list_del_init(&pvc->preempt_list);
3419 			if (pvc->runner == NULL) {
3420 				pvc->vcore_state = VCORE_INACTIVE;
3421 				kvmppc_core_end_stolen(pvc, mftb());
3422 			}
3423 			spin_unlock(&pvc->lock);
3424 			continue;
3425 		}
3426 		if (!can_piggyback(pvc, cip, target_threads)) {
3427 			spin_unlock(&pvc->lock);
3428 			continue;
3429 		}
3430 		kvmppc_core_end_stolen(pvc, mftb());
3431 		pvc->vcore_state = VCORE_PIGGYBACK;
3432 		if (cip->total_threads >= target_threads)
3433 			break;
3434 	}
3435 	spin_unlock(&lp->lock);
3436 }
3437 
3438 static bool recheck_signals_and_mmu(struct core_info *cip)
3439 {
3440 	int sub, i;
3441 	struct kvm_vcpu *vcpu;
3442 	struct kvmppc_vcore *vc;
3443 
3444 	for (sub = 0; sub < cip->n_subcores; ++sub) {
3445 		vc = cip->vc[sub];
3446 		if (!vc->kvm->arch.mmu_ready)
3447 			return true;
3448 		for_each_runnable_thread(i, vcpu, vc)
3449 			if (signal_pending(vcpu->arch.run_task))
3450 				return true;
3451 	}
3452 	return false;
3453 }
3454 
3455 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3456 {
3457 	int still_running = 0, i;
3458 	u64 now;
3459 	long ret;
3460 	struct kvm_vcpu *vcpu;
3461 
3462 	spin_lock(&vc->lock);
3463 	now = get_tb();
3464 	for_each_runnable_thread(i, vcpu, vc) {
3465 		/*
3466 		 * It's safe to unlock the vcore in the loop here, because
3467 		 * for_each_runnable_thread() is safe against removal of
3468 		 * the vcpu, and the vcore state is VCORE_EXITING here,
3469 		 * so any vcpus becoming runnable will have their arch.trap
3470 		 * set to zero and can't actually run in the guest.
3471 		 */
3472 		spin_unlock(&vc->lock);
3473 		/* cancel pending dec exception if dec is positive */
3474 		if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3475 		    kvmppc_core_pending_dec(vcpu))
3476 			kvmppc_core_dequeue_dec(vcpu);
3477 
3478 		trace_kvm_guest_exit(vcpu);
3479 
3480 		ret = RESUME_GUEST;
3481 		if (vcpu->arch.trap)
3482 			ret = kvmppc_handle_exit_hv(vcpu,
3483 						    vcpu->arch.run_task);
3484 
3485 		vcpu->arch.ret = ret;
3486 		vcpu->arch.trap = 0;
3487 
3488 		spin_lock(&vc->lock);
3489 		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3490 			if (vcpu->arch.pending_exceptions)
3491 				kvmppc_core_prepare_to_enter(vcpu);
3492 			if (vcpu->arch.ceded)
3493 				kvmppc_set_timer(vcpu);
3494 			else
3495 				++still_running;
3496 		} else {
3497 			kvmppc_remove_runnable(vc, vcpu, mftb());
3498 			wake_up(&vcpu->arch.cpu_run);
3499 		}
3500 	}
3501 	if (!is_master) {
3502 		if (still_running > 0) {
3503 			kvmppc_vcore_preempt(vc);
3504 		} else if (vc->runner) {
3505 			vc->vcore_state = VCORE_PREEMPT;
3506 			kvmppc_core_start_stolen(vc, mftb());
3507 		} else {
3508 			vc->vcore_state = VCORE_INACTIVE;
3509 		}
3510 		if (vc->n_runnable > 0 && vc->runner == NULL) {
3511 			/* make sure there's a candidate runner awake */
3512 			i = -1;
3513 			vcpu = next_runnable_thread(vc, &i);
3514 			wake_up(&vcpu->arch.cpu_run);
3515 		}
3516 	}
3517 	spin_unlock(&vc->lock);
3518 }
3519 
3520 /*
3521  * Clear core from the list of active host cores as we are about to
3522  * enter the guest. Only do this if it is the primary thread of the
3523  * core (not if a subcore) that is entering the guest.
3524  */
3525 static inline int kvmppc_clear_host_core(unsigned int cpu)
3526 {
3527 	int core;
3528 
3529 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3530 		return 0;
3531 	/*
3532 	 * Memory barrier can be omitted here as we will do a smp_wmb()
3533 	 * later in kvmppc_start_thread and we need ensure that state is
3534 	 * visible to other CPUs only after we enter guest.
3535 	 */
3536 	core = cpu >> threads_shift;
3537 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3538 	return 0;
3539 }
3540 
3541 /*
3542  * Advertise this core as an active host core since we exited the guest
3543  * Only need to do this if it is the primary thread of the core that is
3544  * exiting.
3545  */
3546 static inline int kvmppc_set_host_core(unsigned int cpu)
3547 {
3548 	int core;
3549 
3550 	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3551 		return 0;
3552 
3553 	/*
3554 	 * Memory barrier can be omitted here because we do a spin_unlock
3555 	 * immediately after this which provides the memory barrier.
3556 	 */
3557 	core = cpu >> threads_shift;
3558 	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3559 	return 0;
3560 }
3561 
3562 static void set_irq_happened(int trap)
3563 {
3564 	switch (trap) {
3565 	case BOOK3S_INTERRUPT_EXTERNAL:
3566 		local_paca->irq_happened |= PACA_IRQ_EE;
3567 		break;
3568 	case BOOK3S_INTERRUPT_H_DOORBELL:
3569 		local_paca->irq_happened |= PACA_IRQ_DBELL;
3570 		break;
3571 	case BOOK3S_INTERRUPT_HMI:
3572 		local_paca->irq_happened |= PACA_IRQ_HMI;
3573 		break;
3574 	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3575 		replay_system_reset();
3576 		break;
3577 	}
3578 }
3579 
3580 /*
3581  * Run a set of guest threads on a physical core.
3582  * Called with vc->lock held.
3583  */
3584 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3585 {
3586 	struct kvm_vcpu *vcpu;
3587 	int i;
3588 	int srcu_idx;
3589 	struct core_info core_info;
3590 	struct kvmppc_vcore *pvc;
3591 	struct kvm_split_mode split_info, *sip;
3592 	int split, subcore_size, active;
3593 	int sub;
3594 	bool thr0_done;
3595 	unsigned long cmd_bit, stat_bit;
3596 	int pcpu, thr;
3597 	int target_threads;
3598 	int controlled_threads;
3599 	int trap;
3600 	bool is_power8;
3601 
3602 	if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3603 		return;
3604 
3605 	/*
3606 	 * Remove from the list any threads that have a signal pending
3607 	 * or need a VPA update done
3608 	 */
3609 	prepare_threads(vc);
3610 
3611 	/* if the runner is no longer runnable, let the caller pick a new one */
3612 	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3613 		return;
3614 
3615 	/*
3616 	 * Initialize *vc.
3617 	 */
3618 	init_vcore_to_run(vc);
3619 	vc->preempt_tb = TB_NIL;
3620 
3621 	/*
3622 	 * Number of threads that we will be controlling: the same as
3623 	 * the number of threads per subcore, except on POWER9,
3624 	 * where it's 1 because the threads are (mostly) independent.
3625 	 */
3626 	controlled_threads = threads_per_vcore(vc->kvm);
3627 
3628 	/*
3629 	 * Make sure we are running on primary threads, and that secondary
3630 	 * threads are offline.  Also check if the number of threads in this
3631 	 * guest are greater than the current system threads per guest.
3632 	 */
3633 	if ((controlled_threads > 1) &&
3634 	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3635 		for_each_runnable_thread(i, vcpu, vc) {
3636 			vcpu->arch.ret = -EBUSY;
3637 			kvmppc_remove_runnable(vc, vcpu, mftb());
3638 			wake_up(&vcpu->arch.cpu_run);
3639 		}
3640 		goto out;
3641 	}
3642 
3643 	/*
3644 	 * See if we could run any other vcores on the physical core
3645 	 * along with this one.
3646 	 */
3647 	init_core_info(&core_info, vc);
3648 	pcpu = smp_processor_id();
3649 	target_threads = controlled_threads;
3650 	if (target_smt_mode && target_smt_mode < target_threads)
3651 		target_threads = target_smt_mode;
3652 	if (vc->num_threads < target_threads)
3653 		collect_piggybacks(&core_info, target_threads);
3654 
3655 	/*
3656 	 * Hard-disable interrupts, and check resched flag and signals.
3657 	 * If we need to reschedule or deliver a signal, clean up
3658 	 * and return without going into the guest(s).
3659 	 * If the mmu_ready flag has been cleared, don't go into the
3660 	 * guest because that means a HPT resize operation is in progress.
3661 	 */
3662 	local_irq_disable();
3663 	hard_irq_disable();
3664 	if (lazy_irq_pending() || need_resched() ||
3665 	    recheck_signals_and_mmu(&core_info)) {
3666 		local_irq_enable();
3667 		vc->vcore_state = VCORE_INACTIVE;
3668 		/* Unlock all except the primary vcore */
3669 		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3670 			pvc = core_info.vc[sub];
3671 			/* Put back on to the preempted vcores list */
3672 			kvmppc_vcore_preempt(pvc);
3673 			spin_unlock(&pvc->lock);
3674 		}
3675 		for (i = 0; i < controlled_threads; ++i)
3676 			kvmppc_release_hwthread(pcpu + i);
3677 		return;
3678 	}
3679 
3680 	kvmppc_clear_host_core(pcpu);
3681 
3682 	/* Decide on micro-threading (split-core) mode */
3683 	subcore_size = threads_per_subcore;
3684 	cmd_bit = stat_bit = 0;
3685 	split = core_info.n_subcores;
3686 	sip = NULL;
3687 	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3688 
3689 	if (split > 1) {
3690 		sip = &split_info;
3691 		memset(&split_info, 0, sizeof(split_info));
3692 		for (sub = 0; sub < core_info.n_subcores; ++sub)
3693 			split_info.vc[sub] = core_info.vc[sub];
3694 
3695 		if (is_power8) {
3696 			if (split == 2 && (dynamic_mt_modes & 2)) {
3697 				cmd_bit = HID0_POWER8_1TO2LPAR;
3698 				stat_bit = HID0_POWER8_2LPARMODE;
3699 			} else {
3700 				split = 4;
3701 				cmd_bit = HID0_POWER8_1TO4LPAR;
3702 				stat_bit = HID0_POWER8_4LPARMODE;
3703 			}
3704 			subcore_size = MAX_SMT_THREADS / split;
3705 			split_info.rpr = mfspr(SPRN_RPR);
3706 			split_info.pmmar = mfspr(SPRN_PMMAR);
3707 			split_info.ldbar = mfspr(SPRN_LDBAR);
3708 			split_info.subcore_size = subcore_size;
3709 		} else {
3710 			split_info.subcore_size = 1;
3711 		}
3712 
3713 		/* order writes to split_info before kvm_split_mode pointer */
3714 		smp_wmb();
3715 	}
3716 
3717 	for (thr = 0; thr < controlled_threads; ++thr) {
3718 		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3719 
3720 		paca->kvm_hstate.napping = 0;
3721 		paca->kvm_hstate.kvm_split_mode = sip;
3722 	}
3723 
3724 	/* Initiate micro-threading (split-core) on POWER8 if required */
3725 	if (cmd_bit) {
3726 		unsigned long hid0 = mfspr(SPRN_HID0);
3727 
3728 		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3729 		mb();
3730 		mtspr(SPRN_HID0, hid0);
3731 		isync();
3732 		for (;;) {
3733 			hid0 = mfspr(SPRN_HID0);
3734 			if (hid0 & stat_bit)
3735 				break;
3736 			cpu_relax();
3737 		}
3738 	}
3739 
3740 	/*
3741 	 * On POWER8, set RWMR register.
3742 	 * Since it only affects PURR and SPURR, it doesn't affect
3743 	 * the host, so we don't save/restore the host value.
3744 	 */
3745 	if (is_power8) {
3746 		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3747 		int n_online = atomic_read(&vc->online_count);
3748 
3749 		/*
3750 		 * Use the 8-thread value if we're doing split-core
3751 		 * or if the vcore's online count looks bogus.
3752 		 */
3753 		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3754 		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3755 			rwmr_val = p8_rwmr_values[n_online];
3756 		mtspr(SPRN_RWMR, rwmr_val);
3757 	}
3758 
3759 	/* Start all the threads */
3760 	active = 0;
3761 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3762 		thr = is_power8 ? subcore_thread_map[sub] : sub;
3763 		thr0_done = false;
3764 		active |= 1 << thr;
3765 		pvc = core_info.vc[sub];
3766 		pvc->pcpu = pcpu + thr;
3767 		for_each_runnable_thread(i, vcpu, pvc) {
3768 			kvmppc_start_thread(vcpu, pvc);
3769 			kvmppc_create_dtl_entry(vcpu, pvc);
3770 			trace_kvm_guest_enter(vcpu);
3771 			if (!vcpu->arch.ptid)
3772 				thr0_done = true;
3773 			active |= 1 << (thr + vcpu->arch.ptid);
3774 		}
3775 		/*
3776 		 * We need to start the first thread of each subcore
3777 		 * even if it doesn't have a vcpu.
3778 		 */
3779 		if (!thr0_done)
3780 			kvmppc_start_thread(NULL, pvc);
3781 	}
3782 
3783 	/*
3784 	 * Ensure that split_info.do_nap is set after setting
3785 	 * the vcore pointer in the PACA of the secondaries.
3786 	 */
3787 	smp_mb();
3788 
3789 	/*
3790 	 * When doing micro-threading, poke the inactive threads as well.
3791 	 * This gets them to the nap instruction after kvm_do_nap,
3792 	 * which reduces the time taken to unsplit later.
3793 	 */
3794 	if (cmd_bit) {
3795 		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3796 		for (thr = 1; thr < threads_per_subcore; ++thr)
3797 			if (!(active & (1 << thr)))
3798 				kvmppc_ipi_thread(pcpu + thr);
3799 	}
3800 
3801 	vc->vcore_state = VCORE_RUNNING;
3802 	preempt_disable();
3803 
3804 	trace_kvmppc_run_core(vc, 0);
3805 
3806 	for (sub = 0; sub < core_info.n_subcores; ++sub)
3807 		spin_unlock(&core_info.vc[sub]->lock);
3808 
3809 	guest_enter_irqoff();
3810 
3811 	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3812 
3813 	this_cpu_disable_ftrace();
3814 
3815 	/*
3816 	 * Interrupts will be enabled once we get into the guest,
3817 	 * so tell lockdep that we're about to enable interrupts.
3818 	 */
3819 	trace_hardirqs_on();
3820 
3821 	trap = __kvmppc_vcore_entry();
3822 
3823 	trace_hardirqs_off();
3824 
3825 	this_cpu_enable_ftrace();
3826 
3827 	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3828 
3829 	set_irq_happened(trap);
3830 
3831 	spin_lock(&vc->lock);
3832 	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3833 	vc->vcore_state = VCORE_EXITING;
3834 
3835 	/* wait for secondary threads to finish writing their state to memory */
3836 	kvmppc_wait_for_nap(controlled_threads);
3837 
3838 	/* Return to whole-core mode if we split the core earlier */
3839 	if (cmd_bit) {
3840 		unsigned long hid0 = mfspr(SPRN_HID0);
3841 		unsigned long loops = 0;
3842 
3843 		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3844 		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3845 		mb();
3846 		mtspr(SPRN_HID0, hid0);
3847 		isync();
3848 		for (;;) {
3849 			hid0 = mfspr(SPRN_HID0);
3850 			if (!(hid0 & stat_bit))
3851 				break;
3852 			cpu_relax();
3853 			++loops;
3854 		}
3855 		split_info.do_nap = 0;
3856 	}
3857 
3858 	kvmppc_set_host_core(pcpu);
3859 
3860 	context_tracking_guest_exit();
3861 	if (!vtime_accounting_enabled_this_cpu()) {
3862 		local_irq_enable();
3863 		/*
3864 		 * Service IRQs here before vtime_account_guest_exit() so any
3865 		 * ticks that occurred while running the guest are accounted to
3866 		 * the guest. If vtime accounting is enabled, accounting uses
3867 		 * TB rather than ticks, so it can be done without enabling
3868 		 * interrupts here, which has the problem that it accounts
3869 		 * interrupt processing overhead to the host.
3870 		 */
3871 		local_irq_disable();
3872 	}
3873 	vtime_account_guest_exit();
3874 
3875 	local_irq_enable();
3876 
3877 	/* Let secondaries go back to the offline loop */
3878 	for (i = 0; i < controlled_threads; ++i) {
3879 		kvmppc_release_hwthread(pcpu + i);
3880 		if (sip && sip->napped[i])
3881 			kvmppc_ipi_thread(pcpu + i);
3882 	}
3883 
3884 	spin_unlock(&vc->lock);
3885 
3886 	/* make sure updates to secondary vcpu structs are visible now */
3887 	smp_mb();
3888 
3889 	preempt_enable();
3890 
3891 	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3892 		pvc = core_info.vc[sub];
3893 		post_guest_process(pvc, pvc == vc);
3894 	}
3895 
3896 	spin_lock(&vc->lock);
3897 
3898  out:
3899 	vc->vcore_state = VCORE_INACTIVE;
3900 	trace_kvmppc_run_core(vc, 1);
3901 }
3902 
3903 static inline bool hcall_is_xics(unsigned long req)
3904 {
3905 	return req == H_EOI || req == H_CPPR || req == H_IPI ||
3906 		req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
3907 }
3908 
3909 static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
3910 {
3911 	struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3912 	if (lp) {
3913 		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3914 		lp->yield_count = cpu_to_be32(yield_count);
3915 		vcpu->arch.vpa.dirty = 1;
3916 	}
3917 }
3918 
3919 /* call our hypervisor to load up HV regs and go */
3920 static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
3921 {
3922 	struct kvmppc_vcore *vc = vcpu->arch.vcore;
3923 	unsigned long host_psscr;
3924 	unsigned long msr;
3925 	struct hv_guest_state hvregs;
3926 	struct p9_host_os_sprs host_os_sprs;
3927 	s64 dec;
3928 	int trap;
3929 
3930 	msr = mfmsr();
3931 
3932 	save_p9_host_os_sprs(&host_os_sprs);
3933 
3934 	/*
3935 	 * We need to save and restore the guest visible part of the
3936 	 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3937 	 * doesn't do this for us. Note only required if pseries since
3938 	 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
3939 	 */
3940 	host_psscr = mfspr(SPRN_PSSCR_PR);
3941 
3942 	kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
3943 	if (lazy_irq_pending())
3944 		return 0;
3945 
3946 	if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
3947 		msr = mfmsr(); /* TM restore can update msr */
3948 
3949 	if (vcpu->arch.psscr != host_psscr)
3950 		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3951 
3952 	kvmhv_save_hv_regs(vcpu, &hvregs);
3953 	hvregs.lpcr = lpcr;
3954 	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3955 	hvregs.version = HV_GUEST_STATE_VERSION;
3956 	if (vcpu->arch.nested) {
3957 		hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3958 		hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3959 	} else {
3960 		hvregs.lpid = vcpu->kvm->arch.lpid;
3961 		hvregs.vcpu_token = vcpu->vcpu_id;
3962 	}
3963 	hvregs.hdec_expiry = time_limit;
3964 
3965 	/*
3966 	 * When setting DEC, we must always deal with irq_work_raise
3967 	 * via NMI vs setting DEC. The problem occurs right as we
3968 	 * switch into guest mode if a NMI hits and sets pending work
3969 	 * and sets DEC, then that will apply to the guest and not
3970 	 * bring us back to the host.
3971 	 *
3972 	 * irq_work_raise could check a flag (or possibly LPCR[HDICE]
3973 	 * for example) and set HDEC to 1? That wouldn't solve the
3974 	 * nested hv case which needs to abort the hcall or zero the
3975 	 * time limit.
3976 	 *
3977 	 * XXX: Another day's problem.
3978 	 */
3979 	mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
3980 
3981 	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3982 	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3983 	switch_pmu_to_guest(vcpu, &host_os_sprs);
3984 	trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3985 				  __pa(&vcpu->arch.regs));
3986 	kvmhv_restore_hv_return_state(vcpu, &hvregs);
3987 	switch_pmu_to_host(vcpu, &host_os_sprs);
3988 	vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3989 	vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3990 	vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3991 	vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3992 
3993 	store_vcpu_state(vcpu);
3994 
3995 	dec = mfspr(SPRN_DEC);
3996 	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3997 		dec = (s32) dec;
3998 	*tb = mftb();
3999 	vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset);
4000 
4001 	timer_rearm_host_dec(*tb);
4002 
4003 	restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4004 	if (vcpu->arch.psscr != host_psscr)
4005 		mtspr(SPRN_PSSCR_PR, host_psscr);
4006 
4007 	return trap;
4008 }
4009 
4010 /*
4011  * Guest entry for POWER9 and later CPUs.
4012  */
4013 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4014 			 unsigned long lpcr, u64 *tb)
4015 {
4016 	u64 next_timer;
4017 	int trap;
4018 
4019 	next_timer = timer_get_next_tb();
4020 	if (*tb >= next_timer)
4021 		return BOOK3S_INTERRUPT_HV_DECREMENTER;
4022 	if (next_timer < time_limit)
4023 		time_limit = next_timer;
4024 	else if (*tb >= time_limit) /* nested time limit */
4025 		return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4026 
4027 	vcpu->arch.ceded = 0;
4028 
4029 	kvmppc_subcore_enter_guest();
4030 
4031 	vcpu_vpa_increment_dispatch(vcpu);
4032 
4033 	if (kvmhv_on_pseries()) {
4034 		trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4035 
4036 		/* H_CEDE has to be handled now, not later */
4037 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
4038 		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4039 			kvmppc_cede(vcpu);
4040 			kvmppc_set_gpr(vcpu, 3, 0);
4041 			trap = 0;
4042 		}
4043 
4044 	} else {
4045 		struct kvm *kvm = vcpu->kvm;
4046 
4047 		kvmppc_xive_push_vcpu(vcpu);
4048 
4049 		__this_cpu_write(cpu_in_guest, kvm);
4050 		trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4051 		__this_cpu_write(cpu_in_guest, NULL);
4052 
4053 		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
4054 		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4055 			unsigned long req = kvmppc_get_gpr(vcpu, 3);
4056 
4057 			/* H_CEDE has to be handled now, not later */
4058 			if (req == H_CEDE) {
4059 				kvmppc_cede(vcpu);
4060 				kvmppc_xive_rearm_escalation(vcpu); /* may un-cede */
4061 				kvmppc_set_gpr(vcpu, 3, 0);
4062 				trap = 0;
4063 
4064 			/* XICS hcalls must be handled before xive is pulled */
4065 			} else if (hcall_is_xics(req)) {
4066 				int ret;
4067 
4068 				ret = kvmppc_xive_xics_hcall(vcpu, req);
4069 				if (ret != H_TOO_HARD) {
4070 					kvmppc_set_gpr(vcpu, 3, ret);
4071 					trap = 0;
4072 				}
4073 			}
4074 		}
4075 		kvmppc_xive_pull_vcpu(vcpu);
4076 
4077 		if (kvm_is_radix(kvm))
4078 			vcpu->arch.slb_max = 0;
4079 	}
4080 
4081 	vcpu_vpa_increment_dispatch(vcpu);
4082 
4083 	kvmppc_subcore_exit_guest();
4084 
4085 	return trap;
4086 }
4087 
4088 /*
4089  * Wait for some other vcpu thread to execute us, and
4090  * wake us up when we need to handle something in the host.
4091  */
4092 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4093 				 struct kvm_vcpu *vcpu, int wait_state)
4094 {
4095 	DEFINE_WAIT(wait);
4096 
4097 	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4098 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4099 		spin_unlock(&vc->lock);
4100 		schedule();
4101 		spin_lock(&vc->lock);
4102 	}
4103 	finish_wait(&vcpu->arch.cpu_run, &wait);
4104 }
4105 
4106 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4107 {
4108 	if (!halt_poll_ns_grow)
4109 		return;
4110 
4111 	vc->halt_poll_ns *= halt_poll_ns_grow;
4112 	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4113 		vc->halt_poll_ns = halt_poll_ns_grow_start;
4114 }
4115 
4116 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4117 {
4118 	if (halt_poll_ns_shrink == 0)
4119 		vc->halt_poll_ns = 0;
4120 	else
4121 		vc->halt_poll_ns /= halt_poll_ns_shrink;
4122 }
4123 
4124 #ifdef CONFIG_KVM_XICS
4125 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4126 {
4127 	if (!xics_on_xive())
4128 		return false;
4129 	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4130 		vcpu->arch.xive_saved_state.cppr;
4131 }
4132 #else
4133 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4134 {
4135 	return false;
4136 }
4137 #endif /* CONFIG_KVM_XICS */
4138 
4139 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4140 {
4141 	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4142 	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4143 		return true;
4144 
4145 	return false;
4146 }
4147 
4148 static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4149 {
4150 	if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4151 		return true;
4152 	return false;
4153 }
4154 
4155 /*
4156  * Check to see if any of the runnable vcpus on the vcore have pending
4157  * exceptions or are no longer ceded
4158  */
4159 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4160 {
4161 	struct kvm_vcpu *vcpu;
4162 	int i;
4163 
4164 	for_each_runnable_thread(i, vcpu, vc) {
4165 		if (kvmppc_vcpu_check_block(vcpu))
4166 			return 1;
4167 	}
4168 
4169 	return 0;
4170 }
4171 
4172 /*
4173  * All the vcpus in this vcore are idle, so wait for a decrementer
4174  * or external interrupt to one of the vcpus.  vc->lock is held.
4175  */
4176 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4177 {
4178 	ktime_t cur, start_poll, start_wait;
4179 	int do_sleep = 1;
4180 	u64 block_ns;
4181 
4182 	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4183 
4184 	/* Poll for pending exceptions and ceded state */
4185 	cur = start_poll = ktime_get();
4186 	if (vc->halt_poll_ns) {
4187 		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4188 		++vc->runner->stat.generic.halt_attempted_poll;
4189 
4190 		vc->vcore_state = VCORE_POLLING;
4191 		spin_unlock(&vc->lock);
4192 
4193 		do {
4194 			if (kvmppc_vcore_check_block(vc)) {
4195 				do_sleep = 0;
4196 				break;
4197 			}
4198 			cur = ktime_get();
4199 		} while (kvm_vcpu_can_poll(cur, stop));
4200 
4201 		spin_lock(&vc->lock);
4202 		vc->vcore_state = VCORE_INACTIVE;
4203 
4204 		if (!do_sleep) {
4205 			++vc->runner->stat.generic.halt_successful_poll;
4206 			goto out;
4207 		}
4208 	}
4209 
4210 	prepare_to_rcuwait(&vc->wait);
4211 	set_current_state(TASK_INTERRUPTIBLE);
4212 	if (kvmppc_vcore_check_block(vc)) {
4213 		finish_rcuwait(&vc->wait);
4214 		do_sleep = 0;
4215 		/* If we polled, count this as a successful poll */
4216 		if (vc->halt_poll_ns)
4217 			++vc->runner->stat.generic.halt_successful_poll;
4218 		goto out;
4219 	}
4220 
4221 	start_wait = ktime_get();
4222 
4223 	vc->vcore_state = VCORE_SLEEPING;
4224 	trace_kvmppc_vcore_blocked(vc, 0);
4225 	spin_unlock(&vc->lock);
4226 	schedule();
4227 	finish_rcuwait(&vc->wait);
4228 	spin_lock(&vc->lock);
4229 	vc->vcore_state = VCORE_INACTIVE;
4230 	trace_kvmppc_vcore_blocked(vc, 1);
4231 	++vc->runner->stat.halt_successful_wait;
4232 
4233 	cur = ktime_get();
4234 
4235 out:
4236 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4237 
4238 	/* Attribute wait time */
4239 	if (do_sleep) {
4240 		vc->runner->stat.generic.halt_wait_ns +=
4241 			ktime_to_ns(cur) - ktime_to_ns(start_wait);
4242 		KVM_STATS_LOG_HIST_UPDATE(
4243 				vc->runner->stat.generic.halt_wait_hist,
4244 				ktime_to_ns(cur) - ktime_to_ns(start_wait));
4245 		/* Attribute failed poll time */
4246 		if (vc->halt_poll_ns) {
4247 			vc->runner->stat.generic.halt_poll_fail_ns +=
4248 				ktime_to_ns(start_wait) -
4249 				ktime_to_ns(start_poll);
4250 			KVM_STATS_LOG_HIST_UPDATE(
4251 				vc->runner->stat.generic.halt_poll_fail_hist,
4252 				ktime_to_ns(start_wait) -
4253 				ktime_to_ns(start_poll));
4254 		}
4255 	} else {
4256 		/* Attribute successful poll time */
4257 		if (vc->halt_poll_ns) {
4258 			vc->runner->stat.generic.halt_poll_success_ns +=
4259 				ktime_to_ns(cur) -
4260 				ktime_to_ns(start_poll);
4261 			KVM_STATS_LOG_HIST_UPDATE(
4262 				vc->runner->stat.generic.halt_poll_success_hist,
4263 				ktime_to_ns(cur) - ktime_to_ns(start_poll));
4264 		}
4265 	}
4266 
4267 	/* Adjust poll time */
4268 	if (halt_poll_ns) {
4269 		if (block_ns <= vc->halt_poll_ns)
4270 			;
4271 		/* We slept and blocked for longer than the max halt time */
4272 		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4273 			shrink_halt_poll_ns(vc);
4274 		/* We slept and our poll time is too small */
4275 		else if (vc->halt_poll_ns < halt_poll_ns &&
4276 				block_ns < halt_poll_ns)
4277 			grow_halt_poll_ns(vc);
4278 		if (vc->halt_poll_ns > halt_poll_ns)
4279 			vc->halt_poll_ns = halt_poll_ns;
4280 	} else
4281 		vc->halt_poll_ns = 0;
4282 
4283 	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4284 }
4285 
4286 /*
4287  * This never fails for a radix guest, as none of the operations it does
4288  * for a radix guest can fail or have a way to report failure.
4289  */
4290 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4291 {
4292 	int r = 0;
4293 	struct kvm *kvm = vcpu->kvm;
4294 
4295 	mutex_lock(&kvm->arch.mmu_setup_lock);
4296 	if (!kvm->arch.mmu_ready) {
4297 		if (!kvm_is_radix(kvm))
4298 			r = kvmppc_hv_setup_htab_rma(vcpu);
4299 		if (!r) {
4300 			if (cpu_has_feature(CPU_FTR_ARCH_300))
4301 				kvmppc_setup_partition_table(kvm);
4302 			kvm->arch.mmu_ready = 1;
4303 		}
4304 	}
4305 	mutex_unlock(&kvm->arch.mmu_setup_lock);
4306 	return r;
4307 }
4308 
4309 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4310 {
4311 	struct kvm_run *run = vcpu->run;
4312 	int n_ceded, i, r;
4313 	struct kvmppc_vcore *vc;
4314 	struct kvm_vcpu *v;
4315 
4316 	trace_kvmppc_run_vcpu_enter(vcpu);
4317 
4318 	run->exit_reason = 0;
4319 	vcpu->arch.ret = RESUME_GUEST;
4320 	vcpu->arch.trap = 0;
4321 	kvmppc_update_vpas(vcpu);
4322 
4323 	/*
4324 	 * Synchronize with other threads in this virtual core
4325 	 */
4326 	vc = vcpu->arch.vcore;
4327 	spin_lock(&vc->lock);
4328 	vcpu->arch.ceded = 0;
4329 	vcpu->arch.run_task = current;
4330 	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4331 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4332 	vcpu->arch.busy_preempt = TB_NIL;
4333 	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4334 	++vc->n_runnable;
4335 
4336 	/*
4337 	 * This happens the first time this is called for a vcpu.
4338 	 * If the vcore is already running, we may be able to start
4339 	 * this thread straight away and have it join in.
4340 	 */
4341 	if (!signal_pending(current)) {
4342 		if ((vc->vcore_state == VCORE_PIGGYBACK ||
4343 		     vc->vcore_state == VCORE_RUNNING) &&
4344 			   !VCORE_IS_EXITING(vc)) {
4345 			kvmppc_create_dtl_entry(vcpu, vc);
4346 			kvmppc_start_thread(vcpu, vc);
4347 			trace_kvm_guest_enter(vcpu);
4348 		} else if (vc->vcore_state == VCORE_SLEEPING) {
4349 		        rcuwait_wake_up(&vc->wait);
4350 		}
4351 
4352 	}
4353 
4354 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4355 	       !signal_pending(current)) {
4356 		/* See if the MMU is ready to go */
4357 		if (!vcpu->kvm->arch.mmu_ready) {
4358 			spin_unlock(&vc->lock);
4359 			r = kvmhv_setup_mmu(vcpu);
4360 			spin_lock(&vc->lock);
4361 			if (r) {
4362 				run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4363 				run->fail_entry.
4364 					hardware_entry_failure_reason = 0;
4365 				vcpu->arch.ret = r;
4366 				break;
4367 			}
4368 		}
4369 
4370 		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4371 			kvmppc_vcore_end_preempt(vc);
4372 
4373 		if (vc->vcore_state != VCORE_INACTIVE) {
4374 			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4375 			continue;
4376 		}
4377 		for_each_runnable_thread(i, v, vc) {
4378 			kvmppc_core_prepare_to_enter(v);
4379 			if (signal_pending(v->arch.run_task)) {
4380 				kvmppc_remove_runnable(vc, v, mftb());
4381 				v->stat.signal_exits++;
4382 				v->run->exit_reason = KVM_EXIT_INTR;
4383 				v->arch.ret = -EINTR;
4384 				wake_up(&v->arch.cpu_run);
4385 			}
4386 		}
4387 		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4388 			break;
4389 		n_ceded = 0;
4390 		for_each_runnable_thread(i, v, vc) {
4391 			if (!kvmppc_vcpu_woken(v))
4392 				n_ceded += v->arch.ceded;
4393 			else
4394 				v->arch.ceded = 0;
4395 		}
4396 		vc->runner = vcpu;
4397 		if (n_ceded == vc->n_runnable) {
4398 			kvmppc_vcore_blocked(vc);
4399 		} else if (need_resched()) {
4400 			kvmppc_vcore_preempt(vc);
4401 			/* Let something else run */
4402 			cond_resched_lock(&vc->lock);
4403 			if (vc->vcore_state == VCORE_PREEMPT)
4404 				kvmppc_vcore_end_preempt(vc);
4405 		} else {
4406 			kvmppc_run_core(vc);
4407 		}
4408 		vc->runner = NULL;
4409 	}
4410 
4411 	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4412 	       (vc->vcore_state == VCORE_RUNNING ||
4413 		vc->vcore_state == VCORE_EXITING ||
4414 		vc->vcore_state == VCORE_PIGGYBACK))
4415 		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4416 
4417 	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4418 		kvmppc_vcore_end_preempt(vc);
4419 
4420 	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4421 		kvmppc_remove_runnable(vc, vcpu, mftb());
4422 		vcpu->stat.signal_exits++;
4423 		run->exit_reason = KVM_EXIT_INTR;
4424 		vcpu->arch.ret = -EINTR;
4425 	}
4426 
4427 	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4428 		/* Wake up some vcpu to run the core */
4429 		i = -1;
4430 		v = next_runnable_thread(vc, &i);
4431 		wake_up(&v->arch.cpu_run);
4432 	}
4433 
4434 	trace_kvmppc_run_vcpu_exit(vcpu);
4435 	spin_unlock(&vc->lock);
4436 	return vcpu->arch.ret;
4437 }
4438 
4439 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4440 			  unsigned long lpcr)
4441 {
4442 	struct kvm_run *run = vcpu->run;
4443 	int trap, r, pcpu;
4444 	int srcu_idx;
4445 	struct kvmppc_vcore *vc;
4446 	struct kvm *kvm = vcpu->kvm;
4447 	struct kvm_nested_guest *nested = vcpu->arch.nested;
4448 	unsigned long flags;
4449 	u64 tb;
4450 
4451 	trace_kvmppc_run_vcpu_enter(vcpu);
4452 
4453 	run->exit_reason = 0;
4454 	vcpu->arch.ret = RESUME_GUEST;
4455 	vcpu->arch.trap = 0;
4456 
4457 	vc = vcpu->arch.vcore;
4458 	vcpu->arch.ceded = 0;
4459 	vcpu->arch.run_task = current;
4460 	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4461 	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4462 
4463 	/* See if the MMU is ready to go */
4464 	if (unlikely(!kvm->arch.mmu_ready)) {
4465 		r = kvmhv_setup_mmu(vcpu);
4466 		if (r) {
4467 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4468 			run->fail_entry.hardware_entry_failure_reason = 0;
4469 			vcpu->arch.ret = r;
4470 			return r;
4471 		}
4472 	}
4473 
4474 	if (need_resched())
4475 		cond_resched();
4476 
4477 	kvmppc_update_vpas(vcpu);
4478 
4479 	preempt_disable();
4480 	pcpu = smp_processor_id();
4481 	if (kvm_is_radix(kvm))
4482 		kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4483 
4484 	/* flags save not required, but irq_pmu has no disable/enable API */
4485 	powerpc_local_irq_pmu_save(flags);
4486 
4487 	if (signal_pending(current))
4488 		goto sigpend;
4489 	if (need_resched() || !kvm->arch.mmu_ready)
4490 		goto out;
4491 
4492 	if (!nested) {
4493 		kvmppc_core_prepare_to_enter(vcpu);
4494 		if (vcpu->arch.doorbell_request) {
4495 			vc->dpdes = 1;
4496 			smp_wmb();
4497 			vcpu->arch.doorbell_request = 0;
4498 		}
4499 		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4500 			     &vcpu->arch.pending_exceptions))
4501 			lpcr |= LPCR_MER;
4502 	} else if (vcpu->arch.pending_exceptions ||
4503 		   vcpu->arch.doorbell_request ||
4504 		   xive_interrupt_pending(vcpu)) {
4505 		vcpu->arch.ret = RESUME_HOST;
4506 		goto out;
4507 	}
4508 
4509 	if (vcpu->arch.timer_running) {
4510 		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4511 		vcpu->arch.timer_running = 0;
4512 	}
4513 
4514 	tb = mftb();
4515 
4516 	vcpu->cpu = pcpu;
4517 	vcpu->arch.thread_cpu = pcpu;
4518 	vc->pcpu = pcpu;
4519 	local_paca->kvm_hstate.kvm_vcpu = vcpu;
4520 	local_paca->kvm_hstate.ptid = 0;
4521 	local_paca->kvm_hstate.fake_suspend = 0;
4522 
4523 	__kvmppc_create_dtl_entry(vcpu, pcpu, tb + vc->tb_offset, 0);
4524 
4525 	trace_kvm_guest_enter(vcpu);
4526 
4527 	guest_enter_irqoff();
4528 
4529 	srcu_idx = srcu_read_lock(&kvm->srcu);
4530 
4531 	this_cpu_disable_ftrace();
4532 
4533 	/* Tell lockdep that we're about to enable interrupts */
4534 	trace_hardirqs_on();
4535 
4536 	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4537 	vcpu->arch.trap = trap;
4538 
4539 	trace_hardirqs_off();
4540 
4541 	this_cpu_enable_ftrace();
4542 
4543 	srcu_read_unlock(&kvm->srcu, srcu_idx);
4544 
4545 	set_irq_happened(trap);
4546 
4547 	context_tracking_guest_exit();
4548 	if (!vtime_accounting_enabled_this_cpu()) {
4549 		local_irq_enable();
4550 		/*
4551 		 * Service IRQs here before vtime_account_guest_exit() so any
4552 		 * ticks that occurred while running the guest are accounted to
4553 		 * the guest. If vtime accounting is enabled, accounting uses
4554 		 * TB rather than ticks, so it can be done without enabling
4555 		 * interrupts here, which has the problem that it accounts
4556 		 * interrupt processing overhead to the host.
4557 		 */
4558 		local_irq_disable();
4559 	}
4560 	vtime_account_guest_exit();
4561 
4562 	vcpu->cpu = -1;
4563 	vcpu->arch.thread_cpu = -1;
4564 
4565 	powerpc_local_irq_pmu_restore(flags);
4566 
4567 	preempt_enable();
4568 
4569 	/*
4570 	 * cancel pending decrementer exception if DEC is now positive, or if
4571 	 * entering a nested guest in which case the decrementer is now owned
4572 	 * by L2 and the L1 decrementer is provided in hdec_expires
4573 	 */
4574 	if (kvmppc_core_pending_dec(vcpu) &&
4575 			((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4576 			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4577 			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4578 		kvmppc_core_dequeue_dec(vcpu);
4579 
4580 	trace_kvm_guest_exit(vcpu);
4581 	r = RESUME_GUEST;
4582 	if (trap) {
4583 		if (!nested)
4584 			r = kvmppc_handle_exit_hv(vcpu, current);
4585 		else
4586 			r = kvmppc_handle_nested_exit(vcpu);
4587 	}
4588 	vcpu->arch.ret = r;
4589 
4590 	if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4591 		kvmppc_set_timer(vcpu);
4592 
4593 		prepare_to_rcuwait(&vcpu->wait);
4594 		for (;;) {
4595 			set_current_state(TASK_INTERRUPTIBLE);
4596 			if (signal_pending(current)) {
4597 				vcpu->stat.signal_exits++;
4598 				run->exit_reason = KVM_EXIT_INTR;
4599 				vcpu->arch.ret = -EINTR;
4600 				break;
4601 			}
4602 
4603 			if (kvmppc_vcpu_check_block(vcpu))
4604 				break;
4605 
4606 			trace_kvmppc_vcore_blocked(vc, 0);
4607 			schedule();
4608 			trace_kvmppc_vcore_blocked(vc, 1);
4609 		}
4610 		finish_rcuwait(&vcpu->wait);
4611 	}
4612 	vcpu->arch.ceded = 0;
4613 
4614  done:
4615 	trace_kvmppc_run_vcpu_exit(vcpu);
4616 
4617 	return vcpu->arch.ret;
4618 
4619  sigpend:
4620 	vcpu->stat.signal_exits++;
4621 	run->exit_reason = KVM_EXIT_INTR;
4622 	vcpu->arch.ret = -EINTR;
4623  out:
4624 	powerpc_local_irq_pmu_restore(flags);
4625 	preempt_enable();
4626 	goto done;
4627 }
4628 
4629 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4630 {
4631 	struct kvm_run *run = vcpu->run;
4632 	int r;
4633 	int srcu_idx;
4634 	struct kvm *kvm;
4635 	unsigned long msr;
4636 
4637 	if (!vcpu->arch.sane) {
4638 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4639 		return -EINVAL;
4640 	}
4641 
4642 	/* No need to go into the guest when all we'll do is come back out */
4643 	if (signal_pending(current)) {
4644 		run->exit_reason = KVM_EXIT_INTR;
4645 		return -EINTR;
4646 	}
4647 
4648 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4649 	/*
4650 	 * Don't allow entry with a suspended transaction, because
4651 	 * the guest entry/exit code will lose it.
4652 	 */
4653 	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4654 	    (current->thread.regs->msr & MSR_TM)) {
4655 		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4656 			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4657 			run->fail_entry.hardware_entry_failure_reason = 0;
4658 			return -EINVAL;
4659 		}
4660 	}
4661 #endif
4662 
4663 	/*
4664 	 * Force online to 1 for the sake of old userspace which doesn't
4665 	 * set it.
4666 	 */
4667 	if (!vcpu->arch.online) {
4668 		atomic_inc(&vcpu->arch.vcore->online_count);
4669 		vcpu->arch.online = 1;
4670 	}
4671 
4672 	kvmppc_core_prepare_to_enter(vcpu);
4673 
4674 	kvm = vcpu->kvm;
4675 	atomic_inc(&kvm->arch.vcpus_running);
4676 	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4677 	smp_mb();
4678 
4679 	msr = 0;
4680 	if (IS_ENABLED(CONFIG_PPC_FPU))
4681 		msr |= MSR_FP;
4682 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
4683 		msr |= MSR_VEC;
4684 	if (cpu_has_feature(CPU_FTR_VSX))
4685 		msr |= MSR_VSX;
4686 	if ((cpu_has_feature(CPU_FTR_TM) ||
4687 	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4688 			(vcpu->arch.hfscr & HFSCR_TM))
4689 		msr |= MSR_TM;
4690 	msr = msr_check_and_set(msr);
4691 
4692 	kvmppc_save_user_regs();
4693 
4694 	kvmppc_save_current_sprs();
4695 
4696 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4697 		vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4698 	vcpu->arch.pgdir = kvm->mm->pgd;
4699 	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4700 
4701 	do {
4702 		if (cpu_has_feature(CPU_FTR_ARCH_300))
4703 			r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4704 						  vcpu->arch.vcore->lpcr);
4705 		else
4706 			r = kvmppc_run_vcpu(vcpu);
4707 
4708 		if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4709 			if (WARN_ON_ONCE(vcpu->arch.shregs.msr & MSR_PR)) {
4710 				/*
4711 				 * These should have been caught reflected
4712 				 * into the guest by now. Final sanity check:
4713 				 * don't allow userspace to execute hcalls in
4714 				 * the hypervisor.
4715 				 */
4716 				r = RESUME_GUEST;
4717 				continue;
4718 			}
4719 			trace_kvm_hcall_enter(vcpu);
4720 			r = kvmppc_pseries_do_hcall(vcpu);
4721 			trace_kvm_hcall_exit(vcpu, r);
4722 			kvmppc_core_prepare_to_enter(vcpu);
4723 		} else if (r == RESUME_PAGE_FAULT) {
4724 			srcu_idx = srcu_read_lock(&kvm->srcu);
4725 			r = kvmppc_book3s_hv_page_fault(vcpu,
4726 				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4727 			srcu_read_unlock(&kvm->srcu, srcu_idx);
4728 		} else if (r == RESUME_PASSTHROUGH) {
4729 			if (WARN_ON(xics_on_xive()))
4730 				r = H_SUCCESS;
4731 			else
4732 				r = kvmppc_xics_rm_complete(vcpu, 0);
4733 		}
4734 	} while (is_kvmppc_resume_guest(r));
4735 
4736 	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4737 	atomic_dec(&kvm->arch.vcpus_running);
4738 
4739 	srr_regs_clobbered();
4740 
4741 	return r;
4742 }
4743 
4744 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4745 				     int shift, int sllp)
4746 {
4747 	(*sps)->page_shift = shift;
4748 	(*sps)->slb_enc = sllp;
4749 	(*sps)->enc[0].page_shift = shift;
4750 	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4751 	/*
4752 	 * Add 16MB MPSS support (may get filtered out by userspace)
4753 	 */
4754 	if (shift != 24) {
4755 		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4756 		if (penc != -1) {
4757 			(*sps)->enc[1].page_shift = 24;
4758 			(*sps)->enc[1].pte_enc = penc;
4759 		}
4760 	}
4761 	(*sps)++;
4762 }
4763 
4764 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4765 					 struct kvm_ppc_smmu_info *info)
4766 {
4767 	struct kvm_ppc_one_seg_page_size *sps;
4768 
4769 	/*
4770 	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4771 	 * POWER7 doesn't support keys for instruction accesses,
4772 	 * POWER8 and POWER9 do.
4773 	 */
4774 	info->data_keys = 32;
4775 	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4776 
4777 	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4778 	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4779 	info->slb_size = 32;
4780 
4781 	/* We only support these sizes for now, and no muti-size segments */
4782 	sps = &info->sps[0];
4783 	kvmppc_add_seg_page_size(&sps, 12, 0);
4784 	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4785 	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4786 
4787 	/* If running as a nested hypervisor, we don't support HPT guests */
4788 	if (kvmhv_on_pseries())
4789 		info->flags |= KVM_PPC_NO_HASH;
4790 
4791 	return 0;
4792 }
4793 
4794 /*
4795  * Get (and clear) the dirty memory log for a memory slot.
4796  */
4797 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4798 					 struct kvm_dirty_log *log)
4799 {
4800 	struct kvm_memslots *slots;
4801 	struct kvm_memory_slot *memslot;
4802 	int i, r;
4803 	unsigned long n;
4804 	unsigned long *buf, *p;
4805 	struct kvm_vcpu *vcpu;
4806 
4807 	mutex_lock(&kvm->slots_lock);
4808 
4809 	r = -EINVAL;
4810 	if (log->slot >= KVM_USER_MEM_SLOTS)
4811 		goto out;
4812 
4813 	slots = kvm_memslots(kvm);
4814 	memslot = id_to_memslot(slots, log->slot);
4815 	r = -ENOENT;
4816 	if (!memslot || !memslot->dirty_bitmap)
4817 		goto out;
4818 
4819 	/*
4820 	 * Use second half of bitmap area because both HPT and radix
4821 	 * accumulate bits in the first half.
4822 	 */
4823 	n = kvm_dirty_bitmap_bytes(memslot);
4824 	buf = memslot->dirty_bitmap + n / sizeof(long);
4825 	memset(buf, 0, n);
4826 
4827 	if (kvm_is_radix(kvm))
4828 		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4829 	else
4830 		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4831 	if (r)
4832 		goto out;
4833 
4834 	/*
4835 	 * We accumulate dirty bits in the first half of the
4836 	 * memslot's dirty_bitmap area, for when pages are paged
4837 	 * out or modified by the host directly.  Pick up these
4838 	 * bits and add them to the map.
4839 	 */
4840 	p = memslot->dirty_bitmap;
4841 	for (i = 0; i < n / sizeof(long); ++i)
4842 		buf[i] |= xchg(&p[i], 0);
4843 
4844 	/* Harvest dirty bits from VPA and DTL updates */
4845 	/* Note: we never modify the SLB shadow buffer areas */
4846 	kvm_for_each_vcpu(i, vcpu, kvm) {
4847 		spin_lock(&vcpu->arch.vpa_update_lock);
4848 		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4849 		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4850 		spin_unlock(&vcpu->arch.vpa_update_lock);
4851 	}
4852 
4853 	r = -EFAULT;
4854 	if (copy_to_user(log->dirty_bitmap, buf, n))
4855 		goto out;
4856 
4857 	r = 0;
4858 out:
4859 	mutex_unlock(&kvm->slots_lock);
4860 	return r;
4861 }
4862 
4863 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4864 {
4865 	vfree(slot->arch.rmap);
4866 	slot->arch.rmap = NULL;
4867 }
4868 
4869 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4870 					struct kvm_memory_slot *slot,
4871 					const struct kvm_userspace_memory_region *mem,
4872 					enum kvm_mr_change change)
4873 {
4874 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4875 
4876 	if (change == KVM_MR_CREATE) {
4877 		slot->arch.rmap = vzalloc(array_size(npages,
4878 					  sizeof(*slot->arch.rmap)));
4879 		if (!slot->arch.rmap)
4880 			return -ENOMEM;
4881 	}
4882 
4883 	return 0;
4884 }
4885 
4886 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4887 				const struct kvm_userspace_memory_region *mem,
4888 				const struct kvm_memory_slot *old,
4889 				const struct kvm_memory_slot *new,
4890 				enum kvm_mr_change change)
4891 {
4892 	unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4893 
4894 	/*
4895 	 * If we are making a new memslot, it might make
4896 	 * some address that was previously cached as emulated
4897 	 * MMIO be no longer emulated MMIO, so invalidate
4898 	 * all the caches of emulated MMIO translations.
4899 	 */
4900 	if (npages)
4901 		atomic64_inc(&kvm->arch.mmio_update);
4902 
4903 	/*
4904 	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4905 	 * have already called kvm_arch_flush_shadow_memslot() to
4906 	 * flush shadow mappings.  For KVM_MR_CREATE we have no
4907 	 * previous mappings.  So the only case to handle is
4908 	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4909 	 * has been changed.
4910 	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4911 	 * to get rid of any THP PTEs in the partition-scoped page tables
4912 	 * so we can track dirtiness at the page level; we flush when
4913 	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4914 	 * using THP PTEs.
4915 	 */
4916 	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4917 	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4918 		kvmppc_radix_flush_memslot(kvm, old);
4919 	/*
4920 	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4921 	 */
4922 	if (!kvm->arch.secure_guest)
4923 		return;
4924 
4925 	switch (change) {
4926 	case KVM_MR_CREATE:
4927 		/*
4928 		 * @TODO kvmppc_uvmem_memslot_create() can fail and
4929 		 * return error. Fix this.
4930 		 */
4931 		kvmppc_uvmem_memslot_create(kvm, new);
4932 		break;
4933 	case KVM_MR_DELETE:
4934 		kvmppc_uvmem_memslot_delete(kvm, old);
4935 		break;
4936 	default:
4937 		/* TODO: Handle KVM_MR_MOVE */
4938 		break;
4939 	}
4940 }
4941 
4942 /*
4943  * Update LPCR values in kvm->arch and in vcores.
4944  * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4945  * of kvm->arch.lpcr update).
4946  */
4947 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4948 {
4949 	long int i;
4950 	u32 cores_done = 0;
4951 
4952 	if ((kvm->arch.lpcr & mask) == lpcr)
4953 		return;
4954 
4955 	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4956 
4957 	for (i = 0; i < KVM_MAX_VCORES; ++i) {
4958 		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4959 		if (!vc)
4960 			continue;
4961 
4962 		spin_lock(&vc->lock);
4963 		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4964 		verify_lpcr(kvm, vc->lpcr);
4965 		spin_unlock(&vc->lock);
4966 		if (++cores_done >= kvm->arch.online_vcores)
4967 			break;
4968 	}
4969 }
4970 
4971 void kvmppc_setup_partition_table(struct kvm *kvm)
4972 {
4973 	unsigned long dw0, dw1;
4974 
4975 	if (!kvm_is_radix(kvm)) {
4976 		/* PS field - page size for VRMA */
4977 		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4978 			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4979 		/* HTABSIZE and HTABORG fields */
4980 		dw0 |= kvm->arch.sdr1;
4981 
4982 		/* Second dword as set by userspace */
4983 		dw1 = kvm->arch.process_table;
4984 	} else {
4985 		dw0 = PATB_HR | radix__get_tree_size() |
4986 			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4987 		dw1 = PATB_GR | kvm->arch.process_table;
4988 	}
4989 	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4990 }
4991 
4992 /*
4993  * Set up HPT (hashed page table) and RMA (real-mode area).
4994  * Must be called with kvm->arch.mmu_setup_lock held.
4995  */
4996 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4997 {
4998 	int err = 0;
4999 	struct kvm *kvm = vcpu->kvm;
5000 	unsigned long hva;
5001 	struct kvm_memory_slot *memslot;
5002 	struct vm_area_struct *vma;
5003 	unsigned long lpcr = 0, senc;
5004 	unsigned long psize, porder;
5005 	int srcu_idx;
5006 
5007 	/* Allocate hashed page table (if not done already) and reset it */
5008 	if (!kvm->arch.hpt.virt) {
5009 		int order = KVM_DEFAULT_HPT_ORDER;
5010 		struct kvm_hpt_info info;
5011 
5012 		err = kvmppc_allocate_hpt(&info, order);
5013 		/* If we get here, it means userspace didn't specify a
5014 		 * size explicitly.  So, try successively smaller
5015 		 * sizes if the default failed. */
5016 		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5017 			err  = kvmppc_allocate_hpt(&info, order);
5018 
5019 		if (err < 0) {
5020 			pr_err("KVM: Couldn't alloc HPT\n");
5021 			goto out;
5022 		}
5023 
5024 		kvmppc_set_hpt(kvm, &info);
5025 	}
5026 
5027 	/* Look up the memslot for guest physical address 0 */
5028 	srcu_idx = srcu_read_lock(&kvm->srcu);
5029 	memslot = gfn_to_memslot(kvm, 0);
5030 
5031 	/* We must have some memory at 0 by now */
5032 	err = -EINVAL;
5033 	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5034 		goto out_srcu;
5035 
5036 	/* Look up the VMA for the start of this memory slot */
5037 	hva = memslot->userspace_addr;
5038 	mmap_read_lock(kvm->mm);
5039 	vma = vma_lookup(kvm->mm, hva);
5040 	if (!vma || (vma->vm_flags & VM_IO))
5041 		goto up_out;
5042 
5043 	psize = vma_kernel_pagesize(vma);
5044 
5045 	mmap_read_unlock(kvm->mm);
5046 
5047 	/* We can handle 4k, 64k or 16M pages in the VRMA */
5048 	if (psize >= 0x1000000)
5049 		psize = 0x1000000;
5050 	else if (psize >= 0x10000)
5051 		psize = 0x10000;
5052 	else
5053 		psize = 0x1000;
5054 	porder = __ilog2(psize);
5055 
5056 	senc = slb_pgsize_encoding(psize);
5057 	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5058 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
5059 	/* Create HPTEs in the hash page table for the VRMA */
5060 	kvmppc_map_vrma(vcpu, memslot, porder);
5061 
5062 	/* Update VRMASD field in the LPCR */
5063 	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5064 		/* the -4 is to account for senc values starting at 0x10 */
5065 		lpcr = senc << (LPCR_VRMASD_SH - 4);
5066 		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5067 	}
5068 
5069 	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5070 	smp_wmb();
5071 	err = 0;
5072  out_srcu:
5073 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5074  out:
5075 	return err;
5076 
5077  up_out:
5078 	mmap_read_unlock(kvm->mm);
5079 	goto out_srcu;
5080 }
5081 
5082 /*
5083  * Must be called with kvm->arch.mmu_setup_lock held and
5084  * mmu_ready = 0 and no vcpus running.
5085  */
5086 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5087 {
5088 	unsigned long lpcr, lpcr_mask;
5089 
5090 	if (nesting_enabled(kvm))
5091 		kvmhv_release_all_nested(kvm);
5092 	kvmppc_rmap_reset(kvm);
5093 	kvm->arch.process_table = 0;
5094 	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
5095 	spin_lock(&kvm->mmu_lock);
5096 	kvm->arch.radix = 0;
5097 	spin_unlock(&kvm->mmu_lock);
5098 	kvmppc_free_radix(kvm);
5099 
5100 	lpcr = LPCR_VPM1;
5101 	lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5102 	if (cpu_has_feature(CPU_FTR_ARCH_31))
5103 		lpcr_mask |= LPCR_HAIL;
5104 	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5105 
5106 	return 0;
5107 }
5108 
5109 /*
5110  * Must be called with kvm->arch.mmu_setup_lock held and
5111  * mmu_ready = 0 and no vcpus running.
5112  */
5113 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5114 {
5115 	unsigned long lpcr, lpcr_mask;
5116 	int err;
5117 
5118 	err = kvmppc_init_vm_radix(kvm);
5119 	if (err)
5120 		return err;
5121 	kvmppc_rmap_reset(kvm);
5122 	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
5123 	spin_lock(&kvm->mmu_lock);
5124 	kvm->arch.radix = 1;
5125 	spin_unlock(&kvm->mmu_lock);
5126 	kvmppc_free_hpt(&kvm->arch.hpt);
5127 
5128 	lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5129 	lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5130 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5131 		lpcr_mask |= LPCR_HAIL;
5132 		if (cpu_has_feature(CPU_FTR_HVMODE) &&
5133 				(kvm->arch.host_lpcr & LPCR_HAIL))
5134 			lpcr |= LPCR_HAIL;
5135 	}
5136 	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5137 
5138 	return 0;
5139 }
5140 
5141 #ifdef CONFIG_KVM_XICS
5142 /*
5143  * Allocate a per-core structure for managing state about which cores are
5144  * running in the host versus the guest and for exchanging data between
5145  * real mode KVM and CPU running in the host.
5146  * This is only done for the first VM.
5147  * The allocated structure stays even if all VMs have stopped.
5148  * It is only freed when the kvm-hv module is unloaded.
5149  * It's OK for this routine to fail, we just don't support host
5150  * core operations like redirecting H_IPI wakeups.
5151  */
5152 void kvmppc_alloc_host_rm_ops(void)
5153 {
5154 	struct kvmppc_host_rm_ops *ops;
5155 	unsigned long l_ops;
5156 	int cpu, core;
5157 	int size;
5158 
5159 	if (cpu_has_feature(CPU_FTR_ARCH_300))
5160 		return;
5161 
5162 	/* Not the first time here ? */
5163 	if (kvmppc_host_rm_ops_hv != NULL)
5164 		return;
5165 
5166 	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5167 	if (!ops)
5168 		return;
5169 
5170 	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5171 	ops->rm_core = kzalloc(size, GFP_KERNEL);
5172 
5173 	if (!ops->rm_core) {
5174 		kfree(ops);
5175 		return;
5176 	}
5177 
5178 	cpus_read_lock();
5179 
5180 	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5181 		if (!cpu_online(cpu))
5182 			continue;
5183 
5184 		core = cpu >> threads_shift;
5185 		ops->rm_core[core].rm_state.in_host = 1;
5186 	}
5187 
5188 	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5189 
5190 	/*
5191 	 * Make the contents of the kvmppc_host_rm_ops structure visible
5192 	 * to other CPUs before we assign it to the global variable.
5193 	 * Do an atomic assignment (no locks used here), but if someone
5194 	 * beats us to it, just free our copy and return.
5195 	 */
5196 	smp_wmb();
5197 	l_ops = (unsigned long) ops;
5198 
5199 	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5200 		cpus_read_unlock();
5201 		kfree(ops->rm_core);
5202 		kfree(ops);
5203 		return;
5204 	}
5205 
5206 	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5207 					     "ppc/kvm_book3s:prepare",
5208 					     kvmppc_set_host_core,
5209 					     kvmppc_clear_host_core);
5210 	cpus_read_unlock();
5211 }
5212 
5213 void kvmppc_free_host_rm_ops(void)
5214 {
5215 	if (kvmppc_host_rm_ops_hv) {
5216 		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5217 		kfree(kvmppc_host_rm_ops_hv->rm_core);
5218 		kfree(kvmppc_host_rm_ops_hv);
5219 		kvmppc_host_rm_ops_hv = NULL;
5220 	}
5221 }
5222 #endif
5223 
5224 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5225 {
5226 	unsigned long lpcr, lpid;
5227 	char buf[32];
5228 	int ret;
5229 
5230 	mutex_init(&kvm->arch.uvmem_lock);
5231 	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5232 	mutex_init(&kvm->arch.mmu_setup_lock);
5233 
5234 	/* Allocate the guest's logical partition ID */
5235 
5236 	lpid = kvmppc_alloc_lpid();
5237 	if ((long)lpid < 0)
5238 		return -ENOMEM;
5239 	kvm->arch.lpid = lpid;
5240 
5241 	kvmppc_alloc_host_rm_ops();
5242 
5243 	kvmhv_vm_nested_init(kvm);
5244 
5245 	/*
5246 	 * Since we don't flush the TLB when tearing down a VM,
5247 	 * and this lpid might have previously been used,
5248 	 * make sure we flush on each core before running the new VM.
5249 	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
5250 	 * does this flush for us.
5251 	 */
5252 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5253 		cpumask_setall(&kvm->arch.need_tlb_flush);
5254 
5255 	/* Start out with the default set of hcalls enabled */
5256 	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5257 	       sizeof(kvm->arch.enabled_hcalls));
5258 
5259 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5260 		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5261 
5262 	/* Init LPCR for virtual RMA mode */
5263 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
5264 		kvm->arch.host_lpid = mfspr(SPRN_LPID);
5265 		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5266 		lpcr &= LPCR_PECE | LPCR_LPES;
5267 	} else {
5268 		lpcr = 0;
5269 	}
5270 	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5271 		LPCR_VPM0 | LPCR_VPM1;
5272 	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5273 		(VRMA_VSID << SLB_VSID_SHIFT_1T);
5274 	/* On POWER8 turn on online bit to enable PURR/SPURR */
5275 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
5276 		lpcr |= LPCR_ONL;
5277 	/*
5278 	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5279 	 * Set HVICE bit to enable hypervisor virtualization interrupts.
5280 	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
5281 	 * be unnecessary but better safe than sorry in case we re-enable
5282 	 * EE in HV mode with this LPCR still set)
5283 	 */
5284 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5285 		lpcr &= ~LPCR_VPM0;
5286 		lpcr |= LPCR_HVICE | LPCR_HEIC;
5287 
5288 		/*
5289 		 * If xive is enabled, we route 0x500 interrupts directly
5290 		 * to the guest.
5291 		 */
5292 		if (xics_on_xive())
5293 			lpcr |= LPCR_LPES;
5294 	}
5295 
5296 	/*
5297 	 * If the host uses radix, the guest starts out as radix.
5298 	 */
5299 	if (radix_enabled()) {
5300 		kvm->arch.radix = 1;
5301 		kvm->arch.mmu_ready = 1;
5302 		lpcr &= ~LPCR_VPM1;
5303 		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5304 		if (cpu_has_feature(CPU_FTR_HVMODE) &&
5305 		    cpu_has_feature(CPU_FTR_ARCH_31) &&
5306 		    (kvm->arch.host_lpcr & LPCR_HAIL))
5307 			lpcr |= LPCR_HAIL;
5308 		ret = kvmppc_init_vm_radix(kvm);
5309 		if (ret) {
5310 			kvmppc_free_lpid(kvm->arch.lpid);
5311 			return ret;
5312 		}
5313 		kvmppc_setup_partition_table(kvm);
5314 	}
5315 
5316 	verify_lpcr(kvm, lpcr);
5317 	kvm->arch.lpcr = lpcr;
5318 
5319 	/* Initialization for future HPT resizes */
5320 	kvm->arch.resize_hpt = NULL;
5321 
5322 	/*
5323 	 * Work out how many sets the TLB has, for the use of
5324 	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5325 	 */
5326 	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5327 		/*
5328 		 * P10 will flush all the congruence class with a single tlbiel
5329 		 */
5330 		kvm->arch.tlb_sets = 1;
5331 	} else if (radix_enabled())
5332 		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
5333 	else if (cpu_has_feature(CPU_FTR_ARCH_300))
5334 		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
5335 	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5336 		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
5337 	else
5338 		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
5339 
5340 	/*
5341 	 * Track that we now have a HV mode VM active. This blocks secondary
5342 	 * CPU threads from coming online.
5343 	 */
5344 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5345 		kvm_hv_vm_activated();
5346 
5347 	/*
5348 	 * Initialize smt_mode depending on processor.
5349 	 * POWER8 and earlier have to use "strict" threading, where
5350 	 * all vCPUs in a vcore have to run on the same (sub)core,
5351 	 * whereas on POWER9 the threads can each run a different
5352 	 * guest.
5353 	 */
5354 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5355 		kvm->arch.smt_mode = threads_per_subcore;
5356 	else
5357 		kvm->arch.smt_mode = 1;
5358 	kvm->arch.emul_smt_mode = 1;
5359 
5360 	/*
5361 	 * Create a debugfs directory for the VM
5362 	 */
5363 	snprintf(buf, sizeof(buf), "vm%d", current->pid);
5364 	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
5365 	kvmppc_mmu_debugfs_init(kvm);
5366 	if (radix_enabled())
5367 		kvmhv_radix_debugfs_init(kvm);
5368 
5369 	return 0;
5370 }
5371 
5372 static void kvmppc_free_vcores(struct kvm *kvm)
5373 {
5374 	long int i;
5375 
5376 	for (i = 0; i < KVM_MAX_VCORES; ++i)
5377 		kfree(kvm->arch.vcores[i]);
5378 	kvm->arch.online_vcores = 0;
5379 }
5380 
5381 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5382 {
5383 	debugfs_remove_recursive(kvm->arch.debugfs_dir);
5384 
5385 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5386 		kvm_hv_vm_deactivated();
5387 
5388 	kvmppc_free_vcores(kvm);
5389 
5390 
5391 	if (kvm_is_radix(kvm))
5392 		kvmppc_free_radix(kvm);
5393 	else
5394 		kvmppc_free_hpt(&kvm->arch.hpt);
5395 
5396 	/* Perform global invalidation and return lpid to the pool */
5397 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5398 		if (nesting_enabled(kvm))
5399 			kvmhv_release_all_nested(kvm);
5400 		kvm->arch.process_table = 0;
5401 		if (kvm->arch.secure_guest)
5402 			uv_svm_terminate(kvm->arch.lpid);
5403 		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5404 	}
5405 
5406 	kvmppc_free_lpid(kvm->arch.lpid);
5407 
5408 	kvmppc_free_pimap(kvm);
5409 }
5410 
5411 /* We don't need to emulate any privileged instructions or dcbz */
5412 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5413 				     unsigned int inst, int *advance)
5414 {
5415 	return EMULATE_FAIL;
5416 }
5417 
5418 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5419 					ulong spr_val)
5420 {
5421 	return EMULATE_FAIL;
5422 }
5423 
5424 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5425 					ulong *spr_val)
5426 {
5427 	return EMULATE_FAIL;
5428 }
5429 
5430 static int kvmppc_core_check_processor_compat_hv(void)
5431 {
5432 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
5433 	    cpu_has_feature(CPU_FTR_ARCH_206))
5434 		return 0;
5435 
5436 	/* POWER9 in radix mode is capable of being a nested hypervisor. */
5437 	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5438 		return 0;
5439 
5440 	return -EIO;
5441 }
5442 
5443 #ifdef CONFIG_KVM_XICS
5444 
5445 void kvmppc_free_pimap(struct kvm *kvm)
5446 {
5447 	kfree(kvm->arch.pimap);
5448 }
5449 
5450 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5451 {
5452 	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5453 }
5454 
5455 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5456 {
5457 	struct irq_desc *desc;
5458 	struct kvmppc_irq_map *irq_map;
5459 	struct kvmppc_passthru_irqmap *pimap;
5460 	struct irq_chip *chip;
5461 	int i, rc = 0;
5462 	struct irq_data *host_data;
5463 
5464 	if (!kvm_irq_bypass)
5465 		return 1;
5466 
5467 	desc = irq_to_desc(host_irq);
5468 	if (!desc)
5469 		return -EIO;
5470 
5471 	mutex_lock(&kvm->lock);
5472 
5473 	pimap = kvm->arch.pimap;
5474 	if (pimap == NULL) {
5475 		/* First call, allocate structure to hold IRQ map */
5476 		pimap = kvmppc_alloc_pimap();
5477 		if (pimap == NULL) {
5478 			mutex_unlock(&kvm->lock);
5479 			return -ENOMEM;
5480 		}
5481 		kvm->arch.pimap = pimap;
5482 	}
5483 
5484 	/*
5485 	 * For now, we only support interrupts for which the EOI operation
5486 	 * is an OPAL call followed by a write to XIRR, since that's
5487 	 * what our real-mode EOI code does, or a XIVE interrupt
5488 	 */
5489 	chip = irq_data_get_irq_chip(&desc->irq_data);
5490 	if (!chip || !is_pnv_opal_msi(chip)) {
5491 		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5492 			host_irq, guest_gsi);
5493 		mutex_unlock(&kvm->lock);
5494 		return -ENOENT;
5495 	}
5496 
5497 	/*
5498 	 * See if we already have an entry for this guest IRQ number.
5499 	 * If it's mapped to a hardware IRQ number, that's an error,
5500 	 * otherwise re-use this entry.
5501 	 */
5502 	for (i = 0; i < pimap->n_mapped; i++) {
5503 		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5504 			if (pimap->mapped[i].r_hwirq) {
5505 				mutex_unlock(&kvm->lock);
5506 				return -EINVAL;
5507 			}
5508 			break;
5509 		}
5510 	}
5511 
5512 	if (i == KVMPPC_PIRQ_MAPPED) {
5513 		mutex_unlock(&kvm->lock);
5514 		return -EAGAIN;		/* table is full */
5515 	}
5516 
5517 	irq_map = &pimap->mapped[i];
5518 
5519 	irq_map->v_hwirq = guest_gsi;
5520 	irq_map->desc = desc;
5521 
5522 	/*
5523 	 * Order the above two stores before the next to serialize with
5524 	 * the KVM real mode handler.
5525 	 */
5526 	smp_wmb();
5527 
5528 	/*
5529 	 * The 'host_irq' number is mapped in the PCI-MSI domain but
5530 	 * the underlying calls, which will EOI the interrupt in real
5531 	 * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5532 	 */
5533 	host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5534 	irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5535 
5536 	if (i == pimap->n_mapped)
5537 		pimap->n_mapped++;
5538 
5539 	if (xics_on_xive())
5540 		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5541 	else
5542 		kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5543 	if (rc)
5544 		irq_map->r_hwirq = 0;
5545 
5546 	mutex_unlock(&kvm->lock);
5547 
5548 	return 0;
5549 }
5550 
5551 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5552 {
5553 	struct irq_desc *desc;
5554 	struct kvmppc_passthru_irqmap *pimap;
5555 	int i, rc = 0;
5556 
5557 	if (!kvm_irq_bypass)
5558 		return 0;
5559 
5560 	desc = irq_to_desc(host_irq);
5561 	if (!desc)
5562 		return -EIO;
5563 
5564 	mutex_lock(&kvm->lock);
5565 	if (!kvm->arch.pimap)
5566 		goto unlock;
5567 
5568 	pimap = kvm->arch.pimap;
5569 
5570 	for (i = 0; i < pimap->n_mapped; i++) {
5571 		if (guest_gsi == pimap->mapped[i].v_hwirq)
5572 			break;
5573 	}
5574 
5575 	if (i == pimap->n_mapped) {
5576 		mutex_unlock(&kvm->lock);
5577 		return -ENODEV;
5578 	}
5579 
5580 	if (xics_on_xive())
5581 		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5582 	else
5583 		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5584 
5585 	/* invalidate the entry (what do do on error from the above ?) */
5586 	pimap->mapped[i].r_hwirq = 0;
5587 
5588 	/*
5589 	 * We don't free this structure even when the count goes to
5590 	 * zero. The structure is freed when we destroy the VM.
5591 	 */
5592  unlock:
5593 	mutex_unlock(&kvm->lock);
5594 	return rc;
5595 }
5596 
5597 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5598 					     struct irq_bypass_producer *prod)
5599 {
5600 	int ret = 0;
5601 	struct kvm_kernel_irqfd *irqfd =
5602 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5603 
5604 	irqfd->producer = prod;
5605 
5606 	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5607 	if (ret)
5608 		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5609 			prod->irq, irqfd->gsi, ret);
5610 
5611 	return ret;
5612 }
5613 
5614 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5615 					      struct irq_bypass_producer *prod)
5616 {
5617 	int ret;
5618 	struct kvm_kernel_irqfd *irqfd =
5619 		container_of(cons, struct kvm_kernel_irqfd, consumer);
5620 
5621 	irqfd->producer = NULL;
5622 
5623 	/*
5624 	 * When producer of consumer is unregistered, we change back to
5625 	 * default external interrupt handling mode - KVM real mode
5626 	 * will switch back to host.
5627 	 */
5628 	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5629 	if (ret)
5630 		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5631 			prod->irq, irqfd->gsi, ret);
5632 }
5633 #endif
5634 
5635 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5636 				 unsigned int ioctl, unsigned long arg)
5637 {
5638 	struct kvm *kvm __maybe_unused = filp->private_data;
5639 	void __user *argp = (void __user *)arg;
5640 	long r;
5641 
5642 	switch (ioctl) {
5643 
5644 	case KVM_PPC_ALLOCATE_HTAB: {
5645 		u32 htab_order;
5646 
5647 		/* If we're a nested hypervisor, we currently only support radix */
5648 		if (kvmhv_on_pseries()) {
5649 			r = -EOPNOTSUPP;
5650 			break;
5651 		}
5652 
5653 		r = -EFAULT;
5654 		if (get_user(htab_order, (u32 __user *)argp))
5655 			break;
5656 		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5657 		if (r)
5658 			break;
5659 		r = 0;
5660 		break;
5661 	}
5662 
5663 	case KVM_PPC_GET_HTAB_FD: {
5664 		struct kvm_get_htab_fd ghf;
5665 
5666 		r = -EFAULT;
5667 		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5668 			break;
5669 		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5670 		break;
5671 	}
5672 
5673 	case KVM_PPC_RESIZE_HPT_PREPARE: {
5674 		struct kvm_ppc_resize_hpt rhpt;
5675 
5676 		r = -EFAULT;
5677 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5678 			break;
5679 
5680 		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5681 		break;
5682 	}
5683 
5684 	case KVM_PPC_RESIZE_HPT_COMMIT: {
5685 		struct kvm_ppc_resize_hpt rhpt;
5686 
5687 		r = -EFAULT;
5688 		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5689 			break;
5690 
5691 		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5692 		break;
5693 	}
5694 
5695 	default:
5696 		r = -ENOTTY;
5697 	}
5698 
5699 	return r;
5700 }
5701 
5702 /*
5703  * List of hcall numbers to enable by default.
5704  * For compatibility with old userspace, we enable by default
5705  * all hcalls that were implemented before the hcall-enabling
5706  * facility was added.  Note this list should not include H_RTAS.
5707  */
5708 static unsigned int default_hcall_list[] = {
5709 	H_REMOVE,
5710 	H_ENTER,
5711 	H_READ,
5712 	H_PROTECT,
5713 	H_BULK_REMOVE,
5714 #ifdef CONFIG_SPAPR_TCE_IOMMU
5715 	H_GET_TCE,
5716 	H_PUT_TCE,
5717 #endif
5718 	H_SET_DABR,
5719 	H_SET_XDABR,
5720 	H_CEDE,
5721 	H_PROD,
5722 	H_CONFER,
5723 	H_REGISTER_VPA,
5724 #ifdef CONFIG_KVM_XICS
5725 	H_EOI,
5726 	H_CPPR,
5727 	H_IPI,
5728 	H_IPOLL,
5729 	H_XIRR,
5730 	H_XIRR_X,
5731 #endif
5732 	0
5733 };
5734 
5735 static void init_default_hcalls(void)
5736 {
5737 	int i;
5738 	unsigned int hcall;
5739 
5740 	for (i = 0; default_hcall_list[i]; ++i) {
5741 		hcall = default_hcall_list[i];
5742 		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5743 		__set_bit(hcall / 4, default_enabled_hcalls);
5744 	}
5745 }
5746 
5747 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5748 {
5749 	unsigned long lpcr;
5750 	int radix;
5751 	int err;
5752 
5753 	/* If not on a POWER9, reject it */
5754 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5755 		return -ENODEV;
5756 
5757 	/* If any unknown flags set, reject it */
5758 	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5759 		return -EINVAL;
5760 
5761 	/* GR (guest radix) bit in process_table field must match */
5762 	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5763 	if (!!(cfg->process_table & PATB_GR) != radix)
5764 		return -EINVAL;
5765 
5766 	/* Process table size field must be reasonable, i.e. <= 24 */
5767 	if ((cfg->process_table & PRTS_MASK) > 24)
5768 		return -EINVAL;
5769 
5770 	/* We can change a guest to/from radix now, if the host is radix */
5771 	if (radix && !radix_enabled())
5772 		return -EINVAL;
5773 
5774 	/* If we're a nested hypervisor, we currently only support radix */
5775 	if (kvmhv_on_pseries() && !radix)
5776 		return -EINVAL;
5777 
5778 	mutex_lock(&kvm->arch.mmu_setup_lock);
5779 	if (radix != kvm_is_radix(kvm)) {
5780 		if (kvm->arch.mmu_ready) {
5781 			kvm->arch.mmu_ready = 0;
5782 			/* order mmu_ready vs. vcpus_running */
5783 			smp_mb();
5784 			if (atomic_read(&kvm->arch.vcpus_running)) {
5785 				kvm->arch.mmu_ready = 1;
5786 				err = -EBUSY;
5787 				goto out_unlock;
5788 			}
5789 		}
5790 		if (radix)
5791 			err = kvmppc_switch_mmu_to_radix(kvm);
5792 		else
5793 			err = kvmppc_switch_mmu_to_hpt(kvm);
5794 		if (err)
5795 			goto out_unlock;
5796 	}
5797 
5798 	kvm->arch.process_table = cfg->process_table;
5799 	kvmppc_setup_partition_table(kvm);
5800 
5801 	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5802 	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5803 	err = 0;
5804 
5805  out_unlock:
5806 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5807 	return err;
5808 }
5809 
5810 static int kvmhv_enable_nested(struct kvm *kvm)
5811 {
5812 	if (!nested)
5813 		return -EPERM;
5814 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5815 		return -ENODEV;
5816 	if (!radix_enabled())
5817 		return -ENODEV;
5818 
5819 	/* kvm == NULL means the caller is testing if the capability exists */
5820 	if (kvm)
5821 		kvm->arch.nested_enable = true;
5822 	return 0;
5823 }
5824 
5825 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5826 				 int size)
5827 {
5828 	int rc = -EINVAL;
5829 
5830 	if (kvmhv_vcpu_is_radix(vcpu)) {
5831 		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5832 
5833 		if (rc > 0)
5834 			rc = -EINVAL;
5835 	}
5836 
5837 	/* For now quadrants are the only way to access nested guest memory */
5838 	if (rc && vcpu->arch.nested)
5839 		rc = -EAGAIN;
5840 
5841 	return rc;
5842 }
5843 
5844 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5845 				int size)
5846 {
5847 	int rc = -EINVAL;
5848 
5849 	if (kvmhv_vcpu_is_radix(vcpu)) {
5850 		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5851 
5852 		if (rc > 0)
5853 			rc = -EINVAL;
5854 	}
5855 
5856 	/* For now quadrants are the only way to access nested guest memory */
5857 	if (rc && vcpu->arch.nested)
5858 		rc = -EAGAIN;
5859 
5860 	return rc;
5861 }
5862 
5863 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5864 {
5865 	unpin_vpa(kvm, vpa);
5866 	vpa->gpa = 0;
5867 	vpa->pinned_addr = NULL;
5868 	vpa->dirty = false;
5869 	vpa->update_pending = 0;
5870 }
5871 
5872 /*
5873  * Enable a guest to become a secure VM, or test whether
5874  * that could be enabled.
5875  * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5876  * tested (kvm == NULL) or enabled (kvm != NULL).
5877  */
5878 static int kvmhv_enable_svm(struct kvm *kvm)
5879 {
5880 	if (!kvmppc_uvmem_available())
5881 		return -EINVAL;
5882 	if (kvm)
5883 		kvm->arch.svm_enabled = 1;
5884 	return 0;
5885 }
5886 
5887 /*
5888  *  IOCTL handler to turn off secure mode of guest
5889  *
5890  * - Release all device pages
5891  * - Issue ucall to terminate the guest on the UV side
5892  * - Unpin the VPA pages.
5893  * - Reinit the partition scoped page tables
5894  */
5895 static int kvmhv_svm_off(struct kvm *kvm)
5896 {
5897 	struct kvm_vcpu *vcpu;
5898 	int mmu_was_ready;
5899 	int srcu_idx;
5900 	int ret = 0;
5901 	int i;
5902 
5903 	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5904 		return ret;
5905 
5906 	mutex_lock(&kvm->arch.mmu_setup_lock);
5907 	mmu_was_ready = kvm->arch.mmu_ready;
5908 	if (kvm->arch.mmu_ready) {
5909 		kvm->arch.mmu_ready = 0;
5910 		/* order mmu_ready vs. vcpus_running */
5911 		smp_mb();
5912 		if (atomic_read(&kvm->arch.vcpus_running)) {
5913 			kvm->arch.mmu_ready = 1;
5914 			ret = -EBUSY;
5915 			goto out;
5916 		}
5917 	}
5918 
5919 	srcu_idx = srcu_read_lock(&kvm->srcu);
5920 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5921 		struct kvm_memory_slot *memslot;
5922 		struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5923 
5924 		if (!slots)
5925 			continue;
5926 
5927 		kvm_for_each_memslot(memslot, slots) {
5928 			kvmppc_uvmem_drop_pages(memslot, kvm, true);
5929 			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5930 		}
5931 	}
5932 	srcu_read_unlock(&kvm->srcu, srcu_idx);
5933 
5934 	ret = uv_svm_terminate(kvm->arch.lpid);
5935 	if (ret != U_SUCCESS) {
5936 		ret = -EINVAL;
5937 		goto out;
5938 	}
5939 
5940 	/*
5941 	 * When secure guest is reset, all the guest pages are sent
5942 	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5943 	 * chance to run and unpin their VPA pages. Unpinning of all
5944 	 * VPA pages is done here explicitly so that VPA pages
5945 	 * can be migrated to the secure side.
5946 	 *
5947 	 * This is required to for the secure SMP guest to reboot
5948 	 * correctly.
5949 	 */
5950 	kvm_for_each_vcpu(i, vcpu, kvm) {
5951 		spin_lock(&vcpu->arch.vpa_update_lock);
5952 		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5953 		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5954 		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5955 		spin_unlock(&vcpu->arch.vpa_update_lock);
5956 	}
5957 
5958 	kvmppc_setup_partition_table(kvm);
5959 	kvm->arch.secure_guest = 0;
5960 	kvm->arch.mmu_ready = mmu_was_ready;
5961 out:
5962 	mutex_unlock(&kvm->arch.mmu_setup_lock);
5963 	return ret;
5964 }
5965 
5966 static int kvmhv_enable_dawr1(struct kvm *kvm)
5967 {
5968 	if (!cpu_has_feature(CPU_FTR_DAWR1))
5969 		return -ENODEV;
5970 
5971 	/* kvm == NULL means the caller is testing if the capability exists */
5972 	if (kvm)
5973 		kvm->arch.dawr1_enabled = true;
5974 	return 0;
5975 }
5976 
5977 static bool kvmppc_hash_v3_possible(void)
5978 {
5979 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5980 		return false;
5981 
5982 	if (!cpu_has_feature(CPU_FTR_HVMODE))
5983 		return false;
5984 
5985 	/*
5986 	 * POWER9 chips before version 2.02 can't have some threads in
5987 	 * HPT mode and some in radix mode on the same core.
5988 	 */
5989 	if (radix_enabled()) {
5990 		unsigned int pvr = mfspr(SPRN_PVR);
5991 		if ((pvr >> 16) == PVR_POWER9 &&
5992 		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5993 		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5994 			return false;
5995 	}
5996 
5997 	return true;
5998 }
5999 
6000 static struct kvmppc_ops kvm_ops_hv = {
6001 	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6002 	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6003 	.get_one_reg = kvmppc_get_one_reg_hv,
6004 	.set_one_reg = kvmppc_set_one_reg_hv,
6005 	.vcpu_load   = kvmppc_core_vcpu_load_hv,
6006 	.vcpu_put    = kvmppc_core_vcpu_put_hv,
6007 	.inject_interrupt = kvmppc_inject_interrupt_hv,
6008 	.set_msr     = kvmppc_set_msr_hv,
6009 	.vcpu_run    = kvmppc_vcpu_run_hv,
6010 	.vcpu_create = kvmppc_core_vcpu_create_hv,
6011 	.vcpu_free   = kvmppc_core_vcpu_free_hv,
6012 	.check_requests = kvmppc_core_check_requests_hv,
6013 	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
6014 	.flush_memslot  = kvmppc_core_flush_memslot_hv,
6015 	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6016 	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
6017 	.unmap_gfn_range = kvm_unmap_gfn_range_hv,
6018 	.age_gfn = kvm_age_gfn_hv,
6019 	.test_age_gfn = kvm_test_age_gfn_hv,
6020 	.set_spte_gfn = kvm_set_spte_gfn_hv,
6021 	.free_memslot = kvmppc_core_free_memslot_hv,
6022 	.init_vm =  kvmppc_core_init_vm_hv,
6023 	.destroy_vm = kvmppc_core_destroy_vm_hv,
6024 	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6025 	.emulate_op = kvmppc_core_emulate_op_hv,
6026 	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6027 	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6028 	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6029 	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
6030 	.hcall_implemented = kvmppc_hcall_impl_hv,
6031 #ifdef CONFIG_KVM_XICS
6032 	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6033 	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6034 #endif
6035 	.configure_mmu = kvmhv_configure_mmu,
6036 	.get_rmmu_info = kvmhv_get_rmmu_info,
6037 	.set_smt_mode = kvmhv_set_smt_mode,
6038 	.enable_nested = kvmhv_enable_nested,
6039 	.load_from_eaddr = kvmhv_load_from_eaddr,
6040 	.store_to_eaddr = kvmhv_store_to_eaddr,
6041 	.enable_svm = kvmhv_enable_svm,
6042 	.svm_off = kvmhv_svm_off,
6043 	.enable_dawr1 = kvmhv_enable_dawr1,
6044 	.hash_v3_possible = kvmppc_hash_v3_possible,
6045 };
6046 
6047 static int kvm_init_subcore_bitmap(void)
6048 {
6049 	int i, j;
6050 	int nr_cores = cpu_nr_cores();
6051 	struct sibling_subcore_state *sibling_subcore_state;
6052 
6053 	for (i = 0; i < nr_cores; i++) {
6054 		int first_cpu = i * threads_per_core;
6055 		int node = cpu_to_node(first_cpu);
6056 
6057 		/* Ignore if it is already allocated. */
6058 		if (paca_ptrs[first_cpu]->sibling_subcore_state)
6059 			continue;
6060 
6061 		sibling_subcore_state =
6062 			kzalloc_node(sizeof(struct sibling_subcore_state),
6063 							GFP_KERNEL, node);
6064 		if (!sibling_subcore_state)
6065 			return -ENOMEM;
6066 
6067 
6068 		for (j = 0; j < threads_per_core; j++) {
6069 			int cpu = first_cpu + j;
6070 
6071 			paca_ptrs[cpu]->sibling_subcore_state =
6072 						sibling_subcore_state;
6073 		}
6074 	}
6075 	return 0;
6076 }
6077 
6078 static int kvmppc_radix_possible(void)
6079 {
6080 	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6081 }
6082 
6083 static int kvmppc_book3s_init_hv(void)
6084 {
6085 	int r;
6086 
6087 	if (!tlbie_capable) {
6088 		pr_err("KVM-HV: Host does not support TLBIE\n");
6089 		return -ENODEV;
6090 	}
6091 
6092 	/*
6093 	 * FIXME!! Do we need to check on all cpus ?
6094 	 */
6095 	r = kvmppc_core_check_processor_compat_hv();
6096 	if (r < 0)
6097 		return -ENODEV;
6098 
6099 	r = kvmhv_nested_init();
6100 	if (r)
6101 		return r;
6102 
6103 	r = kvm_init_subcore_bitmap();
6104 	if (r)
6105 		return r;
6106 
6107 	/*
6108 	 * We need a way of accessing the XICS interrupt controller,
6109 	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6110 	 * indirectly, via OPAL.
6111 	 */
6112 #ifdef CONFIG_SMP
6113 	if (!xics_on_xive() && !kvmhv_on_pseries() &&
6114 	    !local_paca->kvm_hstate.xics_phys) {
6115 		struct device_node *np;
6116 
6117 		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6118 		if (!np) {
6119 			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6120 			return -ENODEV;
6121 		}
6122 		/* presence of intc confirmed - node can be dropped again */
6123 		of_node_put(np);
6124 	}
6125 #endif
6126 
6127 	kvm_ops_hv.owner = THIS_MODULE;
6128 	kvmppc_hv_ops = &kvm_ops_hv;
6129 
6130 	init_default_hcalls();
6131 
6132 	init_vcore_lists();
6133 
6134 	r = kvmppc_mmu_hv_init();
6135 	if (r)
6136 		return r;
6137 
6138 	if (kvmppc_radix_possible())
6139 		r = kvmppc_radix_init();
6140 
6141 	r = kvmppc_uvmem_init();
6142 	if (r < 0)
6143 		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6144 
6145 	return r;
6146 }
6147 
6148 static void kvmppc_book3s_exit_hv(void)
6149 {
6150 	kvmppc_uvmem_free();
6151 	kvmppc_free_host_rm_ops();
6152 	if (kvmppc_radix_possible())
6153 		kvmppc_radix_exit();
6154 	kvmppc_hv_ops = NULL;
6155 	kvmhv_nested_exit();
6156 }
6157 
6158 module_init(kvmppc_book3s_init_hv);
6159 module_exit(kvmppc_book3s_exit_hv);
6160 MODULE_LICENSE("GPL");
6161 MODULE_ALIAS_MISCDEV(KVM_MINOR);
6162 MODULE_ALIAS("devname:kvm");
6163