1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. 5 * 6 * Authors: 7 * Paul Mackerras <paulus@au1.ibm.com> 8 * Alexander Graf <agraf@suse.de> 9 * Kevin Wolf <mail@kevin-wolf.de> 10 * 11 * Description: KVM functions specific to running on Book 3S 12 * processors in hypervisor mode (specifically POWER7 and later). 13 * 14 * This file is derived from arch/powerpc/kvm/book3s.c, 15 * by Alexander Graf <agraf@suse.de>. 16 */ 17 18 #include <linux/kvm_host.h> 19 #include <linux/kernel.h> 20 #include <linux/err.h> 21 #include <linux/slab.h> 22 #include <linux/preempt.h> 23 #include <linux/sched/signal.h> 24 #include <linux/sched/stat.h> 25 #include <linux/delay.h> 26 #include <linux/export.h> 27 #include <linux/fs.h> 28 #include <linux/anon_inodes.h> 29 #include <linux/cpu.h> 30 #include <linux/cpumask.h> 31 #include <linux/spinlock.h> 32 #include <linux/page-flags.h> 33 #include <linux/srcu.h> 34 #include <linux/miscdevice.h> 35 #include <linux/debugfs.h> 36 #include <linux/gfp.h> 37 #include <linux/vmalloc.h> 38 #include <linux/highmem.h> 39 #include <linux/hugetlb.h> 40 #include <linux/kvm_irqfd.h> 41 #include <linux/irqbypass.h> 42 #include <linux/module.h> 43 #include <linux/compiler.h> 44 #include <linux/of.h> 45 46 #include <asm/ftrace.h> 47 #include <asm/reg.h> 48 #include <asm/ppc-opcode.h> 49 #include <asm/asm-prototypes.h> 50 #include <asm/archrandom.h> 51 #include <asm/debug.h> 52 #include <asm/disassemble.h> 53 #include <asm/cputable.h> 54 #include <asm/cacheflush.h> 55 #include <linux/uaccess.h> 56 #include <asm/io.h> 57 #include <asm/kvm_ppc.h> 58 #include <asm/kvm_book3s.h> 59 #include <asm/mmu_context.h> 60 #include <asm/lppaca.h> 61 #include <asm/processor.h> 62 #include <asm/cputhreads.h> 63 #include <asm/page.h> 64 #include <asm/hvcall.h> 65 #include <asm/switch_to.h> 66 #include <asm/smp.h> 67 #include <asm/dbell.h> 68 #include <asm/hmi.h> 69 #include <asm/pnv-pci.h> 70 #include <asm/mmu.h> 71 #include <asm/opal.h> 72 #include <asm/xics.h> 73 #include <asm/xive.h> 74 #include <asm/hw_breakpoint.h> 75 #include <asm/kvm_book3s_uvmem.h> 76 #include <asm/ultravisor.h> 77 #include <asm/dtl.h> 78 79 #include "book3s.h" 80 81 #define CREATE_TRACE_POINTS 82 #include "trace_hv.h" 83 84 /* #define EXIT_DEBUG */ 85 /* #define EXIT_DEBUG_SIMPLE */ 86 /* #define EXIT_DEBUG_INT */ 87 88 /* Used to indicate that a guest page fault needs to be handled */ 89 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1) 90 /* Used to indicate that a guest passthrough interrupt needs to be handled */ 91 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2) 92 93 /* Used as a "null" value for timebase values */ 94 #define TB_NIL (~(u64)0) 95 96 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1); 97 98 static int dynamic_mt_modes = 6; 99 module_param(dynamic_mt_modes, int, 0644); 100 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)"); 101 static int target_smt_mode; 102 module_param(target_smt_mode, int, 0644); 103 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)"); 104 105 static bool indep_threads_mode = true; 106 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR); 107 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)"); 108 109 static bool one_vm_per_core; 110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR); 111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)"); 112 113 #ifdef CONFIG_KVM_XICS 114 static struct kernel_param_ops module_param_ops = { 115 .set = param_set_int, 116 .get = param_get_int, 117 }; 118 119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644); 120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization"); 121 122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644); 123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core"); 124 #endif 125 126 /* If set, guests are allowed to create and control nested guests */ 127 static bool nested = true; 128 module_param(nested, bool, S_IRUGO | S_IWUSR); 129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)"); 130 131 static inline bool nesting_enabled(struct kvm *kvm) 132 { 133 return kvm->arch.nested_enable && kvm_is_radix(kvm); 134 } 135 136 /* If set, the threads on each CPU core have to be in the same MMU mode */ 137 static bool no_mixing_hpt_and_radix; 138 139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu); 140 141 /* 142 * RWMR values for POWER8. These control the rate at which PURR 143 * and SPURR count and should be set according to the number of 144 * online threads in the vcore being run. 145 */ 146 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL 147 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL 148 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL 149 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL 150 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL 151 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL 152 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL 153 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL 154 155 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = { 156 RWMR_RPA_P8_1THREAD, 157 RWMR_RPA_P8_1THREAD, 158 RWMR_RPA_P8_2THREAD, 159 RWMR_RPA_P8_3THREAD, 160 RWMR_RPA_P8_4THREAD, 161 RWMR_RPA_P8_5THREAD, 162 RWMR_RPA_P8_6THREAD, 163 RWMR_RPA_P8_7THREAD, 164 RWMR_RPA_P8_8THREAD, 165 }; 166 167 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc, 168 int *ip) 169 { 170 int i = *ip; 171 struct kvm_vcpu *vcpu; 172 173 while (++i < MAX_SMT_THREADS) { 174 vcpu = READ_ONCE(vc->runnable_threads[i]); 175 if (vcpu) { 176 *ip = i; 177 return vcpu; 178 } 179 } 180 return NULL; 181 } 182 183 /* Used to traverse the list of runnable threads for a given vcore */ 184 #define for_each_runnable_thread(i, vcpu, vc) \ 185 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); ) 186 187 static bool kvmppc_ipi_thread(int cpu) 188 { 189 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); 190 191 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */ 192 if (kvmhv_on_pseries()) 193 return false; 194 195 /* On POWER9 we can use msgsnd to IPI any cpu */ 196 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 197 msg |= get_hard_smp_processor_id(cpu); 198 smp_mb(); 199 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 200 return true; 201 } 202 203 /* On POWER8 for IPIs to threads in the same core, use msgsnd */ 204 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 205 preempt_disable(); 206 if (cpu_first_thread_sibling(cpu) == 207 cpu_first_thread_sibling(smp_processor_id())) { 208 msg |= cpu_thread_in_core(cpu); 209 smp_mb(); 210 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); 211 preempt_enable(); 212 return true; 213 } 214 preempt_enable(); 215 } 216 217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP) 218 if (cpu >= 0 && cpu < nr_cpu_ids) { 219 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) { 220 xics_wake_cpu(cpu); 221 return true; 222 } 223 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); 224 return true; 225 } 226 #endif 227 228 return false; 229 } 230 231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu) 232 { 233 int cpu; 234 struct rcuwait *waitp; 235 236 waitp = kvm_arch_vcpu_get_wait(vcpu); 237 if (rcuwait_wake_up(waitp)) 238 ++vcpu->stat.halt_wakeup; 239 240 cpu = READ_ONCE(vcpu->arch.thread_cpu); 241 if (cpu >= 0 && kvmppc_ipi_thread(cpu)) 242 return; 243 244 /* CPU points to the first thread of the core */ 245 cpu = vcpu->cpu; 246 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu)) 247 smp_send_reschedule(cpu); 248 } 249 250 /* 251 * We use the vcpu_load/put functions to measure stolen time. 252 * Stolen time is counted as time when either the vcpu is able to 253 * run as part of a virtual core, but the task running the vcore 254 * is preempted or sleeping, or when the vcpu needs something done 255 * in the kernel by the task running the vcpu, but that task is 256 * preempted or sleeping. Those two things have to be counted 257 * separately, since one of the vcpu tasks will take on the job 258 * of running the core, and the other vcpu tasks in the vcore will 259 * sleep waiting for it to do that, but that sleep shouldn't count 260 * as stolen time. 261 * 262 * Hence we accumulate stolen time when the vcpu can run as part of 263 * a vcore using vc->stolen_tb, and the stolen time when the vcpu 264 * needs its task to do other things in the kernel (for example, 265 * service a page fault) in busy_stolen. We don't accumulate 266 * stolen time for a vcore when it is inactive, or for a vcpu 267 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of 268 * a misnomer; it means that the vcpu task is not executing in 269 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in 270 * the kernel. We don't have any way of dividing up that time 271 * between time that the vcpu is genuinely stopped, time that 272 * the task is actively working on behalf of the vcpu, and time 273 * that the task is preempted, so we don't count any of it as 274 * stolen. 275 * 276 * Updates to busy_stolen are protected by arch.tbacct_lock; 277 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock 278 * lock. The stolen times are measured in units of timebase ticks. 279 * (Note that the != TB_NIL checks below are purely defensive; 280 * they should never fail.) 281 */ 282 283 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc) 284 { 285 unsigned long flags; 286 287 spin_lock_irqsave(&vc->stoltb_lock, flags); 288 vc->preempt_tb = mftb(); 289 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 290 } 291 292 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc) 293 { 294 unsigned long flags; 295 296 spin_lock_irqsave(&vc->stoltb_lock, flags); 297 if (vc->preempt_tb != TB_NIL) { 298 vc->stolen_tb += mftb() - vc->preempt_tb; 299 vc->preempt_tb = TB_NIL; 300 } 301 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 302 } 303 304 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu) 305 { 306 struct kvmppc_vcore *vc = vcpu->arch.vcore; 307 unsigned long flags; 308 309 /* 310 * We can test vc->runner without taking the vcore lock, 311 * because only this task ever sets vc->runner to this 312 * vcpu, and once it is set to this vcpu, only this task 313 * ever sets it to NULL. 314 */ 315 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 316 kvmppc_core_end_stolen(vc); 317 318 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 319 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST && 320 vcpu->arch.busy_preempt != TB_NIL) { 321 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt; 322 vcpu->arch.busy_preempt = TB_NIL; 323 } 324 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 325 } 326 327 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu) 328 { 329 struct kvmppc_vcore *vc = vcpu->arch.vcore; 330 unsigned long flags; 331 332 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING) 333 kvmppc_core_start_stolen(vc); 334 335 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 336 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST) 337 vcpu->arch.busy_preempt = mftb(); 338 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 339 } 340 341 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr) 342 { 343 vcpu->arch.pvr = pvr; 344 } 345 346 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat) 347 { 348 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0; 349 struct kvmppc_vcore *vc = vcpu->arch.vcore; 350 351 /* We can (emulate) our own architecture version and anything older */ 352 if (cpu_has_feature(CPU_FTR_ARCH_300)) 353 host_pcr_bit = PCR_ARCH_300; 354 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 355 host_pcr_bit = PCR_ARCH_207; 356 else if (cpu_has_feature(CPU_FTR_ARCH_206)) 357 host_pcr_bit = PCR_ARCH_206; 358 else 359 host_pcr_bit = PCR_ARCH_205; 360 361 /* Determine lowest PCR bit needed to run guest in given PVR level */ 362 guest_pcr_bit = host_pcr_bit; 363 if (arch_compat) { 364 switch (arch_compat) { 365 case PVR_ARCH_205: 366 guest_pcr_bit = PCR_ARCH_205; 367 break; 368 case PVR_ARCH_206: 369 case PVR_ARCH_206p: 370 guest_pcr_bit = PCR_ARCH_206; 371 break; 372 case PVR_ARCH_207: 373 guest_pcr_bit = PCR_ARCH_207; 374 break; 375 case PVR_ARCH_300: 376 guest_pcr_bit = PCR_ARCH_300; 377 break; 378 default: 379 return -EINVAL; 380 } 381 } 382 383 /* Check requested PCR bits don't exceed our capabilities */ 384 if (guest_pcr_bit > host_pcr_bit) 385 return -EINVAL; 386 387 spin_lock(&vc->lock); 388 vc->arch_compat = arch_compat; 389 /* 390 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit 391 * Also set all reserved PCR bits 392 */ 393 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK; 394 spin_unlock(&vc->lock); 395 396 return 0; 397 } 398 399 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu) 400 { 401 int r; 402 403 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id); 404 pr_err("pc = %.16lx msr = %.16llx trap = %x\n", 405 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap); 406 for (r = 0; r < 16; ++r) 407 pr_err("r%2d = %.16lx r%d = %.16lx\n", 408 r, kvmppc_get_gpr(vcpu, r), 409 r+16, kvmppc_get_gpr(vcpu, r+16)); 410 pr_err("ctr = %.16lx lr = %.16lx\n", 411 vcpu->arch.regs.ctr, vcpu->arch.regs.link); 412 pr_err("srr0 = %.16llx srr1 = %.16llx\n", 413 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1); 414 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n", 415 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1); 416 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n", 417 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3); 418 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n", 419 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr); 420 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar); 421 pr_err("fault dar = %.16lx dsisr = %.8x\n", 422 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 423 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max); 424 for (r = 0; r < vcpu->arch.slb_max; ++r) 425 pr_err(" ESID = %.16llx VSID = %.16llx\n", 426 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv); 427 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n", 428 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1, 429 vcpu->arch.last_inst); 430 } 431 432 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id) 433 { 434 return kvm_get_vcpu_by_id(kvm, id); 435 } 436 437 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa) 438 { 439 vpa->__old_status |= LPPACA_OLD_SHARED_PROC; 440 vpa->yield_count = cpu_to_be32(1); 441 } 442 443 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v, 444 unsigned long addr, unsigned long len) 445 { 446 /* check address is cacheline aligned */ 447 if (addr & (L1_CACHE_BYTES - 1)) 448 return -EINVAL; 449 spin_lock(&vcpu->arch.vpa_update_lock); 450 if (v->next_gpa != addr || v->len != len) { 451 v->next_gpa = addr; 452 v->len = addr ? len : 0; 453 v->update_pending = 1; 454 } 455 spin_unlock(&vcpu->arch.vpa_update_lock); 456 return 0; 457 } 458 459 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */ 460 struct reg_vpa { 461 u32 dummy; 462 union { 463 __be16 hword; 464 __be32 word; 465 } length; 466 }; 467 468 static int vpa_is_registered(struct kvmppc_vpa *vpap) 469 { 470 if (vpap->update_pending) 471 return vpap->next_gpa != 0; 472 return vpap->pinned_addr != NULL; 473 } 474 475 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu, 476 unsigned long flags, 477 unsigned long vcpuid, unsigned long vpa) 478 { 479 struct kvm *kvm = vcpu->kvm; 480 unsigned long len, nb; 481 void *va; 482 struct kvm_vcpu *tvcpu; 483 int err; 484 int subfunc; 485 struct kvmppc_vpa *vpap; 486 487 tvcpu = kvmppc_find_vcpu(kvm, vcpuid); 488 if (!tvcpu) 489 return H_PARAMETER; 490 491 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK; 492 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL || 493 subfunc == H_VPA_REG_SLB) { 494 /* Registering new area - address must be cache-line aligned */ 495 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa) 496 return H_PARAMETER; 497 498 /* convert logical addr to kernel addr and read length */ 499 va = kvmppc_pin_guest_page(kvm, vpa, &nb); 500 if (va == NULL) 501 return H_PARAMETER; 502 if (subfunc == H_VPA_REG_VPA) 503 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword); 504 else 505 len = be32_to_cpu(((struct reg_vpa *)va)->length.word); 506 kvmppc_unpin_guest_page(kvm, va, vpa, false); 507 508 /* Check length */ 509 if (len > nb || len < sizeof(struct reg_vpa)) 510 return H_PARAMETER; 511 } else { 512 vpa = 0; 513 len = 0; 514 } 515 516 err = H_PARAMETER; 517 vpap = NULL; 518 spin_lock(&tvcpu->arch.vpa_update_lock); 519 520 switch (subfunc) { 521 case H_VPA_REG_VPA: /* register VPA */ 522 /* 523 * The size of our lppaca is 1kB because of the way we align 524 * it for the guest to avoid crossing a 4kB boundary. We only 525 * use 640 bytes of the structure though, so we should accept 526 * clients that set a size of 640. 527 */ 528 BUILD_BUG_ON(sizeof(struct lppaca) != 640); 529 if (len < sizeof(struct lppaca)) 530 break; 531 vpap = &tvcpu->arch.vpa; 532 err = 0; 533 break; 534 535 case H_VPA_REG_DTL: /* register DTL */ 536 if (len < sizeof(struct dtl_entry)) 537 break; 538 len -= len % sizeof(struct dtl_entry); 539 540 /* Check that they have previously registered a VPA */ 541 err = H_RESOURCE; 542 if (!vpa_is_registered(&tvcpu->arch.vpa)) 543 break; 544 545 vpap = &tvcpu->arch.dtl; 546 err = 0; 547 break; 548 549 case H_VPA_REG_SLB: /* register SLB shadow buffer */ 550 /* Check that they have previously registered a VPA */ 551 err = H_RESOURCE; 552 if (!vpa_is_registered(&tvcpu->arch.vpa)) 553 break; 554 555 vpap = &tvcpu->arch.slb_shadow; 556 err = 0; 557 break; 558 559 case H_VPA_DEREG_VPA: /* deregister VPA */ 560 /* Check they don't still have a DTL or SLB buf registered */ 561 err = H_RESOURCE; 562 if (vpa_is_registered(&tvcpu->arch.dtl) || 563 vpa_is_registered(&tvcpu->arch.slb_shadow)) 564 break; 565 566 vpap = &tvcpu->arch.vpa; 567 err = 0; 568 break; 569 570 case H_VPA_DEREG_DTL: /* deregister DTL */ 571 vpap = &tvcpu->arch.dtl; 572 err = 0; 573 break; 574 575 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */ 576 vpap = &tvcpu->arch.slb_shadow; 577 err = 0; 578 break; 579 } 580 581 if (vpap) { 582 vpap->next_gpa = vpa; 583 vpap->len = len; 584 vpap->update_pending = 1; 585 } 586 587 spin_unlock(&tvcpu->arch.vpa_update_lock); 588 589 return err; 590 } 591 592 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap) 593 { 594 struct kvm *kvm = vcpu->kvm; 595 void *va; 596 unsigned long nb; 597 unsigned long gpa; 598 599 /* 600 * We need to pin the page pointed to by vpap->next_gpa, 601 * but we can't call kvmppc_pin_guest_page under the lock 602 * as it does get_user_pages() and down_read(). So we 603 * have to drop the lock, pin the page, then get the lock 604 * again and check that a new area didn't get registered 605 * in the meantime. 606 */ 607 for (;;) { 608 gpa = vpap->next_gpa; 609 spin_unlock(&vcpu->arch.vpa_update_lock); 610 va = NULL; 611 nb = 0; 612 if (gpa) 613 va = kvmppc_pin_guest_page(kvm, gpa, &nb); 614 spin_lock(&vcpu->arch.vpa_update_lock); 615 if (gpa == vpap->next_gpa) 616 break; 617 /* sigh... unpin that one and try again */ 618 if (va) 619 kvmppc_unpin_guest_page(kvm, va, gpa, false); 620 } 621 622 vpap->update_pending = 0; 623 if (va && nb < vpap->len) { 624 /* 625 * If it's now too short, it must be that userspace 626 * has changed the mappings underlying guest memory, 627 * so unregister the region. 628 */ 629 kvmppc_unpin_guest_page(kvm, va, gpa, false); 630 va = NULL; 631 } 632 if (vpap->pinned_addr) 633 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa, 634 vpap->dirty); 635 vpap->gpa = gpa; 636 vpap->pinned_addr = va; 637 vpap->dirty = false; 638 if (va) 639 vpap->pinned_end = va + vpap->len; 640 } 641 642 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu) 643 { 644 if (!(vcpu->arch.vpa.update_pending || 645 vcpu->arch.slb_shadow.update_pending || 646 vcpu->arch.dtl.update_pending)) 647 return; 648 649 spin_lock(&vcpu->arch.vpa_update_lock); 650 if (vcpu->arch.vpa.update_pending) { 651 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa); 652 if (vcpu->arch.vpa.pinned_addr) 653 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr); 654 } 655 if (vcpu->arch.dtl.update_pending) { 656 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl); 657 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr; 658 vcpu->arch.dtl_index = 0; 659 } 660 if (vcpu->arch.slb_shadow.update_pending) 661 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow); 662 spin_unlock(&vcpu->arch.vpa_update_lock); 663 } 664 665 /* 666 * Return the accumulated stolen time for the vcore up until `now'. 667 * The caller should hold the vcore lock. 668 */ 669 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now) 670 { 671 u64 p; 672 unsigned long flags; 673 674 spin_lock_irqsave(&vc->stoltb_lock, flags); 675 p = vc->stolen_tb; 676 if (vc->vcore_state != VCORE_INACTIVE && 677 vc->preempt_tb != TB_NIL) 678 p += now - vc->preempt_tb; 679 spin_unlock_irqrestore(&vc->stoltb_lock, flags); 680 return p; 681 } 682 683 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu, 684 struct kvmppc_vcore *vc) 685 { 686 struct dtl_entry *dt; 687 struct lppaca *vpa; 688 unsigned long stolen; 689 unsigned long core_stolen; 690 u64 now; 691 unsigned long flags; 692 693 dt = vcpu->arch.dtl_ptr; 694 vpa = vcpu->arch.vpa.pinned_addr; 695 now = mftb(); 696 core_stolen = vcore_stolen_time(vc, now); 697 stolen = core_stolen - vcpu->arch.stolen_logged; 698 vcpu->arch.stolen_logged = core_stolen; 699 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags); 700 stolen += vcpu->arch.busy_stolen; 701 vcpu->arch.busy_stolen = 0; 702 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags); 703 if (!dt || !vpa) 704 return; 705 memset(dt, 0, sizeof(struct dtl_entry)); 706 dt->dispatch_reason = 7; 707 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid); 708 dt->timebase = cpu_to_be64(now + vc->tb_offset); 709 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen); 710 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu)); 711 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr); 712 ++dt; 713 if (dt == vcpu->arch.dtl.pinned_end) 714 dt = vcpu->arch.dtl.pinned_addr; 715 vcpu->arch.dtl_ptr = dt; 716 /* order writing *dt vs. writing vpa->dtl_idx */ 717 smp_wmb(); 718 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index); 719 vcpu->arch.dtl.dirty = true; 720 } 721 722 /* See if there is a doorbell interrupt pending for a vcpu */ 723 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu) 724 { 725 int thr; 726 struct kvmppc_vcore *vc; 727 728 if (vcpu->arch.doorbell_request) 729 return true; 730 /* 731 * Ensure that the read of vcore->dpdes comes after the read 732 * of vcpu->doorbell_request. This barrier matches the 733 * smp_wmb() in kvmppc_guest_entry_inject(). 734 */ 735 smp_rmb(); 736 vc = vcpu->arch.vcore; 737 thr = vcpu->vcpu_id - vc->first_vcpuid; 738 return !!(vc->dpdes & (1 << thr)); 739 } 740 741 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu) 742 { 743 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207) 744 return true; 745 if ((!vcpu->arch.vcore->arch_compat) && 746 cpu_has_feature(CPU_FTR_ARCH_207S)) 747 return true; 748 return false; 749 } 750 751 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags, 752 unsigned long resource, unsigned long value1, 753 unsigned long value2) 754 { 755 switch (resource) { 756 case H_SET_MODE_RESOURCE_SET_CIABR: 757 if (!kvmppc_power8_compatible(vcpu)) 758 return H_P2; 759 if (value2) 760 return H_P4; 761 if (mflags) 762 return H_UNSUPPORTED_FLAG_START; 763 /* Guests can't breakpoint the hypervisor */ 764 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER) 765 return H_P3; 766 vcpu->arch.ciabr = value1; 767 return H_SUCCESS; 768 case H_SET_MODE_RESOURCE_SET_DAWR: 769 if (!kvmppc_power8_compatible(vcpu)) 770 return H_P2; 771 if (!ppc_breakpoint_available()) 772 return H_P2; 773 if (mflags) 774 return H_UNSUPPORTED_FLAG_START; 775 if (value2 & DABRX_HYP) 776 return H_P4; 777 vcpu->arch.dawr = value1; 778 vcpu->arch.dawrx = value2; 779 return H_SUCCESS; 780 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: 781 /* KVM does not support mflags=2 (AIL=2) */ 782 if (mflags != 0 && mflags != 3) 783 return H_UNSUPPORTED_FLAG_START; 784 return H_TOO_HARD; 785 default: 786 return H_TOO_HARD; 787 } 788 } 789 790 /* Copy guest memory in place - must reside within a single memslot */ 791 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from, 792 unsigned long len) 793 { 794 struct kvm_memory_slot *to_memslot = NULL; 795 struct kvm_memory_slot *from_memslot = NULL; 796 unsigned long to_addr, from_addr; 797 int r; 798 799 /* Get HPA for from address */ 800 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT); 801 if (!from_memslot) 802 return -EFAULT; 803 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages) 804 << PAGE_SHIFT)) 805 return -EINVAL; 806 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT); 807 if (kvm_is_error_hva(from_addr)) 808 return -EFAULT; 809 from_addr |= (from & (PAGE_SIZE - 1)); 810 811 /* Get HPA for to address */ 812 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT); 813 if (!to_memslot) 814 return -EFAULT; 815 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages) 816 << PAGE_SHIFT)) 817 return -EINVAL; 818 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT); 819 if (kvm_is_error_hva(to_addr)) 820 return -EFAULT; 821 to_addr |= (to & (PAGE_SIZE - 1)); 822 823 /* Perform copy */ 824 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr, 825 len); 826 if (r) 827 return -EFAULT; 828 mark_page_dirty(kvm, to >> PAGE_SHIFT); 829 return 0; 830 } 831 832 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, 833 unsigned long dest, unsigned long src) 834 { 835 u64 pg_sz = SZ_4K; /* 4K page size */ 836 u64 pg_mask = SZ_4K - 1; 837 int ret; 838 839 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ 840 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | 841 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) 842 return H_PARAMETER; 843 844 /* dest (and src if copy_page flag set) must be page aligned */ 845 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) 846 return H_PARAMETER; 847 848 /* zero and/or copy the page as determined by the flags */ 849 if (flags & H_COPY_PAGE) { 850 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz); 851 if (ret < 0) 852 return H_PARAMETER; 853 } else if (flags & H_ZERO_PAGE) { 854 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz); 855 if (ret < 0) 856 return H_PARAMETER; 857 } 858 859 /* We can ignore the remaining flags */ 860 861 return H_SUCCESS; 862 } 863 864 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target) 865 { 866 struct kvmppc_vcore *vcore = target->arch.vcore; 867 868 /* 869 * We expect to have been called by the real mode handler 870 * (kvmppc_rm_h_confer()) which would have directly returned 871 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may 872 * have useful work to do and should not confer) so we don't 873 * recheck that here. 874 */ 875 876 spin_lock(&vcore->lock); 877 if (target->arch.state == KVMPPC_VCPU_RUNNABLE && 878 vcore->vcore_state != VCORE_INACTIVE && 879 vcore->runner) 880 target = vcore->runner; 881 spin_unlock(&vcore->lock); 882 883 return kvm_vcpu_yield_to(target); 884 } 885 886 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu) 887 { 888 int yield_count = 0; 889 struct lppaca *lppaca; 890 891 spin_lock(&vcpu->arch.vpa_update_lock); 892 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr; 893 if (lppaca) 894 yield_count = be32_to_cpu(lppaca->yield_count); 895 spin_unlock(&vcpu->arch.vpa_update_lock); 896 return yield_count; 897 } 898 899 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu) 900 { 901 unsigned long req = kvmppc_get_gpr(vcpu, 3); 902 unsigned long target, ret = H_SUCCESS; 903 int yield_count; 904 struct kvm_vcpu *tvcpu; 905 int idx, rc; 906 907 if (req <= MAX_HCALL_OPCODE && 908 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls)) 909 return RESUME_HOST; 910 911 switch (req) { 912 case H_CEDE: 913 break; 914 case H_PROD: 915 target = kvmppc_get_gpr(vcpu, 4); 916 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 917 if (!tvcpu) { 918 ret = H_PARAMETER; 919 break; 920 } 921 tvcpu->arch.prodded = 1; 922 smp_mb(); 923 if (tvcpu->arch.ceded) 924 kvmppc_fast_vcpu_kick_hv(tvcpu); 925 break; 926 case H_CONFER: 927 target = kvmppc_get_gpr(vcpu, 4); 928 if (target == -1) 929 break; 930 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target); 931 if (!tvcpu) { 932 ret = H_PARAMETER; 933 break; 934 } 935 yield_count = kvmppc_get_gpr(vcpu, 5); 936 if (kvmppc_get_yield_count(tvcpu) != yield_count) 937 break; 938 kvm_arch_vcpu_yield_to(tvcpu); 939 break; 940 case H_REGISTER_VPA: 941 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4), 942 kvmppc_get_gpr(vcpu, 5), 943 kvmppc_get_gpr(vcpu, 6)); 944 break; 945 case H_RTAS: 946 if (list_empty(&vcpu->kvm->arch.rtas_tokens)) 947 return RESUME_HOST; 948 949 idx = srcu_read_lock(&vcpu->kvm->srcu); 950 rc = kvmppc_rtas_hcall(vcpu); 951 srcu_read_unlock(&vcpu->kvm->srcu, idx); 952 953 if (rc == -ENOENT) 954 return RESUME_HOST; 955 else if (rc == 0) 956 break; 957 958 /* Send the error out to userspace via KVM_RUN */ 959 return rc; 960 case H_LOGICAL_CI_LOAD: 961 ret = kvmppc_h_logical_ci_load(vcpu); 962 if (ret == H_TOO_HARD) 963 return RESUME_HOST; 964 break; 965 case H_LOGICAL_CI_STORE: 966 ret = kvmppc_h_logical_ci_store(vcpu); 967 if (ret == H_TOO_HARD) 968 return RESUME_HOST; 969 break; 970 case H_SET_MODE: 971 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4), 972 kvmppc_get_gpr(vcpu, 5), 973 kvmppc_get_gpr(vcpu, 6), 974 kvmppc_get_gpr(vcpu, 7)); 975 if (ret == H_TOO_HARD) 976 return RESUME_HOST; 977 break; 978 case H_XIRR: 979 case H_CPPR: 980 case H_EOI: 981 case H_IPI: 982 case H_IPOLL: 983 case H_XIRR_X: 984 if (kvmppc_xics_enabled(vcpu)) { 985 if (xics_on_xive()) { 986 ret = H_NOT_AVAILABLE; 987 return RESUME_GUEST; 988 } 989 ret = kvmppc_xics_hcall(vcpu, req); 990 break; 991 } 992 return RESUME_HOST; 993 case H_SET_DABR: 994 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4)); 995 break; 996 case H_SET_XDABR: 997 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4), 998 kvmppc_get_gpr(vcpu, 5)); 999 break; 1000 #ifdef CONFIG_SPAPR_TCE_IOMMU 1001 case H_GET_TCE: 1002 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1003 kvmppc_get_gpr(vcpu, 5)); 1004 if (ret == H_TOO_HARD) 1005 return RESUME_HOST; 1006 break; 1007 case H_PUT_TCE: 1008 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1009 kvmppc_get_gpr(vcpu, 5), 1010 kvmppc_get_gpr(vcpu, 6)); 1011 if (ret == H_TOO_HARD) 1012 return RESUME_HOST; 1013 break; 1014 case H_PUT_TCE_INDIRECT: 1015 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4), 1016 kvmppc_get_gpr(vcpu, 5), 1017 kvmppc_get_gpr(vcpu, 6), 1018 kvmppc_get_gpr(vcpu, 7)); 1019 if (ret == H_TOO_HARD) 1020 return RESUME_HOST; 1021 break; 1022 case H_STUFF_TCE: 1023 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4), 1024 kvmppc_get_gpr(vcpu, 5), 1025 kvmppc_get_gpr(vcpu, 6), 1026 kvmppc_get_gpr(vcpu, 7)); 1027 if (ret == H_TOO_HARD) 1028 return RESUME_HOST; 1029 break; 1030 #endif 1031 case H_RANDOM: 1032 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4])) 1033 ret = H_HARDWARE; 1034 break; 1035 1036 case H_SET_PARTITION_TABLE: 1037 ret = H_FUNCTION; 1038 if (nesting_enabled(vcpu->kvm)) 1039 ret = kvmhv_set_partition_table(vcpu); 1040 break; 1041 case H_ENTER_NESTED: 1042 ret = H_FUNCTION; 1043 if (!nesting_enabled(vcpu->kvm)) 1044 break; 1045 ret = kvmhv_enter_nested_guest(vcpu); 1046 if (ret == H_INTERRUPT) { 1047 kvmppc_set_gpr(vcpu, 3, 0); 1048 vcpu->arch.hcall_needed = 0; 1049 return -EINTR; 1050 } else if (ret == H_TOO_HARD) { 1051 kvmppc_set_gpr(vcpu, 3, 0); 1052 vcpu->arch.hcall_needed = 0; 1053 return RESUME_HOST; 1054 } 1055 break; 1056 case H_TLB_INVALIDATE: 1057 ret = H_FUNCTION; 1058 if (nesting_enabled(vcpu->kvm)) 1059 ret = kvmhv_do_nested_tlbie(vcpu); 1060 break; 1061 case H_COPY_TOFROM_GUEST: 1062 ret = H_FUNCTION; 1063 if (nesting_enabled(vcpu->kvm)) 1064 ret = kvmhv_copy_tofrom_guest_nested(vcpu); 1065 break; 1066 case H_PAGE_INIT: 1067 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4), 1068 kvmppc_get_gpr(vcpu, 5), 1069 kvmppc_get_gpr(vcpu, 6)); 1070 break; 1071 case H_SVM_PAGE_IN: 1072 ret = H_UNSUPPORTED; 1073 if (kvmppc_get_srr1(vcpu) & MSR_S) 1074 ret = kvmppc_h_svm_page_in(vcpu->kvm, 1075 kvmppc_get_gpr(vcpu, 4), 1076 kvmppc_get_gpr(vcpu, 5), 1077 kvmppc_get_gpr(vcpu, 6)); 1078 break; 1079 case H_SVM_PAGE_OUT: 1080 ret = H_UNSUPPORTED; 1081 if (kvmppc_get_srr1(vcpu) & MSR_S) 1082 ret = kvmppc_h_svm_page_out(vcpu->kvm, 1083 kvmppc_get_gpr(vcpu, 4), 1084 kvmppc_get_gpr(vcpu, 5), 1085 kvmppc_get_gpr(vcpu, 6)); 1086 break; 1087 case H_SVM_INIT_START: 1088 ret = H_UNSUPPORTED; 1089 if (kvmppc_get_srr1(vcpu) & MSR_S) 1090 ret = kvmppc_h_svm_init_start(vcpu->kvm); 1091 break; 1092 case H_SVM_INIT_DONE: 1093 ret = H_UNSUPPORTED; 1094 if (kvmppc_get_srr1(vcpu) & MSR_S) 1095 ret = kvmppc_h_svm_init_done(vcpu->kvm); 1096 break; 1097 case H_SVM_INIT_ABORT: 1098 /* 1099 * Even if that call is made by the Ultravisor, the SSR1 value 1100 * is the guest context one, with the secure bit clear as it has 1101 * not yet been secured. So we can't check it here. 1102 * Instead the kvm->arch.secure_guest flag is checked inside 1103 * kvmppc_h_svm_init_abort(). 1104 */ 1105 ret = kvmppc_h_svm_init_abort(vcpu->kvm); 1106 break; 1107 1108 default: 1109 return RESUME_HOST; 1110 } 1111 kvmppc_set_gpr(vcpu, 3, ret); 1112 vcpu->arch.hcall_needed = 0; 1113 return RESUME_GUEST; 1114 } 1115 1116 /* 1117 * Handle H_CEDE in the nested virtualization case where we haven't 1118 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S. 1119 * This has to be done early, not in kvmppc_pseries_do_hcall(), so 1120 * that the cede logic in kvmppc_run_single_vcpu() works properly. 1121 */ 1122 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu) 1123 { 1124 vcpu->arch.shregs.msr |= MSR_EE; 1125 vcpu->arch.ceded = 1; 1126 smp_mb(); 1127 if (vcpu->arch.prodded) { 1128 vcpu->arch.prodded = 0; 1129 smp_mb(); 1130 vcpu->arch.ceded = 0; 1131 } 1132 } 1133 1134 static int kvmppc_hcall_impl_hv(unsigned long cmd) 1135 { 1136 switch (cmd) { 1137 case H_CEDE: 1138 case H_PROD: 1139 case H_CONFER: 1140 case H_REGISTER_VPA: 1141 case H_SET_MODE: 1142 case H_LOGICAL_CI_LOAD: 1143 case H_LOGICAL_CI_STORE: 1144 #ifdef CONFIG_KVM_XICS 1145 case H_XIRR: 1146 case H_CPPR: 1147 case H_EOI: 1148 case H_IPI: 1149 case H_IPOLL: 1150 case H_XIRR_X: 1151 #endif 1152 case H_PAGE_INIT: 1153 return 1; 1154 } 1155 1156 /* See if it's in the real-mode table */ 1157 return kvmppc_hcall_impl_hv_realmode(cmd); 1158 } 1159 1160 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu) 1161 { 1162 u32 last_inst; 1163 1164 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) != 1165 EMULATE_DONE) { 1166 /* 1167 * Fetch failed, so return to guest and 1168 * try executing it again. 1169 */ 1170 return RESUME_GUEST; 1171 } 1172 1173 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) { 1174 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 1175 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu); 1176 return RESUME_HOST; 1177 } else { 1178 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1179 return RESUME_GUEST; 1180 } 1181 } 1182 1183 static void do_nothing(void *x) 1184 { 1185 } 1186 1187 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu) 1188 { 1189 int thr, cpu, pcpu, nthreads; 1190 struct kvm_vcpu *v; 1191 unsigned long dpdes; 1192 1193 nthreads = vcpu->kvm->arch.emul_smt_mode; 1194 dpdes = 0; 1195 cpu = vcpu->vcpu_id & ~(nthreads - 1); 1196 for (thr = 0; thr < nthreads; ++thr, ++cpu) { 1197 v = kvmppc_find_vcpu(vcpu->kvm, cpu); 1198 if (!v) 1199 continue; 1200 /* 1201 * If the vcpu is currently running on a physical cpu thread, 1202 * interrupt it in order to pull it out of the guest briefly, 1203 * which will update its vcore->dpdes value. 1204 */ 1205 pcpu = READ_ONCE(v->cpu); 1206 if (pcpu >= 0) 1207 smp_call_function_single(pcpu, do_nothing, NULL, 1); 1208 if (kvmppc_doorbell_pending(v)) 1209 dpdes |= 1 << thr; 1210 } 1211 return dpdes; 1212 } 1213 1214 /* 1215 * On POWER9, emulate doorbell-related instructions in order to 1216 * give the guest the illusion of running on a multi-threaded core. 1217 * The instructions emulated are msgsndp, msgclrp, mfspr TIR, 1218 * and mfspr DPDES. 1219 */ 1220 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu) 1221 { 1222 u32 inst, rb, thr; 1223 unsigned long arg; 1224 struct kvm *kvm = vcpu->kvm; 1225 struct kvm_vcpu *tvcpu; 1226 1227 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE) 1228 return RESUME_GUEST; 1229 if (get_op(inst) != 31) 1230 return EMULATE_FAIL; 1231 rb = get_rb(inst); 1232 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1); 1233 switch (get_xop(inst)) { 1234 case OP_31_XOP_MSGSNDP: 1235 arg = kvmppc_get_gpr(vcpu, rb); 1236 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1237 break; 1238 arg &= 0x3f; 1239 if (arg >= kvm->arch.emul_smt_mode) 1240 break; 1241 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg); 1242 if (!tvcpu) 1243 break; 1244 if (!tvcpu->arch.doorbell_request) { 1245 tvcpu->arch.doorbell_request = 1; 1246 kvmppc_fast_vcpu_kick_hv(tvcpu); 1247 } 1248 break; 1249 case OP_31_XOP_MSGCLRP: 1250 arg = kvmppc_get_gpr(vcpu, rb); 1251 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER) 1252 break; 1253 vcpu->arch.vcore->dpdes = 0; 1254 vcpu->arch.doorbell_request = 0; 1255 break; 1256 case OP_31_XOP_MFSPR: 1257 switch (get_sprn(inst)) { 1258 case SPRN_TIR: 1259 arg = thr; 1260 break; 1261 case SPRN_DPDES: 1262 arg = kvmppc_read_dpdes(vcpu); 1263 break; 1264 default: 1265 return EMULATE_FAIL; 1266 } 1267 kvmppc_set_gpr(vcpu, get_rt(inst), arg); 1268 break; 1269 default: 1270 return EMULATE_FAIL; 1271 } 1272 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4); 1273 return RESUME_GUEST; 1274 } 1275 1276 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu, 1277 struct task_struct *tsk) 1278 { 1279 struct kvm_run *run = vcpu->run; 1280 int r = RESUME_HOST; 1281 1282 vcpu->stat.sum_exits++; 1283 1284 /* 1285 * This can happen if an interrupt occurs in the last stages 1286 * of guest entry or the first stages of guest exit (i.e. after 1287 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1288 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1289 * That can happen due to a bug, or due to a machine check 1290 * occurring at just the wrong time. 1291 */ 1292 if (vcpu->arch.shregs.msr & MSR_HV) { 1293 printk(KERN_EMERG "KVM trap in HV mode!\n"); 1294 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1295 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1296 vcpu->arch.shregs.msr); 1297 kvmppc_dump_regs(vcpu); 1298 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 1299 run->hw.hardware_exit_reason = vcpu->arch.trap; 1300 return RESUME_HOST; 1301 } 1302 run->exit_reason = KVM_EXIT_UNKNOWN; 1303 run->ready_for_interrupt_injection = 1; 1304 switch (vcpu->arch.trap) { 1305 /* We're good on these - the host merely wanted to get our attention */ 1306 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1307 vcpu->stat.dec_exits++; 1308 r = RESUME_GUEST; 1309 break; 1310 case BOOK3S_INTERRUPT_EXTERNAL: 1311 case BOOK3S_INTERRUPT_H_DOORBELL: 1312 case BOOK3S_INTERRUPT_H_VIRT: 1313 vcpu->stat.ext_intr_exits++; 1314 r = RESUME_GUEST; 1315 break; 1316 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1317 case BOOK3S_INTERRUPT_HMI: 1318 case BOOK3S_INTERRUPT_PERFMON: 1319 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1320 r = RESUME_GUEST; 1321 break; 1322 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1323 /* Print the MCE event to host console. */ 1324 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1325 1326 /* 1327 * If the guest can do FWNMI, exit to userspace so it can 1328 * deliver a FWNMI to the guest. 1329 * Otherwise we synthesize a machine check for the guest 1330 * so that it knows that the machine check occurred. 1331 */ 1332 if (!vcpu->kvm->arch.fwnmi_enabled) { 1333 ulong flags = vcpu->arch.shregs.msr & 0x083c0000; 1334 kvmppc_core_queue_machine_check(vcpu, flags); 1335 r = RESUME_GUEST; 1336 break; 1337 } 1338 1339 /* Exit to guest with KVM_EXIT_NMI as exit reason */ 1340 run->exit_reason = KVM_EXIT_NMI; 1341 run->hw.hardware_exit_reason = vcpu->arch.trap; 1342 /* Clear out the old NMI status from run->flags */ 1343 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK; 1344 /* Now set the NMI status */ 1345 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED) 1346 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV; 1347 else 1348 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV; 1349 1350 r = RESUME_HOST; 1351 break; 1352 case BOOK3S_INTERRUPT_PROGRAM: 1353 { 1354 ulong flags; 1355 /* 1356 * Normally program interrupts are delivered directly 1357 * to the guest by the hardware, but we can get here 1358 * as a result of a hypervisor emulation interrupt 1359 * (e40) getting turned into a 700 by BML RTAS. 1360 */ 1361 flags = vcpu->arch.shregs.msr & 0x1f0000ull; 1362 kvmppc_core_queue_program(vcpu, flags); 1363 r = RESUME_GUEST; 1364 break; 1365 } 1366 case BOOK3S_INTERRUPT_SYSCALL: 1367 { 1368 /* hcall - punt to userspace */ 1369 int i; 1370 1371 /* hypercall with MSR_PR has already been handled in rmode, 1372 * and never reaches here. 1373 */ 1374 1375 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3); 1376 for (i = 0; i < 9; ++i) 1377 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i); 1378 run->exit_reason = KVM_EXIT_PAPR_HCALL; 1379 vcpu->arch.hcall_needed = 1; 1380 r = RESUME_HOST; 1381 break; 1382 } 1383 /* 1384 * We get these next two if the guest accesses a page which it thinks 1385 * it has mapped but which is not actually present, either because 1386 * it is for an emulated I/O device or because the corresonding 1387 * host page has been paged out. Any other HDSI/HISI interrupts 1388 * have been handled already. 1389 */ 1390 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1391 r = RESUME_PAGE_FAULT; 1392 break; 1393 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1394 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1395 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr & 1396 DSISR_SRR1_MATCH_64S; 1397 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1398 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1399 r = RESUME_PAGE_FAULT; 1400 break; 1401 /* 1402 * This occurs if the guest executes an illegal instruction. 1403 * If the guest debug is disabled, generate a program interrupt 1404 * to the guest. If guest debug is enabled, we need to check 1405 * whether the instruction is a software breakpoint instruction. 1406 * Accordingly return to Guest or Host. 1407 */ 1408 case BOOK3S_INTERRUPT_H_EMUL_ASSIST: 1409 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED) 1410 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ? 1411 swab32(vcpu->arch.emul_inst) : 1412 vcpu->arch.emul_inst; 1413 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) { 1414 r = kvmppc_emulate_debug_inst(vcpu); 1415 } else { 1416 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1417 r = RESUME_GUEST; 1418 } 1419 break; 1420 /* 1421 * This occurs if the guest (kernel or userspace), does something that 1422 * is prohibited by HFSCR. 1423 * On POWER9, this could be a doorbell instruction that we need 1424 * to emulate. 1425 * Otherwise, we just generate a program interrupt to the guest. 1426 */ 1427 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: 1428 r = EMULATE_FAIL; 1429 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) && 1430 cpu_has_feature(CPU_FTR_ARCH_300)) 1431 r = kvmppc_emulate_doorbell_instr(vcpu); 1432 if (r == EMULATE_FAIL) { 1433 kvmppc_core_queue_program(vcpu, SRR1_PROGILL); 1434 r = RESUME_GUEST; 1435 } 1436 break; 1437 1438 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1439 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1440 /* 1441 * This occurs for various TM-related instructions that 1442 * we need to emulate on POWER9 DD2.2. We have already 1443 * handled the cases where the guest was in real-suspend 1444 * mode and was transitioning to transactional state. 1445 */ 1446 r = kvmhv_p9_tm_emulation(vcpu); 1447 break; 1448 #endif 1449 1450 case BOOK3S_INTERRUPT_HV_RM_HARD: 1451 r = RESUME_PASSTHROUGH; 1452 break; 1453 default: 1454 kvmppc_dump_regs(vcpu); 1455 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1456 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1457 vcpu->arch.shregs.msr); 1458 run->hw.hardware_exit_reason = vcpu->arch.trap; 1459 r = RESUME_HOST; 1460 break; 1461 } 1462 1463 return r; 1464 } 1465 1466 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu) 1467 { 1468 int r; 1469 int srcu_idx; 1470 1471 vcpu->stat.sum_exits++; 1472 1473 /* 1474 * This can happen if an interrupt occurs in the last stages 1475 * of guest entry or the first stages of guest exit (i.e. after 1476 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV 1477 * and before setting it to KVM_GUEST_MODE_HOST_HV). 1478 * That can happen due to a bug, or due to a machine check 1479 * occurring at just the wrong time. 1480 */ 1481 if (vcpu->arch.shregs.msr & MSR_HV) { 1482 pr_emerg("KVM trap in HV mode while nested!\n"); 1483 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n", 1484 vcpu->arch.trap, kvmppc_get_pc(vcpu), 1485 vcpu->arch.shregs.msr); 1486 kvmppc_dump_regs(vcpu); 1487 return RESUME_HOST; 1488 } 1489 switch (vcpu->arch.trap) { 1490 /* We're good on these - the host merely wanted to get our attention */ 1491 case BOOK3S_INTERRUPT_HV_DECREMENTER: 1492 vcpu->stat.dec_exits++; 1493 r = RESUME_GUEST; 1494 break; 1495 case BOOK3S_INTERRUPT_EXTERNAL: 1496 vcpu->stat.ext_intr_exits++; 1497 r = RESUME_HOST; 1498 break; 1499 case BOOK3S_INTERRUPT_H_DOORBELL: 1500 case BOOK3S_INTERRUPT_H_VIRT: 1501 vcpu->stat.ext_intr_exits++; 1502 r = RESUME_GUEST; 1503 break; 1504 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/ 1505 case BOOK3S_INTERRUPT_HMI: 1506 case BOOK3S_INTERRUPT_PERFMON: 1507 case BOOK3S_INTERRUPT_SYSTEM_RESET: 1508 r = RESUME_GUEST; 1509 break; 1510 case BOOK3S_INTERRUPT_MACHINE_CHECK: 1511 /* Pass the machine check to the L1 guest */ 1512 r = RESUME_HOST; 1513 /* Print the MCE event to host console. */ 1514 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true); 1515 break; 1516 /* 1517 * We get these next two if the guest accesses a page which it thinks 1518 * it has mapped but which is not actually present, either because 1519 * it is for an emulated I/O device or because the corresonding 1520 * host page has been paged out. 1521 */ 1522 case BOOK3S_INTERRUPT_H_DATA_STORAGE: 1523 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1524 r = kvmhv_nested_page_fault(vcpu); 1525 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1526 break; 1527 case BOOK3S_INTERRUPT_H_INST_STORAGE: 1528 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu); 1529 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) & 1530 DSISR_SRR1_MATCH_64S; 1531 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE) 1532 vcpu->arch.fault_dsisr |= DSISR_ISSTORE; 1533 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 1534 r = kvmhv_nested_page_fault(vcpu); 1535 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 1536 break; 1537 1538 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1539 case BOOK3S_INTERRUPT_HV_SOFTPATCH: 1540 /* 1541 * This occurs for various TM-related instructions that 1542 * we need to emulate on POWER9 DD2.2. We have already 1543 * handled the cases where the guest was in real-suspend 1544 * mode and was transitioning to transactional state. 1545 */ 1546 r = kvmhv_p9_tm_emulation(vcpu); 1547 break; 1548 #endif 1549 1550 case BOOK3S_INTERRUPT_HV_RM_HARD: 1551 vcpu->arch.trap = 0; 1552 r = RESUME_GUEST; 1553 if (!xics_on_xive()) 1554 kvmppc_xics_rm_complete(vcpu, 0); 1555 break; 1556 default: 1557 r = RESUME_HOST; 1558 break; 1559 } 1560 1561 return r; 1562 } 1563 1564 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu, 1565 struct kvm_sregs *sregs) 1566 { 1567 int i; 1568 1569 memset(sregs, 0, sizeof(struct kvm_sregs)); 1570 sregs->pvr = vcpu->arch.pvr; 1571 for (i = 0; i < vcpu->arch.slb_max; i++) { 1572 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige; 1573 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; 1574 } 1575 1576 return 0; 1577 } 1578 1579 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu, 1580 struct kvm_sregs *sregs) 1581 { 1582 int i, j; 1583 1584 /* Only accept the same PVR as the host's, since we can't spoof it */ 1585 if (sregs->pvr != vcpu->arch.pvr) 1586 return -EINVAL; 1587 1588 j = 0; 1589 for (i = 0; i < vcpu->arch.slb_nr; i++) { 1590 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) { 1591 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe; 1592 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv; 1593 ++j; 1594 } 1595 } 1596 vcpu->arch.slb_max = j; 1597 1598 return 0; 1599 } 1600 1601 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr, 1602 bool preserve_top32) 1603 { 1604 struct kvm *kvm = vcpu->kvm; 1605 struct kvmppc_vcore *vc = vcpu->arch.vcore; 1606 u64 mask; 1607 1608 spin_lock(&vc->lock); 1609 /* 1610 * If ILE (interrupt little-endian) has changed, update the 1611 * MSR_LE bit in the intr_msr for each vcpu in this vcore. 1612 */ 1613 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) { 1614 struct kvm_vcpu *vcpu; 1615 int i; 1616 1617 kvm_for_each_vcpu(i, vcpu, kvm) { 1618 if (vcpu->arch.vcore != vc) 1619 continue; 1620 if (new_lpcr & LPCR_ILE) 1621 vcpu->arch.intr_msr |= MSR_LE; 1622 else 1623 vcpu->arch.intr_msr &= ~MSR_LE; 1624 } 1625 } 1626 1627 /* 1628 * Userspace can only modify DPFD (default prefetch depth), 1629 * ILE (interrupt little-endian) and TC (translation control). 1630 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.). 1631 */ 1632 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC; 1633 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 1634 mask |= LPCR_AIL; 1635 /* 1636 * On POWER9, allow userspace to enable large decrementer for the 1637 * guest, whether or not the host has it enabled. 1638 */ 1639 if (cpu_has_feature(CPU_FTR_ARCH_300)) 1640 mask |= LPCR_LD; 1641 1642 /* Broken 32-bit version of LPCR must not clear top bits */ 1643 if (preserve_top32) 1644 mask &= 0xFFFFFFFF; 1645 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask); 1646 spin_unlock(&vc->lock); 1647 } 1648 1649 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1650 union kvmppc_one_reg *val) 1651 { 1652 int r = 0; 1653 long int i; 1654 1655 switch (id) { 1656 case KVM_REG_PPC_DEBUG_INST: 1657 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); 1658 break; 1659 case KVM_REG_PPC_HIOR: 1660 *val = get_reg_val(id, 0); 1661 break; 1662 case KVM_REG_PPC_DABR: 1663 *val = get_reg_val(id, vcpu->arch.dabr); 1664 break; 1665 case KVM_REG_PPC_DABRX: 1666 *val = get_reg_val(id, vcpu->arch.dabrx); 1667 break; 1668 case KVM_REG_PPC_DSCR: 1669 *val = get_reg_val(id, vcpu->arch.dscr); 1670 break; 1671 case KVM_REG_PPC_PURR: 1672 *val = get_reg_val(id, vcpu->arch.purr); 1673 break; 1674 case KVM_REG_PPC_SPURR: 1675 *val = get_reg_val(id, vcpu->arch.spurr); 1676 break; 1677 case KVM_REG_PPC_AMR: 1678 *val = get_reg_val(id, vcpu->arch.amr); 1679 break; 1680 case KVM_REG_PPC_UAMOR: 1681 *val = get_reg_val(id, vcpu->arch.uamor); 1682 break; 1683 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1684 i = id - KVM_REG_PPC_MMCR0; 1685 *val = get_reg_val(id, vcpu->arch.mmcr[i]); 1686 break; 1687 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1688 i = id - KVM_REG_PPC_PMC1; 1689 *val = get_reg_val(id, vcpu->arch.pmc[i]); 1690 break; 1691 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1692 i = id - KVM_REG_PPC_SPMC1; 1693 *val = get_reg_val(id, vcpu->arch.spmc[i]); 1694 break; 1695 case KVM_REG_PPC_SIAR: 1696 *val = get_reg_val(id, vcpu->arch.siar); 1697 break; 1698 case KVM_REG_PPC_SDAR: 1699 *val = get_reg_val(id, vcpu->arch.sdar); 1700 break; 1701 case KVM_REG_PPC_SIER: 1702 *val = get_reg_val(id, vcpu->arch.sier); 1703 break; 1704 case KVM_REG_PPC_IAMR: 1705 *val = get_reg_val(id, vcpu->arch.iamr); 1706 break; 1707 case KVM_REG_PPC_PSPB: 1708 *val = get_reg_val(id, vcpu->arch.pspb); 1709 break; 1710 case KVM_REG_PPC_DPDES: 1711 /* 1712 * On POWER9, where we are emulating msgsndp etc., 1713 * we return 1 bit for each vcpu, which can come from 1714 * either vcore->dpdes or doorbell_request. 1715 * On POWER8, doorbell_request is 0. 1716 */ 1717 *val = get_reg_val(id, vcpu->arch.vcore->dpdes | 1718 vcpu->arch.doorbell_request); 1719 break; 1720 case KVM_REG_PPC_VTB: 1721 *val = get_reg_val(id, vcpu->arch.vcore->vtb); 1722 break; 1723 case KVM_REG_PPC_DAWR: 1724 *val = get_reg_val(id, vcpu->arch.dawr); 1725 break; 1726 case KVM_REG_PPC_DAWRX: 1727 *val = get_reg_val(id, vcpu->arch.dawrx); 1728 break; 1729 case KVM_REG_PPC_CIABR: 1730 *val = get_reg_val(id, vcpu->arch.ciabr); 1731 break; 1732 case KVM_REG_PPC_CSIGR: 1733 *val = get_reg_val(id, vcpu->arch.csigr); 1734 break; 1735 case KVM_REG_PPC_TACR: 1736 *val = get_reg_val(id, vcpu->arch.tacr); 1737 break; 1738 case KVM_REG_PPC_TCSCR: 1739 *val = get_reg_val(id, vcpu->arch.tcscr); 1740 break; 1741 case KVM_REG_PPC_PID: 1742 *val = get_reg_val(id, vcpu->arch.pid); 1743 break; 1744 case KVM_REG_PPC_ACOP: 1745 *val = get_reg_val(id, vcpu->arch.acop); 1746 break; 1747 case KVM_REG_PPC_WORT: 1748 *val = get_reg_val(id, vcpu->arch.wort); 1749 break; 1750 case KVM_REG_PPC_TIDR: 1751 *val = get_reg_val(id, vcpu->arch.tid); 1752 break; 1753 case KVM_REG_PPC_PSSCR: 1754 *val = get_reg_val(id, vcpu->arch.psscr); 1755 break; 1756 case KVM_REG_PPC_VPA_ADDR: 1757 spin_lock(&vcpu->arch.vpa_update_lock); 1758 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa); 1759 spin_unlock(&vcpu->arch.vpa_update_lock); 1760 break; 1761 case KVM_REG_PPC_VPA_SLB: 1762 spin_lock(&vcpu->arch.vpa_update_lock); 1763 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa; 1764 val->vpaval.length = vcpu->arch.slb_shadow.len; 1765 spin_unlock(&vcpu->arch.vpa_update_lock); 1766 break; 1767 case KVM_REG_PPC_VPA_DTL: 1768 spin_lock(&vcpu->arch.vpa_update_lock); 1769 val->vpaval.addr = vcpu->arch.dtl.next_gpa; 1770 val->vpaval.length = vcpu->arch.dtl.len; 1771 spin_unlock(&vcpu->arch.vpa_update_lock); 1772 break; 1773 case KVM_REG_PPC_TB_OFFSET: 1774 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset); 1775 break; 1776 case KVM_REG_PPC_LPCR: 1777 case KVM_REG_PPC_LPCR_64: 1778 *val = get_reg_val(id, vcpu->arch.vcore->lpcr); 1779 break; 1780 case KVM_REG_PPC_PPR: 1781 *val = get_reg_val(id, vcpu->arch.ppr); 1782 break; 1783 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1784 case KVM_REG_PPC_TFHAR: 1785 *val = get_reg_val(id, vcpu->arch.tfhar); 1786 break; 1787 case KVM_REG_PPC_TFIAR: 1788 *val = get_reg_val(id, vcpu->arch.tfiar); 1789 break; 1790 case KVM_REG_PPC_TEXASR: 1791 *val = get_reg_val(id, vcpu->arch.texasr); 1792 break; 1793 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 1794 i = id - KVM_REG_PPC_TM_GPR0; 1795 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]); 1796 break; 1797 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 1798 { 1799 int j; 1800 i = id - KVM_REG_PPC_TM_VSR0; 1801 if (i < 32) 1802 for (j = 0; j < TS_FPRWIDTH; j++) 1803 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; 1804 else { 1805 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1806 val->vval = vcpu->arch.vr_tm.vr[i-32]; 1807 else 1808 r = -ENXIO; 1809 } 1810 break; 1811 } 1812 case KVM_REG_PPC_TM_CR: 1813 *val = get_reg_val(id, vcpu->arch.cr_tm); 1814 break; 1815 case KVM_REG_PPC_TM_XER: 1816 *val = get_reg_val(id, vcpu->arch.xer_tm); 1817 break; 1818 case KVM_REG_PPC_TM_LR: 1819 *val = get_reg_val(id, vcpu->arch.lr_tm); 1820 break; 1821 case KVM_REG_PPC_TM_CTR: 1822 *val = get_reg_val(id, vcpu->arch.ctr_tm); 1823 break; 1824 case KVM_REG_PPC_TM_FPSCR: 1825 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); 1826 break; 1827 case KVM_REG_PPC_TM_AMR: 1828 *val = get_reg_val(id, vcpu->arch.amr_tm); 1829 break; 1830 case KVM_REG_PPC_TM_PPR: 1831 *val = get_reg_val(id, vcpu->arch.ppr_tm); 1832 break; 1833 case KVM_REG_PPC_TM_VRSAVE: 1834 *val = get_reg_val(id, vcpu->arch.vrsave_tm); 1835 break; 1836 case KVM_REG_PPC_TM_VSCR: 1837 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1838 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); 1839 else 1840 r = -ENXIO; 1841 break; 1842 case KVM_REG_PPC_TM_DSCR: 1843 *val = get_reg_val(id, vcpu->arch.dscr_tm); 1844 break; 1845 case KVM_REG_PPC_TM_TAR: 1846 *val = get_reg_val(id, vcpu->arch.tar_tm); 1847 break; 1848 #endif 1849 case KVM_REG_PPC_ARCH_COMPAT: 1850 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat); 1851 break; 1852 case KVM_REG_PPC_DEC_EXPIRY: 1853 *val = get_reg_val(id, vcpu->arch.dec_expires + 1854 vcpu->arch.vcore->tb_offset); 1855 break; 1856 case KVM_REG_PPC_ONLINE: 1857 *val = get_reg_val(id, vcpu->arch.online); 1858 break; 1859 case KVM_REG_PPC_PTCR: 1860 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr); 1861 break; 1862 default: 1863 r = -EINVAL; 1864 break; 1865 } 1866 1867 return r; 1868 } 1869 1870 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id, 1871 union kvmppc_one_reg *val) 1872 { 1873 int r = 0; 1874 long int i; 1875 unsigned long addr, len; 1876 1877 switch (id) { 1878 case KVM_REG_PPC_HIOR: 1879 /* Only allow this to be set to zero */ 1880 if (set_reg_val(id, *val)) 1881 r = -EINVAL; 1882 break; 1883 case KVM_REG_PPC_DABR: 1884 vcpu->arch.dabr = set_reg_val(id, *val); 1885 break; 1886 case KVM_REG_PPC_DABRX: 1887 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP; 1888 break; 1889 case KVM_REG_PPC_DSCR: 1890 vcpu->arch.dscr = set_reg_val(id, *val); 1891 break; 1892 case KVM_REG_PPC_PURR: 1893 vcpu->arch.purr = set_reg_val(id, *val); 1894 break; 1895 case KVM_REG_PPC_SPURR: 1896 vcpu->arch.spurr = set_reg_val(id, *val); 1897 break; 1898 case KVM_REG_PPC_AMR: 1899 vcpu->arch.amr = set_reg_val(id, *val); 1900 break; 1901 case KVM_REG_PPC_UAMOR: 1902 vcpu->arch.uamor = set_reg_val(id, *val); 1903 break; 1904 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS: 1905 i = id - KVM_REG_PPC_MMCR0; 1906 vcpu->arch.mmcr[i] = set_reg_val(id, *val); 1907 break; 1908 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8: 1909 i = id - KVM_REG_PPC_PMC1; 1910 vcpu->arch.pmc[i] = set_reg_val(id, *val); 1911 break; 1912 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2: 1913 i = id - KVM_REG_PPC_SPMC1; 1914 vcpu->arch.spmc[i] = set_reg_val(id, *val); 1915 break; 1916 case KVM_REG_PPC_SIAR: 1917 vcpu->arch.siar = set_reg_val(id, *val); 1918 break; 1919 case KVM_REG_PPC_SDAR: 1920 vcpu->arch.sdar = set_reg_val(id, *val); 1921 break; 1922 case KVM_REG_PPC_SIER: 1923 vcpu->arch.sier = set_reg_val(id, *val); 1924 break; 1925 case KVM_REG_PPC_IAMR: 1926 vcpu->arch.iamr = set_reg_val(id, *val); 1927 break; 1928 case KVM_REG_PPC_PSPB: 1929 vcpu->arch.pspb = set_reg_val(id, *val); 1930 break; 1931 case KVM_REG_PPC_DPDES: 1932 vcpu->arch.vcore->dpdes = set_reg_val(id, *val); 1933 break; 1934 case KVM_REG_PPC_VTB: 1935 vcpu->arch.vcore->vtb = set_reg_val(id, *val); 1936 break; 1937 case KVM_REG_PPC_DAWR: 1938 vcpu->arch.dawr = set_reg_val(id, *val); 1939 break; 1940 case KVM_REG_PPC_DAWRX: 1941 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP; 1942 break; 1943 case KVM_REG_PPC_CIABR: 1944 vcpu->arch.ciabr = set_reg_val(id, *val); 1945 /* Don't allow setting breakpoints in hypervisor code */ 1946 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER) 1947 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */ 1948 break; 1949 case KVM_REG_PPC_CSIGR: 1950 vcpu->arch.csigr = set_reg_val(id, *val); 1951 break; 1952 case KVM_REG_PPC_TACR: 1953 vcpu->arch.tacr = set_reg_val(id, *val); 1954 break; 1955 case KVM_REG_PPC_TCSCR: 1956 vcpu->arch.tcscr = set_reg_val(id, *val); 1957 break; 1958 case KVM_REG_PPC_PID: 1959 vcpu->arch.pid = set_reg_val(id, *val); 1960 break; 1961 case KVM_REG_PPC_ACOP: 1962 vcpu->arch.acop = set_reg_val(id, *val); 1963 break; 1964 case KVM_REG_PPC_WORT: 1965 vcpu->arch.wort = set_reg_val(id, *val); 1966 break; 1967 case KVM_REG_PPC_TIDR: 1968 vcpu->arch.tid = set_reg_val(id, *val); 1969 break; 1970 case KVM_REG_PPC_PSSCR: 1971 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS; 1972 break; 1973 case KVM_REG_PPC_VPA_ADDR: 1974 addr = set_reg_val(id, *val); 1975 r = -EINVAL; 1976 if (!addr && (vcpu->arch.slb_shadow.next_gpa || 1977 vcpu->arch.dtl.next_gpa)) 1978 break; 1979 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca)); 1980 break; 1981 case KVM_REG_PPC_VPA_SLB: 1982 addr = val->vpaval.addr; 1983 len = val->vpaval.length; 1984 r = -EINVAL; 1985 if (addr && !vcpu->arch.vpa.next_gpa) 1986 break; 1987 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len); 1988 break; 1989 case KVM_REG_PPC_VPA_DTL: 1990 addr = val->vpaval.addr; 1991 len = val->vpaval.length; 1992 r = -EINVAL; 1993 if (addr && (len < sizeof(struct dtl_entry) || 1994 !vcpu->arch.vpa.next_gpa)) 1995 break; 1996 len -= len % sizeof(struct dtl_entry); 1997 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len); 1998 break; 1999 case KVM_REG_PPC_TB_OFFSET: 2000 /* round up to multiple of 2^24 */ 2001 vcpu->arch.vcore->tb_offset = 2002 ALIGN(set_reg_val(id, *val), 1UL << 24); 2003 break; 2004 case KVM_REG_PPC_LPCR: 2005 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true); 2006 break; 2007 case KVM_REG_PPC_LPCR_64: 2008 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false); 2009 break; 2010 case KVM_REG_PPC_PPR: 2011 vcpu->arch.ppr = set_reg_val(id, *val); 2012 break; 2013 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 2014 case KVM_REG_PPC_TFHAR: 2015 vcpu->arch.tfhar = set_reg_val(id, *val); 2016 break; 2017 case KVM_REG_PPC_TFIAR: 2018 vcpu->arch.tfiar = set_reg_val(id, *val); 2019 break; 2020 case KVM_REG_PPC_TEXASR: 2021 vcpu->arch.texasr = set_reg_val(id, *val); 2022 break; 2023 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: 2024 i = id - KVM_REG_PPC_TM_GPR0; 2025 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val); 2026 break; 2027 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: 2028 { 2029 int j; 2030 i = id - KVM_REG_PPC_TM_VSR0; 2031 if (i < 32) 2032 for (j = 0; j < TS_FPRWIDTH; j++) 2033 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; 2034 else 2035 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2036 vcpu->arch.vr_tm.vr[i-32] = val->vval; 2037 else 2038 r = -ENXIO; 2039 break; 2040 } 2041 case KVM_REG_PPC_TM_CR: 2042 vcpu->arch.cr_tm = set_reg_val(id, *val); 2043 break; 2044 case KVM_REG_PPC_TM_XER: 2045 vcpu->arch.xer_tm = set_reg_val(id, *val); 2046 break; 2047 case KVM_REG_PPC_TM_LR: 2048 vcpu->arch.lr_tm = set_reg_val(id, *val); 2049 break; 2050 case KVM_REG_PPC_TM_CTR: 2051 vcpu->arch.ctr_tm = set_reg_val(id, *val); 2052 break; 2053 case KVM_REG_PPC_TM_FPSCR: 2054 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); 2055 break; 2056 case KVM_REG_PPC_TM_AMR: 2057 vcpu->arch.amr_tm = set_reg_val(id, *val); 2058 break; 2059 case KVM_REG_PPC_TM_PPR: 2060 vcpu->arch.ppr_tm = set_reg_val(id, *val); 2061 break; 2062 case KVM_REG_PPC_TM_VRSAVE: 2063 vcpu->arch.vrsave_tm = set_reg_val(id, *val); 2064 break; 2065 case KVM_REG_PPC_TM_VSCR: 2066 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 2067 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); 2068 else 2069 r = - ENXIO; 2070 break; 2071 case KVM_REG_PPC_TM_DSCR: 2072 vcpu->arch.dscr_tm = set_reg_val(id, *val); 2073 break; 2074 case KVM_REG_PPC_TM_TAR: 2075 vcpu->arch.tar_tm = set_reg_val(id, *val); 2076 break; 2077 #endif 2078 case KVM_REG_PPC_ARCH_COMPAT: 2079 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val)); 2080 break; 2081 case KVM_REG_PPC_DEC_EXPIRY: 2082 vcpu->arch.dec_expires = set_reg_val(id, *val) - 2083 vcpu->arch.vcore->tb_offset; 2084 break; 2085 case KVM_REG_PPC_ONLINE: 2086 i = set_reg_val(id, *val); 2087 if (i && !vcpu->arch.online) 2088 atomic_inc(&vcpu->arch.vcore->online_count); 2089 else if (!i && vcpu->arch.online) 2090 atomic_dec(&vcpu->arch.vcore->online_count); 2091 vcpu->arch.online = i; 2092 break; 2093 case KVM_REG_PPC_PTCR: 2094 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val); 2095 break; 2096 default: 2097 r = -EINVAL; 2098 break; 2099 } 2100 2101 return r; 2102 } 2103 2104 /* 2105 * On POWER9, threads are independent and can be in different partitions. 2106 * Therefore we consider each thread to be a subcore. 2107 * There is a restriction that all threads have to be in the same 2108 * MMU mode (radix or HPT), unfortunately, but since we only support 2109 * HPT guests on a HPT host so far, that isn't an impediment yet. 2110 */ 2111 static int threads_per_vcore(struct kvm *kvm) 2112 { 2113 if (kvm->arch.threads_indep) 2114 return 1; 2115 return threads_per_subcore; 2116 } 2117 2118 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id) 2119 { 2120 struct kvmppc_vcore *vcore; 2121 2122 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL); 2123 2124 if (vcore == NULL) 2125 return NULL; 2126 2127 spin_lock_init(&vcore->lock); 2128 spin_lock_init(&vcore->stoltb_lock); 2129 rcuwait_init(&vcore->wait); 2130 vcore->preempt_tb = TB_NIL; 2131 vcore->lpcr = kvm->arch.lpcr; 2132 vcore->first_vcpuid = id; 2133 vcore->kvm = kvm; 2134 INIT_LIST_HEAD(&vcore->preempt_list); 2135 2136 return vcore; 2137 } 2138 2139 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING 2140 static struct debugfs_timings_element { 2141 const char *name; 2142 size_t offset; 2143 } timings[] = { 2144 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)}, 2145 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)}, 2146 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)}, 2147 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)}, 2148 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)}, 2149 }; 2150 2151 #define N_TIMINGS (ARRAY_SIZE(timings)) 2152 2153 struct debugfs_timings_state { 2154 struct kvm_vcpu *vcpu; 2155 unsigned int buflen; 2156 char buf[N_TIMINGS * 100]; 2157 }; 2158 2159 static int debugfs_timings_open(struct inode *inode, struct file *file) 2160 { 2161 struct kvm_vcpu *vcpu = inode->i_private; 2162 struct debugfs_timings_state *p; 2163 2164 p = kzalloc(sizeof(*p), GFP_KERNEL); 2165 if (!p) 2166 return -ENOMEM; 2167 2168 kvm_get_kvm(vcpu->kvm); 2169 p->vcpu = vcpu; 2170 file->private_data = p; 2171 2172 return nonseekable_open(inode, file); 2173 } 2174 2175 static int debugfs_timings_release(struct inode *inode, struct file *file) 2176 { 2177 struct debugfs_timings_state *p = file->private_data; 2178 2179 kvm_put_kvm(p->vcpu->kvm); 2180 kfree(p); 2181 return 0; 2182 } 2183 2184 static ssize_t debugfs_timings_read(struct file *file, char __user *buf, 2185 size_t len, loff_t *ppos) 2186 { 2187 struct debugfs_timings_state *p = file->private_data; 2188 struct kvm_vcpu *vcpu = p->vcpu; 2189 char *s, *buf_end; 2190 struct kvmhv_tb_accumulator tb; 2191 u64 count; 2192 loff_t pos; 2193 ssize_t n; 2194 int i, loops; 2195 bool ok; 2196 2197 if (!p->buflen) { 2198 s = p->buf; 2199 buf_end = s + sizeof(p->buf); 2200 for (i = 0; i < N_TIMINGS; ++i) { 2201 struct kvmhv_tb_accumulator *acc; 2202 2203 acc = (struct kvmhv_tb_accumulator *) 2204 ((unsigned long)vcpu + timings[i].offset); 2205 ok = false; 2206 for (loops = 0; loops < 1000; ++loops) { 2207 count = acc->seqcount; 2208 if (!(count & 1)) { 2209 smp_rmb(); 2210 tb = *acc; 2211 smp_rmb(); 2212 if (count == acc->seqcount) { 2213 ok = true; 2214 break; 2215 } 2216 } 2217 udelay(1); 2218 } 2219 if (!ok) 2220 snprintf(s, buf_end - s, "%s: stuck\n", 2221 timings[i].name); 2222 else 2223 snprintf(s, buf_end - s, 2224 "%s: %llu %llu %llu %llu\n", 2225 timings[i].name, count / 2, 2226 tb_to_ns(tb.tb_total), 2227 tb_to_ns(tb.tb_min), 2228 tb_to_ns(tb.tb_max)); 2229 s += strlen(s); 2230 } 2231 p->buflen = s - p->buf; 2232 } 2233 2234 pos = *ppos; 2235 if (pos >= p->buflen) 2236 return 0; 2237 if (len > p->buflen - pos) 2238 len = p->buflen - pos; 2239 n = copy_to_user(buf, p->buf + pos, len); 2240 if (n) { 2241 if (n == len) 2242 return -EFAULT; 2243 len -= n; 2244 } 2245 *ppos = pos + len; 2246 return len; 2247 } 2248 2249 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf, 2250 size_t len, loff_t *ppos) 2251 { 2252 return -EACCES; 2253 } 2254 2255 static const struct file_operations debugfs_timings_ops = { 2256 .owner = THIS_MODULE, 2257 .open = debugfs_timings_open, 2258 .release = debugfs_timings_release, 2259 .read = debugfs_timings_read, 2260 .write = debugfs_timings_write, 2261 .llseek = generic_file_llseek, 2262 }; 2263 2264 /* Create a debugfs directory for the vcpu */ 2265 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2266 { 2267 char buf[16]; 2268 struct kvm *kvm = vcpu->kvm; 2269 2270 snprintf(buf, sizeof(buf), "vcpu%u", id); 2271 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir); 2272 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu, 2273 &debugfs_timings_ops); 2274 } 2275 2276 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2277 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id) 2278 { 2279 } 2280 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */ 2281 2282 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu) 2283 { 2284 int err; 2285 int core; 2286 struct kvmppc_vcore *vcore; 2287 struct kvm *kvm; 2288 unsigned int id; 2289 2290 kvm = vcpu->kvm; 2291 id = vcpu->vcpu_id; 2292 2293 vcpu->arch.shared = &vcpu->arch.shregs; 2294 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE 2295 /* 2296 * The shared struct is never shared on HV, 2297 * so we can always use host endianness 2298 */ 2299 #ifdef __BIG_ENDIAN__ 2300 vcpu->arch.shared_big_endian = true; 2301 #else 2302 vcpu->arch.shared_big_endian = false; 2303 #endif 2304 #endif 2305 vcpu->arch.mmcr[0] = MMCR0_FC; 2306 vcpu->arch.ctrl = CTRL_RUNLATCH; 2307 /* default to host PVR, since we can't spoof it */ 2308 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR)); 2309 spin_lock_init(&vcpu->arch.vpa_update_lock); 2310 spin_lock_init(&vcpu->arch.tbacct_lock); 2311 vcpu->arch.busy_preempt = TB_NIL; 2312 vcpu->arch.intr_msr = MSR_SF | MSR_ME; 2313 2314 /* 2315 * Set the default HFSCR for the guest from the host value. 2316 * This value is only used on POWER9. 2317 * On POWER9, we want to virtualize the doorbell facility, so we 2318 * don't set the HFSCR_MSGP bit, and that causes those instructions 2319 * to trap and then we emulate them. 2320 */ 2321 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB | 2322 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP; 2323 if (cpu_has_feature(CPU_FTR_HVMODE)) { 2324 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR); 2325 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 2326 vcpu->arch.hfscr |= HFSCR_TM; 2327 } 2328 if (cpu_has_feature(CPU_FTR_TM_COMP)) 2329 vcpu->arch.hfscr |= HFSCR_TM; 2330 2331 kvmppc_mmu_book3s_hv_init(vcpu); 2332 2333 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 2334 2335 init_waitqueue_head(&vcpu->arch.cpu_run); 2336 2337 mutex_lock(&kvm->lock); 2338 vcore = NULL; 2339 err = -EINVAL; 2340 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 2341 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) { 2342 pr_devel("KVM: VCPU ID too high\n"); 2343 core = KVM_MAX_VCORES; 2344 } else { 2345 BUG_ON(kvm->arch.smt_mode != 1); 2346 core = kvmppc_pack_vcpu_id(kvm, id); 2347 } 2348 } else { 2349 core = id / kvm->arch.smt_mode; 2350 } 2351 if (core < KVM_MAX_VCORES) { 2352 vcore = kvm->arch.vcores[core]; 2353 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) { 2354 pr_devel("KVM: collision on id %u", id); 2355 vcore = NULL; 2356 } else if (!vcore) { 2357 /* 2358 * Take mmu_setup_lock for mutual exclusion 2359 * with kvmppc_update_lpcr(). 2360 */ 2361 err = -ENOMEM; 2362 vcore = kvmppc_vcore_create(kvm, 2363 id & ~(kvm->arch.smt_mode - 1)); 2364 mutex_lock(&kvm->arch.mmu_setup_lock); 2365 kvm->arch.vcores[core] = vcore; 2366 kvm->arch.online_vcores++; 2367 mutex_unlock(&kvm->arch.mmu_setup_lock); 2368 } 2369 } 2370 mutex_unlock(&kvm->lock); 2371 2372 if (!vcore) 2373 return err; 2374 2375 spin_lock(&vcore->lock); 2376 ++vcore->num_threads; 2377 spin_unlock(&vcore->lock); 2378 vcpu->arch.vcore = vcore; 2379 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid; 2380 vcpu->arch.thread_cpu = -1; 2381 vcpu->arch.prev_cpu = -1; 2382 2383 vcpu->arch.cpu_type = KVM_CPU_3S_64; 2384 kvmppc_sanity_check(vcpu); 2385 2386 debugfs_vcpu_init(vcpu, id); 2387 2388 return 0; 2389 } 2390 2391 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode, 2392 unsigned long flags) 2393 { 2394 int err; 2395 int esmt = 0; 2396 2397 if (flags) 2398 return -EINVAL; 2399 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode)) 2400 return -EINVAL; 2401 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 2402 /* 2403 * On POWER8 (or POWER7), the threading mode is "strict", 2404 * so we pack smt_mode vcpus per vcore. 2405 */ 2406 if (smt_mode > threads_per_subcore) 2407 return -EINVAL; 2408 } else { 2409 /* 2410 * On POWER9, the threading mode is "loose", 2411 * so each vcpu gets its own vcore. 2412 */ 2413 esmt = smt_mode; 2414 smt_mode = 1; 2415 } 2416 mutex_lock(&kvm->lock); 2417 err = -EBUSY; 2418 if (!kvm->arch.online_vcores) { 2419 kvm->arch.smt_mode = smt_mode; 2420 kvm->arch.emul_smt_mode = esmt; 2421 err = 0; 2422 } 2423 mutex_unlock(&kvm->lock); 2424 2425 return err; 2426 } 2427 2428 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa) 2429 { 2430 if (vpa->pinned_addr) 2431 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa, 2432 vpa->dirty); 2433 } 2434 2435 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu) 2436 { 2437 spin_lock(&vcpu->arch.vpa_update_lock); 2438 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl); 2439 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow); 2440 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa); 2441 spin_unlock(&vcpu->arch.vpa_update_lock); 2442 } 2443 2444 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu) 2445 { 2446 /* Indicate we want to get back into the guest */ 2447 return 1; 2448 } 2449 2450 static void kvmppc_set_timer(struct kvm_vcpu *vcpu) 2451 { 2452 unsigned long dec_nsec, now; 2453 2454 now = get_tb(); 2455 if (now > vcpu->arch.dec_expires) { 2456 /* decrementer has already gone negative */ 2457 kvmppc_core_queue_dec(vcpu); 2458 kvmppc_core_prepare_to_enter(vcpu); 2459 return; 2460 } 2461 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now); 2462 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL); 2463 vcpu->arch.timer_running = 1; 2464 } 2465 2466 extern int __kvmppc_vcore_entry(void); 2467 2468 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc, 2469 struct kvm_vcpu *vcpu) 2470 { 2471 u64 now; 2472 2473 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 2474 return; 2475 spin_lock_irq(&vcpu->arch.tbacct_lock); 2476 now = mftb(); 2477 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) - 2478 vcpu->arch.stolen_logged; 2479 vcpu->arch.busy_preempt = now; 2480 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 2481 spin_unlock_irq(&vcpu->arch.tbacct_lock); 2482 --vc->n_runnable; 2483 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL); 2484 } 2485 2486 static int kvmppc_grab_hwthread(int cpu) 2487 { 2488 struct paca_struct *tpaca; 2489 long timeout = 10000; 2490 2491 tpaca = paca_ptrs[cpu]; 2492 2493 /* Ensure the thread won't go into the kernel if it wakes */ 2494 tpaca->kvm_hstate.kvm_vcpu = NULL; 2495 tpaca->kvm_hstate.kvm_vcore = NULL; 2496 tpaca->kvm_hstate.napping = 0; 2497 smp_wmb(); 2498 tpaca->kvm_hstate.hwthread_req = 1; 2499 2500 /* 2501 * If the thread is already executing in the kernel (e.g. handling 2502 * a stray interrupt), wait for it to get back to nap mode. 2503 * The smp_mb() is to ensure that our setting of hwthread_req 2504 * is visible before we look at hwthread_state, so if this 2505 * races with the code at system_reset_pSeries and the thread 2506 * misses our setting of hwthread_req, we are sure to see its 2507 * setting of hwthread_state, and vice versa. 2508 */ 2509 smp_mb(); 2510 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) { 2511 if (--timeout <= 0) { 2512 pr_err("KVM: couldn't grab cpu %d\n", cpu); 2513 return -EBUSY; 2514 } 2515 udelay(1); 2516 } 2517 return 0; 2518 } 2519 2520 static void kvmppc_release_hwthread(int cpu) 2521 { 2522 struct paca_struct *tpaca; 2523 2524 tpaca = paca_ptrs[cpu]; 2525 tpaca->kvm_hstate.hwthread_req = 0; 2526 tpaca->kvm_hstate.kvm_vcpu = NULL; 2527 tpaca->kvm_hstate.kvm_vcore = NULL; 2528 tpaca->kvm_hstate.kvm_split_mode = NULL; 2529 } 2530 2531 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu) 2532 { 2533 struct kvm_nested_guest *nested = vcpu->arch.nested; 2534 cpumask_t *cpu_in_guest; 2535 int i; 2536 2537 cpu = cpu_first_thread_sibling(cpu); 2538 if (nested) { 2539 cpumask_set_cpu(cpu, &nested->need_tlb_flush); 2540 cpu_in_guest = &nested->cpu_in_guest; 2541 } else { 2542 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush); 2543 cpu_in_guest = &kvm->arch.cpu_in_guest; 2544 } 2545 /* 2546 * Make sure setting of bit in need_tlb_flush precedes 2547 * testing of cpu_in_guest bits. The matching barrier on 2548 * the other side is the first smp_mb() in kvmppc_run_core(). 2549 */ 2550 smp_mb(); 2551 for (i = 0; i < threads_per_core; ++i) 2552 if (cpumask_test_cpu(cpu + i, cpu_in_guest)) 2553 smp_call_function_single(cpu + i, do_nothing, NULL, 1); 2554 } 2555 2556 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu) 2557 { 2558 struct kvm_nested_guest *nested = vcpu->arch.nested; 2559 struct kvm *kvm = vcpu->kvm; 2560 int prev_cpu; 2561 2562 if (!cpu_has_feature(CPU_FTR_HVMODE)) 2563 return; 2564 2565 if (nested) 2566 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id]; 2567 else 2568 prev_cpu = vcpu->arch.prev_cpu; 2569 2570 /* 2571 * With radix, the guest can do TLB invalidations itself, 2572 * and it could choose to use the local form (tlbiel) if 2573 * it is invalidating a translation that has only ever been 2574 * used on one vcpu. However, that doesn't mean it has 2575 * only ever been used on one physical cpu, since vcpus 2576 * can move around between pcpus. To cope with this, when 2577 * a vcpu moves from one pcpu to another, we need to tell 2578 * any vcpus running on the same core as this vcpu previously 2579 * ran to flush the TLB. The TLB is shared between threads, 2580 * so we use a single bit in .need_tlb_flush for all 4 threads. 2581 */ 2582 if (prev_cpu != pcpu) { 2583 if (prev_cpu >= 0 && 2584 cpu_first_thread_sibling(prev_cpu) != 2585 cpu_first_thread_sibling(pcpu)) 2586 radix_flush_cpu(kvm, prev_cpu, vcpu); 2587 if (nested) 2588 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu; 2589 else 2590 vcpu->arch.prev_cpu = pcpu; 2591 } 2592 } 2593 2594 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc) 2595 { 2596 int cpu; 2597 struct paca_struct *tpaca; 2598 struct kvm *kvm = vc->kvm; 2599 2600 cpu = vc->pcpu; 2601 if (vcpu) { 2602 if (vcpu->arch.timer_running) { 2603 hrtimer_try_to_cancel(&vcpu->arch.dec_timer); 2604 vcpu->arch.timer_running = 0; 2605 } 2606 cpu += vcpu->arch.ptid; 2607 vcpu->cpu = vc->pcpu; 2608 vcpu->arch.thread_cpu = cpu; 2609 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest); 2610 } 2611 tpaca = paca_ptrs[cpu]; 2612 tpaca->kvm_hstate.kvm_vcpu = vcpu; 2613 tpaca->kvm_hstate.ptid = cpu - vc->pcpu; 2614 tpaca->kvm_hstate.fake_suspend = 0; 2615 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */ 2616 smp_wmb(); 2617 tpaca->kvm_hstate.kvm_vcore = vc; 2618 if (cpu != smp_processor_id()) 2619 kvmppc_ipi_thread(cpu); 2620 } 2621 2622 static void kvmppc_wait_for_nap(int n_threads) 2623 { 2624 int cpu = smp_processor_id(); 2625 int i, loops; 2626 2627 if (n_threads <= 1) 2628 return; 2629 for (loops = 0; loops < 1000000; ++loops) { 2630 /* 2631 * Check if all threads are finished. 2632 * We set the vcore pointer when starting a thread 2633 * and the thread clears it when finished, so we look 2634 * for any threads that still have a non-NULL vcore ptr. 2635 */ 2636 for (i = 1; i < n_threads; ++i) 2637 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2638 break; 2639 if (i == n_threads) { 2640 HMT_medium(); 2641 return; 2642 } 2643 HMT_low(); 2644 } 2645 HMT_medium(); 2646 for (i = 1; i < n_threads; ++i) 2647 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore) 2648 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i); 2649 } 2650 2651 /* 2652 * Check that we are on thread 0 and that any other threads in 2653 * this core are off-line. Then grab the threads so they can't 2654 * enter the kernel. 2655 */ 2656 static int on_primary_thread(void) 2657 { 2658 int cpu = smp_processor_id(); 2659 int thr; 2660 2661 /* Are we on a primary subcore? */ 2662 if (cpu_thread_in_subcore(cpu)) 2663 return 0; 2664 2665 thr = 0; 2666 while (++thr < threads_per_subcore) 2667 if (cpu_online(cpu + thr)) 2668 return 0; 2669 2670 /* Grab all hw threads so they can't go into the kernel */ 2671 for (thr = 1; thr < threads_per_subcore; ++thr) { 2672 if (kvmppc_grab_hwthread(cpu + thr)) { 2673 /* Couldn't grab one; let the others go */ 2674 do { 2675 kvmppc_release_hwthread(cpu + thr); 2676 } while (--thr > 0); 2677 return 0; 2678 } 2679 } 2680 return 1; 2681 } 2682 2683 /* 2684 * A list of virtual cores for each physical CPU. 2685 * These are vcores that could run but their runner VCPU tasks are 2686 * (or may be) preempted. 2687 */ 2688 struct preempted_vcore_list { 2689 struct list_head list; 2690 spinlock_t lock; 2691 }; 2692 2693 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores); 2694 2695 static void init_vcore_lists(void) 2696 { 2697 int cpu; 2698 2699 for_each_possible_cpu(cpu) { 2700 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu); 2701 spin_lock_init(&lp->lock); 2702 INIT_LIST_HEAD(&lp->list); 2703 } 2704 } 2705 2706 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc) 2707 { 2708 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2709 2710 vc->vcore_state = VCORE_PREEMPT; 2711 vc->pcpu = smp_processor_id(); 2712 if (vc->num_threads < threads_per_vcore(vc->kvm)) { 2713 spin_lock(&lp->lock); 2714 list_add_tail(&vc->preempt_list, &lp->list); 2715 spin_unlock(&lp->lock); 2716 } 2717 2718 /* Start accumulating stolen time */ 2719 kvmppc_core_start_stolen(vc); 2720 } 2721 2722 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc) 2723 { 2724 struct preempted_vcore_list *lp; 2725 2726 kvmppc_core_end_stolen(vc); 2727 if (!list_empty(&vc->preempt_list)) { 2728 lp = &per_cpu(preempted_vcores, vc->pcpu); 2729 spin_lock(&lp->lock); 2730 list_del_init(&vc->preempt_list); 2731 spin_unlock(&lp->lock); 2732 } 2733 vc->vcore_state = VCORE_INACTIVE; 2734 } 2735 2736 /* 2737 * This stores information about the virtual cores currently 2738 * assigned to a physical core. 2739 */ 2740 struct core_info { 2741 int n_subcores; 2742 int max_subcore_threads; 2743 int total_threads; 2744 int subcore_threads[MAX_SUBCORES]; 2745 struct kvmppc_vcore *vc[MAX_SUBCORES]; 2746 }; 2747 2748 /* 2749 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7 2750 * respectively in 2-way micro-threading (split-core) mode on POWER8. 2751 */ 2752 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 }; 2753 2754 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc) 2755 { 2756 memset(cip, 0, sizeof(*cip)); 2757 cip->n_subcores = 1; 2758 cip->max_subcore_threads = vc->num_threads; 2759 cip->total_threads = vc->num_threads; 2760 cip->subcore_threads[0] = vc->num_threads; 2761 cip->vc[0] = vc; 2762 } 2763 2764 static bool subcore_config_ok(int n_subcores, int n_threads) 2765 { 2766 /* 2767 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way 2768 * split-core mode, with one thread per subcore. 2769 */ 2770 if (cpu_has_feature(CPU_FTR_ARCH_300)) 2771 return n_subcores <= 4 && n_threads == 1; 2772 2773 /* On POWER8, can only dynamically split if unsplit to begin with */ 2774 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS) 2775 return false; 2776 if (n_subcores > MAX_SUBCORES) 2777 return false; 2778 if (n_subcores > 1) { 2779 if (!(dynamic_mt_modes & 2)) 2780 n_subcores = 4; 2781 if (n_subcores > 2 && !(dynamic_mt_modes & 4)) 2782 return false; 2783 } 2784 2785 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS; 2786 } 2787 2788 static void init_vcore_to_run(struct kvmppc_vcore *vc) 2789 { 2790 vc->entry_exit_map = 0; 2791 vc->in_guest = 0; 2792 vc->napping_threads = 0; 2793 vc->conferring_threads = 0; 2794 vc->tb_offset_applied = 0; 2795 } 2796 2797 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip) 2798 { 2799 int n_threads = vc->num_threads; 2800 int sub; 2801 2802 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 2803 return false; 2804 2805 /* In one_vm_per_core mode, require all vcores to be from the same vm */ 2806 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm) 2807 return false; 2808 2809 /* Some POWER9 chips require all threads to be in the same MMU mode */ 2810 if (no_mixing_hpt_and_radix && 2811 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm)) 2812 return false; 2813 2814 if (n_threads < cip->max_subcore_threads) 2815 n_threads = cip->max_subcore_threads; 2816 if (!subcore_config_ok(cip->n_subcores + 1, n_threads)) 2817 return false; 2818 cip->max_subcore_threads = n_threads; 2819 2820 sub = cip->n_subcores; 2821 ++cip->n_subcores; 2822 cip->total_threads += vc->num_threads; 2823 cip->subcore_threads[sub] = vc->num_threads; 2824 cip->vc[sub] = vc; 2825 init_vcore_to_run(vc); 2826 list_del_init(&vc->preempt_list); 2827 2828 return true; 2829 } 2830 2831 /* 2832 * Work out whether it is possible to piggyback the execution of 2833 * vcore *pvc onto the execution of the other vcores described in *cip. 2834 */ 2835 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip, 2836 int target_threads) 2837 { 2838 if (cip->total_threads + pvc->num_threads > target_threads) 2839 return false; 2840 2841 return can_dynamic_split(pvc, cip); 2842 } 2843 2844 static void prepare_threads(struct kvmppc_vcore *vc) 2845 { 2846 int i; 2847 struct kvm_vcpu *vcpu; 2848 2849 for_each_runnable_thread(i, vcpu, vc) { 2850 if (signal_pending(vcpu->arch.run_task)) 2851 vcpu->arch.ret = -EINTR; 2852 else if (vcpu->arch.vpa.update_pending || 2853 vcpu->arch.slb_shadow.update_pending || 2854 vcpu->arch.dtl.update_pending) 2855 vcpu->arch.ret = RESUME_GUEST; 2856 else 2857 continue; 2858 kvmppc_remove_runnable(vc, vcpu); 2859 wake_up(&vcpu->arch.cpu_run); 2860 } 2861 } 2862 2863 static void collect_piggybacks(struct core_info *cip, int target_threads) 2864 { 2865 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores); 2866 struct kvmppc_vcore *pvc, *vcnext; 2867 2868 spin_lock(&lp->lock); 2869 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) { 2870 if (!spin_trylock(&pvc->lock)) 2871 continue; 2872 prepare_threads(pvc); 2873 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) { 2874 list_del_init(&pvc->preempt_list); 2875 if (pvc->runner == NULL) { 2876 pvc->vcore_state = VCORE_INACTIVE; 2877 kvmppc_core_end_stolen(pvc); 2878 } 2879 spin_unlock(&pvc->lock); 2880 continue; 2881 } 2882 if (!can_piggyback(pvc, cip, target_threads)) { 2883 spin_unlock(&pvc->lock); 2884 continue; 2885 } 2886 kvmppc_core_end_stolen(pvc); 2887 pvc->vcore_state = VCORE_PIGGYBACK; 2888 if (cip->total_threads >= target_threads) 2889 break; 2890 } 2891 spin_unlock(&lp->lock); 2892 } 2893 2894 static bool recheck_signals_and_mmu(struct core_info *cip) 2895 { 2896 int sub, i; 2897 struct kvm_vcpu *vcpu; 2898 struct kvmppc_vcore *vc; 2899 2900 for (sub = 0; sub < cip->n_subcores; ++sub) { 2901 vc = cip->vc[sub]; 2902 if (!vc->kvm->arch.mmu_ready) 2903 return true; 2904 for_each_runnable_thread(i, vcpu, vc) 2905 if (signal_pending(vcpu->arch.run_task)) 2906 return true; 2907 } 2908 return false; 2909 } 2910 2911 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master) 2912 { 2913 int still_running = 0, i; 2914 u64 now; 2915 long ret; 2916 struct kvm_vcpu *vcpu; 2917 2918 spin_lock(&vc->lock); 2919 now = get_tb(); 2920 for_each_runnable_thread(i, vcpu, vc) { 2921 /* 2922 * It's safe to unlock the vcore in the loop here, because 2923 * for_each_runnable_thread() is safe against removal of 2924 * the vcpu, and the vcore state is VCORE_EXITING here, 2925 * so any vcpus becoming runnable will have their arch.trap 2926 * set to zero and can't actually run in the guest. 2927 */ 2928 spin_unlock(&vc->lock); 2929 /* cancel pending dec exception if dec is positive */ 2930 if (now < vcpu->arch.dec_expires && 2931 kvmppc_core_pending_dec(vcpu)) 2932 kvmppc_core_dequeue_dec(vcpu); 2933 2934 trace_kvm_guest_exit(vcpu); 2935 2936 ret = RESUME_GUEST; 2937 if (vcpu->arch.trap) 2938 ret = kvmppc_handle_exit_hv(vcpu, 2939 vcpu->arch.run_task); 2940 2941 vcpu->arch.ret = ret; 2942 vcpu->arch.trap = 0; 2943 2944 spin_lock(&vc->lock); 2945 if (is_kvmppc_resume_guest(vcpu->arch.ret)) { 2946 if (vcpu->arch.pending_exceptions) 2947 kvmppc_core_prepare_to_enter(vcpu); 2948 if (vcpu->arch.ceded) 2949 kvmppc_set_timer(vcpu); 2950 else 2951 ++still_running; 2952 } else { 2953 kvmppc_remove_runnable(vc, vcpu); 2954 wake_up(&vcpu->arch.cpu_run); 2955 } 2956 } 2957 if (!is_master) { 2958 if (still_running > 0) { 2959 kvmppc_vcore_preempt(vc); 2960 } else if (vc->runner) { 2961 vc->vcore_state = VCORE_PREEMPT; 2962 kvmppc_core_start_stolen(vc); 2963 } else { 2964 vc->vcore_state = VCORE_INACTIVE; 2965 } 2966 if (vc->n_runnable > 0 && vc->runner == NULL) { 2967 /* make sure there's a candidate runner awake */ 2968 i = -1; 2969 vcpu = next_runnable_thread(vc, &i); 2970 wake_up(&vcpu->arch.cpu_run); 2971 } 2972 } 2973 spin_unlock(&vc->lock); 2974 } 2975 2976 /* 2977 * Clear core from the list of active host cores as we are about to 2978 * enter the guest. Only do this if it is the primary thread of the 2979 * core (not if a subcore) that is entering the guest. 2980 */ 2981 static inline int kvmppc_clear_host_core(unsigned int cpu) 2982 { 2983 int core; 2984 2985 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 2986 return 0; 2987 /* 2988 * Memory barrier can be omitted here as we will do a smp_wmb() 2989 * later in kvmppc_start_thread and we need ensure that state is 2990 * visible to other CPUs only after we enter guest. 2991 */ 2992 core = cpu >> threads_shift; 2993 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0; 2994 return 0; 2995 } 2996 2997 /* 2998 * Advertise this core as an active host core since we exited the guest 2999 * Only need to do this if it is the primary thread of the core that is 3000 * exiting. 3001 */ 3002 static inline int kvmppc_set_host_core(unsigned int cpu) 3003 { 3004 int core; 3005 3006 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu)) 3007 return 0; 3008 3009 /* 3010 * Memory barrier can be omitted here because we do a spin_unlock 3011 * immediately after this which provides the memory barrier. 3012 */ 3013 core = cpu >> threads_shift; 3014 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1; 3015 return 0; 3016 } 3017 3018 static void set_irq_happened(int trap) 3019 { 3020 switch (trap) { 3021 case BOOK3S_INTERRUPT_EXTERNAL: 3022 local_paca->irq_happened |= PACA_IRQ_EE; 3023 break; 3024 case BOOK3S_INTERRUPT_H_DOORBELL: 3025 local_paca->irq_happened |= PACA_IRQ_DBELL; 3026 break; 3027 case BOOK3S_INTERRUPT_HMI: 3028 local_paca->irq_happened |= PACA_IRQ_HMI; 3029 break; 3030 case BOOK3S_INTERRUPT_SYSTEM_RESET: 3031 replay_system_reset(); 3032 break; 3033 } 3034 } 3035 3036 /* 3037 * Run a set of guest threads on a physical core. 3038 * Called with vc->lock held. 3039 */ 3040 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc) 3041 { 3042 struct kvm_vcpu *vcpu; 3043 int i; 3044 int srcu_idx; 3045 struct core_info core_info; 3046 struct kvmppc_vcore *pvc; 3047 struct kvm_split_mode split_info, *sip; 3048 int split, subcore_size, active; 3049 int sub; 3050 bool thr0_done; 3051 unsigned long cmd_bit, stat_bit; 3052 int pcpu, thr; 3053 int target_threads; 3054 int controlled_threads; 3055 int trap; 3056 bool is_power8; 3057 bool hpt_on_radix; 3058 3059 /* 3060 * Remove from the list any threads that have a signal pending 3061 * or need a VPA update done 3062 */ 3063 prepare_threads(vc); 3064 3065 /* if the runner is no longer runnable, let the caller pick a new one */ 3066 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE) 3067 return; 3068 3069 /* 3070 * Initialize *vc. 3071 */ 3072 init_vcore_to_run(vc); 3073 vc->preempt_tb = TB_NIL; 3074 3075 /* 3076 * Number of threads that we will be controlling: the same as 3077 * the number of threads per subcore, except on POWER9, 3078 * where it's 1 because the threads are (mostly) independent. 3079 */ 3080 controlled_threads = threads_per_vcore(vc->kvm); 3081 3082 /* 3083 * Make sure we are running on primary threads, and that secondary 3084 * threads are offline. Also check if the number of threads in this 3085 * guest are greater than the current system threads per guest. 3086 * On POWER9, we need to be not in independent-threads mode if 3087 * this is a HPT guest on a radix host machine where the 3088 * CPU threads may not be in different MMU modes. 3089 */ 3090 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() && 3091 !kvm_is_radix(vc->kvm); 3092 if (((controlled_threads > 1) && 3093 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) || 3094 (hpt_on_radix && vc->kvm->arch.threads_indep)) { 3095 for_each_runnable_thread(i, vcpu, vc) { 3096 vcpu->arch.ret = -EBUSY; 3097 kvmppc_remove_runnable(vc, vcpu); 3098 wake_up(&vcpu->arch.cpu_run); 3099 } 3100 goto out; 3101 } 3102 3103 /* 3104 * See if we could run any other vcores on the physical core 3105 * along with this one. 3106 */ 3107 init_core_info(&core_info, vc); 3108 pcpu = smp_processor_id(); 3109 target_threads = controlled_threads; 3110 if (target_smt_mode && target_smt_mode < target_threads) 3111 target_threads = target_smt_mode; 3112 if (vc->num_threads < target_threads) 3113 collect_piggybacks(&core_info, target_threads); 3114 3115 /* 3116 * On radix, arrange for TLB flushing if necessary. 3117 * This has to be done before disabling interrupts since 3118 * it uses smp_call_function(). 3119 */ 3120 pcpu = smp_processor_id(); 3121 if (kvm_is_radix(vc->kvm)) { 3122 for (sub = 0; sub < core_info.n_subcores; ++sub) 3123 for_each_runnable_thread(i, vcpu, core_info.vc[sub]) 3124 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 3125 } 3126 3127 /* 3128 * Hard-disable interrupts, and check resched flag and signals. 3129 * If we need to reschedule or deliver a signal, clean up 3130 * and return without going into the guest(s). 3131 * If the mmu_ready flag has been cleared, don't go into the 3132 * guest because that means a HPT resize operation is in progress. 3133 */ 3134 local_irq_disable(); 3135 hard_irq_disable(); 3136 if (lazy_irq_pending() || need_resched() || 3137 recheck_signals_and_mmu(&core_info)) { 3138 local_irq_enable(); 3139 vc->vcore_state = VCORE_INACTIVE; 3140 /* Unlock all except the primary vcore */ 3141 for (sub = 1; sub < core_info.n_subcores; ++sub) { 3142 pvc = core_info.vc[sub]; 3143 /* Put back on to the preempted vcores list */ 3144 kvmppc_vcore_preempt(pvc); 3145 spin_unlock(&pvc->lock); 3146 } 3147 for (i = 0; i < controlled_threads; ++i) 3148 kvmppc_release_hwthread(pcpu + i); 3149 return; 3150 } 3151 3152 kvmppc_clear_host_core(pcpu); 3153 3154 /* Decide on micro-threading (split-core) mode */ 3155 subcore_size = threads_per_subcore; 3156 cmd_bit = stat_bit = 0; 3157 split = core_info.n_subcores; 3158 sip = NULL; 3159 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S) 3160 && !cpu_has_feature(CPU_FTR_ARCH_300); 3161 3162 if (split > 1 || hpt_on_radix) { 3163 sip = &split_info; 3164 memset(&split_info, 0, sizeof(split_info)); 3165 for (sub = 0; sub < core_info.n_subcores; ++sub) 3166 split_info.vc[sub] = core_info.vc[sub]; 3167 3168 if (is_power8) { 3169 if (split == 2 && (dynamic_mt_modes & 2)) { 3170 cmd_bit = HID0_POWER8_1TO2LPAR; 3171 stat_bit = HID0_POWER8_2LPARMODE; 3172 } else { 3173 split = 4; 3174 cmd_bit = HID0_POWER8_1TO4LPAR; 3175 stat_bit = HID0_POWER8_4LPARMODE; 3176 } 3177 subcore_size = MAX_SMT_THREADS / split; 3178 split_info.rpr = mfspr(SPRN_RPR); 3179 split_info.pmmar = mfspr(SPRN_PMMAR); 3180 split_info.ldbar = mfspr(SPRN_LDBAR); 3181 split_info.subcore_size = subcore_size; 3182 } else { 3183 split_info.subcore_size = 1; 3184 if (hpt_on_radix) { 3185 /* Use the split_info for LPCR/LPIDR changes */ 3186 split_info.lpcr_req = vc->lpcr; 3187 split_info.lpidr_req = vc->kvm->arch.lpid; 3188 split_info.host_lpcr = vc->kvm->arch.host_lpcr; 3189 split_info.do_set = 1; 3190 } 3191 } 3192 3193 /* order writes to split_info before kvm_split_mode pointer */ 3194 smp_wmb(); 3195 } 3196 3197 for (thr = 0; thr < controlled_threads; ++thr) { 3198 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3199 3200 paca->kvm_hstate.tid = thr; 3201 paca->kvm_hstate.napping = 0; 3202 paca->kvm_hstate.kvm_split_mode = sip; 3203 } 3204 3205 /* Initiate micro-threading (split-core) on POWER8 if required */ 3206 if (cmd_bit) { 3207 unsigned long hid0 = mfspr(SPRN_HID0); 3208 3209 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS; 3210 mb(); 3211 mtspr(SPRN_HID0, hid0); 3212 isync(); 3213 for (;;) { 3214 hid0 = mfspr(SPRN_HID0); 3215 if (hid0 & stat_bit) 3216 break; 3217 cpu_relax(); 3218 } 3219 } 3220 3221 /* 3222 * On POWER8, set RWMR register. 3223 * Since it only affects PURR and SPURR, it doesn't affect 3224 * the host, so we don't save/restore the host value. 3225 */ 3226 if (is_power8) { 3227 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD; 3228 int n_online = atomic_read(&vc->online_count); 3229 3230 /* 3231 * Use the 8-thread value if we're doing split-core 3232 * or if the vcore's online count looks bogus. 3233 */ 3234 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS && 3235 n_online >= 1 && n_online <= MAX_SMT_THREADS) 3236 rwmr_val = p8_rwmr_values[n_online]; 3237 mtspr(SPRN_RWMR, rwmr_val); 3238 } 3239 3240 /* Start all the threads */ 3241 active = 0; 3242 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3243 thr = is_power8 ? subcore_thread_map[sub] : sub; 3244 thr0_done = false; 3245 active |= 1 << thr; 3246 pvc = core_info.vc[sub]; 3247 pvc->pcpu = pcpu + thr; 3248 for_each_runnable_thread(i, vcpu, pvc) { 3249 kvmppc_start_thread(vcpu, pvc); 3250 kvmppc_create_dtl_entry(vcpu, pvc); 3251 trace_kvm_guest_enter(vcpu); 3252 if (!vcpu->arch.ptid) 3253 thr0_done = true; 3254 active |= 1 << (thr + vcpu->arch.ptid); 3255 } 3256 /* 3257 * We need to start the first thread of each subcore 3258 * even if it doesn't have a vcpu. 3259 */ 3260 if (!thr0_done) 3261 kvmppc_start_thread(NULL, pvc); 3262 } 3263 3264 /* 3265 * Ensure that split_info.do_nap is set after setting 3266 * the vcore pointer in the PACA of the secondaries. 3267 */ 3268 smp_mb(); 3269 3270 /* 3271 * When doing micro-threading, poke the inactive threads as well. 3272 * This gets them to the nap instruction after kvm_do_nap, 3273 * which reduces the time taken to unsplit later. 3274 * For POWER9 HPT guest on radix host, we need all the secondary 3275 * threads woken up so they can do the LPCR/LPIDR change. 3276 */ 3277 if (cmd_bit || hpt_on_radix) { 3278 split_info.do_nap = 1; /* ask secondaries to nap when done */ 3279 for (thr = 1; thr < threads_per_subcore; ++thr) 3280 if (!(active & (1 << thr))) 3281 kvmppc_ipi_thread(pcpu + thr); 3282 } 3283 3284 vc->vcore_state = VCORE_RUNNING; 3285 preempt_disable(); 3286 3287 trace_kvmppc_run_core(vc, 0); 3288 3289 for (sub = 0; sub < core_info.n_subcores; ++sub) 3290 spin_unlock(&core_info.vc[sub]->lock); 3291 3292 guest_enter_irqoff(); 3293 3294 srcu_idx = srcu_read_lock(&vc->kvm->srcu); 3295 3296 this_cpu_disable_ftrace(); 3297 3298 /* 3299 * Interrupts will be enabled once we get into the guest, 3300 * so tell lockdep that we're about to enable interrupts. 3301 */ 3302 trace_hardirqs_on(); 3303 3304 trap = __kvmppc_vcore_entry(); 3305 3306 trace_hardirqs_off(); 3307 3308 this_cpu_enable_ftrace(); 3309 3310 srcu_read_unlock(&vc->kvm->srcu, srcu_idx); 3311 3312 set_irq_happened(trap); 3313 3314 spin_lock(&vc->lock); 3315 /* prevent other vcpu threads from doing kvmppc_start_thread() now */ 3316 vc->vcore_state = VCORE_EXITING; 3317 3318 /* wait for secondary threads to finish writing their state to memory */ 3319 kvmppc_wait_for_nap(controlled_threads); 3320 3321 /* Return to whole-core mode if we split the core earlier */ 3322 if (cmd_bit) { 3323 unsigned long hid0 = mfspr(SPRN_HID0); 3324 unsigned long loops = 0; 3325 3326 hid0 &= ~HID0_POWER8_DYNLPARDIS; 3327 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; 3328 mb(); 3329 mtspr(SPRN_HID0, hid0); 3330 isync(); 3331 for (;;) { 3332 hid0 = mfspr(SPRN_HID0); 3333 if (!(hid0 & stat_bit)) 3334 break; 3335 cpu_relax(); 3336 ++loops; 3337 } 3338 } else if (hpt_on_radix) { 3339 /* Wait for all threads to have seen final sync */ 3340 for (thr = 1; thr < controlled_threads; ++thr) { 3341 struct paca_struct *paca = paca_ptrs[pcpu + thr]; 3342 3343 while (paca->kvm_hstate.kvm_split_mode) { 3344 HMT_low(); 3345 barrier(); 3346 } 3347 HMT_medium(); 3348 } 3349 } 3350 split_info.do_nap = 0; 3351 3352 kvmppc_set_host_core(pcpu); 3353 3354 local_irq_enable(); 3355 guest_exit(); 3356 3357 /* Let secondaries go back to the offline loop */ 3358 for (i = 0; i < controlled_threads; ++i) { 3359 kvmppc_release_hwthread(pcpu + i); 3360 if (sip && sip->napped[i]) 3361 kvmppc_ipi_thread(pcpu + i); 3362 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest); 3363 } 3364 3365 spin_unlock(&vc->lock); 3366 3367 /* make sure updates to secondary vcpu structs are visible now */ 3368 smp_mb(); 3369 3370 preempt_enable(); 3371 3372 for (sub = 0; sub < core_info.n_subcores; ++sub) { 3373 pvc = core_info.vc[sub]; 3374 post_guest_process(pvc, pvc == vc); 3375 } 3376 3377 spin_lock(&vc->lock); 3378 3379 out: 3380 vc->vcore_state = VCORE_INACTIVE; 3381 trace_kvmppc_run_core(vc, 1); 3382 } 3383 3384 /* 3385 * Load up hypervisor-mode registers on P9. 3386 */ 3387 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit, 3388 unsigned long lpcr) 3389 { 3390 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3391 s64 hdec; 3392 u64 tb, purr, spurr; 3393 int trap; 3394 unsigned long host_hfscr = mfspr(SPRN_HFSCR); 3395 unsigned long host_ciabr = mfspr(SPRN_CIABR); 3396 unsigned long host_dawr = mfspr(SPRN_DAWR0); 3397 unsigned long host_dawrx = mfspr(SPRN_DAWRX0); 3398 unsigned long host_psscr = mfspr(SPRN_PSSCR); 3399 unsigned long host_pidr = mfspr(SPRN_PID); 3400 3401 hdec = time_limit - mftb(); 3402 if (hdec < 0) 3403 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3404 mtspr(SPRN_HDEC, hdec); 3405 3406 if (vc->tb_offset) { 3407 u64 new_tb = mftb() + vc->tb_offset; 3408 mtspr(SPRN_TBU40, new_tb); 3409 tb = mftb(); 3410 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3411 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3412 vc->tb_offset_applied = vc->tb_offset; 3413 } 3414 3415 if (vc->pcr) 3416 mtspr(SPRN_PCR, vc->pcr | PCR_MASK); 3417 mtspr(SPRN_DPDES, vc->dpdes); 3418 mtspr(SPRN_VTB, vc->vtb); 3419 3420 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR); 3421 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR); 3422 mtspr(SPRN_PURR, vcpu->arch.purr); 3423 mtspr(SPRN_SPURR, vcpu->arch.spurr); 3424 3425 if (dawr_enabled()) { 3426 mtspr(SPRN_DAWR0, vcpu->arch.dawr); 3427 mtspr(SPRN_DAWRX0, vcpu->arch.dawrx); 3428 } 3429 mtspr(SPRN_CIABR, vcpu->arch.ciabr); 3430 mtspr(SPRN_IC, vcpu->arch.ic); 3431 mtspr(SPRN_PID, vcpu->arch.pid); 3432 3433 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC | 3434 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3435 3436 mtspr(SPRN_HFSCR, vcpu->arch.hfscr); 3437 3438 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0); 3439 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1); 3440 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2); 3441 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3); 3442 3443 mtspr(SPRN_AMOR, ~0UL); 3444 3445 mtspr(SPRN_LPCR, lpcr); 3446 isync(); 3447 3448 kvmppc_xive_push_vcpu(vcpu); 3449 3450 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0); 3451 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1); 3452 3453 trap = __kvmhv_vcpu_entry_p9(vcpu); 3454 3455 /* Advance host PURR/SPURR by the amount used by guest */ 3456 purr = mfspr(SPRN_PURR); 3457 spurr = mfspr(SPRN_SPURR); 3458 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr + 3459 purr - vcpu->arch.purr); 3460 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr + 3461 spurr - vcpu->arch.spurr); 3462 vcpu->arch.purr = purr; 3463 vcpu->arch.spurr = spurr; 3464 3465 vcpu->arch.ic = mfspr(SPRN_IC); 3466 vcpu->arch.pid = mfspr(SPRN_PID); 3467 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS; 3468 3469 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0); 3470 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1); 3471 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2); 3472 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3); 3473 3474 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */ 3475 mtspr(SPRN_PSSCR, host_psscr | 3476 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG)); 3477 mtspr(SPRN_HFSCR, host_hfscr); 3478 mtspr(SPRN_CIABR, host_ciabr); 3479 mtspr(SPRN_DAWR0, host_dawr); 3480 mtspr(SPRN_DAWRX0, host_dawrx); 3481 mtspr(SPRN_PID, host_pidr); 3482 3483 /* 3484 * Since this is radix, do a eieio; tlbsync; ptesync sequence in 3485 * case we interrupted the guest between a tlbie and a ptesync. 3486 */ 3487 asm volatile("eieio; tlbsync; ptesync"); 3488 3489 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */ 3490 isync(); 3491 3492 vc->dpdes = mfspr(SPRN_DPDES); 3493 vc->vtb = mfspr(SPRN_VTB); 3494 mtspr(SPRN_DPDES, 0); 3495 if (vc->pcr) 3496 mtspr(SPRN_PCR, PCR_MASK); 3497 3498 if (vc->tb_offset_applied) { 3499 u64 new_tb = mftb() - vc->tb_offset_applied; 3500 mtspr(SPRN_TBU40, new_tb); 3501 tb = mftb(); 3502 if ((tb & 0xffffff) < (new_tb & 0xffffff)) 3503 mtspr(SPRN_TBU40, new_tb + 0x1000000); 3504 vc->tb_offset_applied = 0; 3505 } 3506 3507 mtspr(SPRN_HDEC, 0x7fffffff); 3508 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr); 3509 3510 return trap; 3511 } 3512 3513 /* 3514 * Virtual-mode guest entry for POWER9 and later when the host and 3515 * guest are both using the radix MMU. The LPIDR has already been set. 3516 */ 3517 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit, 3518 unsigned long lpcr) 3519 { 3520 struct kvmppc_vcore *vc = vcpu->arch.vcore; 3521 unsigned long host_dscr = mfspr(SPRN_DSCR); 3522 unsigned long host_tidr = mfspr(SPRN_TIDR); 3523 unsigned long host_iamr = mfspr(SPRN_IAMR); 3524 unsigned long host_amr = mfspr(SPRN_AMR); 3525 s64 dec; 3526 u64 tb; 3527 int trap, save_pmu; 3528 3529 dec = mfspr(SPRN_DEC); 3530 tb = mftb(); 3531 if (dec < 512) 3532 return BOOK3S_INTERRUPT_HV_DECREMENTER; 3533 local_paca->kvm_hstate.dec_expires = dec + tb; 3534 if (local_paca->kvm_hstate.dec_expires < time_limit) 3535 time_limit = local_paca->kvm_hstate.dec_expires; 3536 3537 vcpu->arch.ceded = 0; 3538 3539 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */ 3540 3541 kvmppc_subcore_enter_guest(); 3542 3543 vc->entry_exit_map = 1; 3544 vc->in_guest = 1; 3545 3546 if (vcpu->arch.vpa.pinned_addr) { 3547 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3548 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3549 lp->yield_count = cpu_to_be32(yield_count); 3550 vcpu->arch.vpa.dirty = 1; 3551 } 3552 3553 if (cpu_has_feature(CPU_FTR_TM) || 3554 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3555 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3556 3557 kvmhv_load_guest_pmu(vcpu); 3558 3559 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3560 load_fp_state(&vcpu->arch.fp); 3561 #ifdef CONFIG_ALTIVEC 3562 load_vr_state(&vcpu->arch.vr); 3563 #endif 3564 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave); 3565 3566 mtspr(SPRN_DSCR, vcpu->arch.dscr); 3567 mtspr(SPRN_IAMR, vcpu->arch.iamr); 3568 mtspr(SPRN_PSPB, vcpu->arch.pspb); 3569 mtspr(SPRN_FSCR, vcpu->arch.fscr); 3570 mtspr(SPRN_TAR, vcpu->arch.tar); 3571 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr); 3572 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr); 3573 mtspr(SPRN_BESCR, vcpu->arch.bescr); 3574 mtspr(SPRN_WORT, vcpu->arch.wort); 3575 mtspr(SPRN_TIDR, vcpu->arch.tid); 3576 mtspr(SPRN_DAR, vcpu->arch.shregs.dar); 3577 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr); 3578 mtspr(SPRN_AMR, vcpu->arch.amr); 3579 mtspr(SPRN_UAMOR, vcpu->arch.uamor); 3580 3581 if (!(vcpu->arch.ctrl & 1)) 3582 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1); 3583 3584 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb()); 3585 3586 if (kvmhv_on_pseries()) { 3587 /* 3588 * We need to save and restore the guest visible part of the 3589 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor 3590 * doesn't do this for us. Note only required if pseries since 3591 * this is done in kvmhv_load_hv_regs_and_go() below otherwise. 3592 */ 3593 unsigned long host_psscr; 3594 /* call our hypervisor to load up HV regs and go */ 3595 struct hv_guest_state hvregs; 3596 3597 host_psscr = mfspr(SPRN_PSSCR_PR); 3598 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr); 3599 kvmhv_save_hv_regs(vcpu, &hvregs); 3600 hvregs.lpcr = lpcr; 3601 vcpu->arch.regs.msr = vcpu->arch.shregs.msr; 3602 hvregs.version = HV_GUEST_STATE_VERSION; 3603 if (vcpu->arch.nested) { 3604 hvregs.lpid = vcpu->arch.nested->shadow_lpid; 3605 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id; 3606 } else { 3607 hvregs.lpid = vcpu->kvm->arch.lpid; 3608 hvregs.vcpu_token = vcpu->vcpu_id; 3609 } 3610 hvregs.hdec_expiry = time_limit; 3611 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs), 3612 __pa(&vcpu->arch.regs)); 3613 kvmhv_restore_hv_return_state(vcpu, &hvregs); 3614 vcpu->arch.shregs.msr = vcpu->arch.regs.msr; 3615 vcpu->arch.shregs.dar = mfspr(SPRN_DAR); 3616 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR); 3617 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR); 3618 mtspr(SPRN_PSSCR_PR, host_psscr); 3619 3620 /* H_CEDE has to be handled now, not later */ 3621 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested && 3622 kvmppc_get_gpr(vcpu, 3) == H_CEDE) { 3623 kvmppc_nested_cede(vcpu); 3624 kvmppc_set_gpr(vcpu, 3, 0); 3625 trap = 0; 3626 } 3627 } else { 3628 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr); 3629 } 3630 3631 vcpu->arch.slb_max = 0; 3632 dec = mfspr(SPRN_DEC); 3633 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */ 3634 dec = (s32) dec; 3635 tb = mftb(); 3636 vcpu->arch.dec_expires = dec + tb; 3637 vcpu->cpu = -1; 3638 vcpu->arch.thread_cpu = -1; 3639 vcpu->arch.ctrl = mfspr(SPRN_CTRLF); 3640 3641 vcpu->arch.iamr = mfspr(SPRN_IAMR); 3642 vcpu->arch.pspb = mfspr(SPRN_PSPB); 3643 vcpu->arch.fscr = mfspr(SPRN_FSCR); 3644 vcpu->arch.tar = mfspr(SPRN_TAR); 3645 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR); 3646 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR); 3647 vcpu->arch.bescr = mfspr(SPRN_BESCR); 3648 vcpu->arch.wort = mfspr(SPRN_WORT); 3649 vcpu->arch.tid = mfspr(SPRN_TIDR); 3650 vcpu->arch.amr = mfspr(SPRN_AMR); 3651 vcpu->arch.uamor = mfspr(SPRN_UAMOR); 3652 vcpu->arch.dscr = mfspr(SPRN_DSCR); 3653 3654 mtspr(SPRN_PSPB, 0); 3655 mtspr(SPRN_WORT, 0); 3656 mtspr(SPRN_UAMOR, 0); 3657 mtspr(SPRN_DSCR, host_dscr); 3658 mtspr(SPRN_TIDR, host_tidr); 3659 mtspr(SPRN_IAMR, host_iamr); 3660 mtspr(SPRN_PSPB, 0); 3661 3662 if (host_amr != vcpu->arch.amr) 3663 mtspr(SPRN_AMR, host_amr); 3664 3665 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX); 3666 store_fp_state(&vcpu->arch.fp); 3667 #ifdef CONFIG_ALTIVEC 3668 store_vr_state(&vcpu->arch.vr); 3669 #endif 3670 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE); 3671 3672 if (cpu_has_feature(CPU_FTR_TM) || 3673 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) 3674 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true); 3675 3676 save_pmu = 1; 3677 if (vcpu->arch.vpa.pinned_addr) { 3678 struct lppaca *lp = vcpu->arch.vpa.pinned_addr; 3679 u32 yield_count = be32_to_cpu(lp->yield_count) + 1; 3680 lp->yield_count = cpu_to_be32(yield_count); 3681 vcpu->arch.vpa.dirty = 1; 3682 save_pmu = lp->pmcregs_in_use; 3683 } 3684 /* Must save pmu if this guest is capable of running nested guests */ 3685 save_pmu |= nesting_enabled(vcpu->kvm); 3686 3687 kvmhv_save_guest_pmu(vcpu, save_pmu); 3688 3689 vc->entry_exit_map = 0x101; 3690 vc->in_guest = 0; 3691 3692 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb()); 3693 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso); 3694 3695 kvmhv_load_host_pmu(); 3696 3697 kvmppc_subcore_exit_guest(); 3698 3699 return trap; 3700 } 3701 3702 /* 3703 * Wait for some other vcpu thread to execute us, and 3704 * wake us up when we need to handle something in the host. 3705 */ 3706 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc, 3707 struct kvm_vcpu *vcpu, int wait_state) 3708 { 3709 DEFINE_WAIT(wait); 3710 3711 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state); 3712 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 3713 spin_unlock(&vc->lock); 3714 schedule(); 3715 spin_lock(&vc->lock); 3716 } 3717 finish_wait(&vcpu->arch.cpu_run, &wait); 3718 } 3719 3720 static void grow_halt_poll_ns(struct kvmppc_vcore *vc) 3721 { 3722 if (!halt_poll_ns_grow) 3723 return; 3724 3725 vc->halt_poll_ns *= halt_poll_ns_grow; 3726 if (vc->halt_poll_ns < halt_poll_ns_grow_start) 3727 vc->halt_poll_ns = halt_poll_ns_grow_start; 3728 } 3729 3730 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc) 3731 { 3732 if (halt_poll_ns_shrink == 0) 3733 vc->halt_poll_ns = 0; 3734 else 3735 vc->halt_poll_ns /= halt_poll_ns_shrink; 3736 } 3737 3738 #ifdef CONFIG_KVM_XICS 3739 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3740 { 3741 if (!xics_on_xive()) 3742 return false; 3743 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr < 3744 vcpu->arch.xive_saved_state.cppr; 3745 } 3746 #else 3747 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu) 3748 { 3749 return false; 3750 } 3751 #endif /* CONFIG_KVM_XICS */ 3752 3753 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu) 3754 { 3755 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded || 3756 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu)) 3757 return true; 3758 3759 return false; 3760 } 3761 3762 /* 3763 * Check to see if any of the runnable vcpus on the vcore have pending 3764 * exceptions or are no longer ceded 3765 */ 3766 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc) 3767 { 3768 struct kvm_vcpu *vcpu; 3769 int i; 3770 3771 for_each_runnable_thread(i, vcpu, vc) { 3772 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu)) 3773 return 1; 3774 } 3775 3776 return 0; 3777 } 3778 3779 /* 3780 * All the vcpus in this vcore are idle, so wait for a decrementer 3781 * or external interrupt to one of the vcpus. vc->lock is held. 3782 */ 3783 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc) 3784 { 3785 ktime_t cur, start_poll, start_wait; 3786 int do_sleep = 1; 3787 u64 block_ns; 3788 3789 /* Poll for pending exceptions and ceded state */ 3790 cur = start_poll = ktime_get(); 3791 if (vc->halt_poll_ns) { 3792 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns); 3793 ++vc->runner->stat.halt_attempted_poll; 3794 3795 vc->vcore_state = VCORE_POLLING; 3796 spin_unlock(&vc->lock); 3797 3798 do { 3799 if (kvmppc_vcore_check_block(vc)) { 3800 do_sleep = 0; 3801 break; 3802 } 3803 cur = ktime_get(); 3804 } while (single_task_running() && ktime_before(cur, stop)); 3805 3806 spin_lock(&vc->lock); 3807 vc->vcore_state = VCORE_INACTIVE; 3808 3809 if (!do_sleep) { 3810 ++vc->runner->stat.halt_successful_poll; 3811 goto out; 3812 } 3813 } 3814 3815 prepare_to_rcuwait(&vc->wait); 3816 set_current_state(TASK_INTERRUPTIBLE); 3817 if (kvmppc_vcore_check_block(vc)) { 3818 finish_rcuwait(&vc->wait); 3819 do_sleep = 0; 3820 /* If we polled, count this as a successful poll */ 3821 if (vc->halt_poll_ns) 3822 ++vc->runner->stat.halt_successful_poll; 3823 goto out; 3824 } 3825 3826 start_wait = ktime_get(); 3827 3828 vc->vcore_state = VCORE_SLEEPING; 3829 trace_kvmppc_vcore_blocked(vc, 0); 3830 spin_unlock(&vc->lock); 3831 schedule(); 3832 finish_rcuwait(&vc->wait); 3833 spin_lock(&vc->lock); 3834 vc->vcore_state = VCORE_INACTIVE; 3835 trace_kvmppc_vcore_blocked(vc, 1); 3836 ++vc->runner->stat.halt_successful_wait; 3837 3838 cur = ktime_get(); 3839 3840 out: 3841 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll); 3842 3843 /* Attribute wait time */ 3844 if (do_sleep) { 3845 vc->runner->stat.halt_wait_ns += 3846 ktime_to_ns(cur) - ktime_to_ns(start_wait); 3847 /* Attribute failed poll time */ 3848 if (vc->halt_poll_ns) 3849 vc->runner->stat.halt_poll_fail_ns += 3850 ktime_to_ns(start_wait) - 3851 ktime_to_ns(start_poll); 3852 } else { 3853 /* Attribute successful poll time */ 3854 if (vc->halt_poll_ns) 3855 vc->runner->stat.halt_poll_success_ns += 3856 ktime_to_ns(cur) - 3857 ktime_to_ns(start_poll); 3858 } 3859 3860 /* Adjust poll time */ 3861 if (halt_poll_ns) { 3862 if (block_ns <= vc->halt_poll_ns) 3863 ; 3864 /* We slept and blocked for longer than the max halt time */ 3865 else if (vc->halt_poll_ns && block_ns > halt_poll_ns) 3866 shrink_halt_poll_ns(vc); 3867 /* We slept and our poll time is too small */ 3868 else if (vc->halt_poll_ns < halt_poll_ns && 3869 block_ns < halt_poll_ns) 3870 grow_halt_poll_ns(vc); 3871 if (vc->halt_poll_ns > halt_poll_ns) 3872 vc->halt_poll_ns = halt_poll_ns; 3873 } else 3874 vc->halt_poll_ns = 0; 3875 3876 trace_kvmppc_vcore_wakeup(do_sleep, block_ns); 3877 } 3878 3879 /* 3880 * This never fails for a radix guest, as none of the operations it does 3881 * for a radix guest can fail or have a way to report failure. 3882 * kvmhv_run_single_vcpu() relies on this fact. 3883 */ 3884 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu) 3885 { 3886 int r = 0; 3887 struct kvm *kvm = vcpu->kvm; 3888 3889 mutex_lock(&kvm->arch.mmu_setup_lock); 3890 if (!kvm->arch.mmu_ready) { 3891 if (!kvm_is_radix(kvm)) 3892 r = kvmppc_hv_setup_htab_rma(vcpu); 3893 if (!r) { 3894 if (cpu_has_feature(CPU_FTR_ARCH_300)) 3895 kvmppc_setup_partition_table(kvm); 3896 kvm->arch.mmu_ready = 1; 3897 } 3898 } 3899 mutex_unlock(&kvm->arch.mmu_setup_lock); 3900 return r; 3901 } 3902 3903 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu) 3904 { 3905 struct kvm_run *run = vcpu->run; 3906 int n_ceded, i, r; 3907 struct kvmppc_vcore *vc; 3908 struct kvm_vcpu *v; 3909 3910 trace_kvmppc_run_vcpu_enter(vcpu); 3911 3912 run->exit_reason = 0; 3913 vcpu->arch.ret = RESUME_GUEST; 3914 vcpu->arch.trap = 0; 3915 kvmppc_update_vpas(vcpu); 3916 3917 /* 3918 * Synchronize with other threads in this virtual core 3919 */ 3920 vc = vcpu->arch.vcore; 3921 spin_lock(&vc->lock); 3922 vcpu->arch.ceded = 0; 3923 vcpu->arch.run_task = current; 3924 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 3925 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 3926 vcpu->arch.busy_preempt = TB_NIL; 3927 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu); 3928 ++vc->n_runnable; 3929 3930 /* 3931 * This happens the first time this is called for a vcpu. 3932 * If the vcore is already running, we may be able to start 3933 * this thread straight away and have it join in. 3934 */ 3935 if (!signal_pending(current)) { 3936 if ((vc->vcore_state == VCORE_PIGGYBACK || 3937 vc->vcore_state == VCORE_RUNNING) && 3938 !VCORE_IS_EXITING(vc)) { 3939 kvmppc_create_dtl_entry(vcpu, vc); 3940 kvmppc_start_thread(vcpu, vc); 3941 trace_kvm_guest_enter(vcpu); 3942 } else if (vc->vcore_state == VCORE_SLEEPING) { 3943 rcuwait_wake_up(&vc->wait); 3944 } 3945 3946 } 3947 3948 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 3949 !signal_pending(current)) { 3950 /* See if the MMU is ready to go */ 3951 if (!vcpu->kvm->arch.mmu_ready) { 3952 spin_unlock(&vc->lock); 3953 r = kvmhv_setup_mmu(vcpu); 3954 spin_lock(&vc->lock); 3955 if (r) { 3956 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 3957 run->fail_entry. 3958 hardware_entry_failure_reason = 0; 3959 vcpu->arch.ret = r; 3960 break; 3961 } 3962 } 3963 3964 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 3965 kvmppc_vcore_end_preempt(vc); 3966 3967 if (vc->vcore_state != VCORE_INACTIVE) { 3968 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE); 3969 continue; 3970 } 3971 for_each_runnable_thread(i, v, vc) { 3972 kvmppc_core_prepare_to_enter(v); 3973 if (signal_pending(v->arch.run_task)) { 3974 kvmppc_remove_runnable(vc, v); 3975 v->stat.signal_exits++; 3976 v->run->exit_reason = KVM_EXIT_INTR; 3977 v->arch.ret = -EINTR; 3978 wake_up(&v->arch.cpu_run); 3979 } 3980 } 3981 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE) 3982 break; 3983 n_ceded = 0; 3984 for_each_runnable_thread(i, v, vc) { 3985 if (!kvmppc_vcpu_woken(v)) 3986 n_ceded += v->arch.ceded; 3987 else 3988 v->arch.ceded = 0; 3989 } 3990 vc->runner = vcpu; 3991 if (n_ceded == vc->n_runnable) { 3992 kvmppc_vcore_blocked(vc); 3993 } else if (need_resched()) { 3994 kvmppc_vcore_preempt(vc); 3995 /* Let something else run */ 3996 cond_resched_lock(&vc->lock); 3997 if (vc->vcore_state == VCORE_PREEMPT) 3998 kvmppc_vcore_end_preempt(vc); 3999 } else { 4000 kvmppc_run_core(vc); 4001 } 4002 vc->runner = NULL; 4003 } 4004 4005 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE && 4006 (vc->vcore_state == VCORE_RUNNING || 4007 vc->vcore_state == VCORE_EXITING || 4008 vc->vcore_state == VCORE_PIGGYBACK)) 4009 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE); 4010 4011 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL) 4012 kvmppc_vcore_end_preempt(vc); 4013 4014 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) { 4015 kvmppc_remove_runnable(vc, vcpu); 4016 vcpu->stat.signal_exits++; 4017 run->exit_reason = KVM_EXIT_INTR; 4018 vcpu->arch.ret = -EINTR; 4019 } 4020 4021 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) { 4022 /* Wake up some vcpu to run the core */ 4023 i = -1; 4024 v = next_runnable_thread(vc, &i); 4025 wake_up(&v->arch.cpu_run); 4026 } 4027 4028 trace_kvmppc_run_vcpu_exit(vcpu); 4029 spin_unlock(&vc->lock); 4030 return vcpu->arch.ret; 4031 } 4032 4033 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit, 4034 unsigned long lpcr) 4035 { 4036 struct kvm_run *run = vcpu->run; 4037 int trap, r, pcpu; 4038 int srcu_idx, lpid; 4039 struct kvmppc_vcore *vc; 4040 struct kvm *kvm = vcpu->kvm; 4041 struct kvm_nested_guest *nested = vcpu->arch.nested; 4042 4043 trace_kvmppc_run_vcpu_enter(vcpu); 4044 4045 run->exit_reason = 0; 4046 vcpu->arch.ret = RESUME_GUEST; 4047 vcpu->arch.trap = 0; 4048 4049 vc = vcpu->arch.vcore; 4050 vcpu->arch.ceded = 0; 4051 vcpu->arch.run_task = current; 4052 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb()); 4053 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE; 4054 vcpu->arch.busy_preempt = TB_NIL; 4055 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED; 4056 vc->runnable_threads[0] = vcpu; 4057 vc->n_runnable = 1; 4058 vc->runner = vcpu; 4059 4060 /* See if the MMU is ready to go */ 4061 if (!kvm->arch.mmu_ready) 4062 kvmhv_setup_mmu(vcpu); 4063 4064 if (need_resched()) 4065 cond_resched(); 4066 4067 kvmppc_update_vpas(vcpu); 4068 4069 init_vcore_to_run(vc); 4070 vc->preempt_tb = TB_NIL; 4071 4072 preempt_disable(); 4073 pcpu = smp_processor_id(); 4074 vc->pcpu = pcpu; 4075 kvmppc_prepare_radix_vcpu(vcpu, pcpu); 4076 4077 local_irq_disable(); 4078 hard_irq_disable(); 4079 if (signal_pending(current)) 4080 goto sigpend; 4081 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready) 4082 goto out; 4083 4084 if (!nested) { 4085 kvmppc_core_prepare_to_enter(vcpu); 4086 if (vcpu->arch.doorbell_request) { 4087 vc->dpdes = 1; 4088 smp_wmb(); 4089 vcpu->arch.doorbell_request = 0; 4090 } 4091 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL, 4092 &vcpu->arch.pending_exceptions)) 4093 lpcr |= LPCR_MER; 4094 } else if (vcpu->arch.pending_exceptions || 4095 vcpu->arch.doorbell_request || 4096 xive_interrupt_pending(vcpu)) { 4097 vcpu->arch.ret = RESUME_HOST; 4098 goto out; 4099 } 4100 4101 kvmppc_clear_host_core(pcpu); 4102 4103 local_paca->kvm_hstate.tid = 0; 4104 local_paca->kvm_hstate.napping = 0; 4105 local_paca->kvm_hstate.kvm_split_mode = NULL; 4106 kvmppc_start_thread(vcpu, vc); 4107 kvmppc_create_dtl_entry(vcpu, vc); 4108 trace_kvm_guest_enter(vcpu); 4109 4110 vc->vcore_state = VCORE_RUNNING; 4111 trace_kvmppc_run_core(vc, 0); 4112 4113 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4114 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid; 4115 mtspr(SPRN_LPID, lpid); 4116 isync(); 4117 kvmppc_check_need_tlb_flush(kvm, pcpu, nested); 4118 } 4119 4120 guest_enter_irqoff(); 4121 4122 srcu_idx = srcu_read_lock(&kvm->srcu); 4123 4124 this_cpu_disable_ftrace(); 4125 4126 /* Tell lockdep that we're about to enable interrupts */ 4127 trace_hardirqs_on(); 4128 4129 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr); 4130 vcpu->arch.trap = trap; 4131 4132 trace_hardirqs_off(); 4133 4134 this_cpu_enable_ftrace(); 4135 4136 srcu_read_unlock(&kvm->srcu, srcu_idx); 4137 4138 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4139 mtspr(SPRN_LPID, kvm->arch.host_lpid); 4140 isync(); 4141 } 4142 4143 set_irq_happened(trap); 4144 4145 kvmppc_set_host_core(pcpu); 4146 4147 local_irq_enable(); 4148 guest_exit(); 4149 4150 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest); 4151 4152 preempt_enable(); 4153 4154 /* 4155 * cancel pending decrementer exception if DEC is now positive, or if 4156 * entering a nested guest in which case the decrementer is now owned 4157 * by L2 and the L1 decrementer is provided in hdec_expires 4158 */ 4159 if (kvmppc_core_pending_dec(vcpu) && 4160 ((get_tb() < vcpu->arch.dec_expires) || 4161 (trap == BOOK3S_INTERRUPT_SYSCALL && 4162 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED))) 4163 kvmppc_core_dequeue_dec(vcpu); 4164 4165 trace_kvm_guest_exit(vcpu); 4166 r = RESUME_GUEST; 4167 if (trap) { 4168 if (!nested) 4169 r = kvmppc_handle_exit_hv(vcpu, current); 4170 else 4171 r = kvmppc_handle_nested_exit(vcpu); 4172 } 4173 vcpu->arch.ret = r; 4174 4175 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded && 4176 !kvmppc_vcpu_woken(vcpu)) { 4177 kvmppc_set_timer(vcpu); 4178 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) { 4179 if (signal_pending(current)) { 4180 vcpu->stat.signal_exits++; 4181 run->exit_reason = KVM_EXIT_INTR; 4182 vcpu->arch.ret = -EINTR; 4183 break; 4184 } 4185 spin_lock(&vc->lock); 4186 kvmppc_vcore_blocked(vc); 4187 spin_unlock(&vc->lock); 4188 } 4189 } 4190 vcpu->arch.ceded = 0; 4191 4192 vc->vcore_state = VCORE_INACTIVE; 4193 trace_kvmppc_run_core(vc, 1); 4194 4195 done: 4196 kvmppc_remove_runnable(vc, vcpu); 4197 trace_kvmppc_run_vcpu_exit(vcpu); 4198 4199 return vcpu->arch.ret; 4200 4201 sigpend: 4202 vcpu->stat.signal_exits++; 4203 run->exit_reason = KVM_EXIT_INTR; 4204 vcpu->arch.ret = -EINTR; 4205 out: 4206 local_irq_enable(); 4207 preempt_enable(); 4208 goto done; 4209 } 4210 4211 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu) 4212 { 4213 struct kvm_run *run = vcpu->run; 4214 int r; 4215 int srcu_idx; 4216 unsigned long ebb_regs[3] = {}; /* shut up GCC */ 4217 unsigned long user_tar = 0; 4218 unsigned int user_vrsave; 4219 struct kvm *kvm; 4220 4221 if (!vcpu->arch.sane) { 4222 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4223 return -EINVAL; 4224 } 4225 4226 /* 4227 * Don't allow entry with a suspended transaction, because 4228 * the guest entry/exit code will lose it. 4229 * If the guest has TM enabled, save away their TM-related SPRs 4230 * (they will get restored by the TM unavailable interrupt). 4231 */ 4232 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 4233 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs && 4234 (current->thread.regs->msr & MSR_TM)) { 4235 if (MSR_TM_ACTIVE(current->thread.regs->msr)) { 4236 run->exit_reason = KVM_EXIT_FAIL_ENTRY; 4237 run->fail_entry.hardware_entry_failure_reason = 0; 4238 return -EINVAL; 4239 } 4240 /* Enable TM so we can read the TM SPRs */ 4241 mtmsr(mfmsr() | MSR_TM); 4242 current->thread.tm_tfhar = mfspr(SPRN_TFHAR); 4243 current->thread.tm_tfiar = mfspr(SPRN_TFIAR); 4244 current->thread.tm_texasr = mfspr(SPRN_TEXASR); 4245 current->thread.regs->msr &= ~MSR_TM; 4246 } 4247 #endif 4248 4249 /* 4250 * Force online to 1 for the sake of old userspace which doesn't 4251 * set it. 4252 */ 4253 if (!vcpu->arch.online) { 4254 atomic_inc(&vcpu->arch.vcore->online_count); 4255 vcpu->arch.online = 1; 4256 } 4257 4258 kvmppc_core_prepare_to_enter(vcpu); 4259 4260 /* No need to go into the guest when all we'll do is come back out */ 4261 if (signal_pending(current)) { 4262 run->exit_reason = KVM_EXIT_INTR; 4263 return -EINTR; 4264 } 4265 4266 kvm = vcpu->kvm; 4267 atomic_inc(&kvm->arch.vcpus_running); 4268 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */ 4269 smp_mb(); 4270 4271 flush_all_to_thread(current); 4272 4273 /* Save userspace EBB and other register values */ 4274 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4275 ebb_regs[0] = mfspr(SPRN_EBBHR); 4276 ebb_regs[1] = mfspr(SPRN_EBBRR); 4277 ebb_regs[2] = mfspr(SPRN_BESCR); 4278 user_tar = mfspr(SPRN_TAR); 4279 } 4280 user_vrsave = mfspr(SPRN_VRSAVE); 4281 4282 vcpu->arch.waitp = &vcpu->arch.vcore->wait; 4283 vcpu->arch.pgdir = kvm->mm->pgd; 4284 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST; 4285 4286 do { 4287 /* 4288 * The early POWER9 chips that can't mix radix and HPT threads 4289 * on the same core also need the workaround for the problem 4290 * where the TLB would prefetch entries in the guest exit path 4291 * for radix guests using the guest PIDR value and LPID 0. 4292 * The workaround is in the old path (kvmppc_run_vcpu()) 4293 * but not the new path (kvmhv_run_single_vcpu()). 4294 */ 4295 if (kvm->arch.threads_indep && kvm_is_radix(kvm) && 4296 !no_mixing_hpt_and_radix) 4297 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0, 4298 vcpu->arch.vcore->lpcr); 4299 else 4300 r = kvmppc_run_vcpu(vcpu); 4301 4302 if (run->exit_reason == KVM_EXIT_PAPR_HCALL && 4303 !(vcpu->arch.shregs.msr & MSR_PR)) { 4304 trace_kvm_hcall_enter(vcpu); 4305 r = kvmppc_pseries_do_hcall(vcpu); 4306 trace_kvm_hcall_exit(vcpu, r); 4307 kvmppc_core_prepare_to_enter(vcpu); 4308 } else if (r == RESUME_PAGE_FAULT) { 4309 srcu_idx = srcu_read_lock(&kvm->srcu); 4310 r = kvmppc_book3s_hv_page_fault(vcpu, 4311 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr); 4312 srcu_read_unlock(&kvm->srcu, srcu_idx); 4313 } else if (r == RESUME_PASSTHROUGH) { 4314 if (WARN_ON(xics_on_xive())) 4315 r = H_SUCCESS; 4316 else 4317 r = kvmppc_xics_rm_complete(vcpu, 0); 4318 } 4319 } while (is_kvmppc_resume_guest(r)); 4320 4321 /* Restore userspace EBB and other register values */ 4322 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 4323 mtspr(SPRN_EBBHR, ebb_regs[0]); 4324 mtspr(SPRN_EBBRR, ebb_regs[1]); 4325 mtspr(SPRN_BESCR, ebb_regs[2]); 4326 mtspr(SPRN_TAR, user_tar); 4327 mtspr(SPRN_FSCR, current->thread.fscr); 4328 } 4329 mtspr(SPRN_VRSAVE, user_vrsave); 4330 4331 vcpu->arch.state = KVMPPC_VCPU_NOTREADY; 4332 atomic_dec(&kvm->arch.vcpus_running); 4333 return r; 4334 } 4335 4336 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps, 4337 int shift, int sllp) 4338 { 4339 (*sps)->page_shift = shift; 4340 (*sps)->slb_enc = sllp; 4341 (*sps)->enc[0].page_shift = shift; 4342 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift); 4343 /* 4344 * Add 16MB MPSS support (may get filtered out by userspace) 4345 */ 4346 if (shift != 24) { 4347 int penc = kvmppc_pgsize_lp_encoding(shift, 24); 4348 if (penc != -1) { 4349 (*sps)->enc[1].page_shift = 24; 4350 (*sps)->enc[1].pte_enc = penc; 4351 } 4352 } 4353 (*sps)++; 4354 } 4355 4356 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm, 4357 struct kvm_ppc_smmu_info *info) 4358 { 4359 struct kvm_ppc_one_seg_page_size *sps; 4360 4361 /* 4362 * POWER7, POWER8 and POWER9 all support 32 storage keys for data. 4363 * POWER7 doesn't support keys for instruction accesses, 4364 * POWER8 and POWER9 do. 4365 */ 4366 info->data_keys = 32; 4367 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0; 4368 4369 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */ 4370 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS; 4371 info->slb_size = 32; 4372 4373 /* We only support these sizes for now, and no muti-size segments */ 4374 sps = &info->sps[0]; 4375 kvmppc_add_seg_page_size(&sps, 12, 0); 4376 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01); 4377 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L); 4378 4379 /* If running as a nested hypervisor, we don't support HPT guests */ 4380 if (kvmhv_on_pseries()) 4381 info->flags |= KVM_PPC_NO_HASH; 4382 4383 return 0; 4384 } 4385 4386 /* 4387 * Get (and clear) the dirty memory log for a memory slot. 4388 */ 4389 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm, 4390 struct kvm_dirty_log *log) 4391 { 4392 struct kvm_memslots *slots; 4393 struct kvm_memory_slot *memslot; 4394 int i, r; 4395 unsigned long n; 4396 unsigned long *buf, *p; 4397 struct kvm_vcpu *vcpu; 4398 4399 mutex_lock(&kvm->slots_lock); 4400 4401 r = -EINVAL; 4402 if (log->slot >= KVM_USER_MEM_SLOTS) 4403 goto out; 4404 4405 slots = kvm_memslots(kvm); 4406 memslot = id_to_memslot(slots, log->slot); 4407 r = -ENOENT; 4408 if (!memslot || !memslot->dirty_bitmap) 4409 goto out; 4410 4411 /* 4412 * Use second half of bitmap area because both HPT and radix 4413 * accumulate bits in the first half. 4414 */ 4415 n = kvm_dirty_bitmap_bytes(memslot); 4416 buf = memslot->dirty_bitmap + n / sizeof(long); 4417 memset(buf, 0, n); 4418 4419 if (kvm_is_radix(kvm)) 4420 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf); 4421 else 4422 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf); 4423 if (r) 4424 goto out; 4425 4426 /* 4427 * We accumulate dirty bits in the first half of the 4428 * memslot's dirty_bitmap area, for when pages are paged 4429 * out or modified by the host directly. Pick up these 4430 * bits and add them to the map. 4431 */ 4432 p = memslot->dirty_bitmap; 4433 for (i = 0; i < n / sizeof(long); ++i) 4434 buf[i] |= xchg(&p[i], 0); 4435 4436 /* Harvest dirty bits from VPA and DTL updates */ 4437 /* Note: we never modify the SLB shadow buffer areas */ 4438 kvm_for_each_vcpu(i, vcpu, kvm) { 4439 spin_lock(&vcpu->arch.vpa_update_lock); 4440 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf); 4441 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf); 4442 spin_unlock(&vcpu->arch.vpa_update_lock); 4443 } 4444 4445 r = -EFAULT; 4446 if (copy_to_user(log->dirty_bitmap, buf, n)) 4447 goto out; 4448 4449 r = 0; 4450 out: 4451 mutex_unlock(&kvm->slots_lock); 4452 return r; 4453 } 4454 4455 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot) 4456 { 4457 vfree(slot->arch.rmap); 4458 slot->arch.rmap = NULL; 4459 } 4460 4461 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm, 4462 struct kvm_memory_slot *slot, 4463 const struct kvm_userspace_memory_region *mem, 4464 enum kvm_mr_change change) 4465 { 4466 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4467 4468 if (change == KVM_MR_CREATE) { 4469 slot->arch.rmap = vzalloc(array_size(npages, 4470 sizeof(*slot->arch.rmap))); 4471 if (!slot->arch.rmap) 4472 return -ENOMEM; 4473 } 4474 4475 return 0; 4476 } 4477 4478 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm, 4479 const struct kvm_userspace_memory_region *mem, 4480 const struct kvm_memory_slot *old, 4481 const struct kvm_memory_slot *new, 4482 enum kvm_mr_change change) 4483 { 4484 unsigned long npages = mem->memory_size >> PAGE_SHIFT; 4485 4486 /* 4487 * If we are making a new memslot, it might make 4488 * some address that was previously cached as emulated 4489 * MMIO be no longer emulated MMIO, so invalidate 4490 * all the caches of emulated MMIO translations. 4491 */ 4492 if (npages) 4493 atomic64_inc(&kvm->arch.mmio_update); 4494 4495 /* 4496 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels 4497 * have already called kvm_arch_flush_shadow_memslot() to 4498 * flush shadow mappings. For KVM_MR_CREATE we have no 4499 * previous mappings. So the only case to handle is 4500 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit 4501 * has been changed. 4502 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES 4503 * to get rid of any THP PTEs in the partition-scoped page tables 4504 * so we can track dirtiness at the page level; we flush when 4505 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to 4506 * using THP PTEs. 4507 */ 4508 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) && 4509 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES)) 4510 kvmppc_radix_flush_memslot(kvm, old); 4511 /* 4512 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots. 4513 */ 4514 if (!kvm->arch.secure_guest) 4515 return; 4516 4517 switch (change) { 4518 case KVM_MR_CREATE: 4519 if (kvmppc_uvmem_slot_init(kvm, new)) 4520 return; 4521 uv_register_mem_slot(kvm->arch.lpid, 4522 new->base_gfn << PAGE_SHIFT, 4523 new->npages * PAGE_SIZE, 4524 0, new->id); 4525 break; 4526 case KVM_MR_DELETE: 4527 uv_unregister_mem_slot(kvm->arch.lpid, old->id); 4528 kvmppc_uvmem_slot_free(kvm, old); 4529 break; 4530 default: 4531 /* TODO: Handle KVM_MR_MOVE */ 4532 break; 4533 } 4534 } 4535 4536 /* 4537 * Update LPCR values in kvm->arch and in vcores. 4538 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion 4539 * of kvm->arch.lpcr update). 4540 */ 4541 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask) 4542 { 4543 long int i; 4544 u32 cores_done = 0; 4545 4546 if ((kvm->arch.lpcr & mask) == lpcr) 4547 return; 4548 4549 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr; 4550 4551 for (i = 0; i < KVM_MAX_VCORES; ++i) { 4552 struct kvmppc_vcore *vc = kvm->arch.vcores[i]; 4553 if (!vc) 4554 continue; 4555 spin_lock(&vc->lock); 4556 vc->lpcr = (vc->lpcr & ~mask) | lpcr; 4557 spin_unlock(&vc->lock); 4558 if (++cores_done >= kvm->arch.online_vcores) 4559 break; 4560 } 4561 } 4562 4563 void kvmppc_setup_partition_table(struct kvm *kvm) 4564 { 4565 unsigned long dw0, dw1; 4566 4567 if (!kvm_is_radix(kvm)) { 4568 /* PS field - page size for VRMA */ 4569 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) | 4570 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1); 4571 /* HTABSIZE and HTABORG fields */ 4572 dw0 |= kvm->arch.sdr1; 4573 4574 /* Second dword as set by userspace */ 4575 dw1 = kvm->arch.process_table; 4576 } else { 4577 dw0 = PATB_HR | radix__get_tree_size() | 4578 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE; 4579 dw1 = PATB_GR | kvm->arch.process_table; 4580 } 4581 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1); 4582 } 4583 4584 /* 4585 * Set up HPT (hashed page table) and RMA (real-mode area). 4586 * Must be called with kvm->arch.mmu_setup_lock held. 4587 */ 4588 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu) 4589 { 4590 int err = 0; 4591 struct kvm *kvm = vcpu->kvm; 4592 unsigned long hva; 4593 struct kvm_memory_slot *memslot; 4594 struct vm_area_struct *vma; 4595 unsigned long lpcr = 0, senc; 4596 unsigned long psize, porder; 4597 int srcu_idx; 4598 4599 /* Allocate hashed page table (if not done already) and reset it */ 4600 if (!kvm->arch.hpt.virt) { 4601 int order = KVM_DEFAULT_HPT_ORDER; 4602 struct kvm_hpt_info info; 4603 4604 err = kvmppc_allocate_hpt(&info, order); 4605 /* If we get here, it means userspace didn't specify a 4606 * size explicitly. So, try successively smaller 4607 * sizes if the default failed. */ 4608 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER) 4609 err = kvmppc_allocate_hpt(&info, order); 4610 4611 if (err < 0) { 4612 pr_err("KVM: Couldn't alloc HPT\n"); 4613 goto out; 4614 } 4615 4616 kvmppc_set_hpt(kvm, &info); 4617 } 4618 4619 /* Look up the memslot for guest physical address 0 */ 4620 srcu_idx = srcu_read_lock(&kvm->srcu); 4621 memslot = gfn_to_memslot(kvm, 0); 4622 4623 /* We must have some memory at 0 by now */ 4624 err = -EINVAL; 4625 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) 4626 goto out_srcu; 4627 4628 /* Look up the VMA for the start of this memory slot */ 4629 hva = memslot->userspace_addr; 4630 mmap_read_lock(kvm->mm); 4631 vma = find_vma(kvm->mm, hva); 4632 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO)) 4633 goto up_out; 4634 4635 psize = vma_kernel_pagesize(vma); 4636 4637 mmap_read_unlock(kvm->mm); 4638 4639 /* We can handle 4k, 64k or 16M pages in the VRMA */ 4640 if (psize >= 0x1000000) 4641 psize = 0x1000000; 4642 else if (psize >= 0x10000) 4643 psize = 0x10000; 4644 else 4645 psize = 0x1000; 4646 porder = __ilog2(psize); 4647 4648 senc = slb_pgsize_encoding(psize); 4649 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T | 4650 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4651 /* Create HPTEs in the hash page table for the VRMA */ 4652 kvmppc_map_vrma(vcpu, memslot, porder); 4653 4654 /* Update VRMASD field in the LPCR */ 4655 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 4656 /* the -4 is to account for senc values starting at 0x10 */ 4657 lpcr = senc << (LPCR_VRMASD_SH - 4); 4658 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD); 4659 } 4660 4661 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */ 4662 smp_wmb(); 4663 err = 0; 4664 out_srcu: 4665 srcu_read_unlock(&kvm->srcu, srcu_idx); 4666 out: 4667 return err; 4668 4669 up_out: 4670 mmap_read_unlock(kvm->mm); 4671 goto out_srcu; 4672 } 4673 4674 /* 4675 * Must be called with kvm->arch.mmu_setup_lock held and 4676 * mmu_ready = 0 and no vcpus running. 4677 */ 4678 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm) 4679 { 4680 if (nesting_enabled(kvm)) 4681 kvmhv_release_all_nested(kvm); 4682 kvmppc_rmap_reset(kvm); 4683 kvm->arch.process_table = 0; 4684 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4685 spin_lock(&kvm->mmu_lock); 4686 kvm->arch.radix = 0; 4687 spin_unlock(&kvm->mmu_lock); 4688 kvmppc_free_radix(kvm); 4689 kvmppc_update_lpcr(kvm, LPCR_VPM1, 4690 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4691 return 0; 4692 } 4693 4694 /* 4695 * Must be called with kvm->arch.mmu_setup_lock held and 4696 * mmu_ready = 0 and no vcpus running. 4697 */ 4698 int kvmppc_switch_mmu_to_radix(struct kvm *kvm) 4699 { 4700 int err; 4701 4702 err = kvmppc_init_vm_radix(kvm); 4703 if (err) 4704 return err; 4705 kvmppc_rmap_reset(kvm); 4706 /* Mutual exclusion with kvm_unmap_hva_range etc. */ 4707 spin_lock(&kvm->mmu_lock); 4708 kvm->arch.radix = 1; 4709 spin_unlock(&kvm->mmu_lock); 4710 kvmppc_free_hpt(&kvm->arch.hpt); 4711 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR, 4712 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR); 4713 return 0; 4714 } 4715 4716 #ifdef CONFIG_KVM_XICS 4717 /* 4718 * Allocate a per-core structure for managing state about which cores are 4719 * running in the host versus the guest and for exchanging data between 4720 * real mode KVM and CPU running in the host. 4721 * This is only done for the first VM. 4722 * The allocated structure stays even if all VMs have stopped. 4723 * It is only freed when the kvm-hv module is unloaded. 4724 * It's OK for this routine to fail, we just don't support host 4725 * core operations like redirecting H_IPI wakeups. 4726 */ 4727 void kvmppc_alloc_host_rm_ops(void) 4728 { 4729 struct kvmppc_host_rm_ops *ops; 4730 unsigned long l_ops; 4731 int cpu, core; 4732 int size; 4733 4734 /* Not the first time here ? */ 4735 if (kvmppc_host_rm_ops_hv != NULL) 4736 return; 4737 4738 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL); 4739 if (!ops) 4740 return; 4741 4742 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core); 4743 ops->rm_core = kzalloc(size, GFP_KERNEL); 4744 4745 if (!ops->rm_core) { 4746 kfree(ops); 4747 return; 4748 } 4749 4750 cpus_read_lock(); 4751 4752 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) { 4753 if (!cpu_online(cpu)) 4754 continue; 4755 4756 core = cpu >> threads_shift; 4757 ops->rm_core[core].rm_state.in_host = 1; 4758 } 4759 4760 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv; 4761 4762 /* 4763 * Make the contents of the kvmppc_host_rm_ops structure visible 4764 * to other CPUs before we assign it to the global variable. 4765 * Do an atomic assignment (no locks used here), but if someone 4766 * beats us to it, just free our copy and return. 4767 */ 4768 smp_wmb(); 4769 l_ops = (unsigned long) ops; 4770 4771 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) { 4772 cpus_read_unlock(); 4773 kfree(ops->rm_core); 4774 kfree(ops); 4775 return; 4776 } 4777 4778 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE, 4779 "ppc/kvm_book3s:prepare", 4780 kvmppc_set_host_core, 4781 kvmppc_clear_host_core); 4782 cpus_read_unlock(); 4783 } 4784 4785 void kvmppc_free_host_rm_ops(void) 4786 { 4787 if (kvmppc_host_rm_ops_hv) { 4788 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE); 4789 kfree(kvmppc_host_rm_ops_hv->rm_core); 4790 kfree(kvmppc_host_rm_ops_hv); 4791 kvmppc_host_rm_ops_hv = NULL; 4792 } 4793 } 4794 #endif 4795 4796 static int kvmppc_core_init_vm_hv(struct kvm *kvm) 4797 { 4798 unsigned long lpcr, lpid; 4799 char buf[32]; 4800 int ret; 4801 4802 mutex_init(&kvm->arch.uvmem_lock); 4803 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns); 4804 mutex_init(&kvm->arch.mmu_setup_lock); 4805 4806 /* Allocate the guest's logical partition ID */ 4807 4808 lpid = kvmppc_alloc_lpid(); 4809 if ((long)lpid < 0) 4810 return -ENOMEM; 4811 kvm->arch.lpid = lpid; 4812 4813 kvmppc_alloc_host_rm_ops(); 4814 4815 kvmhv_vm_nested_init(kvm); 4816 4817 /* 4818 * Since we don't flush the TLB when tearing down a VM, 4819 * and this lpid might have previously been used, 4820 * make sure we flush on each core before running the new VM. 4821 * On POWER9, the tlbie in mmu_partition_table_set_entry() 4822 * does this flush for us. 4823 */ 4824 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4825 cpumask_setall(&kvm->arch.need_tlb_flush); 4826 4827 /* Start out with the default set of hcalls enabled */ 4828 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls, 4829 sizeof(kvm->arch.enabled_hcalls)); 4830 4831 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4832 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1); 4833 4834 /* Init LPCR for virtual RMA mode */ 4835 if (cpu_has_feature(CPU_FTR_HVMODE)) { 4836 kvm->arch.host_lpid = mfspr(SPRN_LPID); 4837 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR); 4838 lpcr &= LPCR_PECE | LPCR_LPES; 4839 } else { 4840 lpcr = 0; 4841 } 4842 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE | 4843 LPCR_VPM0 | LPCR_VPM1; 4844 kvm->arch.vrma_slb_v = SLB_VSID_B_1T | 4845 (VRMA_VSID << SLB_VSID_SHIFT_1T); 4846 /* On POWER8 turn on online bit to enable PURR/SPURR */ 4847 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4848 lpcr |= LPCR_ONL; 4849 /* 4850 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed) 4851 * Set HVICE bit to enable hypervisor virtualization interrupts. 4852 * Set HEIC to prevent OS interrupts to go to hypervisor (should 4853 * be unnecessary but better safe than sorry in case we re-enable 4854 * EE in HV mode with this LPCR still set) 4855 */ 4856 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4857 lpcr &= ~LPCR_VPM0; 4858 lpcr |= LPCR_HVICE | LPCR_HEIC; 4859 4860 /* 4861 * If xive is enabled, we route 0x500 interrupts directly 4862 * to the guest. 4863 */ 4864 if (xics_on_xive()) 4865 lpcr |= LPCR_LPES; 4866 } 4867 4868 /* 4869 * If the host uses radix, the guest starts out as radix. 4870 */ 4871 if (radix_enabled()) { 4872 kvm->arch.radix = 1; 4873 kvm->arch.mmu_ready = 1; 4874 lpcr &= ~LPCR_VPM1; 4875 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR; 4876 ret = kvmppc_init_vm_radix(kvm); 4877 if (ret) { 4878 kvmppc_free_lpid(kvm->arch.lpid); 4879 return ret; 4880 } 4881 kvmppc_setup_partition_table(kvm); 4882 } 4883 4884 kvm->arch.lpcr = lpcr; 4885 4886 /* Initialization for future HPT resizes */ 4887 kvm->arch.resize_hpt = NULL; 4888 4889 /* 4890 * Work out how many sets the TLB has, for the use of 4891 * the TLB invalidation loop in book3s_hv_rmhandlers.S. 4892 */ 4893 if (radix_enabled()) 4894 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */ 4895 else if (cpu_has_feature(CPU_FTR_ARCH_300)) 4896 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */ 4897 else if (cpu_has_feature(CPU_FTR_ARCH_207S)) 4898 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */ 4899 else 4900 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */ 4901 4902 /* 4903 * Track that we now have a HV mode VM active. This blocks secondary 4904 * CPU threads from coming online. 4905 * On POWER9, we only need to do this if the "indep_threads_mode" 4906 * module parameter has been set to N. 4907 */ 4908 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4909 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) { 4910 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n"); 4911 kvm->arch.threads_indep = true; 4912 } else { 4913 kvm->arch.threads_indep = indep_threads_mode; 4914 } 4915 } 4916 if (!kvm->arch.threads_indep) 4917 kvm_hv_vm_activated(); 4918 4919 /* 4920 * Initialize smt_mode depending on processor. 4921 * POWER8 and earlier have to use "strict" threading, where 4922 * all vCPUs in a vcore have to run on the same (sub)core, 4923 * whereas on POWER9 the threads can each run a different 4924 * guest. 4925 */ 4926 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 4927 kvm->arch.smt_mode = threads_per_subcore; 4928 else 4929 kvm->arch.smt_mode = 1; 4930 kvm->arch.emul_smt_mode = 1; 4931 4932 /* 4933 * Create a debugfs directory for the VM 4934 */ 4935 snprintf(buf, sizeof(buf), "vm%d", current->pid); 4936 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir); 4937 kvmppc_mmu_debugfs_init(kvm); 4938 if (radix_enabled()) 4939 kvmhv_radix_debugfs_init(kvm); 4940 4941 return 0; 4942 } 4943 4944 static void kvmppc_free_vcores(struct kvm *kvm) 4945 { 4946 long int i; 4947 4948 for (i = 0; i < KVM_MAX_VCORES; ++i) 4949 kfree(kvm->arch.vcores[i]); 4950 kvm->arch.online_vcores = 0; 4951 } 4952 4953 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm) 4954 { 4955 debugfs_remove_recursive(kvm->arch.debugfs_dir); 4956 4957 if (!kvm->arch.threads_indep) 4958 kvm_hv_vm_deactivated(); 4959 4960 kvmppc_free_vcores(kvm); 4961 4962 4963 if (kvm_is_radix(kvm)) 4964 kvmppc_free_radix(kvm); 4965 else 4966 kvmppc_free_hpt(&kvm->arch.hpt); 4967 4968 /* Perform global invalidation and return lpid to the pool */ 4969 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 4970 if (nesting_enabled(kvm)) 4971 kvmhv_release_all_nested(kvm); 4972 kvm->arch.process_table = 0; 4973 if (kvm->arch.secure_guest) 4974 uv_svm_terminate(kvm->arch.lpid); 4975 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0); 4976 } 4977 4978 kvmppc_free_lpid(kvm->arch.lpid); 4979 4980 kvmppc_free_pimap(kvm); 4981 } 4982 4983 /* We don't need to emulate any privileged instructions or dcbz */ 4984 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu, 4985 unsigned int inst, int *advance) 4986 { 4987 return EMULATE_FAIL; 4988 } 4989 4990 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn, 4991 ulong spr_val) 4992 { 4993 return EMULATE_FAIL; 4994 } 4995 4996 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn, 4997 ulong *spr_val) 4998 { 4999 return EMULATE_FAIL; 5000 } 5001 5002 static int kvmppc_core_check_processor_compat_hv(void) 5003 { 5004 if (cpu_has_feature(CPU_FTR_HVMODE) && 5005 cpu_has_feature(CPU_FTR_ARCH_206)) 5006 return 0; 5007 5008 /* POWER9 in radix mode is capable of being a nested hypervisor. */ 5009 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) 5010 return 0; 5011 5012 return -EIO; 5013 } 5014 5015 #ifdef CONFIG_KVM_XICS 5016 5017 void kvmppc_free_pimap(struct kvm *kvm) 5018 { 5019 kfree(kvm->arch.pimap); 5020 } 5021 5022 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void) 5023 { 5024 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL); 5025 } 5026 5027 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5028 { 5029 struct irq_desc *desc; 5030 struct kvmppc_irq_map *irq_map; 5031 struct kvmppc_passthru_irqmap *pimap; 5032 struct irq_chip *chip; 5033 int i, rc = 0; 5034 5035 if (!kvm_irq_bypass) 5036 return 1; 5037 5038 desc = irq_to_desc(host_irq); 5039 if (!desc) 5040 return -EIO; 5041 5042 mutex_lock(&kvm->lock); 5043 5044 pimap = kvm->arch.pimap; 5045 if (pimap == NULL) { 5046 /* First call, allocate structure to hold IRQ map */ 5047 pimap = kvmppc_alloc_pimap(); 5048 if (pimap == NULL) { 5049 mutex_unlock(&kvm->lock); 5050 return -ENOMEM; 5051 } 5052 kvm->arch.pimap = pimap; 5053 } 5054 5055 /* 5056 * For now, we only support interrupts for which the EOI operation 5057 * is an OPAL call followed by a write to XIRR, since that's 5058 * what our real-mode EOI code does, or a XIVE interrupt 5059 */ 5060 chip = irq_data_get_irq_chip(&desc->irq_data); 5061 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) { 5062 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n", 5063 host_irq, guest_gsi); 5064 mutex_unlock(&kvm->lock); 5065 return -ENOENT; 5066 } 5067 5068 /* 5069 * See if we already have an entry for this guest IRQ number. 5070 * If it's mapped to a hardware IRQ number, that's an error, 5071 * otherwise re-use this entry. 5072 */ 5073 for (i = 0; i < pimap->n_mapped; i++) { 5074 if (guest_gsi == pimap->mapped[i].v_hwirq) { 5075 if (pimap->mapped[i].r_hwirq) { 5076 mutex_unlock(&kvm->lock); 5077 return -EINVAL; 5078 } 5079 break; 5080 } 5081 } 5082 5083 if (i == KVMPPC_PIRQ_MAPPED) { 5084 mutex_unlock(&kvm->lock); 5085 return -EAGAIN; /* table is full */ 5086 } 5087 5088 irq_map = &pimap->mapped[i]; 5089 5090 irq_map->v_hwirq = guest_gsi; 5091 irq_map->desc = desc; 5092 5093 /* 5094 * Order the above two stores before the next to serialize with 5095 * the KVM real mode handler. 5096 */ 5097 smp_wmb(); 5098 irq_map->r_hwirq = desc->irq_data.hwirq; 5099 5100 if (i == pimap->n_mapped) 5101 pimap->n_mapped++; 5102 5103 if (xics_on_xive()) 5104 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc); 5105 else 5106 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq); 5107 if (rc) 5108 irq_map->r_hwirq = 0; 5109 5110 mutex_unlock(&kvm->lock); 5111 5112 return 0; 5113 } 5114 5115 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi) 5116 { 5117 struct irq_desc *desc; 5118 struct kvmppc_passthru_irqmap *pimap; 5119 int i, rc = 0; 5120 5121 if (!kvm_irq_bypass) 5122 return 0; 5123 5124 desc = irq_to_desc(host_irq); 5125 if (!desc) 5126 return -EIO; 5127 5128 mutex_lock(&kvm->lock); 5129 if (!kvm->arch.pimap) 5130 goto unlock; 5131 5132 pimap = kvm->arch.pimap; 5133 5134 for (i = 0; i < pimap->n_mapped; i++) { 5135 if (guest_gsi == pimap->mapped[i].v_hwirq) 5136 break; 5137 } 5138 5139 if (i == pimap->n_mapped) { 5140 mutex_unlock(&kvm->lock); 5141 return -ENODEV; 5142 } 5143 5144 if (xics_on_xive()) 5145 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc); 5146 else 5147 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq); 5148 5149 /* invalidate the entry (what do do on error from the above ?) */ 5150 pimap->mapped[i].r_hwirq = 0; 5151 5152 /* 5153 * We don't free this structure even when the count goes to 5154 * zero. The structure is freed when we destroy the VM. 5155 */ 5156 unlock: 5157 mutex_unlock(&kvm->lock); 5158 return rc; 5159 } 5160 5161 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons, 5162 struct irq_bypass_producer *prod) 5163 { 5164 int ret = 0; 5165 struct kvm_kernel_irqfd *irqfd = 5166 container_of(cons, struct kvm_kernel_irqfd, consumer); 5167 5168 irqfd->producer = prod; 5169 5170 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5171 if (ret) 5172 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n", 5173 prod->irq, irqfd->gsi, ret); 5174 5175 return ret; 5176 } 5177 5178 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons, 5179 struct irq_bypass_producer *prod) 5180 { 5181 int ret; 5182 struct kvm_kernel_irqfd *irqfd = 5183 container_of(cons, struct kvm_kernel_irqfd, consumer); 5184 5185 irqfd->producer = NULL; 5186 5187 /* 5188 * When producer of consumer is unregistered, we change back to 5189 * default external interrupt handling mode - KVM real mode 5190 * will switch back to host. 5191 */ 5192 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi); 5193 if (ret) 5194 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n", 5195 prod->irq, irqfd->gsi, ret); 5196 } 5197 #endif 5198 5199 static long kvm_arch_vm_ioctl_hv(struct file *filp, 5200 unsigned int ioctl, unsigned long arg) 5201 { 5202 struct kvm *kvm __maybe_unused = filp->private_data; 5203 void __user *argp = (void __user *)arg; 5204 long r; 5205 5206 switch (ioctl) { 5207 5208 case KVM_PPC_ALLOCATE_HTAB: { 5209 u32 htab_order; 5210 5211 r = -EFAULT; 5212 if (get_user(htab_order, (u32 __user *)argp)) 5213 break; 5214 r = kvmppc_alloc_reset_hpt(kvm, htab_order); 5215 if (r) 5216 break; 5217 r = 0; 5218 break; 5219 } 5220 5221 case KVM_PPC_GET_HTAB_FD: { 5222 struct kvm_get_htab_fd ghf; 5223 5224 r = -EFAULT; 5225 if (copy_from_user(&ghf, argp, sizeof(ghf))) 5226 break; 5227 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf); 5228 break; 5229 } 5230 5231 case KVM_PPC_RESIZE_HPT_PREPARE: { 5232 struct kvm_ppc_resize_hpt rhpt; 5233 5234 r = -EFAULT; 5235 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5236 break; 5237 5238 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt); 5239 break; 5240 } 5241 5242 case KVM_PPC_RESIZE_HPT_COMMIT: { 5243 struct kvm_ppc_resize_hpt rhpt; 5244 5245 r = -EFAULT; 5246 if (copy_from_user(&rhpt, argp, sizeof(rhpt))) 5247 break; 5248 5249 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt); 5250 break; 5251 } 5252 5253 default: 5254 r = -ENOTTY; 5255 } 5256 5257 return r; 5258 } 5259 5260 /* 5261 * List of hcall numbers to enable by default. 5262 * For compatibility with old userspace, we enable by default 5263 * all hcalls that were implemented before the hcall-enabling 5264 * facility was added. Note this list should not include H_RTAS. 5265 */ 5266 static unsigned int default_hcall_list[] = { 5267 H_REMOVE, 5268 H_ENTER, 5269 H_READ, 5270 H_PROTECT, 5271 H_BULK_REMOVE, 5272 H_GET_TCE, 5273 H_PUT_TCE, 5274 H_SET_DABR, 5275 H_SET_XDABR, 5276 H_CEDE, 5277 H_PROD, 5278 H_CONFER, 5279 H_REGISTER_VPA, 5280 #ifdef CONFIG_KVM_XICS 5281 H_EOI, 5282 H_CPPR, 5283 H_IPI, 5284 H_IPOLL, 5285 H_XIRR, 5286 H_XIRR_X, 5287 #endif 5288 0 5289 }; 5290 5291 static void init_default_hcalls(void) 5292 { 5293 int i; 5294 unsigned int hcall; 5295 5296 for (i = 0; default_hcall_list[i]; ++i) { 5297 hcall = default_hcall_list[i]; 5298 WARN_ON(!kvmppc_hcall_impl_hv(hcall)); 5299 __set_bit(hcall / 4, default_enabled_hcalls); 5300 } 5301 } 5302 5303 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) 5304 { 5305 unsigned long lpcr; 5306 int radix; 5307 int err; 5308 5309 /* If not on a POWER9, reject it */ 5310 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 5311 return -ENODEV; 5312 5313 /* If any unknown flags set, reject it */ 5314 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE)) 5315 return -EINVAL; 5316 5317 /* GR (guest radix) bit in process_table field must match */ 5318 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX); 5319 if (!!(cfg->process_table & PATB_GR) != radix) 5320 return -EINVAL; 5321 5322 /* Process table size field must be reasonable, i.e. <= 24 */ 5323 if ((cfg->process_table & PRTS_MASK) > 24) 5324 return -EINVAL; 5325 5326 /* We can change a guest to/from radix now, if the host is radix */ 5327 if (radix && !radix_enabled()) 5328 return -EINVAL; 5329 5330 /* If we're a nested hypervisor, we currently only support radix */ 5331 if (kvmhv_on_pseries() && !radix) 5332 return -EINVAL; 5333 5334 mutex_lock(&kvm->arch.mmu_setup_lock); 5335 if (radix != kvm_is_radix(kvm)) { 5336 if (kvm->arch.mmu_ready) { 5337 kvm->arch.mmu_ready = 0; 5338 /* order mmu_ready vs. vcpus_running */ 5339 smp_mb(); 5340 if (atomic_read(&kvm->arch.vcpus_running)) { 5341 kvm->arch.mmu_ready = 1; 5342 err = -EBUSY; 5343 goto out_unlock; 5344 } 5345 } 5346 if (radix) 5347 err = kvmppc_switch_mmu_to_radix(kvm); 5348 else 5349 err = kvmppc_switch_mmu_to_hpt(kvm); 5350 if (err) 5351 goto out_unlock; 5352 } 5353 5354 kvm->arch.process_table = cfg->process_table; 5355 kvmppc_setup_partition_table(kvm); 5356 5357 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0; 5358 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE); 5359 err = 0; 5360 5361 out_unlock: 5362 mutex_unlock(&kvm->arch.mmu_setup_lock); 5363 return err; 5364 } 5365 5366 static int kvmhv_enable_nested(struct kvm *kvm) 5367 { 5368 if (!nested) 5369 return -EPERM; 5370 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix) 5371 return -ENODEV; 5372 5373 /* kvm == NULL means the caller is testing if the capability exists */ 5374 if (kvm) 5375 kvm->arch.nested_enable = true; 5376 return 0; 5377 } 5378 5379 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5380 int size) 5381 { 5382 int rc = -EINVAL; 5383 5384 if (kvmhv_vcpu_is_radix(vcpu)) { 5385 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size); 5386 5387 if (rc > 0) 5388 rc = -EINVAL; 5389 } 5390 5391 /* For now quadrants are the only way to access nested guest memory */ 5392 if (rc && vcpu->arch.nested) 5393 rc = -EAGAIN; 5394 5395 return rc; 5396 } 5397 5398 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr, 5399 int size) 5400 { 5401 int rc = -EINVAL; 5402 5403 if (kvmhv_vcpu_is_radix(vcpu)) { 5404 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size); 5405 5406 if (rc > 0) 5407 rc = -EINVAL; 5408 } 5409 5410 /* For now quadrants are the only way to access nested guest memory */ 5411 if (rc && vcpu->arch.nested) 5412 rc = -EAGAIN; 5413 5414 return rc; 5415 } 5416 5417 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa) 5418 { 5419 unpin_vpa(kvm, vpa); 5420 vpa->gpa = 0; 5421 vpa->pinned_addr = NULL; 5422 vpa->dirty = false; 5423 vpa->update_pending = 0; 5424 } 5425 5426 /* 5427 * Enable a guest to become a secure VM, or test whether 5428 * that could be enabled. 5429 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is 5430 * tested (kvm == NULL) or enabled (kvm != NULL). 5431 */ 5432 static int kvmhv_enable_svm(struct kvm *kvm) 5433 { 5434 if (!kvmppc_uvmem_available()) 5435 return -EINVAL; 5436 if (kvm) 5437 kvm->arch.svm_enabled = 1; 5438 return 0; 5439 } 5440 5441 /* 5442 * IOCTL handler to turn off secure mode of guest 5443 * 5444 * - Release all device pages 5445 * - Issue ucall to terminate the guest on the UV side 5446 * - Unpin the VPA pages. 5447 * - Reinit the partition scoped page tables 5448 */ 5449 static int kvmhv_svm_off(struct kvm *kvm) 5450 { 5451 struct kvm_vcpu *vcpu; 5452 int mmu_was_ready; 5453 int srcu_idx; 5454 int ret = 0; 5455 int i; 5456 5457 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)) 5458 return ret; 5459 5460 mutex_lock(&kvm->arch.mmu_setup_lock); 5461 mmu_was_ready = kvm->arch.mmu_ready; 5462 if (kvm->arch.mmu_ready) { 5463 kvm->arch.mmu_ready = 0; 5464 /* order mmu_ready vs. vcpus_running */ 5465 smp_mb(); 5466 if (atomic_read(&kvm->arch.vcpus_running)) { 5467 kvm->arch.mmu_ready = 1; 5468 ret = -EBUSY; 5469 goto out; 5470 } 5471 } 5472 5473 srcu_idx = srcu_read_lock(&kvm->srcu); 5474 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5475 struct kvm_memory_slot *memslot; 5476 struct kvm_memslots *slots = __kvm_memslots(kvm, i); 5477 5478 if (!slots) 5479 continue; 5480 5481 kvm_for_each_memslot(memslot, slots) { 5482 kvmppc_uvmem_drop_pages(memslot, kvm, true); 5483 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id); 5484 } 5485 } 5486 srcu_read_unlock(&kvm->srcu, srcu_idx); 5487 5488 ret = uv_svm_terminate(kvm->arch.lpid); 5489 if (ret != U_SUCCESS) { 5490 ret = -EINVAL; 5491 goto out; 5492 } 5493 5494 /* 5495 * When secure guest is reset, all the guest pages are sent 5496 * to UV via UV_PAGE_IN before the non-boot vcpus get a 5497 * chance to run and unpin their VPA pages. Unpinning of all 5498 * VPA pages is done here explicitly so that VPA pages 5499 * can be migrated to the secure side. 5500 * 5501 * This is required to for the secure SMP guest to reboot 5502 * correctly. 5503 */ 5504 kvm_for_each_vcpu(i, vcpu, kvm) { 5505 spin_lock(&vcpu->arch.vpa_update_lock); 5506 unpin_vpa_reset(kvm, &vcpu->arch.dtl); 5507 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow); 5508 unpin_vpa_reset(kvm, &vcpu->arch.vpa); 5509 spin_unlock(&vcpu->arch.vpa_update_lock); 5510 } 5511 5512 kvmppc_setup_partition_table(kvm); 5513 kvm->arch.secure_guest = 0; 5514 kvm->arch.mmu_ready = mmu_was_ready; 5515 out: 5516 mutex_unlock(&kvm->arch.mmu_setup_lock); 5517 return ret; 5518 } 5519 5520 static struct kvmppc_ops kvm_ops_hv = { 5521 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv, 5522 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv, 5523 .get_one_reg = kvmppc_get_one_reg_hv, 5524 .set_one_reg = kvmppc_set_one_reg_hv, 5525 .vcpu_load = kvmppc_core_vcpu_load_hv, 5526 .vcpu_put = kvmppc_core_vcpu_put_hv, 5527 .inject_interrupt = kvmppc_inject_interrupt_hv, 5528 .set_msr = kvmppc_set_msr_hv, 5529 .vcpu_run = kvmppc_vcpu_run_hv, 5530 .vcpu_create = kvmppc_core_vcpu_create_hv, 5531 .vcpu_free = kvmppc_core_vcpu_free_hv, 5532 .check_requests = kvmppc_core_check_requests_hv, 5533 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv, 5534 .flush_memslot = kvmppc_core_flush_memslot_hv, 5535 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv, 5536 .commit_memory_region = kvmppc_core_commit_memory_region_hv, 5537 .unmap_hva_range = kvm_unmap_hva_range_hv, 5538 .age_hva = kvm_age_hva_hv, 5539 .test_age_hva = kvm_test_age_hva_hv, 5540 .set_spte_hva = kvm_set_spte_hva_hv, 5541 .free_memslot = kvmppc_core_free_memslot_hv, 5542 .init_vm = kvmppc_core_init_vm_hv, 5543 .destroy_vm = kvmppc_core_destroy_vm_hv, 5544 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv, 5545 .emulate_op = kvmppc_core_emulate_op_hv, 5546 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv, 5547 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv, 5548 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv, 5549 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv, 5550 .hcall_implemented = kvmppc_hcall_impl_hv, 5551 #ifdef CONFIG_KVM_XICS 5552 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv, 5553 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv, 5554 #endif 5555 .configure_mmu = kvmhv_configure_mmu, 5556 .get_rmmu_info = kvmhv_get_rmmu_info, 5557 .set_smt_mode = kvmhv_set_smt_mode, 5558 .enable_nested = kvmhv_enable_nested, 5559 .load_from_eaddr = kvmhv_load_from_eaddr, 5560 .store_to_eaddr = kvmhv_store_to_eaddr, 5561 .enable_svm = kvmhv_enable_svm, 5562 .svm_off = kvmhv_svm_off, 5563 }; 5564 5565 static int kvm_init_subcore_bitmap(void) 5566 { 5567 int i, j; 5568 int nr_cores = cpu_nr_cores(); 5569 struct sibling_subcore_state *sibling_subcore_state; 5570 5571 for (i = 0; i < nr_cores; i++) { 5572 int first_cpu = i * threads_per_core; 5573 int node = cpu_to_node(first_cpu); 5574 5575 /* Ignore if it is already allocated. */ 5576 if (paca_ptrs[first_cpu]->sibling_subcore_state) 5577 continue; 5578 5579 sibling_subcore_state = 5580 kzalloc_node(sizeof(struct sibling_subcore_state), 5581 GFP_KERNEL, node); 5582 if (!sibling_subcore_state) 5583 return -ENOMEM; 5584 5585 5586 for (j = 0; j < threads_per_core; j++) { 5587 int cpu = first_cpu + j; 5588 5589 paca_ptrs[cpu]->sibling_subcore_state = 5590 sibling_subcore_state; 5591 } 5592 } 5593 return 0; 5594 } 5595 5596 static int kvmppc_radix_possible(void) 5597 { 5598 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled(); 5599 } 5600 5601 static int kvmppc_book3s_init_hv(void) 5602 { 5603 int r; 5604 5605 if (!tlbie_capable) { 5606 pr_err("KVM-HV: Host does not support TLBIE\n"); 5607 return -ENODEV; 5608 } 5609 5610 /* 5611 * FIXME!! Do we need to check on all cpus ? 5612 */ 5613 r = kvmppc_core_check_processor_compat_hv(); 5614 if (r < 0) 5615 return -ENODEV; 5616 5617 r = kvmhv_nested_init(); 5618 if (r) 5619 return r; 5620 5621 r = kvm_init_subcore_bitmap(); 5622 if (r) 5623 return r; 5624 5625 /* 5626 * We need a way of accessing the XICS interrupt controller, 5627 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or 5628 * indirectly, via OPAL. 5629 */ 5630 #ifdef CONFIG_SMP 5631 if (!xics_on_xive() && !kvmhv_on_pseries() && 5632 !local_paca->kvm_hstate.xics_phys) { 5633 struct device_node *np; 5634 5635 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc"); 5636 if (!np) { 5637 pr_err("KVM-HV: Cannot determine method for accessing XICS\n"); 5638 return -ENODEV; 5639 } 5640 /* presence of intc confirmed - node can be dropped again */ 5641 of_node_put(np); 5642 } 5643 #endif 5644 5645 kvm_ops_hv.owner = THIS_MODULE; 5646 kvmppc_hv_ops = &kvm_ops_hv; 5647 5648 init_default_hcalls(); 5649 5650 init_vcore_lists(); 5651 5652 r = kvmppc_mmu_hv_init(); 5653 if (r) 5654 return r; 5655 5656 if (kvmppc_radix_possible()) 5657 r = kvmppc_radix_init(); 5658 5659 /* 5660 * POWER9 chips before version 2.02 can't have some threads in 5661 * HPT mode and some in radix mode on the same core. 5662 */ 5663 if (cpu_has_feature(CPU_FTR_ARCH_300)) { 5664 unsigned int pvr = mfspr(SPRN_PVR); 5665 if ((pvr >> 16) == PVR_POWER9 && 5666 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) || 5667 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101))) 5668 no_mixing_hpt_and_radix = true; 5669 } 5670 5671 r = kvmppc_uvmem_init(); 5672 if (r < 0) 5673 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r); 5674 5675 return r; 5676 } 5677 5678 static void kvmppc_book3s_exit_hv(void) 5679 { 5680 kvmppc_uvmem_free(); 5681 kvmppc_free_host_rm_ops(); 5682 if (kvmppc_radix_possible()) 5683 kvmppc_radix_exit(); 5684 kvmppc_hv_ops = NULL; 5685 kvmhv_nested_exit(); 5686 } 5687 5688 module_init(kvmppc_book3s_init_hv); 5689 module_exit(kvmppc_book3s_exit_hv); 5690 MODULE_LICENSE("GPL"); 5691 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5692 MODULE_ALIAS("devname:kvm"); 5693